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Structure of Thesis

Chapter 1

In this chapter we recall some basic definitions and notions. These definitions
will help in later Chapters.

Chapter 2

In this chapter we review the research paper "On Soft Ideals over
Semigroups”. In this paper the concept of soft ideal over semigroup has been
discussed.

Chapter 3

In this chapter, the concept of lattice (anti-lattice) ordered soft semigroups and
some properties of lattice (anti-lattice) ordered soft semigroups has been
introduced. Also the concept of lattice (anti-lattice) ordered soft ideals (quasi-
ideals, bi-ideals) and its properties has been defined.



Preface

It is known that many problems in different directions such as engineering,
economics and medical are commonly not accurate. There are always many
types of uncertainties involved in the data. The classical tools used to deal
with all these uncertainties are useful only under definite domain. In dealing
with uncertainties, lots of notions have been newly grown, which includes the
theory of Fuzzy sets [15], theory of Intuitionistic Fuzzy sets, theory of Rough
sets and so on. As a result of these theories many new techniques have been
grown. Molodtsov introduced soft set theory in 1999 [13]. This theory has
become an important instrument to handle the vagueness and ambiguity in
different fields of life since more than a decade. Maji et al. [12] gave the
operations on soft sets and he also introduced a method of tackling a decision
making argument [11]. Later Ali et al. [2] improved the operations and the
results given by Maji et al. [12]. Ali et al. [2] then gave further additional
operatons for theory of soft sets and proved De Morgan's laws by making use
of these operations. F. Feng at al. [7] discussed soft sets combined with Fuzzy
sets and Rough sets. Soft sets have vast importance due to their algebraic
structures that occasionally have different behavior than that of original
algebraic structures., Aktas and Cagman [1] presented algebraic structure on
soft sets and also presented soft groups. Jun et al. [10] implemented the theory
of soft sets to ordered semigroups. Y.B. Jun at al. [9] discussed applications of
soft sets in ideal theory. F. Feng etal. [6] discussed soft semirings. Ali et al. [3]

discussed soft semigroups, soft ideals, soft quasi-ideals and soft bi-ideals and



gave new concepts over theory of classical semigroups. In general, when we
talk aboult a soft ideal (quasi-ideal, bi-ideal), we actually mean that we are
letting a collection of ideals (quasi-ideals, bi-ideals) over a semigroup. Thus,
the concept of soft ideal (quasi-ideal, bi-ideal) is a more general concept than
the concept of ideal (quasi-ideal, bi-ideal). Ordering of elements became an
important and vital fact in theory of soft sets since recently it was defined by
Ali et al. [5]. Ali et al. [5] introduced lattice ordered soft set and defined some
basic operations in it.

In this thesis, the concept of lattice (anti-lattice) ordered soft semigroups and
some propertes of lattice (anti-lattice) ordered soft semigroups have been
introduced. Also the concept of lattice (anti-lattice) ordered soft ideals (quasi-

ideals, bi-ideals) and its properties has been defined.
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Chapter 1

Preliminaries

In this chapter we recall some basic definitions and notions. These definitions will

help in later chapters. For undefined terms and notions we refer to ([8], [10]).

1.1 Soft Set

In this section we recall soft sets, their basic operations and results.

1.1.1 Definition [13]

Let D be a universal set, E represents the set of parameters under consideration
and F C E. Then a pair (a,F) is called soft set over [), where a is & mapping
a: F - P(D).

1.1.2 Definition [12]

Let (o, F) and (8, £) be two soft sets over a common universal set D. Then (8,L)
is called soft subset of (a, F), if £ C F and 8(s) C a(0), Vo € L.

1.1.3 Definition [3]
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Let D be a universal set, E represents the set of parameters under consideration

and F C E. Then

1. A soft set (o, F) is called relative null soft set (with respect to the set JF)

denoted by Ny, - if a(p) = ¢,V p€ F.

2. A soft set (o, F) is called relative whole soft set (with respect to the set F)

denoted by W5 5, if a(p) = D,V p € F.

3. A soft set (a, F) is called the empty soft set denoted by ¢p if the parametric

set F is empty. i.e F = ¢.

4. A soft set (o, F) is called absolute soft set denoted by F 5 if a(p) = D, ¥

pEE

1.1.4 Definition [2]
Let (e, F) and (8, L) be two soft sets over s universal set D. Then

1. Restricted intersection of (@, F) and (8, £) is denoted and defined as (o, F)Ng(8, £) =

(7, R), where ® = FNL £ ¢ and v(5) = a(<)NB(c), V¢ € R.

2. Restricted union of (a, F) and (8, £) is denoted and defined 8s (@, F)Ug(8, £) =

(7,8), where R = FAL # ¢ and 7(s) = a()IB(), ¥ s € R.

3. Extended intersection of (a, F) and (8, £) is denoted and defined as (a, F)Ng(8, £} =

(7,R), where R = FOL and V¢ € R.



&

als) if qu—L‘I
sk =9 B() if ce L~F

a(c)NB(sy if ¢e FAL

\

4. Extended union of {e, F) and (3, £) is denoted and defined as (a, F)Ug(3, L) =
(v, R), where R = FUL and V¢ € R.

a(s) ifseFoLl

765y =19 B(s) fseLaF

a(s)0B(s) if ¢ e FAL

.

1.1.5 Definition {12]

Let (o, F) and (8, £) be two soft sets over a universal set 0. Then

1. Basic intersection of (o, F) and (3, £) is denoted and defined as (&, F)Ng(3, L) =
(7, R), where R = F @ £ and ¥(p, o) = ap)8(c), ¥ (p,0) € R, where F @ L

is the cartesian product of JF and L.

2. Basic union of (a, F) and (3, L) is denoted and defined as (a, F)Up(8, £) =

(7, R), where R = F ® £ and v{p, o) = a(p)0B(c), ¥V (p,0) € R.

1.2 Lattices

1.2.1 Definition
A binary relation %X defined on a non-empty set F is called a partial order on the

set J if the following conditions hold :

1. py %X p, (reflexivity)
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2. p; % p3 and p; % p, implies p; = p, (antisymmetry)

3. p1 X p and p; % p, implies p, 2 p, (transitivity)

for all p,, pg, 04 € F.

If, in addition, for every p,,p; € F, either p, % p; or p, % p,, then we say %
is total order on F. A non-empty set with a partial order on it is called a partially
order set, or more briefly a poset. And if the relation is a total order then we speak
it a totally order set or simply a chain.

1.2.2 Examples

1. Let P(F) denotes the power set of F, i.e., the set of all subsets of . Then

" C” is a partial order on P(F).

2. Let F be the set of natural numbers and let % be the relation "divides". Then

% is a partial order on F.

3. Let F be tbe set of real numbers and let X be the usual ordering. Then < is a

total order on F.

1.2.3 Definition

It is well known that a restriction of a partial order is again a partial, so we
consider the partial order % on F ® £ by defining, (p,,01) Xrgc (p4,02) if and only
if py Xr py and 01 X¢ 09, V py, 00 € F and 01,03 € L. For the rest of the thesis this
order will be consider on F ® £.

1.2.4 Definition



Let F be a non-empty subset of an ordered set R. Then an element M € R is
called an upper bound of F if p < M,V p € F. Similarly, an element m € R is called
a lower boundof Fifm=< p,Vpe F.

1.2.5 Definition

Suppose that F ¢ R. If M € R is an upper bound of F such that M % M
for every upper bound M’ of F, then M is called the supremum of F, denoted as
M = supF. If m € R is a lower bound of F such that m' % m for every lower bound
m’ of F, then m is called the infimum of F, denoted as m = infF.

1.2.6 Definition

Let % be a partial order on . Then the pair F = (F, =) is a lattice if V p;, py € F
the set {p,, po} has a supremum and an infimum.

1.2.7 Theorem

Let F be a non-empty set. If A and V are two binary operations on F. Then F

is a lattice if and only if for each p,, p;, p3 € F the following hold:

LpyApg=paApand pVpp=ppVp

2. (pAp)Aps=piA(paAps)and (p Vo) Vps=p V(g V2)
o pVp=pand pAp=p

4. pyA(pVpa)=pyand p V(o Apy)=p

1.2.8 Definition
If in a lattice F there are elements 0 and 1 such that 0 X pand p X1,V p € F.

Then F is called bounded lattice.



1.2.9 Examples

1. Let F be the set of propositions, let V denotes the connective® or ” and A
denotes the connective "and". Then 1 to 4 are well-known properties of lattice

from propositional logic.

2. Let F be the set of natural numbers and V denotes the least common multiple

and A denotes greatest common divisor. Then F is a lattice.
3. For any non-empty set F, (P{F),N,U} is a bounded lattice.

1.2.10 Definition

If a lattice F has (¢ and 1 and for each p € F there exists an element p/ such that
pAp =0and pVp = 1. Then F is complimented.

1.2.11 Definition

A distributive lattice F is a lattice which satisfies either of the distributive laws

holds i.e,
L o V(e Aps)=(p V) Alpy V p3).
2. A (mYos)=(Ap)V{P1Aps) Y prpsps €F.

1.2.12 Definition

If distributive laws holds in lattice . Then F is called distributive lattice. A
bounded Distributive Lattice which is also complimented is called a Boolean Algebra.

1.2.13 Definition

A lattice ¥ is called Modular if and only if p; < g, = paA(p; V) < p1V(P2ABs),

V Pnﬁz,ﬁ’a € F



1.2.14 Example

1. Every totally ordered set is modular lattice.

2. The following lattice, known as M; is modular.

1

1.3 Lattice Ordered Soft Set

1.3.1 Definition [5]

A soft set (a, F) is called lattice (anti-lattice) ordered soft set if for the mapping

a: F — P(D), p, X p, implies a(p,) € a(p;)(a(pz) € a(p,)), ¥ oy, 0, € F.

1.3.2 Examples

Let D = {dy,d;, d3,ds,ds} he a universal set and F = {p,, py, ps, ps} be the set of

parameters. Then order among the elements of F is shown in Fig-1.2.

(a.F)
iy d dp dy dy ds
pl0 0 0 0 0
m el 0 1 0 1
psi0 1 0 1 0
8 pell 1 1 1 1
Table--1.1

Fig—12
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From Table-1.1 lattice of sets are F(p,) C F(p;) C F(p,) and F(p;) C F(ps) C
F(p,). Then it is clear that (o, F) is lattice ordered soft set.

1.3.3 Example

Let D = {dy, d3, ds, da, ds5, dg} be the set of six big stores and £ = {01, 03, 03,04},
where

o1; Large stores.

oq; Very large stores.

o3; Huge stores.

o4; Very huge stores.

Then clearly there is an order in the elements of parameters set £. This order can

be describe as 0, X 03 X 03 X g4. The soft set (3, £) represented as in Table-1.2.

(8,£)
di dy d3 dy ds d;

0'111111].
c2/0 1 1 1 1 0O

o3/0 1 1 0 1 0

|0 1 0 0 0 0
Table—1.2
From Table 1.2, we have 8(ay) 2 B(a2) 2 B(os) 2 B(oy). It is clear that (8, £) is
an anti-lattice ordered soft set.
1.3.4 Theorem [5]
Let (o, F) and (8, £) be two lattice (anti-lattice) ordered soft sets. Then the

following statements hold:
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1. Restricted intersection of two lattice (anti-lattice) ordered soft sets (a, F) and

(B, £) is lattice (anti-lattice) ordered soft set.

2. Restricted union of two lattice (anti-lattice} ordered soft sets («, F) and (8, L)

is lattice (anti-lattice) ordered soft set.

3. Extended union of two lattice (anti-lattice) ordered soft sets (a, F) and (8, L) is

lattice (anti-lattice) ordered soft set, if either (a, F) C (8, L) or (8, L) C (a, F).

4. Basic intersection of two lattice (anti-lattice) ordered soft sets (a, F) and (3, £)

is lattice (anti-lattice) ordered soft set.

5. Basic union of two lattice (anti-lattice) ordered soft sets (a, F) and (8, L) is

lattice (anti-lattice) ordered soft set.

1.3.5 Remark (5]

In general the extended intersection of two lattice (anti-lattice) ordered soft sets
(a, F) and (B, L) may not be a lattice (anti-lattice) ordered soft set.

1.3.6 Example [5]

Let E = {p,, P2, Pa, P4, P} With lattice order as shown in Fig-1.3.

Lty of paramatis i el

P

i
v
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Latlice order soft set {(a,F)

Lattice order soft set (8,L)

Lattice order soft set (y,R)

dy dy dy dy ds di dp dy dy ds
p110 0 0 1 O pall 0 0 0 O
pl0 0 0 1 1 pl1 0 0 1 0
psl0 1 1 1 0 pll 0 0 1 1
pl0 1 1 1 1 11 1 0 1 1
Table-1.34 Table~138

d dy dy dy ds
p,{0 0 0 0 O
pp 10 0 0 1 0
ps{0 1 1 1 0
pa 00 0 1 1
ps(1 1 0 1 1

Table—1.3C

Let 7 = {01, p3, P3P}, £ = {p1. $3, py, Ps}. Consider (@, F) and (8, £) as lattice

order soft sets over a set D = {d,,dz, ds, dy, dy} as shown in Table —1.3A4 and Table —

1.3B respectively

Here a(p;) € alpy) € alpy), a(pr) € alps) C alp,) and Bo)) C Blpa) C

B(py) € B(ps)- Then their extended intersection (e, F)Ng(B,£) = (v, R), where

R = FOL = {py, P, 03, 04, P5 } 15 given in Table — 1.3C

From Table — 1.3C we have ¥(p;) C (2} C ¥(p3) and ¥(p,) C v(pa) € ¥(py) €

Y(ps). As p3 < pg but ¥{p3) € ¥(ps). So (7, R) is not a lattice order soft set.

1.4 Semigroup

1.4.1 Definition

Let S5; be a non-empty set and ” = ” be a binary operation on S,. Then (S,, »)

is called a semigroup if this operation is associative, that is g » (bx¢c) = (axb) *

c Va,b,c € §,.

A semigroup (S,, *) is called commutative if a*b=bxa

Va,b € S,.
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1.4.2 Examples

1. (N,+) is a semigroup.

2. Let § = {a1,a3,03,......} such that ” «” is defined on §; by a; * a; = a;. Then

(8,, *) is a semigroup.

3. Let A={1,2,3,4,5,6,7, 8} with the Table-1.4 given below is a semigroup under

multiplication.

1 23 456 7 8

1111111111

65 5 5 5 5 5 & 3
7[5 6 7 8 8 8 8 8
8|18 88 8 8 8 8 8

Table—1.4
1.4.3 Definition

Let (S;,*) be a semigroup. Then a non-empty subset H of §, is said to be a
subsemigroup of S, if and only if ¥ a,b € H, we have a % b € H.

1.4.4 Example

The set H = :a,b € Z } is a subsemigroup of Max2(Z).
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Now we define the left, right and two sided ideals in semigroup and so we give
gome examples about them. Also, we define quasi-ideals and bi-ideals in semigroup.

Let (S,,.) be a semigroup, if ¢ # F,L C S,. Then FL = {pa:p€ F,0 € L}.

1.4.5 Deflnition

Let (S,,.) be a semigroup. A non-empty subset F of S, is called a left (right)
ideal of S, if 5, F C F(FS, C F). If F is both a left ideal and a right ideal, then it
is called an ideal (or a two sided ideal) of S,.

1.4.6 Example

Let Zy4 = {0, 1, 2, ...., 13} be the semigroup under multiplication modulo 14. Then

1.4.7 Definition

Let (S5, +) be a semigroup. A subset ¢ # @ C S, is called a quasi-ideal of S, if
and only if @ is a subsemigroup of (S, *) satisfying S,@ N @S, C Q.

1.4.8 Example

Let 5, = {1,3,5,7,9} be a semigroup with the following Cayley Table-1.5
1 3 5 709

111 1 111

711179

911 7 911

Toble—1.5
@1 = {1}, Q2 = {1,3,5} Qs = {1,3}, Q¢ = {1,8,5,7,9} are quasi-ideals over a

semigroup S,.
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1.4.9 Theorem

Let S, be a semigroup. If S, is commutative, then every quasi-ideal of 5, is a two
sided ideal of S,.

1.4.10 Definition

Let (S;,*) be a semigroup. A subset ¢ # B C S, is called a bi-ideal of S if and
only if B is a subsemigroup of (S,, ) satisfying BS,B C B.

1.4.11 Example

Let S, = {1,2,3,4} be a semigroup with the following cayley Table-1.6.

1 2 3 4

111 2 3 4
2(2 3 3 4
314 3 4 3
4|14 4 3 4

Table—1.8
By = {3,4}, Ba = {2,3,4}, Bs = {1,2,3,4} are bi-ideals of the semigroup S,.

1.4.12 Remarks

1. Intersection and union of any collection of ideals is ideal.

2. Intersection and union of any collection of quasi-ideals is quasi-ideal.

3. Every quasi-ideal is bi-ideal.
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Chapter 2

On Soft Ideals over Semigroups

In this chapter we review the reserch paper "On Soft Ideals over Semigroups”[3]. In

this paper the concept of soft ideals over semigroup has been discussed.

2.1 Soft Semigroups

2.1.1 Definition

Let (a, F) and (8, £) be two soft sets over a semigroup S,. The restricted product
of (o, F) and (B, L) is defined as (a, FYO(B,£) = (v, R), where ® = FAL and
s} = afc)B(e), Vs e K.

2.1.2 Deflnition

Let (o, F) and (8, £) be two soft sets over a semigroup S,. Then the operation
" %" is defined as (a, F) = (8, L) = (H,F ® L), where ¥(p,0) = alp) x 8(c), p € F,
g € L, further F ® £ is the cartesian product of ¥ and £. From now to onward
simply write {a, F)(8, £) and a(p)B(c) instead of (a, F} * (8, L) and a(p) « B(0)

17
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respectively.

2.1.3 Definition

A non null and non-empty soft set («, ) over a semigroup S, is said to be soft
semigroup if (a, F)(c, F) C (e, F).

or

If (o, F) is a soft set over S,. Then («, F) is a soft semigroup over S, if and only
ifV p e F, a(p) is a subsemigroup of Sy, whenever a(p) # ¢.

2.1.4 Proposition

Let (o, F) and (5, £) be two soft semigroups over a semigroup S,. Then (&, F)Ng(8, £)
also a soft semigroup over a semigroup S;, whenever (e, F)Ng(8, £) is non null and
non empty.

2.1.5 Proposition

Let (o, ) and (8, L) be two soft semigroups over a semigroup S, such that FNL =
#. Then (e, F)Ug(8, L) also a soft semigroup over a semigroup .S,.

2.1.6 Proposition

Let (ov, ) and (3, L) be two soft semigroups over a semigroup S,. Then (a, F)N5(8, L)
also a soft semigroup over a semigroup S,. Whenever (&, F)Ng(8, L) is non null.

2.1.7 Proposition

Let {a, F) and (8, L) be any two soft semigroups over a commutative semigroup
Sg. Then (o, F) » (8,L£) is also a soft semigroup over a semigroup S,. Whenever
(o, F) % {8, L) is a non null.

If Sy is a non-commutative. Then {a, F)=*(53, L) is not necessarily a soft semigroup.

2.1.8 Example
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Let the semigroup S, = {1,b,¢,d} = F with the Cayley Table-2.1

1 b ¢ d

1{1 & ¢ d
b|1d b b b
cle ¢ ¢ ¢
did ¢ b d

Table—2.1
we define a soft semigroups (a, F) and (8, {1,b}) over a semigroup S,. As

a(1) = {1}, a(b) = {8}, ale) = {c} , a(d) = {d}

and

B(1) = {1,8}, B(®) = {1,¢}

Now (e, F) + (8, {1,6}) = (1.F x {1,}) and 7(p,0) = a(p) » f(0), where p € F,
o € {1,b}. Now ~(d,1) = {d}{1,b} = {d,c}. Which is not a subsemigroup of S.

Therefore (7, F x {1,b}) is not a soft semigroup over S,.

2.2 Soft Ideals

In this section, we study some properties of soft ideals.

2.2.1 Definition

A pair (@, F) over a semigroup S, is said to be soft left (right) ideal over the semi-
group S, if fsvé(a,}') C (@, F)((e, F)OFs, C (e, F)), where Fs, is an absolute
soft set over 5. A soft set over S, is soft ideal if it is both soft left (right) ideal over
Sg-

2.2.2 Definition
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A non null and non-empty soft set {a, F) over a semigroup S, is a soft ideal over
S,. if and only if a(p) # ¢, V p € F is an ideal of 5.

2.2.3 Proposition

Let (a, F) and (8, £) be any two soft ideals over a semigroup S,. Then (c, F) *
(B, £) is also a soft ideal over S,, whenever (a, ) = (8, £) is non null.

2.2.4 Proposition

Let (a, F) and (3, £) be any two soft semigroups (ideals) over S,;, and S, respec-
tively. Then (a,F) x (3, L) is also a soft semigroup (ideal) over S, x S,,, whenever
(e, F) x (B, L) is non null.

2.2.5 Proposition

Let (o, F) and (8, £) be any two soft ideals over a semigroup S,. Then (a, F)g(3, L)
is also a soft ideal over S, contained in both (a, F) and (3, £), whenever (a, F)Nr(8, L)
is non null and non empty.

2.2.6 Proposition

Let (e, F) and (3, £) be two soft ideals over a semigroup S,. Then (a, F)Ug(8, L)
is also a soft ideal over S,, containing both (e, F) and (3, £).

2.2.7 Proposition

Let {a, F) and (4, £) be two soft ideals over a semigroup S,. Then (a, f)O([)’, L)
is a soft ideal contained in both (a, F) and (3, £), whenever (e, F)O(8, £) is non null
and non empty.

2.2.8 Proposition

Let {a, F) and (8, £} be two soft ideals over a semigroup S;. Then (e, F)Ng(3, L)

is a soft ideal over S, whenever (a, F)Ng(8, £) is non null.
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2.2.9 Proposition

Let (o, F) and (3, £) be two soft ideals over a semigroup S,. Then (e, F}JUg(8, £)

is a soft ideal over S;.

2.3 Soft Quasi-Ideals and Soft Bi-Ideals

The notion of quasi-ideal in a semigroup was firts introduced by Steinfeld in [14].

In fact, the concept of quasi-ideal play an important role in the characterization

of different algebraic structures. In semigroups, it is interesting to note that the

restricted intersection and the basic intersection of a soft left ideal and a soft right

ideal over s semigroup S, is neither a soft left ideal nor a soft right ideal over 5.

This interseting fact can be illustrated in the following example.

2.3.1 Example

Let Sy = {a,b,c,d, e} be a semigroup with the following Cayley Table-2.2.

a b ¢c d e
ala 6 ¢ & a
bla a a b c
cla b ¢ a a
dla ¢ a @ e
elea d e a a

Table—2.2

Let (R,F) and (Z, £) be soft sets over 5, where # = £ = S, and K and Z are

defined as R(a) = {a}, R(d) = {a,d,c} = R(c), R(d) = R{e) = {a,d, e}, Z(a) = {a},

Z(b) = {a,b,d}, Z(c) = {a,¢,e}, Z(d) = {a,b,d}, Z(e) = {a,c,e}. Then (R, F}is a
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soft right ideal over S, and (Z, £} be the soft left ideal over S,.

Let (Q,R) = (R, F)Ng(Z, L), where R = FNL =5, and Q(s) = R(s) NZ({5) ¥
s € R. Then Q(a) = {a}, Q) = {a,8}, Q(¢) = {a,}, Qd) = {a,d}, Qe) = {a,e}.
Thus it is clear that (@, R) is neither a soft right ideal nor a soft left ideal over 5.

Similarly it can be shown that (R, F)g(Z, £) is neither a soft left ideal nor a soft
right ideal over S,.

2.3.2 Definition

A non null soft set {a, F) is said to be soft quasi ideal over a semigroup S, if
(o, F)Fs,NrFs,(c, F) C (@, F). where Fg, is an absolute soft set over a semigroup
Sy-

2.3.3 Definition

A non null and non empty soft set (a, F) over & semigroup S is called a soft quasi
ideal over S, if and only if a{p) is a quasi ideal of S, whenever a(p) # ¢, ¥ p€ F.

Soft quasi-ideals over a semigroup S, have the following properties.

1. Let (R, F) be a soft right ideal over S, and (Z, L} be a soft left ideal over S,.
Then (R, F)Ng(Z, L) is a soft quasi-ideal over Sy, whenever (R, F)Ng(Z, L) is

a non null and non empty.

2. Let (R, F) be a soft right ideal over S; and (Z, £) be a soft left ideal over S,.

Then (R, F)Ng(Z, £) is a soft quasi-ideal over 3.

3. Let (R, F) be a soft right ideal over S, and (Z, £} be a soft left ideal over S,
Then (R, F)Ng(Z, L) is a soft quasi-ideal over S,, whenever (R, F)Ng(Z, L) is

a non null.
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4. Let (R, ) be 2 soft right (left) ideal over S,. Then (R, F) is a soft quasi ideal

over S,.

It is easy to see that if (e, ) and (B, £) are two soft quasi-ideals over & semigroup

Sy, then the following statements hold:

1. (e, F)Ng(B, L} is a soft quasi-ideal over S, whenever (e, F)Ng(8, £) is a non

null and non empty.

2. (e, F)Np(B, L) is a soft quasi-ideal over S,, whenever (@, F)N\z(8, £) is a non

oull.
3. (@, F)Ne(B, L) is a soft quasi-ideal over §,.

2.3.4 Definition
A soft set (@, F) over a semigroup S, is said to be soft bi-ideal over a semigroup

S, if
1. (e, F) is a soft semigroup over & semigroup S,.
2. ¥V p € F, a(p) is bi-ideal over a semigroup S,.

2.3.5 Theorem

A soft set (@, F) over a semigroup S, is said to be soft bi-ideal over S, if and only
ifY p € F, a(p) # ¢ is a bi-ideal over S,.

2.3.6 Theorem

Every soft quasi-ideal over a semogroup S, is & soft bi-ideal over Sy-

2.3.7T Theorem
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Let (o, F) and {$3, £) be two soft quasi ideals over a semigroup S;. Then (e, F) *

(3, L) is a soft bi-ideal over S,;, where ” *” is a binary operation defined on §,.



Chapter 3

A Study in Lattice Ordered Soft

Semigroups

In this chapter, the concept of lattice (anti-lattice) ordered soft semigroups and some
properties of lattice (anti-lattice) ordered soft semigroups has been introduced. Also
the concept of lattice (anti-lattice} ordered soft ideal (quasi-ideal, bi-ideal) and its

properties has been defined, and related properties are discussed.

From now to onward we will give the notation to soft set as SS, semigroup as SG,
subsemigroup as Ssg, soft semigroup as SSG, lattice (anti lattice} ordered soft set
as L{anti-L)OSS, lattice (anti-lattice) ordered soft semigroup as L{anti-L)OSSG, lat-
tice (anti-lattice) ordered soft subsemigroup as L(anti-L)OSSSG, lattice (anti-lattice)
order quasi-idealistic soft semigroups as L(anti-L)OQISSG and lattice (anti-lattice)
order bi-idealistic soft semigroups as L{anti-L}OBISSG.

25
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3.1 Lattice Ordered Soft Semigroups

3.1.1 Definition
Let S, be a SG and (a,F) be a non-empty SS over S,. Then (a,F) is called

L(anti-L)OSSG over S, if

1. ¥V pe F, afp) is Seg of S,.

2. Y p,p3 € F, py X p, implies a(p;) C a(p)(a(pe) C alpy))-

3.1.2 Example
Let S; = {1,2,3,4} be a SG with the following Cayley Table-3.1 and with the

ordered 1 X2=x3<X4,
1 2 3 4

11 2 3 4
212 3 3 4
3|14 3 4 3
414 4 3 4

Table—3.1

Let 7 = {1,2,3} and define a mapping o : F — P(S,) by a(l} = {1}, a(2) =

{1,4}, a(3) = {1,3,4}. Then ¥ p € F, a(p) is Ssg of S, and ¥ p,, p, € F with p; X p,
implies a(p,) C afp,). Then (a, F) is LOSSG over S,.

3.1.3 Example

Let S, = {1,2,3,4,5} be a SG with the Cayley Table-3.2 and having the order

1%2%3<4%5.
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3|11 2311

4(1 1 1 4 5

5/1 4 5 11
Let F = {1,2,3} and define & mapping a : F — P(S;) by a(l) = {1}, a(2) =

{1,2}, a(3) = {1,2,3}. Then clearly V p € F, afp) is Ssg of S, and for any p,,p4 €
F, pr X pq implies a{p,) C a{p,). Then (a, F) is LOSSG over S,.

3.1.4 Example

Let S, = {1,3,5,7,9} be a SG with the following Cayley Table-3.3 and with the

order by the following Hasse diagram shown in Fig-3.1.

Latuice o garanrlers m M

1 35 7 9

i 1
1{1 1111 /\
3 5
5(1 3 5 11 \/
7

7111179
!

911 7 9 1 1

Table-3.3
Let F = {1,3,5} and define & mapping a : F — P(S,) by (1) = {1}, o(3) =

Fig—-3.1

{1,3}, a(5) = {1,5}. Then clearly ¥ p € F, a(p) is Ssg of S, and for any p,, g3 € F,
with p, = p, implies a(p,) C a{p;). Then (o, F) is LOSSG over 5,.
On the same SG define another parametric set £ = {3,7,9} and define a mapping

B : L — P(5) by B(3) = {1,3,5,7}, A(7) = {1,3,5}, (9) = {1,3}. Then ¥ 5 € £,
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B(o) is Seg of S, and for any o1,02 € £, 0, % 04 implies B{o2) C F(01). Then (8, L)
is anti-LOSSG over S,.

3.1.5 Example

Let S, = {1,2,3,4,5,6,7,8} be a SG with the following Cayley Table-3.4 and

withtheorder 1 X234 <X5<X6<X7<8.
1 23 45 6 78

1117 1111111

6{5 5 58 53 5 &8 5 &
7/5 6 7 8 8 8 8 8
8|8 8 8 8 8 8 8 8

Taoble—3.4

Let F = {1,3,4} and define a mapping a : F — P(S5,) by a(l} = {1}, o(3) =

{1,8}, a(4) = {1,5,8}. Then V p € F, a(p) is Ssg of S, and V¥ p,,py € F, with
p1 % p, implies a(p,) € a(p,). Then (a, F) is LOSSG over S,. On a same SG define
another parametric set £ = {3,4,6,7} and define a mapping 8 : £ — P(S,) by
B(3) = {1,2,4,5}, B(4) = {1,4,5}, 8(6) = {4,5}, B(7) = {4}. Then ¥V 0 € L, B(o)
is 8sg of S; and V 61,03 € £, with o, %X o3 implies (02) C f(o1). Then (3, L) is
anti-LOSSG over S;.

3.1.6 Definition

Let S, be a SG and (a, F) be a LOSSG over S,. Then support of (a, F) is denoted
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and define as Supp{a, F) = {p € F,(p) # 8}
3.1.7 Definition
Let S, be a SG with («, 7} and (3, L) be LOSSG over the same SG §;. Then

(o, F) is LOSSSG of (B, L) if it holds,

1. FCL

2. for p € Supp(a, F), implies a(p) is Ssg of B(p).

3.2 Basic Operations on Lattice (anti-lattice) Or-

dered Soft Semigroups

3.2.1 Theorem

Restricted intersection of two L{anti-L)OSS5Gs (a, F) and (3, £) is L(anti-L)OSSG
if it is non null.

Proof. Let S, be a SG, E be an ordered set of parameter with 7, £ C E, {a, F)
and (5, L) be two LOSSG over S,. Then by definition (e, F)Ng(8, L) = {7, R) with
R=FNL#D, Ve R 4() = alc}NB(c). Then result follows by the fact that
the intersection of any number of Ssgs is Ssg provided it is non-empty. Now Let
FAL £ 8. As F,L C E, so both F and £ acquire the partial order from E. Hence
for any p; %5 p,, implies o(p,) C a{py), ¥ p;,p3 € F. Also for any o, %, ga, implies
Bla1) C Bloy) ¥ 01,03 € L. Therefore for any ¢,z € R, ) =X <3 implies a(s;} C alsy)
and S(s1) € B(sz). Aleo for al(s1)NB(s1) € al(s2)NB(sz), this implies v(s1) € v(s2) for

1 2w ¢3. Thus (a, F)Na(B, L) = (v,R) is a LOSSG over S,. Similary the result can
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be shown for anti-LOSSG. m

The example given below describes that the restricted union of two LOSSGs may
or may not be a LOSSG.

3.2.2 Example

Let S; = {1,2,3,4,5} be a SG with Cayley Table-3.5 and with usual order 1 <

2<X3=x4X5.
1 2 3 45

1111111
211 11 2 3
3|11 2311
4(1 1 1 4 35
511 4 5 11

Table—3.5
Let F = {1,2,4}, £ = {1,2,3,5} be two parametric sets. Define a mapping

a:F o P(S,)and B: L — P(S,) by (1) = {1}, o(2) = {1,2}, a(4) = {1,2,3} and
B(1) = {1,5}, B(2) = {1,3,5}, B(3) = {1,3,4,5}, B(5) = {1,2,3,4,5}. Then clearly
for all p,0 € F, £ and p % o implies a{p) C a(a)(B(p) C B(a))- So (a, F) and (5, £)
are two LOSSGs over a SG S,. Then their restricted union (&, F)Ug(8, £) = (v, R),
where R = FAL = {1,2} is given by v(1) = {1,5}, 7(2) = {1,2,3,5}, As 1 < 2 and
(1) € 7(2), but 4(2) = {1,2,3,5} is not a Ssg. So (7, R) is not a LOSSG.

3.2.3 Theorem

Restricted union of two L(anti-L)OSSGs (e, F) and (8, £) is L{anti-L)OSSG over
S, if (@, F) € (8,£) or (8,£) € (a, F).

Proof. Let (a, F) C (B, £) with F C £. As by definition (e, F)Jx(8, £) = (7, ®)



31

with ® = FAL # ¢. Then for any ¢ € R, we encompass ¥(¢) = a(s)UB(s). Now
as ® = FNL with F C L subsequently we encompass ®# = F. So this implies that
(7,R) = (a, F) implies ¥(¢) = a(s)} implies (e, F)Or(8, L) = (a, F), but (o, F) is
LOSSG and (v, R) = {(a, F), implies (7, R) = (a, F)Ug(B, £} is also LOSSG. m

The example given below describes that the extended intersection and extended
union of two LOSSGs may not be a LOSSG.

3.2.4 Example

Let S, = {1,3,5,7,9} be a SG with Cayley Table-3.6 and with order by the

following Hasse diagram shown in Fig-3.2.

Laidice of parimartrs iy set

135 79

i

311113 35

SRV,

711117 9 "
!

1111

p—

5]/1 3 5

—

g(1 7 9 1 1
Table—3.6 Fig—3.2
Let 7 = {1,3,7}, £ = {1,3,5,9} be two parametric sets. Define a mapping

a:F = P(S,) and 8 : L — P(S,) by a(1) = {1}, a(3) = {1,3}, a(7) = {1,3,5}
and A(1) = {1,9}, 83) = {1,3,5,7,9}, 8(5) = {1,5,9}, B(9) = {1,3,5,7,9}. Then
clearly for all p,o € F,L and p % o implies a(p) C a{e)(8(p) C B(c)). So {a,F)
and (8, £) are two LOSSGs over S,.

Here a(1) C a(3) C of7) and A(1) C B(3) € B(9), B(1) € A(5) C B(9).
Then their extended intersection (@, F)Ng(8,L) = (v,R), where ® = FUL =

{1r315=7:9} is given by 7(1) = {1}! 7@3) = {1}! ¥(5) = {1,5,9}, 77) = {1!3’5}1
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¥(9) = {1,3,5,7,9}. As 5 % 7 but v(58) & ¥(7). So (7, R) is not a LOSSG. Sim-
tlarly extended union (a, F)Ug(8,£) = (v,R), where R = FUL = {1,3,5,7,9}
is given by (1) = {1,9}, ¥(3) = {1,3,5,7,9}, v(5) = {1,5,9}, +(7) = {1,3,5},
(9) = {1,3,5,7,9}. As 3 X 7 but ¥(3) & ¥(7). So (7, R) is not a LOSSG.

3.2.5 Theorem

Extended union of two L{anti-L)OSSGs (o, F) and (4, £) is L(anti-L)OSSG if
(&, F) € (8, L) or (8,L) C (e, F).

Proof. Let (a, F) and (3, £) be two LOSSGs over S, and (a, F) C (§, L), where
F C £ and afp) C B(p), V p € F. Then by definition (a, F)Ug(5,£) = (v, R),
where ® = FUL as F C £ then R = £, this implies that y(c) = 4(s) V¢ € R. So
(v,R) = {B,L). As (8, L) is LOSSG implies (7,R). So {a, F)Ug(8,L) = (v,R) is
LOSSG over SG 5, In the same way the result can be shown for anti-LOSSGs. =

3.2.6 Theorem

Basic intersection of two L{anti-LYOSSGs («, F) and (F, £) is L{anti-L}YOSSG, if
it is non null.

Proof. Let (a, F) and (8, £} be two LOSSGs over S;. Then (a, F)Ng(3,L) =
{v,R), where R = F ® L. Then for any p € F, ¢ € £ and for (p,c}) € F® L, we
have y(p, o) = a(p)NB(s), where afp) and f(o) are Ssgs of S,. As a(p)NF(0) # ¢.
As intersection of any numbers of Ssgs of S, is Ssg, so (7, R) is Ssg of S, Since both
F,L C E, so both F and £ acquire a partial order from E. Therfore for any p;, <z p,
implies a(p,) C a(p;), ¥ py,p, € F. Also for any oy %, oy implies 8(c;) C B{o,),
V 01,02 € L. Therefore for any (p,, 1), (,03) € R. Now < is the partial order

on R which is generated by partial order on F and L. If {p,,01) < (pq,02), then
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a(p;) C alp,) and B(o,) C Blo,) implies a{p;)NB(a1) C a{py)NB(0s) this implies
Y(pr,01) € ¥(p2,02) for (p1,01) =m (ps,02). Thus (a, F)Ns(3,L) = (7,R) is a
LOSSG. In the same way the result can be shown for anti-LOSSG. =
The example given below describes that the basic union of two LOSSGs may or
may not be a LOSSG.
3.2.7 Example

Let S, = {1,2,3,4,5} be a SG with Cayley Table-3.7 and with usual order 1 <

411 1 1 4 5

5|11 4 53 1 1

Table—3.7
Let F = {1,2,4}, £ = {1,2,3,5} be two parametric sets. Define a mapping

a: F — P(S,) and 8: L — P(S,) by a(1) = {1}, &(2) = {1,2}, a(4) = {1,2,3} and
B(1) = {1,5}, B(2) = {1,3,5}, B(3) = {1,3,4,5}, B(5) = {1,2,3,4,5}. Then clearly
for all p,o € F, £ and p % o implies a(p) C a(c)(B(p) C B(c)). So (a, F) and (3, £)
are two LOSSGs over a SG S,. Then their basic union (c, F)Jg(8, £) = (v, R), where
R =F&L = {(1,1),(1,2),(1,3),(1,5),(2,1),(2,2), (2,3), (2, 5), (4,1), (4, 2), (4,3), (4, 5)}
is given by v(1,1) = {1,5}, 7(1,2) = {1,3,5}, v(1,3) = {1,3,4,5}, 7(1,5) =
{1,2,3,4,5}, 7(2,1) = {1,2,5}, 7(2,2) = {1,2,3,5}, 7(2,3) = {1,2,3,4,5}, 7(2,5) =

{1? 2: 3,4, 5}} 7(4! 1) = {1! 2,3, 5}: 7(4! 2) = {1: 2: 3! 5}: 7(4: 3) = {11 2: 3: 4, 5}1 7(4; 5) =
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{1,2,3,4,5}. As (1,1) 2 (2,1) and 4((1,1)) € 7(2,1), but 4(2,1) = {1,2,5) is not a
Ssg over S,. So (7, R) is not a LOSSG.

3.2.8 Theorem

Basic union of two L{anti-L)OSSGs («, ) and (5, £) is L(anti-L)OSSG if for all
(p,0) € F ® L either afp) C B{o) or B(o) C alp).

Proof. For any (p,0) € F ® L, we consider that a(p} C J(c). By definition
(o, F)Ug(4, L) = (7,R), where R = F ® £ and for any (p, 0} € F ® L we encompass
1(p,0) = o{p)UB(0). As a{p) € B(a), so a(p)UB(a) = (o) implies (v, R) = (4, L),
but (4, L) is a LOSSG over a SG S, so it pursues that (o, F)Ug(B, L) = (7, R) is a

LOSSG over S,. In the same way the result can be shown for anti-LOSSG. =

3.3 Properties of Lattice Ordered Soft Ideals

3.3.1 Definition
A 8S {a, F) over a SG S, is said to be L(anti-L)OISSG if it satisfies the following

conditions,
1. Y p€ F, a(p) is an ideal of F.
2.9 p1,0 €F, p1 R py = &{py) C alplalpy) C {p,)).

3.3.2 Example
Let S, = {1,2,3,4} be a SG with the following Cayley Table-3.8 and with the

order 1 £ 2=%3 =4
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3

4

4(4 4 3
Table—3.8
Let F = {1,2} and £ = {1,2,3} are two parametric sets. Define a mapping

a: F — P(S;) by al)

4
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13,4} = o(2) and 8 : £ — P(S,) by (1) = {3,4},

B(2) = {1,2,3,4} = 5(3). Then clearly (a, F) and (8, £) are LOISSGs over S,.

3.3.3 Theorem

Restricted intersection of two L(anti-L)OISSGs (o, F) and (3, £) is L{anti-L)OISSG.

Proof. Let S, be a SG, E be an ordered set of parameters with J, L C E. Let

(e, F) and (8, L) be two L(anti-L)OISSGs over S,. By definition (e, F)Ng(8, L) =

(v, R) with R = FAL # @. Then for ¢ € R, ¥{c) = a(s)NB(s). Then results follows

by the fact that the intersection of any collection of ideals is ideal provided it is

non-einpty. Since F,L C E, so both F and £ acquire the partial ordered from

E. Therefore for any p, <z p,, we have a{p;) C a{p,), ¥V p1,p, € F. Also for

any o1 <¢ o3, we have 8(c1) C A(o2) ¥ 01,02 € L. Therefore for any ¢1,52 € R,

a(sy) € alsz) and B(s1) € B{sz). Also for e())NF(s1)} C efc2)NB(cz) this implies

v(s1) € 4(s2) for 1 Zg c2. Thus (@, F)Nr(8,¢} = (7,R) is a LOISSG over S,

Similary the result can be shown for anti-LOISSGs. m

3.3.4 Theorem

Restricted union of two L{anti-L}OISSGs (a, F) and {8, £) is L{anti-L)QISSG.
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Proof. Let S, be a 5G, E be an ordered set of parameter with 7, £ C E. Let
(a, F) and (B3, L} be two LOISSGs over S,. By definition (a, F}Ug(8,£) = (7, R)
with R = FNL # @ Then for ¢ € R, 7(s) = a(c)UB(s). Then results follows by the
fact that the unoin of any number of ideals is ideal. Since F, £ C F, so both F and
L acquire the partial ordered from E. Therefore for any p; < p,, we have a(p,) C
a(py), ¥ p1, 03 € F. Also for any 01 %¢ 0q, we have H{o1) C S(o2} ¥ 01,02 € L.
Therefore for any ¢1,¢2 € R, a(s;) C a(s2) and 8(s;) C H(s2). Also for a(s;)U8(c,) C
a(sz)UB(sa) this implies v(c1} C 7Y(s3) for ¢; Ky 3. Thus (a, F)Ur(8, L} = (v,R) is
a LOISSGs over S,. Similary the result can be shown for anti-LOISSG over S,. =

The example given below describes that the extended intersection and extended
union of two L{anti-LYOISSGs may not be a L{anti-L}OISSGs.

3.3.5 Example

Consider S, = {1, 2, 3,4, 6,12} be a SG with the Cayley Table and lattice ordered

shown in Table-3.9 and Fig- 3.3. respectively.
1 2 3 4 6 12

1 (4 4 4 4 41 Ye 6

2 |16 6 6 6 6 2

& A3
3 |4 4 4 4 6 3
4 |14 4 4 4 4 4 Se 1
6 |6 6 6 6 6 6
Fig—3.3

124 4 4 4 4 12

Table—3.0
Let F = {1,2,12}, £ = {1,3,4}. be two parametric sets. Define a mapping

a: F — P(S) and 8 : L — P(S,) by a(l} = {4,6}, a2} = {1,4,6}, a(12) =
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{1,3,4,6} and (1) = {4,6}, B(3) = {1,3,4,6,12}, B(4) = {1,4,6}. Then clearly for
all p,o € F, L and p X ¢ implies a(p) C (o) and (p) C (o). So {a, F) and (3, £)
are two LOISSG over S,. Then their extended intersection (o, F)Ng(8. L) = (v, R),
where R = FUL = {1,2,3,4,12} is given by 4(1) = {4,6}, 7(2) = {1,4,6}, v(3) =
{1,3,4,6,12}, v(4) = {1,4,6}, v(12) = {1,3,4,6}. As 3 % 12 but v(3) € ¥{(12). So
(7, R) is not a LOISSG. Similarly extended union (a, F)Ug(3, £) = (v, R), where R =
FOL = {1,2,3,4,12} is given by 4(1) = {4,6},7(2) = {1,4,6}, 7(3) = (1,3,4,6,12},
v(4) = {1,4,6}, v(12) = {1,3,4,6}. As 3 < 12 but ¥(3) € v(12). So (v,R) is not a
LOISSG.

3.3.8 Theorem

Extended union of two L{anti-L)OISSGs (a, F) and (8, £) is L(anti-L)OISSG if
(0, F) C (8,£) or (8,£) € (o, F).

Proof. Let (a, F) and (3, £) be two LOISSGs over S, and (a, ) C {8, L), where
F C L and a(p) C B(p), ¥V p € F. Let (e, F)Op(B, L) = (7, R), where ® = FUL
as F C £ then ® = £ this implies that ¥(¢) = A(s) V¢ € R. So (v, R) = (5,L) is
LOISSG. Similary the result can be shown for anti-LOISSGs over 5,. m

3.3.7 Theorem

Basic intersection of two L(anti-L)OISSGs (o, F) and {8, £) is L(anti-L)OISSG,
if it is non null.

Proof. Let (o, F) and (3, £) be two L{anti-L)OISSGs over S,. Then by definition
(a, F)Np(B,L) = (7,R), where R = F @ L. Then for any p € F, 0 € £ and for
(p,0) € F®L, we have v(p, 5) = a(p)NB(0), where a(p) and 3(c) are Bls of S,. As

a(p)Np(c) # ¢. As intersection of any numbers of Bls of S, is BL, so (vy, R) is BI of
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S,- Since both 7, £ C E, so both ¥ and £ acquire a partial order from E. Therfore
for any p, %7 p, implies a(p,) € a(py), ¥ p1,p, € F. Also for any 0y % o7 implies
B(o1) C B(o2), ¥ 01,02 € L. Therefore for any (py,01), (p;,02) € R. Now =< is the
partial order on R which is generated by partial order on F and £. If (p;, 01) = (pg, 02)
then a(p;) C a(p,) and B{oy) C Blo2) implies a(p,)NB(o1) C a(p;) B(cs) this
implies y(py, 01) € Y(po, 02) for (p1,71) = (p2, 02). Thus (e, F)Na(B, L) = (1, R) is
a LOISSG over S,. In the same way the result can be shown for anti-LOISSGs over

Sy m

3.3.8 Theorem

Basic union of two L(anti-L)QISSGs (a, F) and (8, £) is L{anti-L)OISSG.

Proof. Let (o, F) and (8, £) be two LOISSGs over S,. Then (a, F)Ug(8, L) =
(7,R), where R = F ® L. Then for any p € F, ¢ € L and for (p,0) € FQ L, we
have ¥(p, o) = a(p)UB(c), where a(p) and 5(¢) are Bls of S;. As a(p)UB(c) # ¢. As
union of any numbers of Bls of S, is BI, so (v, R) is BI of S;. Since both F,£ C E,
so both F and £ acquire a partial order from E. Therfore for any p; < p, implies
a(p,) C alpy) ¥ py, py € F. Also for any 01 %, o4 implies §{c;) C f{o2) V01,05 € L.
Therefore for any (p,,01), (p3,02) € R. Now = is the partial order on R which is
generated by partial order on F and £. If (p,,01) = (ps, 02} then a(p;) C a{p;) and
B(o1) € Blo2) implies a(p;)0B(o1) € a(py)UB(03) this implies 7(py, 01) € ¥(py, 02)
for (py, 01} =g (ps, 02). Thus (o, F)Us(B, L) = (y,R) is a LOISSG. In the same way

the result can be shown for anti-LOISSGs. =
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3.4 Properties of Lattice Ordered Quasi Idealistic

Soft Semigroup

3.4.1 Definition
Let S, be a SG with F C S;. A non null 88 (o, F) over S, is called L(anti-

LYOQISSG over S, if
1. ¥V p € F, a(p) is quasi ideal over S,.
2. Y py, pa € F, with p; X p, implies a(p;) C a(py}(a(p;) € a(py)).

3.4.2 Example
Let S, = {1,3,5,7,9} be a SG with the following Cayley Table-3.10 and with the

order by the following Hasse diagram shown in Fig-3.4.

13579 "‘"“"":"""‘"""‘
11 1111 /\
31 11 3 5 71
511 3 5 11 \/
71111 7 9 1
911 7 9 11 ?

Table—3.10 Fig—3.4
Let F = {1,3} and £ = {1,3,5} be two parametric sets define a mapping «a :

F — P(S;) by (1} = {1}, a(3) = {1,3,5} and § : £ — P(S,) by 8(1) = {1,3},
6(3) ={1,3,5}, 8(5} = {1,3,5,7,9}. Then (e, F} and (8, L) are LOQISSGs over S,.

3.4.3 Theorem
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Restricted intersection of two L{anti-L)YOQISSGs (o, F) and (8,L) is L(anti-
L)OQISSG if it is non null.

Proof. Let S, be a SG, E be an ordered set of parameter with F,£ C E. Let
(o, F) and {8, £) be two LOQISSGs over S,. By definition (e, F)Ng(8, L) = (7, R}
with ® = FNL # 0. Then for ¢ € R, y(s) = a(c<)NB(s). Then results follows by
the fact that the intersection of any collection of QIs is QI provided it is non-empty.
Since F,L C FE, so both F and £ acquire the partial ordered from E. Therefore
for any p, Xr py, we have a(p,) C al(p,), ¥ p,,pp € F. Also for any o) % g3, we
have 8(01) C B(oq), V 01,02 € L. Therefore for any 1,62 € R, a{5;) C afsz) and
B(51) € Blsz). Also for a(s1)NB(s1) C a(s2)NB(sz) this implies ¥(s1) € ¥(<2) for
§1 g §o. Thus (o, F)NR(B,L) = (v, R) is a LOQISSG. Similary the result can be
shown for anti-LOQISSGs. =

3.4.4 Theorem

Restricted union of two L({anti-LYOQISSGs (o, )} and (3, £) is L{anti-L)YOQISSG
if it is non null and either (a, F) C (8, £) or (8,£} C (e, F).

Proof. Let {a,F) C (8,L£) with F C L. By definition {a, F)Ugr(8,L} = (1,R)
with ® = FNAL # @ and for any ¢ € R, we encompass ¥(s) = a(5)UB(s). Now as
R = FAL with F C L, then we encompass ® = FNL = F.80 ¥¢ € R implies
() = als) implies (v,R) = (o, F) implies (a, F)Ug(B,L) = (a, F) but (o, F) is
LOQISSG it pursues that {c, F)Ugr(8, L) = (7, R) is LOQISSG. Similary the result
can be shown for anti-LOQISSGs. w

The example given below describes that the extended intersection and extended

union of two L{anti-L)OQISSGs may not be a L{anti-L)OQISSG.
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3.4.5 Example
Let S, = {1,2,3,4, 5} be a SG having Cayley Table-3.11 and with lattice ordered

as shown in Fig-3.5

12 3 45

111 2 3 4 35

212 2 2 2 2

313 2 3 3 2 d

414 2 4 4 2

%

515 5 3 5 5 Fig—3.5
Table—3.11

Let ¥ = {1,4}, £ = {1,2,3}. be two parametric sets. Define a mapping « :
F — P(S;) and 8 : £ — P(S;} by a(l) = {2}, a(4) = {2,5}, and 5(1) = {2,3},
A(2) = {2,3,5}, 8(3) = {2,3}. Thenfor all p,o € F, £ and p < o implies a(p) C a(o)
and B(p) C B(r). So (a,F) and (8, L) are two lattice ordered quasi-idealistic soft
S8G over S,.

Here a(1) C a(4) and (1) C 5(2), (1} C 5(3). Then their extended intersection
(o, F)Np(B, £) = (7, R), where R = FUL = {1,2,3,4} is given by v(1) = {2}, v(2) =
{2,3,5}, v(3) = {2,3}, 7(4) = {2,5}. As 2 % 4 but v(2) € ¥(4). S0 (~,R) is not
a LOQISSG. Similarly extended union (a, F)Ug(8, £) = (v, R), where R = FUL =
{1,2,3,4} is given by (1) = {2,3}, 1(2) = {2,3,5}, 7(3) = {2,3}, 7(4) = {2,5}. As
1 =<4 and 2 < 4 but y(1) € y(4) and ¥(2) € 7(4). So (v, R) is not a LOQISSG.

3.4.6 Theorem

Extended union of two L(anti-L)OQISSGs (a, ¥} and (8, £) is L{anti-L)OQISSG

if (@, F) C (8,£) or (8,£) C (a, F).
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Proof. Let (o, F) and (8, £) be two LOQISSGs over S, and {a, F) C (5, L) where
F C L and a(p) C B(p), ¥ p € F. Let (o, F)Ug(B, L) = (7,R), where R = FUL
as F C L then R = L this implies that (<) = B{c}, V¢ € R. So {(v,R) = (B, L) is
LOQISSG. Similary the result can be shown for anti-LOQISSGs. =

3.4.7 Theorem

Basic intersection of two L(anti-L)OQISSGs is again L(anti-L)OQISSG if it is non
null.

Proof. Let (o, F) and (3, £) be LOQISSGs over S,. Then by definition (a, F)Np(3, L) =
(v, R), where ® = F ® L. we have ¥(p,0) = a(p)3(c), where a(p) and S{c) are
a QIs of S,. As a{p)NB(c) # ¢. As intersection of any numbers of QIs of S, is
QI so (v,R) is QI of S, Since both F,L£ C E, so both F and L acquire a par-
tial order from E. Therfore for any g, Xz p, implies a{p,) C a{p,), ¥ p;,p, € F.
Also for any o; <. op implies 8(cy) C B(o2), ¥ 01,09 € L. Therefore for any
(P15 01), (P2, 02) € R. Now < is the partial order on R which is generated by partial
order on F and L. If (p,, 1) X (p,, 02) then a(p,} C a(p,) and 8(s,) C f(o2) implies
a(p,)NB(01) C app)B(02) this implies v(py,61) € v(py,02) for (py,01) = (02, 02).
Thus (o, 7)Na(8, L) = (v, R) is LOQISSG. In the same way the result can be shown
for anti-LOQISSG. =

3-4.8 Theorem

Basic union of two L(anti-L)YOQISSGs (o, F) and (3, £) is L(anti-L)OQISSG if
for all (p,0) € F ® L either a(p) C (o) or A(0) C afp).

Proof. For any (p,0) € F ® L, we consider that a(p) C B(o). By definition

(a, F)Up(B, L) = (7, R), where R = F ® £ and for any (p, 0} € F ® L we encompass
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1(p,0) = a(p)0B(0). As a(p) € B(0), 50 a(p)IB(0) = (o) implies (. B) = (4, L),
but {8, £} is a LOQISSG over a SG S, so it pursues that (a, F)Ug(8,L£) = (7, R} is
a LOQISSG over S,. In the samne way the result can be shown for anti-LOQISSG. =

3.4.9 Theorem

Let (o, F) be a lattice (anti-lattice} order left(right) idealistic soft semigroup over
8 8G S,. Then (a, F) is L{anti-L)OQISSG over .5,.

Proof. Let S, be a SG, E be an order set of parameter with 7 C E. Let (o, F)
be a lattice (anti-lattice) order left(right) idealistic soft semigroup over the SG S,.
It means (o, F) contains lattice order in it which means ¥ p,, p, € F with p; X p,,
implies a(p,} C a(p,). As (a, F) is left (right) idealistic soft SG over the SG 5, so ¥
p € F, implies or(p) is left (right) ideal over S,. Since every left (right) ideal over S,
is quasi-ideal over S,. Then this left (right} idealistic soft SG over .S, becomes quasi-
idealistic soft SG over .5,. Further (a, F) contains lattice ordered, so (o, ) becomes
LOQISSG over S,. Similary the result can be shown for anti-LOQISSGs over S,. ®

3.4.10 Theorem

Let (R, F) be a L(anti-L)YORISSG over a SG S, and (Z, £) be a L{anti-L)OLISSG
over a SG S,. Then (R, F)Ng(Z, L) is a L{anti-L)OQISSG over a SG 3,,.

Proof. Let 5, be the SG, E be an order set of parameter with F,£ C E. Let
(R, F) be a LORISSG over S, and (Z,£) be a LOLISSG over S,. By definition
(R, FYNR(Z, L} = (v,R) with R = FAL # @ Then for ¢ € R, v(c) = R)NZ().
where R(<) is RI over Sy and Z(s) is LI over S,. So in all above cases ¥(s) becomes
quasi ideal over 5;,. Hence (v,R) becomes quasi-idealistic soft SG over S,. Now

show that this quasi-idealistic soft SG contains lattice order in it. As F,L C E,
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so both F and £ acquire the partial ordered from E. Therefore for any p; <r p,
implies R{p,) C R(p,)}, V py, p3 € F. Also for any oy R, 03 we have Z(oy) C Z(0gy)
for all 01,09 € £. Therefore for any ¢1,¢2 € R, R(s1) € R(sz) and Z(s,) € Z{sa).
Also for R(51)NZ(s1) € R{c2}NZ{cz2)} this implies v(¢;} € ¥{s2} for ¢ <g §2. Thus
(R, F)Nr(Z,L) = (7,R) is a LOQISSG. Similary the result can be shown for anti-

LOQISSGs. w

3.4.11 Theorem

Let (R, F) be a L{anti-L)ORISSG over a SG S, and (Z, £} be a L(anti-LYOLISSG

over a SG S;. Then (R, F)Ng(L, L) is a L(anti-L)OQISSG over a SG S,.

Proof. Let S, be the SG, E be an order set of parameter with 7, £ C E. Let
(R,F) be a LORISSG over S, and (Z, L) be a LOLISSG over S,. By definition
(R, F)NB(Z, L) = (7, R),where R = F @ L, we have (p,0) € R implies y{p,0) =
R{p)NZ(s). where R(p) is RI over S and Z(o) is LI over S. So in all above cases
v(p,0) becomes quasi ideal over S,. Hence (v,R) becomes quasi-idealistic soft SG
over S;. Now show that this quasi-idealistic soft SG contains lattice order in it. As
F,L C E, so both ¥ and L acquire the partial ordered from E. Therefore for any
p1 Rr py implies R(p;} € R(p,), ¥ py,p; € F. Also for any o, X, 05 we have
Z({o1) € Z(03), ¥ 01,05 € L. Therefore for any ¢;,¢; € ®, R{¢1) C R(s3) and
Z(1) € Z{s2). Also for R(51)AZ(s1) € R(s2)NZ(s2) this implies y(c;) € 7y(2) for
1 %n 2. Thus (R, F)Ng(Z, L) = (v, R) is a LOQISSGs. Similary the result can be

shown for anti-LOQISSGs., m
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3.5 Properties of Lattice Ordered Bi-Idealistic Soft
Semigroup

3.5.1 Definition

A non null S8 {(a, F) over & SG S, is said to be L(anti-L)OBISSG over S, if

1. ¥V p€ F, a(p) is bi-ideal over S,.

2. ¥ py,py € F, with p; R p, implies a{p;) € olp;){a(p;) C a(a)).

3.5.2 Example
Let S, = {1,2,3,4} be a SG with the following cayley Table-3.12 and with ordered

1€2=%3<4.
1 2 3 4

1|1 2 3 4

212 3 3 4

314 3 4 3

4(4 4 3 4
Table—3.12
Let ¥ = {1,4} and £ = {1,2,4} are two parametric sets. Define s mapping
a:F — P(S;) by a(l) = {3,4} = a(4) and 8 : £ — P(S,) by B(1) = {3,4),
B(2) = {2,3,4}, B(4) = (1,2,3,4}. Then (e, ) and (8, £) are LOBISSG over .
3.5.3 Example
Let S, = {1,2,3,4,5,6,7,8} be a SG with the following cayley Table-3.12 and

with ordered 1 K 2 34 K56 7<8.



7/ 6 7 8 8 8 8 8

88 8 8 8 8 8 8 8

Toble—3.12
Let F = {1,3} and £ = {1,2,3} are two parametric sets define a mapping « :

F — P(S,) by a(1) = {1}, a(3) = {1,8} and § : £ — P(S;) by B(1) = {1,5},
B8(2) = {1,5,8}, 8(3) ={1,5,6,8}. Then (a, F) and (8, L} are LOBISSGs over S,.

3.5.4 Theorem

Every LOQISSG over a SG S, is LOBISSG over a SG §,.

Proof. Let S, be a SG, E be an order set of parameter with 7 C E. Let (a, F)
be a LOQISSG over §,. it means (a, F) is QISSG that contains latice order. Then
alp) is Qlof S,, ¥V p € F. As every QI of S, is BI of S, so a(p) is BI of S, implies
a(p) is BISSG over S,. Further as (a, F) contains lattice ordered so (a, ) becomes

LOBISSGs over S,. m
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