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ABSTRACT

Cconometric analysis can be done by enther classical inferential approach or Bayesian
inferentsal approach Review of hiterature shows that Classical approach 1s popular
while studies relaed to apphcauon of Bayesran econometric techmques are rarely
available 1n the hterature of applied cconometnics Hence application of Bayesian
inferential approach for estimation of money demand function 1s the main obyective of
this study  Money demand funcuien ss specified and then data of the relevant vanables
of Pakistan economy arc collected trom various 1ssues of Pakistan Feonomic Survey

Model™s parameters arc simulated under non-imlormative and informatsve priors while
conducting MCMC simulations using Gibbs samphng Unilorm priors are taken as non-
informaun e priors while Normal-Gamma priors are 1aken as informative priors Hyper
paramciers of informative prior densiy are eheited using PV method of ehicnation

Simulated results show that aggregale demand and price level positively affect money
demand 1n Pakistan economy Interest rate imversely affects money demand Mize of
parameters mayv be con<idered for monctary policy actions Morcover, precision ot
model 1s larger in case of mformatine prniors as compare to non-informative priors
imphes that ehientation of hyper parameters on the basis of experts” opinion 15 useful for
the modcl under consideration At the end posterior predictiv e distmbution 1s derived

and meney demand s predicted for difterent levels of imerest rate

M1



CHAPTER 1

INTRODUCATION

Statistics i1s 1the science that communtcates information te particular mquiries of
interest It has spread applications 1n different fields like commerce cngineering
medical sciences social sciences apphed and natural sciences etc 1t 1s not the science
of only gathenng information but 1 also provides a set of lools for analyzing

clanfying, modeling and understanding the phenomena on the basis of information

Research 1n statistics can be categonized into two txpes 1 ¢ theoretical and
apphed stauishcs Theoretical stauistics deals with the development ot rules and
techniques for collection. presentation and analysis of the data While apphcation of
these techniques in order to analyze a particular phenomenon lics in the area of applied
statistics Rach of these two areas can further be classilied by two approaches thal 15
classical approach and Bayesian approach Bayesian and trequenust methodologies
have distinct points of view In Bayesian procedure we presume that the data under the
observatton 15 fixed and model parameters are random whercas 1n frequentist

procedure presumed model « parameters to be constant

In Bayesian procedure pror information 1s incorporated into evisting
informauon to acquired improved information known as posterior information and
catire examinanion 1s accomplished on the basis of this improved hnowledge W hereas
the entire results 1n frequentist approach are based on only the current information n
frequentist analysis estimators are employed to esttmate the true v alues of the unhnown

parameters ts inference gives a complete distnibution of the parameters Bavesian



analysis depends on the parameters of the posterior disirtbution and provides
summaries of this distribution on the basis of probabiliny On the other hand we are
unable to have direct probabilisiic analyses n frequentist procedure Frequentist
procedure 1s based on the sampling distnibution of estmators of parameters and
provides parameters point estimates and their standard errors a5 well as confidence
interval In frequentst procedure confidence intersal do not have uncomplicated

cnunclatuon as does Bayvesran credible interval

Hence 1t may be concluded here that applicanion of Bayesian inference may
provide better results as compared to classical interence 1n order to analyze amy
particular phenomenon However the literature shows very Iimited such studies that
contain apphcation of Bayesian inferennal procedure to general linear regression
model Hence, apphcation of Bayesian approach for modeling of a real phenomenon

may be a significant contribution in research Incrature

Monetary pohicy 15 considered as the most important demand manage ment
macroeconom:c policy which plays an important role to counter short run fluctuations
tn the economy Successful monetary policy actions are important 10 slabilize the
economy while misleading actions of monetary policy makers destabilize the economy
Stale Bank of Pakisian has been following monctary (argeting strategy where money
supply s adjusted 10 meet money demand 1 order to achieve equiltbrium i the
economy Hence role of money demand has signmificance for successlul monetary
policy actions 1n Pakistan and accurale knowledge about determinanits of money
demand 1n the economy 15 very important A number of studies avatlable \n the
literature containing money demand functions of the Pakistan economy as well as of
other econromies of the world In all these studies classical econometnc techniques

have been used 1o estnmate the models There 1s o such sfudy asailabie in the terature



that contams money demand function estimated by Bavesian approach Hence,
application of Bayesian inference 1o estimate and analysis of money demand funchion
using data of Pakistan economy may be a sigmficant coninbulion m the hiterature of
applied econometnics and Staustics Keepmg in view the above discussion. the

following objectives are specified in the proposed studs
Objectives of the study

The key objectives of our siudy are follows

» Estimation of Money Demand Function of Pakistan Economy by EFmploying

Bayesian Econometnic Techmiques

v

Econometric Analysis of the Phenomena by Using Non-informative and
informative pror

» Companson of the results under informative und non-informative priors

- Policy Analysis using MCMC simulations

~ To gmve policy implication

To achieve these targers. outlines of the present study are as foliows

Chapter 2 15 concerned with the basic elements of Bavesian statsiics We
present Bayes theorem and Bayesian methodologyn MCMC simulation and Bayesian
approach and prior distribution (informative and non-informanive) We simarly define
the MCMC simulation through Gibbs sampling and ehcitation Posterior distribution
and posteror predictive disinibution are also explamned The defimuion of money
moncy demand and the importance of money are also provided in this chapter
Comprehensive review ot the evisting hiterature of the Bayesian regression and

estimation of money demand of Pakistan 1s presented



In Chapter 3. we present specification of lhe model and description of the meney
demand model with notanon Posterior disinbutions using informative and non-
informative priors are derived Moreover MCMC simulations using Gibbs samphing
design chcitation of hyper parameters and different diaghostuic tests are explamed in
this chapter Chpater-4 contains results and discussion while the last chapter contains

conclusion ol the study



CHAPTER 2
LITERATURE REVIEW

2.1. Introduction to Bayesian Analysis

Bayesian procedure 15 considered superior to the classical approach due 1o
incorporation of prior informanon Basesian perspective 15 basically based upon
implementation of Bayes theorem 1lnder Bayesian inference parameters are
considered as random anables and hence. their estimates are simulated through
construcung probabilty density tunctions on the basis of all available intormation

While in classical approach parameters are considered 10 be constant
2.2. Bayes Theorem and Bayesian Methodology

Fo introduce the Bavesian methodology  suppose A 1t B are two random

variables According to the conditional probability we can write as
p(A,B) = p(B) p(A|B)
or

p(A,B) = p(A)p(B|A)

p(B)p(A{B) = p(B|A)p{ A)

_ p(BjA)p( A)

A|B
p(A|B) (B)

Comparing this dual statement for p (A4, B) and reordering give us with Bayes

rule

A



Suppose y be a vector or matrix of data and # be a vector ot the parameters tor
a model which search 10 describe an explanation of y We have the informaton aboul
@ based on y This can be achieved by employing Bayes rule In Bavesian we would

substitute B by v and A by @ to obtan the following form

p(y8)p(8)

[ =
p(2ly) )

The kemet density can be expressed as

pl8ly) x p(y|&)p(6),

where p(8]y) 1s the postenior density  p(y¥[&) 15 the likelihood funcuon and p{&) ts the
prior denssts This 1s frequently mentioned as posiener 15 proportional 10 hikelihood

nmes prnior koop® (2003)

The modelling estimation and inferences in Bayesian methodology contains the
following steps

#~ Dernvanon of hikelihood function

# Constructron of a pnor distnbution for the parameters et the model

~ Berivation of the postenior distnbution tor the model parameters

»  Application of simulation procedure 1o esumate parameters of the model

> Prediction through postentor predictive distribution

In usual Bavesian statistical inference the main objeclive s that to acquire the

postenior distnibution of model parameters The posterior distribution can be best
comprehend as a weighted average among knowledge about the parameters carlier data
15 observed (which s represented by the pnior distnbunion} and the information ahout
the parameters hold 1nside in the obseryed data (which 1s represented by the likelihood

funchion) From a Bayvesian point of view any inferential question can be responded by



a suitable analysis of the posterior distrtbution By gaining the posterior distrnibution
and also calculated that point esimate and intervat esumates of parameiers. prediction

outcomes for future knowledges and probabilistic tnference of hx pothewis

2.3. Likelihood Function

The hkelihood funchion s a collection of obsenations 1 X, X, X,
which 1s joint probabitiy density function this function 1s conwidered for umdenntfied
parameter such as m The Iikehhood 15 due o the vatue of parameter 7 lor which the
functton L(mr) has a large value respectively which1s further hikely 10 be the right value
of un-known parameter This function consists of all imponant infermation and 1s
represented by L(m, X, X,. X,} 1t shows that the probabiliny density

function of information 1s conditional on by f(Xy. X X im
Mathematically the joint density can be expressed as

L{m, X, X; X)) = f(X, X, X,'m)
2.4. Prior Distribution

Prior distnbution 18 the core concept of Bayesian statistics [t 1s constructed
order 10 ncorporate cxira information about uncertain paramcters  When prior
distributron 15 combined with current information represented by hikehthood 1t results
1n postenior distribution The mapor difference among classical and Baxesian approach
15 the utihzatton of prnor distnbution in various anaixsis Pnor distribution s the
probability distribution of the parameters providing statstical information about
parameters. before detecting or examinming the information which s very critical tor the
model parameters  [his anformation  predommantly  depends  upon  rescarcher s
preceding know ledge personal opinions or expert judgement theoretical inlormatien

historical information or may be these facts are derived from diterature In Bavesian

7



concepl. the Prior distribution has a major role in esumation. particularly when the data
doesn’t provide clear information Prior distributton 1s mawmnly categonized as
formative and nen-informative priors Some authors divide it into four major
branches which are named as mformauve non-mformatuve least intormative and

weak |y informative

2.4.1. Informatre Prior

Informative priors are those which are not controlled by likehhood and has a
major effect on postenor distnbution These priors are proper prior and take a well-
known density form The outcomes of informatne prior are best appropnate and
reliable as compared to non-mformative priors The utilizauon of informative priors
recognizes that estimation not only affect the current knowledge but also have some
etfect on prior information The main sources of informatinve priors are preceding
studies  researcher's percepuon nterviewitg essential experts  published work
closeness through conjugacy and other records resulting sources By increasing the
preceding information the precision witl be ncreased 1t the current information

matched with the preceding

2.4.2. Non-Informative Prior

Non-imformative priors are used when we do not use subjective prior due to
some reasons as menttoned by many authors in literatures  Thesc priors don t concern
any controversial informatton but these priors give a sohd proot 1o change data from

mcorrect inference

Simttarly these prior are also called reference prior uniform prior Jeffers prior
or weak prior Uniform prior distnbution s purchh  flat  distribution that allocate

idenucal probabilits 10 every possible parameters  In many condition exinng



information may be problemaric to justity using intormative priors A non-injormative
umform prior has vers mimmal impact on the outcome of posterior distribution
Consider in the normal case of an un-intormative umiform prior for the mean ol a normal
distribution It would essentially have a uniform mass over the intenval p(8) = ¢, {- ~
<@ = r) wherever ¢ > 0 1s a conslant. subsequently this places 1dentical weight on

totally probable values of &

Jeffers 's rule or prior 15 defined as “the denstty of parameters proportional to

square root of the detertunant of the fisher infermation metric representatnely

Let 8 =(B; B, B, )T 1 & vector of parameters 8, £, 8.,

[his can be achieved as

P(B) x det {I(B)} n

where det” indicates the determimant and H{B) indicates the {n % n) fisher intormation
matrix which 1s the loganithm of maximum likehhood function ot parameter £ and

parually differentiaung two times with respect to the parameter /5, 1s given by

B d%tn L(B)
I(gy=-- [-'—6‘7—] .

where "E" 1s the cxpectation
2.5. Choice of Prior Distribution

The prior grves the pnior know ledge approximatels umdentified paramelers that are
adequately jointed into the resull of the Baves thcorem The selection of the prior
distribution rely on the nature and the hmil of the paramcters occurnng measured over

the Bayesian investigation



If 11 vanies from 0 to 1. we often employ the range 0 (0 o0 be beta prior or Gamma
prior and for rormal prior range 15 -0 to  frequenily We cnumerate the unceriainty
approximately not farmhar parameters in the shape of probabihity distrtbution 1n prior

distribution
2.6. MCMC Simulation and Bayesian Methodology

Ulam and von-Neumann (1958) mtroduced the 1erm ‘Monte Carlo " for the
stochastic simulation and wsed this wdea for conducting experiments n the process of
Atomic Bomb It 1s enurely trouble 10 look up concise definrtion of word MC
Approximating an expectation using sample mean as a function of random vanable In
situarion where normah2ing constant 1< analyncally not controlled, we used the MCMC
simulation method We can tell that. MCMC simulation 1s a process in which sampled
values arc drawn sequentially and the posienor density for cach uncertainty depends on

former samples *

In. MCMC techmques random samples are obtained from an arbitran
distribution These samples are employed to round off the expeclation of parameter
imporiance  Wherever the chain was ongoing the MCMC will touch the desjred

distnbution: The MCMC method 15 useful when the distribution has many parameters
2.7. Gibbs Sampling

Markov chain Monle Carlo technique 15 generally krown as Gibbs sampling In
this technigue. we obtain samples {from posterior disiribution where every iteration of
the MC algorithm sample 1s gencrated In direcuion to estimate vector of parameter or
there 1s a difficulty n algebraic expression we generally need 10 evaluate the multiple
integral Gibbs sampling techmique 15 utihized when joint density 15 unidentified while

the condmional distribution 15 clearly idenufied When the direct samplmg 15 not

10



possible. we usually used Gibbs sampling where sample 1s generated from roint densit

The sampler generate an MC sample where every sample 1s associated with others
(1bbs samplmyg 1 one of the most beneficial techmique of MCMC simulation, when the
conditional disiiibution 1s well-known parametnie form The Gibbs sampling techmque
mainly decompeses posterior distribution into simpler method such as full condinonal

distribution for every umdenufied parameter

2.8. Eliaitation

Elictlation of hyper-parameter 15 very sigmficamt research factor in Bayesian
statistics 115 the process of about know ledge. taught or undetermined quantities m a
densiy funcuon Elicitation has gained a lot of criticism from the questioners and they
said that ehcitanon should not be done Ehcitation 1s a way through which views and
mformation of a person approvimately uncertain quantities are computed nto a
probabitity  which means a technique ol identifying pnor distnbution of a statistical
model for one or more unknown parameters Subsequently the description of prior
distribution 1s then joined with the likelihood function through Bayes rule fo achieve

the postenior distribution
2.9. Burn-In and Thinning

In burn-tn process 1pmal imperfect esumates are not famibar m MCMC
analysis and we cannot sdentify the favorable imual values We cannot utihze these
primary estimales 1o use n any type of analysts So we discard these inttial values as
burn-in pertod For each chain the length of the burn-in penod 1s disuncl 1 we identify
how rapidly the Markov chain converges on the desired disinbution 1hmning 1s a

process of reduction of autocorrelation m the MCMC sample through sub-sampling the



MCMC chain each pre-specified number of iterations measured through thinning

nterval

For example thinning interval 1 indicates that using the complete MCMC
sample the thinming mterval 2 indiates using each 2™ sample values formerly the
thinning nterval 4 indicates that 10 usmg every 4 values from iterations for example
1 59 12 and so on Thining must be applied with care when used 10 minimize auto-
correlation as 1t may not be the most appropriate way of enhanung the precision of

estimates
2.10. Posterior Distribution

In Bayesian nference, posterior distnibution 15 derived by mutuplying
tikelthood function with prior distribution  Posterior distribution  gets  many
appreciaions in Bayesian theory due to its updating nature and summarizing entire
information available in prior disinbutton and sample The posterior knowledge 1s
proportional to the product of prior know ledge and sample knowledge The Iikelihood
tunction L(X,, 4) and the prior distribution p(4), 1t the parameter 15 continued then the

posierior distnbution is

Lix, A)pLay

PUx) = oL, Apidaa

(23)
where

P(A) 15 the prior density of A

L(X, 1)1s the Iikelihood function as a lunction of x

S L{X, A} P{A)dA s the standardizing constant and

P(A/X) 1~ the posterior density of / given the data X = x



2.11. Posterior Predictive Distribution

In Bayesian statistics postenor predictive distribution 1s an inspecuion device
used 10 examine the consistency of model with dala |o evaluale the consistency of
PPD produce simulated data catled y* compare this data with only obsened data The
PPD 1 tound through mtegraitng parameters out of postenior distribution of next

observation M” and the parameter X and the data which equals previous obseryations

(x1, M) (x,,M,) {0, My}
p(M* |Ix*,x) = fp(M',mr',g drm

= [p(M* |, . x) p(rix)dn
= {p(M*tm) p(nlx) dm
where

p(M* |, J_L) 15 the postenior predictive distribution of M* showing tuture and past dala
p(mix)}. 1s the postertor distrbution of 7 given X (previous data) p{M"} 1 the given

distribution of M*
2.12. What is Money?

Money 15 something that people use everyday life We earn and spend 1t but
often don’t think much about 1t Economists define money as any good which 1s
widely accepled as [inal payment for goods and services |hrough the ages, Moncy
has taken different forms examples include the cowry shells in Africa. large stnngs
of beads called wampum used by Native Amencans and carly Amencan settlers and

stone wheels on the Pacific 1sland of Yap Whal do these forms ot money have in



common” They share the three functions of money First. Money 15 a store of value

Second Meney 1s a unii of account Third Money 1s a medium of exchange

2.13. What is The Role of Money in an Economy

I he role of money i economy can be judged from Lhe following aspects

» Money has replaced barter system Under the barter system the consumer have
imited option of trade As Robertson in his book Money  writes  one can see
what do people want and 1n how much quantity they want with the help of
MONEY 11 AN ECONOMY

» Producuon consumption and distribution of moneys 15 relatively cooperative
for consumer and producers All the economic activates of a market are
dependent on money According to Milton in his book The financiai
Organization of Society " wniles ~ o start the process of production money s a
basic and inevitable factor of production *  1he producer need money [o start
business The nputs as well as labor are purchased with the help of money
Cost and profit are delined in terms of money

~ 1lhe advance payment are made through money where as there was no such
concept n barter system The producer has to makc advance payments at the
begimning of production process The loan transactions take place m advance
and thus all such 15 possible because of money

~ Fconomic and social changes are possible due to money Money as the prime
source for the industnahzation new myentions and techmques are adopted 1o
earmn more money Devonportin lus book  Leonomics of bnterprise™ wnites  all

economic comparisons are made in money  People of all ficlds are performing

I



their services for money Money 1S the base for runming all the economic

activities of the country

2.14. Money Demand

Money demand 1s defined as the quannity ot monetary assets that people choose
o hold money 1n their portfolios Money demand 15 important for monetary policy
makers while making policy decisions as it 1s managed to control short-run fluctuations

in the economy

Suppose | have a bank account In that account | have Rupee 1 000 My potential
spending could be represented by that Rupec 1000 However | only ever hold Rupee
30 as cash at any time My demand for mones 15 therefore different to the amount of
money [ hase at my disposal 10 spend The demand 1or money v dependent on the price

of money
2.15. Literature Regarding Bayesian Regression

Chen and Deely {1996) discussed Bayesian model for a constrained hnear
regression serious problem The constrained arising as estimated in the ens ironment of
predicting the [resh crop of apples for the year onward The Bayesian approach with
the Gibbs sampler 15 presented to be generally approprniate 1o the constrained senous
1ssues It s probable to achieve the Bavesian approvimations of model parameters
marginal posienor density estimates and Bayesian predichians Altemate methods such
as Bayesian OLS and ICLS approximations are too discussed for compansons The
conclusion of this study depicts that tor the prediciing groups of 29 the percentage

errors were [0 17 5 5 for the Bayesian OLS and 1CI S methods respectuively The
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Bayesran errors remained minor than the OLS errors for 21 growers and smaller than

the ICLS errors for 18 growers In overall the Bayesian errors were minor as well

Cowls and Carbin (1996) n paper explan thal a serious problem for using
MCMC methods m which condition stop our samphing Therefore various MCMC
operators address the convergence 1ssues by apply ing dragnostic devices to the output
created by runming their samples Atter complete review. this study explains the various
convergence diagnostic  defimtion  of the theoretical source and practical
implementation separately and highlightes the MCMC comvergence diagnostic are
Gelman and Rubin, Raftery and | ewis Geweke Roberts Ritter and Tanner, Zellner
and Min Liu Liu and Rubin Garrer and smith Johnson. Heidelberger and Weich
Myktand Tiemey and Yu Yu Yuand Myhiand These test are Quantitive Graphicat,
Theoretical basis univaniate or tull jomt distribution. bias or vanance applicapibiity

are all charactenstic different from each other in application

In this process two quanitles x5 and x; were mntroduced to maich z; and z,
accurately identuly the form of pdf Here we have two umdentified parameters and two
equations In these lwo equations @ and £ are mean and standard deviauon parameters
of the normal form Solving the simultaneous way for @ and 8, prior distribulion 15

enlirely calculated

Strickland and Alsto (2013} explamned that the linear regression model 1s going
through to examine the monthly production of cars and station wagons (thousands of
cars per month) in Australia since November 1969 to August 1995 The 1™ column
mdicates the names of the vanables. whereas the next columns describes the marginal
posterior standard error the upper and lower 95%a 1{1PD inlervals The esumated valucs
used tn the summer months of Dec Jan and Feb indicale a drop in manufacture relation

1o Oct which 1s probably parnally by the nauonal leave through that period The
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inference also catches the modelled outher 1s statistically significant and specifies an
enermous drop in preducnon used tor the month of Noy 1977 s clear that there 15
no one explanatory vartables involved in the model which have zero in the 95% HPD
nterval esiimated The [F tactors are verr small representing the MCMC algorithm

mixes Good But the other diagnostic tests are not being explained in his paper

Sinai and Hsu (2014} explored 1n paper Baxesian muluvanate linear regression
model conclusion with the use of flexible prior used for the covarniance construction
The normally assumed Barestan format mcludes the conjugate prior MND used for
regression coelficients and inverse W ishart conditions for the covanance matriy In this
study leave these techniques and used Bayesian estimator used for the covanance A
multivanate normal prior for the umque components of the matny loganthm of the
covanance matny 1s exammined Such constructton examined for a comfortable period
of pror distnbution for coranance. regarding quality of views 1n prior position hyper
parameters and also additronal capacits to model the potential assocation between the
covanance structurcs  Lhe posterior momenis are calculated through MCMC
procedure Gibbs sampling 15 used for the reaching of the target posterior distribution
and concluded from the result that the flexible prior deseription used for the covanance
building of a multvaniale muitiple regression can deliver a comfortable period of

distributions when compared with inverse Wishart family

lao and Zellner ¢ 1964) in their article showed that how the prior mformation
can be emploved mn combiming with sample data in building interence about the
parameters of regression model The hex concern of the paper s to estabhish the
techmiques for using informavnon from the ene sample as a prior information in the

analysis of following sample



The two samples are assumed from an ordinary population with unequal fluctuations
T'he posterior distribution shaped in Section 2 1s the result of multivanate normal and
multinanate-t procedure In Section 3 the jomnt posterior and marginal posterior density
are transformed inte an asymptotic terms Furthermore, the outcome found 1n Sections

2 and 3 are presented numericalls

Zellner (1983) presented i hiy paper numerous testing estimation and
forecasting 1ssues have been examined 1n the econometric Iterature This study giving
consideration to that reference diftuse prniors have been extremely valuable and
proposed Lhat reference informative priors {RIPs) will probably as sunable well A
methodology for detailing RIPs for regression models was designated that provided
normally straightforward RIPs and simple posterior distribution For a basic structural
regression model 1t was demonstrated how these RIPs can be utihzed to examine the
influence of prior s estimates At last completion of hkelihood function 1t was pointed
out that numerical integration procedures have been cooperative in imvesugating
posterior pdf and testing the vahdity of asymptouc and different approximatons In
framework specified that the pasi record of strong achiexement i applying Bavesian
examination in kconometrics 1t shows up very likely that there will he frequent uses of

Bayestan examination in Ceonometrics future

Zeliner {1976) presented in the study the convenuonal multiple regression
model has been examined in the supposiion that error expressions take a shared
multivanate Student-t pdt by zero mean vector and covariance matriy as a scalar time

a unil mairis

In Bayesian estimation of the model through a diffuse prior pdf used tor the
regression coetficients and multir anate student-t error terms the study establhished the

Joint posteniar distnibution used for the regression coefficients 1~ naccuratels the
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stimilar multivanate student-t method as appeanng from the joint normal model
Discussion ol the posterior distribution 1s generate to exist 1n the formula of an F-
distribution of the scale parameter 6 When the df parameter in the error term

distribunion huge grows and therefore the error temms distnbution move toward
vs?
normality the postenor distribution of /a? mose toward the (vpical and 2 pdf

with v df binally a natural conjugate prior distribution used for the  multiyanate

Student-t regression model was existing

Zellner (1979) mn this article explained that of the many research advances on
the staustical inveshigation of regression models are being revised Numerous
esumation lesting and forecasung procedures ulihized m cconometric models have
exactly large samples cxplanation Particular Bavesian conclusion identifving with
cconometric models arc reviewed Many statistical 1ssues needing lurther anaivsis are
marked 1t 1s determined that supenor solutions to these 1sues better data. addimonal
sophisticaled use of economnic theors  application of turther rigorous diagnosiic chechs
containing torecasting chechs and use of expertlv-designed simulabon research

probably will construct developed macro-econometric models

In article the author also recommended that Bayesian techmques compromised
good clanfication for vartous difficulties Further formal technigues utthzing tor prior
mformation 1n the examination of assumed SEM are necessary o probliematic 7one that
can move toward best suitably at present by the usage ol Bavesian analysis This study
also lighhghts the significance of using the prior methodology caretully in desinng for

forecasting



2.16. Literature Regarding Money Demand function of Pakistan

Azim et ul (2010) explored the money demand funcuion for Pakistan by uulizing
ARDIE procedure for yearly data for the peniod 1973 to 2007 By using money demand
{MI or M2) real income tnflation rate and exchange rate vanables The study observed
the posiuvely association of the real income and inflation with monesy demand but the

exchange rate posiin e elfects on money demand

Anwar and Asghar (2012) esumated that long run associauion for money demand thar
real income 1nflaton rate and exchange rate 1s taking as explanatory variables by
utihizing the ARDL method over the annual penod ot 1975 10 2009 By using wanted
holding of real money balances (M1 or M2) are demand for money  GDP deflator 1~
uulized for finding inflanon rate The study concluded that in Pakisian M1 s
cotnteprated with its elements but estimates are not constant over the time period while
tor M2 the FCM moves the expected significamt sign which shows that M2 s
comtegrated with its determinants  The study suggested to focus only on the long run

stabilization policy tor Pakistan to the monetary authonties and policy mahkers

Asad er al (2011) 1invesugated money demand tunction (M2) of Pakistan over
the period 1980.0Q1 to 2009 Q2 by employmg the ARDI method and by usimg money
demand real GDP. interest rate nflaton foreign rate of inwerest real effective
exchange rate The study concluded that associatien between M2 and a set of
explanatory variables is stable in long run Inflation is very high and increased interest
rate causing a decrease in money demand Foreign nterest rate indicate a small impact
and negative signs and supgest that inflation has a large 1mpact on money demand ol

Pakistan which creates problems for achieving the target M2 level in Pakistian



Ahmad and Mumr (2000) estimated mones demand function of Pakistan by
taking real income, price level and inflation rate as explanatory vanables The study
employed OLS and comntegratin estimation while using the quarerly data over the
period 1972 11 to 1996 1 by using the desired mones balances (M1 and M2) current
income. ndex of industnal production in the place of GDP Inter-bank cal! money rate
as short term nterest rate CPI as inflaton rate The study concluded that inflanon rate
ts more significant variable as compared (o the nominal interest rate in determining the
money demand Money demand in the shon run 15 not vers sensitive to the shocks so
the monetary authorty need to take 1nio the account the speed of adjustment in money

demand 1n order to mahe the outcomes consislent with the targets

Bahmam-Oshooce and Shin Sungwon (2002) examined that the stabiliny of
short run as well as long run dynamics of M1 M2 M3 monev demand tunction in
horea by usmg the Johansen and Juselius Contegration along with the CUSUM and
CUSUMSQ test by using quarterly data over the period 1973 | to 1997 HI by using real
monctary aggregale (M1 M2 M3} real income as ¥ nerminal etfective exchange rate
as NEX and interest rate as R This study established that none ot the monetary
aggregates have a stable relation with nterest rate income and cexchange rate n
KORLA

Das and Mandat (2000) explored that whether money demand function can be
eshmated a partial model {(by a single equaton) or a tull system mcthod ke Vector
autoregressine model by employing Johansen's Vector Auto-Repressne (VAR)
approach and Hansen s methodology and by using monthly data over the period
1681 4 to 1998 3 and by uwing Broad Money (M3) 1P as inde~ of indusinial Production
for income WP as price level Call money rate as a proxy tor short lerm interest rate

Index of stock price 36 country trade weighted real etfective exchange rate index as



exchange rate vanables The «tudy determined that 1 ong run demand for M3 1s stable
in spite of large shocks due to financial hberalizavon The results indicated that the
common pracuce of having long run parameters from the short run parameters that

were obtained from partial adjustment model as misleading

Khan (1997} in paper cvaluated the comntegration applying Cngle-Granger
method and ECM over the class 1972 1o 1992 and by applving the actual money
balances (M1 and M2} real profits nsigmficant interest rate and probable level of
inflation variables The mmtiate income flexiihity of M2 in the region of 11 which
indicates that for money demand has remained growing at an amount hetter or not better
proportional to fluctuations in the income decay  His iminate actual interest rate constant
to be right low but stausucally importam whereas the increase rano as an chance price
vanables 1s get sigmificant with probable non-positine sign

Khan and Sajjid (2005) explored the muwally long and <hort run association
among the real money balances and iheir delerminants tor Pakisian over the Period
1982 Q2 to 2002 Q4 by using Cointegranon test (ARDI approach which 1s 2 recently
developed technique) and FCM and by using broad money M2 CPEas the Price level
Real GDP. money market rate as interest rate, log difference of CPI as inflanon rate
US Federal fund rate as foreignanterest rate trade weighted real elfective exchange rate
index composed by IMIE as exchange rate The study found stationary long run
relatronship between money demand and the explanatory »ariables

Kuman and Mahakud (2012) explored the refationship amongst demand for
money (M1 and M3) and vts determinants during the post iberahzation period n India
by cmploying the Johansen and Juselins Contegration model, VECM model and
Granger causality lest aver the monthly period of 1961 1 1o 20108 This study

concluded that there 1s presence of more than two comntegraling vector tor each of
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money demand specificaion The exchange rate have nepative effect on M1 and stock
prices have negative and significant effect on money demand inflation 1s positively
related to M3 and 11P are negatively significant n the first lag difference All the five
vanables affects the demand for money tunction (M1 and M3)

Qayyum and Nishat (2001} 1n paper using the long run coimegration and error
correctton model of the actual money demand in the disaggrepaled commercial and
private sector he determined that in together sectors there be present a long run
association amongst the actual money demand and its determinates The long run profits
flexibihity of money for business region sales flexibility of money 15 belter as equate to
the personal sector Such as the interest rate s anvious. the business region have reacted
the interest amount on bank loans while people are affect by long term rates of pledge
profit Inflaion rate effect on money demand of houschold region 15 grealer than
business region The actual assels replacement 1n the long run 1s powerful across the
regions however this occasion 15 powerful in personal region [he short run varauon
i inflation has powerful effect on complete and personal region while in business
region are not

Singh and Pandey (2012) exammed the behaviour of money demand funcuon
1n India by employing Gregony and Hansen (1996) cointegration over the annual period
of 1953 10 2008 and by using Demand for meney real GIP and nominal inierest rate
The study established that there is presence of comtegration between money demand
and tts determinants with a structural break in year 1965 The interest rate and income
elasucities are significant with expected signs During 1975 1o 1998 the demand for
money became unstable due 1o vanious factors

Tang (Z007) analysed the money demand function for the five southeast Asian

countries {Malaysia Singapore Thaland [ndonesia and Philippines) by emploving the



ARDL approach of Comiegration over the period 1961 to 2005 for Malaysia
Philippmes Thailand and Indonesia and 1972 10 2005 for Singapore and by using M2
aggregate macrocconomic component of real income (Real GDP GDP) exchange rate
and inflation vanahies They concluded that real M2, disaggregated components of real
Income (final consumption expenditure expenditure on investment goods, export)
inflation rate and exchange rate arc comntegrated for Philippmes Malaysia and
Singapore but not for Thailand and Indonesia Money demand function 1s stable for five
Southeast Asian economies under ARDL. except for the short run money demand

equation for Indonesia



CHAPTER 3

MATRIALES AND METHODS

3.1. Introduction

In this chapter we explain the specification of the model We present the
complete form of the Bayesian linear regression model in matrin form and Likelihood
function of the model Secuon 3 presenis the complete steps of the derivation of
posterior distribution using non-informative priors Sections 6 and 7 present the pror
through Normal-gamma and the dernation of posterior distmbulion  through
mformarive prior Seclion 8 presents ehcstation of priors on parameters of the model
and Section 9 explams the construction of elicited priors on T in linear repression
Numencal results of ehcited prior are present in Secuon 10 Secuion 11 gives the Gibbs
sampling design for linear regression model Section 12 contamns discussion about

Jdiagnosiic tests for Bayesian hnear regression
3.2. Speaficahion of The Model

Money demand function 1s specified on the basis of [ iquidity demand theory af
macrocconomics Acvording to liquidity demand theory money demand depends on
the aggrepate demand price level in the economy and domestic interest rate Hence

the model may be writlen as follows
M= Lo+ BiY + 5P+ B3R+, 3D
where

M = moncy demand



Y =15 the aggrepate demand
P =15 the price level.

R =1 the interest rate

y, = 1s the disturbance term

Data of all the abov e Jour varniables are taken from vanous 1ssues of Pakistan Economic

Sunvey ranging from 1960 10 2014

3.3. Bayesian Multiple Regression Model In Matrix Form
The specificd model 15 as follows

M, = Bo+ Bixyy +Baxn + Baxs i (32
where =12 N

The aboyve mode] can be wrilien in matrix form as follows

SHIR
my
my

My

Ha
H3

Hy

The (t X 1) vector



And (N x t) matnx s

1 x; %2 X3
1 x5 1y X3

1y X33
X = ‘

1 xyy xn2 Xas
Also we can wrnite 1n complete structure model
M=XB+y (33
3.4. Likelihood Function

Assumption about x4 and X determine the form of the likelihood function

~ g has a multivanate normal distmbution by mean 0, and covaniance
matris g%l Where 0y an N-vector whose elements are equivalens to 0 and
Iy 15 the (N X N)idenuty matnx te g~ N (0, H™'/,) whereli=0"*

» Each elements of X are fixed (not random vanables) | or all components i they
are independent through probability densits function s (X[A4) and A 1s a vecler

of parameters that does not cortain § and
Variance-covanance matns of the restduals are as tollows

var(u,) cov(py, Hz} cov{gty, fty)
cov(uy, uz)  var(p;)
cov{gy, iz} var(py)

var(u) =
Cov(fiy_1, Un)
cov{iy, iy} var(puy)

H! 0O 0 0 0
¢ HT 0 0 0
= 0 ¢ 0 0 0
0 0 0 0 0

0 0 0 0 H!

In new arguments. the statement that var{u,) = H~! I, 1s solid notation for
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var(u,) = H™" and cov(u, 1) =0 tory,) = 1,2 N and: #

The second assumption describes that we can remain conditionally on X and provide
p(M|X, B, 11} purpose for Iikelihood distnbution Utthzing the classification of the

multivanate normal density we can mark the likelihood function

f2

H

p(MIB.H) = =5 [exp|-2(M - xB) (M - X))} (34)

{2m)
Taking part of the Equation (3 4)
(M—XB)'(M-Xp) 35
Add and subtract "X 8"
(M—XB+XG—xB)Y (M—x}+Xf - xB)
(M~ XB—x(B - 5) (M- XE - X(5 - §)) |
(M—=xBY (M—XB)+(8-5) Xx7(8 - §) (3 6)
As well as the cross product expressions
(B=8)XT(M=XB) = (8- ) (A™M — XTX(XTX)"'XTM) = 0
And
(M—x3) (M—x3) = 5SE
(M—xB) (M-xB)+(8-B)XX(B~B)
So
(M = XB) (M —XB) = SSE + (B — B X"X(8 - ) 37)

Pul Equation (3 7)1 to Equation (3 4) we have
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TH- 16819

N

wlen -5 (s5E + (8- B)X"x8 - b))} (38)

27

H

p(M|B, H) =

1.5. Non-Informative Prior for Linear Model

By the defimition of the umform pror
p(f)xc and p(HY=1 {39

Over the supportof (-0, @) and (0, o) respectively we are assuming independence

between f and ¢

Using the likelihood funcuon (3 4) and prior distnibution (3 9) the posterior distribution

of the model 1s
h‘hfz H T
P(MIB.H) = ——=exp {=Z (M - XB)T(M — XB)] (3 10)
{2rY ‘2 2

By using rutes of OLS

2 M=y T M-

B =(XTX)XTM G — (311)
By using the completing square we write
e M 53T
= Iep{=5(sSE+ (8- 8 x7x(p - )]
Therefore the joint postenior from the likelthood tunctten (2 3) 1s provided by
p(B.HIX.M)x p(B HIX M)p(B)p(H)
0" " 5T 5
” W—erp[—:(SSE+ (8 - §) rTx(ﬁ-ﬁ))] (312)
bid 2 v

With kernel density

H __ _a T T A
x HN/ZeTp_:r“HXerp( SB-BY ueTa(p .3))



x H? “lexp~ (313

The postenor parameters are

N+2 ._ SSF

B=(XTX)XTM, Q" =HXTX)

~
I

o
I

rd

3.6. Normal Linear Regression Model through Independent Normal-
Gamma Prior.
By using natural conjugate prior wherever p(8/H) existed a normal density

and p{H) a gamma densiy Here we ublize a same prior then one which expects prior

independence amongst § and H

Specifically we adopt p(8, H) = p(B) p(H) with p(B) cxislence normal

distribution and p(H ) being gamma distribution PDF

0=l en| o0 0 (0-0)] e
12mhz
and
p(H) = c;'H 'exp(—Hb) (313)

where "¢, "1s the integrating constant used for the gamma pdf Thatis 8= £ (8|M) s
still the prior mean of f and @ 15 the vamance covaniance matrin of 8
Where var(f|H) = H™!'Q For cleamness we are uuliang the similar illustration as in

the ikehhood function in matny procedure Where in p(H) "a™ 1s the scale parameter
and "b" shape parameter The parameter in p(8) and p(H) can be find through

Eheitation process
By the combination of Lquation (3 14} and Equation (3 15) we deselop the concluding

result of normal gamma prior 1s
P(B.H) « fexp|-2(8 - OB - ]} 1H* eap(~t)) (3 16)
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3.7. Posteror Distribution Under Normal-Gamma Prior

Posterior disiribution 1< obtammed as follows
p(B. HIM) o p(B, H)L(B. H) (317

p(B.HIM)  {exp[-2(B— £ Q7(8 ~ B]} {H T exp(~Hb)} x

?[exp[——(555+(3 3 x7x(8 - ﬁ))]} (318

—H (b_ﬁﬂ'—”

M
+2-1
= H"=2 erp

etp[—- ﬁ B) o {(s-p)+ (8-
B Hxx(s=5)

= H TleypltHb ] erp[ ((»8 ﬁ) e (ﬂ - E) + (8- 8) HYX(g - B))l ¢
Taking the pan

(6-8) 0 (s-8)+ (8- B HxX(8~ )

Afier simplification we get that

_ o 2
= {} -lexpl‘—i'fh )ETDI-';'(er + ”XTX)(ﬁ‘" W) ] {320)

QI+HYTA
u,'=|:z+—t_i and b, :b+—
As we know that
07t =(0' + HxTx)

g=(0+ HXTX)_I (3 20)

0“£+HXT¥B Q ' p+nxTxp

g=2

Q- '+uxTy G-



B=Q(Q'8+HXTXf) (321)

Where f§ 15 the mean and § 1s v ar-cov matriy of posterior distribution Howeser it must
be stressed that both distribution of normal Gamma prior and likelthood function do not
rclate directly to the postenior of interest p(8, H|M), but moderaltely to the conditional
posterior p(B|M,H) and p(H|M,B) Since p(B,H|M)} = p(BIM,H) p(H|M, ) the
condironal posteriors of kernel multivanate normal  distribution and  gamma
distnibution do not straightforward However. here 1s a posterior simulater known as
the Giibbs sampler which utihized condinional posieriors ike kemel multivariate normal
distribution and gamma distribution to create random draws fY¥ and H¥ toru =
1,2 U, which can be a midpoint to create approsimations of postenor propertics

only as through Monte Carlo integration
3.8. Building Elicited Priors Utilizing Linear Regression

Spetzler and Holstein (1975) categorized the elicitation process in three stages

Determimistic ehieitation requires experls for the clicitation process which can
carried out the procedure by specifsing the explanatory variables and prior paramelters

in the eviting model

Probabtlistic elicstation where experts are being mterviewed and assessor used (wo
approaches and assessor would ashed fined value query with probabihty answer as

fixed probabilistic query with a value answer
Informational elicitation where the assessor determines the internal consistency

The ehcited priors are established from experts The important task s the
interpretation of slatements into precise probabihity statements 1his method expands

from famitiar assignments 1o explanatory elicitation 1deas and even regression analysis

ol
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It1s a method Lo enquire the assessors 10 provide conclusion vaniable levels associated
with suitable cumulatuve probability degrees (V-method) These assessors give values
for the desired median the 3% level the 959 level or other natural imits The results
are then non-parametrically summarnzed which are utilized as mput into parametric

fammly of priors for example the normal‘students-t

Suppose a general example where the ¢examiner ashs an expert for predictions
on a probabie results for an intenal-measured ncident The (v-method) quesuon 1s
generally what will be a probable short value outcome 1n the lorm of a 0 25 quantile
{x,)and a probable high value in the form of a ¢ 75 quantle (x;) These outcome helps
the researcher 1o sdentify a normal distribution for this incident The 1wo provided
quantile values xy and x;, correlated to z;=0 25 and 2,= 0 75 complelels 1denudy the

nature of a normal pdf Here, we have two equations and 1wo umidentified parameters

Here o and'p represeni the mean and standard deviation of parameters o! the normal

form

F(¥a. B = —— exp (Z2)

2 2
(2np? s d

Solving these equaton for @ and 5 we have a well-defined prior distnibution from the
elicitanon  Individual expert 15 usually nsufficient so we query from j expens
where ) = 1,2, J Construcung an over-specified series of equations as there are
J « 2 equations and only two umdentified We may ask from cach expert (o provide us
Just more than two guanules and it s alwars considered more reliable 10 have many
assessed points Here every assessor tv ashed 1o provide three quantile values at

M =]090 095 099] carresponding to standard normal points 7,



Now we are able 10 re-expressed (1) used for the quanule level M specified by

experis j = xy = a + fz,, Consequently the total number of experts elicited the
™ M q - pc

results constitute over-specification (M ~ 3 equations and 2 unknowns) of a normal

distribution
xp=a+fo vy =a+fn -y = @ By X = @+ By
X2 =+ B, Xy = a+ iy EM-r)2 S Ot Byt = @+ fou,
Gy =a+ 3.0 = a+ s Xm-1)3 = At Bymo i Ins = @ + B

The solution suggested by this arrangement 1s to run a simple bivariate linear regression

as a 15 the intercept and £ 1s slope
3.9. Elcited Priors on T (Precision)

It 15 not easy for researcher to understand directly about the standard dex 1ation
variance or precision but 11 1s comparauvely casy 1o think about percenules of
distnbution of data values y, (Not to be contused with the percentiles of the disiribution

for p that we just used)

For example a couton grower will be capable to propose about how many
bushels per acre of land he would go bevond in one vear out ot 10 or 9 vears out ot 10
years [t will be casy for instructor to propose about the 90™ percentile of ¢xam score
1€ Yggg Shows that 10% students score above this level it will be better 1o think about
lower percentile 1¢ vy To provide a prior guess for mean the assumption of
independence of mean and vanance informanon about these perceniiles provide us the
value of vanability It s essenual for researcher 1o investigate a compatible guess for

percentile suppose ¥y 1 and 10 analy ze how best that guess s



The most tavorable guess tor yo g gives us a favorable guess for 1 and 6 as
and o0 As we know that yq40 = a+ 1 280 usualls we marked o percentile of data as
Y« @nd a percenttle of a standard normal as z, using a and ¥, 1 e our best guesses used

for a and y, We have

Ve=a+2.0,=2a+1z, ’I/TU

Which contributes our best guesses used for the standard deviation and precision as

Go = (s — 2)/2,, T = [2“/(}7a - a)]2

For our mstructor the best guess for the mean grade p was a = § Suppose that
the best guess for the 90™ percenule of individual test scores 15¥g90 = 8 That

corresponds 1o a best guess for the standard deviation a and the precision T
O = 81 g = \9]

Correspondingly a best guess used for T or ¢ 15 insufficient so we need some 1dea ot
uncertainty about T or ¢ |orthese prior Gamma distributions 1o model best guess for t
or ¢ we adjust pnor guess to prior mode (Note that if the prior mode 1s veny close to 0
as 18 (tg = 91} 1t will be very compheated to find a Gamma distribution numericaily

with that mode and specified small percentile (say 0 10)

As a best Bayesian we assumed that parameter ¥, 1~ modeled with a distribution
and ¥, 15 measures of the midpoint of that distnbution Now we inguire the expert to
provide us a percentile for the disiribution ot y, We remember the instructor that his
besl guess for Yogp Was Fpgg = w and how more than w wonsiders g4 possibiy  In
common we proceed this upper bounds say G, to be the 90 95" and 99™ percentile of

the distnbution Certainly we should work with a lower hmit if possible
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If wetake P(y,—0G,) = 0 95 so we then argue that
095 =p(u+ zp0 < lig/p=a)
=pla+7,0 <iiy)
=plo € {1, —a)/zy)
=p(r 2 {z,/(1; —a)}H)
Therefore the 95™ percentile used for o and the 5 percentile used for T will be,
Goos = (U, —a)/z, Toos = [24/(li, — a)]*

If our msiructor trusis that the 90™ percenule of tes( scores muay possibly be no longer

higher than fig 5 then with a we have
Ongs = @ Tggs = w

Firstly find a Gamma ().f) distnbution for o that 1s concenirated <Jose oo and has 95

percentile &, 95 Compare the mode of the Gamma (). f) 1o Og. 50

oo = (—1)/f or J=1+o5f
If we can specify a value for 7, the process will be complete
We have to discorer fso that the Gamma (1 +ayf f) disinbution has 95™
percentile @y 45 Thus can be developed by utthzing amv PC schedule that measure
percentile of the Gamma distribution Simply continuous attempting for distinctive
estimations of f until you calculate G, 45 as here 95™ percentile For our illustration we

require @ mode &, and 95™ percennle of 8 This ha pens with a Gamma (x, v)
q P p

distribution General our independence prior for the mstructor 1s
o ~ Gamma(x, y)

Otherwise we can find out a Gamma(c, a') distribution used for t that has mode
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T, =(c—1}/d or c=1+1,d

Furthermore 5™ percennle 744 which 1s agan refined by trail and mistake For better
understanding. we have a mode of fyo5= 9, and 5™ percentile of 7, 05= ¥ These
amounts are near 0 and Gamma distnibution with minor modes that will be extremely
shewed 1t 1s difficult to find out a Gamma distribution that justifies these mits We

sugpest that data elicited about the 3™ percentile of y,, instead of the 95" percentile
3.10. Ehcitation of Hyper-parameters

Ehertation of hvper-parameters modifies the expert opmions for special
objectine 1nto a probability model 1t 1s a scheme 10 1dentify the hy per-parameters of
the prior distribution It can be utihized for acquiring the posteror distnbution and
advance analysis Aslam (2003) recommended distinct approaches of ehicitation

constructed on prror predictinve distribution for the hy per-parameters

In this study  PV-method 15 used which 1» based on distinct expent values
according to distinct probabilities ot parameters means and vanance (precision) tor
single expent and single probabilities we <an solve it through simultancous equation
and for numerous cxperts and numerous probabilities we can take the help of
R-Pachage and also find n this way hyper-parameter of preciston of the Normal

Gamma distnibution

We have completels explained these two methods 1n section 3 8 and 3 9 Based on the

abore method, the following priors of hyper-parameters have been elicited



lable 3 1 Ehuited values of hyper parameters

Node Mean VYarance Precision

Intercept -2509 () 80496 1543

Aggregate demand 2455 0 0456 480 917

Price 052714 0 06786 21754

Interest rate -1 90505 04824

Hyper-parameter {or precision are clicited as 1 0603 for shape parameler and 0 009 for

scale parameter
3.11. Gibbs Sampling Designed For Linear Regression Model

W e presented the procedure of estmating hnear regression Model by utihizing
Gibbs sampling Consider the estimation of the preceding regression model (hrough

Gibbs sampling
M, - BX + i, (324)
where #,~N(0 1)
B = [0, B1. B2. B3]
X, =[1,7Y P R]

Where M, 1s the money demand function 1n Pakistan over the period 1960 10
2014 Let X; = [1, Y, P, R] designate the right hand side vanables in the equation
(3 24y and B = [y, B\, B2, B3] the coefficient of vector Our target s 10 estimale the
marginal postertor distnibution of £y, 81, 8>, 8: and 1 arc discussed above, these

margenal distributions arc apalytically more problematic 1o denve We derived the
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posterior distribution of B={f,, 8, 8, 85] Conditional on 7 and the posterior
distrtbution of 7 conditional on B=[fy, f1, f2, 81] An appronimation of this model

continues 1n the following phases

The poslertor distnibution of T conditional on B= [f,, 81, 8,, B;] estimation of this

model continues 1n the following phases

Phase 1 adjust priors and nitial values We adjust a normal priers for the coefficients

B
a® Yoo O 0 0
Plf o ¥ 0 0O

B~ 1 »
PESNIgell 0 0 3w 0
gr/\oe 0 0 T,

fo f1

2 - P

plo) r(2'2)

To imualize the Gibbs sampler we need imtial value for 1 or B In this model we

assumed that the imual value for T = 14, Where T 4 15 the OLS estimates of 71

Phase 2. Specified a valuc for 7 we sampled trom the conditional postenior

distnbution of B The normal distnbution with a known mean and vanance speciiied
H(B/t, M) ~ N(M", V")

Where




We have all the ingredients to calculate that M*and V7are 4 x 1 and 4 x 4 matriv
respectively We now need a sample from the normal distnibution with mean M~and

variance V*
For this we can use the followsng algonthm

Algorithm. 1 To sample a k X | vector denoted by zlowling from the N (m, v)
distribution  First generate k x1 number from the standard normal distribution (call
the z%) These standard normal numbers can then be transformed such that the mean 15

equal to m and variance equals v utithzing the tfollowing transtormauon
1
z=m+2z" xv?

We added the mean and multiphies z° by the square root of the vanance The procedure
in algorithm } recommended that once we have calculated M and V-, the draw for B 1s

acquire as
Bl =M +[Bx (V)

Where B is a 1 X 4 vector from the standard normal distribution The superscript 11n

B! represents the [irst Gibbs iteration B

E(f 1 )
W gy 2zl oo
E(Bs)

O3y J3; J33 U3y
Jy1 J42 O45 Oyy

50] r(ﬁo) gy Gy O3 G4

Eu E(ﬁﬂ)
A | _ |E(B) ,
l-i’z = E(ﬁz) +[85 5, Si 54
B3 E(Ea)
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Bo ‘E(ﬁ[’) 5
Bl — E(gl) + 52
g |EB)| |5
gl eyl B
g1 [E(Bo) + 8 1
bl |E@)+s:| |2
i E(ﬁz)*’% 3
Bl LE(f;) +5, 3

This 1s the 1" eration of mean
Algonthm 2, To a sample a scalar from Z the normal gamma distrtbution with degree
h

of freedom %and scale parameter = ¢ e,F(‘%’,%) Generates f; numbers from the

standard normal distnbution z®~ N(0,1) Then

El = 61220
(211 21z 211 Zad]
_ 52 Y21 X2z X0y Yo
YE Tz Tiz Tas
Ya1 2az Xz Ll
PETEEY 0 07
=52 ¢ X, O 0
100 ¥y 0
0 0 0 ¥,

This 1s the 1 1eraon of 67 Theretore the 1% complete iteration 1 model form

15 EOng Bz Bs and 6—12
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Phase 3 Repeal sieps 2 and 3 M umes to obtam 8' B2 ,B8% and
(e}, (62)?, (a%)™ The last H values of B and g2 from these iterations 1s used
from the empinical disinbation of these parameters This empirical distribution ts an
approximation to the marginal pastenior distnibution  The imihals iterations which are
discarded are referred to burn-in-itcrauons These are the number of iterations required

for the Gibbs sample converges
3.12. Convergence Diagnostic Tests for BLR

For summarization of the posterior distibution to compute any apphcable
amount we used simulated draws In Bavesian inference the Marhoy Chain Monte Carlo
{(MCMC) methods generate samples and utihzed these samples to estimate expectations
of measures of interest from the postenor distribution For the procedure vou need to
choose whether Markoy Chain achieved 1ts stauonary and vou need 1o indicate the
number of 1terations at the point where the Marhov Chain has achieved stationarity
Sull before bullding any estimation you must chech the comvergence of entrely

parameters tn your model by utihzing the convergence diagnostics

There are vanous staustical diagnostic tests introduce trace plots  autocorrelation

functuon Brooks Gelman Rubin and Meonte Carlo Standard Frrors
3.12.1 Trace plot

In the assessing convergences of trace plol are vers cooperative the trace plot
on the X-axis depicts the iteration numbers and N-awis 1s the estimated »alue of each
itcrations  The Trace plot also depicts that sour cham converges 1o the desired
distribution 1 11's required to longer burn-in period A trace plot also interconnects
where the chain 1s miung sutficient The teature ot slationen that are best identified

from a trace plot are reasonably constant mean and vanance The chain 1s a mined pood
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cover tts postenior distnibution are quickls Sometimes the iutial values of the chains
are very different [rom each other In this situation the conyergence 1s very problematic,
for this solution we discarded the | few thousand iteravions In Fig (4 1) 1he trace plot

specifies that the chain 1s reached to the dewired distnibution

3.12.2 Brooks Gelman-Rubin Test

F'his test can be used for multple chains for each chain has different inmal
values This test depends on runming paratlel chains from joint runs 1s green, the central
size of the 80 °% interval within the single runs 1s blue and the proportion R =
(ot within} is red R would normally be estimated 10 be larger than 1 1f beginning
values are appropriate completed dispread Brooks and Geltman { 1998) highlighted 1hat

one should be related mutually the pooled and mnside interval sizes to stabihiy

The staustic R can be estrmaied by

- 55
- v -1 fr R
R=—m=——+ U
WSS T Wwss 1Y

Where K ss the number of generating samples {chains) T Is the number of 1terations
retatned in each sample (chain) B“/T does the vanance of the posterior mean values

over all generated samples‘chains (b/w-sample vanance) WSS 1s the mean of the

varnance within each sample (with in sample varabihity)

T-1, ,cc L BSS A+1
— WSS+ — —
T T A

V=
Where I 1s the pooled postenior variance estimate W hen conv ergence 15 achieved and

the size of the gencrated data 1s large  1he values R s approaching 1o | designate

CONVErgence



3.12.3 Monte Carlo Standard Errors

In the inference of the MCMC out comes a sigmificant measure that must be
teshified and shown 1s the Monte Carlo Error (MC error) which measures the vanability
of eveny estimate due lo the wimulauon MC Crror must be small in the direction 1o
estimate the parameter ot importance with increase precision In the event that you run
the chatn until the Monte Carlo Standard deviance 1s under 5% of the for all parameters
of awareness. the chain has no bad minving For further complete evplanauon ol MC

Crror see lines Ntzofras (2009) Bayesian Modething using Winbugs
3.12.4 Autocorrclation Function

By cheching the level of dependence expression at the estmated ACF The
purpose of integers J thal provides evaluated assocration bw 8% And 8**/ After
burming this correlation must depend on the lag J but not on k It 1s calculated as the
sample  correlation  between the  pairs (8%,6841) L =12 s™h 1 the
autocorrelations are close to 7ero except 1o sav the 1" two / = 1, 2 then we could take
each third 8%%, L = 1,2 s atter the burn in this sample be nearly uncorrelated its
throw away information unless there 1s extreme autocorrelation ¢ g high association
even with say f = 30 By drawmng the graph in winbugs ol ACFE on the top to Jook
good Ifthe ACF rapidly approaches to zero and stay there the chain is also good mivang

then there s no autocorrelation
The sample autocorrelation of lag h s defined 1n terms of the sample auto covanance
function

- th)
P(h)=h Al <n

1 he sample autocorrelation funcuon of lag h s defined
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() = -=5iMer"-8,) Osh<n
3.12.5 Overall Goodness-of-Fit of The Model

With a specific end goal to check the whole goodness-of-fit we can compute
“R*" measure 10 1dentify the reduction of the error vaniance because of the ey planatory
variables involved in the model Therefore we can recycle this amount utihzing the
sample vanance of the reaction vanable M namely "Sg", utilizing "R*" Stanustcs

specified by

RT= 1-L1 =1- 2
- si sk

Anywhere 15 "S%" 1 he sample vaniance of "M" This capacits can be understood as the
proportional decrease of uncertainty regarding the response vanable M compleled by
including explanatory vanables X, In the Model Moreover 1t can be viewed as the

Bayesian tnvestiganon of the adjusted coefficient of determination

Rl =1- =
adj gft

where

G2 = ;Z(yl -j};)z with ¥ = Bu+ZXuﬁ;

n-pn
where

ﬁ,, are the Maximum hikelihood esumate of 3,

3.13. Credible interval

By calculaung Sigmficant posterior Model probabilities usually requires the
ehicitavon of informatine prior For the Bayesian desires to do Model 1esting or
comparison with a non-informative prior there are some other techmques which can be

4
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utlized By outlining the ideas 1n the situation of the parameter veutor £ in the Normal
hinear regression Model but they are quiie general and can be used with the parameters

of any Model Let the components of the vector of regression coefficients § can each

he answhere in the mierval (-o0, 00} which 1s denoted by g € F*

[et X =g (ff) be some m-vector of functions of "8" which 1 well-defined over

Region ‘(. where m < k Let N be a region inside 12 denoted by N <0

Credible set:

Let X = g(ff) = B, a single regression coelficient [ ormerlsy a 95 % credible interval

for §, 15 any nterval [a’,fv] simtlarly

b
pla< B, <b/M) =f p(B,/M)dB, = 095

Several possible credible intervals are normal

For illustration that 8, /M ~ N(0,1) By using statisiical 1ables for the standard normal
we find that |—196, 196] 1s a 95% credible mternval as 1w [—1 23,

345} and [—1 64, o] etc We can pick the Jast internval

HPDI
A 100 (1 - @) % highest postenior density nterval tor X 1s a 100 {1 - @) o credible
intenval for X with the property that it has a minor range any other 100 (] - a} %o

credible nterval for X Though doing Bayesian approximation for introducing the

highesl pastenior density 1t 1s recogmzable 1n count to point the esumation
Forillusiration the researcher impact data a posterior mean in addition to a 95%
HPD ol B, The researcher s 95%6 confident that in the HPDI §, hes within the HPDI

Consider torillustration tw o normal hinear regression models as (Y = Xf + @)y and tha
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pont of significant whether the explanatory variable must be 1 olved Consequently

the two models under atlention remain
wo B,=0
w g, 20
By using t-distribution properties HPDI can be designed for £, tf1hes HPDI does not

contain zero, then this 1s indrcated against wy, A conclusion that the HPDJ dues contan

zero 1s taken as indication 1n preferning of w,

The scholar who 1denuifies trequentist Fconometrics will identify  the
comparison of this methodology with the commaon hy pothesis that £, = 0 can be done
by compunng a confidenrce mierval for B, I zero hes in this confidence mterval then
the hypostsis 1s accepted 1f 1t doesn t the hypothesis 1s rejected Conlidence imervals

have a many different interpretation from HPDI
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Introduction

This chapter contains posterior estimates along with results of diagnostic tests
under uniform priors Posterior estimates along with results of diagnostic tests under
Normal-Gamma priors are also presented These 1wo t pes of results are compared At

the end, prediction results of money demand due to change i nterest rate are grven
4.2. Posterior Results Using Non-Informative Prior Through UP

Posterior summaries of the model using the non-informati e uniform prior have
been calculated (1abhle 4 1) aller running the MCMC algonithm for 2500000 wterations
and discarding additional 900000 1terations as a burn n period and thinning inferval 1s
200 The final posterior summaries on 24000 samples are provided as a1 1 %% ncrease in
aggrepate demand causes a 2 4819% increase on the average in money demand Whereas
the average effect may vary from 2 39310 2 569 which 15 95°, credible micrval On the
basis of 95% credible interval coefficient esnmate of aggregate demand 15 sigmificant

as the interval doesn 1 contam 0

I unit change 1 pnice causes 0 3323% increases on the average m money
demand Whereas the average effect may vary from 0 4231 to 0 6416 which 1s 95%

credible interval for the average effect of price on money demand
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Table 4 | Posterior result using non-informativ e through UP

Estimate

Standard

Error

95 % Credible

Interval

Lower U pper

Bound Bound

Sigmficance

Intercept

14U p328

01239

Agpregate

Demand

U 04488

89549 4

Price

105552

B 657k 4

Interest

Rate

0 8147

000744

(HU5995

3 943k-6

On the basis of 93% Credible in1en al coefficient estimate of price 1 significan|

as the interval doesn™ cont.in O

I umit change in iterest rates causes 1 401°% decreases on the average 1n money,

demand Whereas the average effect may vary from -3 044 to 0 02597 which 15 95%

credible interval for the average effect of mterest rate on money demand On the basis

of 95% credible mterval coefficient esttmate of the interest rate 1s msignificant as the

interval contains 0

From the 3" column the estimated postenor mean and median 15 actually close

sigmfymg that the posterior distribution of all parameters may be symmetric In fact the
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posterior distnbution with a mean in this model 1s known to be a normal R indicates

that the ovcrall model 1s a good fit
4.3. Convergence Diagnostic Plots of UP

There arc multiples convergence diagnostic plots of UP prtor mode] which can be

mterpreted in convergence of the target distribution which are given below
4.3.1. Trace Plots of UP

From the 11g (4 1) we sHustrated that the trace plot of samples viruses the
stmulation numbers {index} runming the multiple chamn 3 each chain indicating a
different color In this situation we can be reasonably confident that convergence has
been achieved because all chains appears (0 be overlapping one another The trace tells
that the chain 1s converted to (he stationary distribution after the longer bums 1n the
period The feature of stationary that most familiar from a trace plot 1s a relatively
constant mean and vanance | he chain that mines well converges (o 1ts posterior space
rapidly  This figure also shows a perfect trace plot Because the center of the chain
appears Lo be around constant mean values with very small fluctuations This mdicates
that the chain would reach the target (right stationary) distribution We concluded that

the miving 15 sufficient good for each parameters
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4.3.2. Kernel Density plots of UP

From Fig (42) the kemel densits plots alternative visuahizations of the
simulated Marginal posterior distritbution of the parameters The marginal posterior
densities of fiy. By f,. f3and T Under Non-informauve prior look normal kernel
density plots indicate that the Bayesian point estimate (ypical posterior mean {or
posterior median) and the range between the 2 5™ and 95 5 percentile represents 95%
Bayesian confidence interval also called credible intenval The numerical outcomes of
Bo. B1- B2. B3 and 1 (posterior means or medians) and graphical representation gives
similar results Hence the posterior kernel density designed to stabilize and converges

for ail parameters 8. 8,. B;. f;and T



Ftg 4 2 Kernel density plots of LIP
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4.3.3. Autocorrelation Function Plots of UP

The autocorrelation function plots from Fig (4 3) lor the chain of each parameter
as shown can also indicate the dimenston of the posterior distribution that are mining
rapidly Rapidls miving 1s often associated with low posterior corretation between
parameters The plots indicate that all parameters are mivang well with autocorrelation

vamishing before 5 lags in each case
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Fig 4 3 Autocorrelation function plots of L P
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4.3.4. BGR Plots of UP

Fig (4 4) BGR-plot indicates that the diagnostic plot generated for the 250000{)
values of 8's sampled from the 3 coins and discarding the 1™ 900000 The blue hine
represents the average width ot 80°¢ credible intervals computed from the 3 separaie
chains The green lines represent computed from the pooled data and the red hines 1s the
ratio of these two values The fig indicates that the ratio 1s | and the 3 chains converges

to its desired distribution




Fig 4 4 BGR plots of UP
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4.4. Posterior Results Using Informative Prior Through NG

From table (4 2) specified that the Posterior summaries and densities when
running the MCMC algorithm utilized for 2000000 werations and discard the initial
900000 ones and taking the thinning interval as 99 The final posterior summaries on
33333 samples are supplied as a | %6 increases in aggregate demand causes 2 48 %

increases on the average 1n monesy demand
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Table 4 2 Posierior result using informatine prior through NG

95 % ( redible

Estimate | Standard Median Interval Sigmificance

krror Lower L pper

Bound Bound

Intercept nnaTol 0 DU3693

Aggregdte u 0 02%4 I939F-4

Demand

Price tU36A8 36641 4

Interest 04134 0002315

Rate

Precision M 005087

R R661-1 | 394310

Whereas the average etfect may fluctuate from 2 43 to 2 53 which 1s 95 % credible
interval apggrepate demand effected on money demand On the basis of 936 credible
intersal coelMicient cstimate of agprepate demand 1s significant as the interval doesn 1

contain {

I umit change mn price causes 00 337 ° increases on the average Im money
demand Whereas the average effect may fluctuate from 0 465510 0 610 which 15 95 %0
credhible interval for the average effect of price on money demand On the basis of 95%
credible interval coefficient estimated ot price 15 sigmificant as the mienal dousn’t

conttain 0



1 unit change 1n interest rate causes -1 753°¢ decreases on the average in mones
demand Whereas the average effect may vary from -2 563 1o -0 941 which 1s 95%
credible interval for the average effect of interest rate on money demand On the basis
05%, credible inten al coetficient esiimate of interest rate 15 sigmificant as the imtenval

does not contain 0

From the 3™ column the estimated posterior mean and median 1s actually close
specifyving that the postenor distribution of (all parameters} may be symmetric In fact
the posterior distribution with a mean in this model 1s known 10 be a normal From the
table we also depict that the informative prior Model has a sigmlicant improvement as
compared to non-informativ e prior Model of the precision eftects in the preducuon of
Money demand while containing in the Model as other explanatory varables as
Aggregate demand. Price and Interest rate from the result ot R indicaie that the mode]

I1s the best fin
4.5. Convergence Diagnostic Plots of NG Prior

There arc muluples comvergence diagnostic plots of NG prior model which can be

interpreled in com ergence of the target disinbution which are given below
4.5.1. Trace Plots of NG Prior

From Fig (4 3) we depict that the trace plot of samples viruses the simulation
numbers (index) runming the multiple chain 3 indicating each chain has a differem
color In this situanon we can be pracucally self-possessed that convergence has been
realized because all chasns appears to be intersecting one another The trace tells that
the chain 1s converted to the stationary distribution afier the longer bums in the penod
The feature of slanonary that most 1dentifiable from a trace plol 1s a considerably

constant mean and vanance A chamn that mixes well crosses its posterior space quichly

.
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This figure also shows a perfect trace plot Because the center of the chain

performs to be around constant mean values with very small fluctuations

This indicates that the chain would reach the target (right, stationary)

distnibution We concluded that the mixing 1s quite good here for each parameter
4.5.2. Kernel Density Plots of NG Prior

By obtaining from the g (4 6) that the kernel density plots alternative
visuahizations of the simulated Marginal postenior distribution of the parameters The
marginal posterior densities of B, By. f. Bz and T Under intormatne prior look
normal kemel density plots indicate that the Bayesian pomnt esuimate typical posterior
mean (or posterior median) and the range betwcen the 2 3" and 95 5 percentile
represents 95%¢ Bayesian confidence interval and 15 also called credible interval The

numerical outcome of B, 1. B2. f2 and 7 {posterior means or medians) and graphical



Fig 4 6 Kkernel density plots of NG prior
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representation give the similar results Hence the posterior hemel density

destgned to stabilize and convergence for all parameters of By. B, B> Bsand precision
4.5.3. Autocorrelation Function Plots of NG Prior

I'he autocorrelation function from Fig (4 7} for the chain of each parameter as
shown also indicate the dimension of the posterior distribution that are muxing rapidly
Rapidly mining s often associated with low postertor correlation between parameters
The plots indicates that all parameters are mixing well with autocorrelation vamishing

before the starting lags in each case
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Ftg 4 7 Autocorrelation function plots of NG prior
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4.5.4. BGR Plots of NG Prior

Fig (4 8) BGR-plot indicates that the diagnostic plot generated lor the 2000000
values of 8’s sampled from the 3 chains and discarding the 1™ 900000 The blue hine
represents the average width of 80% credible mtervals computed from the 3 separate
chains The green lines represent computed trom the pooled data and the red lines is the

ratio ol these two values The fig indicates that the ratio s 1 and the 3 chans are

conyerged
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Fig 4 8 BGR plots of NG prior
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4.6. Posterior Predictive Distribution and Simulation Analysis of

Interest Rate.

In the previous scction, estimated model 1s presented along with diagnostc
tests Results of dragnostic tests establish validity of the model and hence. it can be used
for predictrion and forecasting L'nder Bayesian framework prediction and forecasting
1s done by constructing posterior predictive distribution If we have a normal hinear

regression model as in [quation (3 3) by likehhood and prior assumed 1n Equation (3 4)
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and Fquatien (3 16) Posterior inference can be completed using Lquation (3 21) and
Equation (3 23) We need predictive inference on T unobserved estimation of the
dependent vanable which we designate by M™= (M, My which produces as

indicated by

M = X"+ (41
where g* Is independent of pand s N(0, H™'/:}and X°1saT x K matny similanines
10 X. holding the K explanatoray variables for each of the T out-of- sample information
points

One method for denving Lhe predicuve pdf ts to record the joim pdt ot
p{M". B, HIX, X", M) and integrate regarded £ and H 10 achieve the marginal pdf 1o

M*" which s the predictive pdf
p(M™, B HIX, X" MY=] [p(M*|B.H.M)p(B, HIM.X)dBdH (42)

[ he statement that g° 15 independent of p sugpests that M and M™ are independent of
each other and therefore p(M*|f, H, M) = p(M"|8, H) The concluding expressions

can be writlen as

r
pIM*|B.H.M) = exp [~ (M~ X"BY(M" - X"f) (43)
(zm)?

Muluplring Equation (4 3) by the postenior specified in | quanon (3 16) and Equalon

{3 181 and imegrating produces a multivanate-t predicus e density of the form
MM ~ (X572 + X7Qx" ), 7) (44)

Using the above posienor predictive distribubion money demand s predicted for

various values of mterest rate and the resulis are presented in Table (3 3) Results show
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that as the rate of interest increases money demand decreases i the economy For

every change of 0 5 percentage point. there 15 | 0032 percent imverse change 1n money

Table 43 Simulanon analy s1s of interest rate

Predicted

log {M2)

% Ainlog

(M2}

M2

{Rs. Millions)

95% Credible Interval of

M2

15870934 29

11640488 89

15870934 89

-2 02013

15556665 32

11409991 76

15556669 32

15401877 &3

11184058 79

15401877 88

-2 02013

15096900 26

1107277555

15096900 26

15096900 26

10962595 59

15096900 26

-1 00502

14946623 59

10962595 59

14946683 59

14946683 59

10962595 59

14946683 59

14946683 59

10962599 59

14946683 59

14546683 59

10962599 58

14946683 59

14946683 55

108535199

14546683 59

-100502

14797961 61

108535199

14757861 61

14797961 61

108535199

14797961 61

14797961 61

103853519 9

14757961 61

bl




01 16 51 0 14797961 61 108535199 14797561 61
01 16 51 0 14797961 61 108535199 14797561 61
01 16 51 0 14797961 61 10745525 57 14797961 61
01 165 100502 14650719 43 10745525 57 14650719 43
01 165 0 14650719 43 10745525 57 14650719 43
01 165 0 14650719 43 10745525 57 14650719 43
01 165 0 14650719 43 10745525 57 14650719 43
01 165 0 14650719 43 10638605 81 14650719 43
01 16 49 100502 14504942 33 10638605 81 14504942 33
01 16 49 0 14504942 13 10638605 81 14504942 33
01 16 45 0 14504942 33 10638605 81 14504942 33
01 16 4% 0 14504942 33 10638605 81 14504942 33
01 16 49 o 14504942 313 10632605 81 14504942 33
01 16 49 0 14504942 33 10532749 91 14504942 33
01 16 49 0 14504942 33 10532749 91 14504942 33
01 16 49 0 14504942 33 10532749 91 14504942 33
01 16 49 o 14504242 13 10532749 51 14504942 33
01 16 49 a 14504942 33 1053274991 14504942 313

N



01 16 48 -1 00502 14360615 75 10427947 3 14380615 75
01 1648 0 14360615 75 10427947 3 14360615 75
01 16 47 100502 1421772523 10427947 3 14217725 23
01 16 47 0 14217725 23 10427947 3 14217725 23
01 16 47 0 14217725 23 10427947 3 14217725 23
01 16 47 0 1421772523 10427547 3 14217725 23
01 16 47 0 14217725 23 10427947 3 14217725 23
01 16 46 100502 14076256 5 10324187 49 14076256 5
01l 16 46 0 14076256 5 10324187 49 14076256 5
01 16 46 o 14076256 5 10324187 49 14076256 5
01 16 46 0 14076256 5 10324187 49 14076256 5
01 16 46 0 14076256 5 10324187 49 14076256 5
01 16 48 0 14076256 5 10324187 49 14076256 5
01 16 45 -1 00502 13936195 41 10221460 11 13936195 41
g1 16 45 0 1393615541 10221460 11 13536195 41
a1 16 45 0 13936195 41 10221460 11 13336195 41
01 16 45 a 12936195 41 10221460 11 13936195 41
01 16 45 0 13935195 41 10221460 11 13936195 41
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01 16 45 0 139356195 41 10221460 11 13936195 41
01 16 44 -1 00502 13757527 95 10119754 3% 13797527 95
01 16 44 0 13797527 95 10119754 88 13797527 95
01 16 44 0 13797527 95 10119754 BR 13797527 95
01 16 44 a 13797527 55 10119754 88 13797527 95
01 16 44 0 13797527 95 10115754 38 13797527 95
01 16 44 0 13797527 95 10015061 63 13797527 95
01 16 43 -1 00502 13660240 25 10019061 63 13660240 25
01 16 43 Y 13660240 25 10019061 63 13660240 25
01 16 43 o 13660240 25 10019061 63 13660240 25
01 16 43 0 13660240 25 10015061 63 13660240 25
01 1643 0 13660240 25 10019061 63 13660240 25
01 18 42 -1 00502 13524318 59 9919370 306 13524318 59
01 16 42 0 13524318 59 3919370 306 13524318 59
05 16 41 -1 00502 13389749 37 9820670922 13329749 37
g5 16 41 0 13389749 37 9722953 614 13389749 37
05 16 4 100502 13256519 14 $722953 614 13256519 14
a5 16 39 -1 00502 1312461457 9722953 514 13124614 57
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145 05 16 38 -1 00502 12594022 47 9530426 233 12954022 47
150 1355 16 37 -1 00502 12864729 79 9435596 907 12864729 79
138 134 5 16 36 -1 00502 1273672359 9341711 149 12736723 59
16 05 16 35 -1 00502 12609991 07 9248759 57 12609951 07
165 05 16 34 -1 00502 12484519 57 5156732 875 12424519 57
1” 05 16 34 0 12484515 57 9065621 861 12484515 57
175 05 16 33 -1 00502 12360296 52 8975417 416 12360296 52
14 05 15 32 -1 00502 12237309 51 2975417 416 12237309 51
18 & DS 16 31 -1 00502 12115546 25 8886110 521 12115546 25
19 05 16 3 -1 00502 11994954 55 8797692 244 11994954 55
19 4 05 16 29 -1 00502 11875642 36 8710153 743 11875642 36
20 05 16 28 -1 00502 11757477 75 8623486 265 11757477 75
205 05 16 27 -1 00502 11640488 89 8537681 143 11640488 89
| 05 16 27 0 11640488 89 2452729 796 11640488 89
218 05 16 26 -1 00502 11524664 09 8368623 73 11524664 0%
2 05 16 25 -1 00502 11409991 76 8285354 532 11409991 76
235 05 1623 -2 02013 11184058 79 8202913 877 11184058 79
23 0s 16 23 o 11184058 79 212129352 11134058 75
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-1 00502 1107277555

20404385 3

11072775 55

-1 00502 10962599 59

7960481 134

10962599 5%

1 00502 10853518 9

7881273024

108535199

108525199

7881273024

10853519 9

-1 00502 10745525 57

7802853 047

10745525 57

-1 00502 10638605 81

7725213 362

10638605 81

-1 00502 1053274991

7648346 204

10532749 91

-1 00502 10427947 3

7572243 848

10427947 3

100502 10324187 49

7496298 203

10324187 45

10221460 11

7422303 413

10221460 11

-1 00502 10119754 88

7348450 26

10119754 38

-1 00502 10019061 63

7275331 958

10019061 53

10019061 63

7202941 196

10019061 63

-1 00502 9919370 306

7131270 737

9919370 306

demand Thistesponse of money demand to change in interest rate remains almost same

for ali levels of interest rate, from 3% to 30%
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CHAPTER 5

SUMMARY, CONCLUSION AND FURTER RESERCH

This thesis comprises five chapters Chapter 1 provides the explanation of our
lapic and objectives of our study The core objective of our study 15 the esumation of

Money Demand Funcuon of Pakistan Economy by Lmploying Bayvesian approach

Chapter 2 provides brief discussion of the basic elements of Bayesian Inference
ncluding Bayes theorem lihelihood function. prior distnbution informative and non-
informative prior, choice of prior distnibution. MCMC simulation  Gibbs sampling
Ehcuation procedures. postenior distribution. and postenor predictive distrtbution This
chapter also discusses the concept of money the role ot money 1in an Economy. money
demand At the end of the chapter review of hiterature related to Bayesian regression
and Money demand models 1s presented We concluded that hierature contains ven
Iimited studies containing the applicanion of Bayesian analys1s approaches to general
Iinear regression Model Morcover there 15 no such study that contains money demand

tuncuion through Bayesian approach

Chapter 3 present specification of the model. Bayesian muluple regression
model 1n matrix form  derivation of posterior distribution through mformative and non-
informanive prior The model 15 specified on the basis of hquidiy demand theory
Elcitauon of hyper parameters 1s donte by usmg PV-method At the end of this chapter
convergence diagnosiic tests such as Trace plot BOR test MCSE ACF and overall

goodness of fit for Bayesian linear regression are presented
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Chapter 4 contains the numenical resulis of our mode] 1he same data set1s used
tor the Analysis of the Model using Non-informatve (Uniform priors) and informanve
(Normal-Gamma) priors 1o simulate parameters of the model Diagnostic tests establish
validity of both models We concluded that the estimated results are found by using
informative prior supenor trom non-informative prior We have observed thal the
results obtain via the Non-mformative prior are smaller precision as compare to
informatrve prror due to updated information provided Moreover standard errors of all
parameters are smaller in the results based on mformative priors as compare 10 non-
informative priors 1t implies thal the incorporated information through prior
distribution are useful as the results show larger precision Parameters estimates show
that aggregate demand and price level directly and sigmificantly aftect money demand
in Pakistan while interest rate negatively affect money demand m Pakistan The results
match 10 the theory of economics Moreover simulation results show that 0 5
percentage point change m mterest rate causes | 0032 percent mverse change in money
demand Hence monetary policy makers may use this prediction as guidehne while
changing level of mnterest rate in order to meet their specified goals abowm money

demand in the economy

For further research this work can be extended to include other macroeconomic
theories Moreover the model may be re-estimated on the basis of other non-

mformanive and infoermative priors and then results max be compared
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