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Preface

The boundary value problems arising in science and engineering are generally non-hnear Since the
exact solutions for such problems are rare therefore different analyuc and numerical methods have
been proposed in the past two decades to obtain the approximate solutions The methods which
gained considerable attention include Keller-Box method [1]. shooting and fimite difference
methods [2], hybrid numerical method [3]. homotopy analysis method [4], homolopy perturbation
method [5, 6]. vaniational iteration method (7, 8], Adomian decomposition method [9], differential
transformation method [10, 11] etc These methods have been used for solving several boundary

value problems arising in fluid flows and heat transfer [12, 13, 14, 15, 16, 17, 18, 19, 20]

Legendre wavelets method based on wavelet theory Is an acuve area of rescarch for solving
differential equations For the basic 1dea of wavelets the readers are referred to the book by Chu
[21] Various types of wavelels have been used by researchers for esumating the solution One of
the important tools 1s the Haar wavelets [22] Yousefi and Razzaghi [23] implemented the Legendre
wavelets method for nonlinear Volterra-Fredholm integral equations Dizicheh et al [24] proposed
an algorithm based on Legendre wavelets for solving mnitial value problems in large domams Very
recently, Yang and Hou [25] presented Chebyshev wavelets method for solving Bratu’s problem
Though Legendre and Chebyshev wavelets method are not new but the application of these methods
to the solution of nonlinear problems in fluid mechanics and heat transfer 1s hmited For a particular
choice of involved parameters the Legendre and Chebyshev wavelets methods yield an exphet
solution expression which might be of some interest to the experimentalists and numencal analysts

working on code development

Keeping the above fact in mind, we have solved the classical problems of parallel plate Mow of third
grade flud and forced convection in a porous duct using Legendre wavelets i chapter 2 The

obtained results are 1n excellent agreement with existing results Numerical values of the solutions



are wbulated to have estimate of error between present solution and available results It is
mentioned that governing equations of these problems are nonlinear and it 1s difficult to obtain their
exact solutions. Chapter 3 provides Chebyshev wavelets solution to some classical nonhinear
problems arising i fluid mechanics and heat transfer The quadratic Riccati’s equation and
nonlinear sixth order equation are also dealt by this method in chapter 3 The solution obtained 1n
cach casec compared with exact or numerical soluton It 1s hoped that these methods can be
implemented for finding the solution of complex boundary value problems in other disciplines of

science and engineering.
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Chapter 1: Preliminaries

The objective of this chapter 1s to introduce the reader with the basics of wavelets The chapter
starts with the definition of wavelets The Legendre wavelets and their applications to the solution
of second order boundary value problems 1s explained in the next section The last section provide
the definition and implementation of Chebyshev wavelets to nonlinear second order boundary value

problems

1.1 Review of wavelet theory

Wavelets constitutes a family of functions constructed from a single function called the mother

wavelet by scaling and translaung A family of continuous wavelets 1s defined as [26, 27]
w.,(é)-]allw[f ﬁ} a,feR,a#0, an

wherea, # are the dilation and translation parameters respectively The family of discrete wavclets
1s defined by restricting o, 8 to discrete values a = at, f= nfa*,a,>1, f,>0 and n and k

are positive mtegers, that 1s

£
W) =l v (e —nf,). (12)
Here w, (£) forms basis for I(R) In parucular, when g, =2, B,=1 then y, ,(§) forms an
orthonormal basis [26]

1.2  Legendre Wavelets

Legendre wavelets are defined on the interval {0, 1) as

1.3 oA n+l
yo@ =iyt 2 (2 A) Tk (13)

0 OlhchISC,

Page | 4
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Chapter 1 Preliminaries

where n=2n-1, n=123 .2, m=0,123, ,M-1 The coefficient m+% 1s for

orthonormality, the dilation parameter 15 a = 2% and the translation parameter 1s 8 =A2" P (&)

are the well-known Legendre polynomials of order m, which are defined on the interval [-1,1]. and

can be determuined through the following recurrence relation

R =1, A§)=¢,

2m+1

m+1

Pm+1(§)=( ]é’f’m(rf)—[ﬁ]f’m_l(f), m=2.3, . (14)

1.2.1 Legendre wavelets and function approximation

We may expand function f(£)using Legendre wavelets as

=33 Copronl). (15)

n=l m=0

where C =< f({)w,,(£)> In truncated form the infinite series 1n (1 5) can be written as

f(g)= Contlan(§)=CTH(D), (16)

2 M-l

n=l m={

where C and ¥(¢&) are 2" M x1 matrices given by
C =|:cm ) Ca S0 Copet Cpag - Cprigen T (7
Y(&) =[y,(8) wi($) YViua(E) Wil(S) Wania(8) Wy (S)

Wy (O (18)

We note that the number of elements of C depends on the choice of k and M For nstance 1f we

choose k=land M =6, then the Legendre wavelet series with six unknowns is sought on the

Page | 5
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Chapter | Preliminaries

interval [0, 1] For k =2and M =6, the interval [0, 1] is subdivided into two intervals [0, 1/2] and

[1/2, 1] and n each subinterval the Legendre wavelet series contains six unknowns

1.2.2 Implementation of Legendre wavelets method to B.V.Ps

Consider a second order nonlinear boundary value problem

y+o@.y,y.y"=0 (19
subject to the boundary conditions y{@)=a,,y(b)=b, The Green’s function corresponding to
homogen¢ous problem 18

(%:_i) (n-a), fora<é<mn,

G(7.8) = (110)

[i:i](q—b), forp<&<bh

with the help of (! 10) the boundary value problem can be transformed nto following integral

equation

b

Y =P+ [ G, E)p(€ME (1

a

where o(&) = (&, 3,y".y™ and P(q) 1s the function established from the nonhomogencous
boundary value problem P™(7)=0, P(a)=a,, P(b) = b, . In order to apply Legendre wavelets, we

expand the solution of (1 9) 1n terms of Legendre wavelets as follows
Hm=C"¥@), (112)

where C and W(z) are defined in Egs (1 7) and (1 8) Subsutution of (1 12) o (I 11} yields

CT¥(n) = P(n)+ [ Gl )@ CT ¥ (E)MS (113)

Page | 6
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Chapter | Preliminaries

Collocating Eq (1 13)at 2'”'M points 7, gives
CT¥ (1) = P(n)+ | G, E)p(CT (M, (114)

where collocation pointsn,'s are Gauss-Lobatto points defined as

q,=cos[2i};4}. 1=1,2,3,.,2""'M (115)

Application of Gaussian quadrature formula to Eq (1 14) requires the transformation of £ -interval

to r -interval [-1. 1] This can be done by the change of vanable as
1 1
E==(1-t)a+=(1+1)b (116)
2 2
Now using the defimition of Gaussian quadrature (28]

jf(§>d¢=b—;-ﬂjf(r)dr=iwj(r,>. (117

-1 gl

where ‘7’ are the zeros of Legendre polynomial P, and " @, * are corresponding weights. thus Eq

(1 14) can be written as

r b-a ! 1
C'¥n)= P(ﬂ.)+—2—IH[f},.—2-(l—-r)a +E(l+r)b}dr,

or  C'¥()= P(q,)+-i%l- iw;H(q,,%(l —r;)a+-%(l+rf)b). (118)

=l

where H(7,.¢)= G(q,.g‘)qp[CT‘P(f)) Eq (! 18) will gives 2°"' M nonlinear equations which can

be solved for the elements of C in equation (1 7) using Newton's iterative method or by any
computational software hke Mathematica or MATLAB We point out here that the choice of imitial

values to compute the element of C may affect the convergence of the method to real roots
Page | 7
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Chapter 1. Preliminarics

Therefore care must be taken while choosing these initial values However the buiit-in routine n
Mathematica give all possible solutions of simultaneous nonlincar algebraic equations which might

be helpful in locating the appropriate real solution

1.2.3 Error Analysis for Legendre wavelets method

Since the truncated Legendre wavelets series 1s an approximate solution of nonlinear Fredholm

integral equation, so one has an error function £ (17) for y(n1)as follows
E(n)=ym-C"¥ o) (119)

The error bound for the Legendre wavelets method approximation 1s demonstrated in following

lemma [29]

Lemma: Suppose that the function y [0,1]—> R 15 m umes continuously differentiable 1¢

yeC"[0,1] Then C™W(7) approxsmate y with mean error bound as follows

yom -7 @) < | == SuPya o (n)|N (120

For proof of above lemma we refer the reader to [29] It 1s has been also proved in the hiterature that

the truncated series given by Eq (1 6) converges towards the exact solution y(q] [30, 31]

1.3 Chebyshev wavelets

Chebyshev wavelets are defined on the interval [0, 1) as

A+l

4=t
a 2? .
B Ileedl Tat (121)

PG ey A O

0 othcrw15c,

Page | 8
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Chapter | Preliminaries

where fi=2n-1 and a, = . n=123 .27 m=0,1.23 .M P (&)are the

{\5 m=0

mz0

well-known Chebyshev polynomuals of the first kind of degree m . which are defined on the interval

[-1,1]. and can be determined through the following recurrence relation

F($)=1. R(&)=¢3,

P (&)=2LP (£)-P, (). m=2,3,4, . (122)
We should note that the sct of Chebyshev wavelets are orthogonal with respect to the weight
function w, (x) =w(2"x—#}.
1.3.1 Chebyshev wavelets and function approximation

The orthogonality of Chebyshev wavclets enables us write

7@ =33 Cotrunl® (123)

=l m=0
where C,,, =< f(£),¢,,,(&) > The above infinite series 1n truncated form can be wrilten as

' ML

S =2 Cotum(&)=CT¥(?). (124)

nal m=0
where C and (&) are 2*”' M x| matrices given by

(125)

.

C=|:cill n Cwr Cao Capr1 Cpug cz"'u-l]
r

T(§)=[W10(‘f) vu(é) Wi (5} ¥n(£) Wlu—l(é) w:’“o[:" "UI"‘M-I((’;)] (1 26)

1.3.2 Operational matrix of derivatives

The derivative of a Chebyshev polynomial can be expressed as a lincar combination of lower-order

Chebyshev polynomials, that 1s

Page | 9
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Chapter | Preliminanies

P& = ZmMZ'I P (&) m1s even,

P;(f):ZMEP_,(mePO(‘f) m 1s odd

In the view of (1.27), the derivative of y, {£) 1s given as,

-

k-1
T m-1
a,..2 21 2mZPM(21§_ﬁ)
' = ‘/; k=1
an(é)_‘ £l
_2_ =l
B 2tomy B (2 -A) R (25 -)
. i=1
The function , (£) 1s zero outside the interval l:——nz:l . nz-:l) .50
v, &)=y, W (=12, 2%
where
0 V2 0 32 0 52 - (M-1)2]
o 0 4 0 8 0O 0
w =2 ¢ 0 0 0 10 2(M -1)
6 0 0 0 0 0 2(M -1)
L0 0 0 0 0 |
0 V2 0 32 0 52 o
0 0 4 8 0 0
w0 0 0 6 0 10 2(M -1)
0 0 o 0 0 2(M -1)
0 00 0 00 0 0 .

Defining D =diag®W " W™ W', W'),onecan write

Y(&) = D¥(S)
The above relation can be generalized to sth derivative as

Y (&Y= D) n=12.3,

Thesis By Mati Ullah{] Reg No 165-FBAS/MSMA/F13

m even,

m odd

when M 18 even,

when M is odd,

(127)

(128)

(129)

(1 30)

(131)
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Chapter | Preliminarnies

1.3.3 Implementation of Chebyshev wavelets method to B.V.Ps

In order to apply Chebyshev wavelets to a second order nonlinear boundary value problem defined

in Eq (1 9), we expand the solution of (1.9) in terms of Chebyshev wavelets as follows
Y =C"¥ ), (1.32)
where C and w(n) are defined in Eqs (1 25) and (1 26) Inserting (! 32) mto (I 9). onc gets
CT D () +¢(n.CTDY(m),C" DY () =0, (133)

Defining collocation points 7,’s as

n =%[I +cos('2?T;})ir—l]]’ 1=2,3, !2*_IM—1v (l 34)

Eq (1 33) can be transformed into the following system,

CT DM (n,) + ¢(n,, CT DY (1,).CTD*¥(n,) =0 (135)
The boundary conditions on Eq (1 9) can be wrilten as

CT¥(a)=a,,C"\¥{b)=b, (136)

The system of 2" M —2 nonlinear equations along with the (1 36) can be solved for the elements
of C in equation (1 25) using Newton's iterative method or by any computational software Iike

Mathematica or MATLARB

1.3.4 Error Analysis for Chebyshev wavelets method
The error bound for the Chebyshev approximation is demonstrated 1n following lemma, given In
[25]

Page ] 11
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Chapter 1- Preliminaries

Lemma: Suppose that the function f.[0.) >R s m times conunuously

differentiable £ € C"[0,1] Then CT¥(7) approximate f with mean error bound as follows

]
m 1 4M 2'!“.’-[)

"f(’?)—- CT‘F(J’})“ < max, |f”'(q)|” (137)

Page | 12
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Chapter 2: Solution of some flow problems using
Legendre wavelets

A method based on Legendre wavelets 1s presented in this chapter to discuss the flow of a third
grade flud between parallel plates and forced convection n a porous duct The flow problems are
modeled n terms of integral equations and then solved by Legendre wavclets method The
comparison between present results and existing solutions shows that the Legendre wavelets
method 1s a powerful tool for solving nonlinear boundary value problems We hope this method can

be used for solving many interesting problems arising in flows of non-Newtonian fluids

2.1  Parallel plate flow of third grade fluid

2.1.1 Plane Couette Flow

We consider the steady laminar flow of an incompressible third grade fluid between two
horizontal mfinitc paralle] plates scparated by a distance 4 The upper plate (y=h) 1s moving with
umiform velocity U while the lower plate (y = 0) 1s stationary The motion of the upper plate sets the
fluid particles moving in the direction parallel to the plates Let x-axis be taken in the direction of
flow and y in the direction normal to the flow Assume that there is no pressure gradient in the
direction of x-ax1s The resulting normalized differential equation denived mn [14] for such a flow In

the absence of pressure gradient, reduces to

y U +6B8y"(my*m=0, y(0)=0. y(I)=1 @n
Page | 13
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Chapter 2 Legendre wavelets method

The Green's function corresponding to Eq (2 1) 1s given by

£(l-n), tor0<S <y,
G(n,&) =
) {r}(l—f). forn<&<l, (22)

and the integral equation is

¥(m) = P()+ [ Gin.£)p(EME 23)

where p(£)=68y"(£)y"(&) and P(n) =17

Substitution of Eq (2 2) into Eq (2 3) yields
Y =n+ | EQ-m[68y (€ &) HE + [nA-O)[ 68y )y () PE (24)

Now to apply Legendre wavelets, we proceed with £ =1,M =1 Thus the solution of (2 1) will be
of the form
¥ = Co¥ie (m+ ¥ (m

or  y(p=c,+V3c,2n-1), 25)

where the values of w,,(77) and y, () are obtained through the definition of Legendre wavelets

Invoking (2.5) into (2 4) gives

cn+~3c,2n-Y=71 (2 6)

We choose the collocation points as # =0,%. Substituting these collocation pomnts m (2 6) and

solving the resulting equation for unknowns ¢, and ¢, we get cm=%, o =;\1/—§and thus
yim= Cm'i/m(f?)+cuk‘/n(7}) =1, (27
Page | 14
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Chapter 2 Legendre wavelets method

which is the exact solution

2.1.2 Fully-developed plane Poiseuille flow

We now consider a homogencous third grade fluid occupy:ng the space between two stationary
infinite parallel plates which are distant 2k apart The flow 1s generated due to a constant pressure
gradient Let the onigin of the rectangular coordinates be mid-way between the plates The

differential equation which governs the problem under consideration 1s [14]

Y +68y (mytm=p. y'(0)=0,y(1)=0. (28)

Eq. (2.8) along with boundary conditions can be transformed into following integral equation
l 1
Yo =3 P17+ [Gn [ 68y Oy O S 29
2

where G(1, &) is the associated Green’s function given by

I-p, for0<f«n,

(2.10)
1-¢, forp<&<l

G(M)={

For application of Legendre wavelets method we choose k=1.M =3 Thus we can write the

solution of (2.9) as
y(m=C"¥(7)
or ) = oo () + ey (D + 9, ()
of () =c,+3c,(2n—1)+5c, (617" — 61 +1) @11)

Substituting (24) into (22} yields

Page | 15
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Chapter 2 Legendre wavelets method

() =%p(-1 +q2)+1(1— m68(1245¢,,)(23c, +5¢,, (126 -6)) &

+]j (1-£)68(12v5¢,, )(2v3¢, +5¢;, (126—6))20'5‘ 212)

1

1
Here we collocate (2 12} at 7= 0,5,1 Now transforming the domain of mntegration 1n (2 12) to [-1,

1] and substituting the value of collocation pomts, we get the following three equations
¢, =3¢, +v5¢,, =0, (2 13)

co-111803¢,=025(2 - 05p)

L 241 495¢% +(-935 307 +935 3071))c
+.|- (]'+rl)ﬂcu( ’ I) ; u]:\ 1
|

+{905 608-1811 227, +905 6087 )el

(241 495-241 4957,) Bclic,, +{935 307-935 30777 ) fie, e
+ Ts
| +(905 608+905 6081, -905 608z," -905 6087, ) Acy, )

——

214)

r.'w+\/§c“+\/§c,2=l (215)

Now we apply Gaussian integration formulae to evaluate the integrals appcaring i the above three
equations Since the first integral i (2 14) involves a third degree polynomual, therefore we use

zeros of Legendre polynomial F, and associated weights to evaluate 1t Simularly, the zeros of
Legendre polynomial £, and the associated weight functions will be used to evaluate the second

integral 1n (2 14) Ths results in the following three equations

c,a—ﬁcu+\/§cu=0, (2 16)

Page | 16
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Chapter 2: Legendre wavelets method

0125p+ ¢,y +(~1 11803241 4958, ), — 603 7385cs, =%. 217
¢,p +\3¢, +5¢, =1, 2 18)

Now solving Egs (216-2 18) for a fixed value of # and p using Newton’s iterative method, one
can easily get the values of ¢, ¢,, and ¢, The comparison of Legendre wavelet solution and
numerical solution by using BVP4C routinc of MATLAB 1s shown in Fig. 1 Table I shows the
absolute error between numerical solution and Legendre wavelet solution for §=05. p=-15

Using lemma 1n chapter 1 the error bound for this problem tums out to be 0 02742 Thus clearly

indicates that absolute error does not exceed the value predicted by the lemma

Legendre Wavelel  ---——--
Numerical Solution .

03
8=0,01,0205

0.2

01

1 i 1 1 | 1 L 1 1

0.2 04 06 08 10

Fig.1: Companson of numerical solution with Legendre wavelet solution for the velocity profile

y(77) of fully-developed plane Poisculle flow when p =-1

Page | 17
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Chapter 2 Legendre wavelets method

Table 1: Comparison of Legendre wavelet solutions with the numerical solution fully-developed

planc Poiseuille flow for values of 8 and p

B=05p=-15
n Legendre Wavelet Solution  Numerical Solunon  Absolute Error
01 05150 05148 0 000125439
03 0 4598 0 4598 0 000020202
05 03631 03631 63916x106
07 0 2356 02356 48202x10°
09 0 0837 00837  53032x10°

2.1.3 Plane Couette—Poisenille flow

Here the flow of third grade fluid 1s generated by simultancous application of the constant pressure
gradient and motion of the upper plate The resulting differential equation and the corresponding

boundary conditions are [14]

Yy +68y"(my in=p. y0)=0.y() =1 (219
The Green’s function corresponding to (32) is given by

o, ;)___{g‘(l—q), for 0< &<, @20
n(1-&) for 7<£ <],

and the integral equation associated with boundary value problem (32) 1s
I
¥y =P@)+ [ GOp.E)p(§)E . (221)
o

where (&) =68y 2(£)y™(&) - p and P(7) =1

We have applied Legendre wavelet method for £=1,M =3 and compared the results with

numnerical solution 1n Table 2. Graphical results obtained through both solutions are also displayed
Page | 18
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Chapter 2- Legendre wavelets method

in Figs. 2-4. We have computed the crror bound using lemma of chapter 1 for =05 p=-135

just to show that the absolute error does not exceeds its upper bound It 1s found that the error bound

for this case 1s 0 002520 Clearly the absolute error does not exceed this value

Table 2: Comparison of Legendre wavelet solutions with the numerical solution of plane Couette—

Poiseutlle flow for various values of f and p

p=0,p=-15 B=05p=-15
y oo N ebor |y Wl " b Eror
Solution Solution
01 01675 01675 3812x10™ |01 0.115786 0.115786 155199x10°*
03 04575 04575 3812x10~° |03 0338073 0338073 57949 x 107’
05 06875 06875 3812x10™7 |05 0546980 0.546980 6.0232x 107"
07 08575 08575 3812x10~ [07 0741048 0741048 61000X 107’
09 09675 09675 3812x10~° |09 0918379 0918379 53475x 107"
B=1,p=-15 p=15p=-15
01 0109219 0109219 5.2309%107° |01 0106526 0106526 19325x107%°
03 0321998 0321998 1.5921x10° |03 0315486 0315486 1.7781x107°
05 0526818 0526818 1.0310x107™ |05 0518763 0518763 24963 x 107°
07 0723105 0723105 7.7161x10°°[07 0716054 0716054 505340x 107"
09 0910175 0910175 22304x10™% {09 0907015 0907015 54273 x 1077
p=2,p=-15
01 0105054 0105054 1.0764x107°
03 0311953 0311953 4.2288x 107"
05 0514429 0514429 52297 X 10~ |
07 0712298 0712298 5.3988 x 107°
09 090535 090535 9.0192x107%

Thesis By Mati Ullah|| Reg No- 165-FBAS/MSMA/FI3
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10+
| Legendre Wavelet Solution

+ Numencal Solution

08t
£=0,01,05
06

04

02

0.2 o4 06 0t 10
Fig. 2: Comparison of Legendre wavelet solutions with the numerical soluuon of plane Couette—

Poiseuille flow for vanious values of S whenp=-135

10
Legendre Wavelet Solution

- Numerical Solution

Fig. 3: Comparison of Legendre wavelet solutions with the numenical solution of plane Couctte—
Poiscuille flow for vanious values of fwhenp =135
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1 dee Wivelar Sel

P=0 1 2. 247F

\

1} ]

o

::

£
e

P=123475

— —_— ———

L

i s " .
04 0%

0s 10

Fig. 4: Companson of Legendre wavelel solutions with the numerical solution of plane Couelte-

Poiseutlle flow for various values of p when 8 =0/

2.2  Forced convection in a porous saturated duct

Let us consider steady pressure driven flow of a Newtoran fluid through a horizontal channel filled

with porous medium The governing equation in dimensionless form for such flow s [32]

] 1 1 l
y'(x)=s y(x)—Fsy (x)+E=0

(2 22)

subject to the boundary conditions y(—1) = 0,y(1) = ¢ To apply Legendre wavelet method. we

use transformation x = 27 — 1for our convemence Thus we can wnte (222) and boundary

conditions as

4
y"(17)— 45’ ¥(n) - 4Fsy’ () +==0.5(0) =0, y(1) =0 (2 23)

Thesis By Mati Ullah]] Reg No 165-FBAS/MSMA/F13
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Chapter 2 Legendre wavelets method

In the same manner as described previously we can transform (2 23) into following integral

cquation

y(m) =[G, O)p&)d¢ , (2 24)

g

E(l-n), for0<& <y,
here G(7,&) = 2
where G(77.¢) {q(l—g), for < £ <1, 223)

and (%) = 4s2y(:)—4Fsy2(«f)+%

Taking k =1, M = 6, we have obtaned the solution and results shown 1n Table and Figs 5 and 6

Table 3: Comparison of the valucs of the Legendre wavelet approximation solutions with the

numerical solution of forced convection in a porous saturated duct

F=18=1
=1 =2 5=3 =4

Legendre wavelets -072124 -0 46913 -0 32803 -0 24857
Solution y'(1)
Numerical Solution -0.72124 -0 46913 -0.32803 -0 24857
Y
SHAM Solution (15 | -072120 -0 46913 -0 32803 -0 24857
Order) y'(1)

s =1 B=1

F=02 =04 F=06 F=08 =l

Legendre wavelet -0 75248 -0 74395 -0.73594 -072838 -072124
Solution y'(1)
Numerical Solution -0 75248 -0 74395 -0 73594 -072838 -072124
y')
SHAM Solution (20 | -0.75248 -0.74396 -0 73594 -0.72838 -0.72124
Order) y'(1)

Page | 22
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Y30

325 — F=5
)20 L

\

Legendre Wavelets Solution
Y10 — Numerical Solution

1 L n . 1 N 1 . _

02 o4 06 os

n
10

Fig. 5: Comparison of Legendre wavelet solutions with the numerical solution of forced convection

in a porous saturated duct for different values of Fwhens =1, B = |

y
oaf
s=10.5
03 Legendre Wavelets Solution
} Numencal Soluton
" s=2

01

02 'Y 0% " os

Fig. 6: Comparison of Legendre wavelet solutions with the numerical solution of forced convection

in a porous saturated duct for different values of s when F=1.8=1
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Chapter 2 Legendre wavelets method

The Table and Figures shows excellent agreement between both the solutions. The same problem 1s
treated in [32] by Spectral homotopy analysis method (SHAM) It 1s observed that our solution 1s n
excellent agreement with the solution obtained by SHAM This also demonstrates the efficiency and
accuracy of Legendre wavelet method The simplicity of the algorithm just requures [ew seconds for
a personal computer to run the code and get the unknown values of matrix C The only
computational part involved in this method s the calculation of the elements of matrix C which can
be done without much effort There are several solvers available which can solve large system of
nonlinear algebraic equations The procedure of SHAM is much different In SHAM a nonlinear
differential equation 1s reduced nto an infinite number of differential equations which are then
solved using Chebyshev pseudospectral method We do not claim the efficiency of Legendre
wavelet method for all type of nonlinear boundary value problems but for this specific problem this
method 1s found to be efficient than SHAM. For instance when s=1, SHAM gives fifth order
accurate solution at 10th order of approximation while this accuracy 1s achieved with Legendre
wavelet method by taking &=t and M=6 This clearly demonstrates that the required accuracy for
this particular problem can be achieved by Legendre wavelet method at very low computational

cost
Conclusion:

In this chapter a Legendre wavelets method is employed to solve some two-point boundary value
problems 1n fluid mechanics Based on developed algorithm the results are obtained for Couette
flow, Poiscuilleflow, Couette- Poisemille flow and forced convection m a porous duct The
graphical results for both numerical solutions and Legendre wavelets solution are presented The
absolute error for both the solutions illustrates that solutions are in excellent agreement We hope, 1t
will open a window to implement this method to other complicated nonlinear boundary value

problems 1n non-Newtonian fluids
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Chapter 3: Solution of some nonlinear problems using
Chebyshev wavelets

This chapter 1s concerned with the solution of nonlinear problems using Chebyshev wavelets Five
representative problems are solved The Chebyshev wavelets solution for each problem is compared with the

already available approximate or exact solution.

3.1 Cooling of lumped system with variable specific heat

For this probiem, the nondimensional equation and inithial condition are
P - _
(1+ By(m) an +y(7)=0, y(0) =1 31N

Chebyshev wavelet method suggests to write
i =C"¥n), (32)
where C and W(77) are defined in (1 25) and (1 26). respectively Substituting (3 2)in (3 1), we get
(1+ BCT¥(m))CTD¥ () +CT¥ (1) = 0. (33)
To proceed further, we choose k=1, M =3and then y{7n7) becomes
Y = ¢ M + 9, (M + ¢ (1) G4
Using the definiion of Chebyshev wavelets. the above equation becomes

2, | 22n-l)c,  2(87° -8n+1)e,

(33)

Invoking (3 5) into (3 3) gives

Page | 25
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45 (<, (47 -2+ 2,8~ + D +2¢, ) (4a 27 =D+ cy)) 56

7 (a7 +2)+ 20, B +1)=T)+/26,,) =0

1n (3 6), we get the following algebraic equations

| w

Substituting the collocation points n =%

J2e, —2¢, +2¢, =0 (37)
rid

4}9(\6610 +<y _CIZ)(CH +2¢,)+ ‘/;(‘Ecm +5¢y, +?Cn)

4

=0, (38)

7 (Ve 30,95, =486, -2 2 es) 69

n

where the Eq (3 7) 1s the consequence of the inmial condiion y(0)=1 Solving the above system for

F=01, weget

c,, =0831828.¢c,, =-026843.c,, = 0 0296056 (3 10)
Thus

y(n) =1-0 873037 +0 267257 3

Similar solution expressions can be obtained for other values of § The solution obtained by above defined
procedure 1s compared with the numerical solution n Figs. 3.1-3.3 and Table 3.1 for different values of 8

An excellent correlation between both the solutions 1s observed Due to separable nature of the equation

(3 1). an exact solution can be easily obtained and given by [33]

Iny+8(y-N+n=0 312)

Page | 26
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10}

= 0,0. 65
o.ef B =0,01,04 0651

=0T}

¥

osf Numerical Selutist nsanves

Chelyzhere warelets Selutim —— ——

o4l
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n

Fig. 3.1: Companson of Chebyshev wavelets solution (k = 1, M = 6) with numerical solutton in the interval
(0. 1]

10}

o8t

8=0,01040851

§0.
S
04
Numerim] Selunap sssnens
02 Chebrihere warelens Selurisa
00 0.8 10 13 20

n

Fig. 3.2: Companison of Chebyshev wavelets solution (x = 1, M = 6) with numenical solution 1n the nterval
[0. 2]
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10}
Nymenaal Selsomm ==vwnasn
Chebyahere bets Sal
N |3
1
as}
=
=
2 =0010410651
04}
02}
oo}
° 1 2 3 4 v

Fig. 3.1: Companison of Chebyshev wavelets solution (k = 1, M = 12) with numerical solution in the tnterval
[0, 5]

Table 3.1: Comparison of Chebyshev wavelets solution (k = 1, M = 12) with numenical solution and the
absolute error is computed.

n Chebyshev wavelets Numerical Absolute Error
solution, k=1, M=12 Solution
01 0912765 0912765 93234310
03 0 758897 0758897  536144x10°
05 0629429 0 629429 7 0725%109
07 0520953 0520953 340449~107
09 0 4304 0 4304 [ 63547x10"
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Chapter 3. Chebyshev wavelets method

3.2 The reaction diffusion Equation

The reaction diffusion equation with boundary conditions in nondimensional form s given by

2 r
d';—ﬁzy"(n)=0.w1ﬂ1 HL o, yay=1.
dn d‘qq_o

where 7>0 substituting (1) = C"¥(77) nto (3 13), we get
CTDM(m+ B (CTE D) =0

Now, fork =1. M =3, we can write

V2o, | 220-1, | 2(87° -8n+1)e,

Substitution of (3 15) into (3 14) gives

32¢,, _ﬁZ(Iéqzclz +4HC” L 2(. +ﬂ_ﬂ] =0

Jx Jr  dx dx N2 Tx

TH- 16818

The choice of collocation point =% yield the following equation

32%_ 5 3 _ﬁn:
_\/7 ﬁ[\/;cm \/;) 0

dy

The boundary conditions — =0 and y(1)=1yield

7=0

4(c” —4cu) o

Jz

ﬁcm +2(c, +¢,) .
- .

Ir

Thesis By Mat Ullahj| Reg No- 165-FBAS/MSMA/F13
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(314)

(3 15)

(3 16)

317)

(318)

(3 19)
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Chapter 3 Chebyshev wavelets method

Eqs (3 17-3 19) can be solved for ¢,,, ¢, and c,, for any specific value of # and »n Hence the solution is

complete For =1 and n=2
y(7) = 0 300202 +0 6998 320}

A companson of Chebyshev wavelets solution for corresponding numencal solution is presented n Figs.

3.4-3.6 Again an excellent agreement is observed between both the solutions

L

Namerical Soluoon sssasrm
Chebysheve wavelets
Solation

] et N . . . N o
oo 02 04 06 s} .} 10

Fig. 3.4: Comparison of Chebyshev wavelets solution (k = 1, M = 12) with numerical solution for n=1
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Numencal Solutios mavsnaw
Chebysheve warelets Solution

REl l=.5

W
N\
W

amE

n=121345¢6
h

1%

00 02 04 06 e 10
q

Fig. 3.5: Comparison of CWS (k=1,M= 12) with numenical solution for =05

[ Nmel‘k’l Solution swsnas
Chebysheve wavelets Solution

2 =05

I9F

00 02 04 06 08 10

Fig. 3.6: Comparison of CWS (h=1,M = 12) with numerical solution for =05
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3.3 Quadratic Riccati’s equation

The quadratic Riccat1’s equation with imposed initial condition y(0)=0 reads

Y 2y -y i+ (32D
dn

An exact solution of this equation 1s

1, |V2-1
y(q)-l+\/§tanh,:\/§q+ilog[ﬁ+lﬂ (322)

The Chebyshev wavelets solution in the domain [0, 1] for k=1, M =24 1s

¥(7) =0 037874n -0 396075 +1 87085 -5 2707® +9 882,"
-13 1235" +12 917" =9 7365" +5 6195 ~ 2 42947
+0 87067" —0 227647'* - 0 08051%" — 0 085505"° + 0 0683 17° (3 23)
+02257277* + 0 1682077 ~ 0 155557° — 0 466675° — 0 333337
+0 333337 +1 000077 +1 0007

The above solution diverges for #>1 To obtan the solution expression vahd for 7>1 We first transform

the mnterval [0,4],4>1 1nto the interval [0, 1] by using the transformation f:% and then solve the

transformed equation in the mterval £ €[0,1] Fmnally the solution obtained in this way 1s reverted to the

original variable 7. Following this process the solutions for 4 =2,3and 6 are given by

A=2,
y(m) =-000196927" +0.046603n> -0.5136n*' +3 49735
—16 458" +56 73" — 148 137" + 299 095'¢ —472 795"
+589 777" 583 1n" +458 507'* —286 575" +141 497" (3 24)
~54 8157° +16 69571° ~3 58397" + 0 47586n° -0 54227
—0327287" + 0 333037” +1 00007” +1 0007
Ai=3

Page | 32
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1) =~4 9630x 1077 + 0 000205557™ - 0 00393927™ +0 0464707%
~-037836n" +225805"™ —10 2327" +35 970%™ - 99 335"
+216 807" —374 351" +509 87" —544 45 +452 245" (3 25)
~290 087’ +142 115" —51 787" +13 718p° - 3 06967
—00088377" + 0 308667° +1 00107 +1 000y

A=4,

y(17)=2.1039x10" 7** - 0 0000104805 +0.000244737' - 0 00355815
+0 0360777 -0 270767™ +1 5579" -7 02177" +25 1105"*
-71 714n" +163 807" - 298 297" +429 857" - 484 567" + 421 157° (3 26)
-277.935* +137 247" -49 272" +11 8677 -2 38857" +0 542051
+0 9888277 +1 00027

¥(n)=70724x107 7% -3 9978x 107 5% + 0 0000104937 -0 000169527
+0.00188287"” —0 0151957" +0 0917225 —0 418677" +1 4360n"
—357487™ +5 756977 -2 84037 —13.7997" + 46 8685 —81 2417 (327)
+91 175" — 69 09157 +35 9747° —13 130" + 2 52055 — 0 0490597"
+1 026577 +0 999287

A=6,

Yy =-86109x107°n" +6 1263x10™* 5> -2 0402x 10~ 5*'
+0 000042252, —0 000609577" +0 0065044n"
—00531897" +0 340765 -1 73367" +7 0564n™
—23.0377" +60.205;7" —125.1677"' +204 707" - 259 075°
+248.305" —175 877" + 90 2707* —33 0015 + 7 46527"
—0.815717 +1 0905 + 0 997107

(3 28)

Graphical results shown in Figs. 3.7-3.12 present a companson of CWS with numerical solution 1n the

intervals [0,4],4=2,3,4,5,6 Each figure clearly demonstrates an excellent agreement between both

solutions
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Numerical Solution wevrvee
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]
Fig. 3.7: Comparison of CWS (k= 1, M = 24) with numerical solution mn the interval [0. 1]
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Fig. 3.8: Companison of CWS (k = 1, AMf = 24) with numerical solution n the interval [0, 2}
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Fig. 3.9: Comparison of CWS (k = 1, M = 24) with numerical solution in the interval [0, 3]
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Fig. 3.10: Companison of CWS (k= |, M = 24) with numenical solution iy the 1nterval [0, 4]
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Fig. 3.11: Comparison of CWS (k = 1, M = 24) with numerical solution in the interval [0, 5]
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Fig. 3.12: Comparison of CWS (k = 1, M = 24) with numerical solution in the interval [0, 6]
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3.4 Thin film flow of a third grade fluid

Here, we shall solve a nonlinear differential equation which represent the phenomena of thin film flow of a
third grade fluid down an inchined plane [34] The dimensionaless form of the problem 1s represented by the
following nonlinear differential equation and boundary conditions

d’ dy Y dy . Ty
EEJ;%‘B(}%) Fj;+l=0,w1th »0)=0. y)+28(3' (M) =0 (329)

Following the procedure of Chebyshev wavelets method, the solution for & = 1, M = 6 1s shown for several

values of J in Fig. 3.13

acp
Numerscal Solntws means 11
Chebysheys way elets Solahon
33
I ‘
A=00103,018121
21
o
7
.
uzgp o . . . .
oda 02 o4 06 oA 14

n

Fig. 3.13: Companscn of CWS (k= 1, M = 6) with numerical solution
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3.5 Sixth order nonlinear boundary value problem

Consider the following nonlinear boundary value problem

&

d’y

=e—i? 2 . 0( (l,
prc halt) 7

with boundary conditions
y0) =y (0)=y™(0)=1, y(N=y"N)=y"()=e

The above equation adnuts the exact solution e”

(3 30)

(331)

To employ Chebyshevy wavelet method to the sixth order boundary value problem, we first transform the Eq

(330) into second order simultaneous differential equations To this end, we use the following

transformations-

d'y d’q
d?}'z —Q(q), dqz “r(r}):

The above transformations yield the following set of sumultaneous differential equations

d’y
| d,;; =q(7) y(0)y=1y(l)=e,
dl
12yt =D 90)=Lg()=e,
r
GV rO=Lrh=e

-

(332)

Now, we substitute y(7) =C (1), q(n) = E'w(n) and r(z7) = F () n (3 32) and gel

C'D*™W ()= E"¥(7) CTW(0)=1,C"¥() =e.
E'D™W(@p) = FTW () E'¥(0)=1ETW() =e,
F D" =e (CT¥(p)  FIPO)=LF¥()=e

Thesis By Mati Ullah)| Reg No. 165-FBAS/MSMA/F|3
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A typical choice &£ =1.M =12 yields

y(m=

G M+ (M + e, (M +. +0, 90,01
2 4qc 2¢,, 16r} ¢, l6nc, 2c'|2 64n'c, 96n°c, 367;.:]3

VSN =Y =R ~Sb =N =R FERN g

2¢c,, 256?} ¢, S12n’c, 320n°c, 64nc, 2¢,  1024n°c,

I AN N N N RN rR =

_2560n'c,, , 22407'c, 8007°c 100mc, 2¢,  40967°c, 12288n'c,

Jr N NN N N 4 N

138247'c,, _ 71687°c,,  1680n°c, _14dnc, 2, , 16384n'c,

NN VRN AN N

_57344n'c;, . 788487°c, S53760n'c, 188167°c,, 3136n’c, , 1967,

I R R

_2¢, 655367} ¢y 26214477°c,, +425984q"cl, 360448n°c,, \ 1689607"c,

i r N i n Jr

_43008r}3c,,+5376n2c,, 25611c,y |, 20y, 262[44:; ¢, 11796487,

Jr Jr N RN SN 4 Jz

, 221184077, 22364167%c, 1317888r°c, _4561927'c,  887045'c,,

N N NN N

_8640q2c,, 324nc, 26, 26 1048576:7'%,,0ﬁ5242880n’c“0

NS =R Y =N = I

L 111411207",, _ 1310720077c,,, | 93184007%c,, _ 41000967°c,,

7 I 7r N

, 1098240n"c,, _ 1689607°c,,,  132007°c,,, _ 4007c,,, | 41943047"c,,

Vr Jz I Jz Jz

_ 230686721 ,,,  547880967°c,,, _735313927'c,,, | 612761607c,,

N Jz Jr N

_328007687"¢,,, L) 12752647°c,,, 2416128;'c;), , 30201 67,

N Jr N Jr

(3 35)

~ 19360n°¢,,, 484?}::“, _2q,,

Jr Ve Nm
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q(77) = €0y (1) + &, 1, ) ey, (M + . e, (D)
2 47?‘3“ 2‘?“ 1677°e,, 1936077%,,, 4847391“ 2e,,

MV I N N Jr

r(m = LoD+ L0 D+ fow(m + o+ favn

=sz 4/ 2fu 167° 12 _19360’?2fm 4847/, _ 2/
SR e A o

Substituting Eqs (3 35)-(3 37) into (3 34), one gets

204807°c,, _ 2457607°c,, , 30727°c,,  165888n%c, _30720n%c, 384y,

N N Vx NN N

13440m¢, 3072nc, 430087, 32c, 640c, 3360c, 192,

Jz Jr NN N N PN

_1600c, , 36700167%,  6881287°, 11010048n'c, _122880n'c,

N Jr NN ~ Jz
12779520, _ 17203207"c;, . 1576960n°c,, . 2635776057°¢,,
Jr N Jr vz
72089601 c,, R 2027520n%c,,  6451207°c, 54743047'c, , 1128967,
Jz Jr Jr Jr Jr
33222470, 258048nc,,  10752¢, 6272¢, 17280c, 94371 84017°c,,
Jr Jr NF3 Jr N Jz
L 188743687'c,, _3774873607c,, , 6239027205, _ 66060288, c,
N Jr Jr NS
L 92897280n°c,, _ 550502400°c;,, _670924807"c, | 2795520007'c,,
Jr N N Jr
_ 820019207°¢,,, . 1317888077°c;,,  10137607¢,,, | 26400¢;,,
Jr Jr Jr Jr
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L 4613734400%c | 2076180480n'c,,,  39447429127’c,, _4117757952n',,

Vx Jr N Jr
+ 2573598720n°¢,,, _ 98402304077°¢,,, N 2255052807°¢,,, _ 289935367°c,,,
N Jr Jx Vr
N 1812096#¢,,, 38720c,,,
N V=

9677 €, 64:;- €, 161} e, ]61r;v.<3]2 _4ne,, 36ne; 2 2e” 2e,,
N - R Y R L AN AN~

2e, 4096ne, 12288n%¢, 1024n¢, 2560n'e, "561? €, 64ne,,

Nr n Jz Ja V= NN

138247, N 5127°e, 71687%¢, 2240, s 8007°¢,, 320m’¢, 16807°¢,

Iz x| dr iz NS Iz

+l44qe“ 1007e,, 2els _2e, e, 65536:; e, 262]44q’eu_l6384q79q

+
NN RN N =N N N Jr
N 573445, 425984ne, . 3604481°e,, 788481, N 53760n%e,, 1689605’e,
Jr Jr Jr Jr Jr Jr

N 430087°¢,, _ 1881677¢,, + 31367%¢,, S3767°e, N 256ne, 196ne,, 2e,

Jr Jz Jr Vr NS FEN

_20, 2621440, 11796487%, 22118407, 2236416n%e, _13178887',
Jr Jr Jr Jr NP3 NF3
R 456192, 8870477, N 864077°e,, 3247, L 20 10485761,
N Jr N NN AN

, 5242880n%,, 111411207%,,, 131072007 e, 9318400n°e,,, 41000967,

Jr Jr Jr Jr N
_ 10982407, 1689607°c,,, 13200ne,,,  4007e,, 26, _41943047"%,,
Jr Jr Jr e r Jr
, 230686727 %, _ 547880967’ 73531392n%,, 612761607’
Jr Jr N Jr
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| 32800768n‘e,,, 11275264,  2416128n%,, 3020167’

N Jr Jn Jr 3 38)
N 19360n°,, _484ne,, | 2¢,,
Vz RS
204807, . 3072r%, 307207’ | 384ne, 134407, 30727,
Jr Jr Jr N3 Jr Jr
32, 640, 1926, 1600, | 461373440n%c,, _20761804807',,
N AN AN vr Jr
L 394474291207e, 41177579520’ | 25735987200’
Jr N Jr
\j7f 2/, 2fl3 _an 647" /s 96’7 S _16’3 S I6’7f12 _anfy
A A A i S N SN SN
36mf, 41943047 f, 2306867201,
Jr Jr Jr
L 1
_ 54788096, | 735313920, (3 39)

N Jr

0727, 384nfy 3072mf, 321, 640f, 192/, 461373440771,

Jr Vr NS AN FEN Nz

_20761804807" £, | 39447429127/,

Jr N

PN N AN AN Vo

=e_,,[ 22, dne, 26, léne, | 41943047"c

w0 * ?
_ 230686727, 547880967 ch ‘ (3 40)

N Jz
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zc + 12+zc14 2¢, 201: 2clm 2¢,
N N AN N N N an
ch 2.':,5 2¢,, 20,9 Zcm -1
Jr Jr J_ NN
2c 2c, 2‘711 ’>cU 2cH 2cls 2c,,
N N AN AN AN AN .
2‘317 20“ 2Cu 2‘7110 20“1 -
BN N =R iy =
2 Zeu 2eH Zeu 2el, _2e, 2
HNZN RN =N = i = (3 43)
2e15 2317 zeI! Zem _2e,
“Jr r Nz dx Ax
2 ﬁ 2e, +28U 2e,, Ze,, 2e,
N J_ NN AN = J_ (3 44)
2el? 2ell 2el L) 28[ L0 2e“ 1 -
RN AN RN
\f 20 o 2 2 2a 2 2y
LR L o e N N (3 45)
2-’;5 2-/;7 2-[]’ 2-”110 2-"[” _l
Vx x r x A=
( 2, 2f“ 2fu Vs 2 2 2
° M N RN R = (3 46)

L2 2fu 2f19 y 2l (2,
NV SN N R N =

Where last six cquations (3 41)-(3 46) are the consequence of boundary conditions n (3 34) Now

collocatuing the first three equations (3 38)-(3 40) at ten collocation pomnts 7, €[0,1], we get thirty

simultaneous algebraic equattons These thirty cquations along with Eqs (3 41)-(3 46) are solved

simultancously for thirty six unknowns ¢,,, ,c¢,,,. €

1 €9+ -€yy and fo, £, The final solution 1s given by
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ym) =1+77+0 51 +0 166667 + 0 04166677 +0 008333347°

+0001388875" +0 0001984565 + 0 0000247325" +2 82825x107° 5’

+228856x107 0" +4 15155x 107" (3 47)

A companison of above solution with that of exact solution 1s given in Table 3.2 The solution obtained by
HPM [35] 1s also included in the Table 3.2 Clearly, the CWS s superior over the HPM solution 1n terms of

the absolute error

Table 3.2: Comparison of HPM and Chebyshev wavelets solution

n Chebyshev wavelets Exact Soluton  HPM Solution Absolute Error
solution, k=1, M =12 o O(x'?) |y(r})—e”|
01 11051709180756477 11051709180756477 1 105294273 0
02 1221402758160160  12214027581601699 1221638169 8 88178x10°6
03 | 3498588075760032 | 3498588075760032 1350184525 O
04  14918246976412706 | 4918246976412703 | 492210231 2 22045%10°'¢
05  1648721270700127 1 6487212707001282 1649129880 1 11022x1073
06  18221188003905093 1.8221188003905089 1 822510698 4 44089x 1016
07  2013752707470476 2 0137527074704766 2 014088799 444089x10°'5
08  22255409284924665  2225540928492468 2225786815 [ 33227x10°18
09 245960311115695  245960311115695 2 459733002 0 -
Conclusion:

Chebyshev wavelets method 1s applied for the solution of five nonlincar boundary value problems It s
observed that in each case Chebyshev wavelets solution 1s 1n excellent agreement with the corresponding
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numerical solution In the last example, 1t 1s observed that Chebyshev wavelet method 1s superior over
Homotopy perturbation method in terms of the absolute error As far as second order nonlinear boundary
value problems are concemned, the Chebyshev wavelet method produce excellent results However, 1ts
applicability to higher order nonlincar boundary value problems in bounded domain 1s to be tested The

efforts 1n this regard are underway and will be communicated intimately
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