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Abstract

Coding theory is a field of study related with the transmission of data across

noisy channels. Claude Shannon's 1948 paper "A Mathematical Theory of

Communication" gave the idea of codding theory. Codes are used for data

compression, error corrcction and also for reliable data transformation. All

communication channels contain some amount of unreliability. When a mas-

sage is encoded in such channel it is effected by a noise and the received massage

contain error. We can minimize that error and can get best results by the rep-

etition of massage n times. The basic purpose of this repeating massage is to

obtain reliable cornmunication.

The aim of this thesis is study of coding theory over max -min algebra.

Max-Min algebra is a semi ring with two binary operations maximum and

minimum, where maximum is defined as addition and minimum is definecl as

multiplication.

This thesis based on three chapters. Chapter 1 is of introductory nature,

we include some basics definition which will be required by the reader to un-

derstand next two chapters. In last part we define most important topic semi

ring and sem'i uector space.

In chapter 2, we consider a finite field and discuss codes over finite dimen-

sional vector space. We dlso discuss polynomial ring over finite field.

In third chapter, we introduce max-min algebra which is a semi ring, so we

consider lrere semi ring and semi 'uector space attd discuss codes over a finite

dirnensional semi,'uector space.

I
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Chapter 1

Preliminaries

The aim of this chapter is to present some basic concepts and to explain ter-

minology which will be used in this work. In scction 1.1 we will discuss the

most important topic from linear algebra, vector spaces and subspaces. Second

section 1.2 is concerned with Max-Min algebra. For the definition and results

discussed in this chapter we will refer [5], [6], [9] and [11]'

1.1 Vector spaces

We start with the definition of group. 
i

Definition 1.1.L. A non-empty set G together with a binary operation * on

G is called a group if the following conditions holds:

L. ax (b*c) :(axb) xcfor alla,b,ce G.

There exist ari element e e G such that e*a: a* e - a for all a € G.

For each a'€ G there exist an elemeni a-r e G such that a * a
_la'+a:e.

The element e is called the idbntity of G and a-r is called the inverse of a

G. A group G is said to be abelian if a* b:b* o for all a,be G
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Example L.L.z. 1. The set of integers, rationai numbers, real numbers

and complex numbers are abelian groups under the operation of usual

addition.

2. The set M,,r-(R) of all nxn'L matrices over the set of real numbers is a

group under the usual addition of matrices.

Definition 1.1.3. Let G be a group and let H be o ror-€mpty subset of

G. Then H is called a subgroup of G if /ll is itself a group under the binary

operation of G. 
:

Definition L,L.4, A non-empty set R with two binary operations usually

called addition and multiplication, denoted by " + " and "." is called a ring if

(.R, +) is an abelian group;

(,8,.) is a semigroup;

Left and right distributive laws hold, that is, for all a,,b,ce R.

a'(b+c):a'b+a'c

(b+c).a:b.a+c.a

Remark 1.1.5. If .B contains multiplicative identity 1, that is, 1.4, : o,.7: o,

for all a € R. Then /? is called a ring with identitv.

If a.b:b.a for all a,b e R. Then.B is called a commutative ring.

Remark 1. 1.6. If in the above definition (R, +) is just a semigroup then (.R, +, .)

is called a semiring.

Example L,L,7. 1. If (.8,*) is any abelian group,.then the operation of

multiplication defined by

a . b :06, for all a,b e R

turns R into a commutative ring.

1.

2.

3.il
'l
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2. The set of integers, rational numbers, real numbers and complex num-

bers are commutative rings with identity under the operations of usual

addition and usual multiplication.

3. The set Mrrr.(R) of all nxn matrices over the set of real numbers is a

ring under usual addition and multiplicatidn of matrices.

Definition 1.1.8. A non-crirpty subset S of R is called a subring of .B if S is

itself a ring under the binary opcrations of .R.

Definition 1.1.9. Let 1? be a ring. A Ieft ideal / of .B is a tton-empty subset

of .R such that

t. (1,+) isasubgroupof (R,+),thatis,o-be lfoi alla,be I;

2. ra €.I for all r e R and a € .[.

Similarly, a right ideal I of .B is a non-empty subset of R such that

1. (1,+) isasubgroupof (.8,+), that is, a-be / for alla,be I;

2. ar e/ for all r e Rand a € /.

If I is both left and right ideal of R, thenr.I is called a two sided or sirnply arr

ideal of R. The zero ideal {0} ancl the ring R are exumpies of two-sided ideals

in any ring l?.

Definition 1.1.10. A non-empty set F with two binary operations denoted

by * and . is called a field if

t. (F,+) is an abelian group;

2. (F,.) is a commutative group;

3. a.(b*c) : a.b+ a"cand (b+c) 'a--b'alc'a for all a,b, ce F.

Example 1.1.11. 1. The set of real numbers, rational numbers and coin-

plex numbers are fields under addition and multiplication'

\l
t"
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2. Zo: {0,1,. ..,p - l}, where p is a prime, is a field under addition and

multiplication modulo p.

3. If number of elements in P is finite, then P is called finite field.

Definition L.L.L}. Let F be afield and V'be an additive abelian group, then V

is called a vector space over F, if we can define a map from F xV -+ Y(called

a scalar multiplication) such that for all a € F and u e V, au e V and the

following conditions hold:

t. o(u*v) : 4s f ov

2. (a+P)\-- ou*Pu

3. o(Pu) : (afl)u

4. L.u-- u.

For all q,0 e F and u,u e V.

Example 1.1.13. 1. Every field is a vector space over itself.

2. lf F is a field, then P' : {(or, oz,....,an) : r; € F"} is a vector space

over F, where the operation of addition and scalar multiplication are

defined by

(rr,rr,ts, ...,rn) * (ar,ar,Ut, "',Y*) :(q * Ut,xz * U2, "',frn * Un)

a(r1, s2, rtr,.,, t,') :(ar1, dfi2, oifig, ..., o,rn)

3. The set Mr(lF) of n-square matrices over F is a vector space over F,

where the operations of addition and scalar multiplication are defined by

[rri] + [b,i] : laii + bii)

ala;il: [aaii)
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Definition 1.1.14. Let V be a vector space over a field F. A non empty

subset U of V is called a subspace of V if U is itself a vector space under the

same operations of V, that is, U is also an additive abelian group and for any

c€F,ueU,cuisalsoinU.

Theorem 1.1.15. LetY be auector spaie and F be afi,eld. A subsetU of Y

is a subspace if and only if:

1. For any two uectorsu, v € U, u - u ,i,s also i,n IJ.

2. For anA c e F, u e U, cu is also in U.

Remark 1.1.16. Let U andW be any two'bubspaces of V. Then the sum

U+W:{u*w:ueU,weW\

and intersection

UnW:{u€V:u€U,W}

are also subspaces of I/.

Definition t.L.L7. Two vectors are Li.near indcpendent if they are not scalar

multiples of each other. Otherwise the vectors are Linear dcpcndent.

Definition 1.1.18. A set of vectors {rr,rr,...,...u,,} in a vector space V is

called linearly independent over F if

a1u1 * a2u2 I .. .l a^u*: 0 implies eaclt ai:0,'i:1,2,. . .,Tn

Deflnition 1.L.19. A set of vector {'ur,'ur,. . . ,'un} is said to generate I/ if
every elernent in 7 is expressible as a linear coutbinatiort

:ilv'

atut*a2u2*...*anu2

where a,i. € F.
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Definition 1.1.20. A set B of linearly independent vectors that also generates

I/ is called a basis for V. The number of elements in B is called dimension of

V,

Note that, a vector space may have more than one basis but the number of

elements in every base is same.

The dimension of subspaces of Y are less than or equal to the dimension of l,/.

If dimension of a subspace equal to the dimension of V, then that subspace is

Y itself.

If U and W are any two subspaces of V, then

dim(U + W): dimU + dim W - dim(U[^l rl.

1.1.1 Polynomial ring

Let F be a field the polynomial p(r) in z over the field P is defined as an

expressions of the form

p(r) : po * pfi * pzt2 * ... * pnrn,

where the coefficients p; € F. We will denote the set of all such expressions by

Flrl. lt p(x) : po+prr*pzu2 +. . .*pnrn and q(o) - qs*Q1n*Qzx2 + ' ' '*Q*t'o

with rn ) n are any two polynomials over F. We can define their sum as

p(r) + q(r): po* Qo* (p, + q)s *...* (p*+ qn)n" * qn+rrn*r * "'q*r*'

Then, this addition turns F[r] into an abelian group'

Now if we define the multiplication of. p(r) and g(r) as

P(x)q(*): co* cvn * " '* c^r*,

where ct : Di=j+*piQx. Then under this multiplication F[z] is a commutative

semigroup.

It is not hard to verify that

p(*){q(r) + r(r)} : p(r)q(r) + p(r)r(r)



+.
{,

CHAPTER, 1, PR,ELIMINARIES

and

{p(") + q(r))r(r): p(r)r(r) + q(r)r(r)

AIso

p(r)q(r) : q(")p(r)

for all p(r),q(r),r(r) e Flrl. Thus we get that F[r]is a cornmutative ring

called the polynomial ring over F.

If we define scaler multiplication F x .F [r] -+ F[r] as

aP(r) : aPo * aPlr * oqzt2 + ..' I aPnrn

for o € F and p(r) € F[z]. Then, Fl*) becomes a vector space over F.

L.2 Max-Min Algebra

In this section we will define Max-Min algebra also known as Bottleneck alge-

bra. Before writing the formal definition first we would like to explain partially

ordered sets.

Deflnition L.z.L. A relation S on a set S is said to be a partial order if it is

reflexive, antisymmetric and transitive. That is, for all r,y,z e S

1. r 1r (Reflexive).

2, t 19 and A < r thcn r: g"(Antisymmetric).

3. n 4y and ?J < z then r ( z (Transitive).

The set (S, <) is called a partially ordered set.

Definition 1,.2.2. A Mbx-Min algebra ,S is a partially ordered set with rnaxi-

mum and minimum as the two binary operations. Max-Min algebra is a discrete

!f
,l
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algebraic system in which the max and min operations are defined as addition

and multiplication in conventional algebra. Let a ,b € S then

a@b: ma,n{o,,b}

aOb:min{a,b}

For these operations, we have

1. o@ (bec) :mar{d,mar{b,c}}: mar{a,b,c\: (aob) @c

2. a @ b : mar{a,b} : mar{b,a} : 6 g o

3. oO(bOc) :min{a,min{b,.}}: min{a,b,"c}: (aOb) Oc

4. a O b : mi.n{a,b} : min{b, a} : b o a

5. rz o (b o c) = riq,i,n{a,mo,r{b,"}} : m,ar{m,in{a, b},m,in,{a,, c}}. : a o b O

aOc

6. (aOb) Oc:oOce-bOc

Thus, we get that (S, @, O) is a commutative semiring'

Let us take examples.

Example L.2.3. Lct Z2: {0, 1}. Thc relation 0 ( 0, 1 <1, 0 ( 1 is a partial

ordered on 22. The addition and multiplication are defined as

it is easy to verify that Z2

multiplicative identity 1.

Example 1.2.4. Let Z3:

is a Ma><-Min algebra with additive identity 0 and

{0, 1,2}. The relation

0<0,1<1,2<2

0(1,0<2,1 <2

Zs. The addition and multiplication are defined as

3

is partial order relation on
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012
010 72

L2
22

012
0

1

2

00
01
01

0

1

2

Then Zs is a Ma:c-Min algebra with additive

identity 2.

identity 0 and multiplicative

Definition L.2.5. A non-empty set .I on ,9 is called an ideal of S if a *
b, sa, as e I, for all a,b e I and s e S.

Now onwrad by ,S we mean a Ma.:r-Min algebra having both additive and

multiplicative identities. Just like vector space over a field F, now we will

define a semi uector space over Max-Min algebra ,S.

L.z.L Semi vector Space

Semi vector Space: Let (V,+) be a semigroup and (,S, @, O) be a Max-Min

algebra. Definethescalermultiplication S xV + [/ asforall s €,Sand

u e V, su €V.lf.

l. a(u*w):au*aw

2. (a@b)u: au * bw

3. (oO b)u: a(bu)

for all u,,tl € V and a,b e S. Then 7 is called a semi uector space over S.

Example L.2.6. Every Ma:<-Min algebra ,S is a semi uector space over S,

where the scalar multiplication is defined as su : s O u.

Example L.2.7. Let S be a Ma:<-Min algebra. Consider S" : {(rr, x2, . . . ,trn) :

,i € ,S), define addition and scalar multiplication on ^9" as

(rr,*r,...,rn) + (ri, frL,...,a!*) : (ar@ *'r,xz@ r'2,...,frn9 *'")
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and

a(x1rx2,.. .,rn) : (a O rt,a O frz,...,a O fi,.).

Then the associativity of Ma:< operation in ,S imply that ^9u is a semigroup.

Now for serni aector spoce we have:

1. a(u * u) :o[(rr, n2t. , .,xn) * (r\,*!r,...,n'n)l

:a(q @ d1,r.2@ *1r,...,xn@ r,n)

:[o O (cr e c'r), a @ (r2 @ r!r),. ..,o(nne rl,)]

:[a O o1 @ o o t\,aO sz O a @ r'r,...,dO rr, @ a o r'")

:(o O r1,aO xzt...,a@rn) + (o O r\,aOr!2,...,aOx'*)

:d(rt, c.2,. . ., an) * a(a1t, r21, "', anl)

:au+ al)

2. (o, @ or)u

:(ar @ az)(q,rz,. . .,rn)

:[(or I or)o 11, (o1 6 or) o xz,"', (o, o a2)r")

:[(ar O frt,o,rO rz,...,or O xn) * (o, O frl,d2O rz, "',dnO '")]
:or(rr, fi2,. . ., rr) * az(atfiz, . " ,fin)

:dtlt * azu

s' (o' o "'' 

:ori),rr,),1,;,i:,, ,:,,r_), o ,2,., (o, o oz) o c,I

:[or o (o, o nr),at @ (o, o nz)'''', or o (o'o'")]

:lc,1(c,z@ zt,o,z@ fi2,...,a2O fit)l

:o,tlaz(nt,fiz, . . , ,fr,-)l

:at(azu)

Thus, ^9" is a semi uector sqace'

10



11u. CHAPTER, 1, PR,DLIMINAR,IES

Definition L.2.8, A non-empty subset U of a semi aector space V is called a

subspace of. V , if. it is itself a semi, uector space tnder the binary operation and

scalar multiplication of 7. That is, (U, *) is a semigroup and for all u € U

ando€S,a'ueU.

Proposition 1.2.9. A. non-empty subset U of a semi vector space V i,s a

subspace of V xf and only if au1 -l bu2 e (I for all a,b e S and u1,u2 e U .

Proof. If U is a subspace then clearly aut * bu2 e U f.or all a,b € S and

U1,'U2 € U.

Conversely, if. u'u1 * buz e [/ for all a,b e S and u1, u2 € V. Then if we take

o, : b : 1, then u,L+'u,2 e U for all tr1, u,2 e IJ imply that (U, *) is a semigroup.

If we take b : 0, then ar^r1 € t/ imply that scalar multiplication holds in U.

Thus, [/ is a subspace of V.

L.2.2 Polynomials over Max-Min Algebra

Let S be a Max-Min algebra, then by a polynomials over S we mean an ex-

pression of the form

p(r) : as * a1r*, ..., *antr"

here q € S and denote the s'et of all polynomials over S by S[r]. If' p(r), q(r) e

S[r] and the addition and multiplication are defined as

p(t) + q(r) --(ao * a1r + ... + anr") * (bo * b1r * "' l bnr")

:ao O bo * (or @ b1)r + ..' + (an @ b,,)x"

:f(o @b)ri

p(")q(r):(os * a1r * ... * anr")(b1I bfi * ... * b,,r")

:(ao o bo) + (or o bo o or o bo)r + "' + (a6 O b,, o a'n bs)r"'

\,
g'
:,
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: bolhr*b2r2 *. . .*b,,f'

have

(/(") + g(z)) + h(r) :f(as * a1r * a2r2 + ... + anr")+ (bo + hr t bzr2

+ ... + b,r")l* ("0 + ex: * c2r2 * ... * cnr")

:[(ae o b6) + (al @ b1)r * (o, @ b2)r2 + ...+

(an@bn)r"] e (ro * ctr * c2r2 * ... * cnr")

:lmar(as,bs) + nlar(ar *br)r * mar(a2+bz)r2 * ...

* mar(an -l b^)x")O (.n + ex) * c2x2 * ... * c,,rn)

:{mar(as,ao) e co} * {mar(a1, br) @ c1}r * {mar(a2,b2)

@ c2\n2 + ... + {m,ar(an,bn) @ cn}r"

:mar{rnar(oo, bo), cs} * rnar{m,ar(a1,b1), c1}r * mar

{mar (a2, b2), c2} 12 + . . . l= mar {mar (a,,, b,,), cn) r"

:mar(a11,b0, a) * mar(a1,b1,cv)r * mat(a2,b2,c2)r2

+ ... + mar(an,bn,cn)rn

:ffLar {as, mar (bs,co ) } + mar {a 1, mar (b 1, c1)} r *

mar {a2, mar(b2, cr)) r' + . . . + mar {an, ma;r (bn, cn)} r"

:l@) + [g(") +h(r)]

f (r) + g(r):(ao* afi * a2r2 +.,. + anr") * (bo + hr *bzr2 *...*b,r^)
:(o,o @ b6) + (n,1 o b1)r * (o, e b2)* + ... -t (n,@bn)r"

:mar (as, bs) + mar (a1, b1) r * mar (a2, b2) 12 + . .' * mar (an, b n) rn

:mar (bo, ao) + mar (b1, a1) t * mat (b2, a2) * * . . . 1 mar (b,,, a,,) trn

:g(r) + l @)

Then for any f (r) : ao*a1rla2r2 *. . .*anr" , g(r)

and h(r) : c0 * c1r * c2r2 * ...* cnr" in S[r] we

\l
+,I
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lf(r)s(r)lh(r) :[(os * a1x * a2x2 + . . . + anx")(bs * hx*
b2r2 * ...b*r"))(co * qr + c2r2 * . . . * cnr")

:[ao o bo * (qo bo @ ao o hr)t+ "' + ('" o boo

. @ oo O b,)r"](cs * en + czr2 + ... + cnl")

:[(oo o bo oq) * {(o, obo) o cr @ (or o bo @oo obr)

O colr + ... + {(r" O bo) O c" @ (r,. O bo@

...@ooOb")oqlt"

:(ao o bo o co) * (41 o bo o fr O o'o o br o co o oo o boo

c1)x *... * (ao o bo o c,-@ ano bo o co @ os o b, o co)2"

:min(cro,bo, co) * mat{min(or, bo, cs),min(ao, brco),

min(as,bs, c1))r + .. . + max{min(oo, bo, cn),min(an,

bo, tu), .. .,min(as,bn,co)\r"

=!(r)ls(r)h(r)l

l@)g(r):(os * a1r I a2r2 * ..' * anr")(bo * brr * b2r2 * "' * b,,c")

:oo O bo + (ar O bo @ ao O br)u + . . . + (o, O bo @ .' . @ oo O bn)r"

:min(ao, bn) + max {min(av bs), min(as, b, ) }' +''' + max {min(an' bo)

,.,.,min(ao, br))r"

:m,in(bo, as) + mat {min(bs, a1), min(b1, oo)}' +''' + m'an {m'in'(hs' an)

,...,min(b,n,tro))

:s(x) f (r)

f (x)lg@) + h(r)l :(as * a1n * ... * anxn)[(bs + hc+

... * bnx")+ (co + c1fr * . .. + c^r"))

(as+a1t+... + a*n")I(h@c0) + (br @cr)r+ "'+ (b"@c.)n"l

13
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:[ao o (bo oco) * {o, o (bo @co) 9ro o (br o cr)}z

+ ... + {r, o (bo o co) @ ao o (b"e c")}x"l

:(a,o o bo @ ao oc0) + {r, ob6 @ ar o co @a,s o br @ ao ocr}r

* ... *'{a^o bo @ ... @ anO co @ asObno..' o asO cn}r"

:f (*)g(")+ f(r)h(r)

Thus, we get that S[z] is a semiring.

Remark 1.2.10. If we define scalar multiplication S x S[r] -r ^9[r] as

ap(r) : a O po+ 0 O pfi + ... * aO pnrn

then this scalar multiplication turns S[z] into a semivector

Definition.L.2.Ll. Let f(r) e S[r] where f + 0. The

max{n I o^* 0} and it is denotedby degf(t).

Proposition L.2.12. If f (r),g(r) e Sfrl, then

space.

degree ot f(t) IS

E'
des(f (r) + g(r)) = martdesf (r), dess(r)j '

Proof. Let d,egf (r) : 'n and degg(r) : * with iaz ) n' Suppose f (*) :

as * a1r * a2r2 * ... -l_'anr", g(*) : bo * bP * bzr2 + .' . + b*r*''fhen

f (r) + g (r) : oo@bo * (or OLrr )r*.. .* (a*@b n) r" + (0Ob,*1 ) *"*' + ..' * (0@b- )r*.

Since b- f 0, so 0 O b- : mar{O,b^) : b-. We get that

Definition L.2.L3.

then /(r) is said to

o,n:7,

d,es(f (r) + s@D : Tn : mar{deg f (r), dess(r)}.

Let /(r) : anx,n * rtn-ttn-l I ,

be monic polynomial if leading
.I,

. * u1r I uo where un *
coefficient of /(r) that

!

0

is
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Chapter 2

Algebraic codes over finite fields

In this chapter we will discuss algebraic 
,codes 

over finite fields. in the first

section we discuss Linear codes. Second section dcals with dual codes. In the

third section we present Reed-Muller Codes. In the last section of this chapter

we will discuss relation between polynomail ring and algebraic codes. For the

definitions and results discussed in this chapter we will refer [1], [2] , [ ] and

[10]

2.L Linear code

We start this section with the definition of linear codes.

Definition 2.L.L. Let 'F be a finite field, then we know that F" is an n-

dimensional vector space over F (see 1.1.13). A code C over.F is simply a

subset of. F". The members of C are callcd codewords. However, rather then

presenting a codeword (or, or, . . . , dn) in the form of an n-tuple, we will prefer

to write it as a1a2 . . .a*.

A code C is linear over F. If whenever,ue C and u € C, then au* Bu e C

for all a,0 e F. That is, C is asubspace of. F".

If dirrrension of. C is k, then C is called an (n, k)-code.

If F : Zz : {0:7} under addition and multiplication modulo 2, then the codes

*

l- 15
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over F axe called binary codes. If the code is linear then it is called a binary

linear code.

Let F be a finite field. A code C is called cyclic in the cyclic shift of each code-

word in C is also a rnember in C. For example the code {0000, 1010, 0101, 1111}

is a cyclic code.

Remork 2.L.2. 1. The zero codeword 00...0 always belongs to all linear

codes.

2. As dim(F") : n a finite number so each subspace of F" is a finite

dimensional and thus a linear code over F is a finite dimensional subspace

of F".

Example 2,L,3.

If F : 23 : {0,1,2},.then C : {000, LLL,222} is linear over F. However

C: {000,111,12U is not linear as

111 + L2l: (1+ lxl + 2)(1 + 1) : 202 i C.

Example 2.L,4, The codes 5r : {00,01, 10, 11} and C : {000,011, 101, 110}

are binary linear codes.

z.L.L Hamming distance

Deffnition 2.L.5. Let r and y be any two codewords. The Hamming distance

d(r,y) is the number of places in which the codewords r and g differ. In other

words, d(r,y) represents the component-wise difference of the vectors r and g.

That is,

d(*,U): l{i : ni + yi}|.

Example 2.L.6. lf. x :000 and g : 011, then 11 : 0 : Ut, n2 : 0 * L : A,

and r3 :0 * L: U,

+ d(000,011):2.
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Similarly, ,l

d(0000,0111) : 3

Definition 2.L.7. The minimum (Hamming) distance of a code C is the min-

imum distance between any two codewords in the code:

d(C) - min{d(x,y) l* t y, x, y e C}.

Example 2.1.8. Let C : {0000,0101, 1010, 1111} be a code. then

d(0000,0101) : 2, d(0000, 1010) : 2, d(0000,1111) : 4

d(0101,1010) :4, d(0101,1111) : 2, d(1010,1111) : 2.

Thus, the minimum distance of code C is 2.

Definition 2.L.9. Hamming weight of a codeword is number of nonzero com-

ponents in a codeword. i:

Example 2.1.10.

'ro(0110) : 2

tu(Ottt) : 3

Theorem z.l.LL. Let C be a li.near code. Then the minimum distance of C

is equal to the smallest Hamming weight of non-zero codeword i,n C.

Example 2.L.Lz. Let C : {0000,0101, 1010, 111i} be a code then minimum

hamming distance is

d(0101,1111) :2

and lowest weiglit of nonzero codeword is

tu(0tor; : 2.

Definition 2,t,L3, If an (n, ft)- code has minimum distance d, then it is

representbd by (n, k, d).

ALGEBRAIC CODES OVER FINITE FIELDS

iil)'
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Example 2.1.L4. The set C : {0000, 0101, 1010, 1111} is a binary linear code.

Since the sum of any two codewords lies in this set. As

0101 + 1010 : 1111, 0101 + 0101 : 0000,

we get that C is generated by 0101,1010. That is, the dimension of. C is 2.

From Example 2.1.8 we know that d:2.-Thus, C is a (4,2,2)- code.

Example 2.1.15. 1. The binary code {000,111} is a linear (3,1,3)-code.

2. The binary code {000,110,101,111} is a linear (3,2,2)-code.

Remark 2.\.16. A q-array (n,k) code consist of q& codewords. In particular a

binary (n,k)-code consist of 2k codewords.

2.7.2 Generator matrix

Linear codes are used in practice largely due to the simple encoding procedures

facilitated by their linearity. A k x n generator matrix G for an (n, fr) linear

code C provides a compact way to describe all of the codewords in C and

provides a way to encode messages. By perforrning the multiplication mG, a

generator matrix,maps a length k message string m to a length n codeworil

string. The encoding funciion m -+ mG maps the vector space V(k, q) on to

a k- dimensional subspace (namely the code C) of the vector space V(n,q).

Definition 2.L.L7. A /t x n matrix'G whose rows form a basis for an (n,k)

linear code C is called a gencrator matrix.of the codc C.

;:.

Theorem 2.1.18. Let C be an (n, k)-code oue.r F. Let G he o, gen,erator m,atri,r

of C. Then

g : {mG such thatm e Fk}.

Proof. Let C be an (n,k) code and G be the generator matrix of C over F.

Then by definition the rows of G form basis for C. Let Gr,Gz,...,G* be the

+
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rows of G. So every r € C can be written as a linear combination of vectors of

G.

fr:fTt1G1*WZGZ+... + rnxGk where ITL1,frt2,...)rnk € F and

:lrntrfTl2,,,,,rnkl

:MG

Thus 6 : {mG such that m e Fklr tr

Example z.L.Lg. To generate (3,2)-code we have to encode message of length

k. Here k :2that is we have 2k:22:4codewords. The possible pairs of length

2 are [0 0], [1 0], [0 1], [1 1]. Generator matrix should be an k x n : 2 x 3

matrix'Letustake 
lr o olG: I I

lo o 1J

at m: [0 0]

at m: [1 0]

G1

Gz

;_

*c:lo rf l: : :]
:[0. 1 + 0.0 0.0 + 0.0 0.0 + 0. 1]

:[0 0 0]

*c:lr rf [; : :]
:[1 .1+1.0 1.0+0.0 1.0+0ou
:[1 0 0]
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atm:[0u

atTn:[1 1]

**:lr rf 
[; : :]

:[1 .1+1.0 1.0+1.0 1.0+1.1]

:[1 0 1]

Code generated from this generator matrix with four codewords is

6:: {000, 100, 001, 10U.

Remark 2.L.20. 1. As basis for a vector space is not unique so the generator

matrix of an (n,k)-code is not unique.

2. If. C be the code and G be generator matrix of C then G provide a way

to encode a message m e Fk as the codeword vector mG e C which is

contained in F". Thus a linear code has a map E : Fk -+ F,' which is

an encoding map.

3. Each element in Ft is called a message word and there are q& elements

in F&.

2,2 Dual code

In this section we will define dual codes by using the concept of orthogonal

vectors. lf. u: (ur,ur,...ur) and u : (ur, u2,...ur) be any two vectors in F".

Then their product

rr.u : uflt * uzuz * .. .'un'un.

*c:lo I

--[0. 1+

:[0 0 1]

Ir o ol

L, o ,l
.0 0.0+1.0 0.0+l.ll
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The vectors u and u are orthogonal if

u.u :0.

Definition 2.2.L. Let C be (n,k)-code over F. Then the dual code of C is

defined to be

CL : {u e F" such that u^u :0 V t, e C}.

Thus the dual code consists of all codewords that are orthogonal to every

codeword in C.

Example 2,2.2, Let C: {000,001}

(Zr)' : {000, 100,010,001, 110, 101,011, 111}

As Cr : {u e F" I u. u -- 0Y u e C}

[000] .[000] :[0.0+0.0+0'0] :s

[001] .[ooo1 :[0.0+0.0+1.0] :s

[000] .[roo1 :[0.1+0.0+0.0] :s

[001] . [100] : [0. 1+ 0.0 + 1 .0] : 0

[000] .[010] :[0.0+0.1+0.0] :s

[001] .[oro1 :[0.0+0.1+1.0] :s

[000] .[001] :[0.0+0.0+0.1] :s

[001] .[oot1 :[0.0+0'0+1'1] :1

[000] .[tto1 :[0.1+0.1+0.0] :e

[oo1] .[rro1 :[0.1+0.1+1.0] :0

[000] .[ror1 :[0.1+0.0+0.1] :s

[oo1] .[ror1 :[0.1+0.0+1.1] :1
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hence

[000] .[011] :[0.0+0.1+0.1] :s

[001] .[ou1 :[0.0+0.1+1.1] :1

[000] . [ur1 : [0. 1 + 0. 1+ 0. 1] : s

[001]. [111] : [0. I +0. 1 + 1. u : 1

CL : {000,100,010,110}

As here n:3, k:L so ??- k:2 that is dirnension of dual code is 2. So the

dual code is (3,2)-code.

Example 2,2.3. Consider (Zr)2 : {00,01,10,02,20,LL,L2,21,22} and the

code C: {11,22}. Then

[00] .[11] :[0.1*0.1] :6

[00] .[22] :ti}.2*0.21 :6

[12] .[11] :[1 .1+2.1] :0

lt2l . 122]l 
: lr . 2 * 2 . 2l : s

[21] .[lu : [2. 1+ 1 .u : o

lzLl. l22l : 12. 2+ 1 . 2l : 0

[lu.[11] : [1 .1+ 1.1] :2

[22] . [11] : 12.L * 2. 1l : 1

[01] .[11] :[0.1*1.1] :1

[10] .[11] :[1 .1+0.U:l

[02] . [11] : [0. 1 +2. rl : 2

[20j .[11] :12.r*0.11 :2
hence

cL : {00,12,21}.

Clearly, it is a (2,1)- linear code.

22
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Example 2.2,4. Let C : {000,01U

(Zr)' : {000, 100, 010,001, 110, 101, 011, 111}

then dual code of C is

CL : {000, 100,011, 111}

As here n : 3, k : 1 so n - k : 2 so n - lx, - 2 lhat is dimension of dual code

is 2. Hence the dual code is (3,2)-code.

Remark 2.2.5. Thus each vector in Cr is orthogonal to each vector in C.

There axe codes that a^re completely contained in their dual code Cr. Such

codes are called self orthogonal and if. C : Ca then the code is called self dual.

i
Proposition 2.2.6. For any code C, the dual code Ct is a linear code.

Proot. As

u.0:0forallu€C.

We get that

0eCa.

Let u,a e CL then by definition of dual code u.c: 0 and u .c: 0 for every

c € C. lf. a,0 € F. Then

(au * frr) . ":a(u. c) + p(u . c)

:cr(0) + p(0)

-n_U

for every c e C this implies that ou * 9u e Ca. Thus, Ca is linear. tr

Proposition2.2.7. If C is an(n,k) linear codethenCL is an(n,n-k) code.

Proof. Suppose dimension of C is k. If u: (ur,u2,...,un) e CflCa, then

',.t.tt : u1U1* u2u2 * ... * unttn: 0 imply that each ui : 0. Thus, we have
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C nC': {0}.

Since C and Cr are linear so, we have

n: dim(F'*) : dimC+ dimCr - dim CnC' : k*dimCr - 0

+dimCL:n-k.

!

Proposition 2.2.8. A C i^s a code and, Ct is dual code of C then (Ct)L : C.

Proof. Let C be a code and Ca is dual code of C then C and Cl are symmetric.

Let u e C. Thus ,u,.,t):0 V u € Cl that is if

u: Iuru2 ... u,.) and u : luruz . .. an)

then

u.u :,art,,ut * u2.a2 * . . . I un.un

:u t.'tlr * u2.u2 . . . un.un (.' multiplicative is commutative)

:4.u.

lf. u.u:0then un:0,Vu € C and u eCt thatisif u € Crthen u € C so

c g (ct)L.

If C be a code with dimension k then dimension of dual code is n - ft ,

where Cr is a subspace of F". Hence if we take dual of dual code that is

(Ct)' then it has dimension n - (n - k).: k. Thus code C and (C1)a both

has same dimension that is k. Thus C : (C')'. tr

Lemma 2.2.9, Let C be a linear code in F" with genemtor matri,x G. Then

u e CL if and only if uGr :0.

Ic, I_t't
Proot. Let G : I i I be a generator matrix for linear code C. That is, thett,crJ
rows G; forms u b*ri, for C. Now

uGr : (u. Gr,. . . ,u. Gx).



CHAPTDR 2, ALGEBRAIC CODES OVER FINITE FIELDS 25

lf. u e Cr then u . G; :0 for every i, which implies that

uGT:0.

Conversely, if. uGr : 0 then u.Gi:0 for every i. If c e C then

c: I ArGi for some,\; € .F
i

u.c:u.(D^ici)
i

: D \t@;'G;)
i

-0.

Thus, we get that z e CL. tr

Remark 2.2.L0. If G is a generator matrix of C, then the null space of G is Cr

that is V u € Ct, Gur : 0 or equivalently uGa : 0.

Example 2.2.LL.let C : {000,001} be (3,l)-code and CL : {000, 100,010,110}

be dual (3,2)-code.

G: [001]

then V uect ag2:[000]

Cu' :f

:[0

:0

s1 u: [100]

crr:lo o ,]

:[0. 1 + 0.0

:Q

00:ll]
.0+0.0+1.01

lil
+1.01
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at u : [010]

at u : [110]

2,3 Parity check matrix

In coding theory a parity check matrix of a linear code C is a matrix which

discribes the linear relation that a components of a codeword must satisfy. It

can be used to decide wether a particular vector is a codeword.

Definition 2.3.L. Let C be (n,k) code and let H be the generator matrix of

the dual code Ca. Then H is called pa"rity check matrix of the code C.

1. As the generator matrix is not unique. So the parity check matrix of a

code C is also not unique.

2. As the dual of dual code gives original code that is (C])a : C, so if G

is the generator matrix of C then G is the parity check matrix of dual

code Cr.

3. If C is an (n,k) code where n is the length and k is the dimension then

the dual code is an (n,n-k) code where n is the length and n - k is the

cr,:[orrrl:]

:[0.0+0.1+1.0]

:Q

crr:Iorr,l:]

:[0.1+0.1+1.0]

:Q
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dimension of dual code, so the parity check matrix of an (n,k) code is

an (n - ft) x n matrix H which is generator matrix of dual code Cr and

rows of H form basis for CI.

Example 2.3.2. Let C : {000,00U

(Zr)' : {000, 100,010,001, 110, 101,011, 111}

its dual code becomes

CL : {000, 100, 010, 110}.

Here any two vectors on Cr form basis. Hence we can take

lr o olH:l 
I

lo 1 ol

[r o ol [r 1 olalsowecouldtakeH:l lorly':l I

Ir 1ol lo 1o.l

Example 2.3.3. Let C : {00, L1,22]; where (Zr)' : {00,01, 10,02, 2O,L\,L2,2L,22}.

The dual code becomes

CL : {00, 12,21}.

Here the vectors 72 or 27 forms a basis of. Ct. Hence we can take // : [1 2]

o, H :12 1]

Theorem 2.3,4, Let C be an (n,k) code ouer F and let H be a parity check

matrb of C. Then

C: {u€ F" I uHr :O: Hurl,.

Proof. As we have seen that if G is a generator matrix of C then the null space

of G is Cr. Now H is a generator matrix of. CL and hence the null space of H is

(C')t : C. Hence u e C if and only if Hur :0 or equivalently zIlr : 0. tr
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Example 2,3,5. Let C : {000,001}

(Zr)' : {000, 100, 010, 001, 110, 101, 011, 111}

lr o o-l
its dual code is Cr : {000, 100,010, 110}. Let us take I/ : | - |

Io 1 o]
6 2: [000]

:[0 0]

61 s : [001]

:[0 0]

Theorem 2.3.6. Let C be an (n,k) cod,e. Let G and H be generator and parity

check matrb of C. Then

GHr :0: HGa

conaersely, suppose G is akx nmatrb of rankk and H is a("-k)xn matrit

ol rankn- k, such that GHr :0. Then H is a parity check matrfu oJ the code

C ifr G is the generator matri,r ol C .

Proof. As by theorem 2.3.4 V u € C

uHa:0.

:l'
Ir ozll' :[000] 

lo 1

Ir o

:toool I o I

L, o

:1.,fr:1OOr1 | 
1 0

L0 1

Ir o

:loorl I o I

L, O
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Here in particular, GjHT :0 V i:1,2,.,.,k, where each Gz is a row of

generator matrix and hence GHr :0. Taking transpose, we get HGr :O'

To prove second part of the theorem let G be ,k x n matrix of rank k and H is

an (n - k) xn matrix of rank n-k, with GHr :0. Suppose,H is a parity check

matrix of C. Then GtH' : 0 V i:1,2,...,k. Hence Gr,Gz,..',Gp € C'

Since rank of G is k, Gr, Gz,. . ., G; are linearly independent and hence form a

basis of c (..'rtim c : k). This proves that G is a generator matrix of c. Now

suppose that G is a generator matrix of.C. Then G is the paritv check matrix

of the dual code Cr and by the preceding theorem V u € Cr uGr : GAr : O

Suppose GHr :0then by taking trairspose HGr : O, H'iGr:0 Vi:
L,2,...,n-k.Hence Ht,Hz,... Hp e Cr. Sincerankof H is n-k, H1,Hz,"',H*

are linearly independent and form basis f<ir e'(.'dim cf : n-k). This proves

that H is the generator matrix for the dual code Cr and hence H is the parity

check matrix for C.

Example 2.3.7.In previous example C: {000,001}

CL : {000, 100,010, 110}

[001] and

H_

ca':[o or][l:
:[0 0]

Let G be generator matrix of C and G' be a matrix obtained as a result of

performing elementary row operations on G. Then every row of G is a linezir

combination of the rows of G' and conversely. So G, G' have sarte row space

C. Hence G' is also a generator rnatrix of C.

Ir t:l

:l
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Conversely G and G' are both generating matrix of C then each can be

obtained by elementary iow operations on the other.

I

2.3.L Canonical generator matrix

Here we will define the generator matrices for a code that are obtained by

performing row operations on any generator matrix.

Deflnition 2.3.8. Let C be an (n,k) code and suppose that first k columns

of a matrix G are linearly independent. Then by performing elementary row

operations, we can transform G to a row -reduced echelon form G* :llp: A),

where .Ip is the identity matrix of order k and A is some k x (n - k) matrix.

G- is called the canonical generator matrix of C and we say that G is in

systematic or standard fbrm.

Now let H*:[-At : I*-k). Then.Iy'* is an ("-k) xn matrixof rank n-ft
hence I/*. is a parity check matrix of C called the canonical parity check

matrixof C and we say that H is in systematic or standard form.. AIso

G-(FI-)'

as G* is obtained from the generator matrix G <-rf C. G* is also a generator

matrix of C.

Frorn above discussion and Theorem 2.3.6 we have the following result.
I

Theorem 2.3.9. Let C be an (n,k) - code, if C has a canonical generator

matrir G : llx : Al, then H = [-A. : I*-x] is the canonical.pari,ty check

matrir of C. Conuersely if H : lB : I^-p) is a-parity check matrir of C, then

G : ll* ' -Br] is a generator matrir ol C.
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Example 2.3.10. Let

C :{0000,1000} be (4,1) code.

(Z)4 :{0000; 1000,0100,0010,0001, 1100, 1010, 1001,

0101, 0011, 0110, 1110, 1101, 1011, 0111, 1111)

5:r :{0000, 0100, 0010, 0001, 0101, 0011, 0110, 0111},

6e(4,3) code

be the parity check matrix. By performing elementary row operations we can

find canonical generator matrix.

Io 1 1 1'l
n:Io r 1 o I

Lr o 1 ,l

lo 1

,: I O ,

L, O

l:,;
L,:O

00
10
11

b'y R1- R3

byRz-Rr

byR3-R2

":Il
10
01
01 tl

00
10
01

H*:
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1 0 0l
0101
0 0 ,l

, o]

000
100
010
001

32

s{. :lB : \l
G* :llr 

' -B.I
:[1 :000] And also

Io :

G.(H.)r:[r : o o o]lo :

lo :

:Ir : o

:[0 0 0]

2.4 Reed-Muller codes

Reed- Muller codes were formulated by D.E.Muller and I.S.Reed in 1954. They

are among the oldest and well known codes. They have several useful proper-

ties. They form an infinite family of codes and larger Reed Muller codes can

be constructed from smaller ones. One of the major advantage to creating and

using Reed- Muller codes is their relative simplicity to encode messages and

decode received messages.

2.4.L First order Reed-Muller codes

Definition 2.4.L. The (first order) Reed Muller codes R(L,m) are binary

codes defined for all integers m ) I recursively by:

1. R(1, t) : {00,01,10, LLl':23.

2. For m > L fi(l,m) : {(u, u),(u,u + 1) : u e R(L,m- 1) and 1 :
all 1 vector
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Example 2.4.2. To find R(1,2) code we have by definition

ir

Example 2.4.3. To find E(1,3) code we have by definition

R(1,3)

as n(t;l)

R(7,2)

then R(1,3)

2.4.2 rth order Reed Muller code\
Jt

R(r,m) -["'
[(""' * tr) :

Example 2.4.4. To find

R(2,3)

R.(1,2)

R(2,2)

R(2,2)

R(1,2):{(u, u),(u,z + 1)} where u € .R(1, 1) here m :2

as R(1, 1) :{00, 01, 10, 11}

then R(1,2) :{0000,0101, 1010, 1111,0011,0110, 1001, 1100}

:{(2, u),(u,u + 1)} where u'e R(7,2) here r : !,m:3
:{00, 01, 10, 11}

:{0000, 0101, 1010, 1111, 0011, 0111, 1011}

:{00000000, 01010101, 10101010, 1 1 1 1 1 1 I 1, 001 1001 1, 1001 1001,

1 1001 100, 00001 1 1 1, 0101 1010, 10100101, 1 1 1 10000, 001 1 1 100,

01 101001, 100101 10, 1 100001 1 )

The zeroth order Reed Muller code R(0 , m) is defined to be the repetition

code {0,1} of length 2'. For any r ) 2 the rth order Reed Muller code R(r,m)

is defined recursively by

rf. m

u, e R.(r,*,- 7),u e R.(r - l,m, - l) if. m.

R(2,3) code we need .B(2,2) and R(1,2)

:{(u,u*u):ue R(2,2),u e n(1,2)}

:{0000, 0101, 1010, 1111, 0011, 0110, 1011}

.{zt}
:{0000, 0001, 0010,0011, 0100,0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111)
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v:0000

00000000

00010001

00100010

001 1001 1

01000100

01010101

01100110

01110111

10001000

10011001

10101010

101 1 101 1

1 1001 100

I 101 1 101

11101110

11111111

v:0101

00000101

00010100

00100111

001 101 10

01000001

01010000

01 10001 1

01110010

.10001101

10011i00

10I01 111

10111110

11001001

11011000

111010i1
I

I i1111010

v:10L0

00001010

00011011

00101000

00111001

01001110

01011111

01101100

01111101

10000010

10010011

10100000

101 10001

1 10001 10

11010111

11100100

1 1 110101

v:1111

00001 r 1 1

00011110

00r01101

001 1 1 100

droorott

01011010

01101001

01111000

10000111

100101 10

10100101

101 10100

1 100001 1

11010010

11100001

11110000

v:0011

00000011

000i0010

00100001

00110000

0tooot t t

01010110

01100101

01110100

10001011

10011010

i0011010

101 1 1000

11001111

11011110

1 1 101 101

11111100

v:0110

ooooo11o

0001011 1

00100100

00110101

01000010

01010011

01100000

01 1 r0001

10001110

1001 1111

10011111

10111101

1 100101 0

i1011011

1 1 101000

1 1 11 1001

v:1001

00001001

00011000

00101011

001 1 1010

01001101

0101 1 100

01101111

01111110

10000001

10010000

10010000

101 10001

1 1000101

1 1010100

1110d111

1 11 101 10

v=1-L00

00001100

00011101

00101111

001 1001 1

010001 I 1

010101 1 i
01 i001 1 1

01110111

10001011

10011011

10011011

101 11011

11001111

11011111

11101111

111i 1111

2.5 Polynomial ring and algebraic codes

Let F be a finite field. We considered it in two different waYs in the first

chapter we have reviewed the concept of polvnomial rings and now in the

pervious sections of this chapter we came tirrough the codes over F. So it is a

natural question that can we related these two structures depending upon F.

We can identify any codeword o6a1, ...an-t in F" with a polynomial

o,g * a1r+ .. . + an-tfr','-r

in F[r]. Now what will happen with the set of polynomials c(r) that are

relatecl to linear codes. To answer this question we have the following propo-

sition.

Proposition 2.5.1. If C is u linear code in F". TltenC(r) is a subspuce of

Fl").

I

I
I
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Proof. Let C be linear, that is, if. asa1,...an-r and bsb1, ...b,r-L are codewords

in C. Then for all a, B e F

a(asa1, . . . an-t) + p(boh,. . .bn-) e C.

+ (aas * Bbs)(aq + 0b) . ..(aan-, + 7b"-l) €.C.

Thus,

a(ao + a1r * ... * antrn-|) + 0(bo + b1r 1 ... I bnqr"-t)

: (ao6 + frbo) * (aq + 7b)r+ ... + (oon-, * Bbn-1)n"-\ e C(r).

We get that C(r) is a subspace of F[r]. tr

Example 2.5.2. Consider the code C : {000, 110,011, 101} and the corre-

sponding set of polynomials {0,1 * r,r + 12,L + r'}. In this set the highest

power of r is 2. Now what will happen if the power of e is greater than 2. For

example itp(r): 13 - 1 in other words 13 is equivalent to 1. Then

r(1 + *i:*+r'
r(I+*)=x*13:r*l

r(n*z2):12+13:12*1.

Imply the polynomials are equivalent to each other modulo p(n).

From this example we have the following conclusion.

Remark 2.5.3. In a cyclic code C of length n, the product rp(r) modulo r" - 7

produces another code polynomial in C(z), that is, exactly the right cyclic

shift of p(r). Consider the code polynomial

P(t) : cs * c1r * * cn-1r'-1.

Multiplying p(r) by r modulo r" - 1 gives

'p'(r) : csr + c1t2 * * cn-1rn : cor * c1r2 * * cn-1 rnodulo rn - l.

The codeword associated with y'(r) is ("n-t,cy,..,..,cn-2), which is the right

cyclic shift of the codeword associated with p(r).

[:
I
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Theorem 2.5.4. A linear code C of length n ouer a fini,te fi,eld F is cyclic i,f

and only if C satises the following two conditions:

o If p(r) o,nd q(r) are code Ttolyn,omials in C, th,enp(r) - q(r) e C(");

o If p(r) i,s a code polynomi,al in C(n) andr(r) i,s any polynomi,al of degree

less than n, then r(r)p(r) e C(r).

Proof. Suppose C is a c),clic linear code. Then from Proposition 2.5.1 we have

then p(z) - q(n) e C(n)

Let p(x) € C(r) and

r(r) : rs * r1r+ . . . + rrr-trn-r

be a polynomial in F[r]. Now C is cyclic so

rp(r) e C(r)

+ r2p(r) : r(*p(n)), .,,, xn-'p(r) : r(r"-'p(r)) e c(r).

The linearity of. C givcs us

r(r)p(r): rop(r) *f1rp(n) +. '. + rn-rn"-rP(n) e C(n).

Conversely, assume that p(r) - q(r) e C(r) and r(r)p(r) e C(r) for all

p(r),q(r) e C(r) and r(r) the polynomials of degree less than n. If we take

r(r) to be a scalar in F, the conditions imply that C(z) is a linear which imply

C is linear.

If we take r(r) : r, then the second condition implies that C(z) is a cyclic

code, that is, C is cyclic. !

Remark 2.5.5. A linear code C is cyclic if and only if C(z) is an ideal in F[r].

From Remark 2.5.3, we have if C is a cyclic code then every polynomial in

C(r) is equivalent to another polynomial in C(r) modulo rn - 7. Now we will

focus on the set Flr)I@" - 1), which can be informally defined as the set of all

polynomials of degree less than n ) I in the variable r with coefficients frorn
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the finite field F under polynomial addition and multiplication modulo r" -1.
The set is a commutative ring with identity polynomial e(r) :1.

Theoi.em 2.5.6, Th.e cyclic codes of len,gth n o'uer F correspon,d precisely to

the ideals in the ring Flxll(n" - l).

Proof. Supposc C is a cy"lic codc of lcngth n over F. Tlicn, the corrcsponding

set of code polynomials C(r) contains polynomials of degree less than n, also

every polynomial in C(r) is equivalent to another polynomial in C(r) modulo

rn * | which irnply that c(r) is containecl in rlz]/(r" - l). Frorn Theorem

3.5.5, we have C(z) is an ideal in F[c]/(z? - 1)'

on the other hand, suppose that / is an ideal in Flr)l@" - I). Then its

elements are polynomials of degree less than n., and by definition of ideals,

a(r) -b(r) e f whenever a(r),b(r) e I;

C I,
and

r(x)a(r) € l whenever r'(z) e Flrll@" - 1) and a(e)

Thus, we get that 1 is cyclic which imply that the corresponding code is cyclic

over F. tr
.l

Theorem 2'.5.7. LetC be an,(n,,k) cyclic code corresTtondin,g to ah,i.deal I in,

Flr)l@" - 7). Then the followinll statements'are trae:. l

1. There erists a unique moni,c polynomi,al g(r) e I of mini,mal degree r <

n, called the generator polynomi'al of C

2. I is a pri,n,ci,pal ideal uith, gen,erator g(n), so that,ettery code polyn'om'ial'

p(r) can be erpressed uniquely as p(r): m(r)fl@), where o(r) is th'e

generator polynomi,al and, m(r) is a polynomial of degree less than (n-r) 
I

in Flr). l

I
I3. The generator polynomial g(x) diuides r" - I i,n Flr). 
I

I

I

t

I
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Proof. l. Let I be an ideal in Ffull@" - 1). As the degree of polynomials

is bounded below by 0, there is certainly at least one polynomial of minimum

degree in F. Since the scalar multiplication of any polynomial in an ideal .[

remains in /, we can nd a monic polynomial of minimum degree in .I; denoted

by g(r) of degree r < n.

Suppose that h(x) is another monic polynomial of minimum degree r in I.

Since f is an ideal,

+ h(c) - s(x) e r.

Since these polynomials have the same degree and are monic, their difference

must be of lower degree. However, this contradicts the minimality of r. There-

fore, there cannot be two monic polynomials of minimum degree in 1.

2. Let /(c) be an arbitrary element of /, so that /(o) is represented by a

polynomial of degree less than rz. As degree of g(o) is less than degree of /(r).
So, by the Division Algorithm in F[r], we can write

l@):q(x)g(x)*r(c),

where q(r),r(x) e Flrl with dngr(x) < degg(r) or r(o) : g.

Since /(r) has degree less than n, clearly g(r) and r(r) must also have degree

less than n. Flom above Theorem / corresponds to a cyclic code and since

g(c) is a code polynomial, we get that

q(n)s(s) < I.

As /(r) is also in .I and .I is an ideal

+ l@) - q(r)g(a) : r(n) e I.

However, degr(x) < degg(n) contradicts the minimality of the degree ot g(r)

in f. Therefore, r(r) must be equivalent to 0, implying that /(r) is indeed a

multiple of g(x).
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3. Suppose that the unique monic polynomial of minimum degree in .I does

not divide rn - | in F[r]. By the Division Algorithm, we can write

rn - L: q(x)g(x) * r(a),

where q(a),r(x) e F'[r] and degr(x) < degg(s). That is,

r(r) : un -r-q(s)g(s) € F[c],

we see that in Flr)/x" - 1, r(r) is congruent to -q(x)g(r). Since 9(o) e /
and -g(o) e Flxl, we have -q(s)g(t) € f. Therefore, r(o) must also be in

.I. However, by the Division Algorithm, degr(t) < degg(t), which contradicts

the minimality of the degree of. g(x) in .I. Therefore, r(r) must be 0, implying

that 9(e) indeed divides a" - l. tr
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Chapter 3

Algebraic codes over Max-Min

algebra

t

This chapter is concerned with the algebraic codes over Max-Min algebra. Re-

call that a Max-Min algebra is a partially Lrdererl set equipped with maximtrm

and minimllm a^s the two binary operations. Throughout this chapter S is a

finite Max-Min algebra endowed with additive and multiplicative identitv.

3.1- Linear codes

As we know that s" is a semivector space over s (see Example 1.2.7). A

subspace of .9' is called a Iinear code of length n over S.

Example 3.1.1. consider 22,then the code {000,111} is linear of length 3.

Because i

000 + 111 : (0 O 1)(0 @ 1)(0 @ 1) : max{O,I}mar{o,1}mar{0,1} : 11t

111 + 111 : (1o 1)(1@ 1)(1@ 1) : mar{1,1}mar{7,1)mar{t,1} : 11t'

similarly, {000,110,101,111} is a linear coae of length 3. However, the set

{000, 110,101} is not linear as 
t

110 + 101 : (1 @ 1)(1 @ 0)(0 @ 1) :'mar{L,r}'nto,r{|,0}'nm{0,1} : 11t
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and 111 d {000,110,101}.

Example 3.L,2, Consider Zs tus defined in Example L.2.4 then the code

{000, 111, 222} is linear of length 3. Similarly, {000, 120, 702,222,111, 110, L0L,722,12L,LL2}

is a linear code of length 3.

Proposition 3.1.3. Euery linear code ouer S contains the zero codeword.

Proof. Let C be a code of length p over S. lf. a1a2,.,. aobe a codeword then

0(a1a2, . . . a) : min{O, a1}min{O, or} ., . min{O, ao]. : 00 . . . 0.

The linea.rity of. C imply that 00 ...0 e C.

3.1.1 Generator matrix

In this section we are going to define generator matrix then we will give some

results and example. As we are dealing with ,Se, that is, an pdimensional

semivector space over ,S. So every subspace of ,Sp is also finite dimensional.

By (p,r)-code we mean a code of length p arrd dimension r.

Definition 3.1.4. LetC be alinear (p,r)-code. LetQ bearxpmatrixwhose

rows form a basis of C. Then I is called a generator matrix of the code J.

1. If y be semivector space and B : {ur,,uz,.. ., z,} is a basis for a semivec-

tor space )/ then any vector w of V can be written uniquely as a linear

combination of the vectors of of B. Let rs, 12,...,r, € S be scalars such

that vector w can be written as

'u) : t1tt1* r2u2 * ... * rru,

2. Let 0 be a matrix which generate code C than rows of. I are linearly

independent.

3. Ftom a generator matrix we carr find a entire code,

f1
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Following a,re some results:

Theorem 3.1.5. Let C be an (p,r)-code ouer S. Let I be a generator matri,x

of C. Then

C: {ug suchthatu e S"}.

Proo!. Let I bethe generator matrix of an (p,r)-code over S. Then by definition

the rows of I form basis for C so every u e C can be written as a linear

combination of the rows of I that is,

r : ur9r * uzQz * ,.,* uxQ,

where rlt,'u2,. . . ,ur € ,9 and 9t,92,. . . ,9, are the rows of $, consider the

vector u:lurruzr...,url € S"

s :ur9r * uz$z + . .. * u,9,

:lutruzr... rurl

:UQ

Thus C :{ug such that u e ^9"}

Let us take an example.

Example 3.1.6. To generate (3,2) code

0r

9z

g,

n

g : {000 ,100 ,001 ,101}.

we have to encode message of length r. Here r : 2

codewords. As r : 2 so we have to encode message of

then we have 2':22:4

length 2. Here possible
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pairs of length 2 are [0 0], [1 0], [0 1], [1 1]. Generator matrix should be of

r x p matrix, so in this example generator matrix is 2 x 3 matrix. Let us take

Ir o ol0:l I

lo o 1l

at u : [10]

4 2: [01]

4 2: [11]

at u: [00]

,g:1, ,]l; : ll
:[0o1@0o0 0o0@0o0 0o0o0o1]
:fmar {m,in { 0, I }, min{O, 0}} mau {min {0, 0}, min{O, 0} }

max {min{O, 0}, min{0, 1 } }l

:[0 0 0]

us:l,r]"1;::]
:[1o1@1o0 1o0@0o0 1o0@0o1]

:[1 0 0]

,g:1, ,][; : :]
:[0o1@1o0 0o0o1o0 0o0@1o1]

:[0 0 1]

ug:|, ,][; : :]
:[1o1@1o0 1o0@1o0 1o0o1o1]

:[1 0 1]
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Code generated from this generator matrix with four codewords is

g : {000 ,100 ,001 ,101}.

Example 3.L.7. Consider Zs as defined in Example L.2.4 then the linear code

{000,120, L02,222,111, 110, 10L,122,L21,1L2} is generated by 120, L02,222. Tht]6

for

we have

,:l:l; 
l

[ooo]g: [000] [1oo]9: [110]

[001]9: [111] [110]9 : [111]

[011]9 : [111] [lu]q : [111]

Io2olg: [102] l2oolg: [120]

[2o2lg : [222] lo22lg :1bzzl

[ro2lg : 12221 ltzolg : [112]

lLLzlg :1222]1 [L2Ll9: [112]

lL22)9 : 12221 l2r2lg : 12221

Iozllg: [112] [2otlg: [121]

[o1o]g: [101]

[101]9: [111]

l002lg :12221

122019 : lL22)

[22219 :1222)

l0r2)g :12221

lzlLlg: [12u

l22rlg:1122)

l2L\lg: [121]

Remark 3.1.8. 1. The generator matrix of code is unique.

2. lI m € S" is a message word then we can find a code C by multiplying

this message word by a matrix I which is generator of code C . Thus we

have a mapping e : S' + C which is called encoding mapping.
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3.2 Dual code

In this section we define dual code and discuss how code C and dual code are

related.

Deffnition 3,2,L. Let C be (p,r)-code over S. Then the dual code of C is

defined to be

CL : {n €,SP such that r.y : 0 V A € C}.

Where

r.A : rr O Ut @ tz O Uz @ . .. @ x, O Yo.

Example 3,2.2. Let C : {000,001}

(Zz)' : {000, 100,010,001, 110, 101,011, 111}

As Cr : {r € SP I 0.U : 0 Y y eC}. Then

[000] .[000] :[0o0@0oo@0o0] :0

[001] .[000] :[0o0@0o0@1o0] :o

[000] .[100] :[oo1@oo0ooo0] :o

[001] .[100] :[0o1@0o0@1o0] :0

[ooo] .[o1o] :[ooo@oo1@ooo] :o

[001] .[oro1 :[0o0o0o1@1o0] :0

[000] .[oor1 :[0o0@0o0@0o1] :0

[001] .[001] :[0o0o0o0@1o1] :1

[000] .[110] :[0o1o0o1o0o0] :o

[001] .[rro1 :[oo1ooo1o1oo] :o

[000] .[101] :[0o1o0o0o0o1] :0

[001] .[101] :[oo1o0oo@1o1] :t
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[000j .[orr1 :[0o0o0o1@0o1] :0

[001] .[011] :[0o0@0o1o1o1] :1

[000] . [111] : [0o 1 @0o 1 @0o u : 0

[001] . [11u : [0o 1 @0o@1 o u : 1

hence

gr : {000,100,010,110}

Example 3,2,3. Consider C: {0000,0010}. As

(Zr)n : {0000, 1000,0100,0010,0001, 1100, 1010, 1001,0101,0011,0110, 1110,

1101, 1011,0111, 1111)

then dual code of C is

gr : {0000, 1000, 0100, 0001, 1100, 0101, 1001, 1101}

Hence Cr is (4,3)-code generated by 1000,0100,0001.

Lemma 3.2.4, LetC be a lineor code in Sp ondQ be the matrb which generate

C. Then x e CL if and only iJ rQr :0.

lr, It-l
Proof. LetQ: I i I wheregi is somebasisof I ar,dxg:(rh,...,r9,)if.

t^t
Lg, )

r e Ct then zgi : 0 for every i, which implies that tQr : g.

Conversely,iL tQa :0 then fi1i:0 for every i. If c € C then

c: t,\ig; for someli € ,S

dI

n.c:r(D^igi)
i

:t\(riogi)
i

-0

trWe get that r e CL
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Remark 3.2.5. If I is a matrix that is generator of C, then the null space of f
is Ca that is V z e Ct jxr : 0 or equivalently nQr :0.

Example 3.2.6. let C : {000,001} be (3,l)-code Ca : {000,100,010,110}

be dual (3,2)-code.

9: [001]

then V xeCt a1 s:[000]

at r: [100]

at ,: [010]

f:jgrr:lo r r]lrl
:[0o0@0ooetoo]

-0

f:lgr.:lo,r,Lrl

:[0o1@0ooetoo]

-0

grr:loor,l:]

:[0o0@0otetoo]

-0
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at , : [110]

g*,:lo, r]
l:l
1o1ooI:[0o1@0o

-0

Let us discuss some results:

Froposition 3.2.7. Ct is a lineor code.

Proof. if. t,y e Ca then r. c :0 and y. c :0, for every c e C where a, p e S.

Thus (ax * 0y) . c: {o[zr, n2,, ..,xpl * /lAr,yz,. . . ,yp|] .1"r,"r,.. . ,%)

: [o O q @ 0 O Ar,q@ xz@ I Oyz,...,oO c, @ 0 OU;. 1"r,"r,...,cp)

: (aO q@ 0Oyl) Ocr @ (o @rze 0 Oy)OczO... @ (o Oro@ 0 Oyr) O c,

: oo (r, o"r @rz o cz@... @rro %) + P o (y, o cr@uzocz@...@apo%)

:0o0op(0)o0

: mar{min{a,0}, min{9,0}} : o.

This implies that Cr is linear. tr

Proposition 3.2.8. II C is a cod,e and CL is dual code of C then (Ct)r ) C.

Proof. We will prove that code C and dual code Ct are symmetric, that is the

dual of dual code is original code Let , ,,r.Thus ur . z:0Y z € Ca that if

w : [wtw2 ...ur,n] and z : lztzz ... znl

then

7D. Z:'tuto Zt@1il2o Zz @... @ uno za

:zr O wr @ zz O wz. . . zn O wn ('.' multiplicative is commutative)

:2. W
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Flom above it can be seen easily that if tr .'t) :0 then 1) .'u, :0 V u € C and

ue Ct,thatisif o€Cathen ue (C)soCe (Ct)t. !

Example 3.2.9. Let C: {000,001}

(Zr)' : {000, 100,010,001, 110, 101,011, 111}

dual code of C is

gr : {000, 100, 010, 110}.

Then (Ca)r : {000,001}. Hence (Ct)L : g.

3.3 Parity check matrix

In this section we discuss definition and some important results related to parity

check matrix. FYom a parity check matrix we can check wether a codeword is

valid or not.

Definition 3.3.1. Let C be (p,r) code. Let ?l be the matrix that generates

dual code Ca. Then 7l is said to be parity check matrix of the code C.

Remark 3.3.2. 1. As dual of dual code is again a original code C, so if I
generate the code C than it will be a parity check matrix of dual code.

2. If. C is an (p,r) code where p is the length and r is the dimension then

the dual code is an (p,pr) code where p is the length and p - r is the

dimension of dual code, so the parity check matrix of an (p,r) code is an

(p - r) x p matrix 7l which is generator matrix of dual code Cr and rows

of ?l form basis for Ca.

Example 3.3.3. Let C: {000,001}

(zr), : {000, 100,010,001, 110, 101,011, 111}

its dual code becomes

gr : {000,100,010,110}
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Hence

Ir o olll: I I

lo 1 ol
we can take only above matrix as a parity check matrix because this matrix

generate dual code and as by definition 7l is generator matrix of dual code Ca.

Remark 3.3.4. The parity check matrix of a code 7l is unique.

Theorem 3.3.5. Let C be an (p,r) code oaer S, and let ?l be a pari,ty check

matrb of C. Then

C: {x € S'I r?la :0:?ltr}

Proof. As we have seen that if C is generated by I then the null space of f
is Cr. Now 7l is a matrix that generates dual code and hence the null space

oL ?l is (Ct)t : C. Hence r e C if and only if ?lxr : 0 or we can write

r?lT :0. D

Example 3.3.6. Let C: {000,001}

(Zr)' : {000, 100,010,001, 110, 101,011, 111}

lr o ol
its dual code is 6-r : {000, 100,010, 110} let us take tl : I I

Lo 1 oJ
s1 s: [000]

:[0 0]

61 s : [001]

*xr:lo, ,][; : :]-

,{:lo o ,ll' o ol'
'. ,lo, ol

:[00]
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Theorem 3.3.7. LetC be an (p,r) code. LetQ and'Jl be, generator matrir

and parity check matrir of C. Then

g'l1r :0 :719r

Proof.

V r €C r?lr :0.

Here in particular, Q{Jlr :0 V i :1,2,...,k. Where each 9t is a row of

generator matrix and hence g'Jlr :0. Taking transpose, we get 110r : O. tr

Example 3.3.8. In previous example C - {000,001}

let Q :[001] and ": I I

gr : {000, 100,010,110}

0 0'l

,o]

- r .,[r o o'l 'g'tt':lo u rlLr,r-l

lr 1'l
:[oor]lo,l

lo ol
: [0o1@0o0@1o0 0o1@0o1o0o0]

:[00]

Definition 3.3.9. Let C be an (p,r) code Lhen generator matrix of thc form Q* :

lI, : A) is called the canonical generator matrix of C and we say that I is

an systematic form, where f. is the identity matrix of order r, and A is some

r x (p- r) matrix.Now let H. : l-Ar : Io-,). Then ?l* is an (p -r') x n matrix

of rank p - r', Also

9. (?7.)r : g

Where 7l* is a parity check matrix of C called tlte canonical parity check

matrix of C and we say that ?l is in systentatic forrn.
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Theorem 3.3.10. Let C be an (p,r) - code, if C has a canonical generator

matrir 9 : ll, : A), then'\[ = l-A. : Ie-,1 i,s the canoni,cal parity check

matrir of C. conuersely if ?7: lB : Io-,) is a parity checlc matrir of C, then

8 : ll, ' -8.] is a generutor mutri:r of C.

Example 3.3:11. Let

C :{0000, 1000} be (4, 1) code.

@;)4 :{0000, 1000,0100,0010, 0001, 1100, 1010, 1001,

0101,0011,0110, 1110, i101, 1011,0111, 1111)

gr :{0000, 0100, 0010, 0001, 0101, 0011, 0110, 0111},

be(4,3) code.

11- be thc parity check matrix.

H*:

y. :[B : Is]

g* :llr, -8,)

=[1 
:000] And also

l::::l
Lr o o ,l
[o :l o o

lo:o r o

L, :o o 1

g'(?7-)r o r]
10
01
00

:Ir :o
0

0

0
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1 : 0 0 0]

000
100
010
001

_I
-t 100000100000000

o00000@0010000 1o0o0o0o0o0o0o1l
:[0 0 0]

Note 3.3.12. In above example of dual code and parity check matrix we

discussed one dimensional code consist of one codeword of all zero components

and other codeword have nonzero component at one place. Dimension of dual

code is specified in these codes. In all other codes we cannot specify dimension.

Let us take examples of other codes:

Example 3.3.13. Let C : {000,011}

(Zr)t : {000, 100, 010' 001, 110, 101, 011, 111}

then dual code of C is

ca : {000,100}

Hence dual code is (3,1)-code. As we considered one dimensional code but here

dimension of dual code is 1 which is not p - r' :2.

Example 3.3.14. Let C : {0000, 1001} be (3,1)-code'

(Zr)n : {0000, 1000,0100,0010,0001, 1100' 1010, 1001' 0101

. 
,0011,0110, 1110, 110i, 1011,0111, 1111)

then dual code of C is

gt : 
1OOOO, 0100, 0010, 0110)

here dimension of dual code is 2 but p - r : 4- 7 : 3.
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Example 3.3.15. Let C : {0000,0100, 1100,0i01}

(Sr)n : {0000, 1000,0100,0010;0001, 1100, 1010, 1001,0101

, 0011, 0110, 1110, 1101, 1011,0111, 1111)

then dual code of C is

6r : {0000,0010}

As herc dimension of dual code is 1 not p - r :2 .

Hence in these example we cannot spe,cify the dimension.

3.4 Reed Muller code

In this section we define first order and rith order Reed-Muller'codes then we

discuss some examples related to these codes.

Definition 3.4.L. The (first order) reed muller codes .R(1, k)are binary codes

defined for all integers /c ) 1 recursively by:

1. B(1,1) : {00,01,10,11} : 23

2.f.ork>l E(1,k) : {(r,r),(r,r@l):r € R(1,k-1) andl:all 1

vector.

Example 3.4,2. To find 'R.(1,2) code we have by definition

R(1,2):{(r, r),(r,z O 1)} where r e R(7,1) here n: \,k :2

as .B(1, 1) :{00,01, 10, 11}

then R(1, 2) :{0000' 0101, 1010, 1111, 0011, 0111, 1011}

Example 3.4.3: To find R(1,3) code we have by'definition

R(1,3) :{(r, r),(r,r O 1)} where.r € R(l,2) here n: 7,k :3

as ,R(1, 1) :{00,01, 10, 11}

R(1,2):{0000, 0101, 1010, 1111,0011, 0111, 101i}
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then R(1,3) will be:

00000000 I 00001111

01010101 I 01011111

10101010 I 10101111

11111111 I 00111111

00110011 I 01111111

01110111 I 10111111

10111011 I 11111111

That is,

R(l, 3) : {00000000, 01010101, 10101010, 00110011,

01110111, 1011101 1, 00001111,

01011 1 1 1, 10101 11 1, 001 111 11, 01 1 111 I 1, 101 1 1 1 I 1, 1 1 1 1 1 I I 1 )

Definition 3.4.4. The zeroth order Reed Muller code R(O,k) is defined to be

the repetition code {0,1} of length 2&. For any n ) 2,the nth order Reed

Muller code R(n,k) is defined recursively by

(
nt ,\ I23" if.k:n;
Id\n, rc1 : 

1

[(r,r@y): r€ R(n,k- 1), ye R(n- 1,ft- 1) if k>n.

Example 3.4.5. To find R(2,3) code we heed R(2,2) and R(L,z)

R(2,3) :{(c, t + il : t e R(2,2),U e R(t,2)}

R(L, 2) :{0000, 0101, 1010, 11 11, 001 1, 01 1 1, 101 1}

R(2,2):{Z;}

R(2,2) :{0000, 0001,0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111)
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It can be shown in above table that the codewords are appearing repeatedly.

In Example 2.4.4 of. chapter 2 there are 128 codewords but here it reduces to

67 codewords. By writing each codeword only one time we have following table

of codewords:

Y:0000
00000000

00010001

00100010

00110011

01000100

01010101

01100110

011101 11

10001000

10011001

10101010

10111011

11001100

11011101

11101110

11111111

Y:0101

00000101

00010101

00100111

001 101 11

01000101

01010101

01100111

01110111

10001101

1001 1 101

10101 1 1 1

10111111

11001101

11011101

11101111

11111111

y-101"0

00001010

000i1011

00101010

001 1 101 1

01001110

01011111

01101110

011111 11

10001010

10011011

10101010

10111011

11001110

11011111

11101110

11111111

Y:1111

00001111

00011111

00101111

00111111

01001111

01011111

01101 11 1

01111111

10001111

10011111

1010i 1 1 1

10111111

11001111

11011111

11101111

11111111

y-0011

00000011

00010011

0010001 1

001 1001 1

01000111

01010111

01100111

01110111

1000101 1

10011011

10101011

1011 101 1

11001111

11011111

11101111

11111111

Y:0111

0000011i

00010111

001001 1 1

001 101 1 1

01000111

01010111

11001111

01110111

10001 1 1 1

100111i1

101011 1 1

10111111

11001111

11011111

11101111

11111111

y-1011

00001011

0oortou

00101010

00111011

01001111

010i 1 1 11

01101111

01 111 111

10001011

1001 101 1

10101011

10111011

11001111

1 101 11 i1

11101111

111111i 1
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3.5 Polynomial over Max-Min algebra and al-

gebraic codes

As we know that if 
^9 

is a Max-Min algebra, then S[r], that is, precisely the set

of polynomials over S is a commutative semiring (see Section 1.2.2). Let S be

a finite Max-Min algebra. Just like finite fields, we can identify any codeword

aoat, . . .ap-L in Sp with a polynomial

ag * a,1r+ . . . + o,p-tnP-7

in.9[r]. Here are sonre results that relates polynornials and algebraic codes

over Max-Min algebra.

Y:0000
00000000

00010001

00100010

00110011

01000100

01010101

01100110

01110111

10001000

10011001

10101010

101110i1

1r001100

11011101

11101110

11111111

Y:0101

00000101

00010101

00100111

00110111

01000101

01010101

01100111

10001101

1001 1 101

10101111

10i 11111

1 1001 101

11101111

Y:1010

00001010

00011011

00101010

00111011

01001 1 10

01011111

01101110

01111111

10001010

1001 101 I

10101010

101 1 101 1

11001110

11011111

Y:1111

00001 1 1 1

00011111

00101111

00111111

01001 11 1

01101111

10001 1 1 1

10011111

1 1001 11 1

Y:0011

0000001 1

0001001 1

00100011

00110011

01000111

010101 1 1

01 1001 I 1

1000101 1

1001 101 1

1010101 1

Y:0111

000001 1 1

000101 1 1

00100111

10101 1 1 1

Y:1011

00001011
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Proposition 3.5.1. If the cod,e C is li,near. Then the set of polynomials C(r)

i,s a subspace of -Slr).

Proof. LetCbelinear,thatis, if.asay,...ap-L andbsb1,...bp-t arecodewords

in C. Then for all a, fi e S

a(asa1,. . . ao-).* p(bob-',,. . . be-) e C.

+ (a o ao@ 0obs)(aoar @ 0 oot\... (oo ao-t@ fr o br-) e C.

Thus,

a(ao+a1x *...* ar-rr'-') * 0(bo+bfi*... +bp-op-t)

: (ao aog. 0ob0) + (ao alopo b1)r -t .. + (a o ao-tp P obr-t) e C(r).

We get that C(r) is a subspace of S[r]. !

Example 3,5.2. Consider the code C : {000, 110,011, 111}, then the corre-

sponding set of'polynomials is {0,1 I r,r + 12,L* x * x2}. 
__

Definition 3.5.3. If (ro, ,1, . . . ,tn-r) is a codeword in C and by cyclic shifting

there is codeword (tn-t,to . . . ,tn-z) which is also a in C then it is called cyclic

code.

Remark 3.5.4. In a cyclic code C of length p, if we assume that rp is equivalent

to tiie multiplicative identity e in ,S then the product ra(r) modulo rp - e

git'es another code polynomial inC(r), that is, exactly the right cyclic shift of

a(r). Let us take the code polynomial

o(r) | c1v -f c1:L + * cr-trT-l.

By multiplying a(u) by z modulo rP - 1 we have

a'(r) : cor + i1r2 I * q-fie : cor 1- c1r2 * * c7,-r modulo trP - e.

The codeword (cp-r, co,...,%-z)associated with o'(r), is the right cyclic shift

of the codeword'associated with a(r).
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Theorem 3.5.5. A linear cod,e c of length p ouer a finite Mo*Min algebra

s is cyclic if and only if a(r) + 9(x) e c(x) and l(x)a(t) e c(r) for ail

a(r), p(r) e C(r) and tor all polynomials 1@) o! degree less than p.

Proof. suppose C is a cyclic linear code. Then from Proposition 3.5.1 we have

then o(o) + 0@) e C(x)

Let a(r) e C(z) and

l@) : 1o * ^tfi + . . . +'yo-rro-'

be a polynomial in S[o]. Now C is cyclic so

xa(t) e C(r)

+ 12a(r) : r(ra(r)),...,g,P-ro,(x) : alrn-'o(*)) e C(r).

The linearity of C gives us

1@)a(x) : %a(x) * 1'1,ro,(r)+ .. . + ^yn-rxp-rd(a) e C(t).

Conversely, assume that o(r) + 0@) e C(a) and 7(r)a(r) e C(r) for all

a(r), p(x) e C(x) and 7(r) the polynomials of degree less than p. By taking

f(r) as a scalar in S,then by condition C(a) is a linear which imply C is linea.r.

By taking l@) : r, then by the second condition C(r) is a cyclic code, that

is, C is cyclic.
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