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Abstract

Coding theory is a field of study related with the transmission of data across
noisy channels. Claude Shannon’s 1948 paper “A Mathematical Theory of
Communication” gave the idea of codding theory. Codes are used for data
compression, error correction and also for reliable data transformation. All
communication channels contain some amount of unreliability. When a mas-
sage is encoded in such channel it is effected by a noise and the received massage
contain error. We can minimize that error and can get best results by the rep-
etition of massage n times. The basic purpose of this repeating massage is to
obtain reliable communication.

The aim of this thesis is study of coding theory over max -min algebra.
Max-Min algebra is a semi ring with two binary operations maximum and
minimum, where maximum is defined as addition and minimum is defined as
multiplication.

This thesis based on three chapters. Chapter 1 is of introductory nature,
we include some basics definition which will be required by the reader to un-
derstand next two chapters. In last part we define most important topic semi
ring and sem: vector space.

In chapter 2, we consider a finite field and discuss codes over finite dimen-
sional vector space. We also discuss polynomial ring over finite field.

In third chapter, we introduce max-min algebra which is a semi ring, so we
consider here semi ring and semi vector space and discuss codes over a finite

dimensional semi vector space.
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Chapter 1
Preliminaries

The aim of this chapter is to present some basic concepts and to explain ter-
minology which will be used in this work. In section 1.1 we will discuss the
most important topic from linear algebra, vector spaces and subspaces. Second
. section 1.2 is concerned with Max-Min algebra. For the definition and results

discussed in this chapter we will refer [5], [6], [9] and [11].

1.1 Vector spaces

We start with the definition of group.

Definition 1.1.1. A non-empty set G together with a binary operation * on

G is called a group if the following conditions holds:

l.ax(bxc)=(axb)xcforallabceG.

h

2. There exist an element e € Gsuch that exa=axe=aforalla € G.

3. For each a '€ G there exist an element a™! € G such that a x a™! =

-1

a " *xa=e.

The element e is called the identity of G and a~! is called the inverse of a in

G. A group G is said to be abelian if axb=bxa for all a,b € G

N e it ke aa e
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Example 1.1.2. 1. The set of integers, rational numbers, real numbers
and complex numbers are abelian groups under the operation of usual

addition.

2. The set Myxm(R) of all n x m matrices over the set of real numbers is a

group under the usual addition of matrices.

Definition 1.1.3. Let G be a group and let H be a non-empty subset of

" G. Then H is called a subgroup of G if H is itself a group under the binary

operation of G.

Definition 1.1.4. A non-empty set R with two binary operations usually

called addition and multiplication, denoted by “+” and “-” is called a ring if
1. (R,+) is an abelian group;
2. (R,-) is a semigroup;
3. Left and right distributive laws hold, that is, for all a,b,c € R.
a-(b+c)=a-b+a-c
(b+c)-a=b-a+c-a

Remark 1.1.5. If R contains multiplicative identity 1, that is, 1.a = a.1 = a
for all a € R. Then R is called a ring with identity.

Ifa-b=0b-afor all a,b € R. Then R is called a commutative ring.

Remark 1.1.6. If in the above definition (R, +) is just a semigroup then (R, +, .)

is called a semiring.

Example 1.1.7. 1. If (R,+) is any abelian group, .then the operation of

multiplication defined by
a-b=0pg, foralla,b € R

turns R into a commutative ring.
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2. The set of integers, rational numbers, real numbers and complex num-
bers are commutative rings with identity under the operations of usual

addition and usual multiplication.

3. The set M,xn(R) of all n x n matrices over the set of real numbers is a

ring under usual addition and multiplication of matrices.

Definition 1.1.8. A non-empty subset S of R is called a subring of R if S is

itself a ring under the binary operations of R.

Definition 1.1.9. Let R be a ring. A left ideal I of R is a non-empty subset
of R such that

1. (I,+) is a subgroup of (R,+), that is,a —b € I for all a,b € I;
2.rac€lforallr€ Randa€l.
Similarly, a right ideal I of R is a non-empty subset of R such that
;1' 1. (I,+) is a subgroup of (R, +), that is,a—b € [ for all a,b € I;

2. arclforallre Randacl.

If I is both left and right ideal of R, then'l is called a two sided or simply an
ideal of R. The zero ideal {0} and the ring R are examples of two-sided ideals

in any ring R.

Definition 1.1.10. A non-empty set F with two binary operations denoted
by + and . is called a field if

1. (F,+) is an abelian group;
2. (F,)) is a commutative group;
3.a-(b+c)=a-b+a-cand(b+c)-a=b-a+c-aforallabcekF.

Example 1.1.11. 1. The set of real numbers, rational numbers and coin-

plex numbers are fields under addition and multiplication.
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Definition 1.1.14. Let V be a vector space over a field F. A non empty
subset U of V is called a subspace of V if U is itself a vector space under the
same operations of V, that is, U is also an additive abelian group and for any

ce€ F,ueU,cuisalsoin U.

Theorem 1.1.15. Let V be a vector space and F be a field. A subset U of V

is a subspace if and only if:
1. For any two vectors u,v € U, u — v is also in U.
2. Foranyce F,uwe U, cuis also in U.
Remark 1.1.16. Let U and W be any two subspaces of V. Then the sum

U+W={ut+w:uelweW}

and intersection

UYW ={veV:velUW}
are also subspaces of V.

Definition 1.1.17. Two vectors are Linear independent if they are not scalar

multiples of each other. Otherwise the vectors are Linear dependent.

Definition 1.1.18. A set of vectors {vy,vs,...,...v,} in a vector space V is

called linearly independent over F' if
a1V + agvy + ... + apv, = 0 implieseach a; = 0,1 =1,2,...,m

Definition 1.1.19. A set of vector {v;,v,...,v,} is said to generate V if

every element in V is expressible as a linear combination
ai1v; + agve + ... + anvs

where q; € F.
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and
Also

for all p(z),q(z),r(z) € F[z]. Thus we get that F[z]is a commutative ring

called the polynomial ring over F.

If we define scaler multiplication F' x F[z] - F[z] as
ap(z) = apg + apr + apyz + ... + apz”

for a € F and p(z) € F[z]. Then, F[z] becomes a vector space over F.

1.2 Max-Min Algebra

In this section we will define Max-Min algébra also known as Bottleneck alge-
bra. Before writing the formal definition first we would like to explain partially

ordered sets.

Definition 1.2.1. A relation < on a sét S is said to be a partial order if it is

reflexive, antisymmetric and transitive. That is, for all z,y,2 € S
1. z < z (Reflexive).
2. £ <y and y < z then z = y*(Antisymmetric).
3. z <yand y < z then z < z (Transitive).

The set (S, <) is called a partially ordered set.

Definition 1.2.2. A Max-Min algebra S is a partially ordered set with maxi-

mum and minimum as the two binary operations. Max-Min algebra is a discrete

S el b S G e dd
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algebraic system in which the max and min operations are defined as addition

and multiplication in conventional algebra. Let a ,b € S then
a® b= maz{a,b}
a®b=min{a,b}
For these operations, we have
1. a® (b®c) = maz{a,maz{b,c}} = ;naz{a,b, c}=(a®b)dc
2. a®b=maz{a,b} =maz{ba} =bDa
3. a® (b c) = min{a,min{b, c}} = min{a,bc} = (a®b) Oc

4. a ® b=min{a,b} = min{b,a} =b®a

5. a® (b®c) = min{a, maz{b,c}} = maz{min{a, b}, min{a,c}} =a©bd
a®c

6. (a®b)Oc=a0cPbOC

Z Thus, we get that (S, ®,®) is a commutative semiring.
Let us take examples.
Example 1.2.3. Let Z; = {0,1}. The relation 0 <0, 1 <1, 0 < 1 is a partial
ordered on Z,. The addition and multiplig}ation are defined as
@10 1 ©|0 1
010 1 0(0 O
111 1 110 1
it is easy to verify that Z, is a Max-Min algebra with additive identity 0 and
multiplicative identity 1.
Example 1.2.4. Let Z3 = {0,1,2}. The relation
0<0,1<1,2<2
0<1,0<2,1<2
is partial order relation on Zs. The addition and multiplication are defined as
3
)
B
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Definition 1.2.8. A non-empty subset U of a semi vector space V' is called a
subspace of V, if it is itself a semi vector space under the binary operation and
scalar multiplication of V. That is, (U, +) is a semigroup>ar'1d for all u € U
anda € S,aucU.

Proposition 1.2.9. A non-empty subset U of a semi vector space V is a

subspace of V if and only if au; + bug € U for all a,b € § and uy,uy € U.

Proof. If U is a subspace then clearly au; + buy € U for all a,b6 € S and
uy, ug € U.

Conversely, if au; + buy € U for all a,b € S and u;,u; € V. Then if we take
a=>b=1, then u; +uy € U for all uy, uy € U imply that (U, +) is a semigroup.
If we take b = 0, then au; € U imply that scalar multiplication holds in U.
Thus, U is a subspace of V. d

1.2.2 Polynomials over Max-Min Algebra

Let S be a Max-Min algebra, then by a polynomials over S we mean an ex-
pression of the form

p(z) = ap + ayz+, ..., +anz"
here a; € S and denote the set of all polynomials over S by S{z]. If p(z), q(z) €
S[z] and the addition and multiplication are defined as
p(z) + q(z) =(ag + a1z + ... + anz™) + (bo + biz + ... + by2™)

=ay ® by + (a; ® b))z + ... + (an, ® b,)z"

= Z(ai @ b))z’

p(z)q(z) =(ao + a1 + ... + anz™)(bo + b1z + ... + b z™)

Z(ao ® bo) -+ ((11 Ob®a ® bo)CE + ...+ ((10 Ob, ®a, bo)l‘n.

ol
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Then for any f(z) = agtarz+asz®+.. . +a,z", g(x) = bo+bz+byx%+. . . 4b,z™
and h(z) = o + 17 + ez + ... + ¢c,x" in S[z] we have

(flz) + g(z)) + h(z) =[(ag + a1z + a2z + ... + apnz™) + (bg + b1z + by2®
+ o 0] + (o + a1+ P 4.+ ™)
=[(ao ® bo) + (a1 ® b1)z + (a2 ® by)z* + ... +
(0, @ b,)2"] ® (o + 1T + C28® + ... + Cuz™)
=[maz(ag, bo) + mazr(a; + b))z + maz(ay + by)z* + ...
+ maz(a, + bn)m"] ® (co + a1z + ¢’ + . ..+ cz™)
={maz(ap, bo) ® o} + {maz(a;, b)) ® c; }z + {maz(az, b2)
@ c}r’ + ... + {maz(an, by) © c, )z
=maz{maz(ao, bo), co} + maz{maz(a;, b),c1}z + maz
{maz(ag, by),c2}2® + ... ¥ maz{maz(an,b.),c,}z"
=maz(ag, bo, co) + maz(ai, by, c1)z + maz(ag, by, cp)z?
+ ...+ maz(a,, by, cy)x"
=maz{ao, maz(bo, o)} + maz{ar, maz(by,c1)}z+
maz{ag, maz(by, c3)}z® + ... + maz{a,, maz(bn, ca)}z™

=f(z) + [9(z) + h(z)]

f(z) + g(z) =(ap + a1z + apz® + ... + anz") + (bo + b1z + box® + ... + buz™)
=(a0 & bg) + ((7,1 D bl)’l' + ((L2 © b2).’l,‘2 + ...+ ((ln D bn).’lfﬂ'
=maz(ag, bo) + maz(a1, b))z + maz(as, b2)z* + ... + maz(a,, b,)z"

=maz(bo, a,) + maz(by, a1)z + maz(bs, ay)z® + ... + max(b,,a,)z"

=g(z) + f(z)
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=[a0 ® (bo ® co) + {01 © (b @ o) B a0 ® (b1 B c1)}x
+.o.+{a, © (bo® co) ®ag © (br & cn)}z" ,.
=(a Ol ®aOcy) +{a10b®a,Oco@ayOh Bag®c}r
+. +{a, Oy ® .. B, QB ag Qb ®...Hag O cytz"
=f(z)g9(z) + f(z)h(z)
Thus, we get that S[z] is a semiring.

Remark 1.2.10. If we define scalar multiplication S xS[z] = S[z] as
ap(z) =aO®po+a®Omz+...+a® px"

then this scalar multiplication turns S{z] into a semivector space.

Definition. 1.2.11. Let f(z) € S[z] where f # 0. The degree of f(z) is
max{n | a, # 0} and it is denoted by deg f(z). .

Proposition 1.2.12. If f(z), g(z) € S[z], then
deg(f(z) + g(z)) = maz{degf(z), degg(z)}

Proof. Let degf(z) = n and degg(z) = m with m > n. Suppose f(x) =
Ao+ @z + asx® + ... +anx™, g(x) = bo 4+ bz + bpa? + ... + bpz™. Then

F(@)+9(z) = ap®bo+(a1®b1)z+...+(an®by )" +(0Dbp 1)z +. . .+ (0B )z™.

Since b,, # 0, so 0 ® b,, = maz{0,bn} = b,,. We get that

deg(f(z) + g(z)) = m = maz{degf(z), degg(z)}.
O

Definition 1.2.13. Let f(z) = a2+ a, 12" ' +.. .+ a1z + ag where an # 0

then f(z) is said to be monic polynomial if leading coefficient of f(z) that is

E3
a,n — 1. Tt

——
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Chapter 2
Algebraic codes over finite fields

In this chapter we will discuss algebraic codes over finite fields. In the first
section we discuss Linear codes. Second s;ction deals with dual codes. In the
third section we present Reed-Muller Codes. In the last section of this chapter
we will discuss relation between polynomail ring and algebraic codes. For the
definitions and results discussed in this chapter we will refer [1], (2] , [4] and

[10].

2.1 Linear code

We start this section with the definition of linear codes.

Definition 2.1.1. Let F be a finite field, then we know that F™ is an n-
dimensional vector space over F (see 1.1.13). A code C over F is simply a
subset of F™. The members of C are called codewords. However, rather then
presenting a codeword (ay, as, ..., dn) in tkle form of an n-tuple, we will prefer
to write it as a1a,...a,. |

A code C is linear over F. If whenever, u € C and v € C, then au+ v € C
for all o, 8 € F. That is, C is a subspace of F™.

If dimension of C is k, then C is called an (n, k)-code.

If F = Zy = {0,1} under addition and multiplication modulo 2, then the codes
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Similarly,

d(0000,0111) = 3

Definition 2.1.7. The minimum (Hamming) distance of a code C is the min-

imum distance between any two codewords in the code:

d(C) = min{d(x,y) | x £y, x,y € C}.
Example 2.1.8. Let C' = {0000, 0101, 1010, 1111} be a coge, then
d(0000,0101) = 2, d(0000,1010) = 2, d(0000,1111) = 4
d(0101,1010) = 4, d(0101,1111) =2, d(1010,1111) = 2.
Thus, the mini;num distance of code C is 2.

Definition 2.1.9. Hamming weight of a codeword is number of nonzero com-

¥

ponents in a codeword.

Example 2.1.10.
w(0110) = 2

w(0111) = 3

Theorem 2.1.11. Let C be a linear code. Then the minimum distance of C

is equal to the smallest Hamming weight of non-zero codeword in C.

Example 2.1.12. Let C = {0000, 0101,1010,1111} be a code then minimum
hamming distance is

d(0101,1111) =2
and lowest weight of nonzero codeword is
w(0101) =2

Definition 2.1.13. If an (n,k)— code has minimum distance d, then it is

represented by (7, k, d).
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Example 2.1.14. The set C = {0000,0101, 1010, 1111} is a binary linear code.

Since the sum of any two codewords lies in this set. As
0101 + 1010 = 1111, 0101 + 0101 = 0000,

we get that C is generated by 0101,1010. That is, the dimension of C is 2.
From Example 2.1.8 we know that d = 2.-Thus, C is a (4, 2, 2)- code.

Example 2.1.15. 1. The binary code {000,111} is a linear (3,1,3)-code.
2. The binary code {000,110,101,111} is a linear (3,2,2)-code.

Remark 2.1.16. A g-array (n,k) code consist of ¢* codewords. In particular a

bd

binary (n,k)-code consist of 2¥ codewords.

2.1.2 Generator matrix

Linear codes are used in practice largely due to the simple encoding procedures
facilitated by their linearity. A k x n generator matrix G for an (n, k) linear
code C provides a compact way to describe all of the codewords in C and
provides a way to encode messages. By performing the multiplication mG, a
generator matrix- maps a length k message string m to a length n codeword
string. The encoding function m — mG maps the vector space V(k,q) on to

a k- dimensional Subspace (namely the code C) of the vector space V(n,q).

Definition 2.1.17. A k x n matrix G whose rows form a basis for an (n, k)

lincar code C is called a generator matrix of the code C.

Theorem 2.1.18. Let C be an (n, k)-code over F'. Let G be a generator matriz

of C. Then
C = {m@G such thatm € F*}.

Proof. Let C be an (n,k) code and G be the generator matrix of C over F.
Then by definition the rows of G form basis for C. Let G, Ga, ..., Gk be the
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rows of G. So every € C can be written as a lincar combination of vectors of

G.

r=m Gy +myGy + ... +mGy where my,mo, ..., me € F and
G,
G,
- mlsm27"'1mk]
| Gx |
=mG
Thus C = {mG such thatm € F*} O

Example 2.1.19. To generate (3,2)-code we have to encode message of length
k. Here k = 2 that is we have 28=22=4 codewords. The possible pairs of length
2 arc [0 0], [10], [01], [1 1. Gencrator matrix should bc an k xn =2 x 3

matrix. Let us take

100
G =
0 01
at m = [0 0]
1 00
mG=[0 0]
0 01
=[0-14+0-0 0:0+0:0 0-0+0-1]
=[00 0]
at m = [1 0
100
mG:[l 0]
0 01

=[1-14+1-01-0+0-0 1-0+001]
=[100]
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Here in particular, G;H' =0 V i = 1,2,...,k, where each G; is a row of
generator matrix and hence GHT = 0. Taking transpose, we get HG' = 0.
To prove second part of the theorem let G be k£ xn matrix of rank k and H is
an (n—k) X n matrix of rank n—k, with GH" = 0. Suppose H is a parity check
matrix of C. Then G;H' =0V ¢ =1,2,...,k. Hence G),Gy,...,G € C.
Since rank of G is k, G4, Gs, . . ., G are linearly independent and hence form a
basis of C (" dim C = k) . This proves that G is a generator matrix of C. Now
suppose that G is a generator matrix of-C. Then G is the parity check matrix
of the dual code C* and by the preceding theorem V v € C+ vGT =Gy =0
Suppose GH' = 0then by taking tra;lspose HGT =0, HGT =0 Vi =
1,2,...,n—k. Hence H,, H,,... H, € CT. Sincerank of Hisn—k, H,, Hy, ..., Hy
are linearly independent and form basis for C* (. dim C* = n—k) . This proves
that H is the generator matrix for the dual code C* and hence H is the parity

check matrix for C. O

Example 2.3.7. In previous example C = {000,001}
C*+ = {000, 100,010, 110}

let G = [001] and

100
110

. 100
cH =[00 1] _
10

[0 0]

Let G be generator matrix of C and G’ be a matrix obtained as a result of
performing elementary row operations on G. Then every row of G is a linear
combination of the rows of G’ and conversely. So G, G’ have same row space

C. Hence G’ is also a generator matrix of C.
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Conversely G and G’ are both generating matrix of C then each can be
obtained by elementary row operations on the other.

|
2.3.1 Canonical generator matrix

Here we will define the generator matrices for a code that are obtained by

performing row operations on any generator matrix.

Definition 2.3.8. Let C be an (nk) code and suppose that first k columns
of a matrix G are linearly independent. Then by performing elementary row
operations, we can transform G to a row -reduced echelon form G* = [Ix : 4],
where I is the identity matrix of order k and A is some k x (n — k) matrix.
G* is called the canonical generator matrix of C and we say that G is in
systematic or standard form.

Now let H* = [~AT : I, — k] . Then H* is an (n — k) x n matrix of rank n — k
hence H* is a parity ¢heck matrix of C called the canonical parity check

matrix of C and we say that H is in systematic or standard form.. Also
G‘(H*)T — 0

as G* is obtained from the generator matrix G of C. G* is also a generator

matrix of C.

From above discussion and Theorem 2.3.6 we have the following result.
i

Theorem 2.3.9. Let C be an (n,k) — code, if C has a canonical generator
matric G = Iy : A], then H = [-A" : I,_4] is the canonical, parity check
matriz of C. Conversely if H = [B : I, is a-parity check matriz of C, then

G = I : —BT"] is a generator matriz of C.

= = . e m— W e o o
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Example 2.3.10. Let

C ={0000, 1000} be (4,1) code.
(Z,)* ={0000; 1000, 0100, 0010, 0001, 1100, 1010, 1001,
0101,0011,0110,1110,1101,1011,0111,1111}
C* ={0000, 0100, 0010, 0001, 0101, 0011, 0110, 0111},

be(4, 3) code

0111
H=10110
0 011
be the parity check matrix. By performing elementary row operations we can

find canonical generator matrix.

H=10110|byRi—Rs

H=|0010|bbWwR ~R;

o

:1 00
:0 1 0 |byRs— Ry
0 01

H#

i
o o
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Example 2.4.2. To find R(1,2) code we have by definition

R(1,2) ={(u,u), (u,u + 1)} where u € R(1,1) here m = 2
as R(1,1) ={00,01,10,11}
then R(1,2) ={0000, 0101, 1010,1111,0011, 0110, 1001, 1100}

Example 2.4.3. To find R(1,3) code we have by definition

R(1,3) ={(u,u), (u,u + 1)} where u'e R(1,2) herer =1,m =3
as R(1:1) ={00,01,10,11}
R(1,2) ={0000,0101,1010,1111,0011,0111, 1011}
then R(1,3) ={00000000,01010101,10101010, 11111111, 00110011, 10011001,

11001100, 00001111, 01011010, 10100101, 11110000, 00111100,

01101001, 10010110, 11000011}

2.4.2 rth order Reed Muller code

The zeroth order Reed Muller code R(0 , m) is defined to be the repetition
code {0,1} of length 2™. For any r > 2 the rth order Reed Muller code R(r,m)
is defined recursively by

A ifm=r;

R(r,m) =
(w,u+v):ue€ R(r,m—-1),ve€R(r—1,m—-1) ifm>r

Example 2.4.4. To find R(2,3) code we need R(2,2) and R(1,2)

=

(2,3) ={(v,u +v) : u € R(2,2),v € R(1,2)}
R(1,2) ={0000, 0101,1010,1111,0011, 0110, 1011}
(2,2)
(2,2)

{2, }
{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

X
[l

R(2,2
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}
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v=0000 | v=0101 | v=1010 | v=1111 || v=0011 | v=0110 | v=1001 | v=1100
(0000000 ; 00000101 | 00001010 | 00001111 | 00000011 00000110 | 00001001 | 00001100
00010001 | 00010100 | 00011011 | 00011110 || 00010010 | 00010111 | 00011000 | 00011101
00100010 | 00100111 | 00101000 | 00101101 || 00100001 | 00100100 | 00101011 | 00101111
00110011 | 00110110 | 00111001 | 00111100 || 00110000 | 00110101 | 00111010 | 00110011
01000100 | 01000001 | 01001110 | 61001011 || 61000111 | 01000010 | 01001101 | 01000111
01010101 | 01010000 | 01011111 | 01011010 || 01010110 | 01010011 | 01011100 | 01010111
01100110 | 01100011 | 01101100 | 01101001 || 01100101 | 01100000 | 01101111 | 01100111
01110111 | 01110010 | 01111101 | 01111000 || 01110100 | 01110001 | 01111110 | 01110111
10001000 !-10001101 | 10000010 | 10000111 || 10001011 | 10001110 | 10000001 | 10001011
10011001 | 10011100 { 10010011 | 10010110 || 10011010 | 10011111 | 10010000 | 10011011
10101010 | 10101111 | 10100000 | 10100101 || 10011010 | 10011111 | 10010000 { 10011011
10111011 | 10111110 | 10110001 | 10110100 || 10111000 | 10111101 | 10110001 | 10111011
11001100 | 11001001 111000110 11000011 |} 11001111 | 11001010 { 11000101 | 11001111

11011101 | 11011000 { 11010111 | 11010010 j| 11011110 | 11011011 | 11010100 | 11011111
11101110 | 11101011 | 11100100 | 11100001 || 11101101 | 11101000 | 11100111 | 11101111
11111111 | 11111010 | 11110101 ; 11110000 |} 11111100 11}11001 11110110 | 11111111 |

2.5 Polynomial ring and algebraic codes

Let F be a finite field. We considered it in two different ways in the first

chapter we have reviewed the concept of polynomial rings and now in the

pervious sections of this chapter we came t..hrough the codes over F. Soitisa -

natural question that can we related these two structures depending upon F.
We can identify any codeword agay, ... a,-; in F™ with a polynomial

ao+ a1z + ...+ ap1z"t

in Flz]. Now what will happen with the set of polynomials C(z) that are
related to linear codes. To answer this question we have the following propo-
sition,
Proposition 2.5.1. If C is a linear code in F™. Then C(z) is a subspace of
Flx].

o
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Proof. Let C be linear, that is, if agay, ... a,—, and byby, .. . b, are codewords

in C. Then for all a,8 € F
a(aoal, . .an_l) + B(bobl, e bn-—l) € C.

= (aag + Bbo)(aa; + Bby) ... (aan_1 + Bbr_1) € C.

Thus,
olag+arz+ ... 4 ap 12" )+ Blbo + iz + ... + by_12"7)
= (aag + Bby) + (cay + b))z + ... + (aan-1 + Bb,_1)z" ! € C(x).
We get that C(z) is a subspace of F|z]. O

Example 2.5.2. Consider the code C = {000,110,011,101} and the corre-
sponding set of polynomials {0,1+ z,z + 2,1 + 2}. In this set the highest
power of z is 2. Now what will happen if the power of z is greater than 2. For

example if p(z) = 2% — 1 in other words z? is equivalent to 1. Then

z(l+z)=z+2°
t(l+29)=z4+2°=1+1
zz+z?) =2 +23=2"+1
Imply the polynomials are equivalent to each other modulo p(z).

From this example we have the following conclusion.

Remark 2.5.3. In a cyclic code C of length n, the product zp(z) modulo z™ —1
produces another code polynomial in C(z), that is, exactly the right cyclic
shift of p(z). Consider the code polynomial

plz)y=c+az+ + Cno1z™ L.

Multiplying p(z) by z modulo z™ — 1 gives

(1) = cox 4+ 122 + + cpo12™ = oz + 122 + + ¢,—1 modulo 2™ — 1.

The codeword associated with p'(z) is (cn_1,¢0, +- -, Ca_2), Which is the right

cyclic shift of the codeword associated with p(z).
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Theorem 2.5.4. A linear code C of length n over a finite field F is cyclic if

and only if C satises the following two conditions:
o If p(z) and q(z) are code polynomials in C, then p(x) — q(x) € C(z);

o Ifp(z) is a code polynomial in C(z) and r(zx) is any polynomial of degree

4

less than n, then r(z)p(z) € C(z).

Proof. Suppose C is a cyclic linear code. Then from Proposition 2.5.1 we have
then p(z) — q(z) € C(x)
Let p(z) € C(z) and

r(z)=ro+rz+...+ Ppo1 2™}

be a polynomial in F[z]. Now C is cyclic so
zp(z) € C(z)

= z’p(z) = o(zp(x)), ..., 2" 'p(z) = 2(z"?p(z)) € C(x).

The linearity of C gives us

r(2)p(z) = rop(z) + M1ap(z) + ... + ro17" 7 p(z) € C(2).

Conversely, assume that p(z) — q(z) € C(z) and r(z)p(z) € C(z) for all
p(z),q(z) € C(z) and r(z) the polynomials of degree less than n. If we take
r(z) to be a scalar in F, the conditions imply that C(z) is a linear which imply
C is linear.

If we take r(z) = z, then the second condition implies that C(z) is a cyclic

code, that is, C is cyclic. (]

Remark 2.5.5. A linear code C is cyclic if and only if C(z) is an ideal in Fz].

From Remark 2.5.3, we have if C is a cyclic code then every polynomial in
C(z) is equivalent to another polynomial in C(z) modulo z — 1. Now we will
focus on the set F[z]/(z™ — 1), which can be informally defined as the set of all

polynomials of degree less than n > 1 in the variable z with coefficients from

T T ————— s — =
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the finite field F' under polynomial addition and multiplication modulo z™ — 1.

The set is a commutative ring with identity polynomial e(z) = 1.

Theorem 2.5.6. The cyclic codes of length n. over F correspond precisely to

the ideals in the ring F(z]/(z™ — 1).

Proof. Suppose C is a cyclic code of length n over F. Then, the corresponding
set of code polynomials C(z) contains polynomials of degree less than n, also
every polynomial in C(z) is equivalent to another polynomial in C(z) modulo
2™ — 1 which impiy that C(z) is contained in F[z]/(z" — 1). From Theorem
3.5.5, we have C(z) is an ideal in Fz]/(2" — 1).

On the other hand, suppose that I is an ideal in F[z]/(z™ — 1). Then its

elements are polynomials of degree less than n, and by definition of ideals,
a(z) — b(z) € I whenever a(z),b(z) € I;

and

r(z)a(z) € I whenever r(z) € Flz]/(2™ — 1) and a(z) € 1.

Thus, we get that / is cyclic which imply that the corresponding code is cyclic
over F. O

Theorem 2:5.7. Let C be an (n, k) cyclic code corresponding to an ideal I in

Flz]/(z™ — 1). Then the following statements are true:

1. There ezists a unique monic polynomial g(z) € I of minimal degree r <

n, called the generator polynomial of C

2. I is a principal ideal with generator g(z), so that every code polynomial
p(z) can be expressed uniquely as p(z) = m(z)g(z), where g(z) is the
generator polynomial and m(z) is a polynomial of degree less than (n—r)

3. The generator polynomial g(x) divides z* — 1 in F[z].

e
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Chapter 3

Algebraic codes over Max-Min

algebra

This chapter is concerned with the algebraic codes over Max-Min algebra. Re-
call that a Max-Min algebra is-a partially ordered set equipped with maximum
and minimum as the two binary operations. Throughout this chapter S is a

finite Max-Min algebra endowed with additive and multiplicative identity.

3.1 Linear codes

As we know that S™ is a semivector space over S (see Example 1.2.7). A

subspace of S™ is called a linear code of length n over §.

Example 3.1.1. Consider Z,, then the code {000,111} is linear of length 3.

Because

T

000+ 111 = (0 1)(0® 1)(0 ® 1) = maz{0, 1}maz{0,1}maz{0,1} = 111

111+111= (1o 1)1 e 1)(1 1) =maz{l,1}maz{l, 1}maz{l,1} = 111.

Similarly, {000,110, 101,111} is a linear éode of length 3. However, the set
{000, 110,101} is not linear as

f

110+ 101 = 1@ 1)1 ® 0)(0® 1) = maz{l, 1}maz{l,0}maz{0,1} = 111

40
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Theorem 3.3.7. Let C be an (p,r) code. Let G and H be, generator matric
and parity check matriz of C. Then

GHT =0=HG"

Proof.
VzeC zH' =0.

Here in particular, GGH" =0 V i = 1,2,...,k. Where cach G; is a row of

generator matrix and hence GH' = 0. Taking transpose, we get HG' =0. O
Example 3.3.8. In previous example C = {000,001}

¢" = {000, 100,010,110}

1 00
let G =[001) and H =
110
.
- 1 00
gH" =00 1]
110
11
=[001] 01
00

=00100006100 00190016000

=00

Definition 3.3.9. Let C be an (p,r) code then generator matrix of the form G*
[I. : A] is called the canonical generator matrix of C and we say that G is
an systematic form, where I, is the identity matrix of order r, and A is some
7% (p—r) matrix.Now let H* = [-AT : I,_,]. Then H* is an (p—r) X n matrix
of rank p — r. Also

G'(H)T =0
Where H* is a parity check matrix of C called the canonical parity check

matrix of C and we say that # is in systematic form.
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Theorem 3.3.10. Let C be an (p,r) — code, if C has a c.an‘onical generator
matrit G = [I, " A], then H = [-AT : I,_,] is the canonical parity check
matriz of C. conversely if H = [B : I,_;] is a parity check matriz of C, then
G = (I, : —BT"] is a generator matriz of C.

Example 3.3.11. Let

C ={0000, 1000} be (4,1) code.
(Z3)* ={0000, 1000, 0100, 0010, 0001, 1100, 1010, 1001,
0101, 0011,0110,1110, 1101, 1011,0111,1111}
¢" ={0000,0100,0010,0001,0101,0011,0110,0111},
be(4, 3) code.

. 0100

H=1]0 0 1 0 | bethe parity check matrix.
| 0001

i (0 :10 0
H'=[0:010

0 :0 01

’H. Z[B . ]3]
G =[I,: -B"]

=[1 : 000] And also

0 :1 00
Q‘(H*)T=[1:ooo] 0:01 0
' 0:00 1
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000

100
‘—“[1 : 00 O']

010

0 01

=100600160006000
100000000010 000 100600060000 001]
=[0 0 0]

Note 3.3.12. In above example of dual code and parity check matrix we
discussed one dimensional code consist of one codeword of all zero componernts
and other codeword have nonzero component at one place. Dimension of dual

code is specified in these codes. In all other codes we cannot specify dimension.
Let us take examples of other codes:
Example 3.3.13. Let C = {000,011}
(Z,)* = {000, 100,010,001, 110,101,011, 111}

then dual code of C is
¢* = {000, 100}

Hence dual code is (3,1)-code. As we considered one dimensional code but here

dimension of dual code is 1 which is not p —r = 2.

Example 3.3.14. Let C = {0000, 1001} be (3, 1)-code.
(Z,)* = {0000, 1000, 0100, 0010, 0001, 1100, 1010, 1001, 0101

,0011,0110,1110,1101,1011,0111, 1111}

then dual code of C is
¢+ = {0000, 0100, 0010, 0110}

here dimension of dual codeis2but p—r=4—-1=3.
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Example 3.3.15. Let C = {0000, 0100, 1100,0101}
(S3)* = {0000, 1000, 0100, 0010, 0001, 1100, 1010, 1001, 0101
,0011,0110,1110,1101,1011,0111,1111}

then dual code of C is
¢t = {0000, 0010}

As here dimension of dual codeis 1 not p—r =2 .

Hence in these example we cannot specify the dimension.

3.4 Reed Muller code

In this section we define first order and nth order Reed-Muller"codes then we

discuss some examples related to these codes.

Definition 3.4.1. The (first order) reed muller codes R(1, k)are binary codes

defined for all integers k > 1 recursively by:
1. R(1,1) = {00,01,10,11} = Z2
2. for k > 1 R(1,k) = {(z,z),(z,z® 1)z € R(1,k—1)and 1 = all 1
vector.
Example 3.4.2. To find R(1,2) code we have by definition
R(1,2) ={(z,z),(z,z ® 1)} where z € R(1,1) heren =1,k =2
as R(1,1) ={00,01,10,11}
then R(1,2) ={0000,0101,1010,1111,0011, 0111, 1011}
Example 3.4.3: To find R(1,3) code we have by'definition
R(1,3) ={(z,z),(z,z ® 1)} wherez € R(1,2) heren =1,k =3
as R(1,1) ={00,01,10,11}
R(1,2) ={0000,0101, 1010, 1111,0011,0111, 1011}
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y=0000
00000000
00010001
00100010
00110011
01000100
01010101
01100110
01110111
10001000
10011001
10101010
10111011
11001100
11011101
11101110

11111111

y=0101
00000101

100010101

00100111
00110111
01000101
01010101

01100111

01110111
10001101
10011101
10101111
10111111
11001101
11011101
11101111
11111111

y=1010
00001010
00011011
00101010
00111011

101001110

01011111

01101110

01111111

10001010
10011011 ,

10101010
10111011
11001110
11011111
11101110
11111111

y=1111
00001111
00011111
00101111
00111111
01001111
01011111
01101111
01111111
10001111

10011111

10101111
10111111
11001111
11011111
11101111
11111111

y=0011
00000011
00010011
00100011
00110011
01000111
01010111
01100111
01110111
10001011
10011011
10101011
10111011
11001111
11011111
11101111
11111111

y=0111"
00000111
00010111
00100111
00110111
01000111
01010111
11001111
01110111
10001111
10011111
10101111
10111111
11001111
11011111
11101111
11111111

y=1011
00001011
00011011
00101010
00111011
01001111
01011111
01101111
01111111
10001011
10011011
10101011
10111011
11001111
11011111
11101111
11111111

It can be shown in above table that the codewords are appearing repeatedly.

In Example 2.4.4 of chapter 2 there are 128 codewords but here it reduces to

67 codewords. By writing each codeword only one time we have following table

of codewords:
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Proposition 3.5.1. If the code C is linear. Then the set of polynomials C(x)

is a subspace of S|z].

Proof. Let C be linear, that is, if agas, .. .ap-1 and boby, ... b, are codewords

in C. Then for all a,8 € S
a(aoal, cas ap_1)~+ ﬁ(bobl, e bp—l) ecC.

=>(a0ad®BOb)(a0a®B0bh)...(a®a,1®BOb1) €.

Thus,
alag + mz + ...+ ap12P71) + Blbo + by + ...+ by_1277)

=(a@ao@ﬁQbo)+(a®a1€Bﬁ®b1)z+...+(a@ap_lﬁéﬁ(abp_l) € C(x).

We get that C(z) is a subspace of S[z]. O

Example 3.5.2. Consider the code C = {000,110,011,111}, then the corre-
sponding set of polynomials is-{0,1 + z,z + 22,1 + z + 2%}.

S

Definition 3.5.3. If (¢, ¢1,...,t,-1) is a codeword in C and by cyclic shifting
there is codeword (t,_1,%o...,t,—2) which is also a in C then it is called cyclic

code.

Remark 3.5.4. In a cyclic code C of length ‘p, if we assume that z” is equivalent
to the multiplicative identity e in S then the product za(z) modulo z? — e
gives another code polynomial in C(z), that is, exactly the right cyclic shift of
a(z). Let us take the code polynomial

a(z) = co+ez+ +cpyzt
By multiplying a(T) by = modulo 27 — 1 we have

a'(z) = cox + 2% + + cp-12F = oz + azl+ + cp—1 modulo zf —e.

The codeword (c,-1, co, - - -, Cp—2)associated with a’(z), is the right cyclic shift

of the codeword -associated with a(z).












