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Preface

Flow of nano-fluids has gain vital importance in recent years. Choi [] was the first to use the

terminology for the fluids which have nano-sized particles suspended in the base liquid. The

flow of such fluids have high thermo-dynamical applications [2-5]. Many scientists discussed

the flow behaviours of nano-fluid in diverse geometery [6-15]. Flow and heat transfer of an

incompressible viscous fluid over a stretching sheet appear in several industrial process such

as extrusion of polymers, the cooling of metallic plates, the aero-dynamical extrusion of plastic

sheets etc. In the glass industry, blowing, floating or spinning of fibers are processes which

involve the flow due to stretching surface U6-221. The study of heat transfer and flow field is

necessary for determining the quality of the final products of such processes. Sakiadas [2]

presented the pioneering work in this field. He investigated the flow induced by a semi-infinite

horizontally moving wall in an ambient fluid. The flow problems in such situations are

complicated giving non-linear coupled partial differential equations. These equations are very

hard to solve even with modern computational techniques. Lie group developed by Sophus Lie

[23] gives a technique which reduces the independent variables of PDE and hence, reduce it to

ODEs. Problems which can be solved numerically or analytically using many techniques.

Many mathematicians have implemented those techniques successfully 124-301.

This thesis discusses the Lie group solution of the flow problem arises due to flow of nano-

fluid over a stretching sheet. For this purpose three chapter are formulated.

In first chapter, we present some definitions and basic concepts relating the problem. Lie

symmetry technique is also discussed.

In second chapter, MHD flow of the Newtonian fluid with variable viscosity over a stretching

sheet with heat transfer is taken into account. The problem is solved using Lie-group method.

Similarity transforms are generated and checked for consistency on boundary conditions and

equations. The transform is then used to convert PDE to ODE. The ODEs are then solved using

shooting method. The chapter has two section. [n first section, the problem is modelled using

continuity, Navier-Stoke's and energy equation. ln second section, Lie symmetry is applied to

solve the problem.

In third chapter, we investigated the flow of MHD nano-fluid over a stretching surface with

slip effects in porous medium using Lie Symmetry analysis. The governing equations

describing law of conservation of mass, momentum and energy are converted to system of



ODEs using similarity transform. Generators formed are checked for consistency. Equations

are solved numerically and graphical results are displayed.
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Chapter 1

1.1 Introduction

In this chapter we present some definitions and basic concepts relating the problem. Lie symmetry

technique is also discussed.

L.2 Basics of Fluid

1.2.1 Fluid Mechanics

Fluid mechanics is the branch of applied mathematics in which we study the behaviour of fluids

in the states of rest as well as in motion.

1.2.2 Pressure

Pressure is an effect which occurs when a force is applied on a surface per unit area.

Mathematically,

P:1, (l.l)

where P is pressure, F is the normal force and I is the area. The SI unit for pressure is Pascal

(Pa), equal to one Newton per square meter (Nm-z or kgm-r t-21

1.2.3 Density

Density is a measure of how much mass is contained in a given unit volume, i'e,

p:ry e.z)
V,

where lll isthemassand Z isthevolume.



1.2.4 Viscosity

Viscosity is a measure of the resistance of a fluid to deformation under shear stress. It is commonly

perceived as "thickness" or resistance to pouring. Viscosity describes a fluid's internal resistance

to flow and may be thought of as a measure of fluid friction. Thus, methanol is "thin" having a low

viscosity, while vegetable oil is "thick" having a high viscosity.

1.2.5 Fluid Mechanics

Fluid mechanics is the study of fluids which can be divided into fluid kinematics (the study of

fluid motion) and fluid dynamics (the study of the effect of forces on fluid motion) which can

further be divided into fluid statics (the study of fluids at rest) and fluid kinetics (the study of fluids

in motion).

1.2.6 Fluid Kinematics

Kinematics is the branch of mechanics that deals with quantities involving space and time only' It

is used to describe the motions of particles and objects, but does not take the forces that cause these

motions into account.

1.3 Fluid Dynamics

Fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow---the natural

science of fluids (liquids and gases) in motion.

Fluid statics is the science of fluids at rest, and is a sub-field within fluid mechanics.

1.4 Classification of Fluid



1.4.1 Ideal Fluid

A non-existent, assumed fluid without either viscosity or compressibility is called an ideal fluid or

perfect fluid. In nature this type of fluid does not exist. Furthennore, a gas subject to Boyle's-

Charle,s law iscalled a perfect or an ideal gas. It is the hypothetical form of fluid. However, the

fluid with negligible viscosity may be considered as an idealfluid'

1.4.2 Real Fluid

Real fluids are those in which fluid friction has significant effects on the fluid motion. [n other

words we cannot neglect the viscosity effects on the motion. Real fluids are further classified into

two classes on the basis of Newton's law of viscosity. Shear stress is directly proportional to the

rate of deformation. For one dimensional flow it can be written as

du
,o= F6, (1.3)

where rr is the shear stress and du/dy is the rate of deformation.

1.4.3 Newtonian Fluid

A Newtonian fluid (named after Isaac Newton) is a fluid whose stress versus strain (deformation)

rate curve is linear and passes through the origin, t.e, Newtonian fluid obeys Newton's law of

viscosity. Water, gasoline and mercury are some examples of Newtonian fluids'

1.4.4 Non-Newtonian Fluid

A non-Newtonian fluid is a fluid whose flow properties are not described by a single constant

value of viscosity, i.e., it does not satisff Newton's law of viscosrp. For non-Newtonian fluids



n+l

'r: r(#),
(1.4)

where

is the apparent viscosity. Examples of non-Newtonian fluids are tooth paste, ketchup, gel,

shampoo, blood, soaps etc. Here we discuss one of many types of non-Newtonian namely Nano-

fluid.

1.5 Non-NewtonianNano-fluid

Nano-fluid is a fluid containing Nano-meter-sized particles, called nanoparticles. These fluids are

engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in Nano-

fluids are typically made of metals, oxides, carbides, or carbon nanotubes. Common base fluids

include water and ethylene glycol.

1.6 Classification of Fluid Flow -- Based on Flow Pattern

While studying the motion of a rigid body we do not have to bother about the relative motion of

the particles of the rigid body as they are very firmly fixed to each other and move as a whole. But

forthe study ofthe motion of fluids, things are not so simple because the fluid particles are attached

with each other with very weak forces. There are various relative motions and a lot of possibilities

for relative motion between the fluid particles.

To make things somewhat simple or for making the flow analysis feasible, fluid flow is visualized

as a composition of fluid elements. These elements are defined by using certain similarities or

paffems and mathematics is applied to them to study fluid flow comprehensively.

or
,rr: O(#) ,

,=o(#)



1.6.1 Rotational or Irrotational Flow

To classiff any flow as rotational or irrotational the angular motion of the fluid elements is

analysed. If the angle between the two intersecting lines of the boundary of the fluid element

changes while moving in the flow, then the flow is a Rotational Flow. But if the fluid element

rotates as a whole and there is no change in angles between the boundary lines then the flow cannot

be rotational flow, so it is irrotationalflow.

1.6.2 Laminar Flow

The flow of a fluid moving with a moderate speed has fluid layers moving past other layers as if

some sheets are moving over other layers. Such flow of fluids is called Laminar Flow.

In Laminar Flow viscous shear stresses act between these layers of the fluid which defines the

velocity distribution among these layers of flow. In laminar flows the shear stresses are defined by

Newton's equation for shear stress.

1.6.3 Turbulent Flow

As the flow speed of the otherwise calm layers increases, these smoothly moving layers start

moving randomly, and with further increase in flow velocity, the flow of fluid particles becomes

completely random and no such laminar layers exist anymore. Shear stresses in the turbulent flow

are more than those in laminar flow.

1.7 Classification of Fluid Flow--Based on Variation with Time and Space

When a fluid flows past a point or through a path different parameters associated with the flow of

the fluid, certain parameters vary and others may remain constant.

The two basic parameters of any fluid flow are velocity of the fluid particle or element and the



pressure of the fluid at the point under consideration. The flow of fluids can be classified in

different patterns based on the variation of the flow parameters with time and distance. The benefit

of characterizing the fluid flow as certain paffems helps in analysing it under the appropriate

solution paradigm.

1.7.1 Classification Based on Variation with Time

The classification of the fluid flow based on the variation of the fluid flow parameters with time

characterizes the flow in two categories, steady and unsteady flow.

1.7.2 Steady and Unsteady Flow

If the flow parameters, such as velocity, pressure, density and discharge do not vary with time or

are independent of time then the flow is steady. If the flow parameters vary with time then the flow

is categorized as unsteady.

In real conditions it is very rare to have such flows with parameters exactly constant with time.

The parameters usually vary with time but variation is within a small range such as the average of

particular parameter is constant for certain duration of time.

1.7.3 Classification Based on Variation with Space

The other classification criterion for the fluid flow is based on the variation of the flow parameters

. with distance or space. It characterizes the flow as uniform or non-uniform.

1.8 Uniform or Non-Uniform Flow

The fluid flow is a uniform flow if the flow parameters remain constant with distance along the

flow path. The fluid flow is non-uniform if the flow parameters vary and are different at different

points on the flow path.

For a uniform flow, by its definition, the area of the cross section of the flow should remain



constant. So a fitting example of the uniform flow is the flow of a liquid thorough a pipeline of

constant diameter and contrary to this the flow through a pipeline of variable diameter would be

necessarily non-uniform.

1.9 Flow Types

A steady flow can be uniform or non-uniform and similarly an unsteady flow can also be uniform

or non-uniform. For a steady flow discharge is constant with time and for a uniform flow the area

of cross section of the fluid flow is constant through the flow path.

1.9.1 Steady and Uniform Flow

Flow through a pipeline of constant diameter with a discharge constant with time.

1.9.2 Steady and Non-Uniform Flow

Fixed discharge flow through a tapering pipe. Water flow through a river with a constant discharge

is also a good example of such flow as the span of river generally varies with distance and amount

of water flow in river is constant.

1.9.3 Unsteady and Uniform FIow

A flow through pipeline of constant cross section with sudden changes in fluid discharge or

pressure.

1.9.4 Unsteady and Non-Uniform Flow

Pressure surges in a flow through a pipe of variable cross section. A practical example can be the

water flow in the network of canals during water release.



1.10 Fluid Flow Analysis -- Different Approaches

1.10.1 System Approach

A problem is half solved if it is defined properly. Like we use free body diagrams to solve the

problems in mechanics, we define a system to solve problems of fluid flows.

A system is defined as a quantity of mass separated from surroundings by system boundaries across

which no mass transfer occur. The boundaries of system can be moveable. Basic laws are applied

to this system to solve fluid flow problems. This system approach is helpful in analysis of simple

flows through channels or pipes where a fixed mass for analysis can be defined and tracked as it

flows.

1.10.2 Control Volume Approach

For flows through complex shapes and machines like compressors or turbines it is difficult to

define and track a particular mass. Thus, for analysis of flow we define a control volume and study

the flow through this volume. It boundaries can coincide with the real physical boundaries of
objects or can be imaginary boundaries defined for analysis. Control volume approach can be used

to find flow velocities at different ends of the control volume and also can be used for force and

motion analysis of the fluid flow.

1.10.3 Differential Approach

The analysis of fluid flow can be done by considering infinitesimal elements of system or control

volume. This gives differential equations defining the flow and their solutions provide detailed

picture of the flow.



1.10.4 IntegralApproach

For overall analysis of the fluids finite elements of system or control volume are considered. It

gives integral formulation, which is simple in analysis and gives overall picture of the fluid

behaviour.

1.10.5 Lagrangian Approach

In Lagrangian approach fluid is considered to be formed of small fluid particles. The motion of

these fluid particles is tracked and laws of particle mechanics are applied to them for analysis.

With the increasing number of particles analysis becomes cumbersome.

1.10.6 Eulerian Approach

In Eulerian approach properties of fluid flow, such as, velocity, acceleration, pressure and density,

are described as function of space and time. This provides a picture of the properties of flow at

every point in space as it varies with time. This formulation of the flow field allows detailed

mathematically analysis of any flow field.

These basic approaches are equally applicable to all fluid flow problems but Sometimes even in

analysis of some simple fluid flow problems closed results cannot be obtained. ln such problems

numerical and experimental approaches are used.

1.11 Fluid Energy

A fluid possesses energy in various forms. When applied to a fluid, the first law of thermodynamics

relates the change in the internal, kinetic, and potential energies of a mass of fluid to the work done

on that fluid plus the heat added to the fluid. Changes in the energy content of a fluid are important

in many applications. In some applications a fluid does work (e.g., turbines, windmills,

waterwheels), in other applications work is done on the fluid (e.g., pumps, fans, compressors).



l,l2 Internal Energy

The intemal energy of a mass of fluid is a macroscopic measure of microscopic (molecular, atomic,

and subatomic) energy content.

1.13 Kinetic Energlr

The energy associated with fluid in motion is called kinetic energy, E*. This energy is proportional

to the mass of fluid in the system, and to the square of the fluid speed, V. For a mass of fluid the

total kinetic energy is given bY

E. :! MV'.-x 2 (1.5)

The corresponding kinetic energy per unit mass is

^ -l ,rz (1.6)€r:1r t

and a kinetic energy per unit volume is given by:

p"r = plv', (l'7)

l.l4 Potential Energy

A change in the gravitational potential energy of a fluid occurs whenever the fluid moves with, or

against, the force of gravity. Suppose we chose a coordinate system with the z - ax i vertical'

Then the gravitational potential energy, Eo, of a small volume of fluid at height z , relative to

the potential energy the volume of fluid has at the origin, is given by

Ec= Mgz'

The potential energy per unit mass is given by

(1.8)

€G:82

10

(l.e)



and the potential energy per unit volume is

Pec: P9z. (1. l0)

1.14 Heat Transfer

Heat transfer is a discipline of thermal engineering that concems the transfer of thermal energy

from one physical system to another. Heat transfer is classified into various mechanisms, such as

heat conduction, convection, thermal radiation and phase-change transfer.

1.15 Conduction

Conduction is the transfer of energy through matter from particle to particle. It is the transfer and

distribution of heat energy from atom to atom within a substance. For example, a spoon in a cup

of hot soup becomes warmer because the heat from the soup is conducted along the spoon.

Conduction is most effective in solids-but it can happen in fluids. Fun fact: Have you ever noticed

that metals tend to feel cold? Believe it or not, they are not colder? They only feel colder because

they conduct heat away from your hand. You perceive the heat that is leaving your hand as cold'

1.16 Convection

Convection is the transfer of heat by the acfual movement of the warmed matter. Heat leaves the

coffee cup as the currents ofsteam and air rise. Convection is the transfer ofheat energy in a gas

or liquid by movement of currents. (It can also happen is some solids, like sand.) The heat moves

with the fluid. Consider this: convection is responsible for making macaroni rise and fall in a pot

of heated water. The warmer portions of the water are less dense and therefore, they rise.

Meanwhile, the cooler portions of the water fall because they are denser'

11



l.l7 Thermal Radiation

Thermal radiation is electromagnetic radiation emitted from all matter due to its possessing thermal

energy which is measured by the temperature of the matter.

Examples of thermal radiation are an incandescent light bulb emitting visible-light, infrared

radiation emitted by a common household radiator or electric heater, as well as radiation from hot

gas in outer space.

1 .18 Diffusion

Diffusion is one of the fundamental processes by which material moves. tt is thus important in

biology and medicine, chemistry and geology, engineering and physics, and in just about every

aspect of our lives. Diffi.rsion is a consequence ofthe constant thermal motion of atoms, molecules,

and particles, and results in material moving from areas of high to low concentration. Thus the end

result of diffusion would be a constant concentration, throughout space, of each of the components

in the environment.

1.19 Brownian Diffusion

particles with a diameter smaller then lpm exhibit irregular and random motion because their

masses are small enough to render fluctuation by the bombardment of gas molecules. As a result

of random motion particles as whole move toward to low concentration region from a high

concentration region. This phenomenon in which similar to gas molecules, is referred to as

Brownian diffusion of particles.

1.20 Thermophoresis

Thermophoresis, thermos-diffusion, or Soret effect, or Ludwig-Soret effect, is a phenomenon

observed when a mixture of two or more types of motile particles (particles able to move) are

L2



subjected to the force of a temperature gradient and the different types of particles respond to it

differently. The term "Sor6t effect" (or Ludwig-Sordt effect) is normally intended to mean

thermophoresis in liquids only. The word "thermophoresis" is most often intended to mean the

behaviour in aerosols, not liquids, but the broader meaning is also common. The mechanisms of

thermophoresis in liquid mixtures differ from those in gas mixtures, and are generally not as well

understood.

l.2l Lie Symmetry

The invariance of the dependent and independent variables of the system under transformation will

be discussed. Our main focus is special type of transformation, called Lie symmetry. A Lie

symmetry depends on continuous parameters which map each solution of the equation to another

solution of the same equation. Before we define a Lie Symmetry, we will state the more usual term

of any kind of symmetry for differential equations.

l.2l.l Definition: Symmetry

The symmetry of a given differential equation means a transformation which maps one solution of

the given differential equation to another.

Such a general definition of symmetry permits a huge variety of transformations under which the

differential equations can be invariant.

Lie introduced one of such transformations in the form of point transformations.

Lie's method leads to group-invariant solutions and conservation laws applied to partial differential

equations (PDEs). New solutions can be derived from known ones by exploiting the symmetries

of PDEs. PDEs can be classified into equivalence classes. Furthermore, group-invariant solutions

obtained via Lie's approach may provide insight into the physical models themselves and explicit

solutions can serve as benchmarks in the design, accuracy testing, and comparison of numerical

algorithms. Nowadays, the concept of symmetry plays a key role in the study and development of

mathematics and physics. lndeed, the theory of Lie groups and Lie algebras is applied to diverse



fields of mathematics including differential geometry, algebraic topology, bifurcation theory etc.

Lie's original ideas greatly influenced the study of physically important systems of differential

equations in classical and quantum mechanics, fluid dynamics, elasticity and many other applied

areas. The application of Lie group methods to concrete physical systems involves tedious

computations.

Consider the one parameter Lie group of infinitesimal transformations in (x,z,t,u,v,w,p,0)

given by

x* = x + efL (x, z,t,LL,'ti,w,p,0)+O (e2)

z * = z * e(2 (x, z, t,?1, v,w,p, 0)+o (e2)

t x = t * ef3 (x, z, t,lt, v,w,p, 0)+O (e2)

tt * = u * ep1 (x, z, t,LL, v,w,p, 0)+o (e2)

v * = v * ef (x, z, t, \t,v,w,p, 0)+o (e2)

(l.ll)

(1.12)

(1. l3)

(1.14)

(1. l s)

(1. l6)

(1. l7)

(1. l 8)

w * -- w * ep3 (x,z,t,u,u,w,p,0)+o (e2)

p * = p * ep+ (x, z, t,tl,'u,w,p,g)+O (e2)

0 * = 0 * e;f (x, z,t,1l,u,w,p,0)+O (e2)

where a is the Lie group parameter.

The associated Lie algebra of infinitesimal symmeffies is the set of the vector field of the form

74



x = (1 (x, z, t, LL, v, w, p, q * + * (x, z, t, LL,'t), w, P, il *

+ 13 (x, z, t, tt,'t), w, P, q * * t (x, z, t, lt, u, w, P, il *

+ li (x, z, t, 7t, "t), w, P, q * + lr' (x, z, t,'u, 12, w, P, q *

*pn(x,z,t,tt,'o,w,p,q*+ ps(x,z,t,'tt,'t2,w,P,il* (l'20)

The action of X is extended to all derivatives through the second prolongation

vQ) - x + pt*#rr#ulft+ uzh+ p?*,+ pzh+ plh,

+p2*+ p|h+ pih1 p\,fi+ uZ,#+ p\,fi+ ri,# (r.2r)

1.22 Uses and Applications of Lie Symmetry

Lie demonstrated that many techniques for finding solutions of differential equations can be

unified and extended by considering symmetry groups. Today, we know several applications of

Lie groups in the theory of differential equations. The most important ones are summarized below:

o Reduction of the order for ordinary differential equations,

. Mapping solutions to other solutions,

o Reduction of the number of independent variables of partial differential equations,

o Construction of invariant solutions,

o Construction of invariant solutions to boundary value problems,

o Construction of conservation laws,

o Detection of linearizing transformations of PDEs.

15



1.23 Nano-fluids

A nano-fluid is a fluid containing nano-meter sized particles, called nanoparticles. These fluids are

engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in Nano-

fluids are typically made of metals, oxides, carbides, or carbon nanotubes. Common base fluids

include water, ethylene glycol and oil. With a rich history of colloidal science and recent advances

in particle synthesis methods, Nano-fluids have recently been engineered for a rapidly increasing

number of applications. Nano-fluids are fundamentally characterized by the fact that Brownian

agitation overcomes any settling motion due to gravity. Thus, a stable Nano-fluid is theoretically

possible as long as particles stay small enough (usually <l00nm). Maintaining this size, however,

can be a challenge since particles frequently come into contact with each other - potentially leading

to the formation of large particle agglomerates which can settle out of suspension. The term Nano-

fluid' also indicates a mixture where the properties of both the nanoparticles and the base fluid

contribute to the application. In this sense, a Nano-fluid is created when nanoparticles are

controllably dispersed into a base fluid to enhance its properties.

Since Choi's seminal publication in 1995, the amount of published work dealing with Nano-fluids

per year has increased rapidly - growing at an average of around 32%o per year for the past five

years.

1.24 Nano-fluid Synthesis Method

A nano-fluid can be synthesized by mixing a Nano-powder in a liquid. In fact the process is more

involved. Carbon nanotube, metal oxide, carbide, nitride, and other Nano-powders can all be

readily purchased from Nano-material manufacturers. Due to their chemical inertness, these Nano-

powders can usually be handled outside glove boxes or other sealed containers during the

preparation of the Nano-fluid. Sonication at high intensity and over extended periods of time is

usually sufficient to break up the agglomerated powders and form a well-dispersed nanoparticle.
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Chapter 2

Lie Group Analysis of Magnetoyhdrodynamic Flow of Newtonian Fluid with

Temperature Dependent Viscosify Over a Stretching Surface

In this chapter, MHD flow of the Newtonian fluid with variable viscosity over a stretching sheet

with heat transfer is taken into account. The problem is solved using Lie-group method. Similarity

transforms are generated and checked for consistency on boundary conditions and equations' The

ffansform is then used to convert PDE to ODE. The ODEs are then solved using shooting method.

The chapter has two section. In first section, the problem is modelled using continuity, Navier-

Stoke's and energy equation. In second section, Lie symmetry is applied to solve the problem. In

this chapter, we have reviewed the article [l]

2. I Mathematical Formulation

Consider a two dimensional boundary layer flow with temperature dependent viscosity over a

stretching surface. The flow is supposed to be incompressible and no-slip condition is applied. The

flow takes place for y > 0, where y-axis is taken perpendicular to the plate along x - axis. Also,

the plate is maintained at temperature (, where ambient fluid temperature is I-. Using law of

conservation of mass, moment and energy, the basic equations are

Y.V =0
aip(+ +V 'VV) = -Vp + PY,V +i ,B
dt

AT
p"(+ +V 'vr1= kY2T'ot

(2.1)

(2.2)

(2.3)

Where V is the velocity vector, in two-dimensional r. e V = (u,v,O) , T is the

temperature, p is the density and p is the viscosity of the fluid, fr is thermal

conductivity, 7 is the joul current and E is the uniform transverse magnetic field. If

L7



p = 1r' (a + b(\ -f)) ,

where p* is the reference viscosity. The flow equation becomes

(,)

(,,)

(2.4)

Aufr
-+- = u-&q

-M -ffi taEaran Ea'i 4-
& @ parqq Pq' P

_aT -a7 a',T
u-+v 

- 
=d ------= t&qq'

along with the following boundary conditions [2]

(2.s)

(2.6)

(2.7\

here o is the electrical conductivity of the fluid, B" is the strength of the uniform magnetic field

and c is the constant. The variables in Eqs (2.5) - (2.8) hence dimensionless using the following

transformation

i =ci, i =0, T =\ atl =0,

il -+0, T -+T_ as! -+ y*,

lc- u v
tl;'' "=1'u:6'

u
l)=!-

p

(2.8)

(2.e)cxx:-. y=
ur"

where U, is the characteristic velocity and

The equations (2.5)-(2.7) become

is the kinematic viscosity.

,-T-r-T_ \-r_
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=0, (2.10)

(2.1r)

(2.12)
P, fu"

where u' =# is the Hartmann number, A =b(T*-L) is the viscosity parameter and Pr= #

is the Prandtle number. The corresponding boundary conditions (2.8) are

y = x,v =0,7 =l at y =9,
u --+ 0,7 -+ 0 as y --> @.

Using equation (2.10), the stream function can be defined as

(2.13\

-n{**@+ A(t-r11!", - u'u,
oy oy oy

I A2T

AY AYu(x,y)=:, v(x,y)=-;-.oy ox

Substituting (2.14) into (2.1l)-(2.12), we get

YrY, -Y,Y, + ATyY D - @ + AQ-D)Y )ry 
+ MzY, = 0,

Y yT, -Y ,Ty -*r,* : O,

with boundary conditions

Au Av

-+-Ax Ay

0u 0uu-+v-axfu
AT ATu-+v-0x Ay

(2.14)

(2.15)

(2.16)

Yr=X, Yr=0, T=laty=0,
Y, + 0, T -+0 as y -+a,

where subscripts denotes partial derivatives.

(2.t7)

19



2.2 Solution Procedure

Now we determine the similarity solutions using Lie-group method for which (2.15) and (2'16)

and the boundary conditions (2.17) are invariant and then similarity variables can be found by

using these symmetries.

Let us take one-parameter e Lie group of infinitesimal transformation in

(x,y,w,T) -+ (x* ,y' ,ty' ,T')

x' -- x + e|(x, Y;Y ,T) + O(ez),

y' = y * e( (x, y;Y ,T) + O(ez),

Y' = Y + er|(x, y;Y,T) + O(ez),

T' =T +e F(x,y;Y,T)+O(e2).

Where a is small Parameter.

A system of PDE's (2.15)-(2.16) satisfies a symmetry generated by the vector field

(2.18)

If remains invariant by the transformation (x, y; Y ,T) --> (x' , y' ;Y' ,T') '

The solution Y: Y(x,.y) and T =T(x,y) remains invariants under the symmetry Q'19) it

r =o*.c&.,t**r*r.

9,v -- X(Y -Y(x,Y)) =0 when Y =Y(x,.Y),

gr = X(T -T(x,Y)) =0 when T =T(x,Y)'

(2.1e)

(2.20)

(2.21)

Let us assume

A, = YrY, -Y,Y, + ATrY r-(a+ A(|-T))Y *+ MzY ,' Q'22\

L,, =Y ,7, -Y ,7, - !f, Q'23)



A vector X given by (2.19) is called Lie Point Symmetry vector field for (2.22) and (2.23) if

xl,llar) lo,=0, i =1,2,

where

xl'l = O!.5 !+rt+* F++rt' ++4, !+ r'' Ax 'ay ')ry - 0T '' 0Y, ' 0Y,

*no o +Fo o *r* o

' oY, oro oY *

o +F'o *n'-9-ar, or, oY, 
(z.zs)

(2.24)

is the third prolongation of X.

We need to differentiate (2.18) w.r.t each of the variables to get the prolongation of the given

transformation. For this, we have the following total derivatives.

Equations (2.24) produces the following system of linear PDEs.

AFY )ry-Y r4' +(Yo +M')q' + AY )ryFv +Y rTry +(ATr'Y,)rl' -@+ A(l-T))qw =9,

Dr=0,+Y,av +T,Ar+Yoay, +ToAr,+Yrd*, +.... ,

D, = 0, +Y yAy +TyAr +Y )yAy, +Tr0r,+YoO*, +....

-T"n'+\nY +YrF'-Y*F'-*ot =o .

The components 4', rf ,F,F,nry,TP,Fvv,rfry areto be found from the following

(2.26\

(2.27)

(2.28)
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q' = D,rl-Y,D"O-Y rD,C,

F" = D"F -T-D"O-T:D,C,

ry'" = D"ry' -Y t,D"O-Y tyD"(,

Ft" : D"Ft -Tt,DrO-TrrD"e , Q'29)

where s implies x andjimplies y.

Substituting (2.2g) irfio (2.27) and (2.28) and solving the obtained equations with the boundary

conditions (2.17), we get

0 =Crx, (:Cr, 4 =CtY tCy F =0 (2.30)

so the non-linear equations (2.15) and (2.16) have three parameter Lie group of point symmetries

which gives

x.=*!+v3-.x"= ! , 1g^= 3-- e.3t)--r ax at' " ay' " aY

Here, X, comprises of scaling that generates one parameter grouP, where X, and X, are the

translation. The entry inthe i'irow and j'hcolumn is elaborated aslX,,X,f: X,X, - X,X, .

The finite transformations corresponding to the symmetries X, , X, , and X, are respectively

22



Table 1: Solution of the invariant surface conditions (2.30)-(2'31\

Generators

Characteristics

g = (Qr,cPr)

Solution of the invariant

surface conditions

xl Q,/=V-nl/,
9r = -7,

Y = xG(y)

T: T(y)

x2 9, = -V,
Qr = -Ty

Y = Y(x)

T: T(x)

x3 Q, =l
Q, =0

N0 solution

Xr: x' = e"r x, !' = !,Y' = e"zY ,T' = T,

Xr: x' = x, !' = y * t2,Y' =Y,T' = T,

Xr:x'=x,f =!,Y' =YrT'=7, Q'32)

where €r,€z are group parameters.

Table I shows the solution of the invariant surface conditions (2.20) and (2.21)

For X, the characteristic,

6 = (Oy,Or) e$)
has the components

Qv = Y-.rY,,Or - -7, (2.34)

Thus, the solution of the invariants (2.20) and (2.21) are

Y =xG(y),r =7(.r,) .

Substitution from (2.35) into (2.15) and (2.16) yields

(2.3s)
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rdG\, _c{G .dr d'G Ao_rl>01.9 *M,4G -n e.36)'dY' dY'*"O O' -(4+--'- -" 4z 6:u'
d'T^ *prcil =0. Q.37)
dy' dy

The boundary conditions (2.17) will be

{ =1,6=o,T =r,!=0,
dy

dG 
-o.T-+oasv-)@.dy

For X, the characteristic (2.33) has the component

(2.38)

O* =-Yr, Qr=-Tr' (2.3e)

Thus, the solutions of the invariant surface conditions (2.20) and (2.21) are Y : Y(x) and

T:T(x), which contradicts the boundary conditions'

For X., the characteristic (2.33) has the component

0'=l' h =0 '

Therefore, no solution invariant under X, .

2.3 Numerical Scheme

(2.40)

The system of non-linear differentiation equations (2.36)-(2.37) with the boundary conditions

(2.38) is solved numerically by using the Runge-Kutta scheme based on shooting technique.

We take a:l in all calculations. From (2.14) and (2.35), we get
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u 
=d? ,u=-G(y),T =T(y) .xO

(2.41)

2.4 Results and Discussion

The impacts on horizontal velocity u/x for Pr:1.0 and varations of Hartmann number M are

appeared in Fig (2.1). It is observed that the horizontal velocity decreases by increasing M. The

variation of the horizontal velocity u/x with change in viscosity parameter A in Fig (2.2). Presently

it can be seen that the horizontal velocity increments by increasing A. The variations in the vertical

velocity for Pr:l.0, A:0 and the Hartmann number M. Fig (2.3) demonstrates that the veftical

velocity decreases by increasing M. The impacts of the Pr-1.0 with M:0, and different values of

the viscosity parameter A are discussed in fig2.4.It is seen that the vertical velocity increases by

increasing A. Fig (2.5) uncovers the impacts on the temperature profiles T for Pr :1.0, A:0 and

the Hartmann number M. We see that, the temperature increases as M increments. The impacts of

the temperature profiles T for Prl.0, M:0 and the viscosity parameter A. As found in Fig (2.6),

the temperature decreases as A increases. Fig(2.7) depicts the impacts of the temperature profiles

T for M=0 with A:0 and different values of Prandtl number Pr. It is seen that, the temperature T

reduces with an increase in Pr.
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X
Fig 2.1: Horizontal velocity profiles for M with A:0 and Pr:1.0.

240U'tu
v

Fig2.2: Horizontal velocity profiles for A with M=0 at Pr=1.0.
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Fig 2.3: Verticalvelocity profiles for M with A=0 at Pr:1.0.
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Fig 2.4:Vertical velocity profiles for A with M:0 and Pr:0.1.



Fig2.5: Temperature profile for M with Pr-1.0 and A=0.

021AA7u
Y

Fig 2.6: Temperature profile for A with Pr:I.0 and M:0.
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Figure 2.7: Temperature profile for Pr with A=1.0 and M=0.
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2.5 Conclusion

The steady two-dimensional incompressible Magneto-hydrodynamic (MHD) boundary layer flow

of variable viscosity over a heated stretching sheet including uniform transverse magnetic field

has been investigated. The system of non-linear partial differential equations are solved using Lie-

group method. The resulting ordinary differential equations are solved numerically using the

shooting method with R-k scheme of 4th order. The influence of the Hartman number M, the

viscosity parameter A, and the Prandtl numbe Pr for horizontal velocity tt/x, vertical velocity,

temperature profiles T were examined. It has been observed that

in the Hartmann number M.

increase of the viscosity parameter A.
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Chapter 3

Boundary Layer Flow of a Nano-fluid Over a Stretching Surface with Slip

Coefficient

This chapter is formulated to investigate the flow of MHD nano-fluid over a stretching surface

with slip effects in porous medium using Lie Symmetry analysis. The governing equations

describing law of conservation of mass, momentum and energy are converted to system of ODEs

using similarity transform. Generators formed are checked for consistency. Equations are solved

numerically and graphical results are displayed.

3.1 MathematicalFormulation

The equations for conservation of mass, momentum, thermal energy and nanoparticle fraction for steady

incompressible boundary layer flow are described as follows [4]

Y.V =0, (3.1)

pre# +v .vV1= -vp + pYzV + B, Q.2)

O4 r(# +v .vr1 = kvzT + (pc) o.fDuvc.vT + 1211vrf 1, (3'3)

(T.v.vc1= DaY2c +1l1grf1, (3.4)

where Z is the velocity of the fluid, t is the time and P,lLk,c are the density, dynamic

viscosity, thermal conductivity and volumetric volume expansion coefficient of the Nano-fluid,

(pc) is the heat capacity and subscri pt ' p ' is for particle and ' / ' stands for base fluid' Further,

the equations (3.3) and (3.4) consist of Brownian diffi.rsion coefficient.
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ou *fu =0. (3.5)
Ax Ay

Ou Av O'u t ,t), ,oB^2,u?+v?=u--Yu'-(:)u-1:-:-)u, (3'6)
0x Ay Ay' 'k' 

P

,{*u{=aYzr +11D,y+*f?>f{>\, (3.7)
Ax Ay - "Ayry T- 0Y

u**,*=D,**(+)(+), (3'8)
0x Ay " q' 'T- ry'

Where, o = & is the thermal diffusivity of the fluid, u is the kinematic viscosity coefficient

_ (p)p
and r : 6. The boundary conditions [3] of Equations. (3.5)-(3.8) are taken to be

u = o,tt = cx + l*,r = T*,c = c. at y = o,
oy

u --> 0,7 -+ T-,C --+ C* as y -) co .

The stream function Yare introduced as u=ff,v=-#, which satisfies Eq. (3.5). Eqs. (3.6)-

(3.8) can then be written as

YrYo -Y,Y r-Y )yy+y(Y r)'+ DY y+M2Y r=0, (3.10)

y rT,-v,rr-lr,-- NrerTr-Nb(T)2 +M2Ec(Y r)' =0, (3.11)

Y,@, -Y,o, -**r-#r, =o . (3.12)

Also from equation (3.9), we have

Y, = 0,Y, =l+ lY yy,T =T*,C =C. at ! =0 , 
(3.13)

Y, + 0,7 -->T-,C -+C- as y J@,

where subscripts denotes partial derivatives.

(3.e)
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3.2 Solution of the Problem

Lie-group method are being used to find the similarity solutions for which (3'10)-(3.12) and the

boundary conditions (3.13) are invariants, and then similarity variables can be found by using these

symmetries.

Let us take one-parameter e Lie group of infinitesimal transformations in

(x,y;Y,T,C) + (x',y';Y',7',C'1 as

x' = x* e$(x,y;Y,T,C)+O(ez),

y' = y * €( (x, y;Y,T,C) + O(ez),

Y' = Y + eq(x, y;Y,T,C) + o(e'),

T' =T +e Fr(x,y;Y,T,C)+O(ez),

C' = C + eFr(x, y;Y,T,C) + O(e'),

where e is small parameter.

A system of PDEs (3.10)-(3.12) satisfies a symmetry generated by the vector field

(3.14)

x =o**s*,.r*.r*.r* (3 rs)

If it remains invariant by the transformation (;r, y; Y ,T,C) --> (x' , y' ;Y' ,T' ,C') .

The solution Y:Y(x,-y),T:T(x,y)andC:C(x,y) are invariants under the symmetry

(3.15) if equations (2.20) and (2.21)with g, = X(C -C(x,y))= 0 when C =C(x,y) satisfies.

Assume

Ar=YrYr-Y,Yr-Yyyy+y(Yr)'+DYy+MzYr=0. (3.16)

Lo =Y ,7,-Y,Tr-*r*- Nto yTy- Nb(T)2 + M2Ec1Y ,)2 :o , (3.17)

L, =Y rc,-YSr-*r*-#rr:o . (3.18)



A vector X in (3.15) is called Lie Point Symmetry vector field for (3'16)-(3.18) if

xl'l1lr) lo,=o,i =3,4,5 ,

The compon ents q' ,qr ,4' ,4, , 4' ,4, ,rl', ,4D ,4D , 4o ,4- are to be find as follows.

(3. r e)

where

yttt - O!*C !*r!* nL+ F,L+r7' L-+r:, 3-* n'++ r,' *'ax'' oty'-'ar'-'ac '' ov, ' ovy 'or, 'or,

+F: ++Fl ++r1 -9-+ryo L-*4'+*F{ ++ry -9-, (3.20)''' ac, ' '' oc, ov,y ' ovw ' oro ' oco ov* '

Is the third prolongation of X.
We need to differentiate (3.14) w.r.t each of the variables to get the prolongation of the given

transformation. For this, we define the total derivatives as

D*=a,+YP {,E e ,4 *Yr,a T+oQC+ ,,0c ..*:l.r^ 
(3.21)

Dr=0r+YrQ {r4 € rQ *\*,A T+rr4C+ rrA, *Wr1..

Equations (3.16)-(3.18) produce the following system of linear PDE's

-Y orl' +(Y, +2Wy+ Mz + D)qv +Y r0o -Y,rl' -lw =0 , (3.22)

-Trn' +(\ +2M2 EcY r)q' -(Y , + NtC, +2MTr)4' - NtTyF2v - il t- : 0 , G'23)

-crT'*C,e'+Fr'Yr-Fr'v',-#rt -*rr':o. Q'24)
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ry" = D"ry -Y,D,t-Y yD"C ,

Ff = D"Fr-T,D"t-TrD,C ,

Fr." = D"Fr-C,D,0-CrD,( ,

qt" =D"rlt -YrD"t-YrrD,( ,

Frt" -_ D,F/ -T[D,t-TryD"( ,

Frt' = D,Fzt -Ct,D"t-CrrD,C ,

(3.2s)

where s []implies x andj implies y.

So the nonlinear equations (3.6)-(3.8) have the three-parameter Lie group of point symmetries

generated by

AA
Xn=**r- , (3.26) Ioxoyr
u -O O (7,')1\ I

^s --t-T- , (3'27)
oy ov/

aa
X, =;* * 

Ar , 
(3.28) ,

^aX, =;*, 
aC 

. Q.29)

The finite transformation corresponding to the symmetriesXn, X5,X6,X, are respectively
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Table 1: The invariant surface conditions

Generators Characteristics

g=(9r,QpQc)

Solution of the invariant

surface conditions

x4

9o = -xVy
gr=-Tr-xT,
g, =-C,-xC,

Y: xG(y)

r: T(y)

c:c(y)

xs

Qo =l-V,
9r = -7,

9c = -C,

Y = Y(x)

T = T(x)

C:C(x)

x6

9, =-V,
9, =l-7,
Qc =-C,

N0 solution

x7

9o = -V,
9r = -Ty

9, =l-C,

N0 solution

r = x + t,s = x€ + ! e', 7 1r,s) = V,g(r, s) = T, h(r,s) = C,

r = x,s = y + x€, f(r,J) = e +ty, g(r,s) =T,h(r,s) = C,

r = x,s = y + xs, f(r,s) - V,g(r,s) = e +T,h(r,s) = C,

r = x,s = y + xe, f (r,J) = V,g(r,s) =T,h(r,s) = e *C

Further, by using the steps taken in previous chapter, Eqs. (3.10) -(3.72) are hence

transformed to

(3.30)

(3.3 l )

(3.32)

(3.33)
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f"' + .ff" - M'f'- Df'- F(_f')' =0 ,

!r" * f o' + Nbe'o'+ Nt(o')z + M27y'yz =g ,
Pr

@" + LefQ'* !!-e" =o .

Subject to the boundary conditions

(3.34\

(3.35)

(3.36)

(3.37)

(3.38)

(3.3e)

"f(0) = 0, f'(0) =l+ 1f"(0), A(0) = l, O(0) = I ,

f'(ry)=0, o(q) =o as ry ->6 '

Also , the four parameters are expressed as follows

c, = fu , xu, : 
d:--*),sh, = D#C_),

Here, Le and Pr denotes Lewis number and Prandtl number whereas Nt and Nb are

thermophoresis parameter and Brownian diffusion parameter respectively. We notice that when

Nb and Nt are zero, Eqs. (3.22) and (3.23) involve just two dependent variables, namely f (r7)

and 0(a).

Quantities of particle interest are the skin-friction coefficient C , , the local Nusselt number Nu,

and the local sherwood number SL that are given as
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where rw,gw,em are the shear stress, heat flux and mass flux at the surface. Here, we use

variables given in Eqs. (3.17), we get

(2Re,)'/2 = f"(O),(2ke,)-t'' Nu, = -0(0), ge,/21tt2 Sh, = -C/(0) , (3.40)

where Re, : Ux/v is the local Reynolds number. In the present context (Re,)-rl2Nu, and

(Re,)-rl2sft, are referred to as the reduced Nusselt number and reduced Sherwood number

denoted by Nur and Shr, which are represented by -et@) and -o/(0) respectively.

3.3 Results and Discussion

Fig. (3.1) shows the velocity profile f'(r7) for different values of Hartmann number M. It is noted

that an increase in Hartmann number causes an increase in the velocity f'(rt). The velocity profile

f'(q) has been taken for various values of slip parameter ), . It can be seen that increase in the

slip parameter 2 causes decrease in the velocity profile f'(rl), as shown in Fig. (3.2).

The effects of velocity are taken against Brownian diffusion coefficient D*Fig. (3.3) displays

that the velocity f'(r1) decreases with increase in Brownian diffusion coefficient Dr.

The influence of the change of slip parameter ). for the temperature profile is studied. Fig. (3.a)

indicates that the temperature 0(r7) increases with increase in slip parameter ). .Fig. (3.5) shows

the influence of the temperature 0(t) for Hartmann number. The increase in Hartmann number

causes increases in temperature 0(ry).The Brownian diffusion coefficient D, demonstrates the

variation in the temperature profile 0(r7) . Hence, Fig. (3.6) indicates that the temperature 0(q)

decreases with increase in Prandtl number. As it is noticed that the concentration increases due to

the increase in Brownian diffusion coefficient Du in Fig. (3.7). Fig. (3.8) reveals variation of the

concentration i(D. The concentration increases with an increase in slip parameter A.

Fig. (3.9) illustrates the variation of the concentration $(il .As, increase in Prandtl number causes

an increase in concentration. Table I shows the solution of the invariant surface conditions (2.20)
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and (2.21).

Fig 3.1: Velocity profile for M=0.1, 0.3, 0.5 .

Fig3.2: Velocity profile for ),=0.1, 0.3, 0.5 .
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Fig 3.3: Velocity profile for D=0.1, 0.3, 0.5 .
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Fig 3.4: Temperature profile for ), =0.1, 0.3, 0.5 .
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Fig 3.5: Temperature profile for M=0.1, 0.3, 0.5 .

Fig 3.6: Temperature profile for Pr=0.1, 0.3, 0.5.
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tig3.7: Concentration profile for D=0.1, 0.3 , 0.5 .
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Fig 3.8: Concentration profile for ),=0.1, 0.3,0.5.
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Fig 3.9: Concentration profile for Pr=0.1,0.3, 0.5 .

3.4 Conclusion

In this chapter, we have concentrated on the flow of MHD nanofluid over a stretching surface

along with slip effects in a permeable medium. The equations are modelled and utilized Lie

symmetry method to tackle the problem so formed. The system of non-linear partial differential

equations have been transformed into ordinary differential equations using Lie group method. The

resulting equations are solved numerically using the Runge-Kutta scheme. Graphical results

display the effects of different emerging parameters on temperature concentration and velocity.

It has been observed that

Hartamann number M.

as well, whereas velocity decreases with the increase in the value of slip parameter )' .

DB.
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