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Preface

The flows o f  Non-Newtonian fluids are encountered in many industrial and technology 

aplications. In various industrial sectors including power generation, chemical production, 

air condition, transporation and microelectronics, the conventional heat transfer fluid such 

as air, water, mineral oil and ethylene glycol play an important role. These fluids are 

incompetent for high flux application such as superconducting magnets, superfast 

computing, novel supersonic jet aircraft and high power microwave tube due to their low 

thermal conductivity. Recent advances in nanotechnology and nanoscience have introduced 

a new type o f  fluid termed nanofluid [1]. This nanofluid is firstly introduced by Choi [2], 

Nanofluids are dilute liquid suspension o f  nanoparticales with at least one their principals 

dimensions smaller than 100m [3]. Nanoparticales o f  various materials have been used for 

nanofluid production. These include copper, aluminium, copper oxide, alumina and titanic.

From previous investigations, nanofluids have been found to possess enhanced thermo 

physical properties such as thermal conductivity, thermal diffusivity, viscosity and 

convective heat transfer coefficients compared to those o f  base fluids like oil or water. The 

current review does concentrate on this relatively new class o f fluids and not on colloids 

which are nanofluids because the latter have been used for a long time. Review o f 

experimental studies clearly showed a lack o f  consistency in the reported results o f  different 

research groups regarding thermal properties [4, 5]. The effects o f several important factors 

such as particle size and shapes, clustering o f particles, temperature o f  the fluid, and 

dissociation o f  surfactant on the effective thermal conductivity o f  nanofluids have not been 

studied adequately. It is important to do more research so as to ascertain the effects o f  these 

factors on the thermal conductivity o f  wide range o f  nanofluids.

In chapter one, some basic definitions o f  fluids, fundamentals o f  fluid flow and basic idea 

o f HAM and OHAM are presented.

Chapter two comprises the study o f  influence o f  variable viscosity and viscous dissipation 

on non-Newtonian flow which is review o f  Ellahi et al. [6]. This chapter concerns with the 

effect o f  constant and variable viscosity on velocity and temperature distributions for a third 

grade fluid in a pipe. Non-linear governing questions solved by HAM [7-11].



In chapter three, we study about effects o f partial slip on the flow o f  third grade nanofluid 

with variable viscosity. We consider flow o f  third grade nanofluid between coaxial cylinders 

with constant and variable viscosity, to drive the solution o f  governing nonlinear boundary 

value problem, we have used one o f  the most modem perturbation methods, Optimal 

Homotopic Asymptotic Method (OHAM) [12-13] to find the solution o f non-linear problem. 

The effects o f  heat transfer analysis on nanoparticles in the presence o f  nonlinear partial slip 

are also studied. The physical features o f  the pertinent parameters are presented in graphical 

forms.
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Chapter 1

Some Basic Descriptions

1.1 Introduction

In this chapter, some basic definitions and concepts of various types of fluids and fundamentals 

of fluid flow are discussed. The basic idea of Homotopy Analysis Method (HAM), Optimal 

Homotopic Asymptotic Method (OHAM) and advantages of Optimal Homotopic Asymptotic 

Method (OHAM) are also explained.

1.2 Basics of Fluid

1.2.1 Fluid

Fluid is a substance that continually deforms (flows) under an applied shear stress, no matter 

how small. Fluids are a subset of the phases of matter and include liquids, gases, plasmeis and, 

to some extent, plastic solids.

1.2.2 Pressure

Pressure is an effect which occurs when a force is applied on a surface per unit area. 

Mathematically,

p = ^ ,  (1.1)

where P  is pressure, F  is the normal force and A  is the area. The SI unit for pressure is Pascal



(Pa), equal to one Newton per square meter {Nm   ̂ or kgm )̂.

1.2.3 Density

Density is a measure of how much mass is contained in a given unit volume, i.e,

m
(1-2)

where m is the mass and V is the volume.

1.2 .4 Viscosity

Viscosity is a measure of the resistance of a fluid to deformation under shear stress. It is 

commonly perceived as "thickness", or resistance to pouring. Viscosity describes a fluid’s 

internal resistance to flow and may be thought of as a measure of fluid friction. Thus, methanol 

is "thin", having a low viscosity, while vegetable oil is "thick" having a high viscosity.

1.2.5 Eckert Num ber

The Eckert number is a dimensionless number used in fluid dynamics. It expresses the rela­

tionship between a flow’s kinetic energy and enthalpy, and is used to characterize dissipation.

E  -  ^  Kinetic Energy
 ̂ CpAT Enthalpy

1.2.6 Prandtl Num ber

The Prandtl number Pr is a dimensionless number; the ratio of momentum difl'usivity (kinematic 

viscosity) to thermal diffusivity.

1/ Viscous diffusion rate CpU
Pr — — — --------------------------------— (1-4)

a thermal diffusion rate k

1.2 .7 Fluid Mechanics

Fluid mechanics is the study of fluids which can be divided into fluid kinematics (the study of 

fluid motion) and fluid dynamics (the study of the effect of forces on fluid motion) which can



further be divided into fluid statics (the study of fluids at rest) and fluid kinetics (the study of
V

fluids in motion).

Fluid Kinematics

Kinematics is the branch of mechanics that deals with quantities involving space and time only. 

It is used to describe the motions of particles and objects, but does, not take the forces that 

cause these motions into account.

Fluid Dynamics

Fluid dynamics is a sub-disciphne of fluid mechanics that deals with fluid flow— the natural 

science of fluids (liquids and gases) in motion.

Fluid Statics

Fluid statics is the science of fluids at rest, and is a sub-field within fluid mechanics.

1.3 Classification of Fluid

1.3.1 IdeaJ Fluid

A non-existent, assumed fluid without either viscosity or compressibihty is called an ideal fluid 

or perfect fluid. In nature this type of fluid does not exist. Furthermore, a gas subject to 

Boyle’s-Charleys law is called a perfect or an ideal gas. It is the hypothetical form of fluids. 

However, the fluid with neghgible viscosity may be considered as an ideal fluid.

1.3 .2 Real Fluid

Real fluids are those in which fluid friction has significant effects on the fluid motion. In 

otherw^ords we can not neglect the viscosity eSects on the motion. Real fluids are further 

classified into two classes on the basis of Newton’s law of viscosity. “Shear stress is directly 

proportional to the rate of deformation” . For one dimensional flow it can be written as

(1.5)



where Tyĵ  is the shear stress and du/dy is the rate of deformation,

1.3.3 Newtonian Fluid

A Newtonian fluid (named after Isaac Newton) is a fluid whose stress versus strain (deformation) 

rate curve is hnear and passes through the origin, i.e., Newtonian fluid obeys Newton's law of 

viscosity. Water, gasoline and mercury are some excimples of Newtonian fluids.

1.3 .4 Non-Newtonian Fluid

A non-Newtonian fluid is a fluid whose flow properties are not described by a single constant 

value of viscosity, i.e., it does not satisfy Newton’s law of viscosity. For non-Newtonian fluids

Tyx — k, / d u V

where

\ d y j

’ ' = " ( 3
is the apparent viscosity. Examples of non-Newtonian fluids are tooth paste, ketchup, gel, 

shampoo, blood, soaps etc.

1.3.5 Nanofluid

Nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids are 

engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in 

nanofluids are typically made of metals, oxides, carbides, or carbon nanotubes. Common base 

fluids include water and ethylene glycol.



1.4 Classification of Fluid Flow-Based on Variation with Time 

and Space

When a fluid flows past a point or through a path different parameters associated with the flow 

of the fluid, certain parameters vary and others may remain constant.

The two basic parameters of any fluid flow are velocity of the fluid particle or element and 

the pressure of the fluid at the point under consideration. The flow of fluids can be classified 

in different patterns based on the variation of the flow parameters with time and distance.

1.4.1 Classification Based on Variation witli Tim e

The classification of the fluid flow based on the variation of the fluid flow parameters with time 

characterizes the flow in two categories, steady and unsteady flow.

Steady and Unsteady flow

If the flow parameters, such as velocity, pressure, density and discharge do not vary with time 

or are independent of time then the flow is steady. If the flow parameters vary with time then 

the flow is categorized as unsteady.

In real conditions it is very rare to have such flows with parameters exactly constant with 

time. The parameters usually vary with time but variation is within a small range such as the 

average of particular parameter is constant for certain duration of time.

1.4.2 Classification Based on Variation with Space

The other classification criterion for the fluid flow is based on the variation of the flow parameters 

with distance or space. It characterizes the flow as uniform or non-uniform.

Uniform or Non-Uniform flow

The fluid flow is a uniform flow if the flow parameters remain constant with distance along 

the flow path. The fluid flow is non-uniform if the flow parameters vary and are different at 

different points on the flow path.



For a uniform flow, by its definition, the area of the cross section of the flow should remain 

constant. So a fitting example of the uniform flow is the flow of a liquid thorough a pipeline of 

constant diameter and contrary to this the flow through a pipeline of variable diameter would 

be necessarily non-uniform.

1.5 Flow Types

A steady flow can be uniform or non-uniform and similarly an unsteady flow can also be uniform 

or non-uniform. For a steady flow discharge is constant with time and for a uniform flow the 

area of cross section of the fluid flow is constant through the flow path.

1.5.1 Steady and Uniform Flow

Flow through a pipeline of constant diameter with a discharge constant with time.

1.5.2 Steady and Non-Uniform  Flow

Fixed discharge fiow through a tapering pipe. Water flow through a river with a constant 

discharge is also a good example of such flow as the span of river generally varies with distance 

and amount of water flow in river is constant.

1.5.3 Unsteady and Uniform Flow

A flow through pipeline of constant cross section with sudden changes in fluid discharge or 

pressure.

1.5 .4 Unsteady and Non-Uniform  Flow

Pressure surges in a flow through a pipe of variable cross section. A practical example can be 

the water flow in the network of canals during water release.

1.6 Fluid Energy

A fluid possesses energy in various forms. When appUed to a fluid, the first law of thermody- 

namics relates the change in the internal, kinetic, and potential energies of a mass of fluid to



the work done on that fluid plus the heat added to the fluid. Changes in the energy content 

of a fluid are important in many applications. In some applications a fluid does work (e.g., 

turbines, windmills, waterwheels), in other applications work is done on the fluid (e.g., pumps, 

fans, compressors).

1.6.1 Internal Energy

The internal energy of a mass of fluid is a macroscopic measure of microscopic (molecular, 

atomic, and subatomic) energy content.

1.6.2 Kinetic Energy

The energy associated with fluid in motion is called kinetic energy, Ek- This energy is propor­

tional to the mass of fluid in the system and to the square of the fluid speed V. For a mass of 

fluid M , the total kinetic energ>̂  is given by

Ek =  \m v \  (1.9)

The corresponding kinetic energy per unit mass is

ek =  \v^  (110)

and kinetic energy per unit volume is given by

pek =  p\v^- (1-11)

1.6.3 Potential Energy

A change in the gravitational potential energy of a fluid occurs whenever the fluid moves with, 

or against, the force of gravity. Suppose we chose a coordinate system with the z -  axis vertical. 

Then the gravitational potential energy, Eg -, of a small volume of fluid at height z, relative to 

the potential energy the volume of fluid has at the origin, is given by

E o ^ M g z .  (1.12)



The potential energy per unit mass is given by

e c ^ g z  (1.13)

and the potential energy per unit volume is

pec  -  pgz. (1.14)

1.7 Heat Trainsfer

Heat transfer is a discipUne of thermal engineering that concerns the transfer of thermal energy 

from one physical system to another. Heat transfer is classified into various mechanisms, such 

as heat conduction, convection, thermal radiation and phase-change transfer.

1.7.1 Conduction

Conduction is the transfer of energy through matter from particle to particle. It is the transfer 

and distribution of heat energy from atom to atom within a substance. For example, a spoon 

in a cup of hot soup becomes warmer because the heat from the soup is conducted along the 

spoon. Conduction is most effective in solids-but it can happen in fluids. Fun f£ict: Have you 

ever noticed that metals tend to feel cold? Believe it or not, they are not colder! They only feel 

colder because they conduct heat away from your hand. You perceive the heat that is leaving 

your hand as cold.

1.7 .2 Convection

Convection is the transfer of heat by the actual movement of the warmed matter. Heat leaves 

the coffee cup as the currents of steam and air rise. Convection is the transfer of heat energy in 

a gas or liquid by movement of currents (it can also happen is some solids, like sand). The heat 

moves with the fluid. Consider this: convection is responsible for making macaroni rise and fall 

in a pot of heated water. The warmer portions of the water are less dense and therefore, they 

rise. Meanwhile, the cooler portions of the water fall because they are denser.



1.7.3 Thermal Radiation

Thermal radiation is electromagnetic radiation emitted from all matter due to its possessing 

thermal energy which is measured by the temperature of the matter. Examples of thermal 

radiation are an incandescent hght bulb emitting visible-light, infrared radiation emitted by a 

common household radiator or electric heater, as well as radiation from hot gas in outer space.

1.8 Diffusion

Diffusion is one of the fundamental processes by which material moves. It is thus important 

in biology and medicine, chemistry and geology, engineering and physics, and in just about 

every aspect of our lives. Diffusion is a consequence of the constant thermal motion of atoms, 

molecules, and particles, and results in material moving from areas of high to low concentration. 

Thus the end result of diffusion would be a constant concentration, throughout space, of each 

of the components in the environment.

1.9 Brownian Diffusion

Particles with a diameter smaller then 1/xm exhibit irregular and random motion because their 

masses are small enough to render fluctuation by the bombardment of gas molecules. As a 

result of random motion particles as whole move toward to low concentration region from a 

high contrition region from high concentration region. This phenomenon in which similar to 

gas molecules, is referred to as Brownian diffusion of particles.

1.10 Thermophoresis

Thermophoresis, thermodiffusion, or Soret effect, or Ludwig-Soret effect, is a phenomenon 

observed when a mixture of two or more types of motile particles (particles able to move) are 

subjected to the force of a temperature gradient and the different types of particles respond to 

it differently. The term "Soret effect" (or Ludwig-Soret effect) is normally intended to mean 

thermophoresis in liquids only. The word "thermophoresis" is most often intended to mean the 

behavior in aerosols, not Uquids, but the broader meaning is also common. The mechanisms of



thermophoresis in liquid mixtures differ from those in gas mixtures, and are generally not as 

well understood.

1.11 Fluid Flow Analysis — Different Approaches

1.11.1 System Approach

A problem is half solved if it is defined properly. Like we use free body diagrams to solve the 

problems in mechanics, we define a system to solve problems of fluid flows.

A system is defined as a quantity of mass separated from surroundings by system boundaries 

across which no mass transfer occur. The boundaries of system can be moveable. Basic laws are 

applied to this system to solve fluid flow problems. This system approach is helpful in analysis 

of simple flows through channels or pipes where a fixed mass for analysis can be defined and 

tracked as it flows.

1.11.2 Control Volume Approach

For flows through complex shapes and machines like compressors or turbines it is difficult to 

define and track a particular mass. Thus, for analysis of flow we define a control volume and 

study the flow through this volume. It boimdaries can coincide with the real physical boundaries 

of objects or can be imaginary boundaries defined for analysis. Control volume approach can 

be used to find flow velocities at different ends of the control volume and also can be used for 

force and motion analysis of the fluid flow.

1.11.3 Differential Approach

The analysis of fluid flow can be done by considering infinitesimal elements of system or control 

volume. This gives differential equations defining the flow and their solutions provide detailed 

picture of the flow.

1.11.4 Integrcd Approach

For overall analysis of the fluids finite elements of system or control volume are considered. 

It gives integral formulation, which is simple in analysis and gives overall picture of the fluid



behavior.

1.11.5 Lagrangian Approach

In Lagrangian approach fluid is considered to be formed of small fluid particles. The motion of 

these fluid particles is tracked and laws of particle mechanics are applied to them for analysis. 

With the increasing number of particles analysis becomes cumbersome.

1.11.6 Eulerian Approach

In Eulerian approach properties of fluid flow, such as, velocity, acceleration, pressure and den­

sity, are described as function of space and time. This provides a picture of the properties of 

flow at every point in space as it varies with time. This formulation of the flow field allows 

detailed mathematically analysis of any flow field.

These basic approaches are equally applicable to all fluid flow problems but Sometimes 

even in analysis of some simple fluid flow problems closed results cannot be obtained. In such 

problems numerical and experimental approaches are used.

1.12 Basic Idea of HAM

To describe the basic ideas of the HAM, we consider the following differential equation:

iV K r ) ]^ 0 , (1.15)

where is a nonlinear operator, r denotes the independent variable, n(r) is an unknown 

function. By means of generalizing the traditional homotopy method, Liao constructs the 

so-called zero-order deformation equation

(1 -  p)L[u*{r;p) -  'uoWl ^  , (1.16)

where p G [0,1] is an embedding parameter, his a. nonzero auxiliary fimction, L is an auxiliary 

linear operator, iio(’~) is an initial guess of u(r) and u*{r;p) is an unknown function. It is 

important to note that one has great freedom to choose auxiliary objects such as h and L in



u*(r;0) =  wo(r), u*(r; 1) ^  u(r) (1-1'i')

hold. Thus as p increases from 0 to 1, the solution u*(r;p) varies from the initial guess '^□(r) 

to the solution u{r). Expanding it*(r;p) in Taylor series with respect to p, one has

00

u*{r\p) -  wo(r) +  (1.18)
m—1

where

1 du*{r\p)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h and the auxiliary 

function are so properly chosen, then the series Eq. (1.18) converges at p ~  1 and one can get

OO
u*{r\ 1) =  uo(r) +  ^ u ^ ( t - ) ,  (1.20)

m = l

which must be one of the solutions of the original nonUnear equation, as proved by Liao. If 

h — —1, Eq. (1.16) becomes

(1 -p)L[w *(r;p) -u o (t ’)] +p {^ [w *(r;p )j} -  0, (1 -21)

which is used mostly in the HPM. In view of Eq. (1.19), the governing equations can be deduced 

from the zero-order deformation Eq. (1.16). We define the vectors

ui -  {w o(r),w o(r),... ,wo(r)}. (1.22)

Differentiating Eq. (1.16) m times with respect to the embedding parameter p and then setting 

p =  0 and finally dividing them by m!, we have the so-called mth-order deformation equation

Li\Urn ij =  /l/?77l(w^_i), (1.23)



where

(m -  1)! dp^~^

0, m < 1,

1, m > 1.

|p =  0, (1.24)

It should be emphasized that Um{m >  1) are governed by the Unear Eq. (1.23) with the 

hnear boundary conditions that come from the original problem, which can be easily solved by 

symbolic computation softwares such as Maple, Matlab and Mathematica etc.

1.13 Basic Idea of OHAM

We apply the OHAM to find the solutions of following differential equation:

L [u (r)] +  5 (r) +  [u (r)] -  0

B 0

(1.25)

where w (r) in unknown function,  ̂ is a known function and B  is boundary operator. 

By means of OHAM we first construct a family of equations

(1 -  p) [L {if (r, p)) +  g (r)] -  H {p)
{r,p)) 

^ g {r ) +  N{<p{r,p])
, (1.26)

where r G i? and 0 < p < 1 is an embedding parameter, H  (p) is a non-zero auxiliary function 

f o i p ^ O  and H  (0) =  0, (r,p) (i — 1 — 3) are unknown functions. Obviously when p — 0 

and p — 1, we have

<^i(r,0) = u o (r ) ,  = u { r ) .  (1.27)

Thus asp  increases from 0 to 1, the solution ip{r,p) varies from (^(r,0) to (^(r.l). Now we



choose the auxiliary function H  (p) in the form

H {p )= p K i+ p ' ‘ K 2 +  .

where are constants.

Now we consider, the solution of Eq. (1.26) in form as

V {r,P, K j)  =  MO (r) + 2  (r, K j)  p*, j  =  1,2, 
k>l

(1,28)

(1.29)

Using Eq. (1.29) in Eq. (1.26) and equating the hke terras of p we obtain the governing 

equations of zeroth^ firs t  and k— order equations as follows 

Zeroth  O rder Equation

L (ifo (r )}+ 5 (7 -) - 0 ,

First Order Equation

L K ( r ) )  =  A-iAToK M , B

k-th order equation are determined as

du\
u i , -----

\  ̂ /
- 0 .

L {uk (r) -  Uk-i (t-)) =  KkNo (wq (r))
fc-i L {u k -j{r ))

+N(^k-j) ( r ) , (^) , -U k - j  [r])

b {u, , ^ ) = 0 - ,  fc = 2,3,4...........

In general, the solution of Eq. (1.26) can be determined approximately in the form

m
(r, p, Kj)  =  uo (r) +  ^  (r-, K j ) .

(1.30)

(1.31)

(1.32)

(1.33)

To find the value of Kj, we substitute Eq. (1.33) into Eq. (1.26) and as a result we get the



R  (r, Kj)  =  Li (r)) +  j i  (r) +  (r ) , fll"*) (r ) . (r)) . (1,34)

If R {r ,K j)  — 0, « =  1,2,3 then (r, K j ) , happens to be the exact solution. Generally such 

case will not arise for nonhnear problems, but we can minimize the functional by

b

J(K j) =  jR ^(T ,K j)d r,  (1.35)
a

where a and b are two values, depending on the given problem for locating >the desired Kj

[j — 1,2, 3 ,......m) and finally the unknown constants K j can be optimally identified from the

conditions
dJ

dKj
- 0 ,  (1.36)

with these constants known, the approximate solution of order m is well determined now. The

constants Kj can be determined in another forms.Suppose if ki € [a, b] (i — 1, 2 ,3 ,......m) then

substituting ki into Eq. (1.28), we obtain the following equation

R {ki, K j) -  R {k2, K j) = ........-  R {km, K j) -  0. (1.37)

1.14 Advantages of OH AM

All these traditional methods can not provide any guarantee for the convergence of approxi­

mation series. In 1992 Liao [14] took the lead to apply homotopy, a basic concept in topology 

to get analytic approximation of nonlinear problem and introduced a non auxihary parameter 

to control to convergence region [15 ~ 17]. Recently, developed a new method namely "Optical 

Homtopic Asymptotic Method ” in the frame of HAM to fin the solution of non-hnear problem. 

A very interesting news is that, OH AM is vaUd for small and large parameter but also minimizes 

the residual error which explain its vafidity and great potential to solve the non-linear problem.



Chapter 2

The Influence of Variable Viscosity
4

and Viscous Dissipation on the 

Non-Newtonian Flow: An Analytical 

Solution

2.1 Introduction

In this chapter, we review the work of Ellahi et al. [6]. The governing equations are formu­

lated mathematically. The non-linear governing equations are solved analytically by Homotopy 

Analysis Method (HAM). In results, impact of different material parameters in the concerned 

equations is deploy by graphically.

2.2 Mathematical Formulation

Consider the steady, an incompressible, third grade fluid in a pipe. The z —axis is taken along 

the axis of the flow. The velocity field in cyhndrical coordinates is given by

V - [ 0 , 0 , t;(7-)]. (2.1)
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By definition of incompressible fluids, the continuity Eq. (1.18) is

V  • V  =  0.

Energy equation is
D9 .

pcp—  — T  • L +  k V  6.
L

(2 .2)

(2.3)

For third grade fluid stress tenser is defined by

T  =  —Pil +  /jA i +  ol\A.2 +  CX2A.1 +  i^iAs +  ^2(AiA2 +  A 2A 1) +  f3^{trAi)A\, (2-4)

where p\ is hydrostatic pressure, I is the identity tensor and Qj(i =  1,2) and f3j{j — 1,2) are 

material constants. The Rivlin-Ericksen tensors are defined by the following general relations

A i = L  +  L*,

A n -
DA
^ = i  +  A „_ ,L  + L 'A „_ i, n > l -

Thermodynamical hmitations [IS] comprise

/I >  0, Ofi > 0, |ai +  o!2| < \/24^^3, =  02 — 0) ^3 — 0- 

In view of Eq. (2.7), Eq. (2.4), we have

T  -  - p i l  +  fiAi +  a iA 2  +  0:2A j  +  /53(trAi)Ai. 

Using the velocity field given in Eq. (2.1), we obtain

0 0 0 0 0 dv
dr

L - 0 0 0 0 0 0
dv

-  7̂- 0 0 0 0 0

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)



For steady flow

so

A i -  L +  -

A iL  +  L^Ai -

0 0  ̂
0 0 0 

fr 0 0

2(f) 0 0 
0 0 0

dA\
~ d f

0

- 0 ,

0 0

D A i
H f r f  0 0 

0 0 0

0 0 0

0

0

0 0 ( ^ )

fr (A i)A j —

dv\̂0 0 2 ( f )  

0 0 0 

2(g)=* 0 0

T r r  =  - P l  +  (2ai +  OC2 )  , T r O = 0  =  Tg, . ,

(2.10)

(2.11)

(2 .12)

(2.13)

(2.14)

(2.15)

(2.16)T „  =  M s  +  2 f t  ( s ) ^  =  T z r ,  T g g  =  - P l ,

T6z = 0  =  Tj8, =  -P l +  Q2 ■

In the absence of body forces and using cylindrical coordinates (for the flow in a pipe), the 

momentum Eq. (1.19) will be in simplified form as

r dr
rjj.

 ̂dv'\ 
\ d r) r dr

f  dv\' 
dr ) dz^

(2.17)



subject to the boundary conditions

v(-R) =  0, ^ ( 0 )  =  0, (2.18)

where

is the modified pressure. Now using the definition of product of two tensors, we have

dv

(2.19)

T.L =  T,
dr

T .L  =fx
\ d r )

+  2̂ 3 O '
r  dr \ dr J

The energy Eq. (2.3) becomes

(2.20)

(2.21)

(2 .22)

dv Y
a) - 0 . (2.23)

The relating boundary conditions are

9{R) =  0, ^ ( 0 )  =  0.
dr

(2.24)

Using non-dimensionahzation criteria, we set

V r 9 -G o
UQ R fiQ Oi -  Go

(2.25)

9p C|fl2 2 ft  /lou^
------  O  J ^   ̂ ------  7->0 "i ^  ------ (2.26)

dz' vofiQ ’ iiqB? ’ k{9i -  9q) 

and the boundary value problems consisting of Eqs. (2.17), (2.18), (2.23) and (2.24) become

r dr "(s),
A_d 
r dr ’ (t) (2.27)



* I = 0,

«(1) =  0(1) =  O, ^ ( 0 )  =  ^ (0 )  =  0,

(2.28)

(2.29)

in which R, vq, /Xq, 9q, 6 and 9\ are the radius, reference velocity, reference viscosity, reference 

temperature, pipe and fluid temperatures, respectively. Also, ci is the axial pressure drop, A is 

third grade parameter and F is related to the Prandtl and Eckert numbers. For simplicity we 

have omitted the bar symbols.

2.3 Solution of the Problem

We use homotopy analysis method (HAM) to solve the problem under consideration.

Case I: For the constant viscosity

When we take /u — 1, the governing Eqs. (2.27) and (2.28) in simplified form reduce to

1 dv /dv\^ d'̂ v A /dv\^ 
dr"̂  r dr \dr J dr  ̂ ^  r tfr

and
d?e IdO ^ fd v \
dr"̂  r dr X d r y

+ AF
 ̂dv'^ 

\ d r j = 0,

(2.30)

(2.31)

respectively. We use the method of higher order differential mapping [19], to choose the linear 

operator £, i.e.,
w2 1 ^

(2.32)
dr“̂ r dr

The above operator satisfies the following relation

C [C i+ C 2 \ n r ]= 0. (2.33)

Here C\ and C2 are the arbitrary constants. Integrating the linear part of Eq. (2.30), we get

-  1). (2.34)

as the initial approximation of velocity v, which satisfies the linear operator C and boundary



conditions too.

Zeroth order deformation equation

For non-zero auxiliary parameter h and an embedding parameter p e [0, l]j the zeroth order 

deformation equation in HAM is given by the following relation

(1 -p )C [v * {r ,p ) -v o {r ) ]= p h  

subject to the following boundary conditions

cfiv* I 1 dv* I 9 A

dv*

(2.35)

v*(l,p) =  0, — (0,p )=0. (2.36)

mth order deformation equation

If we differentiate m —times the zeroth order deformation Eqs. (2.35) and (2.36) with respect 

to p, dividing by m! and finally taking p =  0, we have the mth order deformation equation, of 

the following form

^ bm -  Xm^m-l] =  (2.37)

where

1 m - l  fc

^ { r )  =  +  - < - 1  +  H ')  -  c(l -  Xm)- (2-38)
i-0

Corresponding boundary conditions take the following form

^m(O) -  ^m(l) -  0, (2.39)

where prime denotes the differentiation with respect to r. Prom Eq. (2.35) by setting p =  0, it 

can be shown that

v*{r,p) ^  i ’o(t-). (2.40)

By the definition of homotopy, as p varies from 0 to 1, v*{r,p) varies from initial guess vq{t) to



the exact solution v(r), that is for properly chosen h, we get

v*{r,p) — t;(r) for p — I. (2-41)

Then employing the Taylor’s theorem, we can write

OO
v*{r,p) -  uoW +  ^  v^{r)p^, (2.42)

m=l

where
1 d^v%r,p]

m\ dp^

Now using Eq. (2.41) in Eq. (2.42), we get

(2.43)

v(r) -  uo(r) +  ^  Vm{r). (2.44)
m—1

Differentiate Eq. (2.35) with respect to p and set p — 0, then after solving the resulting equation 

we obtain the following

^̂ i(t’) ^  ~  1)-

Again differentiating Eq. (2.35) with respect to p ,  putting p  — 0 and using the similar procedure, 

we get

V2{r) =  ^/lAc^(r^ -  1 )(^+  1) +  (r® -  l) . (2.46)

Now from Taylor series, we have the three terms solution as

vlr) = 'yo(r) +  t;i(r) +  ?j2(r). (2-47)

Finally, inserting Eqs. (2.34), (2.46) and (2.47) in Eq. (2.48), we get the expression for velocity 

as follows

«(r) =  ic(r^  -  1) + -  l)(ft +  2) +  -  1). (2,48)

Now using Eqs. (2.31) and (2.49), with boundary conditions Eq. (2.29), we can find 9 by using



9{r) — A\{t^ -  1) +  A 2{t^ -  1) +  As(r® -  1) +  -  1)

-  1) +  -  1) +  A7(r^® -  1) +  -  1)

+ ^ 9 (7 -2 < '- l )+ ^ ,„ (r 2 2 - l )

(2.49)

The calculated values of coefficients Ai{i — 1,2, ...10) are given in Appendix A.

Case II: For the variable viscosity

Let us now assume that the viscosity is space dependent and choose fi =  r. From Eq. (2.26), 

we have
I d f  odv\ A d  fdv\^

=  c,
1 d f  2dv\ A d  / 
r  dr \ dr J  r  dr \

d v\

d^v dv ^ . 
r +  2—— h 3A 

dr  ̂ dr

d'̂ v 2 dv 3A 
dr'2 ^  r dr ^  r

+  -\^drJ dr^ r  \dr J  

\ d r j
dP'v A f  d v \ ' c 
dr^ ^  r ‘̂  \ d r )  r '

(2.51)

(2.52)

(2.53)

with boundary conditions Eq. (2.29). Similarly Eq. (2.28) simplifies to

ii)f  dB\ / dv\^
(2.54)

which corresponds to Eq. (2.26). The linear operator in this case will be

A -
(P 2 d 

+dr‘̂  r dr ’

provided that

Cl Cz +
Ci

=  0 ,

(2.55)

(2.56)

where C3 and C4 are constants of integration. Thus the initial approximation for the velocity

V is

1̂0(7-) =  ^c(r^ -  1)- (2.57)



With the use of Eq. (2.53), one can define the zeroth order deformation equation for v as

<Pv* I 2 dv" _j_ 3A /  dv* >  ̂ dPv* 
~dr  ̂ r dr ‘ r  \ dr f

, A (d v ’ \^ c + ̂  {-dF) -  r
{1 -  p)Ci{v*{r,p) -  uoCr)] =  ph 

Likewise the mth order deformation problem can be written as

(2.58)

(2.59)

where

m — 1  fc

= '^ '^ -1  +  +  3^?) -  C(1 -  Xtu)- (2-60)
J-0r fĉ O

and boundary conditions wnll be same as in Eq. (2.36). The expression for 9 can also be defined 

in the same manner. The mth order deformation equation can be obtained by using similar 

procedure like that of given in case I. Following the same procedure, we find three terms series 

solution of i; 8LS follows

i»(r) — |c(r'^ -  1) +  ^hc{r^ ~  l){h +  2) +  ■^hAc^{2h-\- l)(r^ ~  1 
-^hc{h-\- 2 )(r -  1) +  -  1) -  -  1)

(1.61)

For finding the solution of temperature 9, we use ‘Mathematica’ to solve the Cauchy-Euler 

equation. Then we obtain

8(r) =  ^11 (r^ -  1) +  .4i2(r^ -  1) +  -  1) +  Au{r^ -  1) +.4i5(r® -  1)+

A,e(r^ -  1) +  ^i7(r-® -  1) +  -  1) + Ai9(ri“ -  1) +  A2o(t-“  -  1)+

>l2l ( r ‘2 -  1) +  ^ 22(r “  -  1) +  A23(r« -  1)

where the coefficients A j{j — 11,12, ...23) are given in Appendix A.

, (1.62)



2.4 Graphs

In this section, we will discuss the results of velocity and temperature profiles for both constant 

and variable viscosity with the help of graphs.

r
Fig. 2.1 :Influence of c on velocity when A — 1 and F — 1.

1

Fig. 2.2 '.Influence of A. on velocity when c — — 1 and F =  1.



r
Fig. 2.3 ilnfluence of c on temperature when F — 1 and A ~  1.

V
Fig. 2.4 influence of A on temperature when c — -la n d  F — 1.



C r

X

r
Fig. 2.5 influence of T on temperature when c ~  — 1 and A =  1.

r
Fig. 2.6 :Influence of c on velocity when A =  1 and F =  1.
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r
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Fig. 2.7 ilnfluence of A on velocity when c =  —1 and A =  1.

r

Fig. 2.8 ilnfluence of c on temperature when F — 1 and A =  1.



Fig. 2.9 influence of A on temperature when F — 1 and c — —2.

r
Fig. 2.10 :Influence of F on temperature when c — —3 and A =  1.5.

2.5 Results and Discussion

As mentioned above, the solution for the velocity and temperature distributions are plotted 

against the pipe radius. Figs. 2.1 to 2.5 show the variation of velocity and temperature profiles



for constant viscosity case and for space dependent viscosity, Figs. 2.6 to 2.10 are presented. In 

these figures, the variation of the velocity v and temperature 6 with the emerging parameters 

A, c and F is revealed.

In Fig. 2.1, the effect of pressure gradient c is depicted (when h is approximately equal to 

—0.05). It is clear that the velocity approaches its maximuras at the center of the pipe and 

varies inversely with c. Also, the effect of c on 0 ( in Fig. 2.3) is similar to that of velocity. 

The effect of third grade parameter A on the velocity and temperature distributions are shown 

in Figs. 2.2 and 2.4 respectively. As expected, an increase in A results in a decrease in both 

velocity and temperature. However, the temperature profile is more flatter than the velocity 

profile for same values of A. Fig. 2.5 illustrates the effect of the parameter F on temperature 

distribution 9. It is concluded that 6 increases with the increase of F and hence the thermal 

boundary layer thickness decreases.

So far, we disclosed the results of the velocity and temperature for constant viscosity model. 

Now we turn our consideration to the discussion of above mentioned parameters for space 

dependent viscosity. Figs. 2.6 to 2.10 represent the influence of all dealing parameters (c, A 

and F) on both, velocity and temperature solutions when viscosity is depending upon space. 

From these figures, it is observed that the impact of c, A and F on and 6 (when h is nearly 

equal to -0.01) is similar to that of constant viscosity case.



Chapter 3

Effects of Partial Slip on the Flow of 

Third Grade Nanofluid with 

Variable Viscosity

3.1 Introduction

Consider the steady, an incompressible third grade nano-fluid in coaxial cylinder. The following 

four field equations embody the conservation of total mass, momentum, thermal energy and 

nanoparticles, respectively. The field variables are the velocity V , the temperature 6?, and the 

nanoparticle volume fraction (f).

V .V  =  0, (3.1)

Pf
/5 V \

+  V .V V j  = d i v T +  [4,p̂  +  ( \ - 4 > ) { p } [ l - f } T ( . D - e „ ) ] ) ] g ,  (3.2)V dt

k V H  + (;>c),

^d<b \  , Dt  ^
+  W.V4> =  Di,W 4̂> +  V^'\ o t  y Pu,

(3.3)

(3.4)

Where
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Here pj is the density of the base fluid and fi, k, are the viscosity,thermal conductivity, 

volumetric thermal expansion coefficient and volumetric solutal expansion coeflficient of the 

nanofluid, while is the density of the nanoparticles. The gravitational acceleration is denoted 

by g. The coefficients that appear in Eqs. (3.3) and (3.4) are the Brownian diffusion coefficient 

Db, the thermophoretic diffusion coefficient D t- 

For third grade fluid stress tenser is defined by

T  =  - p i l  +  juAi +  Q!iA2 +  oc2A\ +  +  j02(AiA2 +  A 2A 1) +  ^3(frA i)A i, (3.5) 

Thermodynamical hmitations comprise

/I  >  0 , Q i  >  0 , |ai +  0 2 ! <  v '2 4 /1 /3 3 , P i  = 0 2  =  0 ,  >  0 . (3.6)

we have

T  ^  - p i l  +  fiA i +  qiA2 +  a 2A j  

The boundary conditions are taken to be

(3.7)

u{Ri)  -  -uo+T
du
dr

u(i?2)

e{R,)

(3.8)

Using non-dimensionahzation criteria, we get the nonlinear governing equations of the form

dadu iidu d?u A. / du\^ . f  du\^ d^u
dr dr r dr dr^ (3.9)

SB 1 de\
dr  ̂ r dr

(3,10)



Nb
fd?Q 1 de\

dr"̂  ^  r dr + Nt
d?(f)
dr  ̂ rI t ) - ’-

subject to boundary conditions

(3.11)

(1) = 1 + 7 du
dr

A I' du 
\ dr

u{k) — 7
du A f  du ,, A '
dr ' ' ft

0(1) = 1, 9{k) = 0; .̂ (1) = 1, <l,{k) = 0.

(3,12)

The non-dimensional quantities are defined by the following relations

I t — —  r  =  -  H =  ^  8  =  c i =  ^  c  =lio’ ' H’ /Xq’ Oi-0ô  dẑ   ̂ voÂ n’VOMo

<Pm-9w
“  ) -Or —

(3.13)

Here Gr, By, Nt and are thermophoresis diffusion constant, Brownian diffusion constant, 

thermophoresis pajaraeter and Brownian diffusion coefficient respectively.

3.2 Solution of the Problem

In this section, we discuss two models of viscosity namely; constant and variable viscosity for 

third grade nanofluid in absent of pressiKe garden. By using Optimal Homotopic Asymptotic 

Method (OHAM), we find the series solutions of the nonUnear governing equations 

Case I: For constcint viscosity model, we choose

(3.14)

(3.15)

(3.16)



1<W Ntd9d,p Nt (d O V
■̂ 2\v’2 (̂ p) = + — :r :r  + ~  hr ’r dr a dr dr a \dr}

and
1 #  N, (\dB d^e\

The corresponding conditions are

<^i(l) -  1 + 7
d<Pi
dr

(̂ 2(1) =  1, <̂ 2Ĉ ) =  0; '̂ ’̂3(1) ^  ^  0-

The zeroth-order deformation problems are of the form

cPiio
dr^ =  0,

duo

uo (A:) -  7
3\

/

(3.17)

(3,18)

(3.19)

(3.20)

dr^

d̂ <i>o
dr‘‘

=  0, 9o(l) =  1. eo(k) =  0,

=  0. ,^o(l) =  1, ^„(i:) =  0.

First and second order problems are defined as

1 duQ A f  duQ \  ̂
dr )

GtOq +  Br4>Q

d'̂ Vi rd r  ^ r { ~ d T )  1 ,

(3.21)

(3.22)

(3.23)

(3.24)



dj.2  ̂\ r dr Nt \r dr dr“̂ j  j ’ (3.25)

d^U2
dr^

d'^ui
dr^

+C7

+ C8
1 diLQ
r  dr r''(S)’ *“ (S‘)

+GrOo +  Br(f)Q

d^up
dr"̂

dr‘̂ r  dr 
2

dr

\ \  dr J dr^ dr dr dr^ I 

-\ -G r6 i +  Br<l>i

(3.26)

dr^
d f̂li I idBo , NtdBod^o Nt

+ Og < ---- -̂---1--------;---- -̂---1-----dr^

+C7 -

r  dr a  dr dr a  \ dr J  I +

( IdOi  Ni, fdOidtpQ 2Nt f d9QdGi\\
\  r  dr- a  \ dr dr dr dr J  a \ dr dr J  j  ^

(3.27)

+ C8 {;
d0o ( 1  ddQ dHp
dr Ni r  dr

+
dr^ )}

d̂ 4>i
dr^

+ r  , !̂ b ( IdBi
 ̂ \ dr  ̂ r dr Nt \r dr dr‘̂

(3.28)

and so forth.

The solutions of the above deformation problems up to second order are

U =  Uq + U i  U2 +

B =  9q +  61 -i- 62 +  ■ 

(f> — <Po +  (}>l +  <f>2 +

(3.29)

C a se  IL  For variable viscosity model, we take

H^ r , (3.30)



such that

Defining non-linear operator as

dr^

7.T / / 2du A ,du.^ nK .du-^dl^u

\d6 Nkd9d4> N t(d 9 \ ^  
JV2|v̂2 ( n p ) ) = ; ^  +  - ^ ^  +  - ( ^ ^ j  .

. . .  , „  ld4> N t f l d O  £e\

along with the boundary conditions

^.(1) =  1 +  7 ^ ( ^ ) ' )  . =  7 ^ ( ‘̂ ) ’ )

V?2(l) ^ 1, ^2i^) =  0
9?3(1) = 1, (Ps{k) -  0

The zeroth-order problem is given by

d?UQ
dr^ =  0,

. . ( du . . A f  du
«(1) =  l + 7 ^ * ( l )  +  7 ( ^ ( l ) j

“ W  =  7 +

Sea

<̂ 00
dr^

=  0, =  «oW  =  0,

=  0, .^o(l) =  1, ‘t’ai.k) =  0.

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)



First order and second order problems are given by

r 2duo A I'duoY  3 A ^̂ 0̂
—^  — C9 < r dr \ dr /   ̂ \ dr /  dr'̂
dr^ (3.39)

dpe  ̂ ^  \\deo . Ni,deod4>Q Nt (d 9o “— O9 < --------1-------- -̂--- ;----h

d‘̂ U2
dr"̂

y d r )   ̂ \ dr /  dr‘̂  >

+Cg < 3A

+ ̂ ^0 +
2 du\ 3A ^ duo \  ̂dui 

^  r dr ^  r^ \ dr /  dr

( d iio ^  d^ui d̂ iiQ
dr )  dr  ̂ dr dr dr‘̂

,

d'̂ 92 d^ î
dr^ dr^

f\d9i
/  dr

d‘̂ (j)2
dr"̂

+ C 9

dr dr dr ( * ) ’) +

Nb ( dQ\ d(f)Q  ̂ d9od^\  ^  \
" d r  )  “  \ dr dr /  j ’Y dr dr + dr

d‘̂ (pi
dr^
( d̂ <̂ i

dr dr

tPSo'i
d'P Nb j. dy dj-2

1 d9i d26>i 
+ )' r dr ' ^ ’r  dr * dr‘̂

The solutions of the above deformation problems up to second order are

(3.40)

(3.41)

(3.42)

(3,43)

(3.44)

U =  Uq +  Ui +U^ +  ... 

 ̂— 0̂ + + 2̂ + ..■ 

— <pQ +  4̂1 +  4>2 . . .

(3.45)



3.3 Graphs

The solution is obtained by Optimal Homotopic Asymptotic Method and we fixed value of k — 2. 

The investigation of the effect of slip parameter 7 on velocity for both constant and variable 

viscosity are shown in Figs. 3.1 to 3.2. The Figs. 3.3 to 3.7, have been prepared to explain 

the effect of Nt and on temperature.The effects of Nt and Nb on velocity nanoparticles 

concentration are display in Figs. 3.7 to 3.10.

Fig. 3.1 :Effect of 7 on velocity profile when iVf, — 1 and =  1 for 

constant viscosity.



Fig. 3.2 :Effect of 7 on velocity profile when — 1 and — 1 for

variable viscosity.

Fig. 3.3 :Effect of Nt on temperature profile when — 0.1 for 

constant viscosity.



Fig. 3.4 :Effect of Nt on temperature profile when Nt — 0.1 for 

constant viscosity.

Fig. 3.5 :Effect of Nb on temperature profile when — 0.1 for 

constant viscosity.



Fig. 3.6 :Effect of Nb on temperature profile when Nt — 0.1 for 

constant viscosity.

r
Fig. 3.7 :EflFect of Nt on nanoparticles profile when — 0.1 for 

constant viscosity.



Fig. 3.7 :EfFect of Nt on nanoparticles profile when N(, — 0.1 for 

constant viscosity.

r

Fig. 3.9 :Effect of Nb on nanoparticles profile when Nt — 0.1 for 

constant viscosity.



Fig. 3.10 rEffect of Nf, on nanoparticles profile when — 0.1 for 

constant viscosity.

3.4 Results and Discussion

In this chapter, flow of third grade nanofluid in a coaxial cylinders is examined. A new method 

is proposed to solve the nonlinear boundary value problem. In this method we control the con­

vergence using a number j  of auxiliary constants C i,C 2 , •< Cj which are optimally determined. 

Moreover, this method converges quickly to exact solution than other methods. The results of 

problem are showen in graphical form. The graphs display the behavior of the velocity, tem­

perature and ncinopartides concentration are plotted against r. To see the effects of emerging 

parameters for constant and variable viscosity Figs. 3.1 to 3.10 have been displayed. In Figs.

3.1 to 3.2, it is found that the velocity decreases with an increase in the values of 7 . Figs. 3.3 

to 3.6 explain the variation of Nt and on the temperature distribution. Here, it is revealed 

that the temperature profile increases when large values of Nb have been taken into account 

and the temperature profile decreases with decreases Nf. Figs. 3.7 to 3.10 bring out the influ­

ence of nanoparticles concentration for constant and variable viscosity. It is observed that the 

nanoparticles concentration increases with the decrease in Nb and decreases by increasing Nt-



Appendix A

The related coefficients are given by

-4i = 64
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