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Preface

Flows of non-Newtonian fluids have been extensively studied in recent
past because of their importance in technology and industry. In particular
these flows can be found in journal bearings, commercial viscometers,
swirl nozzles, chemical and mechanical’ mixing equipment and electric
motors. The relationship between stress and strain for non-Newtonian
fluids is mostly represented by nonlinear differential constitutive
equations. The commonly used non-Newtonian models are due to Maxwell
[1], Green and Tobolsky [2], Oldroyd [3], Giesekus [4-7], White and
Metzner [8] and Phan-Thein & Tanner [9, 10]. Phan-Thein & Tanner (PTT)
model is fairly simple quasi-linear viscoelastic model constitutive
equation, which was derived using network theory by Phan-Thien and
Tanner. This model incorporates not only shear-thinning, shear viscosity
and normal-stress differences but also an elongational parameter € and so
reproduces many of the characteristics of the rheology of polymer
solutions and other non-Newtonian liquids. The elongational parameter
imposes an upper limit on the elongational viscosity, which is inversely
proportional to €. When € goes to zero the PTT constitutive equation
reduces to the Johnson-Segalman model without the presence of the
solvent viscosity, while the simplified form of the PTT model is equivalent
to the upper convected Maxwell model. The PTT model is being employed
increasingly to predict the flow and heat transfer of viscoelastic fluids.
Recent papers include those of Oliveira and Pinho [11], Alves et al. [12],
Mirzazadeh et al. [13] and Hashemabadi et al. [14]. The analytical
solutions for elementary flows of non-Newtonian fluids using the
nonlinear differential constitutive equations are of considerable
importance because of the fact that they offer a simple way of checking the
ability of the chosen non-Newtonian model to represent some specific
behavior and are also useful to prescribe inlet and outlet boundary
conditions in numerical flow simulations and to validate numerical
prediction. Some recent studies on the analytical solutions of different
non-Newtonian constitutive equations can be found in refs. [15-26].
- Keeping the above facts in mind we in this dissertation, present the exact
analytical solutions of PTT constitutive equation for two types of
elementary flows i.e, I) fully developed pipe and channel flow II)
tangential flow in a concentric annulus. The dissertation is organized as
follows.




Chapter 1 includes some basic definitions, equations and concepts
regarding polymeric fluids. Fully developed channel and pipe flows of PTT
fluid are analyzed in Chapter 2. In chapter 3 purely tangential flow of PTT
fluid in a concentric annulus is presented. A comprehensive bibliography
is included at the end of the dissertation.
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Chapter 1

Preliminaries

In this chapter we will present some basic definitions and flow equations which are
used in the subsequent chapters. The part of this chapter is based on the material

from internet and [21].

1.1 Fluid mechanics

It is the branch of science that deals with nature and properties of the fluid both in

motion and rest.

1.2 Flow

A substance or material goes under deformation in the presence of different forces. If
the deformation exceeds continuously without limit then this phenomenon is known

as flow.
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1.3 Fluid

A fluid is a substance or material that deforms continuously under the action of

applied shear stress.

1.4% Velocity field

In dealing with fluid motion, we shall necessarily be concerned with the description
of velocity field. In general ‘at given instant the velocity field u is function of space
coordinates z, y, 2 and time ¢. The velocity at any point in flow field might vary from

one instant to another. The complete representation of velocity field is given

u=u(z,y,21), (L1)

or

u =u(z,y, z,t)i + v(z, y, 2,t)j + w(z, y, 2, t)k. (1.2)

1.5 ClassiﬁCation of fluids

There are two main types of fluids

1.5.1 Ideal fluids

A fluid for which viscosity is zero is termed as ideal fluid. An ideal fluid is fictitious and

does not exist in nature however many fluids under. certain engineering applications
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show negligible viscosity effects and can be treated as ideal fluids.

1.5.2 Real fluids

All fluids for which the viscosity is not zero are known as real fluids. These are further

divided into two main classes.

Newtonian fluids

All fluids which satisfy the Newton’s law of viscosity are called Newtonian fluids. The
Newton’s law of viscosity is stated as “shear stress is directly and linearly proportional
to rate of deformation”. For a steady one dimensional flow between two parallel walls

driven by the motion of upper wall
u =u(y)i (1.3a)

and therefore Newton’s law of viscosity takes the form

d
Tye O d—;‘, (1.3b)
or
du
Tyz = K (@) y (1.4)

where 7, is the shear stress acting in the plane normal to y-axis and in the direction
parallel to z-axis and p is constant of proportionality, known as absolute or dynamic

viscosity. Water, air and gasoline are examples of Newtonian fluids.
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Non-Newtonian fluids

All fluids which do not obey Newton’s law of viscosity are called non-Newtonian
fluids. These types of fluid obey the power law model in which shear stress is directly

but nonlinearly proportional to the rate of deformation. Mathematically,

s (2) i

oo = (‘i—;‘)n. (16)

where n is called the flow behavior index and % is the consistency index. Examples

of non-Newtonian fluids are shampoo, gel, blood etc.

1.6 Kinematic viscosity

It is the ratio of the viscosity to density of the fluid, and it is given as

(1.6)

<
f
%

1.7 Body force

The forces which do not require any physical contact with boundary and distributed
over the whole volume of the fluid are known as body forces. Gravitational and
electromagnetic forces are categorized as body forces. These are in fact long rang

forces.




1.8 Pressure

Pressure is the surface force that acts normal to the area under consideration. The
force per unit area is called pressure. Let A is the surface area of fluid and F is
magnitude of force acting normal to surface, then pressure P due to the force on unit

area of this surface is defined as

(1.7)

"
il
L

1.9 Governing equations

1.9.1 Equation of continuity

The mathematical form of law of conservation of mass for fluid is known as equation

of continuity. It has the following form

% + V.(pu) =0, (1.8)

and for incompressible fluids it reduces to

V=0 (1.9)

1.9.2 Equation of motion

The motion of fluid is governed by law of conservation of momentum. The application

of this law to an arbitrary control volume in flowing fluid yield the following equation
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commonly known an equation of motion.

d
pd—;‘ — —Vp+divT + pb. (1.10)

In above equation T is Cauchy stress tensor and b is’body force per unit mass.

1.10 Flow phenomena in polymeric liquids

1.10.1 The chemical nature of polymeric liquids

A macromolecule (or polymer) is a large molecule composed of many small simple
chemical units, generally called structural units. In some polymers each structural
unit is connected to precisely two other structural units, and the resulting chain
structure is called a linear macromolecule. In other polymers most structural units
are connected to two other units, although some structural units connect three or
more units, and we talk of branched molecules. Where the chains terminate, special
units called end groups are found. For the sake of completeness we mention also that
in some macromolecular materials all structural units are interconnected resulting in a
three-dimensional cross-linked or network structure rather than in separate molecules.

It is sometimes useful to distinguish between synthetic and natural (biological)
macromolecules. Many synthetic polymers are built from a single structural unit,
and the polymer is then referred to as a homopolymer. Typical examples of syn-
thetic homopolymers are polyethylene, polystyrene, and polyvinylchloride. In con-

trast copolymers are built from two or more different structural units. According to
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the manner in which the structural units combine, copolymers are further classified
as random copol-copolymers, block copolymers, or graft copolymers. The motivation
for producing copolymers is to obtain materials with a wider range of mechanical

properties than is possible with the homopolymers alone.

1.10.2 Non-Newtonian viscosity

Probably the single most important characteristic of polymeric liquids is the fact
that they have a "shear-rate dependent” or "non-Newtonian" viscosity. Still different
behavior is shown by fluids that will not flow unless acted on by at least some critical
shear stress, called the yield stress. We call these viscoplastic fluids. Certain types

of paints, greases, and pastes are examples of viscoplastic fluids.

1.10.3 Normal stress effects

y=3/ ’x
=7 u.()
) >y”x}’
)Lx; LN ;
y=0-

A number of important effects in the flow of polymeric liquids may be attributed
to the fact that polymeric liquids exhibit normal stress differences in "shear flows".
For polymeric fluids the first normal stress difference is practically always negative

and numerically much larger than the second normal stress difference. This means
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that to a first approximation polymeric fluids exhibit in addition to the shear stresses
an extra tension along the streamlines, that is, in the (1) direction. It was shown
by Weissenberg that the simple notion of an extra tension along streamlines may
be used to obtain qualitative explanations of a large number of experiments. In
terms of chemical structure, the extra tension along the streamlines in polymeric
fluids arises from the stretching and alignment of the polymer molecules along the
streamlines. The thermal motions make the polymer molecules act as small "rubber
bands" wanting to snap back, and it is in this way that the extra tension arises. The
second normal stress difference has been found experimentally to be positive, but
usually much smaller than the magnitude of the first normal stress difference. This
means that in a shear flow the fluid exhibits a small extra tension in the (2) direction.
A simple structural explanation for this extra tension is lacking, and the simplest
kinetic theories of polymeric fluids are not capable of describing this effect; more
elaborate theories are successful, however. We emphasize that the second normal
stress difference is quite small, and it is normally observable only in situations where

the first normal stress difference, for geometrical reasons, has no effect.

1.10.4 Rod-climbing

In this experiment we insert rotating rods into two beakers, one containing a New-
tonian liquid and the other a polymer solution. We see that the Newtonian liquid
near the rotating rod is pushed outward by the centrifugal force, and a dip in the

liquid surface near the center of the beaker results. This is typical of the flow near




[N

11

the rotating shaft of a stirrer. The contrasting behavior of the poiymer solution is
striking. The polymer solution moves in the opposite direction, toward the center of
the beaker and climbs up the rod. Moreover, for comparable rotational speeds, the
response of the polymer solution can be far more dramatic than that of the Newtonian

liquid.

1.11 Dimensionless groups in non-newtonion fluid

mechanics

In Newtonian fluid mechanics the Reynolds numiber appears as a dimensionless group
that may be interpreted roughly as a ratio of the magnitude of inertial forces to that
of viscous forces. In any given flow situation other dimensionless numbers may arise
(for example, geometric ratios), but the Reynolds number is generally the most im-
portant dimensionless group. Dimensionless groups are particularly useful for scaling
arguments and also for cataloging the flow regimes. For example, in tangential annu-
lar flow with the inner cylinder rotating, one can make visual observations and then
determine the ranges of Reynolds numbers and radius ratios for which one has laminar
flow, Taylor vortices, undulating vortices, and turbulence. For viscoelastic fluids the
key dimensionless group is the Deborah number, introduced by Reiner. This number
may be interpreted as the ratio of the magnitude of the elastic forces to that of the
viscous forces. It is defined as the ratio of a characteristic time (or "time scale™) of

the fluid, ), to a characteristic time (or "time scale") of the flow system, ¢ ;o0
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A
tﬂow

De (1.11)

The characteristic time of the fluid is often taken to be the largest time constant
describing the slowest molecular motions, or else some mean time constant determined
by linear viscoelasticity. Sometimes the characteristic time is chosen to be a time
constant in a constitutive equation. The characteristic time for the flow is usually
taken to be the time interval during which a typical fluid element experiences a
significant sequence of kinematic events, sometimes it is taken to be the duration of
an experiment or experimental observation. If the flow following a material particle
is steady, then the characteristic time is taken to be the reciprocal of a characteristic
strain rate. A second dimensionless group, the Weissenberg number, that is sometimes
used in polymer fluid dynamics involves a ratio of A to this second characteristic time.

The Weissenberg number We is defined by:

We = Ax (1.15)

where k is a characteristic strain rate in the flow. For many problems, however,
there is only one characteristic time that can be identified, and for these problems we
choose to use the Deborah number as the dimensionless group. Two limiting values
of the Deborah number can be identified with classical mechanics. If the Deborah
number is small, then thermal motions keep the polymer molecules more or less in
their equilibrium configurations, and the polymeric fluid shows only minor qualitative

differences from a Newtonian fluid. We say that Newtonian fluid behavior is obtained
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in the limit De — 0. Conversely, if the Deborah number is large, polymer molecules
that are distorted by the flow will not have time to relax during the time scale of the
process or experiment. In the limit De — oo the experiment happens so fast that the
polymer molecules have no time to change configuration, and the fluid behaves more

or less as a Hookean elastic solid.
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Chapter 2

Exact solution for fully developed

flow of Phan-Thien-Tanner fluids

In this chapter analytical solutions are obtained for velocity field, the components
of stress and the function of viscosity for Phan-Thien-Tanner (PTT) fluids in fully
developed channel and pipe flow. Here analysis is performed for the PTT equation
invovling both the linearized and the exponential forms. It is observed that shear
stress at the wall in PTT fluid is very small according to the value of Newtonian or

upper-convected Maxwell fluids. This chapter is based on the contents of ref. [11].

2.1 The fluid model

The constitutive equation for Phan-Thien & Tanner (PTT) fluid [9] is written in the
general form as
ftr(T))T + M = 2D, (2.1)

15
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where A is the relaxation time, 7 is the extra-stress, 7 is a constant viscosity cofficient,
D is thedeformation-rate tensors and 7 denotes Oldroyd’s upper-convected derivative
given by

¥ = Du/Dt — 7.Vu — VuTl.7. (2.2)

The linearized PTT model assumes the following form for f(tr(7)) i.e.,
€A
fr(r)) =1+ Ttr(‘r), (2.3)
while for exponential PTT model

f(tr(T)) =exp (f:;;—,\tr(r)) . (2.4)

The parameter € appearing in (2.3) and (2.4) is related to the extended behaviour of
the fluid model. Also it should be noted that the linearized form (2.3) can be deduced
from exponential form (2.4) and when € vanishes if the trace of the stress tensor is
small and that both the linear and exponenetial forms reduce to upper-convected

Maxwell (UCM) model.

2.2 Analytical solution

The analysis presented here holds for axisymmetric pipe flows and channel flows
in two-dimension. However, for simplifications we present it here with the suitable
modifications required for pipe flow presented through specific parameters for the
planar case. Let u and v denote the velocity component in streamwise and cross-
stream radial directions respectively. The flow is defined such that y is representing

either a radial or a transversal coordinate in (z,y)-plane. The y = H is the wall
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and symmetry line is located at y = 0, H is half of the pipe radius or the channel
width. Here an index with comma is presenting a partial derivative and a superscript
7 identifies the flow case with j = 0 for channel and j = 1 for pipe flows. The velocity
field depends on the coordinate y in developed flows. The no-slip condition at the

wall and equation of continuity gives v = 0. Where stress tensor 7T is given by

Tex T
Tyz Tyy
with its trace defined as
t';"(T) = Tzz + Ty, (26)
Let us define
Tek=Tzz+Tyy- ( 2. 7)
Since
D=va+va, (2.8)
and
u = [u(y),0,0], (2.9)
therefore
0 0 0 &
Vu=|, Vul = (2.10)
gu g 0 0

oy

For steady flow du/0t = 0 and further (u.V)u = 0, so

¥ =—7.Vu—-Vul.7. (2.11)
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Using the above results we get

v |Tez Tzy| [0 O 0 %‘; Tzz Tay
T = -
Tys Twy| %y‘f 0 0 O] |7y Ty
2 7,
= oy Wl (2.12)
I —Tw%‘ 0
In view of (2.7), (2.8) and (2.12), Eq. (2.1) can be expressed as
NTew T 2/\'r$ya—'i )\Twa—“ 1 0 2
F(Thk) Y = w >+ 3 o (2.13)
Tye Ty ArySe 0 mPE 0
From above equation we can write
f(Tkk)Tz:z = 2/\u,yTa:y, (214)
F(Tie)Tyy =0, (2.15)
f(Tkk)TIy =Ny + ATyl (216)

Eq. (2.15) yields 7, = 0, since f(7xx) # 0. Therefore T4 = 74.. The longitudinal

momentum equation for the flow under consideration read

Op _ OTaz | OTny
Or = Oz Oy

(2.17)
This gives
Pr=—F—. (2.18)

Integration of Eq. (2.18) and utilizatilizing the conditions at the boundry for y = 0,

we have 75, = 0, which yields

Tzy = Py (2.19)
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The above equation can be put into the form

Tey = P.x'%; (2.20)
where for pipe flow
i=1
and for the channel flow
j=0

Multiplication of Eq. (2.14) by 7., and Eq. (2.16) by 7., and by subtraction, we get

22 , 32

Tzz = ?p,zﬁ' (221)

We observe that Eq. (2.21) is in accordance with the boundary condition required
at centerline, i.e., for y = 0 we have 7., = 0. From Eq. (2.16), Eq. {2.20) and Eq.

(2.21) we can write
1
Uy = Ef(’rz‘::)’rry- (2.22)

With the help of Eq. (2.21) we obtain

1,/2x , 42 y
u’y = ;7-f (—T']—p?szJ) p’xa’ (2.23)
or
du . 2X , y? Pz ¥
5! (m) 5 229

In order to get the velocity profile as the function f is specified, we see that the above

equation is an explicit form of differential equation in y .
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2.3 Linear PTT model
For PTT model in linear form, the funtion f is expressed by Eq.(2.3) i.e.,
€A
f(tT(T)) =14+ TtT(T).

Thus in Eq. (2.24) the right hand side becomes

22 , ¥ eEX[2) , ¢
22 ) = —_— | —p°=. 2
f ( n p,zzzj) 1 + 7 n p,:l:22_7 (2 5)
This implies that
du eEXf2\ , ¢? Yy
-—= — | —P%L=5 ey 2.26

Integration of above equation gives

Ny
v ¥ 2e X, gy
u(y) = pag; + o7 Pegii * C. (2.27)

Using the conditions at the wall i.e.,
u(y)=0at y=H,

we can easily find the value of C as

H* 2eX , H*

C = —p,mg - 47]2 p,zm.
Finally
Pz g2 L2 6/\21),2:, 2, .2
U(y)=2,-+1n(H -y {1+ 2o (H2+9%) |- (2.28)

Scaling the gaps with respect to H , the velocities with cross-sectional average veloci-
ties & and pressure or stresses with nz/H, we get the non-dimensional velocity profile

as

u(y)  —p.H® ¥\2 € N’pLH?
- ()] [1 4 XL

a - ot i T (1+(%)2)]. (2.29)
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Define

—p.H?
W+iky

in. (2.30)

Squaring both sides gives

2 172 2:-2 /= \2
peH 4ru” [ un
Using the above values in Eq. (2.28) we find
2
wo) _ 5 (1 (3N (14 an e De2 [ A%
= =R (1 (H))(1+4n € De - l-I-(H) ,
(2.32)

where x take the value 1.5 for plane flow and the value 2 for axisymmetric flow. In Eq.
(2.32) the parameter uy is defined by Eq. (2.30) is representing the cross-sectional
average velocity for the upper-convected Maxwell fluid or the Newtonian cases. Note
also that uy/u is nothing other than a pressure gradient in non-dimensional. The
De = Mu/H is the Deborah number in dimensionless group, it is a measure of the
level of elasticity in the fluid, and is basicaly the velocity u which is the average
velocity. For €= 0 or De = 0, the Eq. {2.32) takes the form to the known profile in
parabolic, with a maximum velocity present at the centreline given as (u,)n = Ky
. The second term present in the brackets of Eq. (2.32) represents a corrective term,
infact to the parabolic profile, and is attached to the PTT model.

The pressure gradient -p , is usually not known but it can be related to the cross-
sectional average velocity via the definition of flow rate. According to Bird et al. [21].

we define

]

H
= o [Py, (2:33)
0




et 2

-

22

or

i / {2#1 H? y)(1+ 2;\ Z(H? + ))]dy. (2.34)
o

Integration yields

&l

___patl? () EATRHT G+ (2.35)
n(+ 1) +3) 22D (j+35) )

For the inverse problem solution, the evaluation of the pressure difference for a given
flux, it is advantageous to work with the normalized velocity profile (2.29) which

needs to be integrated to yield the following non-dimensional cubic Eq. for ¥y /% i.e.,

G+DE+3) _uw ’
=™ Z 1+6 r : (2.36)
The left hand side of Eq. (2.36) equal one both for channel and pipe flow and therefore
we get
U; U; 2
Lo (m(g) ) 237)
u U
with
8(3+ )% =,
b = —— € De . 2.38
G+5) (239)

Eq. (2.37) shows that iy < @ .

This implies that the flow rate for a PTT fluid is higher then for a Newtonian
fluid for an identical pressure gradint. This is because of shear thinning behaviour of
PTT fluid. Now we apply Cardano-Tartaglia formula on Eq. s (2.37) as follows:

Let z = «iy/% and m =n = 1/b, then Eq. (2.37) reads
2+ mz=n. (2.39)
Using the transformations

z=t—u, m=3tu, n=1t> -



23

we can write

_ps_[™?
n=t [St] , (2.40)
which gives
3
3y2 _ o3y _ T
(@) =n () - 2 =0 (2.41)

The above equation is a quadratic equation. in ¢3 and can be easily solved to give

n n?2 md
B=—t =+ —. 2.42
2 4 + 27 (2:42)

Using the positive root for the réal solution, we get

3fn n? md
t= \/;—i' I-i—ﬁ (2.43)

For this value of ¢ , we can easily find the required value of u i.e.,

3l n ne md
u={-5+y 5+ (2.44)

Having in hand the values of ¢ and © we find the following value of =

1/2 1/2 ‘
z=§/%+uT;m'{/*%+W’ (2.45)
or
2= —’IT/s [51/3 —(-B+ 01/2)1/3] , (2.46)
(28b)
where

a=3%%+4; B=3Y%2 s§=a?+8.

Returning to the original variable we have

~ 42 1/6(52/3 _ 92/3
%”=( 80 —27) (2.47)

6b1/251/3
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Eq. (2.47) gives the explicit relation for the pressure gradient as a function of the
cross-sectional average velocity %, the main results of the analysis for the linearized
PTT fluid are therefore the velocity profile (2.28) and (2.29), the flux Eq. (2.35) and
the unknown driving pressure gradient at given flow rate obtained from (2.47). The
maximum velocity at the centreline (y = 0) is also uséful and is given by

2 2(,m [77)2
@ _ ﬁ1+4n € D_e (_'u,N/u) ) (2.48)
U 1 +b(uN/u)2

showing that it is smaller than in the Newtonian case. Expressions for the normalized
stress components are readily obtained after scaling with the wall shear stress for the

Newtonian (or UCM) fluid. From Eq. (2.21), the non-dimensional normal stress is

_ 2
Taz CANG AL
2enu/H 4rDe ( T ) (H) (249)

and the normalized shear stress component is calculated from (2.20):

Tzy UN Y
—— === ). 2.
2knu/H ( u ) (H) (2:50)
The rate of normalized shear strain from Eq. (2.24) takes the form
) _ (E) 1+8k% e De? [ X 2 (ﬁ)2 (2.51)
2ku/H u \H u H ) )

and the viscosity profile is

u(y) = % = # = (1 +8k? € De? (%)2 (%)2) wl_ (2.52)

The values of these quantities at the wall are useful to define non-dimensional quan-

tities and are obtained after setting y = H;

p w\ " m), () AN
—1;2-—— 1+ 8x% € De? (T) s —Vw_ . ¥ and TZ )y =4KD€(TN)

u 2knu/H T 2knu/H u
(2.53)
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Where (74),, is defined positive. These values are smaller than the corresponding
values for the UCM fluid, a point to be taken into account when comparing non-

dimensional values.

2.4 Exponential PTT model

Observe that normal and shear stress profiles are independent of the function f(tr(7)),
therefore they are still given by Eq. s (2.49) and (2.50), respectively. However, the
ratio uy/ % in those expressions is different since it depends on the new velocity
distribution. This distribution is obtained in a similar way by inserting the new func-
tion (Eq. (2.4)) into Eq. (2.24) followed by integration, to yield the dimensional and
the corresponding non-dimensional forms of the velocity profile, respectively. Now in

view of Eq. (2.4), Eq. (2.24) takes the form

A 2.’1: 2 z
du (E_gép, Y ) Py (2.54)

dy TP\ Tp 2 ) pp

Integrating above Eq. we get

_exp(€ M H?p%, /(2% D)) e Np:
u(y) = P /\2/(2-f‘2n) (1 — exp (-W(H — yQ))) ) (2.55)

and in order to non-dimensionalize the above Eq.(2.55), we use the same scalings as

done before for linear PT'T model and get

M) e B - exp(ttua /- /HP). (256)

where b = 8x? € De?. For the axisymmetric case it is also valid, after effecting the

possible changes. Appropriately, in the small limit of b(xx/%)2, Eq. (2.56) tends to
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the parabolic profile, as it should. For exponential PTT model, the expression of
cross-sectional average velocity is no longer same for both axisymmetric and planar
case. For channel, we obtain

H
o= —Ill—T/u(y)dy, (2.57)
0

and then

U=

—7 - 2e Np H? 7 2 erf(i(Ap . H/n)V?2 €) (2.58)
sexp, \°F 7 22pH iv2e S

¥

and also for the pipe flow

H

__ 1

U= f_ﬁ/Zyu(y)dy, (2.59)
0

and therefore

— € Xp? H? — € MH2p2 /(2%)) — 1
_— 7 exp f - exp( . %/ (20°)) (260)
, o2 € N H2p2 [(2n%)

The normalized form of shear-rate and profiles of viscosity are easily evaluated from
(2.56) and (2.50):

()
2xku/H

Qllzl

— o\ 2
¥ 2 ¢ pe? 3)2
(H)exp(&e € De (a) (H ) (2.61)
and
. N
u() 2. o2 (AN (y )2
— = - De* | — = . 2.62
. exp ( 8k° € De = I (2.62)
Similar to the linear PTT model, we investigate the dimensionless velocity profile
across the channel or pipe to give the parameter uy /a for the problem of obtaining

the pressure difference for given rate of flow and for planar case (k = 1.5) we obtain

the following equation:

1

3y exp(btin/0)?) (1 L exp(—b(u‘zv/ﬂ)Q)erf(ib‘”u‘w/ﬂ))‘ (2.63)

T 21 b(un/w)? 261/2 (i /)
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Figure 1: Variation of the average velocity ratio 1y /% with €/2 De (solid line: plane
flow; dashed line: axisymmetric flow; no symbol:linear PTT; symbols: exponential

PTT).
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gl/? De Channel | Pipe €'/2 De | Channel | Pipe
0.05 0.9746 0.9526 | 1.0 10.3134 0.2471
0.1 0.9132 0.8545 | 2.0 0.1858 0.1439
,0'2 70.7695' 0.6732 | 3.0 0.1342 | 0.1033
0.3 0.6515 | 0.5492 | 4.0 0.1059 | 0.08114 |
0.4 0.5628 0.4642v 5.0 0.08778 | 0.06713
0.5 0.4953 | 0.4028 | 6.0 0.07519 q.05740
0.6 0.4427 0.3565 7;0 0.06589 | 0.05024
0.7 0_'4007 0.3203 | 8.0 0.05873 | 0.04474
0.8 0.3663 0'291,1 9.0 0.05303 0.304036
0.9 0.33';6 0.2672 | 10.0 10.04839 | 0.03680

Table 1: Numerical solution of Egs. (2.63) and (2.64) and for the axisymmetric

case ( kK = 2) we find

_ i exp(b(ai/3)?) (| _ exp(=b(un/m))
= (1 i) (269
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Figure 2: Velocity profile of the linear PTT fluid in channel flow as a functon of the

dimensionless group €!/2 De (solid line: parabolic profile; dashed lines: €2 De =
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0.1,0.5,1.0,5.0).

Figure 3: Comparisons of the velocity profiles for the linear and the exponential PTT

mode] in channel and pipe flow (De =2 and €= 0.1) (Solid lines: parabolic profiles;



L A2

AN’

dashed lines

: linear and exponential PTT).
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Figure 4(a): Profiles of normalized shear and normal stress components for varying
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€ and constant De = 2 (Solid lines: UCM fluid; dashed lines: €= 0.01,0.1,0.25,1.0).

S VI N B RN’ S RS B |
K /S 7 &7
; (b)
; Tn// >4
‘," // l/
:" //// -
; /// a
! ;,’
iy, |
' {,// =025
------- De=0.1 |
---- De=l
. - — — De=2 |
3 — — De=35
— — De=10
T 1T T 1 T 1 —
1 2 3
t,/(3nulH)

Figure 4(b): Profiles of normalized shear and normal strss components for varying De

at constant €= 0.25 (solid lines: newtonion fluids; dashed lines: De = 0.1, 1, 2, 5, 10).

Contrary to the previous case, these nonlinear equations are not amenable to an
analytical solution and therefore the use of numerical methods is inevitable. We have
solved the above equations with a built in routine “FindRoot” in Mathematica, the

solution of which is given in Fig.1. A few such values are also tabulated in Table 1

from where other values can be extracted by interpolation.
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2.5 Discussion

It is clear from Figure 1 that, for identical pressure gradients, the PTT fluid can
carry a larger flow rate than the Newtonian or UCM fluids, especially for €2 De
larger than 2. This effect is due to an increased shear-thinning behaviour with the
parameter €'/2 De and is more intense with the exponential form of the PTT model.
The shear-thinning behaviour is also observed in the flatter velocity profiles pertaining
to the plane flow of the linear PTT fluid in Figure 2. As €!/2 De increases the
velocity profiles flatten in the centre in a similar way to those of shear-thinning power-
law fluids. The exponential form of the PTT model leads to velocity distributions
(Egs. (2.55), (2.56), (2.63)and (2.64)) that are similar to those in Figure 2 except for
the increased shear-thinning behavioﬂr as a consequence of the corresponding higher
values of the function f, as seen in Figure 3. The distributions of the normalized
Tzy @nd 7o, across the channel width are shown together for the linear PTT model
in Figure 4(a), for varying € at constant De, and in Figure 4(b) for varying De at
constant €. The trends in Figure 4(a) are expected since €é— 0 brings the PTT
model close to the UCM model and so the stresses should increase in magnitude. In
the latter graph, however, the trend is not monotonic and for high elasticity (high
De) the normal stresses are seen to decrease, an unexpected outcome. Inspection
of the relevant equations shows that both stress components depend only on the
dimensionless group €'/2 De, but the normal stress also depends separately on De
alone. For high De, Eq. (2.49) shows 7., o De'/3 hence justifying the decrease

of 75, with elasticity seen in figure 4(b). This peculiar effect can be removed if
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the stresses are made non-dimensional with their own value of shear stress at the
wall. Then, the variation of 7, /(74y)w will coincide with that for the UCM or the

Newtonian models, and the normal stress will be given by

G5 = AsDelan/D)y/HY (265)

which, for high De, tends to = (De/ €)'/? at the wall, because iy /2 =~ 1/bY/3 ~ 1/(€
De?)'/3 . Hence, the above non-dimensional normal stress now increases monotoni-

cally with De.




I«,

Chapter 3

Analytical solution for flow of
PTT-viscoelastic fluid in a

concentric annulus

r

The aim of this chapter is to present the anafytical solution for purely tangential flow
in steady state form of a viscoelastic fluid obeying the Phan-Thein-Tanner (PTT)
constitutive equation in a concentric annulus with relative rotation of the inner and
outer cylinders. The obtained solutions are valid for both linear and exponential PTT

fluid model. This chapter is based on a recent paper by Mirzazadeh et al. [13].

3.1 Governing Equations
For the flow in a concentric annulus, we have

u= [I/n%y ‘/z]:

35
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Vo=Vilr) , Vo=V, =0, (3.1)

where V; ,V, and V, are the tangential, axial and radial components of velocity. Let
us define ratio of inner cylinder radius (R;) to the outer cylinder radius (Ry) as ,
then the radial gap width 4 is equal to Ro(1 — x). Let £, and 2, denote the angular
velocities of the inner and outer cylinders respectively. For the velocity field given by

Eq. (3.1) the radial and tangential momentum equations reduces to:

T =i a T o (3:2)
]. 8(7‘27',-3) _
S —o, (3.3)

where 7,, , T¢9 and 7,4 are the components of the stress tensors and r, z and 0 refers
to the radial, axial and tangential directions respectively. In this chapter we consider
a relation of PTT constitutive equation that is general than the relation used in

chapter 2 and is given by
fir(T))r+ AT + g)\(DT +71D) =1D, (3.4)

where 7 is the viscosity cofficient of the model, £ a parameter related to the no slip
between the molecular network and the continum medium. For £ = 0 we recover the
model of PTT fluid used in chapter 2. For steady tangential annular flow Eq. (3.4)

gives

Ftr(7))7e0 = M2 — €)¥7r0, (3.5)
f(tT(T))Trr = *)\f’?Tro, (36)

Ftr)Te =07+ X (1 — g) Ver = %&Tae, (3.7)
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where v = rd(Vy/v)/dv. The boundary conditions for this problem arise from no-slip

at the walls and are given by:

r=R,=Vs=RAQ,

r= R, = Vo = R{},.

(3.8)

(3.9)

3.2 Analytical solution for the complete PTT model

With the help of Egs. (3.5) and (3.6), the following relation between the normal

stresses can be established:

Trr &
To9 2-¢

while the trace of the stress tensor is

Ter + Tog = t’r‘(T).

fr(r) =1+ %tr(r)

Using Eq. (3.11) we can write from Eq. (3.12)
€A
f(‘r,-,-+1'99) =1+ -—T-}'—(Tr,--f-’rgg).

From Eq. (3.11) we have

Tog-

2-¢

Using Eq. (3.14) in Eq. (3.13) we get the following form of f

2eA(1-¢)
(2 - €)

f=1+ T9-

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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By dividing Eq. (3.7) by Eq. (3.5), we find that

f(Ter +To0)7r0 . 77'5’ + A (1 - %) ")’Trr - %é"YTsa

= . (3.16)
F(7er + To0)To0 A2 = €)77re
In view of Eq. (3.13) the above equation yields
XTas ~ Mo + A(2 — E)725 =0, (3.17)
which is a quadratic equation in 7,4. The solution of above equation is
n AN¢(2—¢ )T
=1 DA A SR, L 1 d
Tog QAE 1:t\/1 7]2 (3 8)

To find the appropriate sign in Eq. (3.18) we employ the simplified PTT model for

which the value of £ is zero and therefore Eq. (3.17) reduces to:

2
Tog — ?T?_g. (3-19)

If the positive sign were taken in Eq. (3.18) and £ is allowed to approach zero, 744
would approach infinity, which contradicts Eq. (3.19) and this root must therefore
be discarded. If the negative sign in Eq: (3.18) is used instead, and ’Hopital’s law is
applied, we find:

. 2A
21_1"1(1)7'99 = ?Tfe, (320)

which is in agreement with Eq. (3.19). We conclude, therefore, that the correct

solution is:

2 _ 2
7'39=§§—§ 1——\/1—4—A£(—2n2—§)7—-!ﬁ . (321)

For more detail we refer the reader to ref. {12].
To obtain the shear rate 7 , we substitute 745 from Eq. (3.21) into Eq. (3.5) and

solve the resulting equation for . These steps are outlined below and required value
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for v is given in Eq. (3.22).

Ftr(T))Ta0 = M2 — E)¥7ro

RO 0
ﬂw@»z%[ dq————ﬁ——i}—xm €m0

ArNZe(2—€)r?
ﬂww»ggp- 1———?13}

v= M2 = €)7ro
2 —&)r2

' [1 + %% (—55-51’99 +ng)] 2_?@ [1 — /1= i’\_ﬂiﬂflﬁ}

i CEIL |

(1-¢ 42%¢(2-¢)r? 43%¢(2-€)72,
: [ """{ T QHX(?—’IE)P— T } (3.22)
T X2- 8 |

We now introduce the following dimensionless variables:
Y =7/R, , Vo =Vo/Ve, Tro=Tso7V,/§ and We = AV, /6 (3.22a)

The introduction of these dimensionless variable leads to the following dimensionless

form of Eq. (3.22).

) A T

=3 }, (3.23)
dr 2(1 — K)We XxTro

where y is a parameter which combines € and £ and is defined as’ E((zl—é) and We is

the modified Weissenberg number defined as W}e = Wey/€ (1 —£). Integration of

Eq. (3.3) after non-dimensionalisation leads to:

* 2
=5 (3.24)
T

Twi
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where TT,,,- is the dimensionless wall shear stress on the inner cylinder. Substitution of
Trs from Eq. (3.24) into Eq. (3.23) followed by integration leads to the dimensionless

form of the velocity profile:

" 2 52 4
v (1+ ;) r —\r —n? "2 1
T .2t ViTm + x 2 poll
T 41 - k)RETWe x +nArctg ( 'n_”z) 4(1 — k)2 TyiWe x2 \T
(3.25)
where
n= 2&‘,21';,-1'{’6\/)_( (3.26)
The boundary conditions can be put into non-dimensional form as follows:
T = R'. = V= R‘-Qi
gives
Pk V= 2 (3.27)
= 0 — . -
(1+x)B-1
and
r=R,=>Vy=R,Q,
yields
* * 26
r=1l=2>V= ——F—F—. 2
S R I (3.28)
where
Q,
B = ﬁ: (3.29)
The application of boundry condition (3.27) to Eq. (3.25) gives
—sareE T K2 — VKT —nl+ n? 1
(1+2) X ST T x 2 (n2) =-C
r Ki—n _ 2. 2
—"—r«l_’{)ﬁr;wg - nArctg (——n ) 4(1 n)n TwiVe x
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Similarly Eq. (3.25) in view of boundry condition (3.28) gives

) 23 . (1+§> § 1-v1-n’+ N n? _—C
1 = . 22 c s
(1+x)18 -1 41— w)R2TWe x| nArctg (@) 4(1 — K)K2 T We X2

(3.31)
Comparison of Eq. (3.30) and Eq. (3.31) yield the following equation for the unknown

* . .
shear stress 7., at the inner cylinder

( A

(1~ &%)+ VKt —n2~
(1+2) V1= nit e ()
) X ¢ ] r_ 4(1—k)R2TwiWe X

4(1 - fc)n?'r:,,-We X Arctg (30;1‘1) -

n
Arctg (‘/“;‘m)

28-1)
T T

(3.32)
Eq. (3.32) is strongly non-linear but can be solved numerically for the dimensionless
wall shear stress T:m' on the inner f:ylinder. Once T:,,,; is known, the constant C in
Eq. (3.25) can be obtained by applying either of the two boundary conditions (Eqgs.

(3.27) or (3.28).

3.3 Exact solution for the simplified PTT model

For simplified PTT model ¢ is zero and f(tr,) =1+ %’\trT therefore, we get following

scalar equations from the above constitutive relation i.e.,
f(t’r‘(’r))Too = 2)\’77‘,-9, (333)
f(tT(T))T,-,- =0, (334)

ftr(T))7e0 = 1. (3.35)
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Moreover, we have

2
Teo = —T’Z_e (3.36)
n
and then
2¢ M\
f(ng) =14+ 172 ’ng. (337)

Now putting the values from Eq. (3.36) and Eq. (3.37) in Eq. (3.33)

2
14+ 252,20 i, (339)
Y n
This gives
Y= [1 + TTW] "T’.—, (339)
or
d (Vo) _ 2€X , ] 7
’I"E’; (?) = [1+ nz Tro ? (340)

With the help of dimensionless variables defined in Eq. (3.22a), we get

. d ‘:%9 (1 +2¢€ We2'r:.92) Trg
T? - = - 1 © . (3.41)
T T -

Now from Eq.(3.24)

« 2 kY .2
Teg = T—4Twi . (3.42)

Substitution of from above equation in Eq. (3.41) results in

d I;}; K2T; 1 € We2rc41';,i2
)= "= = | (343)
dr \ 7 7 6r
Integration yields
‘; 2 wi 1 w 2t wi
L {5 ShIAZal } C (3.44)
r A—-k)r 3r




In view of the boundry condition

*

r=k=V, = 2r
N TR

Eq. (3.44) becomes

3
* *
2K KTwi 1 € We2kbry,

M+ RE-1 " anez T Ao

Similarly for the boundry condition

*

. . 203
N CEws I

we have from Eq. (3.44) the following relation

3
* *
2ﬂ nsz,- 1 € W€2 K;S’."wi

(1+H)Iﬁ—1|+(l—ﬁ:)§+ 3(1 — k) =C

Equating the left hand sides of Eq. (3.45) and Eq. (3.46), we obtain

6(1 — k)(B - 1) 3(1 - K,2) . $ 3
W -+ zewe - = =0

or
x 3 *
Twi +PTwi +q=0.

where the constants p and ¢ in Eq. (3.48) are given by

_ 3(1 — x?)
P=3 € We2(1 — «f)’
6(1 - x)(B-1)

1= T eWel -+ R B-1]

The real solution of Eq. (3.48) can be expressed as:

.1
Twi = 6\3/—108q + 124/12p% + 81¢% — 2
{/-108¢ + 12/125% + 81¢?

43

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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By introducing boundary conditions from Egs. (3.26) or (3.28) into Eq. (3.44) and
using 7,; from Eq. (3.51), the second constant C is easily obtained, clearly the
numerical value of C' in this case (for SPTT) is different from the numerical value
of that for PTT. For the limiting case (€ We? — () the previous equation reduces
to the well-known solution for a Newtonian fluid. In engineering calculations the
torque friction factor f defined as (7,,/pV2/2) is a parameter of interest. Usually,
the product of f and the rotational Reynolds number Re, which is defined as (pV.6/7)
is often required.

Now we obtain the pressure variatiofi across the-annular gap. By substitution of

7,» from Eq. (3.10) into Eq. (3.2), we arrive at:

OP Vi & 10(rTes) Tee

or P 2—¢&r  Or r (352)

Note that in Eq. (3.54) right hand side is a function of the radial coordinate only
so that integration of this equation leads to an equation for the pressure distribution
across the annular gap. Let us define the pressure distribution for simplified PTT
constitutive equation. For this we take £ equal to zero in Eq. (3.54) and non-

dimensionalizing the resulting equation to get

* * 2 - 2
0P _reYo oyt (3.53)
or T T

where the non-dimensional pressure I,‘J is defined as (P/qV./8). By introducing Tr

from Eq. (3.24) and V, from Eq. (3.44) into Eq. (3.55) and then integrating we

arrive at:
* * 2 . 2
6P * * i *
/ _dr = Re / er —2We / Tro g, (3.54)
or r T
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P— P = U() — (), (3.55)

where P, is the dimensionless pressure on the inner cylinder and ¥(r) is as follows:

() = Uy (7) + Uy(7), (3.56)
Re 2 2Kk%T, 20 KiT, : 1
o ne 2% _ wi * _ wi _
U (r) = 5 [C e P Inr IO mp ;2} , (3.57)
«3 . 2 « 6 . 2
% 6 C 1 K87, 1 kPeWer, 1 Kiry 1
\p — W 2 R K Tw: = wt - un i W u - ]
i) =< We [ e{s(l—n);f‘ BI-RF o0 - A ;:“’}+ T
(3.58)

It should be pointed out for a Newtonian fluid (€ We? — 0) and then the second

_term on the right hand side of Eq. (3.58), (¥5(r)) must be equal to zero.

3.4 Results and Discussion

2 F

185 F

19 ¢

185

175

1.7F

165 F

Figure 3.1: Variation of velocity 1;'9 for SPTT fluid with respect to r for different
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values of € . The other parameters are We = 5, k=0.5.

— We=1
---- We=2
109} ——  We=3
- We=4
%1.8 3
>
17 F
16
? 05 0B 0.7 (1F:] 0.9 1

¥

Figure 3.2: Variation of velocity 1;9 for SPTT fluid with respect to r for different

values of We. The other parameters are €= .01, k=0.5.

In this section we start by showing the behaviour of velocity component I;g for
SPTT fluid for different values of We and € . Figures 3.1 and 3.2 are plotted to
serve the purpose. These figures reveals that the velocity component I;g decreases by
increasing We and € . Moreover, it is also observed that I;g attains a minimum values
in the annular gap. The radial location of this minimun velocity is of interes;: in many
situations [15] and therefore at the end we proceed to find the radial location of the

minimum velocity both for PTT and simplified PTT constitutive equations.

The tangential velocity distribution for PTT constitutive equation is given as
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follows:
x3 x [xd
. (l—l-%) r —r\r —n?+ n? 1 .
‘/0: . « 2 x - ,/'3 2 + * x 2 (:)+CT
41 — K)K?1,;We x | rnArctg ( e ) T 4(1 - K)R2T We x2 T
(3.59)

Differentiating it with respect to 7 we get

v (1+2) S S 2 .
b = X/ v ( >+C

* x 2 X " - x 2 2
dr 41 — k)K2 T We x| nArctg (——”n‘“z) + 2 4(1 — K)K2TyWe x2 \T

(3.60)

Equating dl}g /dr to zero yield the following equation

%2 4
(1 + 2) 3rmjn - V Tin n2+ 2 1
X X n ( )+C = 0.

. + —
* 2 fxd . 2 2
4(1 — K)K2 Ty We x nArctg (r"’+_nz) 4(1 - r)K2 T We x2 \T

(3.61)
Eq. (3.61) is a strongly non-linear and therefore has to be solved numerically to find
the value of ;*mjn as a function of the Weissenberg number, radius ratio x, and the
angular velocity ratio (3). Now we repeat the above procedure to find the values of

;'m,'n for simplified PTT model. For simplified PT'T model 1;}; is given by

* K2Twi 1 € Wekbr, N *
Vo= ——"_— + = +Cr. (3.62)
(1—r)r2 3(1—&)r
Differentiating it with respect to r we have
> - + 3
d,V 2 i W 2.6 wi
Yo _KETwi (EEWeRTw Lo (3.63)
dr 21— k)r 3(1—K)r
Now setting
vy
1:0 =0, (3.64)
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gives
* + 3
2 . W 2.6 ,
'n"rw‘*z_{_5€ e ﬁ:—gm +C=0
2(1 — K)r 3(1 - K)r
or
K2 5 € WelkSrh; +6
wr .2 wi + CT — 0’
21— &K)r 3(1- k)
or

(;2)3 + a(;‘2)2 +b=0,

The real solution of the above cubic equation is

. \/6d(d? + 4a? — 2ad)
'rmin = Gd 3

where

d= {’ﬂ—wsb — 8a3 + 12+/(8182 + 12ba%)),

*
KT i

T 2(1-k)C’
_5€ We2kbro;
- 3C ‘

a

b

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

Here again, we recover the well-known result for the limiting case of a Newtonian

fluid (ie., € We? = 0).
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