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Preface

The research area of Newtonian and non-Newtonian �uid �ow in a permeable channel

has attained a lot of interest in the �eld of bioengineering. Few researchers like Espedal

et al. [1], Mazumdar et al. [2], Waite et al. [3,4], and Hayat et al. [5] discussed the

behavior of viscous �ow in di¤erent geometries. Di¤erent mechanisms like membrane

�ltration, physiological �ow through veins, transpiration cooling, bio�uid �ow through

the proximal tube, and dialysis can be modeled by the viscous �uid �ow through di¤erent

conduits. Numerous researchers proposed the theoretical and experimental models of the

�ltration process including Berman et al. [6], who is a pioneer in the study of laminar �ow

of incompressible �uid through a permeable conduit also found velocity and pressure by

the perturbation method with constant suction on the boundary. After Berman, Yuan et

al. [7,8] extended their research for high and low seepage rates and found the analytical

solutions for velocity with pressure by series solution method. Like wise Terril et al.

[9] calculated the exact solution for the two-dimensional �ow problems in a permeable

tube. A study of laminar �ow in permeable conduit including the pressure drop, axial

and transverse velocity pro�le, and the �ow rate has been presented by Jocelyne et al.

[10]. Sandeep et al. [11] solved the problem of rectangular and cylindrical cross-sectional

areas with porous boundaries and found the series solution of velocity and pressure �eld.

Further scientists have been exploring a wide range of �ow problems involving non-

Newtonian �uids, because these �uids have numerous practical applications in modern

technology and industries. The theory of couple-stress �uid, proposed by Stokes [12,13],

has gained the interest of many researchers in �uid mechanics over the past �ve decades.

Couple-stress �uid is a type of non-Newtonian �uid that exhibits the rotational motion

[14]. These �uids are essential in modeling various physical phenomena, such as �uid �ow

through porous media, lubrication, and biological �uid dynamics [15,16]. The fundamen-

tal equations that describe the behaviour of couple-stress �uid are inherently non-linear

and more complex than the Navier-Stokes equations. Therefore, �nding an exact solu-

tion of these equations is quite challenging. Di¤erent perturbation techniques have been
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frequently employed to obtain approximate solutions of these equations [17]. However,

in recent research, we have employed the Langlois technique to obtained the solution of

non-linear partial di¤erential equations.

Moreover, reabsorption in �uid mechanics introduces additional complexity, especially

when dealing with permeable boundaries where the �uid can be absorbed back into the

medium through which it �ows. However, constant reabsorption models play a vital role

in medical applications such as drug delivery systems and renal physiology, where the

precise control of �uid absorption rates is important [18,19]. These models are useful

for predicting and optimizing the performance of systems that bene�t from controlled

reabsorption improving functionality and e¤ectiveness. Siddiqui et al [20] discussed the

analytical solution of the creeping �ow of couple-stress �uid with constant reabsorption.

According to the best of our knowledge, the two-dimensional inertial �ow of cou-

ple stress �uid through a permeable rectangular conduit has not been discussed earlier,

therefore in this research work we are intended to discuss two-dimensional inertial �ow

of couple-stress �uid through a permeable slit with constant reabsorption. This thesis is

organized into three chapters. Chapter one presents basic de�nitions and laws of �uid

mechanics. Chapter two discusses the study of inertial �ow of couple stress �uid through

a rectangular conduit with no slip velocity at the channel wall. Chapter three includes

the e¤ect of inertial forces and lubricated walls on the two-dimensional �ow of couple

stress �uids through a porous slit with constant reabsorption.
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Chapter 1

Preliminaries

This chapter includes the basic concepts and de�nitions of di¤erent types of �ows, �uid

properties, and laws of �uid mechanics.

1.1 Fluid

A �uid is a substance that deforms subject to shear stress. It�s a state of matter that

consists of liquid, gas, and plasma.

1.2 Fluid Mechanics

Fluid mechanics is a branch of engineering that explores the characteristics and behaviour

of �uids, whether �uids are in motion or at rest.

1.3 Types of Fluid

Fluid mechanics, involves the examination of di¤erent types of �uids, each with their

own unique characteristics and behaviours. There are mainly two types of �uids, such as

Newtonian and non-Newtonian �uids.
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1.3.1 Newtonian vs Non-Newtonian Fluid

Newtonian �uid follows the Newton�s law of viscosity, that exhibits a direct relationship

between shear stress and velocity gradient. While non-Newtonian �uid do not adhere

this law.

Mathematically, for Newtonian �uid following relation holds:

�xy = �
@u

@y
(1.1)

where �xy is the shear stress, and � is constant viscosity.

However in case of non-Newtonian �uid it may be written as:

�xy = �
@u

@y
(1.2)

where � =
�
@u
@y

�n�1
, and n 6= 1.

1.4 Types of Flow

Flows can be categorized based on various characteristics:

1.4.1 Laminar vs Turbulent Flow

Laminar �ow refers to a type of �uid �ow where all �uid particles follow a certain path

and move smoothly without crossing each other. On the other hand, turbulent �ow is

characterized by �uid particles that do not follow a speci�c path and the �uid �ows in

an irregular pattern..

1.4.2 Steady vs Unsteady Flow

In steady �ow, �uid properties such as velocity, pressure, and density do not depend on

time during �ow i.e. S 6= S(t).While in case of unsteady �ow �uid properties change

7



with respect to time i.e. S = S(t)

Mathematically, steady �ow can be de�ned as:

@S

@t
= 0; (1.3)

and unsteady �ow can be written as:

@S

@t
6= 0: (1.4)

where S may be the velocity, pressure or density.

1.4.3 Compressible vs Incompressible Flow

Compressible �ow experiences a notable change in density with varying pressure, tem-

perature, and space components. On contraroy incompressible �ow have a density that

does not change with respect to space, pressure and temperature.

1.4.4 Two-Dimensional Flow and Three-Dimensional Flow

Two-dimensional �ow is a �ow in which the �ow properties are functions of only two spa-

tial coordinates, whereas three-dimensional �ow involves �ow properties that are func-

tions of three spatial coordinates.

Mathematically, two-dimensional �ow in rectangular coordinates is written as

V = (u1(x; y; t); u2(x; y; t); 0); (1.5)

where the velocity component in third direction is zero, and properties do not vary along

third direction.

While three-dimensional �ow is written as

V = (u1(x; y; z; t); u2(x; y; z; t); u3(x; y; z; t)): (1.6)
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where u1 is the velocity component in x-direction, u2 is in y-direction, and u3 is in

z-direction and �ow properties vary in all three directions.

1.5 Flow Properties

1.5.1 Density

Density is de�ned as mass per unit volume at a speci�c pressure and temperature.

Mathematically, it is de�ned as

� =
m

V
: (1.7)

where V denotes the volume and m is mass of the �uid.

1.5.2 Pressure

Pressure is the magnitude of force per unit area.

Mathematically, it can be expressed as

P =
jFj
A
: (1.8)

where jFj denotes the magnitude of force, A is the area and pressure is denoted by P:

1.5.3 Shear Stress

A force per unit area that tends to create deformation in �uid �ow is known as shear

stress. It is denoted by � and mathematically, de�ned as

� =
F

A
: (1.9)
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1.5.4 Volumetric Flux

In �uid mechanics, the volumetric �ux is the rate of volume �ow across a unit area. It is

denoted by Q, and mathematically de�ned as

Q = AS (1.10)

where A represents the cross-sectional area, and S denotes average �ow velocity through-

out the �uid. It can also be written as

Q =

Z Z
A

SdA (1.11)

1.6 Non-dimensional Parameters

1.6.1 Reynold�s Number

The Reynold�s number is a dimensionless quantity, that quanti�es the ratio of inertial to

the viscous forces. It helps to predict the �ow patterns of di¤erent �uid �ow.

Mathematically, it is de�ned as

Re =
�V L

�
; (1.12)

where � denotes density, � is dynamic viscosity, V represents velocity of �uid and L is

characteristics length.

The Re < 2300 represents the laminar �ow and 2300 < Re < 4000 indicates the

transition from laminar to turbulent �ow but Re > 4000 predict the turbulent �ow [21].

1.6.2 Couple-stress Parameter

Couple-stress parameter is the square root of ratio of viscosity coe¢ cient and couple-

stress coe¢ cient.
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Mathematically it is de�ned as

� =

r
�

�1
: (1.13)

where � is the couple-stress parameter, � represents viscous coe¢ cient (dynamic viscos-

ity), and �1 is the couple-stress coe¢ cient.

1.7 Permeable Slit

Slit is de�ned as a long, narrow cut or opening in some system and permeable slit means

it has pores which allows �uid particles to get either in or out.

1.8 Slip vs No-slip Condition

No-slip boundary condition presumes that �uid layer in touch with the wall is similar to

velocity of wall. There is no relative motion between wall and �uid due to no-slip velocity

on the boundary. In case of slip condition, the relative movement between boundary and

�uid layer occurs.

1.9 Basic Laws of Fluid Mechanics

1.9.1 Principle of Conservation of Mass

This law states that mass of the system remains constant with respect to all physical

changes.

Mathematically, it can be de�ned as

@�

@t
+r(� :V ) = 0; (1.14)

where � is the �uid density, t is the time and r is the divergence, V is the velocity
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vector. For incompressible �ow, density is constant and above equation becomes

r:V = 0: (1.15)

1.9.2 Principle of Conservation of Momentum

The principle states that the total amount of momentum remains constant within some

domain that is momentum is neither created nor destroyed, but it can only be changed

by the action of forces as mentioned by the Newton�s law of motion.

Mathematically, it can be de�ned as

�

�
@

@t
+ (V :r)

�
V +rp� �f =r� : (1.16)

where V is the velocity vector, t represents time, � is the Cauchy stress tensor, p

denotes the hydrostatic pressure, and f denotes the body forces.

1.10 Methodology

The technique which is going to be used in this research is Recursive or Langlois technique,

which was introduced by W.E.Langlois in 1963. This method will help us to make the

non-linear system into linear system. After linearizing, we will use inverse method to

convert the linear PDE�s into set of ODE�s. In this approach, one can linearize velocity

pro�le, shear stress and pressure with the help of small dimensionless number ". In

order to obtain the 1st, 2nd and 3rd order solutions for velocity pro�le, shear stress and

pressure, one can assume following series i.e.

u =
1X
i=1

"iu(i); v =
1X
i=1

"iv(i); p = p(0) +
1X
i=1

"ip(i): (1.17)
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Chapter 2

E¤ect of Constant Reabsorption on

Inertial Flow Passed through a

Permeable Slit

2.1 Introduction

In this chapter an incompressible, stead, two-dimensional, non-creeping �ow of couple-

stress �uid, through a permeable slit of small width has is discussed, and Cartesian

coordinate system is taken into account. The �uid Reabsorption is assumed to be con-

stant at permeable walls of the slit, and also no-slip boundary condition is used to solve

the set of non-linear coupled partial di¤erential equations. The Langlois�s method is used

to linearize the problem and to formulate the solutions for, shear stress, velocity pro�le,

pressure di¤erence, and stream function. The graphical results for velocity pro�le, pres-

sure and wall shear stress show the impact of Reynold�s number, reabsorption parameter

and couple-stress parameter.
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2.2 Mathematical Formulation

Consider two-dimensional inertial �ow of couple-stress �uid through a permeable slit

having dimension L � h � W and W < h < L . A constant Reabsorption rate V0 is

uniformly distributed at the permeable walls of the slit and Cartesian coordinate system

(x; y; z) is chosen for the slit. It is also assumed that W << h, therefore, the �ow in

z-direction is very small as compared to x and y-direction.

Fig. 2:1 : Schematic diagram of the problem

The above assumptions suggest the following velocity pro�le:

V = (u(x; y); v(x; y)); (2.1)

where u(x; y) is velocity component in axial direction and v(x; y) is the velocity com-

ponent in transverse direction, respectively.

The governing equations for two-dimensional �ow of couple-stress �uid through a slit

having small width are as follows:

r: V = 0; (2.2)
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�

�
@

@t
+ (V :r)

�
V = �rp+ �r2V � �1r4V ; (2.3)

where p is the hydrostatic pressure of the �uid, � is the dynamic viscosity of the �uid

and �1 is the material constant associated with couple-stress �uid.

The shear stress for the couple-stress �uid is given as follows:

�xy = �
@u

@y
� �1

@3u

@y3
; (2.4)

The boundary conditions according to the �ow are as follows:

@u(x; y)

@y
= 0;

@3u(x; y)

@y3
= 0; v(x; y) = 0; at y = 0; (2.5)

u(x; y) = 0;
@2u(x; y)

@y2
= 0; v(x; y) = "V0; at y = h;

"Q0 = 2W

Z h

0

u(x; y)dy; at x = 0:

For two-dimensional inertial �ow, continuity and component form of momentum equa-

tions are given as follows:
@u

@x
= �@v

@y
; (2.6)

� (V :r)u = �@p
@x
+ �r2u� �1r4u; (2.7)

� (V :r) v = �@p
@y
+ �r2v � �1r4v: (2.8)

2.2.1 Non-dimensional quantities

The following parameters are de�ned for non-dimensional analysis:

x0 =
x

L
; y0 =

y

h
; u0 =

uh2

Q0
; v0 =

vhL

Q0
; V

0

0 =
V0hL

Q0
;

p0 =
ph4

�LQ0
; � =

h

L
; Re =

�Q0
�h

; � =

r
�

�1
(2.9)
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using above quantities in equations (2:6)� (2:8) and dropping primes one can write the

following equations:
@u

@x
+
@v

@y
= 0; (2.10)

�Re (V :r)u = �@p
@x
+ �2

@2u

@x2
+
@2u

@y2
�N1; (2.11)

�3Re (V :r) v = �@p
@y
+ �4

@2v

@x2
+ �2

@2v

@y2
�N2; (2.12)

where

N1 =
1

�2

�
�4
@4u

@x4
+
@4u

@y4
+ 2�2

@4u

@x2@y2

�
;

N2 =
1

�2

�
�6
@4v

@x4
+ �2

@4v

@y4
+ 2�4

@4v

@x2@y2

�
:

The dimensionless form of boundary conditions will take the following form:

@u(x; y)

@y
= 0;

@3u(x; y)

@y3
= 0; v(x; y) = 0; at y = 0; (2.13)

u(x; y) = 0;
@2u(x; y)

@y2
= 0; v(x; y) = "V0 at y = 1;

" =
2W

h

Z 1

0

u(x; y)dy; at x = 0:

2.3 Solution of the Problem

The set of equations (2:10)�(2:12) represents the non-linear partial di¤erential equations

in which three unknowns u; v;and p are present which will be determined by the recursive

approach. It is already assumed that the slit is narrow and its width is very small as

compared to its length, therefore the ratio of length to width (�) is less than 1 and the

terms which are in order of �2 will be ignored.

To �nd the solution of unknown quantities we will expand u; v, p, and �xy in the
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power series of " (small dimensionless quantity)

u =

1X
i=1

"iu(i); v =

1X
i=1

"iv(i); p = p(0) +

1X
i=1

"ip(i); �xy =

1X
i=1

"i� (i)xy : (2.14)

where p(0) is a constant at inlet.

Now using the above mention series in equations (2:10) � (2:13) and then collecting

powers of ", one can get the following systems:

2.3.1 First Order System
@u(1)

@x
+
@v(1)

@y
= 0; (2.15)

0 = �@p
@x
+
@2u(1)

@y2
� 1

�2
@4u(1)

@y4
; (2.16)

0 =
@p

@y
; (2.17)

� (1)xy = �
@u(1)

@y
� �1

@3u(1)

@y3
: (2.18)

The corresponding boundary conditions for �rst order system are as follows:

@u(1)

@y
= 0;

@3u(1)

@y3
= 0; v(1) = 0; at y = 0; (2.19)

u(1) = 0;
@2u(1)

@y2
= 0; v(1) = V0; at y = 1;

1 =
2W

h

Z 1

0

u(1)dy; at x = 0:

To reduce the unknown quantities stream function is de�ned in following manner.

u(1) =
@ (1)

@y
; v(1) = �@ 

(1)

@x
; (2.20)

After replacing above relation in equations (2:15) � (2:18), one can write the following
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form:

0 = �@p
(1)

@x
+
@3 (1)

@y3
� 1

�2
@5 (1)

@y5
; (2.21)

0 =
@p(1)

@y
; (2.22)

Upon using equation (2:22) into equation (2:21) following equation can be obtained.

0 =
@6 (1)

@y6
� �2

@4 (1)

@y4
: (2.23)

Boundary conditions in terms of stream function are mentioned as follows:

@2 (1)

@y2
= 0;

@ (1)

@x
= 0; at y = 0; (2.24)

@ (1)

@y
= 0;

@ (1)

@x
= �V0; at y = 1;

@3 (1)

@y3
= 0; at y = 1;

@4 (1)

@y4
= 0; at y = 0;

h

2W
=  (1)(x; 1); 0 =  (1)(x; 0); at x = 0:

To solve above BVP an Inverse method is used that suggests the following stream func-

tion:

 (1) = V0xR1(y) + T1(y); (2.25)

After using above function in Eq.(2:23) and (2:24), one can get the following system of

BVP�s:
d6R1
dy6

� �2
d4R1
dy4

= 0; (2.26)
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The associated boundary conditions are:

R1 = 0;
d2R1
dy2

= 0;
d4R1
dy4

= 0; at y = 0; (2.27)

R1 = �1;
dR1
dy

= 0;
d3R1
dy3

= 0 at y = 1;

The second boundary value problem is given as follows:

d6T1
dy6

� �2
d4T1
dy4

= 0; (2.28)

along with boundary conditions

T1 = 0;
d2T1
dy2

= 0;
d4T1
dy4

= 0; at y = 0; (2.29)

T1 =
h

2W
;

dT1
dy

= 0;
d3T1
dy3

= 0 at y = 1;

The general solutions of above BVP�s are as follows:

R1 =
4X
i=1

ciy
i�1 + c5e

�y + c6e
��y; (2.30)

T1 =
4X
i=1

diy
i�1 + d5e

�y + d6e
��y; (2.31)

After using their corresponding boundary conditions one can get the following solution.

R1(y) = c2y + c4y
3 + 2c5 sinh(�y); (2.32)

T1(y) = d2y + d4y
3 + 2d5 sinh(�y): (2.33)

where the values of unknown constant are given in appendix.

Using above expressions in Eq.(2:25) one can get the following stream function and
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velocity pro�le:

 (1)(x; y) = (V0xc2 + d2)y + (V0xc4 + d4)y
3 + 2(V0xc5 + d5) sinh(�y); (2.34)

u(1)(x; y) = (V0xc2 + d2) + 3(V0xc4 + d4)y
2 + 2�(V0xc5 + d5) cosh(�y); (2.35)

v(1)(x; y) = �V0(c2y + c4y
3 + 2c5 sinh(�y); (2.36)

With the help of above velocity pro�le and Eq.(2:21) pressure distribution can be formu-

lated as follows:

p(1)(x) =
3�3(hx� V0Wx2) cosh(�h)

2h�W (�3 + h2�2) cosh(�h) + 6W sinh(�h)
: (2.37)

2.3.2 Second Order System
@u(2)

@x
+
@v(2)

@y
= 0; (2.38)

�Re
�
V (1):r

�
u(1) = �@p

(2)

@x
+
@2u(2)

@y2
� 1

�2
@4u(2)

@y4
; (2.39)

0 =
@p(2)

@y
; (2.40)

� (2)xy = �
@u(2)

@y
� �1

@3u(2)

@y3
; (2.41)

and boundary conditions are given as follows:

@u(2)

@y
= 0;

@3u(2)

@y3
= 0; v(2) = 0; at y = 0; (2.42)

u(2) = 0;
@2u(2)

@y2
= 0; v(2) = 0; at y = 1;

0 =

Z 1

0

u(2)dy; at x = 0

After eliminating the pressure gradient from Eq. (2:39)� (2:40) and using stream func-
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tion, following equation can be obtained:

�2�Re
@

@y

�
V (2):r

�
u(2) =

@6 (2)

@y6
� �2

@4 (2)

@y4
: (2.43)

along with boundary conditions

@2 (2)

@y2
= 0;

@ (2)

@x
= 0; at y = 0; (2.44)

@ (2)

@y
= 0;

@ (2)

@x
= 0; at y = 1;

@3 (2)

@y3
= 0; at y = 1;

@4 (2)

@y4
= 0; at y = 0;

0 =  (2)(x; 1) =  (2)(x; 0); at x = 0

Now we will solve above BVP by assuming the following stream function.

 (2)(x; y) = g(x)R2(y) + T2(y); (2.45)

where g(x) = x:

Following same procedure adopted in �rst order system, one can get the following

BVP�s:
d6R2
dy6

� �2
d4R2
dy4

= f1(y); (2.46)

and boundary conditions are:

R2 = 0;
d2R2
dy2

= 0;
d4R2
dy4

= 0; at y = 0; (2.47)

R2 = 0;
dR2
dy

= 0;
d3R2
dy3

= 0; at y = 1:
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Also,
d6T2
dy6

� �2
d4T2
dy4

= f2(y); (2.48)

The related boundary conditions are:

T2 = 0;
d2T2
dy2

= 0;
d4T2
dy4

= 0; at y = 0; (2.49)

T2 = 0;
dT2
dy

= 0;
d3T2
dy3

= 0; at y = 1;

where f1(y) and f2(y) are mentioned in appendix.

Solutions of above BVP�s are obtained by DSolve command in MATHEMATICA.

After getting the solution of stream function  (2)(x; y), one can �nd second order velocity

components and second order pressure distribution.

2.3.3 Third Order System
@u(3)

@x
+
@v(3)

@y
= 0; (2.50)

M = �@p
(3)

@x
+
@2u(3)

@y2
� 1

�2
@4u(3)

@y4
; (2.51)

0 =
@p(3)

@y
;

� (3)xy = �
@u(3)

@y
� �1

@3u(3)

@y3
; (2.52)

where

M = �Re

�
u(1)

@u(2)

@x
+ v(1)

@u(2)

@y

�
+

�
u(2)

@u(1)

@x
+ v(2)

@u(1)

@y

�
;

and boundary conditions are given as follows:

@3u(3)

@y3
= 0;

@u(3)

@y
= 0; v(3) = 0; at y = 0; (2.53)
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@2u(3)

@y2
= 0; u(3) = 0; v(3) = 0; at y = 1;

0 =

Z 1

0

u(3)dy; at x = 0:

After eliminating pressure gradient and using stream function the following equation can

be obtained:

��2@M
@y

=
@6 (3)

@y6
� �2

@4 (3)

@y4
; (2.54)

and boundary conditions of stream function  (3) are as follows:

@4 (3)

@y4
= 0;

@2 (3)

@y2
= 0;

@ (3)

@x
= 0; at y = 0; (2.55)

@3 (3)

@y3
= 0;

@ (3)

@y
= 0;

@ (3)

@x
= 0; at y = 1;

0 =  (3)(x; 1) =  (3)(x; 0); at x = 0

To write the simpli�ed form of Eq.(2:51), one can get the following relation:

h(x)f3(y) + f4(y) =
@6 (3)

@y6
� �2

@4 (3)

@y4
; (2.56)

where

h(x) = x

and f3(y);and f4(y) are de�ned in appendix.

To �nd the solution by Inverse method, following choice of stream function  (3)(x; y)

is used:

 (3)(x; y) = h(x)R3(y) + T3(y); (2.57)

Following same steps of 1st order system, one can obtain the following set of equations.

d6R3
dy6

� �2
d4R3
dy4

= f3(y); (2.58)
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d6T3
dy6

� �2
d4T3
dy4

= f4(y); (2.59)

and boundary conditions are given as follows:

R3 = 0;
d2R3
dy2

= 0;
d4R3
dy4

= 0; at y = 0; (2.60)

R3 = 0;
dR3
dy

= 0;
d3R3
dy3

= 0; at y = 1;

T3 = 0;
d2T3
dy2

= 0;
d4T3
dy4

= 0; at y = 0; (2.61)

T3 = 0;
dT3
dy

= 0;
d3T3
dy3

= 0; at y = 1;

Solution of above BVP�s can be obtain by DSolve command in MATHEMATICA and

solution of R3, and T3 will de�ne third order velocity components, pressure, and shear

stress. After combining, 1st, 2nd, and 3rd order solution , one can �nd expression of

stream function, axial and transverse velocities, shear stress and pressure distribution in

following manner:

 (x; y) =  (1)(x; y) +  (2)(x; y) +  (3)(x; y); (2.62)

u(x; y) = u(1)(x; y) + u(2)(x; y) + u(3)(x; y); (2.63)

v(x; y) = v(1)(x; y) + v(2)(x; y) + v(3)(x; y); (2.64)

�xy(x; y) = � (1)xy (x; y) + � (2)xy (x; y) + � (3)xy (x; y); (2.65)

p(x; y) = p(0) + p(1) + p(2) + p(3) (2.66)

where p(0) = p(0; 0):
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2.4 Results and Discussion

The graphical results are discussed in order to study in�uence of Reynold�s number

(Re), reabsorption parameter (V0) and couple-stress parameter (�) on pressure di¤erence,

velocity pro�le at middle region (x = 0:5) of slit and shear stress at wall.

2.4.1 E¤ect of Reynold�s Number (Re)

Fig: 2:2(a) illustrates the behaviour of horizontal velocity by rising values of Reynold�s

number at middle region of slit. It is observed that at the centre of rectangular cross

section the �ow is maximum due to pressure and away from this region the velocity of

�uid is decaying towards walls due to friction, however at the boundaries it is zero due

to no-slip velocity. In Fig: 2:2(b) graph depicts the behaviour of vertical velocity with

respect to rising Reynold�s number. It shows that vertical velocity accelerating towards

walls of slit away from the center point, and no change has been observed at centerline.

Fig: 2:2(c) indicates the e¤ect of Reynold�s number on pressure di¤erence, which increases

from entrance to exit point of slit by increasing values of Reynold�s number. The e¤ect

of discrete values of Reynold�s number on wall shear stress is depicted in Fig: 2:2(d). It

is clear from this �gure that wall shear stress rises with increase in values of Reynold�s

number and this rise is from inlet to outlet region.

2.4.2 E¤ect of Reabsorption Parameter (V0)

Fig: 2:3(a) shows that the horizontal velocity of �uid rises with increasing values of

reabsorption parameter V0 at middle point (x = 0:5) of the slit. The vertical velocity of

�uid is observed in Fig: 2:3(b) for separate values of reabsorption paramneter. It shows

that at the center line of slit vertical velocity is not changing and away from center line

the vertical velocity rises in forward and backward directions. Fig. 2:3.(c) shows e¤ect of

reabsorption parameter V0 on pressure di¤erence and it is noted that pressure di¤erence

rises from entrance to the point of the slit as reabsorption rate V0 grows. The Fig: 2:3(d)
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indicates that wall shear stress is zero at entrance point and away from this point it

rapidly increases towards walls of slit and it is observed that wall shear stress rises as

reabsorption rate V0 grows.

2.4.3 E¤ect of Couple-Stress Parameter (�)

Fig: 2:4(a) shows that the horizontal velocity rises for all increasing values of couple-

stress parameter � at middle point of slit . Also, it is noted that the horizontal velocity

rises at the centre, and decays towards walls of the slit. Fig: 2:4(b) indicates impact of

couple-stress parameter on vertical velocity, which shows that for all increasing values

of couple-stress parameter �; vertical velocity is not changing at center point and away

from this region gradually accelerating to the walls of the slit. Fig: 2:4.(c) indicates

impact of couple-stress parameter � on pressure di¤erence and it is noticed that more

pressure is required for the �uid �ow when couple-stress parameter rises. Fig: 2:4(d)

depicts that wall shear stress increases from entrance to exit point of slit for growing

values of couple-stress parameter �:
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(a) (b)

(c) (d)

Fig:2:2 (a-d): E¤ect of Reynold�s number on (a) horizontal and (b) vertical velocity

at middle point x = 0:5 , (c) pressure di¤erence and (d) wall shear stress.
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(a) (b)

(c) (d)

Fig:2:3 (a-d): E¤ect of reabsorption parameter V0 on (a) horizontal and (b) vertical

velocity at middle point x = 0:5; (c) pressure di¤erence and (d) wall shear stress.
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(a) (b)

(c) (d)

Fig:2:4 (a-d): E¤ect of couple-stress parameter � on (a) horizontal and (b) vertical

velocity at middle point x = 0:5; (c) pressure di¤erence and (d) wall shear stress.
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Chapter 3

Slip E¤ect on Inertial Flow of

Couple-Stress Fluid through a

Permeable Slit

3.1 Introduction

In this chapter two-dimensional inertial (non-creeping) �ow of couple-stress �uid through

a permeable slit of small width is discussed. A slip boundary condition and a uniform

reabsorption at permeable walls of slit is assumed to solve the set of non-linear partial

di¤erential equations. The resulting partial di¤erential equations are solved with the

help of Langlois technique and analytical results for velocity pro�le, pressure and shear

stress are displayed through graphs.

3.2 Mathematical Formulation

Consider a steady two-dimensional inertial �ow of couple stress �uid through a permeable

slit having dimension L�h�W andW < h < L. It is assumed that constant reabsorption

rate V0 is uniformly distributed at permeable walls of the slit and slip condition is used
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due to relative motion between �uid and the walls of the slit. Cartesian coordinate

system (x; y; z) is chosen for the slit and it is assumed that W << h, therefore �ow in

z-direction is negligible.

Fig. 3.1: Schematic diagram of the problem.

The two-dimensional and bidirectional �ow suggests the following velocity pro�le:

V = (u(x; y); v(x; y)); (3.1)

where u(x; y) and v(x; y) represents the velocity components in x and y-directions, re-

spectively.

Governing equations for couple stress �uid �ow through a slit are described by the

following expressions:

r:V = 0; (3.2)

�

�
@

@t
+ (V :r)

�
V = �rp+ �r2V � �1r4V ; (3.3)

where p is the hydrostatic pressure of �uid, � is dynamic viscosity of �uid and �1 is
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material constant associated with couple-stress �uid.

The shear stress for couple stress �uid is de�ned as follows:

�xy = �
@u

@y
� �1

@3u

@y3
; (3.4)

and boundary conditions are given as follows:

@u

@y
= 0;

@3u

@y3
= 0; v = 0; at y = 0;

u = ��@u
@y
;

@2u

@y2
= 0 v = "V0; at y = h;

"Q0 = 2W

Z h

0

udy; at x = 0: (3.5)

For two-dimensional inertial �ow, the component form of continuity and momentum

equations are given as follows:
@u

@x
+
@v

@y
= 0; (3.6)

�

�
u
@u

@x
+ v

@u

@y

�
= �@p

@x
+ �r2u� �1r4u; (3.7)

�

�
u
@v

@x
+ v

@v

@y

�
= �@p

@y
+ �r2v � �1r4v: (3.8)

3.2.1 Non-dimensional Parameter

For non-dimensional analysis following quantities are de�ned:

x0 =
x

L
; y0 =

y

h
; u0 =

uh2

Q0
; v0 =

vhL

Q0
; p0 =

ph4

�LQ0
;

V 0
0 =

V0hL

Q0
; � =

h

L
;Re =

�Q0
�h

; � =

r
�

�1
; �0 =

�

h
: (3.9)
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using previous quantities in equations (3:6) � (3:8) and dropping primes, one can get

following equations:
@u

@x
+
@v

@y
= 0; (3.10)

�Re

�
u
@u

@x
+ v

@u

@y

�
= �@p

@x
+ �2

@2u

@x2
+
@2u

@y2
�N3; (3.11)

�3Re

�
u
@v

@x
+ v

@v

@y

�
= �@p

@y
+ �4

@2v

@x2
+ �2

@2v

@y2
�N4; (3.12)

where

N3 =
1

�2

�
�4
@4u

@x4
+
@4u

@y4
+ 2�2

@4u

@x2@y2

�
;

N4 =
1

�2

�
�6
@4v

@x4
+ �2

@4v

@y4
+ 2�4

@4v

@x2@y2

�
;

and dimensionless form of boundary conditions are given as below:

@u

@y
= 0;

@3u

@y3
= 0; v = 0; at y = 0;

u = ��@u
@y
;

@2u

@y2
= 0; v = "V0; at y = 1;

" =
2W

h

Z 1

0

udy; at x = 0: (3.13)

3.3 Solution of the Problem

The set of equations (3:11 � 3:13) represent non-linear partial di¤erential equations in

which three unknowns u; v and p are involved. To reduce the complexity of problem it is

assumed that width of slit is very small as compared to its length therefore, the ratio of

length to width (�) is less than 1 and we ignore terms of order �2: To �nd the solutions

of u; v; p and �xy following form of series is used:

u =

1X
i=1

"iu(i); v =
1X
i=1

"iv(i); p = p(0) +
1X
i=1

"ip(i); �xy =
1X
i=1

"i� (i)xy ; (3.14)
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where p(0) is constant pressure.

To get the linear system of boundary value problem above series are used in Eqs.(3:10�

3:13): After using above series and collecting powers of ";one can get the following sys-

tems:

3.3.1 First Order System
@u(1)

@x
+
@v(1)

@y
= 0; (3.15)

0 = �@p
(1)

@x
+
@2u(1)

@y2
� 1

�2
@4u(1)

@y4
; (3.16)

0 =
@p

@y
; (3.17)

� (1)xy = �
@u(1)

@y
� �1

@3u(1)

@y3
; (3.18)

and boundary conditions for 1st order system are:

@u(1)

@y
= 0;

@3u(1)

@y3
= 0; v(1) = 0; at y = 0; (3.19)

u(1) = ��@u
(1)

@y
;

@2u(1)

@y2
= 0; v(1) = V0; at y = 1; (3.20)

1 =
2W

h

Z 1

0

u(1)dy; at x = 0: (3.21)

To reduce the numbers of unknown, we will introduce the following stream function

 (1)(x; y):

u(1) =
@ (1)

@y
; v(1) = �@ 

(1)

@x
: (3.22)

After using above equation in �rst order system and eliminating pressure gradient from

Eq.(3:16), one can write the following equation.

0 =
@6 (1)

@y6
� �2

@4 (1)

@y4
; (3.23)

34



and boundary conditions in the following form:

@2 (1)

@y2
= 0;

@4 (1)

@y4
= 0

@ (1)

@x
= 0; at y = 0; (3.24)

@ (1)

@y
= ��@

2 (1)

@y2
;

@3 (1)

@y3
= 0;

@ (1)

@x
= �V0; at y = 1; (3.25)

h

2W
=  (1)(x; 1)�  (1)(x; 0); at x = 0: (3.26)

To solve above BVP, we will use Inverse method that suggests the following assumption:

 (1) = V0xR1(y) + T1(y); (3.27)

where R1(y) and T1(y) are unknown functions depending upon single variable y:

Using above solution in Eqs.(3:23� 3:26) one can get the following system of ODE�s

:
d6R1
dy6

� �2
d4R1
dy4

= 0;
d6T1
dy6

� �2
d4R1
dy4

= 0; (3.28)

and their corresponding boundary conditions are as follows:

R1 = 0;
d2R1
dy2

= 0;
d4R1
dy4

= 0; at y = 0; (3.29)

R1 = �1;
dR1
dy

= ��d
2R1
dy2

;
d3R1
dy3

= 0; at y = 1;

T1 = 0;
d2T1
dy2

= 0;
d4T1
dy4

= 0; at y = 0; (3.30)

T1 =
h

2W
;
dT1
dy

= ��d
2T1
dy2

;
d3T1
dy3

= 0; at y = 1;

General solutions of above two BVP�s are as follows:

R1 =

4X
i=1

aiy
i�1 + a5e

�y + a6e
��y; (3.31)
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T1 =
4X
i=1

biy
i�1 + b5e

�y + b6e
��y; (3.32)

After using boundary conditions following form can be obtained:

R1(y) = a2y + a4y
3 + 2a5 sinh(�y); (3.33)

T1(y) = b2y + b4y
3 + 2b5 sinh(�y); (3.34)

Upon using R1(y) and T1(y) into Eq.(3:27) one can get following form:

 (1)(x; y) = (V0xa2 + b2)y + (V0xa4 + b4)y
3 + 2(V0xa5 + b5) sinh(�y); (3.35)

Substituting above equation into equation (3:22), one can �nd following expressions for

velocity pro�les:

u(1)(x; y) = (V0xa2 + b2) + 3(V0xa4 + b4)y
2 + 2�(V0xa5 + b5) cosh(�y); (3.36)

v(1)(x; y) = �V0(a2y + a4y
3 + 2a5 sinh(�y); (3.37)

The solution of �rst order pressure distribution can be obtained with the help of �rst

order velocity pro�le.

p(1)(x) = �3�
3(x� V0Wx2) cosh(�h)

N5
; (3.38)

After using velocity pro�le into equation (3:18) one can write �rst order shear stress in

the following form:

� (1)xy =
3�(1� 2V0Wx)(�y��2 cosh(�h) + (�� �2�1) sinh(�y)

N5
; (3.39)
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where

N5 = 2hW�(�3 + h�2(3� + h)) cosh(�h)� 6W (h��2 � 1) sinh(�h):

3.3.2 Second Order System
@u(2)

@x
+
@v(2)

@y
= 0; (3.40)

N6 = �
@p(2)

@x
+
@2u(2)

@y2
� 1

�2
@4u(2)

@y4
; (3.41)

0 =
@p(2)

@y
; (3.42)

� (2)xy = �
@u(2)

@y
� �1

@3u(2)

@y3
; (3.43)

where

N6 = �Re

�
u(1)

@

@x
+ v(1)

@

@y

�
u(1);

and boundary conditions are as follows:

@u(2)

@y
= 0;

@3u(2)

@y3
= 0; v(2) = 0; at y = 0; (3.44)

u(2) = ��@u
(2)

@y
;
@2u(2)

@y2
= 0; v(2) = 0; at y = 1;

0 =

Z 1

0

u(2)dy; at x = 0:

After eliminating pressure gradient and using stream function, Eq.(3:41) can be written

in following form:

��2@N6

@y
=
@6 (2)

@y6
� �2

@4 (2)

@y4
: (3.45)

and boundary conditions in stream functions are as follows:

@2 (2)

@y2
= 0;

@4 (2)

@y4
= 0;

@ (2)

@x
= 0; at y = 0; (3.46)
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@ (2)

@y
= ��@

2 (2)

@y2
;
@3 (2)

@y3
= 0;

@ (2)

@y
= 0; at y = 1;

0 =  (2)(x; 1)�  (2)(x; 0); at x = 0:

Inverse method suggests the following assumption:

 (2)(x; y) = g(x)R2(y) + T2(y); (3.47)

where R2 and T2 are unknown functions and g(x) = x:

After using above solution of stream function in Eq.(3:45 � 3:46) one can write the

following BVP�s:
d6R2
dy6

� �2
d4R2
dy4

= g1(y); (3.48)

R2 = 0;
d2R2
dy2

= 0;
d4R2
dy4

= 0; at y = 0;

R2 = 0;
dR2
dy

= 0;
d3R2
dy3

= 0; at y = 1;

and
d6T2
dy6

� �2
d4T2
dy4

= g2(y); (3.49)

T2 = 0;
d2T2
dy2

= 0;
d4T2
dy4

= 0; at y = 0;

T2 = 0;
dT2
dy

= 0;
d3T2
dy3

= 0; at y = 1;

Solutions of above BVP�s can be obtained by "DSolve" command in MATHEMATICA.

The second order velocity pro�le and second order pressure can be obtained by Eq.(2:47)

3.3.3 Third Order System
@u(3)

@x
+
@v(3)

@y
= 0; (3.50)

N7 = �
@p(3)

@x
+
@2u(3)

@y2
� 1

�2
@4u(3)

@y4
; (3.51)
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0 =
@p(3)

@y
; (3.52)

� (3)xy = �
@u(3)

@y
� �1

@3u(3)

@y3
; (3.53)

where

N7 = �Re

�
u(1)

@u(2)

@x
+ v(1)

@u(2)

@y

�
+

�
u(2)

@u(1)

@x
+ v(2)

@u(1)

@y

�
;

and associated boundary conditions for 3rd order system are as follows:

@u(3)

@y
= 0;

@3u(3)

@y3
= 0; v(3) = 0; at y = 0; (3.54)

u(3) = ��@u
(3)

@y
;
@2u(3)

@y2
= 0; v(3) = 0; at y = 1;

0 =

Z 1

0

u(3)dy; at x = 0:

After eliminating pressure gradient and using stream function Eq.(3:51) can be written

in the following form:

��2 @
@y
(N7) =

@6 (3)

@y6
� �2

@4 (3)

@y4
: (3.55)

and boundary conditions in context of stream functions are as follows:

@2 (3)

@y2
= 0;

@4 (3)

@y4
= 0;

@ (3)

@x
= 0; at y = 0; (3.56)

@ (3)

@y
= 0;

@3 (3)

@y3
= 0;

@ (3)

@x
= 0; at y = 1;

0 =  (3)(x; 1)�  (3)(x; 0); at x = 0:

To solve above BVP we will assume following form of stream function:

 (3)(x; y) = h(x)R3(y) + T3(y): (3.57)

where h(x) = x.
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After following all steps of �rst order solution, one can get the third order solution of

stream function, that will help to �nd third order velocity, pressure and shear stress.

Now by combining �rst, second, and third order solution of stream function, velocity

pro�le, pressure and shear stress when "! 1following expression can be obtained:

 =  (1) +  (2) +  (3); (3.58)

u = u(1) + u(2) + u(3); (3.59)

v = v(1) + v(2) + v(3); (3.60)

p = p0 + p(1) + p(2) + p(3); (3.61)

�xy = � (1)xy + � (2)xy + � (3)xy :

3.4 Results and Discussion

This section displays the in�uence of Reynolds number Re, reabsorption parameter V0,

couple-stress parameter � and slip parameter � on pressure di¤erence, shear stress, hor-

izontal and vertical velocity components at middle position (x = 0:5) of slit.

3.4.1 E¤ect of Reynold�s Number (Re)

Fig: 3:2(a) illustrates that horizontal velocity rises for di¤erent values of Reynold�s num-

ber at center of slit and decays near walls of slit due to slip velocity. Fig: 3:2(b) depicts

the behaviour of vertical velocity against increasing values of Reynold�s number which

shows that the vertical velocity is zero (not changing) at center point, and away from

this regime it rises in forward and backward direction for di¤erent values of Reynold�s

number. Fig: 3:2(c) displays the impact of increasing values of Reynold�s number on

pressure di¤erence and causing increase in pressure change during the �uid �ow through

a slit. The e¤ect of Reynold�s number on wall shear stress is observed in Fig: 3:2(d) and
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it shows that at the entrance of slit the wall shear stress is high for all values of Reynold�s

number.

3.4.2 E¤ect of Reabsorption Parameter (V0)

Fig: 3:3(a) illustrates impact of reabsorption parameter (V0) on horizontal velocity at

middle point (x = 0:5) of slit. It shows that the horizontal velocity of �uid is non-zero

at boundaries due to the presence of slip parameter and maximum at middle region of

the slit due to pressure and inertial forces. The vertical velocity of �uid is observed in

Fig: 3:3(b) for distinct values of V0 and it shows that away from center point the vertical

velocity of �uid is accelerating towards walls of slit, but it is zero at the center point due

to permeability at walls. Fig: 3:3(c) indicates e¤ect of reabsorption rate (V0) on pressure

di¤erence, which shows that pressure di¤erence rises as reabsorption rate becomes high

inside the slit. Fig: 3:3(d) indicates that if reabsorption rates (V0) become high then �uid

�ow requires high shear rate near the wall.

3.4.3 E¤ect of Couple-Stress Parameter (�)

Fig: 3:4(a) shows that horizontal velocity decays at middle region of slit for all increasing

values of couple-stress parameter �, but horizontal velocity rises near the walls of slit. Fig:

3:4(b) shows e¤ect of couple-stress parameter � on vertical velocity, and it is observed that

away from center point the vertical velocity rises with the growing values of couple-stress

parameter. The e¤ect of couple-stress parameter on pressure distribution is observed in

Fig: 3:4(c), and this �gure shows that pressure di¤erence rises in backward direction for

all increasing values of couple-stress parameter. Fig: 3:4(d) indicates that the wall shear

stress rises with increasing values of couple-stress parameter.
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3.4.4 E¤ect of Slip Parameter (�)

The e¤ect of slip parameter (�) on horizontal velocity is observed in Fig: 3:5(a), which

shows that at center region of slit horizontal velocity rises in backward direction but rises

in forward direction near the walls of slit. Fig: 3:5(b) displays the e¤ect of slip parameter

on vertical velocity, and it is noted that at the center of the slit vertical velocity is not

changing but away from the center point it rises in forward and backward directions

towards the walls of slit. Fig: 3:5(c) shows that the pressure di¤erence rises in backward

direction for all rising values of slip parameter. The wall shear stress decreases from

entrance to exit point of slit , it is observed from Fig: 3:5(d).
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(a) (b)

(c) (d)

Fig:3:2 (a-d): E¤ect of Reynolds number on (a) horizontal and (b) vertical velocity

at middle point x = 0:5; (c) pressure di¤erence and (d) wall shear stress.
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(a) (b)

(c) (d)

Fig:3:3 (a-d): E¤ect of reabsorption velocity V0 on (a) horizontal and (b) vertical

velocity, (c) pressure di¤erence and (d) wall shear stress.
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(a) (b)

(c) (d)

Fig:3:4 (a-d): E¤ect of couple stress parameter � on (a) horizontal and (b) vertical

velocity, (c) pressure di¤erence and (d) wall shear stress.
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(a) (b)

(c) (d)

Fig:3:5 (a-d): E¤ect of slip parameter � on (a) horizontal and (b) vertical

velocity, (c) pressure di¤erence and (d) wall shear stress.
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3.5 Conclusion

In present research two-dimensional inertial �ow of couple-stress �uid through a perme-

able slit with constant reabsorption is observed. The mathematical models of couple-

stress �uid are represented by the set of intricate non-linear partial di¤erential equations

and their solutions are obtained by Langlois technique using no-slip and slip boundary

conditions. The analytical results of various �ow characteristics like velocity pro�le,

pressure di¤erence and shear stress are calculated in this study, and graphical results

for these �ow characteristics are observed for di¤erent parameters. It is concluded from

graphical results that the horizontal velocity rises with the extending values of Reynold�s

number (Re) , and reabsorption parameter (V0), whereas for couple-stress parameter (�)

horizontal velocity rises in forward direction with no-slip boundary condition and rises

in backward direction for slip boundary condition. The transverse velocity of �uid is ob-

served for Reynold�s number, reabsorption parameter and couple-stress parameter, and

it is observed that at center point of slit it is not changing but away from the center

it is accelerating towards the wall of slit. Further, the graphical results also show that

the pressure di¤erence increases from entrance to exit point of slit for rising values of

involving parameters. This research also concludes that wall shear stress rises with the

rising values of all emerging parameters.
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3.6 Appendix

a2 = cosh(�h)(�
3h2 + 2h��3 � 2�)� 2��2a5 sinh(�h); a4 = �

�3 cosh(�h)a5
3

;

a5 =
1

2�h cosh(�h)� 2 sinh(�h)(1� �2�h)� 2
3
�3h2 cosh(�h)(h+ 3�)

;

b2 = cosh(�h)(�
3h2 + 2h��3 � 2�)� 2��2b5 sinh(�h); b4 = �

�3 cosh(�h)b5
3

;

b5 =
1

4W (sinh(�h)(1� �2�h) + cosh(�h)(1
3
�3h3 � h� 2��3h2)

:

c1 = c3 = a1 = a3 = b1 = b3 = 0:m2(y) = �2y3(1 + cosh(2�h))

c2 = � cosh(�h)(�2h2 � 2)c5; c4 = �
�3 cosh(�h)c5

3
;

c5 =
3

2(�h cosh(�h)(3� �2h2)� 3 sinh(�h)) ; d2 = � cosh(�h)(�2h2 � 2)d5;

d4 = �
�3 cosh(�h)d5

3
; d5 =

3

4W (�h cosh(�h)(�2h2 � 3) + 3 sinh(�h)) ;

m1 = �
3�Re�6Vo

4W (�h(�3 + h�2(h+ 3�)) cosh(�h)� 3(h��2 � 1) sinh(�h))2

f1(y) =
3V 2

o �
5 cosh(�h)(2�y3 cosh(�h) + y(�3h2 + y2)� cosh(�y) + 3(h� y)(h+ y) sinh(�y))

2(�h(�3 + h2�2) cosh(�h) + 3 sinh(�h))2

f2(y) = �
3V 2

o �
5 cosh(�h)(2�y3 cosh(�h) + y(�3h2 + y2)� cosh(�y) + 3(h� y)(h+ y) sinh(�y))

4W (�h(�3 + h2�2) cosh(�h) + 3 sinh(�h))2

g1(y) = m1(2VoW (m2 + 6� sinh(�h)(y� cosh(�h)� sinh(�y) + � cosh(�h)

(�y(y2 � 3h(h+ 2�)) cosh(�y) + 3(h2 � y2 + 2h�) sinh(�y))))

g2(y) = m1(�m2 + 6� sinh(�h)(�y cosh(�y) + sinh(�y)) + � cosh(�h)

(y(�y2 + 3h(h+ 2�)) cosh(�y)� 3(h2 � y2 + 2h�) sinh(�y))))
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