Teq901

Shared Storage in J2ME:
A Multi-Agent System Approach

Thq07

Developed by

Muhammad Ainan Sadiq
(261-FAS/MSCS/F05)

Supervised by
Dr. Naveed Ikram
Mr. Zohaib Zafar

Department of Computer Science
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad.

Dated:

FINAL APPROVAL

It is certified that we have read the thesis, entitled “Shared Storage in J2ZME: A Multi-Agent
System Approach”, submitted by Muhammad Ainan Sadiq Reg. No. 261-FAS/MSCS/FO0S. It is
our judgment that this thesis is of sufficient standard to warrant its acceptance by the
International Islamic University Islamabad for MS Degree in Computer Science.

PROJECT EVALUATION COMMITTEE

External Examiner: i///
Dr. Hafiz Farooq Ahmed, ' W
School of Electrical Engineering & Computer Science, ,

] [74
NUST Institute of IT,

Rawalpindi, Pakistan.

Internal Examiner:
Mr. Adnan Ashraf,

Department of Computer Science, W .
Faculty of Basic and Applied Sciences,

International Islamic University,

Islamabad, Pakistan.

Co-Supervisor:
Mr. Zohaib Zafar

Department of Computer Science, ‘ ;% ; &‘\Q
Faculty of Basic and Applied Sciences, 9\)

International Islamic University,

Islamabad, Pakistan.

Supervisor:

Dr. Naveed Tkram

Department of Computer Science,
Faculty of Basic and Applied Sciences,
International Islamic University,

Islamabad, Pakistan.

In the Name
of
ALLAH

The Most Beneficent
The Most Merciful

A thesis submitted in partial fulfillment of the requirements for the degree of
MS in Computer Science

in the Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad, Pakistan

Project Title:

Organization:

Objective:

Undertaken By:

Supervised By:

Started On:

Completed On:

Research Area:

Tools:

Project In Brief

Share Storage in J2ME: A Multi-Agent Systems approach
International Islamic University, Islamabad, Pakistan.

The objective of the research in the area of Multi-Agent
System is to provide a mechanism for sharing record store
among different MIDLETSs on same as well as MIDLETSs on
different devices in J2ME based lightweight multi-agent

systems.

Muhammad Ainan Sadiq
Reg. No. 261-FAS/MSCS/F05

Dr. Naveed Tkram (ITUJ)
Mr. Zohaib Zafar (ITU]),
Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

Shared Storage, RMS, Multi-Agent Systems, J2ME, distributed
environment.

J2ME, Borland JBuilder 2005 Enterprise Edition, JDK 1.5,
Sun Java Wireless Toolkit 2.5.

Abstract

Current research trend towards mobile computing emphasizes the need for
distribution of data among various clients in mobile environment. Sharing the data in
J2ME opens the data to be accessible for all MIDLETS present on the device, hence
creating a number of vulnerabilities to the confidential information that is intended to
be shared with specific MIDLETS, e.g. a malicious MIDLET can delete, copy or
move the Shared record store in J2ME based application. This project aims at
overcoming sharing of record store problem through the concept of Multi-Agent
System by providing a shared storage with explicit access to authenticated &
authorized MIDLETS. With this solution data can be shared among specific
MIDLETS. The implementation uses the SAGE-Lite framework as a solution to our

proposed work.

Acknowledgements

With a debt of gratitude, which cannot be adequately expressed in words, we thank
our supervisors Dr. Naveed Ikram and Mr. Zohaib Zafar, for their advice,
guidance, and endless support during our research. Their practical and sharp vision
in research has not only been invaluable for our work on this thesis but also for
developing our taste in research and our development as researchers. We are also
indebted to Mr. Zohaib Zafar for his unforgettable generous support for our

research.

We extend sincere gratitude to all of our teachers whom had been guiding me through
out our course work and increased our knowledge. Their knowledge, guidance and

training enabled me to carry out this research & development work.

Dr. Hafiz Farooq Ahmad being an expert in the field of Multi-Agent System and
pioneer of Scalable Agent Grooming Environment (SAGE), and SAGE lite helped a
lot during our research work. His experience and wisdom enabled us to refine our
idea to a mature concept. We are also thankful to the NUST School of Electrical
Engineering and Comouter Scinces and Dr. Hafiz Farooq for allowing us to work on

the framework of SAGE-Lite and making this project possible.

We would like to offer our appreciation to Dr. Naveed Ikram for his insightful
suggestions, encouragement and guidance in the field software engineering. We are
also indebted to Mr. Shakeel and Mr. Adnan Ashraf for their unforgettable

generous support for the fulfillment of our degree requirements.

We express our sincere gratitude to our external examiner Dr. Hafiz Farooq Ahmad,
who gave us good comments on research ethics and his useful suggestions helped us

refining our work more efficiently.

We extend our sincere gratitude to our friends Mr. Syed Muhammad Ali Shah, Mr.
Naseer Gul and Mr. Adeel for their insightful and technical suggestions at various

stages of this project.

Last but not least, we are deeply indebted to our families for their generous support
and the financial sacrifice for making this possible. We once again would like to
admit that we owe all our achievements to our most loving parents, who mean most to
me, for their prayers are more precious then any treasure on the earth. We are also
thankful to our truly, sincere and most loving brother, sisters, friends and class
fellows who mean the most to me, and whose prayers have always been a source of

determination for me.

Muhammad Ainan Sadiq
261-FAS/MSCS/F05

Dedication

We would like to dedicate our work to

ALMIGHTY ALLAH,

Who has always showered His endless blessings upon me.

We also dedicate this work to our
FAMILY AND FRIENDS

Whose sincere prayers and love were a source of strength for me,

And made this project successful.

Declaration

We hereby declare and affirm that this thesis neither as a whole nor as part thereof
has been copied out from any source. It is further declared that we have completed
this thesis and accompanied software application on the basis of our personal efforts,
made under the sincere guidance of our supervisor. Where as necessary references
and acknowledgment has been made. If any part of this report is proven to be copied
out or found to be a reproduction of some other, we will stand by the consequences.
No portion of the work presented in this report has been submitted in support of an
application for other degree or qualification of this or any other University or Institute

of learning.

Muhammad Ainan Sadiq
261-FAS/MSCS/F05

Table of Contents

Chapter No. Content Page No.
L. INtFOAUCHION couvicrrinrinseccnecsnsticsanssnssnssnesscsssssissessissassassassssssssssessassassssssssssasssssssasssssssssnssssssassnss 1
[.1 The Research Perspective:ccccveeererreernimiiiineniesreneereeenes e i setesses s saessesasssasssesees 2

1.2 The Research ObJectives:........vvimniiininiciniiinncciinciiiieeeeseens 2

1.3 Thesis CONtribULION:......cccovieireecririeieinienietienerce st sresas st sseeseesesrssaesnsssenes 3

1.4 Thesis-Related Paper:c.coccevererenenenerciitiiinteineseesnesnesreessecstessesnesssssnsssesssssseses 4

2. Literature Review:cccceeerneans eheessssstessnsresstesstsstesasesntissssesaaesttesbtesstteaterstesstssstsssassts 6
2.1 Architecture Of J2ME Record Management System (RMS)........cccccvvminvcrninnnnninnens 8

2.2 RECOTA STOTEScveuirneeeirieiiereerieinerenseec et ere st sbe e esee et sreb st s b s e sbe e s st ebasreaone 9

2.3 Record StOreS ShariNG.......cciiveivieeiirieriisiteeiitesieeseesiressreesssesreesssesssassseessaessnssssassasss 9

2.4 Shared Storage Vulnerabilities.........cceeeercerrieriniinrienienisieresieesiesesssisiesnnessessaessessesssenes 9

2.5 Problem Definition:........cccveviineniiinininnciere e 10

3. Multi-Agent SYStEmMIS......cuieecireenserssnssnssersnestessnsssssessassrsssnsansssssssssassssssssssssssassasssnosasssossassass 13
3.1 Evaluation of Multi-agents Platforms:........ccovveriinrueniinnicirinennesnnesennnenreseessesesses 13
3.1.1 FIPACOS: ettt saess st sr s oss st sbesssaesssrenson 14

312, GrasShOPPEL: ..c..ovviveevieiniererieiieieietnreneeseesaeteste st esesesesentssssnasnessessessessassenns 15

3.1.3. JADE-LEAP (Lightweight Extensible Agent Platform):..........ccccccovvrererennnne 15

4. Multi-Agents Based Record Sharing Architecture..........cccueininneniecicnscssinansnissnssecsees 18
4.1 SAGE-LIE .oviviiviiriiiiiiiiccirniccenenietet et ese st et sa s e sstesse s s sss st se s s esnesnenes 18
4.1.1. Architecture of SAGE-LItec.cccevveriirininininenirnicineeiereaeseeeresessene 18

4.1.2. Light-weight Agent Management System (AMS-Lite)ccccevenevrcnnnnenee 19

4.1.3. Light-weight Message Transport Service (MTS-Lite)......cccceeervrnrineerrencareens 20

4.1.4. Light-weight Agent Communication Language (ACL-Lite)........cccceeeriunuenes 20

4.1.5. ACL-Lite MeSSage StIUCIUTEc.oeererrrerrrnreniereseresiensensenmssesessessesessensesessess 20

4.1.6. Context-Awareness in SAGE-Lite.......ccccuvviverineninnineininieeesieenneneneenns 21

4.1.7. AMS-Lite DESIN....ccooiriiriririiriecrcriiniinteeeereeee et asne e seesesseseseenes 21

4.1.8. Visual Management SEIVICEcoevevverrenrinierererenineeiesreseesecsnensessessensneessone 22

4.2 Agent Lifecycle Manager..........cocecveeiviniiniiiineennnenesesiesesiesesiseesssessesessosssssssseses 23

4.3 Managing DF-Lite......c.coceviirirtriininenirineieeeiniesensessessessessesressessesssesnessessssessesiessenes 24

4.4 Managing SEIVICESereevrverereirierecertrisrereietisieretstsstsesresessessseeseseneesenessssasasesasseseses 25

4.5 Proposed SOIULIONcveiiririienieriiee ettt e e re s 25

4.6 Implementation of Proposed SOIUtioN...........coeviiniiiininiineecnecincicciesrene e 29
4.7 Advantages of proposed SOIULION........cccoirireriiiiiniineireeter et 32
EVAIUAION c.vvevririninisisnisnnnisnssisnnissssissssssnssssssnssssssssssssssssssssssssnssessessssessssssssssssssssssssssssnsasses 34
5.1 TeStNG SCONATIOS: .evveiitierriririeirerirrriesesetessessesseseessesseessesssessssssessassasessessesseessessassasss 34

5.1.1. Scenario 1: MIDLet with Shared Record Store:cocccveverienrcineneneeneenennne 34

5.1.2. Scenario 2: MIDLet with Private Record Store:.........cccovevevenvveccrrscnnneencnes 36
5.2 ReSUltSs & DISCUSSION:covevvreerirerrrinrirteneienenestestestessessessensessessessaossesesessesssssessosnes 38
5.3 Advantages of Research WorK:........cooevvvevvrreecienienienneenenieninnnresisesresssnssessessesssessessenss 39
5.4 CONCIUSION ..ouviriiiiiiiireenrierrrteecere ettt st et sa bbbt s e e e e s e e saesssssnesassnnesnens 39
5.5 FUture WOTKcoviiiiiiiiieccctictneccte st bens 40
BibliOGEAPRY ...cooorurinniininiensrenicrnisensessnessaisssssssssessosssssnsssssssssssssssnsssssssssssssssnssssssssssssssosssns 42

APPENDIX: Research Paper........c.cociiiiuiniiiniiiiiiiiieciiiiiiiiniinicnsnecrnisneen 44

Table of Figures

Figure No. Content Page No.
2.1 Internal Architecture of RecoOrd StOre......c.iiinnecnsicsnisseecsncsnesssecssnssnissecssnssaessseesnes 9
2.2 Shared record store valnerabililtiesccccecerennuiscsnnsinsnsuesnnsresesessnssssssesasssesnssnn 10
4.1 Architecture of SAGE-Liteocvcvniviirininiisiisiirisiiininicsinnnisnsssississnissssisssssssssens 18
4.2 View of registered agent...... ceessesassatiseseeressertisaesansasasestesatniasatesaeerstsrasaaeraserasnesraenes 23
4.3 Record Store Sharing based on SAGE-Litecccvnviiinsinsnnsnnsensecsncsenssnssnssssssssssecsenes 26
4.4 Agents accessing record stores 27
4.5 Agents accessing record stores from different devoices ceeesssosensssanes 27
4.6 Application architecture based on proposed solution 29
4.7 Patient’s temperature Manual NItycccicicinennsuiscsnnssssensasssesssssessessisassassssssessesassasss 30
4.8 Graph drawn by an AZeNt........uecccincssiesisnissssnsisasssnssssasssssassasssssesssssssssssssssssssasssssasss 31
4.9 View Treatment SCREAUIEccuiniiiimnsennnriniiiiicstinsineessissssensssensssisissassasssessessaes 31
5.1 MIDLET LaUNCh .ttt cssssssstisssssiisesssiisssssesssissssssesssssssssssssssssssassses 35
5.2 Data Entry FOrM...iiiiiinicnmiiisisseisssismeosissssossssesssssssssssasssssssons .35
5.3 Record Storage INfO......iuiivinininnsinnsiesiieneniannienesssssssisiiessiaisisssesssssessess 35
5.4 Malicious MIDLET................. sesssssussassastaesteeiasssstssaserastssanssarssssssssasstssssnase 36
5.5 Patient MIDLETcoiciinicinninnnnsnsscscsessesssssssssissrsssssssssssssosssssassassssssssssasssasssassssssssssssass 37
5.6 Data Entry Page 37
5.7 Storage INfOrmation...........cviiiivensssssecsecsecssnsnssessnsssssssssssssrsssssssses 37

5.8 Malicious MIDLET teeeeseseeeeeeessssserrarrneesseseesaserrresesessessssrnsennessessnassans 37

Table of Tables

Chapter No. Content

2.1 Evaluation of technologies..........

5.1 Evaluation of proposed solution

Chapter 1

INTRODUCTION

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 1

1. Introduction

Today’s computing trend is more towards ubiquitous computing, which is diverging a
number of database applications to the mobile environment and facilitating the users
to achieve the usefulness of anywhere anytime computing. Different m-commerce
applications are being deployed on small handheld devices, to facilitate the
transactions and data processing in a mobile environment. Java 2 Micro Edition

(J2ME) [1] is one of the leading technology in handheld device applications.

One of the J2ME features is that it provides built in caching mechanism for locally
storing data on a mobile device. The Mobile Information Device Profile (MIDP) adds
APIs (Application Programming Interface) for user interaction, network connectivity,
and persistent storage. Two profiles have been developed for J2ME: MIDP 1.0 and
2.0. J2ME has a Record Management System (RMS), an Application Programming
Interface (API) that provides persistent storage on local device. A few MIDP-enabled
handheld devices support the traditional file system; RMS [2] is the only feature in
J2ME for local data storage and is essential to writing any application that relies on
local persistent data. RMS stores all the records in a file with extension “.db” called
record store. The application developed in J2ME for mobile devices is called
MIDLET and each MIDLET suit (group of related MIDLETS) can own one or more

record stores.

Due to the limitations of J2ME Record Management System (RMS), data when made
public is accessible to all the MIDLETS present on the device and hence creating a

number of vulnerabilities to the confidential information.

Our work is to share the data among specified MIDLETSs on same device as well as
on different devices and protect it from malicious MIDLETSs access. Our solution
uses the concept of multi-agent systems for developing a mechanism of Access
Control in order to make the information accessible only to the authenticated or
authorized MIDLETSs. This is achieved by introducing a layer of multi-agents that

handle the whole data manipulation from inside or outside the device. Two MIDLETs

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 1

can exchange data through their agents. An agent can perform desired action only on
its MIDLET data. In order to perform an action on different MIDLET’s data the
agent of first MIDLET sends a command to the agent of second MIDLET that
responds to the agent of first MIDLET with the desired results. In this way shared
storage vulnerabilities are minimized. The benefit of using multi-agents system
approach is to save redevelopment of legacy systems, only a wrapper agent needs to
be developed. Secondly the data remains protected i.e. inaccessible to malicious
MIDLETs and can only be shared among authorized MIDLETs. Furthermore,
performance is also increased by using multi-agents instead of using other techniques

discussed in related work.

1.1 The Research Perspective:

The critical points kept in mind while developing applications providing shared and
distributed environment for handheld devices are keeping the data secure and only
accessible to valid users and applications. They also provide transparent data sharing

among users or applications.

In this perspective, the thesis adopts a view that recommends a framework for shared

and distributed data between different MIDLET Suits.

1.2 The Research Objectives:
The goal of this thesis is to develop a mechanism to securely share data among
different MIDLETS based on lightweight multi-agent systems that are targeted to run
on small handheld devices. Following are some specific objectives to be met by the
research work:
e Data can be shared among multiple MIDLETSs
e To provide an architecture that is independent of specific applications and is
applicable for rang of J2ME applications.
¢ To define a security policy for authentication and authorization of different
MIDLETSs through their agents.

- O

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 1

The benefit of this research work is to assist the J2ME application developers to
develop open source distributed applications. There is no need to used third party tool
for data storage and sharing. The objective is to secure the J2ME record store and
share it among the specific group of MIDLETSs. This framework will enable the

developer to develop a lightweight secure, distributed and shared environment.

1.3 Thesis Contribution:

This thesis enhances the understanding of distributed databases on MIDP enabled
devices that is to be distributed among different MIDLETs. This approach of sharing
of data is based on Multi-agent system, where access to data is given through
different agents on the device. Granting access to data specifically for a set of
MIDLETs will enable application developer to restrict the existing vulnerabilities
associated with making the data shared using traditional techniques.

The thesis makes the following specific contributions:

e Survey of research work on existing techniques for sharing data in mobile
applications on same or different devices or platforms.

o Highlights the requirements for developing mobile applications with
distributed sharing of data. These requirements are specified for lightweight
multi-agent systems applications targeted for small handheld devices.

e Describes an approach to develop a multi-agent based record store sharing
mechanism that uses the existing record store and gives its access through its
agents.

e Complements an existing multi-agent framework SAGE LITE [3] with the
feature of shared storage local and remote devices.

o Applies the approach on SAGE-Lite (Scalable Fault Tolerant Agents
Grooming Environment-Lite) framework [1]. This application demonstrates
novelty in the record store sharing and its access to other multi-agent system
based applications. It also draws some preliminary observations, lessons, and
insights that could stimulate future research in the area of distributed data

processing in lightweight multi-agent systems based applications.

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 1

1.4 Thesis-Related Paper:
A research paper titled: “Shared storage in JZME: A Multi-Agent Systems approach”

is based on the work presented in this thesis.

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 2

Chapter 2

LITERATURE SURVEY
&
PROBLEM STATEMENT

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 2

2. Literature Review:

Designing and implementing complex software systems e.g. m-commerce and other
intelligent applications for handheld devices is rapidly growing. Persistence and
distribution of data is crucial for these systems, as the small handheld devices are not

as powerful as that of their counterpart — desktop machines.

Keeping in view the constrained environment and limited resources on these devices
a number of mechanisms are provided for data persistence on these devices, e.g.
J2ME provides Record Management System (RMS) for locally storing the data on the
device. RMS is a system for managing records in J2ME. A record is an individual

data item.

The records in RMS consist of a variable length binary field. This is contrary to the
typical Database Management System (DBMS). The validation and data consistency
checks cannot be applied to the records in RMS. The application developers are
required to apply validation and data consistency checks to interpret the contents of
records in RMS [2].

We find a number of alternatives for data sharing among same and different devices.
Tuple-space is one of the well known and elegant ways of sharing information in
distributed environment among communicating parties where processes write and
read tuples [4]. '
JavaSpaces [5] implements the concept of tuple space through Java programming
language. It is a service of Jini [6], which forms a distributed network of clients and
services. JavaSpaces provide an easy way for communications facility in mobile
distributed applications. Due to the fact that Jini technology is dependent on Remote
Method Invocation (RMI), which is not supported by number of handheld devices, so
JavaSpaces is not suitable for distributed mobile applications. Moreover, JavaSpaces

requires a resource rich environment.

In order to make the handheld devices Jini compatible a number of different
approaches were defined. These include modifying Java virtual machine, modifying
Jini, or introducing a non-standard proxy. In JiniME [7], a J2ME virtual machine is

changed to make MIDP devices Jini capable. This approach severely restricts the set

U

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 2

of devices, on which applications can be run.

MobileSpaces (8], on the other hand, require no changes to the standard J2ME
environment. Like JavaSpaces, applications developed using MobileSpaces capture
events through notify() method [8]. Each time when event is triggered regarding
notifications about tuples, notify method is called, resulting in resource hungry

application.

Although a light weight framework TinyDB [9] was developed but its main limitation

is not providing distributed storage.

Another light weight storage system based on serialization framework [9] allows
CLDC enabled J2ME devices to store data on local as well as remote storage spaces

requiring similar semantics. So this framework does not support heterogeneous

/

environment.

Oracle Database Lite 10g [10] is a unified and a comprehensive environment for
development and deployment of high impact solutions intended for mobile and
lightweight environments. It is an extension to Oracle Database 10g for enterprises
focusing at increased employee throughput, reduced operative cost, and enhanced
client satisfaction. It provides an extension to grid environment for mobile and
embedded devices, allowing enterprise data accessible to remote employees even
being offline. Moreover, it gives data synchronization permitting users to reliable and

secure exchange of data with corporate Oracle Database.

The limitation of using Oracle Lite database is that its server and client requirements
are too resource demanding for mobile environment. Besides, it requires a license to

be purchased for every user, hence not a cost effective solution.

The related work in field of multi-agent system for developing applications for small
handheld devices is found in Locker Rental Service [11], in which a persistent storage
medium on a static device is preserved for different agents known as locker place. All
agents communicate with their respective locker agents to operate on their data. Here
the author had recommended multi-agent system as a middle-ware between a

MIDLET and Locker place. Locker rental service provides a centralized storage

7

Shared Storage in J2ME: A Multi-Agent System Approach

Chapter 2

mechanism, which has a number of issues like maintenance problems of a single

database, availability, a separate device for storage etc.

Table 2.1 shows the evaluation of technologies discussed in the above survey.

Technologies
Paratetes Java Spaces | Mobile Spaces | Web Services Oracle Lite
Device / J2ME .
Compatibility No Low High Low
Heterogeneity | No Low High Low
Resource Yes Yes Yes Medium
Hungry
Server
Required Yes Yes Yes Yes
Open source No No No No

Table 2.1 Evaluation of technologies

Table 2.1 presents a comprehensive comparison of different technologies according
to five parameters as discussed in literature survey. Following are the major
drawbacks in all the above mentioned technologies:

e They require a server

e They are not open source

e They are resource hungry.
These parameters are assigned values on the basis of following definitions:
LOW: Compatible with High End mobile devices e.g. PDAs having sufficient memory
and processing resources.
MEDIUM: Compatible with Smart phones that contain a complete operating system.
HIGH: Compatible with J2ME enabled devices, with limited resources and having
minimum specification of MIDP 2.0, CLDC 1.1, JSR-82.

2.1 Architecture Of J2ME Record Management System (RMS)
The architecture of J2ME record management system (RMS) contains small

footprints for storing and manipulating persistent data on local device.

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 2

2.2 Record Stores
A record store is a chronological collection of records — associated to a record store.
Every record can be accessed through the record store. In fact, record store ensures

that records are read and written individually, with little possibility of data corruption.

RMS maintains unique numeric sequence number for each record in a record store
known as Record ID. Maximum 32 Unicode characters unique name is defined for
record store within MIDLET suite creating it. Record store sharing mechanism is not
provided in MIDP 1.0, while this mechanism is provided in MIDP 2.0, which allows
record stores to be shared among other MIDLET suites. In each case the record store
is recognized by the name of MIDLET suite, its vendor name and the record store

name itself.

Time-stamp and version information is also maintained by record stores to enable

applications to discover when it was last modified [2].

Record Data I

Fig: 2.1. Internal Architecture of Record Store

23 Record Stores Sharing

Record stores are made accessible to all other MIDLETS using its shared property. The
default property AUTHMODE_PRIVATE allows record store to be accessible only to the
MIDLET suite that created it. Record store can be shared by changing the property to
AUTHMODE_ANY. When the record stores are shared they can be writable or read-only.
If the shared data is confidential, then it can be read by all MIDLETS on the device making
it more vulnerable to malicious MIDLETS on the device if it is shared in read/write mode
[12].

24 Shared Storage Vulnerabilities

Confidential data or information can be susceptible to an attack outside the RMS that
results it to be accessed and manipulated from device utilities (without using a MIDLET)
[12]. The shared record store can be deleted by calling the deleteFile() method of the class
RecordStoreFile [12] of low level MIDP API shown below in fig 2.2.

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 2

Security checks [/l osn i
- RecordStoreFile

read ()

write() etc. |

- RecordStore

Fig 2.2 Shared record store vulnerabilities [12]

Developing applications for these devices poses some problems when the data of one
MIDLET is required to be shared among multiple MIDLETS. Debbabi et al. [12]
provide the Security Evaluation of J2ME platform and explains the vulnerabilities
that are associated with the shared storage of data. Non shared record stores can be
accessed and modified by the MIDLETS creating them, but the shared record stores
can be accessed from any MIDLET on the device. So MIDLETS cannot share their
record stores with only a specific subset of MIDLETS. Shared Record stores are
vulnerable to any attack from outside the Record Management System (RMS) of
J2ME.

2.5 Problem Definition:

Java 2 Micro Edition (J2ME) [12] provides a large platform for the development of
applications intended to be run on small devices. These devices are constrained with
small memory, limited computing & processing power. Developing applications for
these devices poses some problems when the data of one MIDLET is required to be
shared among multiple MIDLETS. In [12] Debbabi et al. provide the Security
Evaluation of J2ME platform and explains the vulnerabilities that are associated with
the shared storage of data. Non shared record stores can be accessed and modified by

the MIDLETS creating them, but the shared record stores can be accessed from any

10

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 2

MIDLET on the device. So MIDLETS cannot share their record stores with only a
specific subset of MIDLETS. Shared Record stores are vulnerable to any attack from
outside the Record Management System (RMS) of J2ME.

e Record stores can be accessed from the device’s utilities (without using a
MIDLET).

e Record stores can be manipulated as files (copied, renamed, deleted, etc.).

e No encryption method is specified to protect sensitive record stores on the device.

11

Shared Storage in J2ME: A Multi-Agent System Approach

Chapter 3

Chapter 3

Multi-Agent System

&
Comparison of FIPA Complaint
Multi-Agent System

12

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 3

3. Multi-Agent Systems
A multi-agent system (MAS) [S5] is a system composed of multiple autonomous
agents with the following characteristics:

o Each agent cannot solve a problem unaided,

e There is no global system control,

o Data is decentralized, and

e Computation is asynchronous.
Multi agent systems provide execution environment for intelligent software (agents).
There are different standard governing bodies. We especially focus on Foundation for

Intelligent Physical Agent (FIPA) standards that we follow throughout the thesis.

31 Evaluation of Multi-agents Platforms:
Liljedahl [13] compiles a list of different multi-agents platforms, which is reproduced
here for evaluation on the basis of different parameters:

e ADK

e Agentsheets

¢ AgentTool

¢ Bee-gent

o CABLE

e Comet Way
e CORMAS
¢ Cougaar

o DECAF

o FIPA-OS

e Grasshopper

o JACK
o JADE/LEAP
o JIVE

e Kaariboga

e Living Markets

13

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 3

e MASSYVEKIT
o RETSINA
e ZEUS

A comprehensive analysis on different multi-agent platform concludes that only three

platforms (FIPA-OS, Grasshopper and JADE/LEAP) support mobility and FIPA

standards.

3.1.1. FIPA-OS:
MicroFIPA-OS [13] is an extension of the FIPA-OS agent toolkit, designed to execute
on medium to high-level PDA where Personal-Java is installed. This platform has
been redesigned to be deployable on PDA like the Compaq iPaq running Linux or
PocketPC operating system. The drawback of this platform is that only one agent is
recommended to run on each PDA.
In this framework two-layer architecture with security layer on top of FIPA-OS has
been designed. MicroFIPA-OS security framework [15] does not facilitate the Speech
Acts, which allow web entities to update the existing policies (delegation of
permissions, revocation of permissions, and cancellation of previous requests)
automatically.

- Security: low.

- Heterogeneity: medium.

- Scalability: medium, only one agent per PDA is recommended.

14

Shared Storage in J2ME: A Muiti-Agent System Approach Chapter 3

3.1.2. Grasshopper:

Grasshopper [13] is an agent platform which supports mobile agents that can travel
across different platforms. The Grasshopper platform supports both FIPA and MASIF
through add-on modules. This platform runs under Windows, Windows CE and UNIX
operating systems. Grasshopper is designed to implement the complex distributed
workflow applications and dynamic software deployment at client/server systems.
This platform is also used for development of third genefation mobile
telecommunication systems and mobile commerce applications. A web-hopper
extension for grasshopper can be used to deploy agents on a web-server and to access
agents through a web browser.

Grasshopper platform uses trusted classes [14]. These trusted classes override the
Security Manager and are not checked for access. In case of Grasshopper this leads to
a security leak. In Grasshopper the checkAwtEventQueueAccess method has not been
implemented. Due to this vulnerability it is possible to access the event queue
associated with the graphic interface and the graphic events can be traced easily. In
this platform there is no security check on calls to the checkPropertyAccess method.
This vulnerability causes the access and modification to any property that is available

in the system.

3.1.3. JADE-LEAP (Lightweight Extensible Agent Platform):

JADE-LEAP [13] platform was designed to be a lightweight FIPA compliant
platform deployable on PDAs and mobile phones as well as on workstations. The
LEAP project is the extension of JADE platform and it can execute on various
operating systems and java VM by use of different profiles. This platform supports
TCP/IP over both wireless and fixed networks. The LEAP platform consists of several
modules. The main drawback of this platform is that it relies on a main-container

(containing DF and AMS) which is running on a computer elsewhere in the network.

15

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 3

- Security: Medium, A plug-in called Jade-S is used to add security functions.
- Heterogeneity: High.
- Scalability: High, because of the small footprints. According [13] thousands

of agents can run simultaneously on this platform.

16

Shared Storage in J2ME: A Multi-Agent System Approach

Chapter 4

Chapter 4

Proposed Solution

MULTI-AGENTS BASED RECORD
SHARING ARCHITECTURE

17

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

4. Multi-Agents Based Record Sharing Architecture

In order to solve the problem mentioned in previous section, We use the concept of
Muliti-Agents System. In multi-agent system single task is divided among multiple
agents on the same or different platforms. The proposed architecture is based on the

existing FIPA compliant multi-agent system framework, namely SAGE-Lite [3].

4.1 SAGE-Lite
SAGE-Lite is a lightweight context aware multi-agent system, which senses the
capabilities of the light-weight devices and reacts accordingly. SAGE Lite can also

function as standalone system.

4.1.1. Architecture of SAGE-Lite
The architecture of SAGE-Lite contains three main modules [3].
e Light-weight Agent Management System (AMS-Lite)
o Light-weight Directory Facilitator (DF-Lite)
o Light-weight Visual Management Service (VMS)
o Light-weight Message Transport service (MTS-Lite)
e Light-weight Agent Communication Language (ACL-Lite)

Fig 4.1: Architecture SAGE-Lite [3]

18

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

4.1.2. Light-weight Agent Management System (AMS-Lite)

According to FIPA specifications Agent Management System (AMS) is a mandatory
component of the Agent Platform. The AMS covers the supervisory control over
access to and use of the Agent Platform. Only one AMS exists in a single Agent
Platform. The AMS maintains a directory of A[Ds which contains transport addresses
for agents that have been registered with the Agent Platform. The Agent Management
System offers white page services to other agents.. Each agent must register with an
AMS to get a valid AID [3].

Directory Facilitator (DF) is an optional component of Agent Platform, but it must be
implemented as a Directory Facilitator service. The DF provides yellow pages
services to other agents. Agents may register their services with the DF or query the
DF to find out what services are available or have been offered by other agents.

Multiple DFs may exist within an Agent Platform [3].

In SAGE framework, AMS and DF act as two different system agents. Operations of
platform can be handled through a service called Visual Management Service (VMS)
which is also a part of AMS-Lite. Portable devices may locate at different locations in
an unpredictable way, and they have no prior knowledge about the available services
and resources by other agents; they need to discover the available services on run
time. So when our mobile device enters into new zone, record of all the agents
residing on the device will also be shifted into a new zone through this local DF.

Otherwise our device needs to remain connected with home agent platform [3].
Another reason was that when two devices will search for specific services using

Bluetooth and there is not any local DF, then each device needs to connect with its

server every time for this purpose.

19

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

4.1.3. Light-weight Message Transport Service (MTS-Lite)

In SAGE-LITE, the MTS-LITE module communicates through WAP and Bluetooth.
The Message Send/Receive Module is responsible for the message buffering and
envelope codec is responsible for the encoding of the envelope in Bit Efficient

Representation.

4.1.4. Light-weight Agent Communication Language (ACL-Lite)

ACL-Lite is responsible for creation of a message that is understandable by all agents
involved in the multi-agent system. Through this package all agents will create a
message through some predefined rules defined by FIPA. And the message will be
sent to the required destination. At the reception end, the agent will take its own
decision based on the ACL Message [3].

4.1.5. ACL-Lite Message Structure

ACL-Lite is FIPA complaint so its message structure is same ‘as defined by FIPA
specifications. ACL- Lite message consists of a set message parameters. Precisely
which parameters are needed for effective agent communication will vary according
to the situation; the only mandatory parameter in all ACL-Lite messages is the
Performative, although it is expected that most ACL-Lite messages will also contain

sender, receiver and content parameters [4].

If an agent does not recognize or is unable to process one or more of the parameters

or parameter values, it can reply with the appropriate not-understood message.

Some parameters of the message might be omitted when their value can be deduced
by the context of the conversation. However, FIPA does not specify any mechanism
to handle such conditions, therefore those implementations that omit some message

parameters are not guaranteed to interoperate with each other.

20

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

4.1.6. Context-Awareness in SAGE-Lite

Another important aspect of the architecture is that it supports the context awareness
feature. Context-Awareness is something to do with the location of the user or the
environment in which the user is roaming. Such context aware systems give services
to the user depending upon the surrounding environment. If the user is in a business

environment, business related services would be provided to the user [3].

But the concept of context awareness emphasizes on the device based context
awareness i.e. the services should be provided to a device, depending upon the
capabilities of the devices. If the device does not support GUI, then the service that it
should be provided should not have GUI too, or if it has lower processing power then
the services with minimal features should be sent to the devices. For the purpose the
device will first send its full specifications to the main container then SAGE-Lite will

send the service to the device according to the specifications.

4.1.7. AMS-Lite Design

AMS-Lite is a mandatory component of SAGE-Lite. It controls the whole agent
platform. When agent is created it needs to be registered with the Agent Platform [3].
It maintains the directory of Agent ID’s. Every Agent will have a unique ID.

Functions of AMS-LITE
Following are the functions of AMS-Lite:
o register
e deregister
e search
o modify

e get description

According to the FIPA specifications every agent has a lifecycle associated with it.

21

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

Architecture of AMS-LITE
AMS-Lite manages the whole platform. Following are the components of AMS-Lite

. Manage DF-Lite

e Manage Agent Lifecycle
e Generate unique AIDs

. Manage Services

e Manage the Registered Agent Repository

4.1.8. Visual Management Service
VMS is a service that offers a graphical interface to the platform administration. The
agent offers many services that show the state of the Agent Platform and it also offers

various tools to request administrative action from the AMS-Lite and the DF-Lite [3].

Key Contributions of VMS:

The key contributions of VMS are
e Easy Navigation of platform.
o Easy Management of the platform.
e Easy Monitoring of the platform.

e Easy Inspection of the platform.

Functionalities of VMS

The graphical user interface provides the user with a lot of flexibilities and operations
that can be performed on the agents residing in the platform and the platform itself
[3]. These functionalities include:

e View registered agents.

e View Agent information.

e View Machine information.

e View Platform information.

e (Create new agent.

e Suspend agent.

22

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

¢ Resume agent.

¢ Kill agent.

o Send message(s) to other agents.

e Shutdown Platform.
Fig 4.2 shows the registered agent which can be viewed through Visual Management
Service, and the operations that can be performed on that agent e.g. Suspend,
Deregister and Resume etc. Select a particular agent from the agent list. A menu box

will appear and ask for the operations that need to be performed for that agent

[il [
00721 @s8n-3303¢361 303
1100721 san-330363613b3
i df:100721 @san-3303d3613b3
Ll 00721 @san-3303d361 3b3
[v 100721 @san-33030361 303
dt:100721@sen-3303d3613b3
1100721 @ san-3303d3613b3

2 Deregister Agsrit
3 Suspend Agert

4 Resume Agent

§ Kill Agert

iﬂ View Agsrt Detalls

Fig 4.2: View of registered agents and operation that can be performed [3]

AMS-Lite Controller

It is the main component of AMS-Lite which controls all the sub-components of
AMS-Lite [3]. VMS interacts with this module. It provides the object persistence.
Whenever system is booted the entire registered agent becomes active. It manages the

following modules of AMS-Lite:

4.2 Agent Lifecycle Manager

AMS-Lite can instruct the underlying platform to perform the following operations in
order to manage the agent Lifecycle

¢ Suspend Agent

o Create Agent

23

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

e Resume Agent

e Execute Agent

Other operations of FIPA agent lifecycle will be performed when the light-weight
agent platform (SAGE-Lite) will communicate with SAGE.

Following are the state of agent residing on SAGE-Lite [3]:
e Active

The MTS delivers messages to the agent as normal.

¢ Initiated/Waiting/Suspended
The MTS either buffers messages until the agent returns to the active state or

forwards messages to a new location (if a forward is set for the agent).

e Unknown

The MTS either buffers messages or rejects them, depending upon the policy of the
MTS and the transport requirements of the message.

The state transitions of agents can be described as:

o Create

The creation or invocation of a new agent.

¢ Invoke

The invocation of a new agent.

e Suspend

Puts an agent in a suspended state. This can be initiated by the agent or the AMS.
¢ Resume

Brings the agent from a suspended state. This can only be initiated by the AMS.

4.3 Managing DF-Lite

Lightweight directory facilitator basically provides the registration of agents and their
services into the database. Whenever system boots up, DF-Lite is queried to get the
record of previously registered agents (also called object persistence). DF-Lite is also

responsible for parsing of record [3]. Following attributes of agents resides in DF-Lite

24

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

e name

e transport addresses
e description

o state

® owner

e locators

And following attributes of services reside in the DF-Lite
e serviceld

¢ name

e owner

e description

e state

4.4 Managing Services

Agents provide yellow page services to other agents. When one agent needs any
service it gives the description of that service to Agent Controller. It in return
searches the DF-Lite to check the availability of the service. If that service is not
found on machine then it invokes the Bluetooth module and searches the devices that
are in the range. If that service is found on any other device it respond to the Agent
controller and then agent can directly interact with the agent providing that service

through ACL messaging [3].

4.5 Proposed Solution

The multi agent layer is added to MIDET for data sharing. This multi agent layer
contains DF— Lite, AMS — Lite, MTS — Lite, VMS - Lite and ACL - Lite [3]. Agents
communicate through ACL - Lite. RMS manages the record store of a MIDLET and
DF - Lite performs data manipulation on that record store through RMS. Agents and
there services will be created through VMS-Lite. AMS manages all the agents on the

platform.

25

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

Following figure proposes the architecture for record store sharing without making it
public to all other MIDLETS.

/ \ - - ~-MIDLET sharing data

Record Store(s) [

B o T A

Agent Record
Management layer
-~ based on SAGE Lite

131

PR B Muiti agent Layer /
Wrapper Agent

Anoplication

"7 "MIDLET accessing data

Fig 4.3: Record Store Sharing based on SAGE-Lite

In figure 4.3 “Agent Record Management layer” acts as a mediator between two
MIDLETS sharing the data. The use of multi-agents system on this layer enhances the
performance of the system, as all the actions on data (read, write, search etc) are

divided among agents.

In the proposed technique actions (save, update, delete, search etc) on non shared or
private data are published as services of the agents and any other agent can access
data through these services. The requesting agent can belong to same or different
"MIDLET.

Two types of applications can access the data through agents:

Legacy systems applications can access data through the wrapper agent and multi-
agent based applications can access data through their agents by communicating with

the Agent Record Management Layer.

26

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

Following figure shows, how the agents on the Agent record Management Layer

work:

Fig 4.4: Agents accessing record stores.

“Agent A” can perform desired actions record store A. “Agent B” can perform
desired actions on Record stores A & B. “Agent C” can perform actions on Record

store B &so on.

Following figure shows, the record store sharing between different MIDLETS:

Un-Shared Record Store Can'tbe accessed directly

In

ot Recory
dify Record
Record

e\ete

Fig 4.5: Agents accessing record stores from different devoices.

27

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

The figure 4.5 shows data manipulation between four MIDLETS on three mobile
phone devices. There is one Malicious MIDLET on device A. In this Malicious
MIDLET Low level API ‘RecordStoreFile’ is used to access the shared record store

of MIDLETS on the same device.

To prevent Malicious MIDLETs from accessing the Record Store of MIDLET A,
we have changed the Mode property of MIDLET A’s Record Store to
AUTHMODE_PRIVATE. Now the Record Store is only accessible to MIDLET A.
Here in “MIDLET A” we have introduced a new Layer named “Agent record
Management Layer”, this layer is based on SAGE LITE [3] Multi agent framework.
We have created three agents for Save, Modify and Delete actions on record store.
Only the Save, Modify and Delete actions can be performed through the agents of
“MIDLET A”. So MIDLET without agents cannot access the record store of
“MIDLET A”. “MIDLET A” is deployed on device A as shown in Fig 4.5.

On device B a legacy MIDLET named “MIDLET B” is deployed. A wrapper agent is
created on “MIDLET B” so that MIDLET B can perform actions on record store of
“MIDLET A”. The wrapper agent of “MIDLET B” communicates with agents of
“MIDLET A” through Agent Communication Language (ACL) [3] as shown in Fig
4.5.

On device C a “MIDLET C” copy of “MIDLET A” is deployed. Agents of “MIDLET
C” communicate with agents of “MIDLET A” through Agent Communication

Language (ACL) [3] as shown in Fig 4.5.

So the record store is shared between multiple MIDLETSs on multiple devices without

exposing to Malicious MIDLETsS, which is our goal.

28

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

4.6 Implementation of Proposed Solution

To demonstrate the record store sharing using a multi-agent system approach we have
implemented the proposed architecture by developing a Health Care application for mobile
devices, based on SAGE-Lite framework [3]. This application while keeping the record
store private provides access to specific MIDLETS on same or remote devices through its

agents. This application has three parts Patient, Doctor and Nurse.

PM‘ nfo

Store

&"\Me

o

C—

MIDLET (Nurse}

MIDLET (Patient)

gperature List

Device-C

J

This agantwill be connected to
microcontroller and check body

temperature after aninterval and

This agent will get the treatment "
store it in focal Record stors

schedute suggested by the doctor

(7 - 7707

—

7

This agent vill draw graph on collected
Patient’s data

MIDLET {Doctor)

Fig 4.6: Application architecture based on proposed solution.

The application is deployed and tested on Sun Java Wireless Toolkit 2.5. The reason
for choosing this Toolkit was its support for J2ME MIDP 2.0, CLDC 1.1 and
Bluetooth API.

The application is divided into three main modules name as Patient, Doctor and
Nurse. In Patient Module there are three agents; one that gets temperature of Patient
from device (Microcontroller) or through manual form, Second agent serves the
doctor’s Agents requesting for Patient’s temperature. Third one serves the Nurse’s

Agents requesting for Patient’s information.

29

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

In Doctor Module there are also three agents; one that gets list of daily temperature of
Patient from Patient’s Agent, Second agent draws graph on the collected data for
doctor’s analysis. Third one serves the Nurse’s Agents requesting for treatment
schedule suggested by the doctor.

Nurse Module contains two agents; one that gets Patient information from Patient’s

Agent, Second agent gets the treatment schedule from doctor’s agent.

Following are some screen shots of application

Patient Ric: 96-27
Patient Name: Mage
Temperature at 1:00
Temperature at 2:00°

Temperature at 3:00

Temperature at 4.00 ")

Temperature at S:I)l)g:f T

Fig 4.7: Screen for manual entry of Patient’s temperature.

30

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

Ml Patient Rid; 96-27
v; Patiert Neme: Mage

110

Fig 4.8: Screen to show the graph drawn by an Agent.

Doctor Did: 012
Doctor Name: Najum-u-deen

Patient Rid: 96-27
Patiert Name: Mage

::: Treatment Schedule :::

Al 8.00AM three Tab
At 1:00PM 1 Tab
At 9:00PM five Tab

Fig 4.9: View Treatment Schedule Screen for Nurse.

On the basis of treatment schedule the Nurse will start the treatment of Patient.

Note: The Patient may be a person or an animal.

31

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 4

From the above example we have successfully implemented the modification and
sharing of data among specified MIDLETS. As the record store was defined with
PRIVATE authentication mode, so no other MIDLET suites were able to access that

record store.

4.7 Advantages of proposed solution
Data can be shared between muitiple MIDLETs on same and different handheld
devices.
Light weight and fast data access, as task are divided between multiple agents.
Open Source as SAGE Lite is going to be open source.
Record is inaccessible to malicious MIDLETs.
To provide an architecture that is independent of specific applications and is

applicable for rang of J2ME applications

32

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

Chapter 3

EVALUATION & CONCLUSION

33

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

5. Evaluation
This section describes the criteria through which we intend to judge the success of our
proposed work. The results were tested on simulator having specification of Nokia
N73 device, which supports J2ME applications with Bluetooth AP1. However, all the
devices having the following specifications will support proposed work:

¢ J2ME enabled device
MIDP 2.0 JSR -118
CLDC 1.1 JSR-139
Bluetooth Functionality

JSR-82 API support for Bluetooth

7 9 7
L4 % L4

7
L4

We have considered the following scenarios for evaluation purpose:
i) Using the existing techniques for record store sharing and vulnerabilities
caused by the existing technique.
ii) Implementing the proposed technique (as detailed in Chapter 4) and who to

overcome the vulnerabilities caused with the existing technique.

5.1 Testing Scenarios:

We used a Malicious MIDLET, which can read the information from the record store
files of other MIDLETS having their AUTHMODE_ANY (i.e. visible to all other
MIDLETS on that device). We used this MIDLET to test our system, as we are
sharing the data with only specific set of MIDLETS. This malicious MIDLET uses

the low level APIs to access the record store files having their shared mode enabled.
S.1.1. Scenario 1: MIDLet with Shared Record Store:

PatientWithSharedRS MIDLET:
This MIDLET is designed to demonstrate the vulnerabilities caused by making the
record store mode to shared in which the record store of the MIDLET becomes

accessible to all the MIDLETS on the device. In this scenario when the patient

34

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

information is entered and stored in the record store, then the malicious MIDLET

should be able to access the information.

STEPS:

1) Enter the patient information in the aforementioned MIDLET, as shown in fig 5.2

2) Press the OK button on the screen of Fig. 5.2, the data will be saved in the record
store of the MIDLET, as shown in Fig. 5.3.

3) Run the Malicious MIDLET, which reads the information from the Shared Record
Store.

Expected Output:

Malicious MIDLET should be able to access the confidential information of the

patient as stored in the record store. Refer to Fig. 5.5

<

]avé‘ :

FOMERET

#

Fig5.1: MIDLET Launch Fig 5.2: Data Entry Form Fig5.3: Record Storage Info

35

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

Malicious MIDLET:

Fig.5.4: Malicious MIDLET

5.1.2. Scenario 2: MIDLet with Private Record Store:

PatientAgent MIDLET:

This MIDLET is developed to evaluate the success of our proposed work. In this

MIDLET we have made the record store AUTHENTICATION MODE=PRIVATE

and thus made record store invisible to all the other MIDLETS present on the device.

We have provided the access to record store of the MIDLET through a layer of multi-

agents, so the malicious agents cannot access the record store directly.

STEPS:

1) Enter the patient information in the Patient MIDLET, as shown in fig 5.6

2) Press the OK button on the screen of Fig. 5.6, the data will be saved in the record
store of the MIDLET (which is made private i.e. invisible to all the other
MIDLETS), as shown in Fig. 5.7.

3) Run the Malicious MIDLET, which reads the information from the Shared Record

Store.

36

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

Expected Output:
Malicious MIDLET should NOT be able to access the confidential information of the

patient as stored in the record store. Refer to Fig. 5.8

Patient Ridt 95-27 ‘ Record Save sucessfully
Patlert Name: Mage

Fig 5.5 Patient MIDLET Fig 5.6 Data Entry Page Fig 5.7 Storage Information

Malicious MIDLET:

Malicious MIDLET intercepting the record store

Fig 5.8 Malicious MIDLET

37

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

5.2 Results & Discussion:

As discussed in the chapter 2, where we surveyed and analyzed different technologies
for sharing the database in lightweight mobile devices. The results of analyses are
given in the table-2.1 (chapter 2).

In continuation to the previous results of table 2.1 and the analysis of different
parameters, we are presenting our proposed solution for the aforementioned problem,
by doing a comparison with the same parameters.

Following table presents the side by side comparison of the proposed solution with

other existing technologies.

Technologies

Parameters Java Spaces Mobile Web. Oradle Lite Prop(_)sed

Spaces Services Solution
Device / J2ME . .
Compatibility No Low High Low High
Heterogeneity | No Low High Low Medium
Resource Yes Yes Yes Medium No
Hungry
Serve‘r Yes Yes Yes Yes No
Required
Open source No No No No Yes

Table 5.1 Evaluation of technologies

i) Device / J2ZME Compatibility: The compatibility of our proposed work is high
due to the availability of J2ME platform on different mobile devices. As SAGE-
Lite supports J2ME platform so the proposed work can be implemented through
a range of devices having J2ME platform enabled along with MIDP 2.0, CLDC
1.1 and API JSR-82 (for Bluetooth).

ii) Heterogeneity: SAGE-Lite being a FIPA compliant Multi-Agent System
supports heterogeneity,

iii) Resource Requirement: Limited memory is required for the work proposed in
the previous chapter. This is an advantage over the other technologies available
as they require a considerable amount of memory and other resources.

iv) Server Requirement: A specialized server is not required — as SAGE-Lite is a
standalone framework, which is not dependent upon a server and can be

implemented on different devices separately.

38

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

v) Open Source: SAGE-Lite is an about to be an open source framework, which
will be available to the multi-agent based community, facilitating the developers

to use this framework for developing their applications.

53 Advantages of Research Work:

o Using a layer of multi-agents, we have shared the local persistent data on a
device, to a specific set of MIDLETS.

e Along with the limited access of data to specific MIDLETS, We have
restricted the actions (save, delete, search etc.) that can be performed on the
data by invoking the services of agents.

e QOur proposed architecture can easily be accommodated in the existing
architecture of the application, where the record sharing is required.

e With our proposed approach we have enabled the record stores of a
MIDLET to be shared not only on local device but also across remote
devices.

e With the implementation of SAGE-Lite, we have improved the system’s

performance, by performing the desired tasks through multiple agents.

5.4 Conclusion

The growing trend of mobile computing opens door to different issues regarding the
data manipulation on small handheld devices. The problem of record store sharing in
J2ME is handled through a layer of multi-agent system. The proposed approach
provides an environment that is independent of specific applications and can be
applicable for different types of applications. J2ME data with this approach can be
shared among specific j2me applications through their agents. The use of multi-agents
improves the performance of data manipulation on the local or remote device,

enabling the applications to give restricted access to their confidential information.

We have reviewed the research work for discussing the shortcomings in the J2ME
MIDP record store for developing applications, where the information needs to be

shared among specific set of MIDLETS. We then investigated different mechanisms

39

Shared Storage in J2ME: A Multi-Agent System Approach Chapter 5

available for record sharing. The solution we provided makes the shared storage to
the desired MIDLETS and improves the system performance. This technique can be

used to share the information on the same as well on remote devices.

In evaluating the thesis in the large, we have provided a record store sharing
architecture based on lightweight multi-agent system, which if used for development
of a lightweight multi-agent system would provide developers to make the data

sharing more easily and efficiently.

In evaluating the thesis in the small, we have proposed a two folded solution for
lightweight multi-agent systems that are targeted to run on small handheld devices.
Firstly, it makes the confidential information inaccessible to other MIDLETS on the
local device, preventing the record store from unauthorized access. Secondly, it
makes use of the multi-agent system, hence resulting in the improved system

performance.

The proposed architecture is implemented on a J2ME based application of SAGE -

Lite, which demonstrated the achievement of our proposed solution.

5.5 Future Work
Future work can be related to the concurrency control when the data is being accessed
simultaneously by multiple users. The other area that needs to be explored is

regarding the authorization and authentication of agents.

40

REFRENCES & BIBLIOGRAPHY

4]

6. Bibliography

[1] Sun’s Java 2 Micro Edition Platform http://java.sun.com/javame/index.jsp

[2] Databases and MIDP, Part 1: Understanding the Record Management System
http://developers.sun.com/mobility/midp/articles/databaserms/

[3] Hafiz Farooq et. al: Persistent Architecture for Context Aware Lightweight
Multi Agent System. The Fifth International Joint Conference on
Autonomous Agents & Multi-Agent Systems (AAMAS 2006), Japan

[4] D. Gelernter, "Generative Communication in Linda", ACM Transactions
Programming Languages and Systems, Vol. 7, No. 1, January 1985, Pages
80-112.

[S] JavaSpaces™ Service Specification, 1.2.1, Sun Microsystems 2002

[6] Jini™ Architecture Specification, 1.2, Sun Microsystems, 2001

[7] A. Kaminsky, "JiniME: Jini™ Connection Technology for Mobile Devices",
Information Technology Laboratory Rochester Institute of Technology,
August 2000.

[8]1 T. Rybicki; J. Domaszewicz; “MobileSpaces -JavaSpaces for Mobile
Devices”; Computer as a Tool, 2005. EUROCON 2005.The International
Conference on Volume 2, Issue, 2005 Page(s):1076 — 1079

[9] Philipp Bolliger; Marc Langheinrich; “Distributed Persistence for Limited
Devices”; Inst. for Pervasive Computing ETH Zurich, Switzerland

[10] Karun Bakshi, Oracle Database Lite 10gR2 Feature Overview, June 2006,
Oracle Corporation, World Headquarters, 500 Oracle Parkway, Redwood
Shores, CA 94065, U.S.A.

[11] Yolanda Villate, Arantza Illarramendi, Evaggelia Pitoura,“Agent-Based
and Mobile, External Storage for Users of Mobile Devices”

[12] M. Debbabi, M. Saleh, C. Talhi and S. Zhioua: Security Evaluation of
J2ME CLDC Embedded Java Platform, in Journal of Object Technology,
vol. 5, no. 2, March—-April 2006, pages 125-15

[13] Anders Liljedahl: Evaluation of Multi-Agent Platforms for Ubiquitous
Computing, JUNE 2004. SWEDEN

42

[14] Giovanni Vigna, Richard A. Kemmerer : Evaluating the Security Of
Three Java-Based Mobile Agent Systems Sebastian Fischmeister.

[15] A Comparison of the Security Frameworks in Agent-Based Semantic Web
Xinyuan Deng

[16] Sana Farooq, Sana Khalique, Aqsa Bajwa, Obaid Malik, Hafiz Farooq
Ahmad, Hiroki Suguri, Arshad Ali, “SAGE LITE: An Architecture and
Implemehtation of Light Weight Multi-agent System®, IEEE Proc. of the
Sixth International Symposium on ADS (ISADS07) 2007, pp 239-244, 21-
23 March (2007).

[17] Agsa Bajwa, Sana Farooq, Obaid Malik, Sana Khalique, Hiroki Suguri,
Hafiz Farooq Ahmad, Arshad Ali, “Persistent Architecture for Context
Aware Lightweight Multi Agent System”, Lecture Notes in Artificial
Intelligence, Vol. 4411, pp. 57-69 (2007).

[18] Abdul Ghafoor, Mujahid ur Rehman, Zaheer Abbas Khan, H. Farooq
Ahmad, Arshad Ali, “SAGE: Next Generation Multi-Agent System”, Proc.
Of IEEE International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'04), pp.139-145, Vol. 1, (2004).

[19] Syed M. Ali Shah, Naseer Gul, Hafiz Farooq Ahmad, Rami Bahsoon
“Secure Storage and Communication in J2ME based lightweight Multi-
Agent System”, Proc. Of International Conference on Agents and Multi-

Agents Systems: Technology and Applications: South Korea 2008.

43

Appendix A

Research Paper

44

A Research Paper titled as “Shared Storage in J2ME: A Multi-Agent System Approach” has
been accepted in the 3rd IEEE International Workshop on Engineering Semantic Agent Systems
(ESAS 2008) in conjunction with COMPSAC 2008.

THEME OF THE WORKSHOP

Applying Semantic Web Technologies in Research and Development of Software Agents,
Mobile Agents and Multi-Agent Systems towards INTEGRATING THE DISTRIBUTED
WORLDS.

Semantic web technologies render dynamic, heterogeneous, distributed, shared content equally
accessible to human reader and software agents. Distributed agents functioning autonomously
can utilize semantic Web content to gather and aggregate knowledge, reason and infer new
results towards achieving their goals and generating new knowledge. Such knowledge in turn
may be disseminated and used to achieve the shared goal of the agents system. Here the vision is
to achieve a synergy with multi-agent systems (MAS) technologies whereby both semantics and
agents will be equally in the center stage.

ESAS workshop series aims at garnering the synergy of both technologies by taking up both the
semantic web and the agent aspects of the common research issue. Topics of interest span a wide
spectrum in both theory and practice of autonomous semantic agents, context-aware intelligent
agents, agents as semantic web services, software agents, mobile agents, agent architectures,
multi-agent systems, agent communities, cooperation and goal seeking through sharing policy
and ontology, safety & security in systems, and so on.

Mobile agent and MAS technologies are crucial in realizing multi-party dynamic application
systems. Semantic Web technologies augment MAS by enabling agents with functioning based
on the semantics of their mission and of the world around them. Agents, implemented as Web
services in developing distributed control and processing applications, entail interesting
consequences such as situation awareness, semantic composition of services, context sensitive
long-lasting transactions, effecting service policies and quality levels, etc. Complex applications
could become realizable with novel features such as factory floor automation for flexible

production, collaborative discovery of uncharted geography (for example, cooperative labyrinth

45

discovery), traffic management and info dissemination with facilitation of emergency services,

financial markets forecasting with optimization of portfolio gain.

46

Shared Storage in J2ME: A Multi-Agent System Approach

Muhammad Ainan Sadiq
International Islamic University Islamabad
ainansadig@gmail.com

Abstract

Current research trend towards mobile computing
emphasizes the need for distribution of data among
various clients in wireless environment. Sharing the
data in J2ME opens the data to be accessible for all
MIDLETs present on the device, hence creating a
number of vulnerabilities to the confidential
information that is intended to be shared with specific
MIDLETs, e.g. a malicious MIDLET can delete, copy
or move the Shared Record Store, in J2ME based
application. This project aims at overcoming record
store sharing problem through the concept of Multi-
Agent System by providing a shared storage with
explicit access to authenticated & authorized
MIDLETs. With this mechanism data can be shared
among specific MIDLETs. The implementation uses the
SAGE-Lite framework as a solution to our proposed
work.

1. Introduction

Today’s computing trend is more towards
ubiquitous computing, which is diverging number of
database applications to mobility and facilitating the
users to achieve the usefulness of anywhere-anytime
computing. Different m-commerce applications are
being deployed on small handheld devices, to facilitate
the transactions and data processing in wireless
environment.

Java 2 Micro Edition (J2ME) [1] is one of the
leading technology in handheld device applications.
One of the J2ME features is that it provides built in
caching mechanisms for locally storing data on a
mobile device. The Mobile Information Device Profile
(MIDP) adds APIs (Application Programming
Interface) for user interaction, network connectivity,
and persistent storage. Two profiles have been
developed for J2ME: MIDP 1.0 and 2.0.

J2ME has a Record Management System (RMS), an
Application Programming Interface (API) that provides
persistent storage on local device. A few MIDP-
enabled handheld devices support the traditional file
system; RMS is the only feature in J2ME for local data

Syed Muhammad Ali Shah
International Islamic University Islamabad
alishah_ph@yahoo.com

storage and is essential to writing any application that
relies on local persistent data [2]. RMS stores all the
records in a file with extension *“.db” called record
store. The application developed in J2ME for mobile
devices is called a MIDLET and each MIDLET suit
(group of related MIDLETSs) can own one or more
record stores.

Due to the limitations of J2ME Record Management
System (RMS), when the data of record store is set to
shared mode then it can be accessed by all the
MIDLETSs present on the device and hence creating a
number of vulnerabilities to the confidential
information. The proposed work targets to share the
data among specified MIDLETS on local device as well
as on different devices and to protect the data from
malicious MIDLETs’ access. The solution provided
uses the concept of multi-agent systems for developing
a mechanism for sharing data, which will allow access
to private data of a MIDLET. This is achieved by
introducing a layer of multi-agents that handles the
whole data manipulation from inside or outside the
device.

Two MIDLETs can exchange data through their
agents. An agent can perform desired action only on its
MIDLET data. In order to make an action on different
MIDLET data the agent of first MIDLET sends a
command to the agent of second MIDLET, which then
responds to the agent of first MIDLET with the desired
results. In this way the shared storage vulnerabilities
are minimized. The benefit of using multi-agents
system approach is to save redevelopment of legacy
systems, only a wrapper agent needs to be developed.
Secondly the data remains protected i.e. inaccessible to
malicious MIDLETs and is only shared among
authorized MIDLETs. Furthermore, performance is
also increased by using multi-agents instead of using
other techniques discussed in related work.

Rest of the paper is organized as follows: section 2
describes the related work. Section 3 describes the
architecture of J2ME Record Management System
(RMS) & its vulnerabilities. Section 4 gives the
proposed architecture for J2ME record store sharing.
Section 5 explains the evaluation criteria. Section 6
includes the conclusion and hints on the future work.

2. Related Work

Designing and implementing complex software
systems e.g. m-commerce and other intelligent
applications for handheld devices is rapidly growing.
Persistence and distribution of data is crucial for these
systems, as the small handheld devices are not as
powerful as that of their counterpart — desktop
machines.

Keeping in view the constrained environment and
limited resources on these devices a number of
mechanisms are provided for data persistence on these
devices, e.g. J2ME provides Record Management
System (RMS) for locally storing the data on the
device. RMS is a system for managing records in
JZME. A record is an individual data item.

The records in RMS consist of a variable length
binary field. This is contrary to the typical Database
Management System (DBMS). The validation and data
consistency checks cannot be applied to the records in
RMS. The application developers are required to apply
validation and data consistency checks to interpret the
contents of records in RMS [2].

We find a number of alternatives for data sharing
among local and remote handheld devices. Tuple-space
is one of the well known and elegant ways of sharing
information in distributed environment among
communicating parties where processes write and read
tuples [4].

JavaSpaces [5] implements the concept of tuple
space through Java programming language. It is a
service of Jini [6], which forms a distributed network
of clients and services. JavaSpaces provide an easy way
for communications facility in mobile distributed
applications. Due to the fact that Jini technology is
dependent on Remote Method Invocation (RMI),
which is not supported by number of handheld devices,
so JavaSpaces is not suitable for distributed mobile
applications. Moreover, JavaSpaces requires a resource
rich environment.

In order to make the devices Jini compatible a
number of different approaches were defined. These
include modifying the Java virtual machine, modifying
Jini, or introducing a non-standard proxy. In JiniME
[7], a J2ME virtual machine is changed to make MIDP
devices Jini capable. The approach severely restricts
the set of devices, on which applications can run.
MobileSpaces, on the other hand, require no changes to
the standard J2ME environment [8].

Like JavaSpaces, applications developed using
MobileSpaces capture events through notify() method.
Each time when event is triggered regarding

notifications about tuples, notify method is called,
resulting in resource hungry application [8]. Although a
lightweight framework TinyDB was developed but its
main limitation is that it does not provide distributed
storage [9].

Another lightweight storage system based on
serialization framework allows MIDP enabled J2ME
devices to store data on local as well as remote storage
spaces requiring similar semantics. [9]), so this
framework does not support heterogeneous
environment.

Different Lightweight DBMSs like Oracle Database
Lite 10g, which is a unified and a comprehensive
environment for development and deployment of high
impact solutions intended for mobile and lightweight
environments. It is an extension to Oracle Database
10g for enterprises focusing at increased employee
throughput, reduced operative cost, and enhanced
client satisfaction. It provides an extension to grid
environment for mobile and embedded devices,
allowing enterprise data accessible to remote
employees even being offline. Moreover, it gives data
synchronization permitting users to reliable and secure
exchange of data with corporate Oracle Database [10].
The limitation of using third party DBMS includes
compatibility issues. Its server and client requirements
are too resource demanding for mobile environment.
Besides, it requires a license to be purchased for every
user, hence not a cost effective solution.

Different multi-agent system platforms exist that
support FIPA (Foundation for Intelligent Physical
Agents — A standard setting body for MAS) and
mobility e.g. MicroFIPA OS [13], JADE-LEAP [14],
Grasshopper [13]. We have chosen the SAGE-Lite
platform because it is stand alone framework for the
lightweight devices and provides the features of
robustness, fault tolerance, object persistence and
context awareness [3]. The related work in field of
multi-agent system for developing applications for
small handheld devices is found in Locker Rental
Service [11], in which a persistent storage medium on a
static device is preserved for different agents known as
locker place. All agents communicate with their
respective locker agents to operate on their data. Here
the author had recommended multi-agent system as a
middle-ware between a MIDLET and Locker place.
Locker rental service provides a centralized storage
mechanism, which has a number of issues such as
maintenance problems of a single database,
availability, a separate device for storage etc.

3. Architecture of J2ME Record
Management System (RMS)

Store

The architecture of J2ME record management
system (RMS) contains small footprints for storing and
manipulating persistent data on local device.

3.1. Record Stores

A record store is chronological collection of records
associated to a record store. Every record can be
accessed through the record store. In fact, record store
ensures that records are read and written individually,
with little possibility of data corruption.

RMS maintains unique numeric sequence number
for each record in a record store known as Record ID.
Maximum 32 Unicode characters unique name is
defined for record store within MIDLET suite creating
it. Record Store sharing mechanism is not provided in
MIDP 1.0, while this mechanism is provided in MIDP
2.0, which allows record stores to be shared among
other MIDLET suites. In each case the record store is
recognized by the name of MIDLET suite, its vendor
name and the record store name itself.

Time-stamp and version information is also
maintained by record stores to enable applications to
discover when it was last modified [2].

Recond Data I

Fig 1: Internal Architecture of Record Store

3.2. Record Stores Sharing

Record stores are made accessible to all other
MIDLETs using their shared property. The default
property AUTHMODE_PRIVATE allows record store
to be accessible only to the MIDLET suite that created
it. Record store can be shared by changing the property
to AUTHMODE_ANY. When the record stores are
shared they can be writable or read-only. If the shared
data is confidential, then it is not secure and can be
read by all MIDLETs on the device. Also if the data is
shared in read/write mode then it is more vulnerable to
malicious MIDLETSs on the device [12]. In the shared
mode the MIDLETS from remote devices cannot access
the shared data directly.

3.3. Shared Storage Vulnerabilities
Confidential information can be susceptible to an

attack outside the RMS, e.g. it can be accessed and
manipulated from device utilities (without using a

MIDLET), which is a serious problem, e.g. The whole
Record Store can be deleted by calling the deleteFile()
method of the class RecordStoreFile [12]. This is

M——

/i
/i

dsto

Security
checks

Rec reFil

shown below in the figure:

- RecordStore

s
Security
checks

Development of applications for handheld devices
poses some problems when the data of one MIDLET is
required to be shared among multiple MIDLETS.
Debbabi et al. [12] provide the security evaluation of
J2ME platform and explain the vulnerabilities that are
associated with the shared storage of data. Non-shared
record stores can be accessed and modified by the
MIDLETSs creating them, but the shared record stores
can be accessed from any MIDLET on the device. So
MIDLETs cannot share their record stores with only a
specific subset of MIDLETSs. Shared record stores are
vulnerable to any attack from outside the Record
Management System (RMS) of J2ME.

The growing trend to introduce the personal agents
on mobile devices gives rise to the need of a
framework that should facilitate developers to
implement agents on mobile devices. Existing multi
agent system frameworks (JADE-LEAP, Grasshopper,
Micro FIPA-OS etc.) do not provide robustness,
context awareness and persistence [3].

4. Multi-Agent Based Record Sharing
Architecture

In order to solve the problem mentioned in previous
section, we use the concept of Multi-Agents System. In
multi-agents system single task is divided among
multiple agents on the same or different platforms.

We propose architecture on the basis of an existing
FIPA compliant multi-agents system framework,
namely SAGE-Lite [3]. SAGE-Lite is a lightweight
context aware multi-agents system, which senses the
capabilities of the lightweight devices and reacts
accordingly. Existing work on secure agents’
communication in SAGE-Lite framework [16] gives an
advantage of agent security, by restricting unauthorized

agents to misuse the information. Keeping the record
store property as AUTHMODE_PRIVATE makes it
inaccessible to all other MIDLETs.

In our proposed technique actions (save, update,
delete, search etc) on non-shared or private data are
published as services of the agents and any other agent
can access data through these services. The requesting
agent can belong to same or different MIDLET on
local or remote device. This is due to the fact that
SAGE-Lite enables agents’ communication on local or
remote devices [3].

Following figure proposes the architecture for
record store sharing without making it public to all
other MIDLETs.

/ MIDLET sharing data \

gz

Agent Record
AMS-Lite]n—» MTS-Lite ?:;?ﬁ;;“e;";n
SAGE Lite {3]
\COO0D00
Multi agent Layer /
/ Wrapper Agent

C\D/

J2ME APPLICATION

MIDLET accessing data

Fig 3 Record Store Sharing based on Multi-Agents

In the above figure Agent Record Management layer
acts as a mediator between two MIDLETS sharing data
with each other, The use of multi-agents system on this
layer enhances the performance of system, as all the
actions on data (read, write, search etc) are divided
among agents.

Two types of applications can access the data
through agents: Legacy systems applications can access
data through the wrapper agent and multi-agent based
applications can access data through their agents by
communicating with the Agent Record Management
Layer.

Agent A Agent B Agent C Agent X
S by et

Fig 4 Agents accessing record stores

The above figure shows, how the agents on the
Agent Management Layer work.

“Agent A” can perform desired actions on record store
A.

“Agent B” can perform desired actions on Record
stores A & B.

“Agent C” can perform actions on Record store B &
SO on.

5. Evaluation

This section describes the criteria through which we
intend to judge the success of our proposed work. We
have considered the following points for evaluation
purpose:

i. Using a layer of multi-agents, we have shared
the local persistent data on a device, to a
specific set of MIDLETs.

ii. Along with limited access of data to specific
MIDLETs, we have restricted the actions
(save, delete, search etc) that can be
performed on the data by invoking the
services of agents.

iii. Our proposed architecture can easily be
accommodated in the existing architecture of
the application, where the record sharing is
required.

iv. With our proposed approach we have enabled
the record stores of a MIDLET to be shared
not only on local device but also across
remote devices.

To demonstrate record store sharing using the multi-
agents system approach we have implemented the
proposed architecture by developing an auction
application for mobile devices, based on SAGE-Lite
framework [3]. This application while keeping the
record store private provides access to specific

MIDLETs on same or remote devices through its
agents. This application has three parts Advertisement,
Search Item and Item Status.

The application is deployed and tested on four
NOKIA N70 mobile phones. The reason for choosing
this device was its support for J2ME MIDP 2.0, CLDC
1.1 and Bluetooth API. We named those phones as
Dev-A, Dev-B, Dev-C and Dev-D. On devices Dev-A,
Dev-B, Dev-C we advertised three different Cars with
their specification (i.e. make, model, color etc.),
expected price and condition. On device Dev-D we
applied different queries e.g. display records of car
price less or equal to the value of 10,00,000/-. Car
condition should be good and specification is corolla
etc. The devices Dev-A, Dev-B, Dev-C were sharing
their data with Dev-D. Upon receiving the desired
results we booked the Car advertised on device Dev-B
by changing its status from FOR-SALE to BOOKED.
The agents on two devices Dev-B and Dev-D
interchanged the data for booking.

From the above example we have successfully
implemented the modification and sharing of data
among specified MIDLETSs. As the record store was
defined with PRIVATE authentication mode, so no
other MIDLET suites were able to access that record

store.

Fig 9: Search Results

Fig 10: Book Items

6. Conclusion & Summary

The growing trend of mobile computing opens door
to different issues regarding the data manipulation on
small handheld devices. The problem of record store
sharing in J2ME is handled through a layer of multi-
agents system., The proposed approach provides an
environment that is independent of specific
applications and can be applicable for different types of
applications. J2ME data with this approach can be
shared among specific J2ME applications through their
agents, The use of multi-agents improves the
performance of data manipulation on the local or
remote device, enabling the applications to give
restricted access to their confidential information.

Future work can be related to the concurrency
control where multiple users are accessing the data
simultaneously. The other area that needs to be
explored is regarding the authorization and
authentication of agents.

6. References

{11 Sun’s Java 2 Micro Edition (J2ME) Platform:
http://java.sun.com/javame/index.jsp.

[2] Databases and MIDP, Part 1: Understanding the Record
Management System
http://developers.sun.com/mobility/midp/articles/databaserms/

[3] Hafiz Farooq et. al: “Persistent Architecture for Context
Aware Lightweight Multi Agent System”. The Fifth
International Joint Conference on Autonomous Agents &
Multi-Agent Systems, Japan, 2006.

[4] D. Gelernter, "Generative Communication in Linda",
ACM Transactions Programming Languages and Systems,
Vol. 7, No. 1, January 1985, Pages 80-112.

[5] JavaSpaces™ Service

Microsystems 2002.

Specification, 1.2.1, Sun

[6] JiniT Architecture Specification, 1.2, Sun Microsystems,
2001.

[7] A. Kaminsky, "JiniME: JiniTM Connection Technology
for Mobile Devices", Information Technology Laboratory
Rochester Institute of Technology, August 2000.

[8] T. Rybicki; J. Domaszewicz; “MobileSpaces -JavaSpaces
for Mobile Devices”; Computer as a Tool, 2005, EUROCON
2005.The International Conference on Volume 2, Issue, 2005
Page(s):1076 — 1079

[9] Philipp Bolliger; Marc Langheinrich; “Distributed
Persistence for Limited Devices”; Inst. for Pervasive
Computing ETH Zurich, Switzerland.

[10] Karun Bakshi, “Oracle Database Lite 10gR2 Feature
Overview”, June 2006, Oracle Corporation, World
Headquarters, 500 Oracle Parkway, Redwood Shores, CA
94065, U.S.A.

[11] Yolanda Villate, Arantza [llarramendi, Evaggelia
Pitoura,“Agent-Based and Mobile, External Storage for
Users of Mobile Devices”,

[12] M. Debbabi, M. Saleh, C. Talhi and S. Zhioua: Security
Evaluation of J2ME CLDC Embedded Java Platform, in

Journai of Object Technology, vol. 5, no. 2, March-April
2006, pages 125-15.

[13] Sebastian Fischmeister, Giovanni Vigna, Richard A.
Kemmerer, “Evaluating the Security Of Three Java-Based
Mobile Agent Systems ““, Volume 2240/2001, 2001

[14] Anders Liljedahl, “Evaluation of Multi-Agent Platforms
for Ubiquitous Computing”, JUNE 2004, SWEDEN

LErARy
RA
ISLAMARRG,

