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Preface
Flows of non-Newtonian fluids have been extensively studied in recent 
past because of their importance in technolo^^  ̂and industry. In particular 
these ^ows can be found in ]ournal bearings, commercial viscometers, 
swirl no^^les, chemical and mechanical’ mixinج equipment and electric 
motors, ^he relationship between stress and strain for non-Ne^onian  
fluids is mostly represented by nonlinear differential constitutive 
equations. The commonly used non-Newtonian models are due to Maxwell 
1], ^reen and T obolsk ه ,[2]  l d r o y 3  Giesekus [4-7], White and ,[ه [

^et^ner [8] and Phan-Thein & Tanner [10 ,و ]. ?han-Thein ظ Tanner (PTT) 
model is fairly simple quasi-hnear viscoelastic model constitutive 
equation, which was derived using n e ^ r l  theory by Phan-Thien and ؛
Tanner. This model, incorporates not only shear-thinning shear viscosi^  
and normal-stress differences but also an elon^ational parameter e and so 
reproduces many of the characteristics of the rheology of polymer 
solutons and other n on -N e^ n ian  hquids. The elongational parameter 
imposes an upper limit on the elongational viscosity, which is inversely 
proportional to G. When e goes to ^ero the PTT constitutive equation 
reduces to the ]ohnson-$egalman model without the presence of the 
solvent viscosi^, while the simpli^ed form of the PTT model is equivalent 
to the upper convected Maxwell model. The PTT model is being employed 
increasingly to predict the ^ow and heat transfer of viscoelastic fluids, 
decent papers include those of Oliveira and Pinho [11], ^Ives et al. [12], 
Mir^a^adeh et al. [13] and Hashemabadi et al. [14]. The anal^ical 
solutons for e lem en ta l ^ows of non-Ne^onian ^uids using the 
nonlinear differential consti^^tve equations are of considerable 
importance because of the fact that they offer a simple way of checl^ing the 
ability of the chosen non-Newtonian model to represent some specific 
behavior and are also useful to prescribe inlet and outlet boundary 
conditions in numerical flow simulations and to validate numerical 
prediction. Some recent studies on the anal^ical solutions of different 
non-Newtonian constitutive equations can be found in refs. [15-26]. 
Keeping the above facts in mind we in this d issectio n , present the exact 
analytical solutions of PTT constitutive equation for two types of 
elem en ta l ^ows i.e.. I) fully developed pipe and channel flow 11) 
tangential flow in a concen^*ic annulus. The dissertation is organised ^s 
follows.



Chapter 1 includes some basic definitions, equations and concepts 
regarding polymeric ^uids. Fully developed channel and pipe flows of PTT 
fluid are analyzed in Chapter 2. In chapter 3 purely tangential flow of PTT 
^uid in a concentric annulus is presented. A comprehensive bibliography 
is included at the end of the dissertation.
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Chapter 1

Preliminaries

In this chapter we will present ^©^e basic definitions and flow equations which are 

used in the subsequent chapters. The part of this chapter î  based on the material 

from i^ernet and [^ال.

1,1 Fluid mechanics

It is the branch of science that deals with nature and properties of the fluid both in 

motion and r^st.

1.2 Flow

A substance or material goes under deformation in the presence of different forces. If 

the deformation exceeds continuous^ without limit then thi^ phenomenon is known 

as flow.



1.3 Fluid

A fluid is a substance material that deforms continuously under the action of 

applied sheai stress.

1 Velocity field ا4.

In dealing with fluid motion, we shall necessarily he concerned with the description 

of velocity field, !n general at given instant the velocity field u is function of space 

coordinates X, y, z and time t. The velocity at any point in flow field might vary from 

one instant to another. The complete representation of velocity field is given

u  = u { x , v , z , t ) ,  (1-1)

or

u ^u{x, y, z,i)i + v{x, y, z w{x, y, z + زو, , (كار. (1.2،

1.5 Classification o f fluids

There are two main types of fluids

1.5.1 Ideal fluids

A fluid for which viscosity is zero is termed as ideal fluid. An ideal fluid î  flctitiou^ and 

does not exist in nature however many fluids under, certain engineering applications



show negligible viscosity effects and can be treated as ideal fluids.

1.5.2 Re£il fluids

1̂1 fluids for which the viscosity is not zero are known as real fluids. These are further 

divided into two main classes.

N ew tonian fluids

Ail fluids which satisfy the Newton’s law of viscosity are called Newtonian flmds. The 

Newton’s law of viscosity is stated as “shear stress is directly and hnearly proportional 

to rate of deformation”. ^or a steady one dimensional flow between two parallel walls 

driven by the motion of upper wall

u='u(y)i (1.3a)

and therefore Newton’s law of viscosity takes the form

٣٧® ٠٤ مزق ١ (ل-رطة

or

where ٣٣ is the shear stress acting in the plane normal to y-aods and in the direction 

parallel to 3؛-axis and fi is constant of proportionality, kno^m as absolute or dynamic 

viscosity, ^ater, air and gasoline are examples of Newtonian fluids.



N on-N ew tonian fluids

All fluids which do not obey Newton’s l^w of viscosity are called non-Newtonian 

fluids. These types 0؛ fluid obey the power law model in which shear stress is directly 

but !^onlinearl^ proportional to the rate of deformation. Mathematically,

سلأ)’”^١■ ق(

■ (ل-رء

where n is called the flow beha^or index and k is the consistency index. Examples 

of non-Newtonian fluids are shampoo, gel, blood etc.

1.6 Kinem atic viscosity

It is the ratio of the viscosity to density of the fluid, and it is given as

1.7 B ody force

The forces which do not require any physical contact wi^h boundary and distributed 

over the whole volume of the fluid are known as body forces. Gravitational and 

electromagnetic forces are categorized as body forces. These are in fact long rang 

forces.



1.8 Pressure

Pressure is the surface force that acts normal to the area under consideration. The 

force per unit area is called pressure. Let A is the surface area of جuid and F is 

magnitude of force acting normal to surface, the^ pressure F due to the force on unit 

area of this surface is defined as

1.9 Governing equations

1.9.1 Equation of continuity

The mathematical form of law of conservation of mass for £luid is known as equation 

of continuity. It has the following form

^  + v.(pu) = 0, (1.8)

and for incompressible fluids it reduces to

v .u  = 0. (1.9)

1.9.2 Equation of motion

The motion of fluid is governed by law of conservation of momentum. The application 

of this law to an arbitrary control volume in flowing fluid yield the following equation



commonly known an equation of motion.

م أ  =  -V p  + divT + /jb. (1.10)

In a^o^€ equation T î  Cauchy stress tensor and b is^body force ^er unit mass.

1.10 Flow phenom ena in polymeric liquids

l.io.l The chemical nature of polymeric liquids

A macromolecule (or polymer) is a large molecule composed of many small simple 

chemical units, generally called structural u^ts. In some polymers eaeh structural 

unit is connected to precisely two other structural units, and the resulting chain 

structure is cك led a hnear macromolecule. In other polymers most structural units 

are connected to two other m îts, although some structural units connect three or 

more units, and we talk ©؛ branched molecules. Where the chains terminate, special 

units called end groups are found, ^or the sake of completeness we me^ion also that 

in some macromolecular materials all structural units are interconnected resulting in a 

three-dimensional cross-hn^ed or network structure rather than in separate molecules.

It is sometimes useful to distinguish between sy^hetic and natm-al (biological) 

macromolecules. Many synthetic polymers are built from a single structural unit, 

and the polymer is then referred to as a homopoly^er. Epical examples of sy^- 

thetic homopolymers are polyethylene, polystyrene, and poly^inylchloride. In con- 

trast copolymers are built f٢om two or more different structurلخ units. According to



the manner in which the structural units combine, copolymers are further classified 

as random copol-copolymers, block copolymers, or graft copolymers, ^he motivation 

for producing copolymers is to obtain materials with a wider range of mechanical 

properties than is possible with the homopolymers alone.

1.10.2 Non-Newtonian viscosity

?robably the single most important characteristic of polymeric liquids is the fact 

that they have a "shear-rate dependent" or "non-Newtonian" viscosity, ^tifl different 

behavior is shown by fluids that will not flow imless acted on by at least some critical 

shear stress, called the yield stress. We call these viscoplastic fluids. Certain types 

of paints, greases, and pastes are examples of viscoplastic fluids.

1.10.^ Normal stress effects

.ء . ^٧٠̂



that to a first approximation polymeric fluids exhibit in addition to the shear s tre s s  

an extra tension along the streamlines, that is, in the (1) direction. It was shown 

by Weissenberg that the simple notion of an extra tension along streamlines ^ay 

be used to obtain qualitative explanations of a large number of experiments. In 

terms of chemical structure, the extra tension along the streamhnes in polymeric 

fluids arises from the stretching and alignment of th^ polymer molecules along the 

streamhnes. The thermal motions make the polymer molecules act as small "rubber 

bands’' wanting to snap back, and it is in this way that the extra tension arises. The 

second normal stress difference has been found experimentally to be positive, but 

usuaDy ^uch smaller than the magnitude of the first normal stress difference. This 

means that in a shear flow the fluid exhibits a small extra tension in the (2) direction. 

A simple structural explanation for this extra tension is lacking, and the simplest 

kinetic theories of polymeric fluids are not capable of describing this effect; more 

elaborate theories are successful, however. We emphasize that the second normal 

stress difference is quite small, and it is normally observable only in situations where 

the first normal stress difference, for geometrical reasons, has no effect.

1.10.4 Rod-climbing

In this experiment we insert rotating rods into two beakers, one co^^ning a ^ew- 

tonian liquid and the other a polymer solution. We see that the Newtonian liquid 

near the rotating rod is pushed outward by the centrifugal force, and a dip in the 

liquid surface ^ear the center of the beaker results. This is typical of the flow near



the rotating shaft of a stirrer. The contrasting ^eha^ior of the ^oi^^^er solution is 

^tril؛ing. ^he ^ o l^ e r  solution no^es in the o^^osite direction, toward the eenter of 

the hea^r and climbs ٧٢ the rod. ^oreo^er, for con^^arahle rotational speeds, the 

response of the polymer solution can he far more dramatic than that of the ^e^onian 

لا٩ uid.

1.11 Dim ensionless groups in non-newtonion fluid 

mechanics

In Newtonian fluid mechanics the Reynolds nuniber appears as a dimensionless group 

that may be interpreted roughly as a ratio of the magnitude of inertial forces to that 

of viscous forces. In any given flow situation other dimensionless numbers may arise 

(for example, geometric ratios), but the R^yriolds number is generally the most i^- 

portant dime^ionless group. Dimensionless groups are particularly useful for scaling 

arguments ar̂ d also for cataloging the flow regimes, ^or example, in tangential aimu- 

lar flow ص h the inner cylinder rotating, one can make visual observations and then 

determine the ranges of Reynolds numbers and radius آ ف tiهs for which one has laminar 

flow, Tylor vortices, undulating vortices, and turbulence, ^or viscoelastic fluids the 

key dimensionless group î  the Deborah number, introduced b^ Reiner, ^hi^ number 

may be interpreted as the ratio of the magnitude of the elastic forces to that of the 

viscous forc^. It is deflned as the ratio of a characteristic time (or "time scale") of 

the fluid, A, to a characteristic time (or "time scale") of the flow system, م ٤ ذ



م6  =  — . a . i i )
tjlov,

The characteristic time ه£ the fluid î  often taken to be the largest time constant 

describing the slowest molecular motions, or else some mean time constant determined 

by hnear viscoelasticity. Sometimes the characteristic time is chosen to be a time 

constant in a constitutive equation. The characteristic time £or the flow is usually 

taken to be the time interval during which a ty^ic^ fluid element experiences a 

significant sequence of kinematic events, sometimes it is taken to be the duration of 

an experiment or experimental observation. If the flow following a materia] particle 

is steady, then the characteristic time is taken to be the reciprocal of a characteristic 

strain rate. A second dimensionless group, the Weissenberg number, that is sometimes 

used in polymer fluid dynamics involves a ratio of A to this second characteristic time. 

The ^^eissenberg number is defined by:

We = \ k (1.15)

where كا is a characteristic strain rate in the flow. For many problems, however, 

there is only one chةra€t€آ iفtic time that can be identified, and for these problems we 

choose to use the Deborah number as the dimensionless group. Two limiting values 

of the Deborah number can be identifled with classical mechanics. If the Deborah 

number is small, then thermal motions keep the polymer molecules more or less in 

their equilibrium configurations, and the polymeric fluid shows only minor qualitative 

difierences from a Newtonian fluid. We say that ^ew^onian fluid behavior is obtained



in the limit De —> 0. Conversely, if the Deborah number is large, polymer molecules 

that are ^istorte^ by the flow will not have time to rela^ during the time scale of the 

process or experiment. In the limit De —ح oo the experiment happens so fast that the 

polymer molecules have no time to change configuration, and the fluid behaves more 

or less as a Hookean elastic solid.





Chapter 2

Exact solution for fully developed

flow of Phan-Thien-Tanner fluids

In this chapter analytical solutions are obtained for velocity field, the components 

of stress and the function of viscosity for Phan-Thien-Tanner (PTT) fluids in fully 

developed channel and pipe flow. Here analysis is performed for the PTT equation 

invovling both the linearized and the exponential forms. It is observed that shear 

stress at the wall in PTT fluid is very small according to the value of Newtonian or 

upper-convected Maxwell fluids. This chapter is based on the co^ents of ref. [11],

2.1 The fluid model

The constitutive equation for Phan-Thien ظ  Tanner (PTT) fluid [9] is written in the 

general form as

f ( tr {r) )T  + At = 22.1) ,ص ) 

15



where A is the relaxation ti^e, r  is the extra-stress, is a constant viscosity cofficient, 

D is thedeformation-rate tensors and r  de^ot^ Oldiroyd’s upper-convected derivative 

given by

r  =  Du/D، -  r .V u  -  V u^.r. (2.2)

The linearized PTT model assumes the £ س ه1ل0ج  form £or /(،r(r))  i.e.,

/ ( 2) ,( ي+ل آء آء)) = ص آ( .^)

while for exponential PTT model

f{tr{r)) =  exp tr(r)^  . (2.4)

The parameter ع appearing in (2.3) and (2-4) is related to the extended behaviour of 

the fluid model. Also it should be noted that the linearized form (2.3) can be deduced 

h*om exponential form (2,4) and when ع vanishes if the trace of the stress tensor is 

small and that both the linear and exponenetial forms reduce to upper-convected 

Maxwell (UCM) model.

2.2 Analytical solution

The analysis presented here holds for axisymmetric pipe flows and channel flows 

in two-dimension. However, for simpliflcations we present it here ^^th the suitable 

modifications required for pipe flow presented through specific parameters for the 

planar case. Let u  and V denote the velocity component in streamwise and cross- 

stream radial directions respectively. The flow is defined such that y  is representing 

either a radial or a transversal coordinate i^ {x, ?/)-plane. The ^ = H is the wall



and symmetry line is located a,t y = 0, H is half of the pipe radius or the channel 

^ d th . ^ere an index ^ th  comma is presenting a partial derivative and a superscript 

j  identifies the flow case with j  — 0 for channel and 1 — و for pipe flows, ^he velocity 

field depends on the coordinate y in developed flows, ^he no-slip condition at the 

wall and equation of continuity gives V = 0. Where stress tensor T is given by

(2)؛؛•

(2-6 )

آ ء ء  ‘T ' x y  

٢ ٣  T y y

٣  =

tr{T) = r̂ a: + ryy,

with its trace defined

(2.7)'T'kk'=' x̂x+' ŷy

Let us define

(2.8)D = Vu + Vu^,

^ince

= [لآ(اأ)ء0ء0;(2.9)

and

(2.10)
٥ ^

0 0

0 0

therefore

V = ء = u

٥ g_

or steady flow du/dt = 0ء ؛  = 0 and further (u .^ )u^

(2-11)
V
T ء  —T.Vu — Vu^ .T .



(2.12)

(2.13)

0 0

0 ' ءءآ0 x̂y

٣ ٣  T y y

VT =

-لأ§ق ه

1 + ة٠
2قرم ٠

In view of (2.7), (2.8) and (2.12), Eq. (2.1) can be expressed

̂" ءءآ٨٢^ ؛و xy 

' ŷx ٢٧٧

^ro^ above equation we €aه  write

/ ( (2م1بم ءآ)سآ2مآومثمآح  ءء

f{rkk)ryy = Q, (2.1ه)

f{rkk)rxy = w,y + ^TyyUy, (2.1^)

Eq. (2.15) yields T y y  = 0, sinee /(rfcfc) 70 نح. Therefore Tkk = ؟XX’ The longitudinal 

momentum equation for the ءow under consideration read

dp Otxx (2.17)x y+dx dx

This خ
dr

ل-ء و

Integration of Eq. (2.18) and utilizatilizing the conditions at the boundr^  ̂for y = 0,

we have Txy = 0, which ^elds

(2.1و)



The above equation can be put into the form

where for pipe flow

ت = ا

and for the channel flow

MultipHcation of Eq. (2.14) by and Eq* (2.16) by and by subtraction, we

ة ء• ؛ة-لل أ سآ = ؟ء

We observe that Eq. (2.^1) is in accordance with the boundary condition required 

at centerline, i.e., for y = 0 we have T x x  = 0. Prom Eq. (2.16), Eq. (2.2ه ) and Eq. 

(^.21) we can write

Uy = ^ f { r . . ) r ^ .  (2-22)

With the help ofEq. (2.21) we obtain

ئ)ء..ؤ اتءء (ا ءآ  ءأ

ءءآ(ء)قج ■ء“'

لإ,ءآ =

or

du
dy

In order to get the velocity profile as the function /  is specified, we see that the above 

equation is an ^phcit form of differential equation in y .



(2.25)

(2.26)

(2.27)

(2؛.

2.3 Linear P T T  model

For PTT model in linear form, the funtion /  is expressed by Eq.(2.3) i.e.

Thus in Eq. (2.24) the right side becomes

لإ■)، ) ج؟ مج؟(ر) = ل + ب ق
This imphes that

)ء■ لإ) ^ي(ه ) - 2ت

Integration of above equation gr

و• ء ء ءأ + «سم=ء.ه + ء
Using the conditions at the wall i.e..

u{y) = Qa.ty = H,

we can easily £nd the value of c

أ''<’+م (بم ' مح-ء’ا+ آ »ء “ا-

Finally

Scaling the gaps with respect to H  , the velocities with cross-sectional average veloci- 

ties ة  and pressure or stresses with r)u/H, we get the non-dimensional velocity profile

[رة’زا،هم'م(ة:(2.29) - ء( - ح م



Define

(ة-رهة

Squaring both sides

و(و■ ء = م ءب
Using the above values in £٩. (2.28) we find

(2.32)

where كم take the value ل.  ̂for plane flow and the value 2 for axisymmetric flow. In Eq.

(2.32) the parameter UN is defined by Eq. (2.3ه) is representing the cross-sectional 

average velocity for the upper-convected Maxwell flu^d or the Newtonian cases. Note 

also that Un / u is nothing other than a pressure gradient in non-dimensional, ^he 

De = \u /H  is the Deborah number in dimensionless g^oup, it is a measure of the 

level of elasticity in the fluidj and is basic^ly the velocity u w^ch is the average 

velocity. For E= 0 or — 0, the Eq. (2.32) takes the form to the known profile in 

parabolic, with a maximum velocity present at the centreline given as ( ءآ = زس م)م  

- ^he second term present in the brackets of Eq. (^.32) represents a corrective term, 

infact to the parabolic profile, and is attached to the PTT model.

^he pressure gradient -p x is usually not known but it can be related to the cros^ 

sectional average velocity via the definition of flow rate. According to Bird et al. (21 . 

we define

ص, (2-33) ة(،ه ق ك م ¥ ء



)م ب<ء’ئ’ا] ح (م ق' ج سما ه[رب / م

or

u

Integration yields

ل■)(2.35) أ؛و ة ق (ث ح- م -و
For the inverse problem solution, the evaluation of the pressure difference ^ r  a given 

flux, it is advantageous to work with the normahzed velocity pro^le (2.29) which 

needs to be integrated to yield the following non-dimensional cubic Eq. for u^/u  i.e.,

(رل + ^ر (د + مح 2د+كءل= مب>[ه(و’■(2.36)

The left hand side ofEq. (2.36) equal one both for channel and pipe ^ w  and therefore

we

(2.3?)

(2.38)

UN1 + 6^٧٨٢

with

ء. = ة و ح م ع ح م ء ء
(5+د)

Eq. (2.37) shows that UN < u .

This implies that the flow rate for a ^TT fluid is higher then for a ^ewto^an 

fluid for an identical pressure gradint. This is because of shear thinning behaviour of 

?TT fluid. Now we apply Cardano-Tartaglia formula on Eq. s (2.37) as follows:

Let z = un/ u a^d m = n =  1/b, then Eq. (2.37) reads

.mz = n +(2.3و)

^sing the transformations



(2.40)

we can write

which sv

(41-2) .0= )ؤ )م- ^- « م( )

The above equation is a quadratic equation, in ،ة and can be easily solved to give

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

Using the positive root for the real solution, we get

m? 3 /ص/n
■27 + = ،V2  + V T

For this value of ،, w e  can easily hnd the required value of u i.e.,

3 / n Iri^
“ = V “ 2 + V T + 2 7 ■

Having in hand the values of، a^<i u we lind the foliowing value of

- 3/ي + _ 3ا_ا ب ع
2ه (108ص)مل V 2، (ل̂$له)مل’

or

ء ز م/ض ب م _ا ) أ/3_ _ ] ء ء
(2هو')

«3؛؛6 + 4; ء = 3ملهمئ; ة = ؛/؛،، + =

where

^ tu r^ n g  to the original variable we have

م-2مل)  „-،، (423)ءال(م
u~ 6،ءئات’م



Eq. (2.47) gives the explicit relation for the pressure gradient as a ؛nn^ion of the 

cross-sectional average velocity u, the main results of the £inalysis for the Unearized 

PTT ^uid are therefore the velocity profile (2.28) and (2.2و), the flux £٩, (2.35) and 

the unknown driving pressure gradient at given flow rate obtained fron  ̂ (2.47). The 

maximum velocity at the centreline (y = 0) is also useful and is given by

م6ة(مءآ/تبم(2.48) ه ع خ+ 4وث
u بم(ة/لآ)ة 1 + م

showing that it is smaller than in the Newtonian case. Expressions for the normalized 

stress components are readily obtained after scaling with the wall shear stress for the 

Newtonian (or UCM) fluid. From Eq. (2.2ل), the non-dimensional normal stress is

'و’(ء(2.49) بج“م( 2م- k 7]u / H  \  1، /  \ H /

and the normahzed shear stress component is calculated ^•om (2.2^):

(2.50)x y

(2.5ل)

2 k 7]u / H

e form؛The ra^e of normalized shear strain from Ek[، (2.24) takes t

i{y) UN f y

-1
(2.52)

[٤
.H.1 +

2 k u / H  u  \ H .  

and the viscosity profile is

The values of these quantities at th^ wall are useful to define non-dimensional quan- 

tities ar̂ d are obt^ned after setting y = H\

ج س ٨ ,ير.م ٢ (٢^)^

(2.53)
2k7]u/ H2 k,7)u / H



Where is defined positive. These ^ ^ e s  are smaller than the corresponding

values £or the UCM fi^d, a point to be taken into account when comparing non- 

dimensional values.

2.4 Exponential P T T  model

Observe that normal and shear stress profiles are independent of the fimction /(tr(r)) j 

therefore they are still given by Eq. s (2.49) and (2.50)j respectively. However, the 

ratio مبم/  u in those expressions is different since it depends on the new velocity 

distribution. This distribution is obtained in a similar way by inserting the new func- 

tion (£٩. (2.4)) into Eq. (^،24) followed by integration, to yield the dimensional and 

the corresponding non-dimensional forms of the velocity profiie, respectively, ^ow in 

view of Eq. (2.4), Eq. (2.24) takes the form

؛ء- >ممء () لإ آ ق—و
Integrating above Eq. we get

and in order to non-dimensionalize the above Eq.(2.55), we use the same scalings as 

done before for linear ?TT model and get

where b = 8هم € De^. For the axisyrametric case it is also vahd, after efiecting the 

possible changes. Appropriately, in th^ small limit of بمآ(ظ/ءآ)رة م  Eq. (2.56) tends to



the parabolic profile, it should, ^or exponential PTT model, the expression of 

cross-sectional average velocity is no longer same £or both axisynunetric and planar 

case. For channel, we obtain

u = j^ J u {y )d y ,  (2.57)
٠

and then

(2.58)(T/77) v T e3^؛,Tf erf(e(Ap
2Xp,^Hexp4 ع

(2.59)U = ^ j 2 y u { y ) d y ,

and also £or the pipe flow

and there£or€

(2.60)
/ لآعع\ / ء قئ/أ  e x p (- م ر ح2ر ة ع (/ئلآكئ -  

2 د(/2م لا ة ا €ه م 1ب )

Lnd profiles of viscosity are easily evaluated from؟ The normalized form ofshear-rate

(:2.50) d!(2.56)؛ a

)ر. (2.61) م (ه' ء ة ا ث لإ ق(ري“ء$هم€ر ه-
and

(2.62)= exp(7م )

Similar to the linear PTT model, we investigate the dimensionless velocity profile 

across the chajinel or pipe to give the parameter uf^/u for the problem of obtaining 

the pressure difference for given rate offiow and for planar case (1.5 == كر) we obtain 

the following equation:

٦ S uNexp{b{up^/u)‘̂) f  m^^‘̂ exp{~b{uN/uy)ei{{ib^^^UN/u)\
2 م آآ مبم(ة/ةب  V 2 م *ر ' ر اا>أ2(مبم/ب



ه

€ءولآما

Figure 1: Variation of the average velocity ratio uf^fu ٦٧لt لل درأج  De (solid line: plane 

flow; dashed line: axisymmetric flow; no symbohlinear PTT; symbols: exponential 

PTT).



ع2 De ال Channel ?i^e De ةالع Channel Pipe

0.05 0.9746 1.0 0.3134 0.2471

0.1 0.9132 0.8545 2.0 0.1858 0.1439

0.2 0.7695 0.6732 3.0 0.1342 0.10^3

0.3 0.6515 0.5492 4.0 0.1059 0,08114

0.4 0.5628 0.4642 5.0 0.08778 0.06713

0.5 0.4953 0.4028 6.0 0.07519 0.05740

0.6 0.4427 0.3565 7.0 0م06589 0.05024

0.7 0.4007 0.3203 8.0 0.05873 0.04474

0.8 0.3663 0.2911 9.0 0.05303 0.04036

0.9 0-3376 0.^672 10.0 0.04839 0.03680

Table ل: Numerical solution of Eqs. (2.63) and (2.64) and for the axisymmetric 

case ( K = 2) we find

UNexp{b{uN/uf) f  exp(-6(ujv/n)^)^
' م ة مبم(ة/ةب  V م 'ل ب ر مبم(ة/ثب



tdu

y_
H
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ك

ث

Figure 2: Velocity profile of the linear PTT fluid in channel flow a ftincton of the 

dimensionless group €قمل De (^lid line: parabolic profile; d ^ e d  hnes: قالع De =



0.1,0.5,1.0,5.0).

y_
H

ulu

Figure 3: Comparisons of the velocity profiles for the linear and the exponential PTT 

model in channel and pipe flow {De =  2 and e=  0.1) (Sohd hnes: parabolic profiles;



dashed lines: linear and exponential PTT).

م
H

«مح) دا3رأ/ )

Figure 4(a): Profiles of normalized shear and normal stress components for varying



.and constant De = 2 (Solid lines: UCM fluid; dashed lines; G= 0.01,0.1,0.25,1.0) ع

H

Figure 4(b): Profiles of normalized shear and normal strss components for varying De 

at constant 0.2ذ (sohd hnes; newtonion fliiids; dashed lines: De = 0.1,1,25,10 ا).

Contrary to the previous case, these nonhnear equations are not amenable to an 

analytical solution and therefore the use of numerical methods is inevitable. We have 

solved the above equations with a built in routine “FindRoot” in the

solution of which is given in Fig.l. A few such values are also tabuiated in Tkble 1 

from where other values can be extracted by interpolation.



2.5 Discussion

It is clear from Figure ل that, for identical pressure gradients, the PTT fluid’ caJi 

carry a larger flow rate thaai the Newtonian or UCM fluids, especially for De 

larger than 2. This effect is due to an increased shear-thinning behaviour with the 

parameter De and is more intense with the exponential form of the PTT model. 

The shear-thinning behaviour is also observed in the flatter velocity profiles pertaining 

to the plane flow of the linear PTT fluid in Figure 2. As De increases the 

velocity profiles flatten in the centre in a similar way to those of shear-thinning power- 

law fluids. The exponential form of the p ^  model leads to velocity distributions 

(Eqs. (2.55), (2.56), (2.63)and (2.64)) that are similar to those in Figure 2 except for 

the increased shear-thinning behaviour as a consequence of the corresponding higher 

values of the function / ,  as seen in Figure 3. The distributions of the normalised 

T x y  and T x x  across the channel width are shown together for the hnear PTT model 

in Figure 4(a), for varying e at constant De, and in Figure 4(b) for var^ng De at 

constant e. The trends in Figure 4(a) are expected since 0 ع—ب  brings the PTT 

model close to the UCM model and so the stresses should increase in magnitude. In 

the latter graph, however, the trend is not monotonic and for high elasticity (high 

De) the normal stresses are seen to decrease, an unexpected outcome. Inspection 

of the relevant equations shows that both stress components depend only on the 

dimensionless group De, but the normal stress also depends separately on De 

alone. For high De, Eq. (2.49) shows T x x  oc hence justifying the decrease

of T x x  with elasticity seen in figure 4(b). This peculiar efi'ect can be removed if



the stresses are made non-dimensional with their own value of shear stress at the 

wall. Then, the variation of will coincide with that for the UCM or the

Newtonian nلoكelو, and the normal stress will be given by

=^AKDe(u[^/u){y/Hf. (2.65)
رءأءآ\

which, for high De, tends to محء [DeJ مل)ع محء 1/قمآخ تء at the wall, because uf^ju ق  l/(€  

تثم6ق)قمل  . Hence, the above non-dimensional normal stress now increases monotoni- 

cally with ^e.



Chapter 3

Analytical solution for flow of

PTT-viscoelastic fluid in a

€o^€€ntri€ annulus

The aim of this chapter to present the analytical solution for purely tangential flow 

in steady state form of a viscoelastic fluid obeying the Phan-Thein-Tanner (PTT) 

constitutive equation in a concentric annulus with relative rotation of the inner and 

outer cylinders. The obtained solutions are valid for both linear and e^pone^ial PTT 

fluid model. This chapter is ba^ed on a recent paper by ^ir^a^adeh et al. [13].

3.1 Governing Equations

For the flow in a concentric annulus, we have



Ve = Ve{r) , K ء   K = 0, (3.1)

where Ve ,Vz س ٧٣  are the tangential, a^a] an^ radial components of velocity. Let 

us define ratio of inner cylinder radius (Ri) to the outer cylinder radius {Ro) محو كم , 

then the radial gap width 5 is equal to Ro{l — كر). Let ٤٦̂  and ٢٤٥ denote the angular 

velocities of the inner and outer cylinders respectively, ^or the velocity field given hy 

Eq. (3.1) the radial and tangential momentum equations reduces to:

3-3) < ؤ=ه ق ا ء ك )

where ^ ٢٢ , ^وو  ^nd Tj.0 are the components of the stress tensors and r, ء and 6 refers 

to the radial, axial and t^ e n t ia l  directions respectively. In thi^ chapter we consider 

a relation of PTT constitutive equation that is general than the relation used in 

chapter 2 and î  given by

/(،r(r))T  + At + |a ( D t  + rD ) = rjB, (3.4)

where 77 is the viscosity cofficient of the model, ع a parameter related to the no shp 

between the molecular network and the continum medium, ^or 0 = ع we recover the 

model of PTT fluid used in chapter 2. For steady tangential annular fiow Eq. (3.4)

f{tr(r))Tee =  A(2 -  (3.5)

fitr{r))rrr = -A^7T^, (3.6)

/ ( ،7 آ ==7? آ)ي آ + A ^ 1 - 0  ^٣٢٢ -  ~ 7 ٩)̂ ءسمآ ■



where 7  = 7 محآ(اوتمأ7ر/مح . The boundary conditions for this problem arise from no-sUp 

at the walls and are ^¥en by:

r = R , ^ V e ^ R , n „  (3.8)

r = R,=>Ve = R,n,.  (3.9)

3.2 AiiEJytical solution for the com plete P T T  model

With the help of Eqs. (3.5) and (3.6), the following relation between the normal 

stresses can be established;

٣٣٣ ة (3.10)
آ و و

while the trace of the stress tensor is

(3.11) •) م آ + أءعسمآ’ب م

/(،r(r)) = l  +  ^ r ( T )  (3.12)

Using Eq. (3.11) we can write from Eq. (3.12)

f{Trr + ٣٠٠) = 1 + لإ ^(٢٣  + Tee). (3.13)

From Eq. (3.11) we have

(3.14)

Using Eq. (3.14) in Eq. (3.13) we get the following form of /

بم• (ة-لةل يخ - م = ل + مم



(3.17)

(3.18)

By dividing Eq. (3.?) by Eq. (3.5), we find that

f j T r r  +  T o 0 ) T r 9  _  7?7 +  A ( l  -  I) J T r r  "  ^ J T e g

/ ( ٣٢٢ + ٣)سم٣ءو  A (2 -0 7 t^

In view of Eq. (3.13) the above equation yields

-  7]T00 + A(2 -  = 0,

whieh î  a qnad^ati€ equation in The solution of above equation is

V 2'محث - = 1Tee±ا 4A-1(؛"0 2Â   ̂ y r

To find the appropriate sign in Eq. (3.18) we employ'the simplified ?TT model for 

whi€h the value of ع is zero and therefore Eq. (3.17) reduces to:

(3.19)

If the positive ^ign were tal؛en in Eq, (3.18) and ع is allowed to approach zero, ء،لآ 

would approach infinity, which contradicts Eq. (3.19) and this root must therefore 

be discarded. If the negative sign ui Eq̂  (3.18) is used instead, and I’Hopital’s law is 

applied, we find:

؛!ا؟ممآ = .مبميق (و؛؛ه)
؛لاب 7أ

which is in agreement with Eq. (3.19). We conclude, therefore, that the correct 

solution is:
م̂-2. ١٦ / 4ات2م'/9_ا

ف.(3.21) ] - م م ب ة
For more detail we refer the reader to ref. 2لأ].

To obtain the shear rate 7  , we substitute Tee ٤٢٥̂  Eq. (3.21) i^o  Eq. (3.5) and 

solve the resulting equation for 7 • These steps are outlined below and required value



-7آم̂ ؛ ح' =ذ(ة) م ه ق م-ق /أ(لجررت 1-ا ) ،

1 =
ي' ي (^،(/آ))مح إ1-ا/1-ت

ة \ا - م؛؛"بم؛ة (٢٠٠ + ٢٠٠) ق ل “ / - ل + ج ^
^r- ؛ (2)A7 =

(3.22)
ع )ج ] - /م]}ع(ة- ،ا^ +،اص-

1 =

(3م22ق)

We now introduce the following dimensionless variables:

r = r/R̂  , Ve = Ve/Vc , ءص̂ءبم/يخلآ/مح  and We = x y j s

The introdnetion of the^e dimensionless ^-iahle leads to the following dimensionless 

form of Eq. (3.22).

, (3.23)
* /x r؛X l - \ / l - 4 i y e م* / ء| ح م6آ -ا-4ح \ / l| 1 + ئ . ق /آ\

2(l -K )W ex T re مم ا أ /

where % is a parameter w hi^ combines ع and ع and is defined as‘||^~|) س  We is 

the modified Weissenberg number defined as We =  We^y^ (1 — ث). Integration of 

Eq. (3.3) after non-dimensionalisation leads to:

(3.24)
“̂wi T



where ظ the dimensionless wall shear stress on the inner cyhnder. Substitution of 

T r 0 from Eq. (3.24) into Eq. (3.23) followed by integration leads to the dimensionless 

form of the velocity profile:

4(1 -  K)K^rljiWe ١٣
(3.25)

(3.̂ )̂

Ve

- ل)4  K)K^T^iWe

where

n =

The boundary conditions can be put into non-dimensional £٠٢̂  as follows:

r — Vq == R̂ O.i

(3.27)

(3.28)

(3.29)

(ف) = -ء
(3.30)

2 k

(ا+ءء)محا-اا
r  = كم ومآ   =

r = Ro=^Ve = مآ؛مآئ

2ور
(ل+بم |ور-1•|

n.

f = 1 Vfl =

and

yield؛

where

٩ ■

The application of boundr^ condition (3.27) to Eq. (3.2ع) gî

+
م — \س / —

nArctg

2k

(«1+ث))م-1"|ا■

4{ l - K) K^Tl j iWe  X



Similarly Eq. (3.25) i^ view of boundry condition (3.28) gives

n+ ■
4(1 -  K)K^TyjiWe

(3.31)

م \ل — + / — 1

nArctg

ا + إ
+■2P

(1 + )^وا —اا

Comparison of Eq. (3.3م) and Eq. (3.31) yield the following equation for the unknown 

shear stress T*yji at the inner e^linder

= 0
ت

بما ءا (+ااا

+ رم — 1)

%/l — أ آ ة +
A r c t g ( ^ ) -

+ ؛

(3.32)
A r c t g [ ^

4(1 -  K)K^rljiWe

Eq. (^.32) is stron^l^ non-linear hut can be solved numerically for the dimensionless 

wall shear stress T*yn ٠٧  the inner cylinder. Once T*Tjji is ^nown, the constant c in 

Eq. (3.25) can be obtained b^ applying either of the two boimdary conditions (Eqs. 

(3.2?) or (3.2^).

3.3 Exact solution for the simplified PT T  model

therefore, we get following ؛=14- م،٣٣ ,.(is zero and / ( tr ع Eor simplified PTT model

.,scalar equations from the above constitutive relation i.e

(3.33)

(3.34)

(3.35)

f{tr{T))Te9 =  2X'yTre,

f { t r { r ) ) T r r = = 0 ,  

f { t r { r ) ) T r e  =  77).



(3.37)

Moreover, we have

2A_2 ووآ — ~'^r9

/ووآ) — +ل م ٣٢٠■ )

and then

Now putting the values from E)q. (3.36) and £٩٠ (3.37) in Eq. (3.33)

(3.38)

(3.3و)

This sî

٢٢٠
Vس.ل ] . ب ي بم

or

(3.40)

(3.41)

(3.42)

م؟ م ه و،[ل d(ص
dr \  r 7 ل [ م ل ]

With the help of dimensionless variables defined in Eq. (3,22a), we

ةl-\-2eWe^Tr9^T*g) ^ د ء f\ (ل+آ v e
ا؛ر 1 ^أ\ن مم

Now from Eq.(^.24)

٢٢٠

Substitution of from above equation in Eq. (3.41) resiilts in

ي' ■ء“' إ-[ؤ-ا ) و ه
ي
dr

integration yields

(3.44)1 ، eWe'^K^rli
و ب 3م

^ T~wi 
(1 — k)t



In view of the boundry condition

r — K,^Ve = بم—1| (1 + ما

Eq. (3.44) becomes

ا-ال (1-ةآءبم2 3(ل-ةأربم م)م ب +ل ر أ

Similarly for the bonndry condition

ي’ أ _ ا أ = (ا + ا ^ ا ؛ = أ

we have from Eq. (3.44) the following relation

.ء بم,ء ء. _ ح م ئ ب س ظ
(1 )3 2 ( )! -> م ؛ ب ءا - ل ا + ا -K j

Equating the left ha^d sides of Eq. (3.45)' and Eq. (3.4^), we obtain

„بم
€ 2  |1- آ^6ة(1-هم()1 + بم |م e W e ^ [ \ -

or

T w i  + 3. 48) .0== محم + و ) 

where the constants p and و in Eq. (3.48) are given by

■( ء ة(1-ء € « ءأ ٢ء أ

ع ه ذ س-أ ■
^he real solution of Eq. (3.48) can be expressed â :

ا + 8ما' - (3.51) ة ئ108و + 12^م /ا س*آ = -
-/ا108و + 12ا/ا2ئء + 81ةو



By introducing boundary conditions from Eqs. (3.26) or (3 28) into Eq. (3.44) and 

using r*yji from Eq. (3.51)j the second constant c is easily obtained, clearly the 

numerical value of c in t ^ s  case (for SPTT) is different ^'om the numerical value 

of that for PTT. For the hmiting case (0 ع ) the previous equation reduces 

to ^he well-known solution for a Newtonian و uلd. In engineering c ك٧ ء lه tiه ns the 

torque friction factor /  defined as {r^ /pv^ l2)  is a parameter of interest. Usually, 

the product of /  and the rotational Reynolds number ^e, which is defined as ( أ محأمآور/أ ) 

is often required.

Now we obtain the pressure variation across the annular gap. By substitution of 

^٢٢ from Eq. (3.10) into Eq. (3.2), we arrive at:

Note that in Eq. (3.54) right hand side is a function of the radial coordinate onl^ 

so that integration of this equation leads to an equation for the pressure distribution 

across the annular gap. Let us define the pressure distribution for simplified PTT 

constitutive equation. Eor this we take ع equal to zero in Eq. (3.54) and non- 

dimensionah^ing the resulting equation to get

2 - ج  ي = ؤ W e ^ ,  (3.53)
dr r r

where the non-dimensional pressure p is defined as [Pl'qVc/S). By introducing T*r$ 
h*om Eq. (3.24) and Ve from Eq. (3.44) into Eq. (3.55) and then integrating we 

arrive at;

f — dr == Re f — dr — 2We آ, (3.54)  ج ) ح م لإ  
r ر r ل dr ر



3.55) ,( م/(ء )؛( ء-بج = م- ) 

where ؤ ول  the dimensionless pressure ٠̂  the inner cylinder س رأ(غآ  i£ as follows:

(3.56)

(3.5?)

غ1
(3.58)

ث̂] ج ب ي م[ل.ش,ي ء,م>ب

مح? بج ة-ر ق [غ " ' صم“'م{ - ء
ي رآ؛ ء ي ج إ ا ثأ

-ت » -ءء)ءث 90(1)

It should be pointed out for a Newtonian ^^d  (€ We^ -  and then the second (ب 0

term on the ri^ht hand side ofEq. (3.58), ( غلآ̂(م )) must be equal to zero.

3.4 Results and Discussion

ج

^ i ^ e  3.1: Variation of velocity Ve for SPTT fluid ١٨إآ th respect to f for different



values of ع . The other parameters are We = 5, AC=0.5.

ء

Figure 3.2: Variation of velocity Vq for SPTT fluid with respect to f  for different 

values of We. The other parameters axe .01, K=0.5.

In this section we ^tart by showing the behaviour of velocity component وتما for 

SPTT fluid for different ^lues of We and ع . Figures 3.1 and 3.2 are plotted to 

serve the purpose. These figures reveals that the velocity component Ve decreases by 

increasing We and e . Moreover, it is also observed that Vo attains a minimum values 

in the annular gap. The radial location of this ^i^m un velocity is of interest i^ many 

situations [15] and therefore at the end we proceed to find the radial location of the 

minimum velocity both for PTT and simphfled PTT constitutive equations.

The tangetial velocity distribution for PTT constitutive equation is given as



follows:

إ ت ر،حم€لا م ’ه(ل-ء،ي

(3.59)

r —ryjr —71̂  ̂

rnArctg ^

+ا ي

Differentiating it with respect to لإ we

+ c
بم يم ض 4(ل-ة

(3.60)

3r —yJr^- 'n?— - +
٧۶ —ص

س) + ه س ء ) ح قم

+ا ث

Equating dV^/dr to ^ero yield the following equation

ي  + c  = 0.

(3.61)

ح-مح+ سم - ما أ طئ

وي،مءء

ا + ق

ح6 م7م ب 4(1 -م

Eq. ( مة6ل ) is a strongly non-linear and therefore has to be solved numerically to £nd 

the value of rj^n as a function of the Weissenberg number, radius ratio X, and the 

angular velocity ratio (/?). Now we repeat the above procedure to س  the values of 

rmiQ for sinipli£ed PTT model. For simpUfied PTT model Ve is given by

(3.62)+  C t .
VL 1 ع We^K^T,J

l؛،- 3(1 - K ) f)

Differentiating it with respect to r we have

(3.63)+dVe
4 r  2 ( 1 - K ) r  3 ( 1 - K)f

Now setting

خ,0 =(3.64)
dr



غ = ,ه (3.65) ص ث ح م ي ت + ة + ء
?(» — ل)^ r(K — ل)^

ء ء ٥٠ (3.66) ة ي م ي ك م ب ث ح + ث ؛م

or

و ) k-1)2؛?) بل

or

م)ة + خ = ,ه (3.67) ءإ ر +م

The real solution of the above cubic equation is

ص, (3.68) ح م ت ق ?س=ق

^^here

(/أ108ه - 80ل + 12ا(/8ص + ا2ء،م,)) (3.69) -= d

مآ-م “ض’ ر

ئ. (3.71) م ب ح م ح م ي ،ت =

Here again, we recover the well-known result for the limiting case of a Newtonian 

fluid (i.e., ع We^ = 0).
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