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Preface

Convection in generally the most dominant mode of heat transfer in gases and liquids which

is due to movement of its particles []. Convective heat transfer covers the combined

processes of conduction and advection and is therefore occurs in almost all branches of

engineering [2,3]. The knowledge of the methods used to model convective heat transfer is

therefore required by practicing engineers in the laboratories. External flows involve a flow

which is essentially over the geometry of infinite in extent or over the outer surface of thc

body. In order to predict the convective heat transfer rate, the three basic properties of the

fluids namely the pressure, the velocity vector and the temperature play a major role [4,5].

Once the distribution of these quantities are determined, the variation of heat transfer rate can

be obtained. In order to determine the distribution of pressure, velocity and the temperature,

the principle of conservation of mass, conservation of momentum and the conservation of

energy represented by equation of continuity, Navier-Stokes and energy equations

respectively.

The aim of the present study is to predict the heat transfer rates for situations involving

external laminar flows. In all the investigation the fluid properties will be assumed to be

constant and flow is assumed to be two dimensional [6,7]. In addition, dissipation effect in

the energy equation will be neglected. The three chapters are arranged in the following sense.

Chapter one includes some basic definitions and information related to the flow and

convective heat transfer [8]. The basic equation of continuity, Navier-Stokes and energy is

also presented for basic understanding of the readers. Chapter two investigates the heat

transfer analysis in the flow of a fluid over a flat plate with constant velocity whose entire

surface is held at a uniform temperature which is different from that of the fluid ahead of the

boundary layer. These problems are commonly known as Blasius flow and Pohlhausen flow

discussed in [,4]. The heat transfer rate at the wall is predicted against Reynolds number and

compared with the experimental date. The transition from laminar to the turbulence region is

also shown through the graphs. In the last chapter, we presented the similarity solutions for a

fluid flow which is discussed in previous chapter but here we assumed that the temperature of

the flat plate varies with x. Another very important flow problem namely Falkner-Skan flow

[9,10] which is basically flow over wedge-shaped body with an inclined angle is discussed in

detail in this chapter. The numerical computation is made with the help of shooting method

[11,14] throughout the study which is also discussed briefly wherever it is desired. The hcat



transfer rate for accelerating, constant and decelerating flow case is predicted and shown

through the graphs.
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Chapter L

Preliminaries

This chapter includes some basic definitions related to fluid flow and heat hansfer analysis.

Numerical method of Shooting technique with Runge-Kutta fourth order scheme is also

discussed in detail for better understanding of the readers for computation purpose.

1.1 f,'Iuid

A substance that sustains no fxed shape and deforms easily due to external pressqre is called
Inuid. 
i

1.2 Flow

A phenomenon of continuous deformation under the action of applied forces is called flow.

1..3 Properties of F'luid

The fluids in general can be described through the following major properties.

Density

Density of a fluid is defined as the amount of mass per unit volume. Mathematically, the

density p at a point can be defined as

(1.1).$ p= ,,iTr#,
where dll is volume element around the point P and 6mis mass of the fluid withil dtz.

I

I

3
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Pressure

' 
The pressure P is the magnitude of the normal force F acting per unit area on a surface S. The

mathematical form of pressure at a point is

, = I,$ (;) 
(12)

.< Temperature

Temperature is a physical quantity that measures degree of hotness or coldness on numerical

scale. In other words, it is a measurement of the average heat or thermal energy of the

particles in a substance.

Viscosity

Viscosity or dynamic viscosity is defined as the resistance of the fluid particlel against the

motion. It is mathematically represented by symbol p and defined as the ratio of shear stress

to the rate of shear strain, i.e.

Shear Stress rto (1.3)
r Rate ofshearStrain du/dy '

o

Kinematic Viscosity

It is defined as the ratio of dynamic viscosity p to the density p. Mathematically, it is

denoted by v and defined as

_. _ tt (1.4)
v - -.p

1.4 Classification of Fluid

In general, the fluid can be theoretically classified into the following categories:

1.4.1 Ideal Fluid 
I

A fluid having zero or negligible viscosity is termed as ideal fluid. It does not actually exists

in nature.

1.4.2 Real Fluid

Real fluids are those in which the role of viscosity is non-negligible. The flow of real fluid is

called viscous flow. Real fluids can be further subdivided into two categories, Newtonian

fluid and non-Newtonian fluid. The details of which are explained as follows:

4
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1.4.2.1 Newtonian Fluid

The fluids which obey the Newton's law of viscosity are termed as Newtonian Fluids.

According to this law, stress is directly and linearly proportional to the rate of deformation,

i.e.

\c.

dury* o( 
6,

du
Ty, = ltV; ,

tdutn't du du
ry, = o \d 6= t7;,

with { - t (!\"-' ,, treated as apparent viscosity.'" \ail

1.5 Types of F'low

In fluid mechanics, the following flows have been studies:

tE| Internal FIow

or

where p is the constant of proportionality called dynamic viscosity.

1.4.2.2 Non-Newtonian Fluids

The fluids in which shear stess is non linearly proportional to the deformation rate, are

termed as Non-Newtonian fluids. For such fluids power law model holds and are defined by

tdutnry*=kfar) , (1.6)

where k denote consistency index and n is the flow behavior index. It can also be written as

(1.s)

(1.7)

A fluid flow within confined boundaries is termed as internal flow. Flow in pipe or in duct

are common examples of internal flows.



External Flow

i

In this way, external flows are defined as the flow over a geometry which are infinite in

extent or over the body. Examples of external flows are flow of air over cars and around aero

planes.

Laminar Flow

'.1 Flows in which each fluid particle possesses definite path and the individual particles do not

cross each other are termed as laminar flow.

Turbulent Flow

Flows in which each fluid particle does not have a definite path due to which they cross each

other are termed as turbulent flow.

Compressible Flow

A flow in which the density of the considered fluid changes during the flow is termed as

compressible flow. All gases are generally considered as compressible fluid.

Incompressible Flow

I

A flow in which density of flowing fluid do not change during the flow i$ termed as

incompressible flow. All liquids are generally considered to have incompressible fluid.

-rt' Steady Flow

A flow in which properties associated with the motion of fluid are independent of time is

termed as steady flow. Mathematically, it can be written as

0n ^ (1.8)

at =u'

Unsteady Flow

If the properties of the flow change with respect to time, then the flow is termed as unsteady

flow. Mathematically, it can be wriffen as

0n (1.e)

r. at* o'

1.6 Conservation Laws

The following conservation laws take part primary role in studying the fluid flows.



1.6.1 Continuity Equation

The law of conservation of mass for a compressible fluid in term of continuity equation can

be written as

0p - (1.10)

at+v.(pv) - 0.

\' In which 7 is the velocity of the fluid, p is the density and t denotes the time. For an

incompressible fluid'with p being constant, the above equation becomes

v.7 = 0. (1.11)

1.6.2 Momentum Equation

For an infinitesimal element, the basic momentum equation as a partial differential equation

in vector form is

dv
O *- -VP + V.I * Pb,

where p is pressure, D is body force, i, * the convective derivative defined as

ic 
*= &+ 7. v), the T is a cauchy stress tensor defined as

lTxx Txt Txzl (1.13)

7 -lcy, ryy ,yrl,
Lru rzr rrr)

(L,L2)

(1.14)

where rxx,Tyy artd trrare normal stresses and the remaining components in T afe known as
I

shear stresses.

f.6.3 Enerry Equation

The energy equation is described as
€r-

dc
PcoE= T'L -V'q'

In Cartesian coordinates, it is given as



/AT AT dTr
Ptr\u * a** u) =

/ azT a2r\o\m*fr) (1.1s)
* lte,

where g is viscous dissipation function.

1.7 Boundary layer 
I

A boundary layer is the small layer of fluid of thickness d adjacent to the boundary where the

effects of viscosity are important. The method of dividing the fluid into two parts namely

boundary layer and free stream was first suggested by Prandtl and is elaborated througlt

figure below. Due to which the entire flow field can be described in the following ways:

u-
+

-++
+
+
+
+

ll.

1.8

A very thin layer adjacent to the plate in which velocity gradient i.".* normal to theoyi
wall is extremely large and hence the effects of viscosity cannot be neglected even if
the viscosity p is small.

In the remaining region, velocity gradient $ i. .*tre*ely small so the viscous forces

may be considered ,*r,rb,.- r" *t, ..*t"ito* i. *.u,* as in-viscid flow.

Heat Transfer

Heat is defined as energy in transit from high temperature substance to a lower temperature

substance. Heat transfer occurs whenever there is temperature difference, then two bodies at

different temperatures, attained in contact with each other'

1.8.1 Modes of Heat Transfer

Heat transfer phenomena can be expressed in the following three modes as follows:



Conduction

The ffansfer of heat from one part of system to another part by inter collisions of
interconnected molecules is termed as conduction. The transfer of heat in solids is known as

conduction.

Convection

a Convection is the way in which the heat is transferred by motion of heated molecules in the

system. The heat transfer in liquids and gases are known as convection.

Radiation

Transfer of heat through electromagnetic waves is known as radiation.

1.9 Types of Convection

The convection phenomena can be divided further in three categories as follows:

Natural or Free Convection

Natural convection, is the phenomenon in which fluid motion does not require dny external

agent or source to transfer heat. It occurs only due to the temperature difference from place to

place.

Forced Convection

If the heat transfer occurs only due to an external agent, then this phenomenon is known as

force convection.

Mixed Convection

If the heat transfer is due to both force and natural convection, then it is termed as mixed

convection.

1.10 Dimensionless Numbers

A dimensionless number is the number without any dimensions associated with it. It is the

ratio of the quantities having same dimensions. There is a lot of dimensionless numbers but

here we mention only those which are being used in this work'

e Reynolds Number

The ratio which approximate the relationship between inertia force to the viscous force is

called Reynolds number. In mathematical notation, this number is denoted by Re and is

defined by



ULRe-;'

where U is reference velocity and I is the characteristics length.

Prandtl Number

(1.16)

Prandtl number Pr is another very important dimensionless number which is defined as the

ratio of momentum diffusivity to thermal diffirsivity. Mathematically, it is defined as

Pr=
Momentum diffusivty

=- =
(L.17)

d Thermal diffusivty

where v, 0r, lt, k, c, p are kinematic viscosity, thermal diffirsivity, dynamlc viscosity,

thermal conductivity, specific heat and density of the fluid respectively.

1.11 Solution Methodologies

Most of the problems arise in the field of science and engineering can be represented by non-

linear ordinary/partial differential equations and to find the exact solution of these problems

is quiet tough and sometimes impossible. Therefore, in order to overcome such types of
difficulty, many numerical and analytical techniques are developed. Shooting method is one

of them which is widely used numerical technique applicable for system of non-linear

boundary value problems. We have used this method in the subsequent chapter to get the

numerical solution.

1.11.1 Shooting Method

Consider a general second-order boundary value problem as ordinary differential equation

with one condition specified at x = a and the other at x = b (say) as discussed in [1a]. In

Mathematical form, it can be written as

cplt

k'

Y" = f(x,Y,Y'),

y(a)-a,y(b)-p.

y,=2, z'=f(x,!,z),

subject to the initial conditions
10

In order to solve the above problem by shooting method, it is required to reduce the boundary

value problem into two first order initial value problems. It is reduced as follows

(1.18)

(1.19a,1.19b)

(1,.20)



:3.

y(a) = a, y'(o) - v(i), (1.21)

where ,r(i) ir the missing initial slope which is to be determine by using boundary condition
(7.L9b). To solve the problem with shooting method, the initial value problem is integrated

numerically using Runge-Kutta Method from r = o to the terminal point x = b. The

accuracy of the supposed missing initial level is assessed by comparing the calculated value

of y at the end point with the given value there y(b) = p. In case of differenje in values,

another value of missing initial level is assumed and the same process will be dorie again and

again until the accuracy at the end point is achieved. Here to find the initial guess, Newton

Raphson method, is used once an initial slope u(i)is assumed, the next slope ,(i+r) It
calculated by the following formula

(7.22)

l

l

(L.24a,1.24b)

(1.2s)

(1.26)

(7.27)

For integration of the system of initial value problems, we have used Fourth order Runge-
Kutta scheme, which is explained as follows:

l.ll.2 Fourth Order Runge-Kutta Method

Let us consider the second order initial value problem as

Y" = f(x,Y,y'), (7.23)

In order to integate the above problem, it is required to convert the above second order initial
value problem to the system of two first order initial value problem by introducing new
dependent variable z as

subject to initial conditions

y(xo) = a, y'(xo) - b.

y, = z(= g(x,y,z)),

z'- f (x,y,z)

and the initial conditions become

y(xo) = q, z(x) - 6.

11



I

Now the solution of the system of two first orders ordinary differentifl equation

Eqs.(1.25) and (1.25) subject to the initial conditions Eq.(1.27) cm be comgtrted by the

formula

{

L
!n+t = y" + i(kr + 2k2 + 2h + k+),

7
zn+L = r"+ i(lr + 2lz+ 2h + l4),

k1 - hg(xr, !n, zn), \ = hf (xn,!n, zn),

(1.28)

(1.2e)

(1.30)

(1.31)

(L.32)

(1.33)

(1.34)

(1.3s)

(1.36)

where

t6

kz= ns (*,+ +,y^* *,r,* +),

tz = nf (.,+ *,y,* *,r,* +),
ks = t s (r,+ +,y, + +,r, * ?),
ts = hf(r, * 1,,r, + +,r, * ?),
k+ = hg(xn+ h,!n * k3,zn* \),
l+ = hf (xn * lt,!n * kr,z, * ls),

where n = * is uniform step size and n is total number of steps.
n

u"

t2



-a.

Chapter 2

Similarity Solution of Blasius and
Pohlhausen flow

In this chapter, we revised the two very important boundary layer flows named as Blasius and

Pohlhausen flows [4]. The governing partial differential equations are converted into system

of ordinary differential equations by using similarity variables which are then solved
numerically by well-known shooting technique [l], with fourth order Runge-Kutta
integration scheme Ul,l2).

2.1 Blasius FIow

In this section, we discussed the Blasius flow problem.

2.1.1 Mathematical formulation

Consider an infinite long flat plate submerged in a steady, incompressible, two-dimensional
flow, whose free stream velocity U and the free stream temperature ?* is uniform and

constant. Let the Cartesian coordinate system coincides with the leading edge of the plate in
such a way that, x-axis lies along the plate parallel to U and T*and y-axis is perpendicular to
the plate, as shown in figure below

=------------+v
a ----------+
II ---------r
IL______+ x

U,T'

Figure z Physcial model of Blasius and Pohlhausen visous /low

13



The governing boundary layer equations are

0u 0u Ldn 02u
u o*+ u6= -nfr+vdT '

do dU

&= -PuE'

0u 0v
ox+ ay= 

o'

(2.1)

(2.2)

(2.3)

(2.4)

(2.s)

(2.6)

15 and the continuity equation is

Let us consider the velocity U of the potential flow is constant, so that

dU

&= 0,

Consequently, Eq. (2.2) becomes

Thus Eq. (2.1) reduces to the form

do*=0.
d.x

{ 0u 0u 02uuA+u6=rW,
in which u and v are the velocity components along the horizontal and vertical directions and

v is the kinematic viscosity of the fluid.

The Enerry equation is

(2.7)

vk
where ;. = 

- 
, k denotes thermal conductivity, p is density and c, is the specific heat.Pr pcp'

The boundary conditions are,

rt= 0, T =T*, when y = Q,

y +U,T+T*, when y)@.

AT AT rv t02T
u o*+u6= \n)6 '

3,

(2.8)

t4



where U denotes free stream velocity and ?* denotes free stream temperature of the flow
outside the boundary layer. lntroducing the stream function ,{(x,y) satisfying the following
relationship:

AY AV
U=-, i':0y' - 0x'

We introduce non dimensional similarity variables as

(2.e)

(2.10)

(2.12)

Using Eqs.(2.9, 2.17) , Eq. (2.3) is identically satisfied and Eq. (2.6) reduces to tJre form

L - -,, (2.71)
f,,,+ if f,,= 0,

where the prime denotes differentiation w.r.t 4. The boundary conditions are given in
Eq. (2.8) becomes

'l(x,y)
\tnu'

/(0) = 0,/'(0) = g, when 4 = Q,

f'(tD aL, when tl ) @.

,=r[*",fh)-

Eq.(2.72) together with boundary conditions (2.13) is called Blasius problem. In the next

section, the solution of boundary value problem (2.1L),(2.L2) obtained by using shooting

technique is explained in detail.

2.1,2 Numerical Solution of Problem

2.1.2.1 Shooting Method

Since the governing equation of the problem (2.L1) subject to boundary conditiln Q.72) is

nonlinear boundary value problem, the exact solution of which cannot be obtained by any

mean. It is therefore, we used numerical scheme, i.e. the shooting technique in combination

of fourth order Runge Kutta scheme. For this purpose, we need to convert modeled boundary

value problem into a system of first order initialvalue problem as follow:

15



with initial conditions

f=xt,
f =xz,

f" = *r,
,L

X'3,= -ZXtXg,

xr(o)
xz(o)
xs(o)

(2.14)

where s is the unknown missing initial condition which is to be determined in such a way that

solution must meet the outer boundary condition xz (a) = 1 i.e. f '(*) = L.

2.1.3 Results and Discussion

The ordinary differential equation, (2.1L) subject to the boundary conditions (2.12) is solved

numerically by using shooting technique with fourth order Runge-Kutta algorithm. The

obtained solution is expressed through figures from 2.1 to 2.3 against similarity variable 4.

Figure 2.1: Graph of / against, similarity variable 4.

(2.13)

=0,
-0,

{

s

a

l6



T

0.

,-0.s
r\'\0.

0.

rl

Figure 2.2: Velocity profile against similarity variable, 4.

rl

Figurc 2.3: Graph of /" against similarity variable, 4.

2,2 Pohlhausen Problem

In this section, we revised the Pohlhausen problem

2.2.1 Mathematical Formulation

The geometry of the flow problem is already described in previous section. Introducing the

similarity variable for temperature 0 as follows with 4 defined in Eq.(2.10).

(2.1s)

€

,>-
l}

T _To(t|_ff;,

t7



where T denotes the dimensional temperature and T* and l*are constant temperature at

boundary and free sfeam respectively. Introducing the similarity variable (2.10) and (2.15),

we get

A0 A0 v A20uar+" oy=frW' (2'L6)

* the boundary conditions (2.8) becomes

0=0,when y=0,
(2.17)

0+\, when y+@.

Using Eqs.(2.9 - z.LL) into Eq. (2.16),we get

io"+Tr'r=0, ' (2'18)

where prime denote derivative w.r.t 4. The boundary condition in Eq. (2.L7) can be written

as

0=0 , when l=0,
(2.1e)

0+L, when tl+@.

in which Pr is the Prandtl numbers. In order to solve Eq. (2.18) subject to the boundary

conditions (2.L9), shooting method is used explained as follows:

2.2.2 Numerical Solution of Problem

2.2.2.1 Shooting Method 
I

Pohlhausen problem is like previous nonlinear boundary value problem arfd shooting

technique with Runge-Kutta forth order method as integator is used to constructlits solution.

The modeled boundary value problem (2.18) is converted into initial value system as

0=yr,
o'= !2, Q.?o)

!,2 = _|rr*r,
with initial conditions

.$

c'

l8



rr.

Yr(0) = 0,

Yz(O) = t, (2.2r)

where t is the missing initial condition which is to be determined subject to satisf the outer

boundary condition i.e. y1 (o) = 1.

2,2,3 Results and Discussion 
I

The nonlinear ordinary differential equation (2.18) subject to the boundary conditions (2.19)
is solved numerically by using shooting method.

0 =(T*-UG*-T)

Figure 2.42 Graph of, 0 with r7, for distinct values of Pr.

The computed temperature profile 0 against 4, is shown in Figure 2.4 for different values of
Prandtl number Pr. lt is seen from Figure 2.4 that the trajectory of temperatupe profile 0
against similarity variable q at Pr = 1, is identical to the trajectory of velocit! profie f'
against 4 which is shown in Figure 2.2.Table 2.1 is drawn to show the numerical values of
g'(0) and 0.332PrL/3 against different values of Pr.It is shown that with the increase in the

values of Pr, the value of 0'(0) also increases.

A = 9'lrt=o 0.332Pr1/3
0.6
0.7
0.8
0.9
1.0
L.1

7.0
10.0
15.0

Table 2.1: Values of A for different values of Pr .

0.t0.0

k,

0.275
0.291
0.305
0.323
0.332
0.340
0.644
0.724
0.826

0.280
0.295
0.308
0.32L
0332
0.343
0.635
0.775
0.819

Pr = 0,7, l, 3, ]'5, 50

r9



-Q*t-_
'" - L(T* - Tr) '

-.f
\

I

1
I
I

I

I
I

If a mean heat transfer coefficient for whole plate, i is defined as

where Q* = ZAk(r* - rr)[*,,then Eq. (2.22)becomes

zAK Eh= ,1^'
where A = 0.332Pftl,. The mean Nusselt number for the whole plate NUr(-
therefore given as

Nu, = 2ARer7/2 '

where Re1 is the Reynolds number based on the plate length I.
(2.24) we get mean Nusselt number,

lr
.t

I

I

i:
-r l:,ii.

Ilr
l,tt.'
I

(2.22)

(2.23)

hr,.

- ). lsk"

Q:2a)

I

I

I

,l

I

{
Using r",r. "l ,4 into Eq.

(2.2s)

\)t
3'

I

t

t'
!
f

T

I
I

I

,

f
t

N u, = 0.664Pr1/' Re r'l' .

The mean Nusselt number for the whole plate is drawn in Figure 2.5 to show the behavior of

predicted and experimental mean Nusselt number against Reynolds number when Pr = 1 is

fixed.

Transition
To
Turbulcncs
Bcgins

'45
los,fr,

Figure 2.5: Behavior of Nusselt number Nu1 against Reynolds number Re1.
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2.3 Example

The similarity solution of the laminar boundary layer flow can be used in different ways. In
laminar boundary layer equations, similarity solution can be used as derived above. We can

plot the local and mean heat transmission and also velocity'and temperature profiles in the

boundary layer, at the edge of a plate. We are given, air flows at a velocity of 5m/s, length is

20cm and the mean temperature is kept at 50'C.

Here, in the air temperature

0.0278wt(=-of,, v=
m

and

A=0'lrt=o=0.293,

where K is thermal conductivity and V denote the viscosity of the fluid. Local heat transfer

rate is

Qw=Ak(Tw-Tt)
(2.26)

The variation of q,, with x is shown in Figure 2.6, twice the local heat transfer rate is the

mean heat transfer rate at the end of Plate as

4* = 2q*' (2.27)

In the present case, the velocity and temperature profiles at the end of the plate pre required

so using the similarity variable ? and 0 as defined in Eq. (2.10). At the trailingledge of the

plate I

(2.28)

The variation of values of y is also in Figure 2.7.We get velocity and temperature profile,

using similarity variables as

0.0000L79m2

€r

*

and

u _ct
t\'

?=80-600.

(2.28)

Ut

ntl

2t

(2.2e)



2.3,1 Result and discussion

a

0.1
x-m

0,15

Figure 2.6: Variation of q- (solid line) and qt (dashed line) against r.

Table 2.2: Using the variation of f' with 4 and 0 with 4 for Pr = 0.7, a table of the

following form can be formulated as:

rtl u(m/s)

0

0.5

1.0

2.0

3.0

4.0

5.0

6.0

8.0

0

0.166

0.330

0.630

0.846

0.956

0.992

0.999

1.000

0

0.145

0.290

0.561

0.780

0.9L2
0.974

0.995

1.000

0

0.829

L.649

3.149

4.230

4.778

4.958

4.995

5.000

80.0

7L.28

62.6

46.4

33.4

25.3

2L.6

20.3

20.0

0

0.0423
0.0846

0.169

0.254

0.338

0.423

0.508

0.677

!
The variation of velociff and temperature profiles, that are given in the above table are

plotted in Figures 2.7 and2.8.

22



a

0.

t,
0.

u-m/s

Figure 2.TzYariation of velocity u against y.

Figurc 2.8: Graph oftemperature profile, T against y.

In present casre, we are using the similarity solutions of the boundary layer flow of Blasius
and Pohlhausen flow which are derived above. We have plotted local and mean heat transfer

rate as shown in figures 2.7 and 2.8 along with the plate and also velocity and temperature
profiles in the boundary layer at the end of the plate. We have drawn table 2.2, using

similarity variables 4 and 0 described in Eq.(2.10) and using the values that are liven above

in exlmple, and then using these similarity variables we made relation for rfelocity and

temperature profiles.

G

40
T

-.rts
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. Chapter 3

Similarity
I

Solution For Flow over Flat
Plate with other Thermal Boundary
Conditions

3.1 MathematicalModeling

In previous chapter, we are done with the case in which plate has a uniform temperature (i.e.

Pohlhausen flow). In this chapter, we revised some study subjected to the flat plate in which

temperature varies with r. Moreover, the heat transfer analysis of Falkner-Skan flow is also

E investigated in this chapter. Numerical solutions of both problem is computed with the help

of shooting method. The complete procedure of the method is elaborated in detail in this

chapter. The graphs are prepared for accelerating, decelerating and constant flow. The

numerical values of heat transfer rate at the wall is compared with the results available in the

literature. In this case thermal condition will be

Tw - T* = Cxn (3.1)

I

l

l

the following non-dimensional temperature is introduced as

T*-T T-T* (3.2)
o(il =ffi- L- r,_r. ,

'< 
we consider that 0 depend on similarity variable,4 as prescribed above.

The energy equation (2.7) can be written in form of 0 as

a'- ae. .r*)=G)@(r*-r).(3.3)-u ox[(1 - e)Q* - r-)] * u ,r(7. -
24



and the boundary conditions become

A(0)=0,as4=0,

o(d t 7, as Tl -) @.

(3.4)

(3.s)
Y*

After using Eq.(2.9), (2.10), (2.11) and (3.1), reduces to Eq. (3.3),

Pr
0" + nPrf'(L- e) + T0' f = 0,

where n is a parameter and boundary conditions in Eq.(3.a) becomes:

F

l=02 0=0,

tl)@z 0 ->L.

(3.6)

3.1.1 Result and discussion

The nonlinear ordinary differential equation (3.4) subject to the boundary conditions (3.5) is

solved by using MATLAB built in function Bvp4c. The computed temperatur$ Rrofile for

pertinent values of Pr against n can be predicted from the Figure 3.1. It is sho$n that with

the increase in Prandtl number, heat tansfer rate or flat plate increases. Siinilarly, the

parameter n is also responsible to enhance the heat transfer rate at the surface.

00.5t
n

Figurc 3.1: Variati on of 0'lr=0, with n, for distinct values of Pr.

o
il

tr
ao

i>it

25



3.2 Falkner-Skan Problem

In this section we shall revise Falkner-Skan flow [9]. Mathematical formulation is made for

the reader, then the solution is obtained by shooting method.

3.2.1 Mathematical Modeling

Consider a flow, around a wedge submerged in a fluid of a small viscosity. At a leading edge

(i.e. stagnation point) O, thickness of boundary layer is zero and velocity increases from zero

at the wall to the value of potential flow at the edge of the boundary layer. It is assumed that

free stream velocity U is constant and uniform at the edge of the boundary layer. Suppose

that the x-axis lying along the wall of the wedge and y-axis is perpendicular to it as shown in

figure.

Figure I: Physical model of Falkner - Skan flow.

For the case of steady flow, the Prandtl boundary layer equation are

0u 0u
u a*+u6=

AU 02u
u or+vw'

y = 0: 7t=0,U=0,

y + @z lt->U(x)= Cxm,

(3.7)

(3.8)

I

with continuity equation given in Eq. (2.3), where u and v are the velocity components in x

and y directions of fluid flow respectively, U is the reference velocity at the edge of the

boundary layer. Furthermore, the velocity of potential flow is assumed to be proportional to a

power of the length coordinate x along the wall. The boundary conditions are

26
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where m is the power law parameter of Falkner-Skan and x is measured from tip of wedge.

The sfieam function Y(x,y) is introduce given in F4. (2.9) and using following similarity
transformation

l(m+L)U ^,\ Tw-T
n = ll ,* 'alq) = 64

(3.e)

(3.10)

(3.11)

(3.L2)

(3.13)

(3.14)

(3.1s)

and-{b

f(tD-

in Eqs. (3.9) and (3.10), we get

f"'+ ff"+ p(L-f'')=o,

subject to the boundary conditions

/ (o) = o,/'(o) = Q,

f'(rD- L, as n -, @,

$ where prime denotes derivative w.r.t {, and p is related to rn through relation

2mD_n-ffi.
The energy equation (2.7)can be written as,

E

0,,+p)pro,f _0,

The boundary conditions on 0, are same as was defined in flat plate problem, i.e.

0=0,64=0,

0+L,Nl+@.

(m+\\

-\U

ZvCx r '
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I

The parameter Pr is the Prandtl numbers, and m is constant. In order tol solve Eqs.

(3.11), (3.14) subject to the boundary conditions (3.12), (3.15) , shooting mettrod is used

which is explained in the following section.

3.2,2 Method of Solution

3.2.1.1 Shooting Method

* Since boundary value problem is non-linear like discussed in previous chapter, therefore we

used shooting method with Runge Kutta fourttr order as integrator to construct its solution.

The boundary value problem Eq.(3.11) - (3.12) is reduced into initial value problem as

f=z''
f' = zr, (3.16)

f" = 23,

lD

with initial conditions

z's = -(rrr, + p(7 - zr')),

z1(0) - Q,

z2(0) = 0,

zs(0) = t,

Yr(o) = o,

Yz (o) = s,

(3.17)

(3.1e)

where t is the missing initial condition. It is found in such a way that the solution satisfres the

outer boundary condition i.e. z2(o) - t.

Now the modeled boundary value problem (3.13) is converted into initial value system as

0=yr,
0' = !2, (3.18)

Pr
!'2 = -Tlzxr,

Z

with initial conditions

IE

where S is the missing initial condition. It is found in this manner that the solution must meet

the outer boundary condition i.e. yr (o) = 1.
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3.2.3 Results and Discussion

The ordinary differential equation, (3.11) subject to the boundary conditions (3.12) is
obtained numerically using shooting scheme. The solution of the Falkner Skan equation

corresponding to B ) 0 are known as accelerating flows, those corresponding to p - 0 are

knows as the constant flows and those corresponding to I < 0 are known as decelerating

flows. Physically relevant solution exists for -0.987 < P < L.6.

Figure 3.2: Variation of /, against similarity variable q for p ( 0 in case of decelerating

flows.

Figure 3.3: Variation of velocity f' ,against similarity variable 11 for B ( 0 in casc of
decelerating flows.

R

I
oO
\o

l^
-.R->r-- vFL

\

a. I ,-0. I 4,-0. 18,-0.987

0: -0.l, -0.14, -0./,8, -0.987
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._
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I
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I
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'frr

G,

Figure 3.4: Variation of f " , against similarity variable 4 for B ( 0 in case of decelerating

flows.

Figure 3.5: Variation of /, against similarity variable q for p ) 0 in case of accelerating

flows.

s'
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:0,0.3, 1,1.6

F

,\
-^

F.\,\e

Figure 3.6: Variation of f', against similarity variable 4 for B ) 0 in case of accelerating

flows.

Figure 3.7: Variation of f", against similarity variable q for p ) 0 in case of accelerating

flows.

The ordinary differential equation, (3.13) subject to the boundary conditions (3.14), for

selected values of m and Pr, is solved numerically using shooting scheme.ts

0:0,0.3, l, 1.6
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Pr = 0.7,0,8, 1,0,5,0, I 0

L
-l

\s

Figure 3.8: Graph of 0 with ?, for distinct values of Pr with fixed value of m.

Figure 3.9: Graph of 0 with 11, for distinct values of m with fixed value of Pr.

t,
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m = -0,0753, 0,0,/,1l, 0,333, 1,4

Figure 3.10: Graph of 0 with 11, for distinct values of m with fixed value of Pr.

Table 3.1: Variation of 6'(0) for various values of m and Pr .

Figures 3.2 to 3.10 are drawn to show the effects of different parameters including B , m and

Pr on the velocity apd temperature profiles against similarity variable 4. The effects of B for
decelerating flow case (B < 0) on f , f' and f" against 4 are shown through Figures 3.2-3.4

respectively. It is seen that the effect of F on f as a decelerating flow case is considerable

only inthe region 0 < 4 < 3 andafterthis region,/ grows linearlyalong4 forall F <0 as

shown in Figure 3.2.It is observed from Figure 3.3 that with the increase in the nlagnitude of
p for decelerating flow case, the velocity /' decreases in the boundary layer region. However,

the momentum boundary layer thickness increases with the increase in the magnitude of p for
decelerating flow case as shown in the figure. The behavi or of f" (4) against 4 for different B
is shown in Figure 3.4. Similarly, the effect of p as accelerating flow case on f , f' and f"
are shown in Figures 3.5-3.7 respectively. It is noted from the Figure 3.5 that the region for
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which the effects of p on / as accelerating flow case is small as compared to that of
decelerating flow case as shown in Figure 3.2. It is further seen that / decreases with the

increase in p for accelerating flow case. It is pertinent to mention that the boundary layer

thickness is minimum in case of accelerating flow as shown in Figure 3.6 as compared to that

of deceleration flow case shown in Figure 3.3. The increase in magnitude of p in this casc

helps to increase the velocity within the boundary layer. The momentum boundary layer

thickness decreases with the increase in magnitude of p for accelerating flow case which is
quiet opposite to that of deceleration flow case. The behavior of f" against 4 for different p
as accelerating flow case is shown in Figure 3.7. The effects of different values of Pr on the

temperature profile for m = -0.0753 and m = 0.333 are shown in Figures 3.8 and 3.9

respectively. It is noted that with the increase in Prandtl number Pr, the temperature within
the boundary layer increases, but thermal boundary layer thickness reduces alainst Pr as

shown in Figures 3.8 and 3.9. I

Figure 3.10 is drawn to show the effect of parameter m on the temperature profile. It
is seen that this parameter is also responsible to augments heat within boundary layer, but

thermal boundary thickness is found as decreasing function of the parameter m. Table 3.1 is

drawn to show the numerical values of 0'(0) as heat transfer rate at the surface at different

values of parameter m and Pr. It is noted that heat transfer rate increases due to increase in

both parameters m and Pr.

a
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