MHD stagnation point flow over an unsteady
stretching surface

By

Noor Muhammad

Supervised by

Dr. Zaheer Abbas

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan

2011



mSsicnHo..

Si? 2 a"]

/Vo-S



In the name of Almighty ALLAH,

the most beneficent, the most merciful




MHD stagnation point flow over an unsteady
stretching surface

By

Noor Muhammad

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2011



MHD stagnation point flow over an unsteady
stretching surface

By

Noor Muhammad

A Dissertation Submitted in the Partial Fulfillment of the

Requirements for the Degree of
MASTER OF SCIENCE
In

Mathematics

Supervised by

Dr. Zaheer Abbas

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2011



Certificate

IMHD stagnation point flow over an unsteady
stretching surface

By

Noor Muhammad

A Dissertation Submitted in the Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE inMathematics

We accept this dissertation as confirming to the required standards.

1. A 2. V‘//q

Dr. Irshad Ahmad Arshad Dr. Zaheer Abbas
(Chairman) {Supervisaor)
S
3. 4,
Prof. Dr. Tasawar Hayat Dr. Nasir Ali

(External Examiner) {Internal Examiner)



Dedicated to

W, “motéor",ml ‘gatéer "

WAode prayer ,l.ad
_/44111%4 lcen tAa raaion o/ Success aru! pmdperity in my ZA



N

Acknowledgement

Primarily and foremost, I am thankful to Almighty ALLAH Who is the only
creator and master of us, Who create us from a clot and taught us to write with
pen, Who provided me the strength and ability to learn and to achicve another
milestone to a destination. Countless drood -o- slam upon Holy Prophet
Hazrat MUHAMMAD (PBUH) Who is forever a torch of gaudiness, a
source of knowledge and blessing for entire creation. His teaching shows us a

way to live with dignity, stand with honor and lecarn to be humble.

I express my gratitude to all my teachers whose teaching have brought me to
this stage of academic zenith, in particular, I want to acknowledge my
profound gratitude to my kind natured, eminent and highly dcvoted
supervisor, Dr. Zaheer Abbas, who aided me with many inspirational
discussions. His many valuable expertise. comments, suggestions and
instructions are’ most welcome and greatly improved the clarity of this

document. | am placing my earncst thanks to Dr. Zaheer Abbas.

[ am greatly thankful to Dr. Irshad Ahmad Arshad (Chairman, Department
of Mathematics and Statistics, IIUI) who always providec mc  full
opportunities and affectionate help to complete my MS research work. My
very special thanks are due to my highly devoted and respected teachers Dr.
Tariq Javed and Dr. Nasir Ali for their complete support in the achievement

of my task.



4

[ am highly grateful to my affectionate and candid tcacher Mr. Tahir
Mehmood who blessed me with his precious guidance and always help me in
every difficult moment throughout my educational carrier. 1 pay my sincerc
thanks to Dr. Matloob Anwar, Dr. Muhammad Sajid, Mr. Aamir Nadeem
and my elder brother Mr. Aurang Zaib, who provided mc cmotional support

and future motivation in the whole journey of this rescarch work.

I express my deepest sense of pratitude to my parents, brothers, sisters and
my family, who is always real pillars for my cncouragement and showered
their everlasting love, care and support throughout my life. Their humble
prayers have always been a source of great inspiration for me and whosc

sustained hope led myself to where, I am today.

[ would also like to thank all my friends like Shahid, Zahcer, Arshad,
shafiq, Mohsin, Abid, Nadecm, Tasleem and others who dircctly or

indirectly helped me during my MS period.

Noor Muhammad

July, 14, 2011.



N

DECLARATION

| here by declare that this dissertation, neither as a whole nor as a part thereof,
has been copied out from any source. It is further stated that | have prepared this
dissertation entirely on the basis of my personal effort made under the sincere
guidance of my supervisor. No portion of the work, presented in this dissertation:
has been submitted in support of any application of any degree or qualification of

this or any other university or institute of learning.

v
Signature: _:[:ls,a‘ 197/6'7/1/

Noor Muhammad

MS (Mathematics)



Preface

The boundary layer flow and heat transfer due to a continuous stretching surface are iinportant
from theoretical as well as practical point of view because of their wide applications in polvmer
technology and engineering processes. In particular. in the extrusion of a polymer in a melt-
spinning process, the extrudate from the die is generally drawn and simultancously stretched into
a thin sheet, the boundary layer along material handling conveyers. the aerodynamic extruston of
plastic sheets, glass blowing, paper production. the boundary laver along a liquid film in the
condensation process and many others. After the pioneering work of Sakiadis |1. 2]. various
aspects of the problem have been discussed by many researchers. Crane [3] discussed the fTow of
a viscous fluid over a linearly stretching surface. However, to the best of our knowledge. first
Wang [4] has been studied the flow of liquid film on an unsteady stretching sheet. Andersson et
al. [5) investigated the heat transfer in a liquid film over an unsteady stretching sheet. Recently.
Elbashbeshy and Bazid [6] have presented the similarity solution of boundary laver flow and
heat transfer due to an unsteady stretching sheet. After the work of [6]. many authors have
investigated various aspects of this problem and obtained similarity solution. e.g. |7-11]. Having
in mind all the stated motivations above. the present dissertation is arranged as follow:

Chapter one aims to present some basic defmitions and flow equations. Concepts of boundary
flow. the homotopy analysis method and shooting method also included.

Chapter two deals the boundary layer flow and heat transfer due to an unsteady stretching shect.
The governing time-dependent equations are transformed to ordinary differential equations using
similarity transformations. The system of ordinary differential equations is solved numerically
using shooting method with Runge-Kutta scheme. The cffects of various governing paramcters
on the velocity and temperature fields arc studied. In fact this chapter is a review of the work
done by Elbashbeshy and Bazid [6). i

Chapter three aims to extend the work of [6] into four directions: (i) to consider the magnetc
field (ii) to analyze the flow in a porous medium (iii) to consider the stagnation-point flow and
(iv) to include the effects of slip condition. The governing non-linear partial differential
equations are converted into non-linear ordinary difterential equations by emploving similarity
transformations. This system has been solved both analvtically using homotopy analvsis method
(HAM) and numerically using shooting method with Runge-Kutta scheme. The mfluences of
sundry parameters on the dimensionless velocity and temperature fields arc shown through
graphs. The numerical values of skin-friction coefficient and focal Nusselt number tor various
parameters are also given in tabular form. The comparison of both solutions are given and tound
in excellent agreement.
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Chapter 1

Basic definitions and equations

, . . . . . SN . . . €
The aim of this chapter is to provide some basic definitions and governing cqnations which are,

used to discuss the motion of fluid. The basic conceprs of the solntion technignes are also giver,

1.1 Flow

A material or substance goes under deformation when certain forces act upon it. [T the defor

mation exceed continuously with out limit. then the phenomena is known as How.

1.2 Fluid

A fluid is a material/substance that continuously deforms (Hows) nnder an applied shear {141+

gential) stress.

1.3 Types of Flow
1.3.1 Uniforin flow

A flow in which the velocity of fluid particles are sante at. each point.

1.3.2 Non-uniform flow

A flow in which the velocity of fluid particles are different. at. different point.



1.3.3 Steady flow

{t iz a flow in which Huid properties does not depend an the rime 470 Mathenaticalle, oo

deflined as

— =) (rn
where £ is fluid property.
1.3.4 Unsteady flow
It is a flow in which fluid properties depend on the time ‘£, ie..
= £0. (.

where ¢ is any fluid property.

1.3.5 Compressible flow
A flow in which the density of the fluid is not constant. is called compressible flow. [t i< denoted

by symbol 'p’. Mathematically. it is given by

p— —. (1.3)

1.3.6 Incompressible flow

A flow in which the density of the fluid is constant thronghow the flow is called incopipressible

Aow.

1.4 Classification of fluids

There are two main types of fluids.
(i) Ideal fluids
(ii) Real fluids



(i) Ideal fluids

A fuid which has zero viscosity is called an ideal ffuid, ie. a Hind in which there = no friction.
Al ideal Huids are incompressible. Mineral water is an example ol an ideal [hne.

(ii) Real fluids

A fluid for which the viscosity is not equal to zero is known as real Huid.
w# 0. (1

Real Auids are also known as viscous fluids. Real fluids are further divided into fwo main
classes.
(a) Newtonian fluids

All the fluids which satisfy the Newton's law of viscosity are called Newronian fhads. 1he
Newtonian's law of viscosity is stated az " shear stress is directly and lincarlv proporticaid o

the rate of deformation”. Mathematically, it is stated as

du .
Tzy = [t (Tg . (1.5)

where p is absolute viscosity. T,y is shear stress and du/dy is the shear rate. Fxanples of
Newtonian fluids are water, air, gasoline etc.
(b) Non-Newtonian fluids

All flnids which do not satisfy the Newton's law of viscosity are called non-Newtonian finids.
Such types of fluids obey the power law model. in which shear stress 1< directly hnt non-iincariv

proportional to the rate of deformation. Mathematically.

"
'rfyux(fdg>: n# 16)
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where n is the flow behavior index and k is the consistency index. Examples of Non-Newtonian

fluids are shampoo. gel. soap and blood ere. The ahove equation can be rewritien in the {orm

-1
lr/n " du L
=

7= l. —_— —— =
jdy tly

R

ey

The coefficient 7* = & |du/dy|n_] is called as the apparent viscosity.

1.5 Miscellaneous

1.5.1 Porous medium

A porous medium is a material containing pores. The pores are typically fitled witlca Huid like
liquid or gas. The skeletal material is usually a solid. but structures like foams are analyzed
using concept of porous media. A porous mediun is characterized by ivs porosity. Many natural
substances like rocks. soil. bones. wood and man made material such as celpenis are consider
as porous media. Porous is that tvpe of medium of flow in wlicl we see snciion and injection
measured.

A porous medium has many practical applications in science and engineeriug like liltration.

petroleum engineering. geology and different branches of imechanics.

1.5.2 Boundary layer equations

A major contribution to the study of fluid mechanics was initiaied L. Prandil in the year 1901
He described to classily the essence and influence of viscosity in {lows at high Revaolds mmbers
and he showed how the Navier-Stokes equations could he simplificd to provide apgproximate
solutions nnder this situation. A boundary laver fow deals with that portion of a flnid How,
near a solid surface. where shear stresses are of significances and rhe inviscid flow assmnprion
is not. a reliable assumption. A solid surface has interaction with a viscons Huid flow. This is
due to the no-slip condition which is a physical requirement that the fluid and solid have equal
velocities at their interface. Therefore a fluid flow is retarded by a fixed solid surface and o

finite slow-moving boundary layer is formed. A requirement that the boundary laver be thin is

for the Reynolds number of the body to be large. i.e. 10% or greater. Under the said conditions,

6
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the flow outside the boundary layer is largely inviscid and plays the role of a driving mechani=n
for the layer.

The discovery of the boundary layer equations can be considerod as one ol the more im-
portant advances in fluids. The use of an order of magnivade analysis resnlts in the governing
Navier-Stokes equations of viscous fluid fow to be inunensely simplificd within the bonndary
layer. Indeed, the partial differential equations (PDEs) becoines parabolic. Thix greatly en-
hances the solution procedure for the equations. The flow is divided into an inviscid portion
(which is casy to solve by a number of approaches) aud the boundary taver (which is governed

by an easier to solve PDE). Navier-Stokes equations for an incompressible two-dimeasional flow

are
ou on 1dp §*u 0271> .
U b e = —— e g |y g b (1.0
duw dy pda Jdas o dy*
v v 1 0p PFe )
H— U = V| ] {1 Ky
o dy p Oy ar? o dy?
e ] (-'} | ]
A (g
ox  Jy

In above expressions ~ is the kinematic viscosity, p is the density of the finid. pis the pressure. o
and y are the horizontal and vertical coordinates and « and v the velociiy componems paralivi

to z and y axes. A wall is considered 3 = 0. The non-dimensional quantities are defined as

' LU . 1 L Ly P (1.12;

- 1
i

= - U = . Vo= . ) = —.
i U vo, U T

*

T
T = —,
I ¥

Here L indicates the horizontal lengih scale and #; the boundary laver thickness. Fgnations

(1.9) 1o (1.11) in non-dimensional variables are

Lou* Lou” Jdpr P ATE 1% LN O ‘
U —— F v = Fe— st =) T fhidh
adxr dy* duer UL de? UL\, ) dy*?

L O0v* LouT LN\ p v % v [N O .

U ‘—i-b' T =\ — e — - 5 4 — - - —. (1_}_1,
dx dy 3 dy ULde " UL oy ) ady?

du” N I 0 |15

orr Oy L1
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in which the Revnold number is written as

ny

I/V

R

The inertial and viscous forces are of the same order and hence

or

v L\~
7 (5) -om

5 =0 (R—WL) ,

Dropping asterisks and utilizing above equation one obtains

For R — oc we have

Jdu du dp 1 0 )

U - w —_

O

Oz Tou T Tor T RaS oyt

1 o v Op 1/ d%e
- tv— =555 =
R\ "ax dy Oy = B2\ 9

v O
—_ + - =
dx = Oy

Oa Jy dz Oy
dp
dy
ou v ¢
ar f)_*j o

ST

dy-

(1.16}

(1.19]

(120

(1.23}
(121

in which Eq. (1.23) shows that pressure is constant across the honndary laver. I dimensionl

form, Egs. {1.22) to (1.24) become

du du 1op “u
te P = ———
O dy p o dy?
_19p
pdy

e

£1.26)

-



Ou 0v_y (197}
ar dy o

1.5.3 Stagnation point

The boundary laver has the point in the flow field where the streamnlines of the flind takes
different directions around that point. that point is called stagnation point. At stagnation

point the local velocity of the fluid is zero.

1.5.4 Slip condition

If the velocity of the fluid in contact with the boundary of the surface is not sanme as that of
boundary. we use slip condition. The difference of the velocities between fluid and houndary

mav have different relations like linear, quadratic. cubic. parabolic. hvperbolic ete.

1.5.5 Maxwell’s equations

Maxwell’s equations are the set of four equations which relate the electric aid nagnetic field
to their sources, charge density and current densitv. Individually. these equations are known
as Gauss’s law, Gauss’s law for magnetism. Faraday’s law of induction and Ampere s law with

Moazwell’s correction. These equations are described as

VE:E. {1.28)
€0
V.B=0. {1.24)
o .
VxE=-—/—. (1.30)
o :
)
V x B :HOJ‘%‘H(](()EAM— (1.4l
ol

In the above equations €p is the permittivity of the free space also called eleciric constan, g
is the permeability of free space which is also called magnetic constant. p iz the toal charge
density and J is the total current density. The total maguetic field is 3 = {3y * b). where b

is induced magnetic field. By Ohm’s law in generalized form we have

J=0(E+V x B), (1.37)

9



where ¢ is the electric conductivity of the fluid. In the present case rthere i< no applied elecie
field, also the induced magnetic field is negiccted due to the assuinption of low magnetic Revnold

number. Therefore, the Lorentz foree in the direction of vhe flow hecumes
- N 1 a3
(J xB)=—-0BjV. RIREY!

where By is the applied mmagnetic field and V' is the velocitv.

1.6 Governing Equations

1.6.1 Equation of continuity

The mathematical relation of conservation of mass for fluids is known as eqnation of consiuaty,
It has the following form
dp ,

and for an imcompressible fluid it reduces to

1.6.2 Equation of motion

The motion of fluid is governed by law of conservation of momentum. The application of this
law to an arbitrarv control volume in flowing fluid vield the following equation cominonty known

an equation of motion.

7AY
y-— = —Vp-tdivT - pb. (1.39)
ot

In above equation T is Canchy stress tensor and b is body force per anir mass.

10



1.6.3 Energy equation

Energy in a system may take on various forms (e.g. kinetic. potentiai. heat. light). Marhemat-

ical form of energy equation is described as

Do ,
pr:pﬁ =T-LL-V . -q.

in which

L=VV.

Energy equation also represents the ‘Law of Conservation of FEnergy’.

1.7 Solution techniques

1.7.1 Runge-Kutta Method

(1.3

(1.37)

There are many different schemnes for solving initial value probleins relating 1o ordineary diffor-

ential equations numerically, bur due to highest order of accuracy Le. of Q1) we profer to us

the Runge-Kutta method.

The general equation of second order of initial value problemn can be written s

Py _ (W
dz? S g )

dy
y{ro) = wo, o () =«

subject to initial conditions

In order 1o solve the problem . we need o convert secomd order innial vidue problene 1o

system of first order initial value problem by defining

d
%ZZ:!](I:% t)
so we will have
dz
— = f(ry. ).
da

il

the



with initial conditions

y(ro) = yo. = {wo) =a. i1.12;

Now the Runge-Kutta method of order 4 for the ahove system of first order differential 1gs.

{1.40) and (1.41) is defined as

1 .
Yna!l = Yn -+ 6 (k1 + 2k - Qheqy -L kg ) {11
and
1
fni1 =it g (L -+ 20 + 2l3 + L) (1.14)
where
ky = hy (-Tn‘ Y :ra.) : bo=hfltn th.20). > “ A5

h
ko = hy | o, + 5 Un f

—
ey

-

|-Q|3,7

g A / h Ay { )
Sy ) b =hSf (:’r:,, -;— 51 U —)w S %) (140G

= = 7

o

ks = hy <l’n -+ }—21, Yn + % Iy F %) . ly=nhf (:1:,7_ -+ g,y,. -4 %z R %\) (1.47)
by =hg (g +hyn + ks z+13), L= 0f (e + oy - hgoon ) (1005
where h is uniform step size defined as
o= In 0 {i.49)
n
n is number of step. )

1.7.2 Shooting Method

Shooting method is an iferative technique which is very poputar for ihe 1wo points howilar

value problems. In this technique, the boundary value problent of higher order is first rediwed
to the system of first order initial value problem by letting the missing condition. Theuw our
goal is to find the solution of initial valne problem instead of given boundary value problem
directly. For this purpose, any scheme for the solution of iitial value problem can be nsed.

Runge-Kutta method of order 4 is used for this purpose. For illustration. icts consider a sccond



order boundary value problem

'[2 / o
. (::; y —"/) . (1.50)

with boundary conditions

y{0)=0. y(L)=AL (1.51)

where f is arbitrary function and data is prescribed at & = 0 and & = /. The same differential

equation describes an initial value problem if data is prescribed as
y(0)=0, ¢'(0)=s. (1.52)

To solve the boundary value problem we reduce it into a system of two first order differential

equations as

| 7
B 2 ey, (1A%
o ol '
with initial conditions
y(0)y =0, y(0)=u(lh) = s, (154

where ‘s’ denotes the missing initial conditions which will be assigned an initial value. Next
we will find the actual value of “s” such that the solution of Eq. {1.50) subject (0 ihe initial
conditions (1.52) satisfies the boundary conditions {1.51). In other words. if the sotution= ol the
initial value problems arc denoted by y(z.s) and u(z. s). one searches for the value of “~ such
that

y(L,s) — Al =0=¢(s) (say). (1.55]

Here Newton's formula can be used to find the value of "s™ as we are to choose a roots of linear

algebraic Fq. (1.53), which is given as

o (1
<D :_s(,l)_d(‘f(ﬁ‘)_ {100
% (<)
which imnplies that
L, sty — A1
) ey _ y(LsT) — AT (1.37)

% (L., .s("))

(15



r

To find the derivaiive of y with respect to "s* Iqs. (1.33) and (1.54) are differentinted with

respect to "s  and we gei

{_“_ - di . ﬂ) " fi( (159
2 Code Oy Ju
where
Oy du
y=2 =2 159
s ds’ (1:59)

and initial conditions take the following form
Y{0)=0, U(0)=1. {1.60

1.7.3 Homotopy Analysis Method (HAM)

The homotopy analysis method {HAM) is developed by Liao [12. 13" in 1992, 1t is a powerful
analyl?cal technique to solve the non-lincar boundary value problens. Many researches (1125
have been applied this techoique suceessfully to solve the non-lnear eqiations. Here we give
simple example to solve the application of homotopy analytical mucthod (AN

The idea of the homotopy is very simple and straightforward. For exawmple. coustder a
differential equation

N fu (8)] = 0, (161

where A is a nonlinear operator, ¢ denotes the time. and w(f) is an unknown variable.  tu
the initial step we suppose wg (#) as an initial approximation of v () and £ as auxiliary linear

operator with the property

L(f)=10. when [ = 0. (1.6

We then construct the zeroth order deformation equation as

Hio(t,q).q] = (1 —g) L6 (t.q) — ug(t)] + ¢ (N[ (r:p)]] = 0. (1.6:3)

where g € [0, 1] is an embedding parameter and & (¢, ¢) is a function of ¢t and ¢ = 1. we have

14



Hio (L q) . gl],y = Lio (L 0) —ug{O)]. (1.6n

and

16 (.9) . qllgey = Mo (1. 1)) (1.63)

Clearly its shows that if we use this in Eq. (1.63) we get

C.")(t: 0) = ug (f) .

is the solution of the cquation

H[o(t.q) -4l = 0 (1.66)

and

(r"')(t 1) =i (t) :

is therefore obviously the solution of the equation

H{G(tq) . ql,— =0 (1.67)

Tts implies that as the embedding parameter ¢ increases from 0 to 1. the sofution & (£.4j ol the

equation (1.67), varies from ug (£) to the final solution w (/).

15



Chapter 2

Heat transfer over an unsteady

stretching sheet

2.1 Introduction

This chapter deals the similarity solution of laminar flow and heat transfer due to an nunsteady
stretching surface. The governing non- linear partial differential equations ave trauslarmed to
non- linear ordinary differential equations using the similarity transformations. The system of
non-linear ordinary differential equations are solved numericatly using shooting method with
Runge-Kutta algorithm. The effects of various parameters on the velociiy and temperarnre
profiles are discussed through tables and graphs. This chapter is a review of the paper In

Elbashbeshy and Bazid [6).

2.2 Governing Equations

Consider. the two-dimmensional. unsteady fow of an incompressible viceons fhiid over an nosteady?
stretching sheet. The z-axis is taken along the direction of the sheet. while the y-axis i
perpendicular to it. At time ¢ = . the sheet is stretched with the velocity U, = br/1 — ot (
where b is stretching rate and ¢ is positive constant ). The surface temperature is 7 and the

ambient fluid temperature is T, where T., > T. The boundary laver equarions tor the flow

16



and energy are given as:

du de (.1

dr oy =)

Ju  Ou  Ju D s

et ! =y (2.2

di  Jr dy - dy* o
or 9T 9r 9 e

U—— + t— (2.3}

‘ - + - = &Xx——7F-
gt dx dy dy?
where u and » are the velocity components in the z- and y- axis directions. respectively. w7 is
kinematic viscosity. « is thermal diffusivity and T is the temperature of the fluicd.

The corresponding boundary conditions are

\ Y]

S U ()= =0 T =T.(,t) = To - at y 0, 5 1)
uw="U,{z1t) T ¢ 0, () =T, I/U—M)r] y {
u—0, T — Ty asy — cc. (2.5

where b. ¢ and ¢ are constants with b > 0, ¢ > Q and 4 > 0 (3¢ < 1) and borh b aud ¢ have

dimension time™!.

The continuity equation is satisfied by introducing a stream function 4 (1. iy)as
o M

U= ———, V= —~—. (2.6

dy’ ox

To simplify the flow equations. we use the following dimensionless quantities

IJ ]I[] ‘ \ 5 -

=Tyt Y \/(1—or S (=
T T . - ,)Jf-! =

9(1))—- 7:‘ 1. --jT;;T(lv_()/)'z (2 Q)

Using Bq. (2.7) and (2.8 ), Egs. (2.2) and (2.3} become

. I
fy'll + ff” . fl2 _ “1 ( fl a. SJIIU) —_ U (_)("

-1 ’ p; X .
Pré’ —2f0+ f0 —34 (36 +n8') = 0. {2.10)



and boundary conditions are

F=0 f =1 06=1a =1 {2.11)

[N
[N
-

fP——0, # ——0asy — £

where A = /b is the unsteadiness parameter and Pr = v/« is the Prandtl number.

It should be mentioned here that in the paper of Elbashbeshy and Bazid the sign of the term
2f'8 is positive in their energy equation due to the incorrect definition of AT =71 - T and
heﬂce an exact comparison is not possible. According to them AT =T, — [ = T}j’)_—,(l - ()‘/_‘1%:3
but the correct value is %%;(1 ~(5t)_73 - Due to this error. some phvsically unrealistic phienamaena
in the velocity and temperature fields are encountered for specific values of the unsteadiness
parameter. Mohamed Abd El-Aziz also mentioned this ervor in his paper [10%

)1
The skin-friction coeflicient Cy and the local Nusselt number Vi, are given by

@ P T :
5. Nup = ————r. {213
L2’ R (T — T) ‘

Cr =

where k,, is thermal conductivity. 7. is the shear stress at the wall and g, i~ the heao fhix al

wall, which are define as

T, =1 <@) ,and . = —k,, (g£> ) (211
ay y=0 ()y y=0

With the help of Egs. (2.7 - 2.8) and (2.14). Eq. (2.13) viclds

\r v - " -
\[/’,—;\j—g = --()’(”) 0r o/ Hr::r("f = f ((]} {_) ].‘);i

where and ., = xU,./v is the local Reynolds number.

2.3 Solution

To find the numerical solution. we use the most effective shooring method with fonreh order

Runge-Kutta integration scheme. The non-linear equations (2.9) and (2.10] with the houndary



conditions (2.11) and (2.12) are trausformed into a system of five first order differential equation-

as follows:

dfo _
dTl - fl:

L= o

dn

%% ==ffa+ ()2 + Af1 -+ 54nf

@b _
dn _617

Wy — Pr(2f,0— [0y + 3A0+ JAn6y) .

and the boundary conditions are

f(0)=0, 1 (0) =1, fi(o0) =0,

6(0) = 1, 6(c0) = 0.

Here fo = f(n) and 0p = # (1) . A boundary value problem is frst comverted into an initial
value problent by appropriately guessing the missing conditions fo(0) and 7 (0). The resultan
initial value problem is solved by shooting method for a set of parameters appearing in the

governing equations with a known values of fo(0) and 01(0).

2.4 Results and discussion

Figs. {2.1) — (2.4) are plotied in order to see the effects of the involving parameters an the
velocity and temperature profiles. The numerical values of the skin friction cocficient aud they

locai Nusselt number for different values of physical parameters are also given in Tablc 2 1.
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Table 2.1: Numerical values of —#"{0) and

=) for varions values of Prandtl tnnber

Pr and unsteadiness parameter /.

Pr\A 0 0.8 1. 2.4
—80) | 7)) | =) | =f7O) | ~60) | /70| =0 (| -7 (0)
0.01 | 0.0294284 | 1.0014 | 0.202712 | 1.26106 | 0.239185 | 1.37774 | 0.27583 | 1.58738
0.1 0.263474 | 1.0014 | 0.453578 | 1.26106 | 0.503033 | 1.37774 | 0.60478 | L.53738
1.0 1.33889 1.0014 | 1.67209 | 1.26106 | 1.81793 | 1.3v774 | 2.07817 | L.o3748
10.0 4.76411 1.0014 | 570491 | 1.26106 | 6.120t3 | 1.37774 | 6.83176 | 1.5874y

X
S

Fig. 2.1: Velocitv profile [ () against 3 for various vahies of A.
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Fig. 2.2: Temnperature profile #(n) against g for various values of .
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Fig. 2.3: Temperature profile A(y) against 4 for varions values of Pr
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Fig. 2.4: Variation of heat transfer coefficient —#(0) against Pr for diflevent values of A.

Table 1 gives the numerical values of the skin-friction coclficient - ["{0) and the local
Nusselt number —-#(0) for different values of Proand AL Beis feund theat the magniinde of
—6'(0) is increased by increasing the values of ’r, and the magnitude of - [7(0) also increases
for large values of A.

Fig. 2.1 shows the effects of an unsteadiness parameter 4 on the velocity component f*(1). 1t
is noted that the velocity decreases by increasing the values of A. The boundary laver thickuess
also decreases as A increases. Fig. 2.2 gives the variations of an unsteadiness parameter -1 on
the temperature fields 6(»n). Both the temperature and the thermal boundary laver tickness,
decrease for large values of A. The change in the temperature field 2(3;) for diiferent vaines of
Prandt] number Pr can be seen from Fig. 2.3. It is ohserved that the temperature decreases by
increasing the values of Pr. Tt is also noted that the thermal boundary laver thickness decreases
as the Prandt]l number Pr is increased. Fig. 2.4 shows the variations of the raie of heat transfor
at the wall —9'(0) verses Pr for various values of A. The magnitude of (61} ix inereased for

large values of an unsteadiness parameter A.
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Chapter 3

MHD stagnation slip flow over an
unsteady stretching surface in

porous medium

3.1 Introduction

This chapter investigates the heat transfer in a stagnation-point flow of MHD viscous fiuid over
an unsteady stretching sheet in a porous medium with slip condition. The non-linear partial’
differential equations govern the flow are transformed to a non-linear ordinary differential cqua-
tions using similarity transformations. The system of non-linear ordinary differential equations
is solved both numerically using shooting method with Runge-Kutta algorithm and analytically
using homotopy analysis method (HAM). The physical significance of the involving parameters
on the fow and remperature fields are discussed through sraphs and tables. The grapluoal
results are compared for boih solutions. A compatison of obtained resulis with the existing,
literature is also given and found in an excellent agrecnient. This chapter is an extension of the

work done by Elbashbeshy and Bazid [6].



3.2 Flow equations

We consider an unsteady. two-dimensional MHD stagnation poih ilow ol a viscons flnid in a
porous medium over an unsteady stretching sheet in the vegion y = . "The »oasis is taken
along the surface. while the y-axis is perpendicular 1o the surface. At time £ — 00 the suwilace
is stretched with the velocity U._(«x.t) along the z-axis. keeping the origin is fixed. It is also
assumed that the fluid is electrically conducting and the magnetic field B(1) is applied in the
y-direction. The induced magnetic field is neglected due to a small inagnetic Reynolds vuniber
assumption, where no external electric field is applied. The velocity of the [low outside the
boundary laver is U.(x.t) and the temperature at the surface is T.(e. £), where T, > T,
with T being the temperature of the ambient fiuid. Under these assumptions along with the

boundary layer approximations. the governing equations for the flow and cnergy arve given as:

Ju Ov
e =L

. 3.1
dr Jy (
Ou Ju ou  OU. oU. " a3 (k) 126
AL e Lt T 2 N, ) b — (L - 1) 8.9,
o o " Oy ot +U dx i V(')yz P (U =) k(L) ( ) (

arT N aT " arT 0°T (3.4

=t U b U = 0, 3.

at dx Ay oy’ ‘
where ¢ is the electrical conductivity of the fluid, ¢ is porosity of the nredium. avis the thermal

diffusivity, ¢ is the time and 7 is the temperature and k() is the permeability of the porons

medium. Here we assume k(t) and B(t) are of the forn

k) = a1 =) B0 = (40
where &y is the initial permeability and 13, is the constant maguetic field.
The relevant boundary conditions for the present problem are
w=U.(x.t) + N]u%, v=0,T="T.(c.t)+ D ar ar oy =0. (3.5)
dy ‘ Jy
u— Ulfrt), T—Tx as y— oo. {3.6)
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Dy = Dv/1 — ot is the thermal slip parameter, both are changed with time, and N, £ are the
initial values of velocity and thermal slip parameters, having dimensioun (velocity)™! and length
respectively. The no-slip condition can be obtained for N = 0 and 2 = 0. respectively,

We define the following similarity transformations

b R B . .
n=f~(1=68)"Fy, &= Vioe(l-61)2 (), (3.7)
v
T-T b2 (1 - dt) =
— T~ —_ 2
é 1 - T, — 1Ty = —— (3.8
(Il) T, — Ty w G 2, { |
and the stream function (x.y) is defined by v = dufdy and v = =&/, «uch that the

continuity equation (3.1} is antomatically satislied.

Using Eqs.(3.7) and (3.8) . the Egs. (3.2) and {3.3) become

2

7 ffr— A (f’ + %nf") + AL? (E — f’) - A (6 — [ Ae o =0, (3.9)

—1
Pr 9”-2f’9+f9’—§(39—}— nd'y. {3.10)

and corresponding boundary conditions are

f=0. flf=1+58f" 0=1+~0 at =0 {311}
ff—e #—=0 as y— oc. (3.1
where A = 4/b is the unsteadiness parameter. Pr = w//o is the Prandil aumber. ¢ d/h s

the ratio of the the external flow rate to the stretching rave. A1” == o Bj/ph is the magneric
parameter. A = v¢/k1b is porosity parameter. 8 = N vbr is the velocity slip parameter. ~ ==
D\/-ff is the thermal slip parameter and the primes indicate the differentiation with respect

to 7. It is worth mentioning that we can recovered the no-slip condition by taking 3 = 0 and

o
ot



B ;,

v = 0. It is also noted that if we take A/ = XA = ¢ = 3 = ~ = 0 then we ohtain the same

equations as in (2.9) and (2.10) with boundary conditions {2.11) and (2 12).

The skin-friction coefficient C'p and the local Nnsselt pumboer N, are piven by

T T

N e
oz NS L STy (3.1

Cy=

where ky, is thermal conductivity, 7, is the shear stress at the wall and ¢, v the heat flux af

Ou oT _
To =i — ,and q. = —kp, | — . (5.1
8y / y=o 94/ y=0

With the help of Eqs. (3.7 — 3.8) and (3.14). Eq. (3.13) viclds

wall. which are define as

\f T ’ ] - g, -
S~ H{0), or VR..Cp - 0], (3,151
v Fe,

where R., = 2U,. /v is the local Reynolds nimber.

3.3 Solution of the problem

3.3.1 Numerical solution

In this chapter the numerical solution is obtained by the saine scheme that is nsed in chiaprer
2. The non-linear Egs. (3.9) and (3.10) subject to houndary conditions (3.11) and {3.12) arer
transformed into a systew of five first order differential equations a= follows:

dio __
d_” - fl;

!
B=

Bo= [ frr (AP 4 AL S AN =M (= 1) = Ae— fi) = e =

dbq
d_,]—ﬂlr

%L = Pr <2fl€“ fgl—-!—%AQ—:- %A;)Ql)

and the boundary conditions are

J(0) =0, A(0)=1+8f(0). fi(cc) =c
B(0) = 1+ 78;(0), 8(co) = 0.



3.3.2 Homotopy analysis solution

For the series solutions of Eqs. (3.9) and (3.10) using homotopy anaiysis method (HAND. it is
straight forward that the velocity and the temperature fickds [ (g) and 7(y) ean be expressed

by the set. of base functions

{uk exp (—m})l E>0.n> 0} (3.16)
in the form
oxXk o0
S ) =adg+ > D an.nexp(—nm). (3.17)
n=0 k=0
20 o>
0(n) = Z Z bE 0 exp (—ny) . (313
n=0 k=0

where o, . and b¥,  are the coefficients. By rule of solution expressions of f(n) and By, with

the help of boundary condifions (3.11) and (3.12) one can choose fo (1) and g (1)

(1 —e)(1—e7)

foln) = e+ S (3.1
, e " .
Go () = T {3.20)
as the initial guess approximations of f(n) and #(n) and the auxiliary linear operatots
Lo(f) = Ef 4 (3.21)
! T dy T
d* , Y
Lol f) = f - I 13.99)
eIn?
which have the following properties
L;[C1+ Crexp(n) + Caexp(—n)] = 0. (13.23)
Lo [Caexp(n) + Csexp(—n)} = 0. (3.2)

o
~I



where C,. (1 =1 —5) are arbitrary constants. [ iy and fiyp denote the non-zero anxiliary

parameters then the zeroth-order deformation problems ave constricted as follows:

. 0 —a) s [Fra) — faln)] = any Ny | T o] (3.2
(1~ g) Lo [B(9) — 60 ()| = ahoNo [T Or:) B )] (3.26)
co g O L dPT(0.9) df(ecq)
F(0:9) =0, i =143 e e (3.97).
’F}(O,q):l-!— ig(]qu) a(oo,q):of (3.28)

where ¢ € {0, 1] is an embedding parameter and the noulinear operators N and A are

-7 PFug (oTma) | - d Tlrg) O ) U )
AR - AL ( B AL P
N [f{l/ (1)] on? an A on? ) 2 iy
+M? (e — M) 4+ A (e — M) 4 Ar 2, (3.29)
on an
e ~ -1 8A7J ‘ e (1. g 3 1 a0y )
Np [f (m: Q):9(77§Q)] =Pré —’-’fT(;q—)é'(mq)Tf(n 9) _éf’__) - -,1()(,, )= 5= ()/, d
; (4,30

For ¢ = 0 and g = 1, the above zeroth-order deformation Egs. (3.23) and (3.20} have the

solutions

Fordy=fom).  Forl) =/f(). (3.31)
5(7): DY =109 (1), }(r) 1) =10(y). (:3.32

Expanding f (1: ¢) aud € (n: q) in Taylor’s series with respect 1o g we have

Flrg)=fo(w) L Jo () ™. (3.33)
m=1

5 (7]; Q) = 90 (77) + Z ﬁm {’]) (]‘m; (if‘ !
m=1

[S@]
S
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where

1 0mf(’/§ q L ] (’)m‘é (ay: (])

f”l (n) = 1Ah,7r_) . Hm (”} == — A
! ()q Je! ,J,/m i

lg-0 [=0

(3.35)

Note that the zeroth-order deformation Zgs. (3.25) and (3.26} contain two auxiliary parame
ters fiy and Ag. The convergence of the series (3.25) and (3.26) depend on these parameters.
Assuming that Ay and hg are selected such that the above series are convergent at ¢ = 1. then

using Eqgs. (3.31) and (3.32). the series solutions are

Fa)=folm)+ > Im(), (3.36)

m=1

BN =00+ (). (3.30)

m=]
ey LA g . - = ;. . - -
Differcutiate the zeroth-order deformation equations {3.25Y and {3.26}, m times with respest to
q. then setting g = {). and finally dividing them by 2n!. we obtain the mih-order deformations

equations as

Ly [fon (1) = XSt (D] = By RE, (). (3.3%)
Lo B (1) — XonBm—r ()] = RoRiy, (0). (3.39)
fm (0) =0, f1,(0)=08fn(0), fm(o)=0. (3.40)
O (0) = ~8,, (0) . B, (00) = 0. (.01

where

y ’ I 4 2 ! -
'}\‘".7[71 (77) = .fll:lfl - (.[:nl - T;Iff':)'e.-—l> - ""/2.]!;)—1 ’\,/'uul

m—1

+ Z [fm—l_kf;i’ - ;n—l—kfl:'] - (1 - Xm)("‘[.z(' + Ae + e (2): (:{'42]
k=0

-1 3 ) m-1 o 7
R?n (77) =Pr {rlnfl - §A‘9m—1 - A%H{m—l + L [fnr—l—k()k -2 171—1—!.-0-’-'] : (35'3,}'
P4 P ’



0. m< L
X =7 {;_l'”'
1. m > 1

[f we suppose f} (9} and 8}, () as the special solutions of Eqs. (3.38) and (3.39) then fron

4
" Eqgs. (3.38) and (3.39). the general solutions are given by
S (1) = [, () + C1 + Crexp (1) 4 Czexp (—) (3.-13)
B (n) = Oy (1) -+ Csexp () + Csexp (—4) . (3.16)
where the integral constants C;, {i = 1 — 5) are determined fromn the boundary conditions (3.10}
and (3.41) as
Hf,j,(r,) o l;j Hfl%l'(n)g
N =0 " any ;1 =0
Co=Cs=0, Cz3= 1= _ = 3.47]
. p=Cs=0 (3 T (3.47)
» ()
Oy (e > 2522
Cl = 4()3 - f1‘;z (O) : C~3 = - [ - .
In this way, it is easy to solve the linear non-homogeneous Eqs. {3.33) and (3.39) by using
Mathematica one after the other in the order me = 1.2, 3.......

3.3.3 Convergence of the HAM solution

As proved bv Liao [12] that. as long as a solution series given by the hometopy analysis method
converge, it must be one of the solutions. Therefore, it is important to ensure that the solutions
series are convergent. The series solutions (3.36) and (3.37) contain the non-zero anxiliary
parameters iy and hg. which can be chosen properly by plotting the so-called fi-cneves ro
ensure the convergence of the solutions series and rave of approximation of the HAN soluiion,
To see the range for admissible values of hi; and hy. A-curves of f7(0) and 6/{0) ave shown in Fia.
3.1, for 20th-order of approximation when A =02 =X =¢€. M/ =00 =Prand ~ =7 =~ 02
From this Fig. it can be seen that h-curves have a parallel lines segiment thai correspond to
the regions —1.1 < Ay < -0.2 and —1.15 < hp < —0.2, respectively. Table 1 s made to ~how
the convergence and comparison of HAM solution for various order of approximations with

numerical results when A =02=A=¢ M =05=FPrand 6 =v=0.2.
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Fig. 3.1: The h-curves of f7{0) and #'(0) at the 20t4 order of approximation: filled circles e

the numerical values with A/ =05=Prand A=\N=c=~=d =02

Table 3.1: Convergence and comparison of HAM solution for different order of approxi-

mation with numerical results when M =05 =Prand A=A =¢=~+=3 =02

Order of approximations | — f“(0) —&'(0)

1 0.815741 | 0.81G454
5 0.834424 | 0.769523
9 0.834491 (_1.7663;
15 0.83344%1 § 0.766005
20 0.834441 tl.?(’if)‘,)ST—
23 0.834491 | 0.763955
25 0.834491 | 0.765935
30 (.834491 | 0.765985

Numerical results 0.834519 0.765986_‘
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3.4 Results and discussion

The svstemn of cquations (3.9) and {3.10) with boundary couditions £3.11) and {3.12} has heen
solved both analvtically using honmotopy analysis method (HAN) and munerically using shoot-
ing method [26] with Runge-Kutta algorithm. Figs. (3.2) ~(3.17) are plotted in order to analyze
the influences of the various involving physical parameters, for example. @iy nisteadiness para-,
meter A, the magnetic parameter A, the porosity parameter A, the velocity ship parameter 4
the ratio of external flow rate to the stretching rate ¢, the Prandti number Proand the thermal
ship parameter v on the velocity f'(1) and temperature #{z;) distributions. The mmericai values
of the skin-friction coefficient — f”(0) and the rate of heat transfer at the wall { the local Nusselr

number ) —& (0} for various values of parameters are given in Tables (3.2} — (3.4).

i



Table 3.2: Numerical values of skin friction coefficient — f7(0) and the local Nusselt nunmber

—0'(0) for several values of A. Al and A with 5 = ¢ = 0.2 and Pr =« =00

—f(0) —6'(0)
Al M A HANM | Numerical | HANl | Numerical

0.2 10505060449 | 0.60449 | 0.83901 0.83901

0.8 0.64108 | 0.64109 | 0.95431 0.95425

1.2 0.66376 { 0.66376 1.0201 1.0201

2.0 0.70545 | 0.70545 1.1330 1.1330

08| 0 0.62073 | 0.62075 | 0.9965H7 0.95651
0.5 0.64108 | 0.64109 [ 0.95431 0.95425
1.0 0.69538 1 0.69548 1 0.94347 0918141
1.5 0.76970 § 0.76970 ¢ 0.94049 J.91099 l
2.0 0.85193 1 0.85193 | 0.93334 0.933341

051 0 |0.59900 ; 0.58904 | 0.95904 0.92900

0.5 ] 064108 | 0.64109 | 0.95430 | 0.95425

1.0 | 0.67827 | 0.67829 | 0.95028 | 0.95021

1.5 0.71165 | 0.71165 | 0.94679 0.94679

2.0 0.74194 { 0.74195 | 0.94372 0.94370




Table 3.3: Numerical values of skin friction coefficient - f7(0) and the local Nusselt nuinber

—'(0) for several values of ¢ and § with Al = 0.2 = A

e |31 A=038 =172 A=20
HAAI Numerical HANMN! Numerical TLA N Numerical
—f1O) —6"(0) —f1(O) —6'(0) —f"(0) —6(0) —f"(0) —(O) —[T(O) (O (0} -6 (V)
0 | 0.9 1.0176| 0.8710] 1.0176| 0.8716; 1.0865] 0.9470 1.0865| 0.9473| 1.2059] 1.0724 1.2059 1.0726
0.5 0.5980{ 0.9591| 0.5981 | 0.9590 0.6238] 1.0240] 0.6238| 1.0240 0.6707] 1.1357 0.6709] | I:;:’._T
1.0 0 1.0476) O 1.04720 0 1.1029 0 1.1025 0 1.2013] 0 12014
1.5 0.7305| 1.1300 0.7305| 1.1304] 0.7479| 1.1781} 0.7479} 1.1730] 0.7304} 1.2653 O.TS[); -»-I_,-“_-’('i(j#T
2.0 1.5652| 1.2057 1.5652 | 1.2056| 1.5953| 1.2483 1.59531 1.2480] 1.653153{ 1.3264 165231 1.3269
0.3 0 0.8050 | 0.9831] 0.8051| 0.9831) 0.8493 | 1.0167] 1.8498 1 1.04G1] 0.9345 P50 0347 1 156!
0.5 0.4351| 0.9386] 0.4351] 0.9386| 0.4491| 1.0052 §.4491] 1.0050] 047441 11195 047151 1 ‘1!!_6
1 | 0.3010| 0.9206] 0.3010| 0.9201] 0.3081 | 0.9389) 0.3030 ().f)Sbf)“fnJ;’;’l].'i _I}-[_)()l] U.:’.‘»j‘i‘»}; _l—"}l“)tt\l
1.3 0.2307 | 0.9106] 0.2307 0.9106| 0.2349| 0.9801] 0.2347} 0.9301 0.2421] 1.0989 0.2422 I.(l!);T
2.0 0.1871| 0.9043] 0.1872| 0.9041] 0.1900| 0.9746; 4.1900} 0.9746 0.1947 l.(JS)‘-I(SilfJ.IEIIS l.('i!)—'lf,l%
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Table 3.4: Numericai values of the local Nusselt number —#(0) for several values of -1 F

and vy with M = A =8=02and ¢ = 0.5

Pr - A=08 A=172
—0'(0) —-0'()
HAM | Numerical | HAAl | Numerical
01| 0.2 | 0.46416 | 0.46410 | 0.50277 | 0.50271
0.3 0.76908 { 0.76901 [ 0.82519 | 0.82511
0.7 1.1024 1.1021 1.1729 1.1724
1.0 1.2700 1.2700 1.3462 1.3453
1.5 1.4791 1.4761 15610 1.5604
2.0 1.6384 1.6315 1.7239 1.7211
3.0 1.8761 1.8701 1.9653 1.9617
5.0 2.1916 2.1901 22834 2.2801
071 0 1.4143 1.4149 1.5324 1.5329
0.5 | 0.82844 | 0.82854 | 0.86763 | 0.86790
1.0 | 0.58579 { 0.58386 | 0.60512 | 0.60526
1.5 [ 0.45309 | 0.45317 | 0.46456 | 0.46461
2.0 [ 0.36940 | 0.36983 | 0.37699 | 0.376%9
3.0 | 0.26975 1 0.26979 | 0.27378 | 0.27354
5.0 | 017522 ¢+ 0.17584 | 0.17691 0.17613
10.0 1 0.09339 § 0.09339 | 0.09387 1 0.003%7
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Fig. 3.2: The velocity profile f (1) verses n for various values of nusteadiness parameter A
dashed lines are numerical solution and filled circle are HAN sohition at 12-th order of appro.

with M =02=0and A=0.1=¢
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Fig. 3.9: The temperature profile §(7)} verses 5 for various values of magnetic parameter A/
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Table 3.2 shows the analytical and numerical values of the skin-lriction cocfiicient — /7))
and the local Nusselt number —# (0} for varions values of A, AL and N when v = 4= 02 and
Pr=¢ = 0.5 1t is noted that the magnitndes of —f7/0) and =20} increase for farse valnes
of A, We can also be see from this Table that the magnitudes of the shear stress at the wall
—f"(0) increase by increasing the values of M and A but the rate of heat transfer at the wali
decrease by increasing the values of M and A. The numerical valies of —f”(0) and = (0} for
several values of €, # and A is given in Table 3.3. It is found that for fixed values of ¢ and
G, the magnitude of — f”(0) and —6(0) increase by increasing A. [t 1s further seen tha the
magnitude of the skin-friction coefficient —f”{0) decreases for e < 1 and increases for ¢ > |
for fixed values of A and 8. On thé other hand. the magnitude of —["(0) decreases as the slip
parameter 3 increases. However. the rate of heat transfer at the wall —¢'(0) increases for larpe
values f)f ¢. where as it decreases by increasing the vahies of 3. Table 3.4 is prepared to show the
numierical values of the lacal Nusselt number —#(0) for diiferent valnes of Pr.~ and A4 when
A=M=73=0.2and ¢ =0.1. It is observed that for {ixed values of 4, 1he mapnitnde of the
local Nusselt number increases (decreases) for large values of Pr (7). It is also worth-inentoning
observation from the Tables that both solutious are in good agreement.

Fig. 3.2 shows the effects of an unsteadiness parameter A on the velacity component f'(n)
when M = 0.2 = 8 and A = 0.1 = e. Both the velocity and the boundary layer thickness are
decreased as an unsteadiness parameter A increases. Fig. 3.3 elncidates the influence of the
magnetic parameter Af on the velocity f'(n) when 4 = 0.2 = ¢ and A = 0.1 = ¢ It is noied
from this Fig. that the velocity decreases by increasing the values ol magnetic paramcter A
This is because for the present problem the magnetic force acts as a resistance to the flow. The
boundary layver thickness is also decreased as M inereases. The change in the velociiy field f/{y)
for different values of porosity paraineter A can be seen in Fig. 3.1 1t is found than the velociy
f'(n) is a decreasing function of A. The boundary laver thickness is decrensed for farge values
of A Fig. 3.5 depicts the variations of the velocity slip parameter & on the velociiv component
f'(n) when € = 0.1. Tt is observed that the velocity is decreased bt increasing the values of the
velocity slip parameter 8. Tt is also noted that for g = 0 (no-slip condition). the vahied of [/
is equal to 1, which shows the standard condition for stretching How at 13 = 0. Fig. 3.6 shows?

the effects of the ratio of the cxternal flow rate ro the stretching rate € on the velocity field

1



F{): solid lines ( for no-slip condition 3 = 0 ) and dashed lines (for slip condition 8 = 0.2).
respectively. It is found that the velocity f(7) is increased for laree values of ¢ for both 4 =0,
£ = 0.2 but this change in the velocity in case of velocity slip parameter (7 = 10 2) is smaller
for e << 1 and larger for ¢ > 1 near the wall when compared with the case of no-zshp condition
(8=0).

Fig. 3.7 gives the influences of an unsteadiness parameter A on the temperature disiribution
6(7/} when thermal slip parameter v = 0.1. Both the temperature profile and ihe therinal
boundary layer thickness are decreased as A increases. [Iig. 3.8 shows the change in the
temperature #(n) for the several values of Prandtl nuinber Pr: solid lines (for no-thermal slip 5 =
0) and dashed lines (for thermal slip + = 0.1). It can be seen from this Fig. that the temperature
decreases by increasing the values of Pr. The thenmal houndary laver thickness also decreases
for large values of Prandtl munber. Fig. 3.9 gives the variations in the temiperature distribution
B(1) for various values of a magnetic paramerer M. One can see that the temperature 15 an
increasing function of a magnetic parameter A, and the thermal bonndary laver thickness also
increases as M is increased. Fig. 3.10 presents the eifects of a porosity parameter A an the
temperature distribution #. 1t is found from this Fig. that both the temperasure and ihe therinal
boundary layer thickness are increasing function of A. It is also noticed from these Figs (3.4
and 3.10) that for large values of Af and A, the change in temperature is small. this i= because
both parameters have no influence in the energy equation directly. The temperature ficld 7y}
for several values of thermal slip parameter  is shown in Fig. 3.11. 1t is observed that as the
thermal slip parameter increases, less heat is transformed from the sheet 1o the fluid. therefore

the temperature 8(7) decreases by increasing the values of the thermal slip paramerer ~.
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