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Preface

Many problems involving multiphase flow and heat transfer and multi-component mass transfer
arises in a number of scientific and engineering disciplines and is important in the petroleum extraction
and transport. Examples include the reservoir rock of an oil field always contains several immiscible
fluids in its pores. Zaturaska et.al [1] discussed the flow of viscous fluid driven along a channel by
suction at porous walls. King and Cox'[2] performed an asymptotic analysis of the steady-state and time-
dependent laminar flows in a porous channel. Some theoretical and experimental work on stratified
laminar flow of two immiscible fluids in a horizontal pipe as discussed by authors [3]-[6]. Chamkha [7]
studied analytical solutions for flow of immiscible fluids in pores and non-porous parallel plates. Later
on, Malashetty et al. [8]-[10] analyzed the MHD two-fluid convective flow and heat transfer in composite
porous medium. Recently, Umavathi [11] presented an oscillatory flow of unsteady convective fluid in an
infinite vertical stratum. Very recently, Umavathi et al. [12] discussed the problem of unsteady oscillatory

flow and heat transfer in a horizontal composite porous medium channel.

Motivated by these facts our aim in this dissertation is to study the MHD oscillatory flow in a
composite porous medium channel. In chapter 1 basic definitions and flow equations are given. Chapter 2
contains the detail review of the work done by Umavathi et al. [12]. Chapter 3 is carried out an extension
of the work by [12] by incorporating a constant magnetic field. The governing flow equations are solved
analytically using the perturbation method. The effect of various parameters on the velocity and

temperature profiles are analyzed through graphs and discussed.
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Chapter 1

Preliminaries

This chapter deals with some basic definitions and flow equations. The basic idea of
perturbation method is also included.
1.1 Basic Definitions

'1.1.1 Fluid

Fluids are the substances that can flow from one point to another. Liquids and gases are

classified as fluids because they can flow. An important property of fluids is that they ~ possess

* only bulk modulus and no young’s modulus and modulus of rigidity. Fluids play a very important '

role in many fields of our daily life. .

1.1.2 Fluid Flow

Moving fluids have great importance. In order to find the behavior of fluids in motion, we

consider their flow through the pipes. When a fluid is in motion, its flow can takes flow in

two ways, either steady (laminar) or ﬁnsteady (turbulent)

1.1.3 Density

The ratio of mass to the volume is called density of a fluid. The density p of a small element of
any material is the mass Am of the element divided by its volume Av, according to density there

are two main types of fluids; compressible and in-compressible fluids.

p=4m/ Av 1.1




.

1.1.4 Pressure

The pressure p on a planar surface is defined as the compressive normal force applied by the fluid
to the surface, FN divided by the area of that surface, 4. Mathematically, it is given by ‘

p=FN/A (1.2)

1.1.5 Internal Energy, Enthalpy, and Specific Heats of a Perfect Fluid

In the model known as a calorically perfect fluid, which we use throughout this text, the specific

heats are assumed to be constants. In this model the internal energy change u, ~u,, and the
enthalpy change, %, —A,, are related to temperature change 7, —7, by the equation§

u,— =, =T)

h—h=cp(T,-1) 7 (1.3)
The ratio of specific heats occurs so often in gas flow problems that it is given a special symbol

c
y=2 : (1.4)
Tev 3

Since the specific heats are constants for a calorically perfect fluid, the ratio of specific  heats is

also a constant.

1.1.6 Viscosity

When one layer of flowing fluid moves relative to another layer, an opposing force - comes N

into play. This internal friction between two layers of a fluid in relativé motion is known as fluid

friction or viscosity. In other words, the property of fluids due to which they oppose relative

" motion between their different layers  is called viscosity.

u=r /— (1.5)

dy

1.1.7 Coefficient of Viscosity

Coefficient of Viscosity of a liquid is defined as the tangential force per unit area required to

maintain a unit relative velocity between its two layers, its unit distance apart. Its unit in SI is

kgm~is7?
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1.2 Types of Flow

A fluid can be classified into different types which are described below

1.2.1 Ideal Fluids

An incompressible fluid having no viscosity is called an ideal fluid.

1.2.2 Laminar Flow

The flow is said to be laminar, if every particle that passes a particular point, moves along exactly
the same path, as followed by particies which passed that points earlier.

1.2.3 Steady Flow

A flow in which the fluid properties does not depend on time if p is any fluid property then
cp/ot=0 (1.6)

1.2.4 Unsteady Flow
A flow which is not steady is called unsteady flow. i.e. B
| op/ot=0 | )
1.2.5 In-Comprjessiblé Fluids | | |
Inh .great many cases o‘f the flow of_liciilids (and also of gases) their density may be supposed

invariable, i.e. constant throughout the volume of the fluid and throughout its motion. In other

words, there is no noticeable compression or expansion of the fluid in such cases. We then speak
of in-compressible flow. N

1.2.6 Compressible Fluids

If the density is vanable, i.e. not constant throughout the volume of the fluid and throughout its

motion, then the flow is called as compressible flow.

1.2.7 Newtonian Fluids

Even among substances commonly accepted as fluids, there is a wide variation in behavior under

stress. Fluids obeying Newton’s law of viscosity and for which g has a constant value are called




Newtonian Fluids. Most common fluids fall into this category, for which shear stress is linearly

related to velocity gradient.

1.2.8 Non- Newtonian Fluids

Fluids in which the shear stress is not linearly proportional to the deformation rate of the fluid are

called non-Newtonian Fluids. i.e. they do not possess Newton's law of viscosity

1.2.9 Divergence of a Vector

The divergence of a vector is denoted by V.V and defined as

o, o,

ov ov
-ng=5x-l-.e,+—”-.ez+—3e3 (1.8)

V.v=
axl ar]

" 1.2.10 1* Rivillin Erickson Tensor

Strain rate tensor or 1% Rivillin Erickson tensor is denoted by A and defined as

A= (grad V) + (grad v) T “ (1.9

o o u o |
. -__ 29 ay i T,‘__ 6x ax
Where, (gradV) = :av v and (grad_V) = QV_ _ ?X
ox oy oy _5}’

1.3 Governing Equations

The equations used to étudy the flow are known as governing equations. The following are the

some basic equations used in this phenomenon

1.3.1 Equation of Continuity

Before defining the equation of continuity we define the law of conservation of mass, this law
states that the mass of a control volume remains constant. The partial differential equation
representing conservation of mass is called the continuity equation.

Its mathematical form is given by

o v e eyt £ snn




pocp(

a—p-+V'.pV=0

ot

] 7}
For incompressible fluids 7p =0 therefore, the above equation takes the form

ie.

V.v=0

ou ov ow

—+t—t+t—=

ox 8)/ oz (1.10)

1.3.2 Navier-Stokes Equations

The Navier-Stokes Equations represents the law of conservation of momentum i.e.

o %(v) =dhT +pf (1.11)

_ = (7, 7 :
Where T is called Cauchy stress tensor defined as T :[ - ’y)= —PI+ uA, fis called
- :

»x Lidg

body force per unit mass and ¢ is time, P is the Hydrostatic pressure, A is strain rate tensor or 1¥

Rivillin Erickson tensor defined as

1.3.3 Energy Equation

A=(grad V) + (grad v) T -

The general form of energy equation is

oT or
—tu—+t
ot Ox

piC, (L V. gradT) =div (7, gradT) 4o, 2
ot Ox,

[#(

5 $elE)h3
&) ay\"\oy ? oy

oT
v—_—.
4

)

0

ox

2.C,

0

P

(

ar
&

k

a ) e a Ty

5

or or 8 or or ,O0u ,0u  ,dv ,0ov
—+—||+=| x| =—+=— ||+ —-+a,2—+o-2,a+cru——




Where

(1.12)

Where
C, is the specific heat at constant pressure , 5 is porous medium permeability, # is dynamic
viscosity, p, is the fluid density and T is temperature. Where, 7 =1for porous medium and

% = 0 for clear medium

_ 1.4 Perturbation Method

Exact solutions are rare in many branches of science like physics, motion, solid and fluid mechanics
because of non-linear, inhomogeneous and general boundary conditions. That is why mathematicians and
physicists use approximate solutions. These approximate solutions may be purely numerical, purely

analytical or combination of two.

In this method we assume a series solixtion of the form

u(v,£) =uy(y)+eu, (y)+ £'uy (y)+ O(£*) (1.13)

Where,u,, u,, .. are known function of y. Equation (1.13) is called asymptotic expansion or

perturbation of the solution in terms of the parameter £ and assume that the parameter £ is very small but

not zero.

e brram s oy 5 o mnms 'y




In many problems involving a perturbation parameteré an expansion of the form -

u(y,€)=uy,(y)+eu, (y)+€u, (y)+ 0(63) may not be uniformly valid over the entire interval of

interest. Problems leading to non-uniform expansions are known to be singular perturbation or boundary

layer problems. These are problems that have multiple length or time scales.

e s asimn - e




Chapter 2

Unsteady Oscillatory Flow and Heat Transfer in a
Composite Porous Medium Channel

This chapter investigates the unsteady oscillatory flow and heat transfer analysis in a horizontal
composite porous medium channel. The flow equations are modeled using the Decay-Brinkman equation. -
The viscous and Darcian dissipation terms are also included in tBe energy equation. The partial
differential equations are solved analytically using two-Term harmonic and non-harmonic functions in
both regions of the channel. Effect of the physical' parameters on the velocity and temperature fields are
 shown graphically. In fact, this chapter is a detail review of the work done by J. C. Uriiavathi et al. {12].

2.1 Mathematical Formulation

Consider unsteady, fully developed, Jaminar flow of an incompressible viscous fluid through an
infinitely long composite channel, as shown in Fig.2.1. The region -% < y < 0 (region-I) is filled with a
porous matrix and the region 0 < y < h (region-II} is occupied by a clear viscous fluid. The two walls of
the channel are held at constant different temperature Ty, and T, , with temperature T,, < T,, and the
infinite plates are placed horizontaily. It should be noted here that since the plates of the channel are
assumed to be infinite. All of the physical dependent variables except pressure will only depend on “y”
and “r”. All the thermo-physical properties of the porous medium are assumed to be constant. In region I,

both the fluid and the porous matrix are assumed to be in local thermal equilibrium.




clear fluid
region-1I

" . porous material .
T omgon] oo . -

Tw

Fig. 2.1: FloW geometry of the problem.

: . . . ar
The flow in both regions of the channel is assumed to be driven by a constant pressure gradient ——=
and temperature gradient AT=T,,, —T,,, .Under these assumptions; the governing equation of motion and

energy are given as:

X .

o, g -0 (2.1)
& oy '
d . ;
po L =div THof @2
aT 3 : ] avi
Pon ( .a_t. + Y.gradT) =div (,‘(,, gradT) 10y 6_— 2.3)

Where i=1,2 gives the equations for regions I and II, respectively, (1, V) are the velocity component in
the x and y directions, T is temperature. The velocity field for the present problem is

V= @(,0),%(1+£4¢™))
p is the Hydrostatic pressure, A is strain rate tensor or 1* Rivillin Erickson tensor defined as

A=(grad V) + (grad V) T (24)



i

on (ou v
ox ox
Where, (grad v) = By gyv and (grad v) T gxﬁ ?_‘i
ox Oy \&.
Ou (0 0
(grad V) = oy and (grad V)" =| du 0
0 0 €
o
A= ou
— 0
%y
Using in equation (2.3) we have
T T 1 0 0 | %
xx Ed :_p },[
T, Ty 01 ou 0
-\
’ o
T=="P, Ty =7F rxy—rﬂzﬂgy_
Now equation (2.2) and (2.3) become
ou Ou, u, 8P u
—lyy —i|= Ly 2.5
p"(@t v'c?y) Xy 5 o Zsu, (2.5)
(ot er T (w4,
pon (E.kvigJ:ngy_zi-Zﬂ Ey—'] +1-;u,. 2.6)

The other coefficients appearing in equation (2.5) and (2.6) are as follows

x=1 for porous matrix region x=0
X, =Hg for porous matrix region Xy =H
=Ky for porous matrix region n=K

10

for clear fluid region
for clear fluid region

for clear fluid region




C R specific heat at constant pressure ,s is porous medium permeability, 4 .dynamic viscosity and

P, is the fluid density

The aippropn'ate boundary conditions are

ou ou
u(-h)=0, u,(h)=0,u(0)=u,(0), g ,—L=u—* at y=0
(R)=0. (=0 (0)=14(0). sy T =
ﬁ.%:gu_z at y—_-O
N A
L(-k)=T,, T,(h)= 7,(0)=7;(0),
a7, oT,
a— =K1 at y=0
7 oy Y
Introducing the non dimensional variables
: : V. v . T-T,
U, =uy, V‘:VOK J’:‘;y t=¥t HZT“‘ _Twz
Using in equation (2.5) and (2.6)
~. . au- .
a”: +y — ;-—,m'zu,."—
ot oy -
2 . » 2
%, v, el =B, 0 6 +A4,Ec Gu‘.. + ya Ec( )2
a ey &y

and boundary and interface conditions are

u (-1)=0, w,()=0, u,(0)=u,(0), m‘;“y

6,(-D=1-5,, 8,()=0, 6,(0)=

Where &, is the Kronecker delta defined by

6,

¥

{

g2i (0) ’

0 for
1 for

1

=—2 at y=0
k%=a—0.ﬁ at y=0
%
i#j
i=j

27N

(2.8)
(2.9)

(2.10)

@.11)

@.12)

(2.13)

(2.14)

(2.15)




>

And all the non-dimensional parameters appearing in (2.12) and (2.13) are

2 2 u

AI:-&L:’" A2=l P: Vz [.@) 0'2=-.I/—2 EC: 0

H X, Voo \ O% Vo C,AT
K 2,CV k 1
= pr="20"~_ B =—, B =—
k=% =Tk ' pr 2= pr

2.2 Solution of the Problem

The governing equations (2.12) and (2.13) subject to the boundary conditions (2.14) and (2.15)
are solved for the velocity and temperature distribution in both regions using the perturbation technique.

For this we assume the solution of the form
u, (3, 1) =1, () + e€“u, () + (1) +... (2.16)

G0 =6,(»)+ee”G, (1) + () +... 2.17) -

This is a valid assumption because of choice of v as defined in equation v= vo(1+eAet®) that tﬁe
amplitude 40 1. By substituting equation (2.16) and (2.17) in equation (2.12) and (2.13), équating the
harmonic and non-harmonic terms and neglecting the higher order terms of O(£?), one obtain' the

" following system of equations

Non-Periodic coefficients

2 _
A, ‘da;m * d:; ~(zo" ), = P - e
o d’ du ‘
A2 0;;20 + cbz)o _(za-2)u20 =P (219)
L0,0) , , pof ) a6,
B Iy g kel P | 4 yorEe(u, ) + 520 - .
Vg TAE T ) TR B F =0 220
a6, d
B, —._-dy;" + Zﬁﬂ =—Ec(C4e"’—P)2 2.21)

12

Aats e o s




Periodic coefficients

A,@%—iu—'i—(zaz +iou,, =—Aﬂg
& dy dy
d’uy, | duy 2 diy,
—=+—=—(yo" +iw)u, =-A4
A'Z dyz C{V 21 (b}
2
iw8, +Adz‘}° +d‘Z')' =B, dL;Z” +2A,Ec%%‘—'—+210’25cumu“
2
o0, - 4% 3 _p 4 9;‘ 2.4 o B0 B
dy dy dy & dy

The solution of equations (2.18) — (2.25) using the boundary conditions can be written as
p-
u, = Ce™ +Ce™ ——
o3

[ ¥
Uy =C +Ce” + Py

B =Cs + Ce™ + k@™ +k,&™ +k ™ +ke™ +ke™ +hky

Oy =C, +Ce ™ +hke ™ +ke” +k,y

u, =ee™ +ee™ +(XC, cosFy+XC,sinFy)e™
+[(YC, cos Fy + YC,y sin Fy)e® + Fre™ + Fe™ |

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)‘ .

@29y

(2:30)

u,, =(XC, cos F,y + XC, sinF,y)e™ +i [(YCI ,COSF,y+YC, sinF, y)e™” + 4 (C4e‘-' + P)}
' 1

(231

6, =(XC, cos Fy+ XC, cos F,y)e™ + E,e™ +B,e™™ + B,e™ + Be™ + Be™ +B,e™

+&™ (B cos Fy+ By sin Fy)+€™ (B, cos Fy + B, sin Fy) +e* (B, cos Fjy+ By sin Ey)

13




+i[(YG, COSF, +YC,, Sin Fyy)e™ + Fie™ +0,6™ +0, 8™ +0,e™ +0ye™ +0pe™ +

e™ (st cos iy + (O, SinF;Y)"'e”w (Q3o cos Fy+Q, SinF;.V)+ew (Qn cos Fy+Q, Smﬁ;y)]
(2.32)

8, =€ (XCs cos Fyy y + XCg sin F, y) "’P«e“zy +Pe” +e™ (B cos Fy+F,sinFy)+
+e* (.F?,s cosF,y+ FPysinF, y)] +ife™” (YC 5 cos F, y + YC g sin F, y) + Q«e_z" +0,.e” +
€™ (Qy 08 Foy + Oy sinFy) + €% (Qig COS Ly + Qo SinFiy) + ki ] 2.33)

It should be noted that all the constants appearing in the above solutions are defined at the end in the

Appendix-1.

14 .
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2.3 Results and Discussion

The problem of unsteady flow and heat transfer in a composite porous medium channel is
investigated analytically. The closed form solutions are reported for small parameter € such that
oscillation amplitude e4< 1. The solution of the periodic and non periodic coefficients of el®t is

evaluated for the various parametric conditions. The results are depicted graphically in Figs. 2.2 to 2.8

Figs. 2.2 and Fig. 2.3 display the effect of the porous medium parameter o on the velocity and

temperature profiles, respectively. As the porous medium parameter ¢ increases, the velocity and

temperature decreases in both regions of the channel. This is expected since the porous matrix represents

an obstacle to flow and therefore, reduces its velocity and temperature.

Fig. 2.4 depicts the effect of Prandtl number on the temperature profiles. The Prandtl number is
the ratio of momentum diffusion to heat diffusion. It is measure of the relative importance of viscosity
and heat conduction in a flow field. Thus, as the Prandt] number increases, the viscous force dominate

over heat conduction and hence, the temperature decreases. This is obvious from Fig. 2.4, .

Fig. 2.5 represents the effect of Eckert number on the temperature profiles. Physncally, the Eckert
number represcnts the. effect of the viscous and porous medium dissipations. As the Eckert number
increases, the temperature field m the channel decreases. The magmrude of the reducnon in the

temperature field in region-1I is larger compared to that in region-I..

The effect of the viscosity ratio m on the velocity and temperature profiles is shown in Figs. 2.6
and 2.7, respectively. As the viscosity ratio increases, both the velocity and temperature profiles are
decreased. This is due to the fact that as the fluid viscosity increases, the fluid in both regions of the
channel becomes thicker and hence the flow velocity is reduced causing the temperature distribution.to

reduce as well.

Fig. 2.8 displays the influence of the thermal conductivity ratio & on the temperature profiles.
Increase in the thermal conductivity ratio has the tendency to cool down the thermal state in the channel.

This is depicted in the reduction in the fluid temperature as & increases as shown in Fig. 2.8.

15
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Fig. 2.3: Temperature profile for the different values of the porous medium parameter o.
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Fig. 2.7: Temperature profile for the different values of the ratio of viscosities m.
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2.4 Conclusions

The problem of unsteady flow of a viscous fluid through a horizontal composite channel whose
half width is filled with a uniform layer of porous media in the presence of time dependent oscillatory
wall transpiration velocity was investigated analytically. Both the fluid and the porous matrix were
assumed to have constant physical properties. Separate closed form solution for each region of the
channel were obtained taking into consideration suitable interface matching conditions. The closed form
results were numerically evaluated and represented graphically for various values of the porous medium

parameter, viscosity and thermal conductivity ratios, Prandt] and Eckert numbers.

It was predicted that both the velocity and temperature profiles decreased as either of the porous
medium parameter or the viscosity ratio was increased. Furthermore, it was concluded that the
temperature field decreased as either of the Prandtl number, Eckert number or the thermal conductivity

ratio increased.

It can be concluded that the flow and heat transfer aspects in a horizontal composite channel with
permeable walls can be controlled by considering different combinations of fluids and porous media

having different viscosities and conductivities.

20




Chapter 3

MHD Oscillatory Flow in a Composite Porous
Medium Channel

This chapter presents the unsteady MHD oscillatory flow of a viscous fluid in a composite porous
medium channel. The resultant partial differential equations governing the flow and heat transfer are

solved analytically using the same technique as in chapter 2. The influence of the physical pzirametefé on

the velocity and temperature profiles are shown graphically and discussed in detail. In fact, this chapter is -

an extension of the work done by J. C. Umavathi et al. [12].

3.1 Mathematical Formulation

Consider unsteady, fully developed, laminar flow of an incompressible viscous fluid through an
infinitely long composite channel, as shown in Fig. 3.1. The region -k < y < 0 (region-I) is filled with a
porous métérial and the region 0 < y < h (region-II) is occupied by a clear viscous fluid. Both the walls of
the channel are held at constant different temperature T, and Ty, , with temperature T, < TwZ and the
infinite plates are placed horizontally. Hefe, It should be noted that since the plates of the channel are
assumed to be infinite. All of the physical dependent variables except pressure will depend only on “y
and “r". All the thermo-physical properties of the porous medium are assumed to be constant. In region-I,
both the fluid and the porous matrix are assumed to be in local thermal equilibrium
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Fig. 3.1: Flow geometry of the problem.

' . . ap
The flow in both regions of the channel is assumed to be driven by a constant pressure gradient ——=

and temperature gradient AT=T,, — T,,, .Under these assumptions, the governing equation of motion and

" energy are given as:
o g - G.1)
d

py = (V) =div T-0By, . (32)

T e , o,
2.C, ( M +. \i.‘gde)' =div( z, gradT)+ao,, vy 3.3)

13

Where i=1,2 gives the equations for regions I and I, respectively, (v, v) are the velocity component in

the x and y directions, T is temperature. The \felocity field for the present problem is
V= (u(y,0),v,(1+£4e™))

p is the Hydrostatic pressure, « is the electric conductivity , Bo2 is the total magnetic field, A is strain

rate tensor or 1 Rivillin Erickson tensor defined as
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A= (grad V) + (grad V) 7 3.4)

o o (u o
Ox Oy ox Ox
Where, (gradV) = 5 oy and (grad V)T = »
ox oy &y o
Su [0 O
0 — T
(grad V) = oy and (gradV) = _‘2“_ 0
0 0 \ &
0o
A= 4
LA
&
* Using in equation (3.3) the above values we have,
oo |0s
r,n' rn, =_p )4-# R -O-Bozui
Te T/ 0 1 ou 0
S EY
B o _ . _ ou
= Ty =P Tw="P & rxy_tﬂ_#a;
Now equation (3.2) and (3.3) takes the form
~ Qu, o, d'u, oP :
Y B A L) L (3.5)
ot Oy oy ox s
oT  oT T oY u
Clipy Zilz gy 2y — oy yly? 3.6
) po p(a! 45‘})} Zkayz Zp[ay] Zs i ( )
The other coefficients appearing in equation (3.5) and (3.6) are as follows
xr=1 for porous matrix region x=0 for clear fluid region
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d

X =Hyg for porous matrix region

X =Ky for porous matrix region

C, is specific heat at constant pressure ,s is porous medium permeability, g is dynamic viscosity and

P, is the fluid density

The appropriate boundary conditions are

Au™

7] for clear fluid region

n=K for clear fluid region

u(-h)=0, wu,(h)=0 ,u|(0)=uz(0),#,,%-=#§ﬁ at y=0
& oy
4 oy oy
L(-h)=T,, G(h)=T,, 7,(0)=17,(0),
oT, o7,
=K —2 at . y=0
el ay ay E .
Introducing the non dimensional variables
M . V Y ’ V » T _Tw
U, = Ugl; V. =V y=—y t=-—t 8= -
» Voo Yy T,-T,
Using in equation (3.5) and (3.6) one can obtain
ou'  .ou’ ou . .
Ly — =4 lf'z - xd’u' - Mi', - P
ot 1%/% oy
06, .06, (o ( Bu; J’ -2
—L+v L =8| —F [+ 4Ec| —L- | + ya’Ec(uy,
Ghov Gra( 34 )ras(3 )

and boundaiy and interface conditions are

"h'(_l) =0, uz;(l) =0,

ou
i (0) = 24,,(0),
u,(0) u()may
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% at y=0
Oy

3.7

3.8)

(3.9

- (3.10)

G.11)

(3.12)

(3.13)

(3.14)




a6, a4,
6,(-D=1-6,, 92,.(1)=0,qj(0)=92,,(0),k7$=-§at y=0 (3.15)

Where J; is the Kronecker delta defined by

§=0for i#j
i\l for i=j

And all the non-dimensional parameters appearing in (2.12) and (2.13) are

2 2 cVv
aZ___K?, Ee= Uy , k=_1_{i’ A’-__-m, m:ﬁ. PI'-——&—F— ’A2=l
sV, C,AT K T K
BV? V?
Bl=-,f—’ Bzz_l' Mzaoz pP= 2 (22)
Pr Pr DoVs X, Votig \ OX

Where, Ec is Eckert number, Pr is Prandtl number and M is the magnetic parameter.

‘3.2 Solution of the Problem

The govefning equations (3.12) and (3.13) sﬁb’jéct to the boundary conditions ‘(3. 1_4)‘and (3.15) are solved
~ for the velocity and temperature distribution in both régions using the perturbation technique. For ﬁlis we

“assume the solution of the form
u(y,0)= uio(y) +'€e"“"un O +0()+... ' ' (3.16)
60 =8, (»)+ 6“6, (M) + (") +... (.17

This is a valid assumption because of choice of v as defined in equation v= v,(I+eAeti®) that the
amplitude £ 4 << 1. By substituting equation (3.16) and (3.17) in equation (3.12) and (3.13), equating the
harmonic and non-harmonic terms and neglecting the higher ‘order terms of O(g?), one obtain the

following system of equations
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Non-Periodic coefficients

A dd:"’ dy ~(ya? + Mu, =
X d;;j“ —Ejgyl"--(zaz +Muy, =P
B, ddyg‘“ + 4 Ec (dd; )2 + ya’Ec(u,)’ L)
B, ﬁg—?}"— L = —Ec(C3m3e"’" +C,me™ )2
Periodic coefficients |
A,d;;l” a:y ~-(xa’ +M+m))u“ Gy
A%—%—(zaz +M +ioyu, = Af’g;-'l
i;yﬂl %‘i 06, = daz m c%%—Z&z.Ecu,‘;,u,,
.Aid—z-‘%—’—fﬁusme _ dby dumduz,
PRy A N d d
The solution of equations (3.18) — (3.25) using the boundary conditions can be written as
=Ce™ +C,e™ - = iM - e

. P
Uy =Cie™ +C ™ -

G =C+Ce™ +hy+koe™ +he™ +k,@™ + k™ +k e

By =C, +Ge™ + k8™ + k™™ +k,e™

26

(3.18)
(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

- (3.29)

(3.25)

- (326)

(3.27)

(3.28)

(3.29)




-9,

u,, = E,e™ + E,e™ + " (XC,cos Fy+ XC,,sin F y)
+i[(YCg cos Fy +YC,, sin Fy)e™ + Fe™ + F;e’"”’] (3.30)

u,, = E,e™ + Ege™ +e™ (XC,, cos Fy+ XC, sin Fyy)
+i[(YC,, cos Fyy+ YC,, sin Fy)e™ + Fe™ + Fie™ | 331
8, =(XG, cos Fy,y + XC, sinFy,y)e™” +e™ (B cos Ry + B, sinFy)+ Re™ + B e™ +

+R,e™ +Be™™ + By@™ +&™ (Bycos Fy+ B, sinFy)+e™ (B, cos Fy + PysinFy) .

+H[(YG, cos F,,y+YC, sinFy y)e™ +e* (G, cos Ky +Q,sinFy)+ Q™ + Q™ +

: . . . Ak
0,e™ ""ngezm'y + Qwezm!y +e™ (Qzu cosFiy + 0, sin F;y) +e™ (sz cos Fy + Oy, sin F;y)+ _m‘_s
] : S : (3.32)

6y =(XCcos Fyy + XCm‘ sin E.)’)es"” +Pe®™ + B, + P.e™

+e™ (B, cos Fyy + By sinFy) +e™ (B cos Fy+ B, sinFyy) +if

(Ycls cos F,y+ YCg Smﬁ;:)’)esﬂr*’ Qzaezw + Qz"fezm +0,e™ + .

+e™ (O cos Fyy + Oy sinFy)+e™ (Q, cos Fyy+ 0y, sinFyy) +e™ Ey | @33’

All the constants appearing in the above solutions are presented at the end in the Appendix-IL.

aie
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3.3 Discussion and Graphical Results
The purpose of this section is to report the effect of various parameters involved in the flow
analysis on the temperature and velocity profiles. Fig. 3.2-3.8 illustrate the effects. Special emphasis is

given to the effect of magnetic parameter M on the velocity and temperatufe profiles. Fig. 3.2 and Fig. 3.3

show the effect of the Porous medium parameter a on the velocity and temperature profile, respectively in

presence of the non-zero magnetic parameter M. A comparison of these figures with their counter parts in”

chapter 2 i.e, (Fig. 2.2 and 2.3) shows that velocity in case of zero magnetic parameter M is greater than

the velocity for non-zero magnetic parameter M. However, for the temperature profile the situation is’

opposite. Here, the introduction of magnetic field increases the temperature in both the regions.

Fig. 3.4 and 3.5 illustrate the variation of Prandtl and Eckert numbers on temperature profiles
respectively, in the presence of magnetic field. The Fig. 3.4 shows that in the presence of magnetic field
temperature profile increases when Prandtl number increases. The Fig 3.5 indicates that in presence of

magnetic parameter M temperature increases when Eckert number increases, while in absence of M ie

comparison with Fig. 2.4 and Fig. 2.5 the situation was opposite.

Similarly magnetic field enhances the effect of ratio of viscosities m on the velocity field as can

be seen from Fig. 3.6.

Fig. 3.7 and 3.8 shows the effect of magnetx:c parameter M on velocity and temperature profiles
respectively. As the value of M increases the velocity decreases in both the regions and the increment in’

the value of magnetic parameter M increases the temperature profile.
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Fig. 3.3: Temperature profile for the different values of the porous medium parameter a.
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B, =¢, +Pre, -F,

Cl=
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D, =2B/B,,
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7 "Duf;zpzs _DMF;P E?] +D,s B,

9 “Q*:ngs ~ Do Fo Py + DB,

=-D,F; 0, — D F .0, +DISQ35"

s = =Dy Fl Qs — DigFi0 + DyQss,

By =ko(Bs—0n) Py =ha(By =)

:u ,;u :c :u

o,= D4F;P2 -wB,F,

O, =-DyFR-wBF,,
O, = D,FQ, —wB,Q,,

Qs =-DF 0, "mést::{ ) Qllk: D,FXCy~wB XC,,) ~ O, =—D4EXC9 ~ 0B, XC,,

0, =DFXC, -wB XC,,

O = —Ble:XC; -wB,XC,, Q,=D,FYC,—-wBYC,,
=-DRYC, -~ 0B YC, , =D,FXC,y-aB,XC,,

O = DAY, — @B YC,, O

Q4 =-D,FXCy - 0B XC,, Q5=

D,FXC,, - 0B,XC,,
Qy =—-D,FYC, - @B, YC,,

On=F,+F +F,+e,+e,, O, =F+F,+F;+e, ey,

Os=FR+F;+Fy+e,+e,,
Oy =ko(G +P7)+k23(Qu +R7)’
Oy =k (G "'f;)*'kzs(Qn +£y),

Q =-D,RYC, - 0B,YC,, O, =
Oy = ks Qs+ B) +hs (O + B,
Oy =ko(Gs+ By)+hpn (O +Fy), Oy =ks(Os+ B)),

Fo+F, +ey,
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Appendix-II

B, =2kmy -1, B, ':kzmsz —my _sz;z’ B, = Bz2 +B|2F;f+ o', B, =2k;my -1,
B, =k —my ko FY, B, =Bi +BIE? +f, B, =2kE~l, B=kE!~E~kFE,
B, =B} +B]F +&’, By =my ~F} —m,Pr, B, =2m,F, - F, Pr-wPr,

By B,

B,= , By = , B,=m’ -F'-m,Pr,
n=pi g Tpi Bl 14 =M, — Ly — I,

BM — BIS

Bis =2m F = FPr-oPr, By = -5, By =25~ 2
14 15 14 15

' Pl -1,
C =e"(— —-Ce™), C2=£IJ—+%£-, C3=e—""(—11-—c,,e""), C, = (il 16),
a“ "+ M Lo M . LI, -1l
kZGPT‘}'kls(ePr'—l) N mm.C. ~k
C= +C —”‘)C: ,Cz k+ Pr, C='—6'6 25,
2=t ™) -_,6 Pr(l—-e"'")+mm6(e"—l) 7=~k Cse) s Pr .
D' =2(DBlF;’ Dz - B BzD ’ DS‘ B JZF; —-Dw’ D4 =2@B4F“ D5 =%’ D6 = %E ;wa‘
37 & : 44 ) s — 174 : (Il N
D,=2wB,F,, D,= By 3 Dg___B,F,'—w, : .
- B-Dy B, -D,
1+ rcs9,12‘-. C AmC o —m o — g
£, = 1t cos(8/2) g AmC (i —m ~a’ ~M)
] b . 2

?(mmlszn]_az“M)2+mz’ .
_AmCy i -my =P M) _AmC(mi=m~M) " AmCy(mi-m,—M) .
= E E,

2m.

5 O} —my—a* MY +@** (i -m-MY +0’ T (i -m-MY + 0t
. 1+ 1, cos(8,/2) i - 1+, cos(8,/2) £ o AmColkymg ~mg) -
6 2 ’ . 2%, ' T e -m ) 0
5, = Amzk;(,(kszz “m) g Amk, (kym] —m;)’ £ 2Amk (4km ~2m)
(k] =) + @ (k,m? —m))? + & T (akm -2mY + 0
_ 24mk (s =2my) o Amk, (ke —mg) . —2mmyi EcP (kymg ~ )
Uk -2m) +et T (i -m) re® T g —mg) o
- —2mm EcC,E, (4k,m} ~2m,) i F o= —2mEcC, E,(4k,m; —2m,)

14 15 —

(4k,m} -2m) + o (dk,m? —-2m,)* + o’
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_ —2mmym EcQ,(m? = my)

3

_ ~2mmEcC,Fy(4kym ~2m;)

B (kym? —mg)* + o’ B = (4k,m] -2m) +a&’
g o ZmECC,F\ (ki ~2m,) _ 20’ EcGE, (4k,m) —2m;)
BT Gkt -2m) + o YT (ki -2m) + o
—2aEcC,E, (kym} —m,) _ 20" EcC,E, (kymg —my)
Ey = 2 7, 2 Ey= 2 2, 2
(kymi —my) +w (k;mg —m) +w
5 _ 220’ EcG,E;(4k;ms —2m,) £ 2a"EcPE,(kym ~m)
z (4k,m2 ~2m) + &’ B (@ + M)kt —m) + ']
E, = 20’ EcPE,(k,m; —m,) E = ~2a’EcCF, (kym —m)
(@ + M)[(kym; —m,) + &) B (m —m) + o
E = ~2a’EcC,F,(k,m} —m,) E. = —2a’ EcC, F, (k,m; —my)
* (g ~mey + 0 7 (g ~m)' +a®
- =2a’EcC,F,4k,m} -2m,) 2a’ EcPF,(k,m} —m))
Ey= 7 72 Ey=— 3 2 71°
(4k,my —2m,))" + @ (a” + M)[(k,my —m))" + "]
£ - 2a’ EcPF,(k,m —m,) E - Pr+.Jr, cos(6,/2) E - APrC,
30A (a2 +M)[(k2m22 —-mz)2+a)2]’ ‘ 3 2 * 32 o 3
E. < 24Prm ks (4m; ~2Prm,) E - 2APrmk,,(4m; -2Prm,)
TP (m - 2Prmy) +(wPr) | * (4ml-2Prm) +(wPr)*
CE- APl;nyk,7(4n1.f2—~2Prn173 , E, = —2Pr Ezc,,,}zcjg4(t i — 2Pr2m,) :
(4m; ~2Prm,)" +(wPr) (@m; -2Prm,)” +(wPr)
E, _ APr Ecm;m,C,E(m] — Prm,) E, = APr Ecmym,C E,(m} —Prm,)

(m; ~Prm,)’ +(wPr)®
_ —2PrEcmC,F,(4m’ -2Prm,))
"~ (4m2 -2Prm,)* +(wPr)’
£ o Z2PrEcm C\F(4m ~2Prm,)
° (4m; —=2Prm,)* +(wPr)?

(m ~Prm,)" +(wPr)’
~2Pr Ecm,'C,E,(4m} ~2Prm,)
(4m? =2Prm,)* +(wPr)* -’
E, = -2 Pr Ecmym,C Fy(m; ~Prm,)" .
©(m =Prm) +(@Pr)?
: £, = APrEfm,mC,,Ii;(mf -—Px;mj)
(m} ~Prm, )’ +(wPr)

3

b

AmC o Am,C,0

Fa\[r;_sin(B;IZ)
=N A

2m Y (mmem—adr-M) +a? 3=(mm,2-mz—a2—11[)2+a)2’
AmCo : AmC.w F - Jr sin(6,/2)
e =,
2

F = =
o -m-MY+0* T (mi-m, - M)+
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9=

1=

15 =

8=

a=

%=

7=

30 =

_ J;:sin(ﬁ, /2) Am.Cw - Amyk, o0
T 2% T Uomt—m) o U km -myY + 0t
Amk, @ 24mk 2Amzk,3a)
(k,m? —m)? + o O Gkm —2mY vt (bl —2m) +
Amk @ _ —2mmm,EcP,o ~2mm}EcC.E,@
(kym? —m, ) +0*’ B eyt -m) + o’ M akmE —2m) + @
~2mEcC,E,\w _ =Zmmm, EcQ,w —2mmEcC,Fo
(dk,md —2my v+’ " (kym? -m ) + @ " @mt —2m )+
~2mEcC,F,m ~2a’EcC,E,» ~2a’EcCE,w
(4k,m? —2m,)* +*’ s = (dk,mt -2m) + &’ 0= (k,m? —m)’ + @
—2a*EcC,E,» 7 —2a’EcC,Ew " 2a’EcPE,w
(kymg —my)" + & 2" (ks =2m,)" + 00 T @+ M) -m)’+o']
20°EcPEw —ZazEcQFa) -—Za’EcCFaJ
@ MYk —mY + '] (e —m) vt P (i —mp) + @
-2a’EcC,F,0 —2a*EcC,F,w _ 2a°EcPF,o
(kym? ~ ms) + o’ BT Gkm 2myvat P (@ + M)k m,) +a']
20’ EcPFyo J— sm(9/2) 24Prmk Pt |
(@ + M)k, —my) +?] - > By= (4m? —2Prm,)’ +(@Pr)*’ .
24Prmk, wPr APrmk,0Pr A -
F=

34 =

38 =

Fyo=

2=

(4m? —2Prm,)? +(wPr)?’

—2Pr Ecm,’C,E,wPr

(@m? =2Prm,)’ +(wPr)?’ -
APr Ecmym,C,E 0 Pr

»n

(4m3 ~2Prm)’ +(aJPr)2
A PrEcm3m4C E, wPr

Tl = Prm) (@
—2PrEcm,’C, E @Pr

(m -Prm,) +(wPr)*’ Fy=

—2Pr Eem’C,F,wPr

(4m? -2Prm,)’ +(a)Pr)2 ’
_ —2Pr Ecmym,C F,oPr -

a9 =

(4m; —2Prm,)’ +(wPr)*’
—2Pr Ecm*C,F,wPr

(m} —Prm,) +(wPr)*’
_ APrEcmm,C FwPr

i

(4m} -2Prm,)* +(wPr)*’
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k -mEcC*m} ~mEcC,'m,} —2mEcC,m,C, my
=X, geTmElm g TR g
: Pr dk,my —2m, 4k,m; —2m, k,m? —mj
—a’EcC/ -a’EcC,? K = a’EcP’ K = -2a’EcCC,
¢ ke, —2m,” T by —2m, (@ -M)’ kg ~mg
2a*EcPC. 2a’EcPC,
ko= 2 z2 s Ky = ki =ky+kg, kpy=k itk
(@ + M)lkeymy —m, ) (@ + M)k —m]’ 7
Pr Ecm’Cy? ~Pr Ecm'C,} ~2Pr Ecm;m,C,C,
kg =ks vk, kg= T—"'CT}"“—‘ ‘;az—'g_—_i_‘t, k,= 2 lelins L,
m: —2Prm, 4m; ~2Prm, m.,r—Prm,

kg =—ky+ ke ™ +ke™ +k,2e'2”” +k13e'2"'2 +hke™ -1, kg=ke™ +k & +h,e™,
ky=kg+k, vk, +k, vk, k, =k,+ks+kg, ky, =ky — Ky,

beyy =l + 1ok + ko, + 2, + 2ok, + mgkay, ok =2mik s+ 2mk +muky,
kys = kpy —mky, kg =kyy +hg—kg, k=€ FcosF,, ky=e"sinF, »

~m) ] -m2 ~m6 -2 2 e 8 .
ky=Pe™ +Be ™ +P,e™ + B’ + Be™” " (P oosF-Pz,smF,‘).

"'°(P cosF smF) +e“5' (Qcos F - Qu smF)+-]f‘i-

ky=0.,™" +Q,6e 24+ 0.6+ Qe +Q9e +e""’(Q20cosF Qz,smF)
+e™ (Q,, cos F, - QnsmF)wm(QjcosF Q,sinF), k, =cos Fe™,

ki, —sm1~’3,e£“ iy =B + B+ Be™ 4 (P cosF + P, sin Fy)

+e™ (f;,cosF +B,sinF,),
ky = 0™ + Q™ + O™ e (O cos +Q3,,s1nF)+e’"‘ (O, cos Fy +Q,, sin F}),
k-—P+P+P+P+P+P+P+PP ~PB,-By,~B,~B,, :

by = Qs+ 0+ Q7 +Q|x +Qp ‘7’on +sz_"’Qn ~O =00 =~ O~ 0Oy —Ep + Aa’:i

kyy =B+ B+ mBy +2m By + 2By + m By + FBy + ERy + myPy + FBy + FR,,
kg =mQs +mQ, {”%Q? +2mQ¢ +2m, Q0 + mgQ + Oy, + EQ +mQy, + FOy + FQ,,
kg =2my P +2m By +m, By +m By + F Py +m B + £ B,,

, n,0. F k
ki = 2703 + 2 Qi + Oy + oDy + FiQio + MO + iy, kg =By + =52,
. 28
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>
3 -

F, k Fk Fk F,k
ke = gy + =222, kg = ks + =222, ke = Ey — =2, kys = kg = ';'] 3,
28 28 32 2
F.k ,
ki = ko= z 2y kg =kagk kg, kig = ka3 = Kags ki =kok =k,
32

kg = ki —kyskgs kszy =k _'ksek«’

i (az +M)e'"" -Me™ -a*

[ =1-¢™™", L=1-¢™™, Il = ,
' ’ ’ M(a*+M)
-y - :
I, =mm, —mme™™, I =m,—me ™™, =T TDE | <F +E,-E,—E,
M (a’+M) |
ly = Fz +F~F~F, l=m(mE;+mE,), L, =m(mF, +m}F,), ly=cos Fe ™,
I, =sinFe &, l,=e™E,+e™E,, l,=e"F,+e™F, 1, =cos Fye™,
s =sin Fye®, hy=ePE,+e™E;, l;=e"F +e™F, g =mE, +m,E;,
by = mFy+mF, ho=ky=ly, by =ly—1,, Y :120_'5%[‘—6"—”1_}:;1_'29 7
- . ) s h
£y mFly m(Eq +Fh) - _(Fha=Eds)
by =l ————-—15 hy=———, Izs=—__L"}
- s L by : ks

1+ﬁ+4m(a’+M) 1-—\/1+4m(a2+M) 4T3 aM
m=—— .= ;M=

m _ 2m 2
_1-Vl+dM
2

. 1
- m5=;_’ my =m+m,, m, =m, +m,,
: 2 : -

~ -

]
m,

my=m+E, my=m +E, my =m, + E, my, =my +E,

R =EXC, + FXC,, B =EXC, —P;XC;’ B =EC+EC,
P, =-2mmEcC,RD, 20’ EcCXC,D,, P, =~2mmEcGRD, -20*EcGXG,D,,
B, =-2mm,EcC,RD; -20*EcC,XC,D,, B, =—2mm,EcC,RD, —2a’EcC,XC,D;,
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= 2mm EcC,BD, +2a* EcC,XC,,D;, B, = -2mmEcC,B,D, 20’ EcC,XCyD,,
P, =2mm,EcC,B.D, +2a*EcC,XC,\D,, B, =—2mm,EcC,B,D;~2a*EcC,XC,,D;,

2a’EcPXC,
R = Es“‘"Eza “Fsti)v B, =E,+E,+E,+E, +E, - F —F “'Fz‘n

’ _R;"PnzDa ~-B,D;,, P|4=RzD9+RzDaa R5=E9+E23-F29,
Py=E +E,+Eg—F,-Fy,  By=E +Es+E,—Fy—Fy By=b+5;,
le""Ps*'R» PzzEPa‘*‘Pio» P23=P7+Ru ‘g4=Equ1+176XQZs
B, =FXC, - EXC,, By=Eu+E,—F,—Fp,, Py =E +F,,
By=E +E, +E,—F, - F,, By ==2Pr EemC, (BB, + PsBy),

Py ==2Pr EcmC, (BB~ BsB,), By=-2PrEcmC, (BB +FsB,),

£, =—-2PrEcm4C4 (64&7 "‘@sBle)v

;

Q =EYG+FYCy - © 0y =EYC,- FlYCg; 0,=FG+FEG,
0, =-2mmEcC.OD, - 2a2ECQYC D, O =-2mmEcCOD; ;2azEcéYC,D;,
O; = ~2mm, EcC,QD, ~20°EcCYGD,, G =-2mmEcC,O.D, ~ 26°EcC,YG,D,,
Q, =2mmEcCO,D, + 2 EcGYC,D,, 0, =-2mmEcCO,D, ~22°EcGYC,oD;,
Qo = 2mmEeC,O,D, 4 20°EeGYCD,, Gy =27, EeC,O,D, =20 EeCYC, D

sz 5%5* 0,=0,0,-0,0, G.=0,D, +.Q12D8! Os=FK +Fﬁ +Ey,
Qc=FE¥F+E,, Qi=F+F,+E+FE,+Fy+E,+E+E,;}

Qp=Fo+F +Fy+E,+E,, Qo=F,+F+F,+E,+E,,  0,,=0,+0C,
0, =0+0,, O =G5 + Qs O3 =0, +Qs Oy = EJYC, + FYCy,
0, = FYG, - EYC,, Qs = Fy+ Fg + Eg + Ey, On =F+F,,

O = Fis+ Fy + Ry + By + By, O = —2Pr Eem,C, (QyB, + OssBy )



QO =-2 PrECﬂﬁcs(Qz4Biz _stBlz)’ O, =2 PrEcm,C, (QzaBus +Q25317),

0., =—2Pr Eem,C(QuBiy ~ OnBis)»

r= J(1+4M)2 +(40)’, =\/1+(4wkz)z’

n= \/(1 +4ma’ +4mM )2 + (4m'a7)2 ’

- - ’ dma 4| 4w
= ) =T » 9 =T i
r=Pr'+(40Pr), 8 =Tan [1+4ma2+4mM] 2= [1+4M]
4o
6, =Tan ' [4ak, ], 6, =Tan™'| — |,
) =Tan [ 2] s = 1an [Pr:l

kzo - kzékso .

- YC” - kzokw "knkst

XC. =————122 ~hhs ’ : YC, =‘IE:‘1§!25*, XCy = f 703 ’
miy + 1, mlyy + 1y hy
YCj = _(1'2—.*‘-11_'9&}’ ' XC, =f'7 +V).{C:'9’ YG, ='Is +YG,,
. . B - ’ T
XC)z = —['———'—1'6 +XC“ ),‘ - YCu = -(ﬂ!')’ XCD :i&’ YC13 = —kﬂ ’
hs ’ : s ' ’ ® Ko

qu = kss +XC13’

=" by
28 287749
: f_
Y(“IS =I.‘36 :YCIT‘, o XCm _~—(k33 +,]:“XC'5 J’ YCIG =t‘ k34 +kk31XCls ),
~ 32 . ) 32
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