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Preface

The boundar}’ layer flow and heal Iransler due to a conlinuous slrclching suri'ace arc iiniX)Jiani 

from theoretical as well as practical point of view because of their wide applications in polymer 

technology and engineering processes. In particular, in the extrusion o f a polymer in a melt* 

spinning process, the extrudate from the die is generally drawn and simultaneously stretched into 

a thin sheet, the boundar>' layer along material handling conveyers, the aerodynamic extrusion of' 

plastic sheets, glass blowing, paper production, the boundary layer along a liquid Him in the 

condensation process and many others. After the pioneering work o f Sakiadis [1. 2]. various 

aspects of the problem have been discussed by many researchers. Crane [3 J discussed the (low of 

a viscous fluid over a linearly stretching surface. However, to the best o f our knowledge, (irsi 

Wang [4] has been studied the flow o f liquid film on an unsteady strctching sheet. Andersson et 

al. [5] investigated the heat transfer in a liquid film over an unsteady stretching .sheet. Recently. 

Elbashbeshy and Bazid [6] have presented the similarity solution of boundary layer t1ow and 

heat transfer due to an unsteady stretching sheet. After the work of [6|. man\ authors have 

investigated various aspects of this problem and obtained similarity solution, e.g. j7-l i |. I la\ ing 

in mind all the stated motivations above, the present dissertation is arranged as follow;

Chapter one aims to present some basic defmitions and flow  ̂equations. Concepts of boundary 

flow, the homotopy analysis method and shooting method also included.

Chapter two deals the boundary layer flow and heat transfer due to an unsteady stretching sheet. 

The governing time-dependent equations are transformed to ordinary differential equati(^ns using 

similarity transformations. The system of ordinary differential equations is solved numerically 

using shooting method with Runge-Kutta scheme. The eflects of various governing parameters 

on the velocity and temperature fields arc studied. In fact this chapter is a review of'the work 

done by Elbashbeshy and Bazid [6].

Chapter three aims to extend the work of [6J into four directions: (i) to consider the magnetic 

field (ii) to analyze the flow in a porous medium (iii) to consider the stagnation'poinl flow and 

(iv) to include the effects o f slip condition. The governing non-linear partial differential 

equations are converted into non-linear ordinar>’ differential equations by employing si mi lari tv 

transformations. This system has been solved both analytically using homotopy analysis method 

(HAM) and numerically using shooting method with Runge-Kutta scheme. The influences of 

sundry parameters on the dimensionless velocity and temperature fields arc shown through 

graphs. The numerical values o f skin-friction coefficient and local Nusselt number for various 

parameters are also given in tabular form. The comparison o f both solutions are given and found 

in excellent agreement.
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Chapter 1

Basic definitions and equations

The aiiji of this chapter is to provide some basic defiiiir.ions and govtn niiig o q na i iuns wliirh arc 

used to discuss the motion of fluid. The basic conce]:)rs of the >ohii ion tccluiiqiirs are also iii\ eti.

1.1 Flow

A material or substance goes under deformation when certain forces act upon it. if i.he de(or 

mation exceed continuously with out hmit. then the phenomena is known as How.

1.2 Fluid

A fiuid is a material/substance that continuously deforms (flows) under an applied sheai' (lait- 

gential) stress.

1.3 Types of Flow

1.3.1 Uniform  flow

A flow in w^hich the velocity of fluid particles are same at each poini.

1.3.2 Non-uniform flow

A flow' in which the velocity of fluid particles are difi’erent. at difi’ei-enl; j.)oiiU„



1.3.3 Steady flow

It is a flow iii whicli fluid properties does not dopoiid t')n the rijiio ■/'. Ma( lioriia: irall v. ;t i- 

defined as

where ^ is fluid property.

1.3.4 Unsteady flow

It is a flow ill which fluid properties depeud on the time 'i'. i.e..

^ ^ - 0. il.;!) 
dl, '

w!}ore ^ is any fluid property.

1.3.5 Compressible flow

A flow in which the density of the fluid is not constant, is called coni|)ressibIe flow, ft i<̂ df-notrd 

by symbol "p'. Mathematically, it is given by

V

1.3.6 Incompressible flow

A flow in which the density of the fluid is constant rhi'onghoui ihi' fltjw is caflrd ijici)iii[),-csHibl(’ 

flow.

1.4 Classification of fluids

There are two main types of fluids.

(i) Ideal fluids

(ii) Real fluids



(i) Ideal fluids

A fluid which has zero \’iscosi1v is called an ideal fiuiri. i.e. a Hnid in wln'cii ihc-ie is lio Irifiiitiii. 

All ideal fluids arc inconipressil^le. Mineial water is an exanipic o! a)i id^’al Ilnid.

(ii) Real fluids

A Huid for which the viscosity is not equal to zero is known as real Hnid.

/ i / o .  ( 1-0 *

Real fluids are also known as viscous fluids. Real fluids are further divided into iwo main 

classes.

(a) Newtonian fluids

All the fluids which satisfy the Newton's law of viscosity an' caihxl Newioiiian tinids. 1 !h 

Newtonian’s law of viscosity is statefi as ” shear stress is direct ly and lincarK piOfKjn ional ro 

the rate of deformation". Mathematically, it is stated as

(  d'u
Txy ~

\dy
(l.o)

olwhere /i is absolute viscosity- r̂ -y is shear stress and dufdy is the shear rate. Fxainp!<‘s 

Newtonian fluids are water, air. gasoline etc.

(b) Non-Newtonian fluids

All fluids which do not satisfy the Newton's law of viscosity art’ callpfl non-Nf’winjiiaii fhnds. 

Such types ol’ fluids obey the i)Ower law model, in which shear >ti es  ̂ is d iifc ilv  ijnt uon-iiiuvn Iv 

proportional to the rate of deformation. Mathemat ically,

f  du \
Tj.y iX

\ ^yj
n /  i ■ \ \ -ti)

, f d u Y   ̂.
Tiy =  k ~  . ( 1 . < )V (iy y



where n is the flow behavior index and k is the coirsisiency index. E.\ai)i|.̂ les of Non-Ni’wtoiiian 

fluids are shampoo, gel. soap and blood err. "1 ho above equarion can b(' re\vi ii;ten in i fie forio

/.
(ill ”  ̂ (b I  ̂(!n

fly (iy

The coefficient i f  — k \du/dy\̂   ̂ is called as the apparent, viscosiiy.

1.5 Miscellaneous

1.5.1 Porous m edium

A porous medium is a material containing pores. The pores are typically filled willi a Hutd lik<‘ 

liquid or gas. The skeletal material is usually a sohd. but structures hke foams are analyzeti 

using concept of porous media. A porous medium is characterized l)y irs j^orosity. Many natnra! 

substances like rocks, soil, boiies. wood and man mad(;; material such as ceincrns .'ue rtjri.-̂ id.M- 

as porous media. Porous is that i vpeof medium of flow in which \v(' snciioD .uh! itiirctiw!! 

measured.

A porous medium has many practical applications in science and engineeiing hke filtraiion. 

petroleum engineering,, geology and different branches of mechanics.

1.5.2 Boundary layer equations

A major contribution to the study of fluid mechanics v̂ 'as initialed 1̂ . Prandi! in rfio year 190 !. 

He described to classify the essence and influence of viscosity in fhjws at high Heynolds tiunibcrs 

and he showed how the Navier-Stokes equations could be simplified to provide apiiroximai o 

sohitions under this situation. A l)Oun<iary laypr How deals with tliat portion of a fluid flow, 

near a solid surface, where sheai- strt^sses are of signihcancrs and the in viscid fiow as'.iiuii)t it.ui 

is not. a reliable assumption. A solid surface has inteiaction with a vi.^cons fluid ilow . This is 

due to the no-slip condition which is a physical reciuirernem. that the fluid and solid ha\<.' equal 

velocities at their irsterface. Therefore a fluid flow is retarded by a fixed solid siuface and a 

finite slow'-nioving boundar}' layer is formed. A requirement that the boundar\- la\er 1̂ e tiun is 

for the Reynolds number of the body to be large, i.e. 10^ or greater. Under thp said condition'^.



the flow outside the boundary layer is iai'gnly inviscid and play- t lie role of a drivin<>: niec hMiiisiii 

for the layer.

The discovery of iho boundary layer equations can Ijc con' îfinrf^fl as one ol lu' :nor<' im

portant advances in fluids. The use of an order of majniirude analysis rpsults in ! iif* c!,ovf'rriift;i 

Navier-Stokes equations of viscous fluid flow to be inunensely sinii)lili('d witlun the bonndary 

layer. Indeed, the partial differential equations (PDEs) becouies parabolic. This greatly en

hances the solution procedure for the equations. The flow is divided into an invi.scid portion 

(which is easy to solve by a number of approaches) aud the boundary layer (wliich is j’tnerni'fl 

by an easier to solve PDE). Navier-Stokes equations for an incompressible t wo-dimensionai flow 

are

dn dii I dp , f  d-'U  ̂ 0-v\
u---h u—- — --—— j- ( l . <

f i . 10:

dx ‘ dy p Ox ' V Ox- ' dy-

dv dv  ̂ dp , (

dx ' dy {) dy ' \ dxr dy~

^  + ^  =  0.
dx dy

In above expressions u is the kinematic viscosity, p is the densily of the fluid, p is th<' pi<‘s~;int'. x 

and y are the horizontal and vertical coordinates and a and v the volocii.y con)[)oncni.-- paralifJ 

to X and y axes. A wall is considered y — 0. The non-dimensional quantities are defined as
/

X y — " ,  u = V = 7 7  — . p — —77̂ - ( b l J i
fy   ̂ U ‘ pU-

Here L indicates the horizontal length scale and (̂’ 1 the l>oundary layei' thickness, fx]iiaiions 

( i . 9 ) to ( 1 .1 1 ) in non-dimensional variables are

^du* dv^ d p *  u d~ii‘ u f  h\ d~n 
11^-—  -K r  + ’

dx* d]j" dx* ' Ij L d:i•*- 1/ L \ S \ J uy

^dv* ^dv* ( L\~ d p'" u f)-?’* u (  f. \' d-v'

dx* dy* ( h ’" UL dx*'^ ' i 'L  \f)ij dy"'^

dv' rx 1 1 -
— + (l.l-)i 
dx’ dy*



in which the Revnold number is writ.ten as

R =
UL

The inertial and viscous forces are of tfie same oi der and honcn

= 0 (1)

or

Si =  O .

Dropping asterisks and utilizing abo^'e equation one o)-)tains

diJ du dp  ̂ 1 d^v ^

{1.18)

For R ^  oo vve have

J f dv dv\
—  I ?/—  f
R. \ dx Oy J

Op  ̂ \ f  d~ v ()~v

Oy ‘ R^ dy '

dv Ov

du dii dp d~v

ox ay ox oy-

-S - -
dti Ov

- 0 .
O.r Oij

in which l:̂ q. (1.23) shows that pressure is constant acioss the houiKlarv hTver. !ii dinieiisioi!;i 

form. Eqs. (1.22) to (1.24) become

du du 1 dp d~u

ox oy f) ax oy-
n.20)

pdy



1.5.3 Stagnation point

The boimdary layer has the point in the How held where the sireaitiliiics oi tlie (hiid lakc^ 

different directions around that point, that point is called s(agnatiori ]K)ini. At si,a';nat ion 

point the local velocity of the fluid is zero.

1.5.4 Slip condition

If the velocity of the fluid in contact with the boundary of the surface is not same as that of 

boundary, we use slip condition. The difTerence of the velocities between fiuifl and l)ouudary 

may have different, relations like linear, quadratic. cul>ic. parabohc. li\])ei bolic et.( .

1.5.5 Maxwell’s equations

Maxwell's equations are the set of four equations which relate the eU'ct.i ir ami inai^iu'lic field 

to their sources, charge density and current density. Individually, these equations are ktuiwri 

as Gauss low. Gauss's law for magnetis7n, Faraday law of induction and Anipcir. s lair- imtli 

Maxwell's correction. These equations are described as

V , E = ~ .  (1.-2S)
0̂

V . B  =  0,

V  X E -  (1.30!

db:
V  X B J -I-/iQro . ( I . /. 1 I

In the above equaticms eg permittivity of the free space also cailed elei iiic  ronsian:;

is the permeability of free space which is also called jnagnetic constant, p is the total charge 

density and J  is the total current density. The total magnetic H<'kl is H . {li(\ '■ b), when: 

is induced magnetic field. By Ohm's law in generaUzed foi'm we have

J = f 7 { E + V  X B) , (1,32)



where a  is the electric conductivity of the fluid. Tn the pre.-ent case* there is no a])j^!ied ^^locirir 

field; also the induced magnetic field is neglected due to t he assuni|)t ion of!o\v nuignntir Reynold 

innnber. i ’herefore. the l.orcntz foice in '.he direciion uf iht’ flow !h'< u!!k;s

(J X B) = - o B Iv .  (

where is the applied magnetic field and V is tiie velocity.

1.6 Governing Equations

1.6.1 Equation of continuity

The mathematical relation of cojiservation of mass for fluids is known as eqnatifMi of rorii.iniiitv. 

ft has the following form

^ 7 -i-V. (,,V) =  0 ,

and for aji incompressible fluid it reduces to

V.V = 0.

1.6.2 Equation of m otion

The motion of fluid is governed by law of conservation of momentum. The aiij^ilicatioti oi this 

law to an arbitrary control volume in flowing fluid yield the following equation ronutionly known 

an equation of motion.

' dl

In above equation T is Cauchv stress tensor and h is bodv force pej- unit ina-'S.

10



1.6.3 Energy equation

Energy in a system may rake on various I'ornis (e.g. kinetic, potenhai. lit-ai. li'^iit). MaihtMnat- 

icai form of energy equation is dc’scribed as

DO
/96-p—  ^  T • I. - V • q, (1 .-if))

in which

L - V V ,  Cl.37)

Energy equation also represents the 'Law of Conservation of Energy'.

1.7 Solution techniques

1.7.1 Runge-K iitta M ethod

There are many different sciietnes for solving initial value problems relating in ordiiui;y

ential equations nuniericaily. but due to highest, ordei of accuracy i.e. of Uf-1) we ))rcfcr !o us<

the Rungo-Kutta method.

The genera] equation of second order of initial value problem can be v.-riiu^n

rf.r “ ' '' ' dx ̂

subject to initial conditions

// (-ro) ^  m-. ~  (’■ ( ! )
fix

In order to solve the j^roblem . we need ro com i’rt s(’coii<1 oxler iniiial \Mlne jifoblc'in : h'. 

system of first order initial value problem by defining

do'

so we will have

11



wilh initial conditions

(1.42)

Now the Runge-Kutta method of order -\ for tiio above system of lirst order difi'eiennai \-a\>. 

(1.40) and (1.41) is defined as

and

where

-n+l — -T1 + r  (^1 -1" 2^2 + 2 /;j + 4̂ ) •
o

k[ ~  f ly  {'i-'n- fjri ■< "f( ) ■ !hi - 'II ) ■ ^

; i f  I I f f  •k2 h g  - r  -  . 2/7, -r  — : - j  . I2  n j  t- ^ ,  l/u -r  -r j

k> h\ , ii , /.'i , h\ 
^  h g  X n  +  - ■ . y n +  n j  :i;„ -h ~ .,y n  "r —  ■ -r, -r  —

V 2  2 2 /  2 1}

k  ̂ — hg {xn + />,; /y,, + A:3 ; 5: 1̂ "r I3) . U — h j  4- h, ■- Ẑ )

wliere h is uniform step size defined as

fi -
X',1 X'O 

n

f !

(1.44)

( I .101 

( i.4(i)

(1.47) 

f ! .4̂ 1

(i.40)

n is number of step. ^

1.7.2 Shooting M ethod

Shooting method is an iterative technique which is ver\' |ji)pul;n ior ilie two poini^ !)(juiiv!<ir\ 

vahie problems, lit this technique, rhe boundary value problem o! hi<;hei' order is iir-̂ i iO(htr(^i 

to the system of ftrst order initial value problem by letting the jnissing condition, 'hlieu ou! 

goal is to find the solution of initial value problem instea<l of gi\'en boundary value j)rol4em 

directly. For this purpose, any scheme for the solution of initial value problem can b(' us(m1. 

Runge-Kutta method of order 4 is used for this purpose. For illustration, lets rousid('r a s(x ottd

12



dx

with boundary conditions

.y(0)-0,. y{L) =  A].̂  (1.51}

where /  is arbitrary function and data is prescribed at :i: - 0 and .c — L. The same dilh^retitia! 

equation describes an initial value problem if data is prescribed as

y{0) ^ 0., y'{0) =  s. ( 1.0 -2 }

To solve the boundary value problem we reduce it into a system of two first order difl'eieinial 

equations as

(It (l.r

with initial conditions

y(0 ) - 0 , y '(0 ) ^  f l.o l)

where ‘s' denotes the missing initial conditions which will be assigned an initial valu(\ Next 

we will find the actual value of 's' such that the solution of Eq. (1.50] subject- lo tiie initial 

conditions (1.52) satisfies the boundary conditions (1-51). in other words, if t.lie sointions n| ihc 

initial value problems are denoted by y{x.s) and u{x.s). one searches (oi' the value o( > such 

that

y{L ,s) - A l ^  0 — (p{s) (say). ( 1.55)

Here Newton's formula can be used t.o find the value of '**' as we are to choose a ii.)Ots o{ liueai-

algebraic Eq. (1,53) . which is given as

order boundary value problem

which implies that

^(n+i) _  ,.(«) _  -  A}

13



To find the derivative of y with respect to 's' \:x\s. (i.o^^) arul are difh'i<*)itiaii“d wiili

respect to 's' and we get

U .: .
(i:i a.r, ay ov

where

U =  f 1-591
as os

and initial conditions take tiie foUowing form

r ( 0 ) - 0 , =  ( 1 .0 0 ^

1.7.3 Homotopy Analysis M ethod (H A M )

The homotopy analysis rnelhod (HAM) is developed by Liao [12. Ki in 1992. li is a powerful 

analytical technique to solve the non-linear boundary value, problems. .Vtany re>.earche.> >1 1 -25 

have been applied this techniqnt' successfnlly to solvi* ihp lion-lineMr etjuai ion-. I !ei( wr . 

simple example to solve the application of honiovopy analytical mcihod ( 11.AM).

The idea of the homotopy is very simple and siraightforwaid. For e.Kanipie. ctJiisider a 

differential equation

A f[u{t)]^Q , (l.Ui'l

where j\f is a nonlinear operator, t denotes the time, and u(t) is an unknown variable. In 

the initial step wo suppose uo{t) a.s an initial approximation of i/(/.) and C as auxi!i;ir\ lineni 

operator with the property

£ ( / )  =  0 . wh(.n /  -  (I. (1 .{i2 )

We then construct the zeroth ordei' deformation equation a.s

H  [<y {t, g): = (1 - q) C[6 (i, q) - t/o(Ol + P)\\

where q G [0 , 1] is an embedding parameter and 6 {t,q) is a function of t and q ~ I. we have

14



H  [6 (t. q) . (l.(i 1'

anri

-  ,V X / .. l) ] :  (1.03)

Clear]V its shows that if we use this in Eq. (1.63) we get

©(^,0) =  wo ( )̂ •

is the solution of the equation

and

0(t,l) = ».(t):
is therefore obviously the solution of the equation

Its implies that as the embedding parameter q increases from 0 to 1. liie soiiitioii of tin’

equation (1.67). varies from «o (0  the final solution (/ (/).
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Chapter 2

Heat transfer over an unsteady 

stretching sheet

2.1 Introduction

This chapter deals the similarity solution of laminar liow and heat; transfei- duf !<) aii iinsioadv 

stretching surface. The governing' non- linear partia) differential equations aie tlansfDrnied lo 

non- linear ordinar}' differential equations using the similarity transfortnation.s. Tlin system of 

non-linear ordinary differential equations are solved nunieiically usiiig slioot.ing metlioci witii 

Runge-Kutta algorithm. The effects of various parameters on the velocii.y and temperariire 

profiles are discussed through tables and graphs. This chapter is review of t!u' ])ap(M h\ 

Elbashbeshy and Bazid [6 ].

2.2 Governing Equations

Consider, the two-dimensional, unsteady flow of an incomprc'ssible viscous fluid over an nnsiead v 

stretching sheet. The x-axis is taken along the direction of the sheet, while tlio //-a.xis is 

perpendicular to it. At time £ =  0. the sheet is stretched with the velocity =  h:r/\ — ()t ( 

where b is stretching rate and 6 is positive constant ). T!ie surface femperalute is and !h<’ 

ambient fluid temperature is Tqc; where T,, > T̂ o- The boundary layer equations for the How

16



and enersv are siven as:

Ou _ Or

d J :"7 ry ^ °-

Ou clii di( c)~ II
---hw—  V--=U  , .
di ax ay (Jy-

o r  OT o r  o~T 

a  ■

wliere u and v are the velocity components in the x- and y- axis direc tions. res])ect i\ r;iy. i> is 

kinematic viscosity, a  is thermal diffusivity and T  is the temperature of the fhiid.

The corresponding boundaiy conditions are

1, =  £ /„ (* ,()  =  . f  =  0 , T =  =  roc - TT-'— nr al V -  «• (21)
! —()/.

V —/ 0; T —> 7’̂  as y oo. (2..j)

whore h. c and <) are constants with b >  0 . c >  0  and > 0  (0 / < 1 ). and i)oi!i ii ;nirl r

dimension tim e "^

The continuity equation is satisfied by introducing a sti eani function iJ.' (x, ;/)as

Oi/j O't/:
u — , I' — — ■

O y ' dx

To simplify the flow equations, we use the following dimensionless quantities

(2.G)

'•>

Using Eq. (2./) and (2.8 ). Eqs. (2.2) and (2.3) become

. r - A (  r- - ;- > ir  - o .  1 2 .0 1

Pr 9̂ ' -  2f'e - r / e '- ^  {36 + 1}6') =  0. (2.10)



and boundary conditions are

/ ' — ♦ 0 . 0 —  ̂ 0  as ij :xj.

where A ~ 6/b \s the unsteadiness parameter and Pr =  vj(x is the Pi andtl lunnber.

It should be mentioned here that in the paper of Elbashbeshy and Bazid the sigi) of ilic tci in 

2 j 'd  is positive in their energy equation due to the incorrect dofniition of AT and

hence an exact comparison is not possible. According to them AT =  T̂ . — 7 ^  ~ (

but the correct value is ^ ( 1  —6t ) ^  ' Due to this error, some physically muoalisnf i)1:

in the velocity and temperature fields are encountered for specific vahies of the unsteafiin(.'ss 

parameter. Mohanied Abd El-Aziz also mentioned this error in his paper flO'.

The skin-friction coefficient C j and the local Nusseli n\unber N \u- are i îveit !*\-

pUl' k„,(T..-T^y
2,i;j

where is thermal conductivity, r^. is the shear stress at the wail and î ' the heal flux at 

wall, which are define as

 ̂du\ 

K^y/y^o
. and q.̂ . — —kjn

{dT\
(2.1 11

W ith the help of Eqs. (2.7 — 2.S) ajid (2.14J, Eq. (2.13) yields

~  =  -fl'(O). or , / r Z C s - /''{()!. 
\/

where and Re^ — xU.^ ĵiy is the local Reynolds number.

(2 \r>\

2.3 Solution

To find the numerical solution, we use the most effective shooting method with fourth order 

Runge-Kutta integration scheme. The non-linear equations (2.9) and (2.10) with the boundary

18



conditions (2 .1 1 ) and (2 .1 2 ) are ti aiisformcd into ayystcm of five first order different iai ('qviatiour' 

as follows:

dll - -/I-

dr, -  ■1̂-

f  =  - f h  + i h f  + A h  U , i h ,

and the boundary conditions are 

/ ( 0 ) - 0 , / i ( 0 ) =  l , / i ( c x .)3 .0 ,

0(0) -  I, ^(oo) =  0.

Here /o — /  (v) ^ 0  — ^ iv ) ■ ^  boundary value problem is first ('(jinert<kI into an initial

value problem by appropiiateiy guessing the missing conditions / 9 (0 ) and I’he icsnliani

initial value problem is solved by shooting method for a set of j)aranioters ai)poariiig in the 

governing equations with a known values of / 2 (0 ) anrl f^i(O).

2.4 Results and discussion

Figs. (2.1) - (2.4) are plotted in order to see the effects of the involving [wrameters ĉ n tin; 

velocity and temperature profiles. The numerical values of the skin friction coefficient and thi>̂  

local Nusselt number for different, values of physical parameters are also given in Tabte 2.1.
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Table 2.1: Numerical values of — (0) and (0) for various valvu-s of I’ landil ninisl)(> 

Pr and unsteadiness paianierer A.

F t\A 0 0 , 8 1 . 2 2 , 0

- 0^(0 ) - r ( 0 ) (0 ) - r  (n) ~9’ (0 ) (0 ) - ,r{o )

0 . 0 1 0.0294284 1.0014 0.202712 1.26106 0,239185 1.37774 0.275S3 1.r)S73S

0 . 1 0.263474 1.0014 0.453578 1.26106 0.503033 1.37774 0.60478 1,58738

1 . 0 1.33889 1.0014 1.67209 1.26106 1.81793 1.37774 2.07S17 1,58738

1 0 . 0 4.76411 1.0014 5.70494 1.26106 6.12013 1.37774 6,SS:i76 1.58738

f ' W

Fig. 2 . 1  : Velocity profile f  {‘ij) against. // for \'ariou.̂  \-alu(.;s oi A.

20



H (//t

'/

Fig. 2.2: Ternperariii‘e jjrofile against // for \arious v'alues of A.

Fi^'. 2 .3 ; 7 ’enipevatnre profile against ij for \'arioiis \'a]i!{\s of [’ i'
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Pr

Fig. 2.4: Variation of heat transfer coefficient —/?'(0) against Pr foi- (fiflerent valiu;h o[ A.

Table 1 gives the numerical values of the skin-friction coollicient. '-/''(U) ihc local

Nusselt number -O'(O') for diflereut values of Pr and A. it- is foinul llui!- ihe mai'iii! ti'b- of

— ̂ '(0 ) is increased by increasing the vahies of f'r. and the niagiiitudc of -/"((.)) also increases 

for large values of A.

Fig. 2.1 shows the effects of an unsteadiness parameter .4 on the velocity component j 'i i j) . It, 

is noted that the velocity decreases by increasing the \-alues of A. 'Phe boundary layer i.hickness 

also decreases as A increases. Fig. 2 . 2  gives the variations of an unsteadiness pai ameter .4 on 

the temperature fields Both the lemperature and the thermal boundary layer lliickne^^^

decrease for large values of A. The change in the temperature held 0(ij) foi' ditferent \ahies of 

Prandtl number Pr can be seen from Fig. 2.3. It is observed that the temperature decreases bv 

increasing the values of P r . Tt is also noted that the thermal boundary layer t-hickncss decrease? 

as the Prandtl number Pr is increased. Fig. 2.4 shows the variations of the rate of heat iransfcr 

at the wall —9 (0) verses Pr for vaiious values of A. "I'lie niagniinde of —0 ((}) is incieased (en

large values of an unsteadiness parameter A.
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Chapter 3

MHD stagnation slip flow over an 

unsteady stretching surface in 

porous medium

3.1 Introduction

This chapter investigates the heat transfer in a stagnation-point flow of \ iscous liuid

an unsteady stretching sheet in a porous medium with slip condition. I'he non-liri(^ai' pai tial' 

differential equations govern the flow are transformed to a non-hnear ordinary diH'erontial 

tions using sijnilarity transformations. The system of Jion-Hnear ordinary diff<T('iirial <'(llla^on^> 

is solved both numerically using shooting method with Runge-Kntta algorithm and anHlyiically 

using honiotopy aualysis method (HAM). The physical significance of the iuvoh ing |.)arani< 

on the How and temperature held.-:, are tliscussod t.hiough gra]jh.^ and tahles. TIk^ gi>iphi(a! 

resvdls are compared for both solutions. A conijwrij^on of obtninrd rosulls with i lu' exisiing| 

literature is also given and found in an excellent, agreement. This chapter is an exten.siun ol the 

work done by Elbashbeshy and Bazid [6 j.
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3.2 Flow equations

We coasider an unsready. iwo-diineiisional MHD siagiiaiidii poirn ilow of ;i viscon> flnici in a 

porous medium over an uii'^teady stretcliing sheet in the region ij > 0 . 'Tlu' j- ixi-- is lakcii 

along the surface, while the y-axis is perpendicular to the surface. At riiue /. - 0. t.he surface 

is stretched with the velocity U^.(xA) along the .r-axis. keeping the origin is lixod. It is alsct 

assumed that the fluid is electricahy conducting and the magnetic field B{t.) is a[jpli*’d in the 

y-direction. The indnced magnetic field is neglected due to a small iiiagnctic Keynoids mini her 

assumption, where no external elcctric field is applied. The velocity of the flow out.side the 

boundary layer is Uaix.t) and the temperature at the surface is T^.{x. L). where 7\. > 7’̂ . 

with Toe being the temperature of the ambient fluid. Under these a.ssumptions along with the 

boundary layer approximations, the governing equations for the flow and energy arc gi\-cn as:

(•M;
dll dr1 __
dx dy

du du du dUe rr dUe d~u c

dt ' "  Ox ^dy  -
-f Ue~r~ -

dt dx dy~

dT dT dT

dt +

P ‘ /‘ (O

d'^T
(3.3)

where a  is the electrical conductivity of the fluid. 4> is porosity of the medium, o is the ihcrtnal 

difi'usivity. t is the time and T is the temperature and k{f) is the ];ermeabi)iiy of the in)rou- 

medium. Here we assume k{t) and B{t) are of the form

k { t ) ^ k , i:\~6t). (3.4)

where k\ is the initial permeability and Bn is the constant magut-nc fi(;ld.

The relevant boundary cojiditions for ihe pres(Mit problem are

u =  U.̂ >{x. t) + jV] i / ^ .  j; — 0. r  =  T .̂(.c. t) -r at y ^  0. ('3.5)
ay' ‘ ' ay

n —> Ue{T,t). T Toe y 03. (3.(i)
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Here

h.r dx , cr
U . =  --- T-. Ue ----- I M - / V ------ .

3 -  At 1 -  d t  - ' ' ,y(l -  Al.]

where d > 0 and has dimensions (time)” ". A’l — A'v/l - St. is t he velocity shp j)aia)netf:i and

D\ — Dy/l — dt is the thermal slip parameter, both are changed witti time, and .‘V. D. are the 

initial values of velocity and thermal slip parameters, having dimension (velocity)” ' and lengtfi 

respectively. The no-slip condition can l:>e obtained for A' =  0 and D ~ 0. respecti\-ely.

We defme the following similarity transformations

q =  -  St) iy , lb =  \/lw.c(\-6l.) ij '(n ) , (3.7)

=  -----2 ; -----■ '

and the stream function \b{x.y) is defined by u =  (Ju'fOij and r - —Oil'lOx. stirh liiai tlic 

continuity equation (3.1) is antoniaiically satisfied.

Using Eqs.(3.7) and (3.8) . the Eqs. (3.2) and (3.3) become

/" ' -  + / / "  -  . 4 f / '  + I v f " )  + Ai2 (e - / ')  + A (f - / ')  -!- .4f + 0. (3.!))
V ^ /

PrO" ~ 2 f '0  + fe ' {30 -!- i f i ' ) , (3.101

and corresponding boundary conditions are

/  =  0, ! ' 0=i -\~-f0'  iAX 7; =  0. (3.11)

— 6. as j/ — oc. (3.12)

where A =  S/b is the unsteadiness parameter. Pr =  is the Pranfhi minibt>!'. r 'l/h is

the ratio of the the external flow rate r,o the stretching rate. M~ n B^jf>h is the magiieiic

parameter, A =  uipfkib is porosity parameter. '3 — N \/lw is the velocity sli]) |jaramoU!! . --

D\J^ is the thermal shp parameter and the primes indicate the differentiation with respect 

to rj. It is worth mentioning that we can recovered the no-slip condition by taking 6 — 0 and



— 0. It is also noted that if we r.ake ~ A —  ̂ ~ — 0 th^ii we ohtniii i Ik' >aiii(’

equations as in (2 .9 ) and (2 .1 0 ) with boundarv < 0 !idiiions (2 . 1 1 ) and ( 2  1 2 ).

The skin*friction coeflicient C j and the local Nnsselt [jutDbiM A (/ ,- nre j-Jveii hy

=  -7 7 7 : V:
^ U,’ ĈK’ )

where km is thermal conductivity, is the shear stress at the wall and is the heat flux at 

wall, which are define as

I 1 ", , 1', and r/j,. =  — —  i.i.l -lj
A j J y =0 \ % / y = 0

W ith the help of Eqs. (3 .7— 3.8) and (3.14). Eq. (3.13) yields

iV Uj:
-  --^'(0), or \/lUrCj - !"{{)}. (3 .1:.!

where Re^ — xU^/u  is the local Reynolds nnnil^ei'.

3.3 Solution of the problem

3.3.1 Numerical solution

In this chapter the numerical solution is obtained by the same scheme ilial is used in cltapter 

2. The non-linear Eqs. (3.9) and (3.10) subject to boundary conditions (3.11) <md (3.12) arc 

transformed into a system of five fiist order differential equations a-: follows:

dy) ~ ‘

'Ml -
dr) —

' ^ ^ ~ ! k  + i h f  + -4/j : 5 ■^'th -  v/^ (f -  A ) - A (< - / , )  - ,-u - r-'.

^  =  0 ..

^  = Pr (2/ifl - fO, ̂ l A 9 +  ,

and the boundary conditions are 

/ ( 0 ) - 0 . / , ( 0 ) - 1 + /?/2 (0 ) . / i ( c x . ) - 6 ,

0 (0 ) ^  1 + 0 (0 0 ) - 0 .
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3.3.2 Homotopy analysis solution

For the series solutions of Ê qs. (3.9) and (3.10) using lioiiioiojov ;uiai\sis inethoti (HAM ), it is 

straight forward that: the volocity and the- teinpiMaUuc ficids f  (ij) and 0 (i]) can Ix' e\[ji 

by the set. of base functions

1 7/̂ ' exp {—mj) k >  {). n > o| (3.IG)

in the form
OC' oc

I  iv) flao + X ]  exp (-a)/) , (3. 1 7)

n^O k—0

oo oc

k-0

wliere afj,  ̂ and are t.ho coefficients. By rule of .wlidiov. pxpivrisions of /(//) and 9{ii). wirf: 

the help of boundary conditions (3.11) and (3.12) one can choose ,/o (//) and Oq {ii)

.  0 - ^ ) 0  r . u u
foiv) == ^ -- — : >

as the initial guess approximations of f{i]) and 9{t]) and the auxihary linear operators

£</(/) - 
(̂hr

which have tlie following properties

[C l -f  C -2 exp(7/) +  C3 e x p (-//)]  0.

C q [C a e x p ( / / )  -h C 5 G x p (- ? / ) ]  =  0. (3.2-1)

l(



where C,. (? =  1 — 5 ) are arbitraiy constants, ff h.j and ho doiioie the noii'Zen) auxiliaiy 

parameters then the zeroth-order deformation probleLiis are const.i lu ted as fotlcnvs:

[ l ~ q ) C e  ^  (r/; (?) -  00 (??) =  q h o N o  f  (/;; q ) , ^  q )

cb] ' d i f

d d { D ,q )
9 (0. q) =  I 7 -- 0 (oo. q) ~ 0,

where q 6  [0. l] is an embedding parameter and the nonlinear operators A'/ and A'ff ai(.!

N I  in- (i)
drf

+ivr

dt] j

e —
Of  iV: 'y) 

O'!]

\

/
di]

-!- /\r (3.29}

-1 bhQ) 00 (v/. ŷ) 3
<̂ }: 0 iv. q) =  Pi- 0" -  + /  (v: ^ -■ - 5  ('/̂  '-y) ”  - -

5?/

('/. 7 ) 

(3.30;

For g — 0 and g =  1; the above zeroth-order deformation Eqs. (3.25) and (3.2G) have r.lie 

solritions

=  / o ( > ( ) .  / ( > ; : ! )  =  /(■'/)■ C i . 3 1 )

ehrJ)) =  go{n): 0 (-c i ) - « ( '/ )  ■

Expanding /  (j;;<7) and 6'(?;; c/) in Taylor's .series with respect lo q. w*' have

00
/ ( > ; :  9 ) = / o  { » ( ) +

rn=l

oc

? (7/; g) -  0̂ (??) Y1
m = l

(3.32) \

(3.33)

:3.31)

2S



wheio

fra  {??) -
1- O'^^nmq) 

/?(.! ///! ~  (9v̂ "
7--Z.-0

Note that the zeroth-order deformation Eqs. (3.25) and {3.26) coiiiain t wo avixiliary paiani(’ 

ters h f  and he. The convergence of the series (3.25) and (3.26) depend on iliase [jaiaineier.s. 

Assuming that h j and he are selected such that the above series are convoigenr. at q \. then 

using Eqs. (3.31) and (3.32). the series sohitions are

/  iv) =  /o i l )  + • (3.36)

(3.37)

Diflcrentiare the zeroth-oixier deforinatiou equ^uions (3.25) and (3.2()j. ni limes witli n'Spc’' i to 

q. then setting q =  0 . and finally dividing them l)y v/i!. we obtain the Miih-oider d('foi mat i(ni.s 

equations as

[frn ( /̂) - {v)] =  {v) :

[^m iv) “  Xrn^m-l (j/)] =  ('?) ■

fm  (0 ) =  0, / ; , ( 0 )  -  d C  (0 ) . In .  {OO) ^  0. 

(0) = 7 ^  (0) . Or,,{cx>)^0.

(3.38)

(3,31))

(3.^10)

(3.̂ 111

where

A

K (>/) =  .C - i -- ( .C - i + 1  A / ;„ .,

m —t

+  E  [ U - i - t f ! -  f L - i - J ' t ]  ^ ( 1 - v„,)(<u-<^ A* +  - I c ( : m 2 ) .
k=0

in-  1_2 o riv ±

Kfn{>?) = f r C - i  - + E (3.^13)
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V,
0 . in < I.

1. '//) > L.

If we suppose /*, (?/) and as the special solutions of Eqs. and t)ien from

Eqs. (3.38) and (3.39). the general solutions are givei! by

fm in) =  /m in) + C 1 + C 2 exp (//) H- C 3 exp (-//) , (3.-15)

iv) =  iv) + <̂ 4 exp (7/) Cr, exp (-//) : (3.‘16 I

where the integral constants Ci. {i — 1 — 5) are determined from tlie ijouudai'v con<iitions (3.'1()} 

and (3.41) as

dll
C2 -  C4 -  0 . C3 =  — —

I

C y  =  - ( h - l ; n i O ) :  -----------------

1 6

o(KJ.n)

(3.47)

,r - ()

1
In this way. it is easy to solve the hnear non-houiogeneons Eqs. (3.3S) and (3.39) by nsing

Mathematica one after the other in the order ni =  1. 2. 3.......

3.3.3 Convergence of the H A M  solution

As proved b\̂ Liao [12] that, as long as a .solution series given by the homotopy analysis mm'I hod 

converge, it must be one of the solutions. Therefore, it is important, to ensure tlial i h<̂ .solniions 

series are convergent. The series solutions (3.3K) and (3,37) c.oinain the non-'/('ir> anxiliaiy 

parameters hf and ho, which can l)e chosen properly {)v plotting the so-railed h-v\\i\cs ro 

ensure the convergence of the solutions series and rave of ap{>ro.\iniat ion of ihe I1;\M s()iin,iiin. 

To see the range for admissible values of h/ and li(). /i-cnrves of J"{0) and 0'{U] are shown in hig. 

3.1. for 20th-order of approximation when A — 0.2 =  A e. M  ~ 0.5 — Pr and — /i --- 0.2 

From this Fig. it can be seen that fi-cur\-es have a parallel lines segment tliat coriespond to 

the regions —1.1 < hf <  —0.2 and —1.15 < ho < —0 2, respectively. Tabh^ 1 is made to ->how 

the convergence and comparison of HAM  solution for various order of appiroxiniat ions witli

numerical results when A =  0.2 — X =  e, M  — 0.5 =  Pr and /̂  =  7  — 0 .2 .
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f "{()). ^ ' (0)
-Oijf

-0

-os

- 0,9 I '

-12 -1 0

'̂(0) 

f" 1(̂ 1
A ! 
' \ i

-0 5 - 0.6 -0 -f 0 0

Fig. 3.1: The h-curves of /'^(O) and 0'(O) at the 20/./; orcier of appioxiination: filled 

the numerical values with M  — 0.5 =  P r  and .4 _ A — r — ■'> = '  ~ 0.2.

c i r c le s  ar<

Table 3.1: Convergence and comparison of HA\J solution for different order of a{)proxi- 

mation with numerical results when M  — 0.5 =  Pi’ and .4 =  A — r — 7  =  3̂ ~ 0.2.

Order of appi’oximations -r(o) - r/(0 )

1 0.815741 0.816454

5 0.834424 0.769523

9 0.834491 0.766372

15 0.S3449I 0.766005

2 0 0.S.3449I 0.765i)S7

23 0.S34491 0.7659S5

25 0.834491 0.765985

30 0,834491 0.765985

Numerical results 0.8.34519 0.765986
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3.4 Results and discussion

The system of oquarions (3.9) and (3.JO) witli Ijoundaiv coudiiioiis f ;M l) aiirl (3.12) ha.s in-rii 

solved both analytically using honiotopy analysis method ( liAM ) and mnn(^rically usinj.  ̂sliooi- 

ing method [26] with Runge-Kiitta algorithm. Figs. (3.2) —(3.11) are pioited in order to aiialy/f 

the influences of the varioirs involving physical paranieteis. ^or exam{)h-‘. an nnsieafhru'ss j)ara-. 

meter A. the magnetic parameter iV/. the porosity parameier A. tiie velocity slip /).

the ratio of external flow rate to the stretching rate f. the Prandtl numbf-r Pr aiui the ihertnal 

slip parameter y on the velocity and temperature 0{ri) distributions. The nmnericai \aluê

of the skin-friction coeflncient — / ' ' ( O )  and the rate of heat transfer at the wall ( the local iNusseh 

number ) —6 '̂(0) for various values of parameters are given in Tables (3,2) — (3.‘̂ 1).
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Table 3.2: Numerical values of skin IVict.ion cof’ffici(?iiT - f"(0 ) and the local Nissseli iii.iiiil)t>r

'^^(0) for several values of .4. A/ and A with — iJ ~ 0.2 and Pr “  ' —- O.a.

- r ( o ) -f^'(O)

A M A HAM Numerical HAAl Numerical

0.2 0.5 0.5 0.60449 0.60449 0.83901 0.83901

0 . 8 0.64108 0.64109 0.95431 0,95425

1 . 2 0.66376 0.66376 1 . 0 2 0 1 1 . 0 2 0 1

2 . 0 0,70545 0.70545 1.1330 1.1330

0 . 8 0 0.62073 0.62075 0.95657 0.95651

0.5 0.64108 0,64109 0.95431 0.95425

1 . 0 0.69538 0.6954S 0.94St7 0 .!) 1811

1.5 0.76970 0.76070 0.94(J99 0.9 iOOO 1

2 . 0 0.85193 0.85193 0.93334 0.93331

0.5 0 0.59900 0.59904 0.95904 0.95900

0.5 0.64108 0.64109 0.95430 0.95425

1 . 0 0.67827 0.67829 0.95028 0.95021

1.5 0.71165 0.71165 0.94679 0.9^1679

2 . 0 0.74194 0.74195 0.94372 0.91370
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Table 3.3: Numerical values of skin fiictioii coefficient and Uie local Nusseli: nunibe]'

— for several values of f. and 3 wirh A J — 0.2 -- A.

e d A -  0 . 8 .4 =  1,2 .<1 2 . 0

HAM  ’ Numerical HAM Niuuerical HA M Niirncrical

-0'(O) ~ / " ( 0 ) -0'{O) - /"(O ) -Y/(0 ) - n o )

0 0 . 2 1,0176 0.8710 1.0176 0.8716 1.0865 0.9470 1.0865 0.9473 ] .2059 1.0724 1.2059 1.0726

0.5 0.5980 0.9591 0.5981 0.9590 0.6238 1.0240 0.6238 1.0240 0.6707 1.1357 0.6709 1 135 V

1 . 0 0 1.0476 0 1,0472 0 1,1029 0 1.1025 0 1.2013 0 1 . 201  0

1.5 0.7305 1,1300 0.7305 1,1304 0.7479 1.1781 0.7479 1.1780 0.7StH 1.2653 0.7S05 1 .2667

2 . 0 1.5652 1.2057 1.5652 1,2056 1,5953 1,2483 1.5953 1.2480 1.6515 1.3264 1.6523 1.3269

0.5 o' 0.8050 0.9831 0.8051 0,9831 0.849S 1,0467 0.849S 1.0461 0.9345 1.1562 0.93'17 1 156!

0.5 0.4351 0.9386 0.4351 0,9386 0.4491 1,0052 0.4491 1,0050 0 47̂ 14 1.1195 0. 1745 ! 1 190

1 0.3010 0.9206 0.3010 0,9201 0,3081 0,9389 0.3080 0.9S59 0.3203 1. lOuO 0.:V203 1 lOt.K̂

1.5 0.2307 0,9106 0.2307 0.9106 0,2349 0.9801 0.2347 0.9801 0 . 2 1 2 1 1.0989 0.2422 1.0987 
......... j

2 . 0 0.1871 0,9043 0.1872 0,9041 0,1900 0,9746 0.1900 0.9746 0.19-17 1.0946 0.19 18 l.oo-iol
1
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and 7  with .^1 — X =  6  =  0 .2  and c — 0.5.

Table 3.4: Niimerica! values of the loca) Nusselt niiiiiber for se\-eral valuer:̂  of A. Pr

Pr 7 -  0 . 8 .4 1.2

~ f/(0 )

HAiM Numerical HA.M Numerical

0 . 1 0 . 2 0.46416 0.46410 0.50277 0.50271

0.3 0.76908 0.76901 0.82519 0.82511

0.7 1.1024 1 . 1 0 2 1 1.1729 1.1724

1 . 0 1.2700 1.2700 1.3462 1.3453

1.5 1.'1791 1.4761 1,5610 1.5604

2 . 0 1.6384 1.6315 1.7239 1.721 i

: 1 0 1.8761 1.8701 ] .9653 1.9617

5.0 2.1916 2.1901 2.2S34 2.280!

0.7 0 1.4143 1.4149 1,5324 1.5329

0.5 0.82844 0.82854 0.86763 0.86796

1 . 0 0.58579 0.58586 0.60512 0.60526

-• 1.5 0.45309 0.45317 0.46456 0.46461

2 . 0 0.36940 0.36983 0.37699 0.37699

3.0 0.26975 0.26979 0.27378 0.27384

5.0 0.17522 0.17584 0.17691 0.17613

1 0 . 0 0.09339 0.09339 0.09387 0.093S7
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Fig. 3.2: 'J'he velocity profile f'{i}) versos )] for various values of misteadirn'ss jjajaiiu't(M' .-I: 

dashed lines are numerical solutio]) and filied circle arc HAM soiutioii at i2-:h orticr of ap!)iu. 

with M  =r. 0.2 -  6 and A -  0.1 e.

/ '  U/)

F i^ . 3.3: The velocity profile /Y^/) '̂f̂ rses r\ for various values of uiaoueiic paranietoi' M:

dashed lines are nun'ierical solution and filled circle are HAM sohit ioii at 12-t}i order of a[)pro.

with — 0.2 — and A =  0.1 =  e.
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Fig. 3 .4 : The vnlocitv profile /'(//) verses // for various values of porous nieJiuiu A; d îsliecl 

lines are nuujerical solution and filled circle are flAM solnl.ion at I'i-lli ord(M of aj)]iro. with 

A -  M  =  6 =  0.2 and e -  0.1.
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I o s .0 1.00
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Fig. 3.5: The velocity profile / {r}) verses ?; for various values of sli]) paranieler /i: dashed

lines are numerical solution and filled circle are HA\J solution at 12-ili oixh'r of appro, with'^

A ^  M  =  X ^  0.2 and e - 0.1.
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y 'i//)

F ig. 3 .6 : The velocity profile / {i}) verses // for vari{3iis values of stagnation point. }.)aramerer 

e: solid /  dashed lines are numerical solution and filled circle are HAM solution at 12-ih ordei 

of appro, with A ~ M  =  0.2 and A =  0.1.
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Fig. 3.7: The temperature profile verses rj foi' various values of luisteadiness j>aranieier A:

dashed lines are numerical solution and filled circle are HAM solution at 12-th order of a])pi'o.

with M  — P — 0.2, A — 6 — 7  =  0.1 and Pr — 0.5.
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F ig .  3 .8 : The temperature profile 0{}i) verses // foi \arioi.is values oT PrHiidtl !imnl>er I ’ l-; soliri 

/ dashed lines are mimerical soiutioii and fdlcd eircle are H A M  s o ] in i (H i  -it 12-t.ii urder r.f a]>pio. 

\vir,h A  =  M  — /3 =  0.2  and A =  e =  U.l.
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Fig. 3.9: The temperature profile 9{r}) verses q for various vahies of magnetic parameter M:

dashed hnes are numerical solution and filled circle are HAM solntion at 12-tii order of aj.)pio.

with A — /3 — 0.2, e =  A == 7  =  0-1 and Pr — 1.5.
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Fig. 3.10: The teniyjerat.ure profile 0[>}) // for \-arioiis \-alii<'s df porous nif'diuni A'

dashed lines are numerical solution and filled ciicle are HAM sohition a! 12-: h order (4 a[.ir-r<i. 

with .4 =  A/ -- 6 — 0:2. Pr =  1.5 and 0.1.
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t s : :
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Fig. 3.11: The temperature profile 0{rj) \'erscs t] for \arious values of slip paranieior da.stif)(! 

lines are rumierical solution and filled circle are HA^'J solution ar. 1 2-th oi'dt.'i- of appifi. wiiii 

A =  M  =  6 =  0.2. A =  e =  0.1 and Pr -  0.7.
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Table 3.2 shows tJie analytical and niimerit:al values of the skin-lrict ion ~

and the local Nusselt number — 6''(0) for x ai ioii'  ̂ \alues of .4. M. and A wlieti 0 2 and

Pr =  f =  0,5. It is noted that the magiuludes of and for lar'M- v.iIik-.

of .4. \\"e can also be see from this Tafjle that, the magnitudes uf the ^ht'ar .siroh,- at ilu' wall

increase by creasing the values of M  and A but the rate of heat t.ransfer at i he wall

decrease by increasing the values of M  and A. The numerical \'alnes of and —̂ ?̂ (0} for

several values of e. [3 and A is given in Table 3.3. It is found that, for fixed values of r and

(5. the magnitude of ~/^^(0 ) and —^^(0 ) increase by increasing A. It is further se<ui f hai ihc

magnitude of the skin-friction coefhcient “ /^^(O) decreases for e < 1 and increast's foi- ( > I 

for fixed values of A and 6 . On the other hand, the magnitude of —/'^(O) decreases as tlie slip 

parameter 3 increases. However, the rate of heat transfer at the wall —̂ /(O) increase.s fo! large 

values of fi, where as it decreases by increasing the values of ,5. Table 3.^ is pre])ai ed t<j .'̂ how the 

numerical \'alues of tlie local Nusselt inmiber —0̂ ({)) lor dilfeient v a lu e s  of !̂ ]-. arid .4 w iK'n 

A - M  p — 0.2 and p — 0.1. ft is obser\'efl rliat foi' fixed values of .4. ilie utagnii udr of th<' 

local Nusselt number increases (decreases) for large values of Pr ( 7 ). It is also wort li-mtMU loiiiiui 

obser\'ation from the Tables that both solutions are in good agreement.

Fig. 3 . 2  shows the effects of an unsteadiness parametei' A on the vidocity compou(^iii /'{ij) 

when M  ~ 0.2 =  6 and A — 0.1 =  e. Both the velocity and the bormdary layer tliickuess ar<' 

decreased as an unsteadiness parameter A increases. Fig. 3.3 elucidates the influenct' of tin' 

magnetic parameter M  on the velocity /^(?/) when .4 - 0.2 -- [i and A =  0.1 — <. It is noied 

from this Fig. that the velocity decreases by increasing the values of magnetic. [mramr-iet M . 

This is because for the present problem the magnetic force acts as a resistance to the flow. Tlie 

boundary layei’ t.hickness is also decreased as M  increases. Idie changx’ in thĉ  \̂ elocitv Held 

for difTeient values of porosity ))aranietei' A can be seen in h’ig. 3. I. It is founrl t.hat, the \-elocit\- 

is a decreasing function of A. The bovmdary layer thickness is deciea.-ied for large \'aliu'- 

of A. Fig. 3.5 depicts the variations of the velocity slip parameter 3 on the velocity component, 

/'(//) when e. — 0 .1 . It is observed that the velocity is decreased by increasing the valuf:’s of tlu' 

velocity slip parameter (3. It is also noted that for — 0 (no-slip condition), the \’alue.s of / ' 

is equal to 1, which shows the standard condition for stretching flow at ?/ — 0. Fig. 3.G show.sJ 

the effects of the ratio of the external f^ow rate to the stietching rate a on the velocity field
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solid lines { for no-slip condition ,3 — 0 ) and daslied liney (for slij) toiidir.ion 0 ^  0 .2 ). 

respectively. It is found that, the vnlocity is increased for large v'ahies of for boih d -- 0,.

6 =  0 . 2  but (his change in the velocity in case of v'elocity slip painnieter {6 = I) 2) is sinalh'r 

for f. < 1 aiid largei foi’ t > 1 neai' the wall ’when coni[jared with ihe cas(‘ of no-sh[j <x>udit ion

(/3 = 0).

Fig. 3.7 gives the influences of an unsteadiness parameter A on tht; tenipcraf ure disi ributioii 

0{ri) when thermal slip parameter 7  — 0.1. Both the temperature profile and the thermal 

boundary layer thickness are decreased as A increases. Fig. 3.8 shows the change in tlu,̂  

temperature 9{ri) for the several values of Prandtl number Pr: solid lines (for no-thernial slip -■ 

0) and dashed lines (for thermal slip 7  — 0.1). It can be seen from this Fig. that the ieiiiperai ui î  

decreases by increasing the values of P r . The thermal bomidary layer thickness also decreases 

for large \7‘vlues of Prandtl mnni)er. Fig. 3.9 gi\'es the variations in the tenijjeral ure tiisl ribut ion 

9{i}) for various values of a magnetic parameter :\I. On<' can see iliat (he sernperatnre is .tn 

increasing function of a magnetic parameter A'/, and the thermal honndarv layer thicknes-  ̂also 

increases as M  is increased. Fig. 3.10 presents the eifects of a porosity paramotc'r A on tlu’ 

temperature distribution 9. It is found from this Fig. that both the temperature and t he ihei inal 

boundary layer thickness are increasing function of A. It is also noticed from tliese Figs. i'3.0 

and 3.10) that for large values of M  and A. the change in ternperatuie is small, ibis i,̂  b('( ausir 

both parameters have no influence in the energy equation directly. The temperature field 

for several values of thermal slip parameter 7  is shown in F'ig. 3.11. It is observed that as the 

thermal slip parameter increases, less heat is transformed from the sheet t o tlie fluid, tlierefore 

the temperature 9{ij) decreases by increasing the \'alues of the th('i'tnai slip paiamerer
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