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Abstract

ABSTRACT

Nowadays data grows rapidly and the rapid growth of data brings along the problems of
data storage, data usage and data analysis. Data mining is used to analyze the data. In the
field of data mining “Association rule discovery” is a very important research topic.
“Frequent Itemset Discovery” is the key process towards mining association rules.
Numerous efforts had been made to address and to provide solutions for frequent itemset
§ discovery. The solutions faced problems like repeated 1/0 and inefficient CPU resource
i utilization. A new method is proposed in this report that minimizes the I/O scans and
CPU resource utilization and supports large database. The new algorithm adopts an “NxN
Frequency matrix” to map the complete database in a 2 dimensional structure. Single DB

scan is required to build the NxN Frequency Matrix.
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Part 1/ Introduction

1. INTRODUCTION

Present era is the era of technology and technology has its impact on all fields of science,
business, medicine, military, etc. With the introduction to technology there comes a
problem of generating a huge amount of data. The same rate of growth in processing
power of evaluating and analyzing the data did not follow this massive growth. Due to

this phenomenon, a great volume of data is still kept without being considered.

Data mining, a research field that tries to simplify this problem, proposes some solutions
for the mining of noteworthy and potentially useful patterns from these large collections
of data. One of the canonical tasks in data mining is the discovery of association rules.
Discovering association rules, measured as one of the most important tasks, have been
the focal point of many studies in last few years. Finding of frequent item-set presents a
break through for mining association rules [1]. Finding f{requent item-sets and then
mining association rules on the basis of discovered item-sets was first brought up by

(Agrawal, Imienlinski and Swami in 1993) [1].

In this literature a new method for discovering freq{lent item-sets is proposed, which used
N x N frequency matrix. N x N frequency matrix is a summarized form of the transaction
dataset (Market basket data, or dataset containing information about transactions,
transaction composed of items). This method is build to minimize the repeated database
scans and to provide a platform for repeatedly applying mining algo for difference user

input and requirements.

1.1. OBJECTIVES

Many techniques have been projected using a chronological or parallel representation.
However, the on hand algos depend a lot on enormous computation that might results

high relevancies on the memory size or recurring I/O scans for the data sets. Algorithms

N x N Frequency Matrix 5
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at present projected in the literature to mine association rules are not adequate for
particularly large datasets and new solutions that are independent of recurring I/O scans
and less reliant on memory size, still have to be found. Objectives of this algo is to find
out a solution that doesn’t rescans the database again and again and has minimum

utilization of memory and also takes less CPU resources and computation time.

1.2. ORGANIZATION OF STUDY

Topic is discussed in section 2, Literature review of the topic is discussed in section 3,
proposed solution is discussed in section 5, Scope is discussed in section 6, Modules of
the proposed solution is discussed in section 7, Design and Implementation of the
proposed solution is discussed in section §. Terms and abbreviation used in this document

is given in glossary of acronyms section 11.

N x N Frequency Matrix 6
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2. FREQUENT ITEM-SET DISCOVERY

Frequent item-set discovery is mostly related to Market Basket Data. Market Basket Data
is the data related to super store and super market etc. i.e. dataset made up of transactions

and the transactions are made up of items. (Continue from here)

2.1. DEFINITION AND TERMINOLOGY

Problem can be defined as “In a database ‘D’ there are ‘1’ transactions. Each transaction
“Ti” (Ti € T) has “TI’ items where I >0. ‘“TI’ is a subset of I (items, products or parts etc.)
such that I=TI1, TI2, TI3, ..., TIn where n>0. FI is an item or a set of items such that FI is
a subset of I. FI is said to be frequent if and only if FI is a subset of Ti where ‘i’ is greater
or equal to Min support ‘min_supp’. Min support is a checkpoint set by analyst such that
the number of occurrences of FI for database D should be greater of equal to numeric
value. Min support and minimum confidence is the check point for discovering of
association rules from the database ‘D’. Confidence is the ratio of support of antecedent
determining consequent to the support of antecedent. Min support and minimum

confidence is the check point for mining association rules”.

2.2. APPROACHES USED TO FIND FREQUENT ITEM-SETS

There are several methods to find the frequent item-sets. These methods are groups on

the basis of the approach used. These approaches are given below.

N x N Frequency Matrix | 8
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2.21. CANDIDATE GENERATION AND TESTING

This type of approach generates candidate item-sets from the database, and then
compares each of the candidate item-set recursively with the database records
(transactions). Size of candidate item-set K (in terms of number of items in a set) depends

upon occurrences of the candidate item-set K-1.

2.2.1.1. APRIORI ALGO

The main scheme of the algo is based on the a priori theory, namely, an item-set can only
be recurrent if all its subsets are also recurrent. L.E., if an item-set is not recurrent, no
superset of it can be recurrent. Taking advantage of this knowledge makes possible to
decrcase the search space efficiently when finding out the recurrent item-sets, because the
number of candidate sets can be reduced by taking advantage of this knowledge. The
Apriori algo is an iterative technique, which demonstrates that it determines the k-item-

sets during the kth dataset scan [4].

The first go by of the Apriori algo basically calculates item occurrences to find out the
large 1-item-sets. A succeeding pass, say pass k, consists of two phases. First, the large
item-sets Lx/ found in (k-1)th pass are used to generate the candidate item-sets Ck, Next,
the database is scanned and the support of candidates in Cx 1s counted. For fast counting,
it is needed to efficiently determine the candidates in Cx that are contained in a given

transaction [1].

N x N Frequency Matrix 9
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2.21.2. DIRECT HASHING AND PRUNING (DHP)

The direct hashing and pruning (DHP) makes use of a hash method for entrant item-set
creation throughout the groundwork iterations and enforce pruning techniques to

gradually trim down the operational database size [2].

2.21.3. DYNAMIC ITEM-SET COUNTING (DIC)

DIC trims down the number of go by through the data while maintaining the count of
item-sets which are calculated in any go by comparatively low as in contrast to methods
which relay on sampling. “The insight following DIC is that it works like a train running
over the data with stops at intervals M transactions apart. When the train reached the end
of the transaction file, it has made on pass over the data and it starts over the beginning
for the next pass. The “passengers” on the train are item-sets. When an item-set is on the

train, we count its occurrence in transactions that are read” [3].

2.2.2, PREFIX TREE STRUCTURE

In computer science, a prefix tree is a prearranged tree data organization that is used to
accumulate an associative array where the keys are typically ordinary text. Contrasting a
binary search tree, no joint in tree supplies the key associated with that joint; in its
position, its position in tree shows what key it is connected with. Each of the children of a
joint have a same prefix of the series associated with that node, and the source is related
to the blank string. Values are typically not related with each node, only with leaves and

some inner nodes that correspond to keys of significance.

N x N Frequency Matrix 10
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2.2.21. FP GROWTH

A well-liked "preprocessing" tree formation is the FP tree proposed by Han et al. (2000).
The I'P tree stores a solitary item (attribute) at each node, and includes supplementary
relations to assist processing. These links start from a header table and link together all

nodes in FP tree which store the same "label", i.e. item.

The algo works as follows. Throughout the first dataset scan the recurrence of every item
is calculated and the occasional items are eliminated. Then in descending order the
recurrent items are sorted. The FP-tree is populated during the second dataset scan by
reading the transactions and the recurrent items are mapped into the FP tree. In this way
the dataset is prunned and is packed together into main memory. Purpose of FP tree is to
keep transactions in main memory in such a way that the process of discovering

association rules is an efficient proces. [4].

2.23. MATRIX BASED APPROACH

A matrix is a two dimensional array of data, letters, or other facts placed in rows and

columns.

2.2.3.1. HORIZANTAL DESIGN

Horizontal design is frequently used; it relates and integrates every item of the common
transition with respect to transaction id. In this technique the primary key of the target
dataset is the id of the transaction. The most important property of the horizontal design
is the integration of all items of the same transaction; this design also experience some

restrictions like unnecessary processing as items don’t have index created upon them {5].

Nx N Frequency Matrix 11
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2.2.3.2. VERTICAL DESIGN

In case of vertical design, transaction are integrated and combined with respect to the
item. In this technique the id of each trace is the item. In this technique the primary key
of the table is the item, and each item’s record contains the ids of the transactions in
which this item occurs. One of the main advantages of this technique is, on items its acts
as an index and decreases the probability of rescanning the complete dataset again and
again. On the other hand, vertical design still requires the costly candidacy generation
part. Mining exceptionally huge datasets with this design becomes nearly impractical

because of candidate generation and the additional processes attached with this approach.

[5].

2.2.3.3. ALGO BASED ON BOOLEAN MATRIX

Algo based of Boolean Matrix (ABBM) used the horizontal design. On x axis items are

mapped and on y axis transaction are mapped. Each cubicle of the ABBM represents a

Boolean value the existing of an item in a particular transaction [6].

2.2.3.4. INVERTED MATRIX

The Inverted Matrix is the hybrid of horizontal and vertical approaches; it uses the
advantages of both the techniques and tries to eliminate the disadvantages and limitations
of both the techniques up to the maximum. The basis idea behind the technique is to
integrate every item with all of its corresponding transactions, i.e the transactions
containing the items, and then relates each transaction with its related items. Alike to the
vertical design, in this design key of record is the item. This technique is different from
the vertical design in a sense that each cell of the matrix is not a single value, but it is
data structure made up of transaction id and the pointer, the pointer points to the position

of the subsequent item on same transaction. [5].

N x N Frequency Matrix 12



Part 111/ Literature Review

2.24. STRUCTURE-BASED APPROACH

Structure based approaches is the emerging approach in which databases are mapped into

multidimensional structure like cube.

2.24.1. CUBIC STRUCTURE-BASED APPROACH

The Cubic algo is a new method to discover the recurrent 4-item-sets swiftly. It find outs
the 4-item-sets in only two complete dataset searches. An “Upper triangular matrix” M is
used to calculate the support of recurrent 1 and recurrent 2 itemsets. If there are n
transaction in the dataset, then n(n+1) /2 will be the size of the matrix . Counters for the
entrant item are held up in the diagonal of the matrix, and the additional cubicles are
counters for the item pairs. A direct indexing technique is used to count the support of the

items by means of the matrix and in an efficient manner [4].

An additional dataset check is made to calculate the three and four recurrent item-sets.
An index table based on a cubic structure is used for skillful counting of the support of
the entrant itemsets. This hash table is developed when passing through the matrix M.
The rows of the matrix, which have minimum support greater then the threshold are used
to create a cube. A cube is used to store 3 to 4 entrant itemsets that belongs to recurrent 2-
itemsets and starting with the same item. In this way the first item of applicant chooses

the suitable cube and the additional items deals with the cubicles in cube [4].

N x N Irequency Matrix 13
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3. LITERATURE REVIEW

A number of efficient association rule mining algos, techniques and methods have been

proposed in last few years.

3.1. APRIORI ALGO

In the first step method calculates the recurrence of each item and find out large 1-item-
sets. A successive iteration, say iteration i, is made up of two stages. First, the candidate
item-sets Xi are produced, with the help of large item-sets Gi-1 calculated in (i-1)th
iteration of Apr-Generation method. After that, the dataset is examined and the support of
entrants in Xi is calculated. To count efficiently, we need to proficiently conclude on the

candidates in Xi that are contained in a given transaction y. [1}.

¢ GI1 = {Recurrent 1-Item-sets};
o for(j=2; Gj-1#0; j++)
e {
o N, = Apr-Generation(G-1);

O

ForAll (transactions y € S)
o {
*  N:=subset(Nj, y);
» for candidates ¢ € Nt
= do
e c.incrementt+t;
o }

L= {c € Nj|c.increment > minimum_support}

@)

o }
e Result=W;L,

(Above algo and details are referred from [1])

N x N Frequency Matrix 15
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3.1.1. APRIORI CANDIDATE GENERATION

The Apr-Generation function takes as argument X, -/, the set of all recurrent (j—I)—item-
sets. It gives out a powerset of the set of all recurrent j-item-sets. The execution steps of

the method are as follows. First, in make up step, we join X;-/ with Xj.1. [1]

e AddupinN;
o Pick z.itml, z.itm2,..,z.itm).1, y.itmy-
o from X1z, X1y

e whenever z.itm1 equals y.itm!,z.itny-2 equal y.itmj-2, Z.itm -1 less then y.itm j-/;

Next, in prune step, we delete all item-sets ¢ € C; such that some (;-/)-subset of ¢ is not in

Ly-ri[1]

e forall item-sets c € N,
e do
o forall (;-1) subsets s of ¢
o do
» if(s!€ L)
» then

o delete ¢ from N;

(Above algo and details are referred from [1])

3.1.2. APRIOIR SUBSET FUNCTION

A hash table is used to keep the entrant itemsets C;. A collection of itemsets or a
complete hash table can be stored at the nodes of the hash tree. Within hash table, every
container of the hash table spots to further nodes. If at depth / is the root of the hast tree

N x N Frequency Matrix 16
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and at depth d is an internal node, then internal node will be pointing to node at depth

d+1. Initially all node are created as leaf and itemsets are stored in leaves [1].

Starting from the root node, the subset method discovers every one of the applicant set
enclosed in a transaction ¢. “If we are at leaf, we find which of the item-sets in leaf are
contained in ¢ and add references to them to the answer set. If we are at an interior node
and we have reached it by hashing the item /, we hash on each item that comes after / in ¢
and recursively apply this procedure to the node in corresponding bucket. For the root

node, we hash on every item in ¢” [1].

(Above algos and details are referred from [1])

3.2. DIRECT HASHING AND PRUNNING (DHP)

DHP is an useful hash-based algo for the contestant set generation. Explicitly, the
quantity of contestant 2-item-sets produced by the proposed algo is, in orders of
magnitude, lesser than that by earlier techniques, thus improving the efficiency factor.
Note that the production of smaller contestant sets enables us to efficiently cut down the
transaction dataset size at a much former phase of the iterations, thereby reducing the
computational cost for later on iterations considerably. DHP has two main characteristics:
First is the proficient production of large item-sets and the second is efficient trimming of

the cardinality of the dataset [2].

3.21. EFFICIENT GENERATION FOR LARGE ITEM-SETS

In each pass the set of large item-sets, Ki, to outline the set of contestant large item-sets

Xi+1 by combining Ki with Ki on (i-1) (indicated by Ki * Ki) familiar items for the next

N x N Frequency Matrix 17
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iteration. To determine Ki+1, dataset is scanned again and support of each item-set in

Xi+! is counted [2].

/¥ Part 1 */
8 = a minimum support;
set all the buckets of H; to zero; /* hash table */
forall transaction ¢t € D do begin
insert and count l-items occurrences in a hash tree;
forall 2-subsets z of ¢ do
Ha[ha(2)] + +;
end
L, = {c|c.count > s,c is in a leaf node of the hash tree};

/* Part 2 %/
k=2
Dy = D; /* database for large k-itemsets */

while ([{z|H}[z] > s}| > LARGE) {
/* make a hash table */
gen_candidate(Lz_y1, Hg, Cr);
set all the buckets of Hy 4, to zero;
Deyr = ¢4
forall transactions ¢t € D} do begin
count.support(t, Cg, &,1); J*ECt*/
if ([{] » &) then do begin
make.hasht({, Hi by Hy g1, t),
if (l{I > k) then Dy 3 = Dy U {t-},
end
end ,
Ly = {c € Cilc.count > &};
k+ <+

Figure 1 : Algo for Large Item-set Generation [2]

(Above algo and details are referred from [2])
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(Above algos and details are referred from [2])

/* Part 3 */
gen_candidate(Li—1, Hy, Ci);
while (|C:] > 0) {
Diy1 = ¢;
forall transactions t € D; do begin
count_support(t, Ci, &, £); [FECt*/
if ([f] > k) then Dyyq = Diyy U {t};
end
Ly = {c € Cilc.count > s};
if (|Dg41] = 0) then break;
Cr41=apriori.gen(L;); /* refer to [5] */
k+ +;

Figure 2 : DHP Algo [2]

(Above algo and details are referred from [2])

Part 1 obtains a set of large 1-item-sets and builds a hash table (i.e., J2) for 2-item-sets.
Part 2 produces a list of contestant item-sets Xk based on the hash table (i.e., Jk)
produced in previous iteration, find outs the set of large k-item-sets Kk, decreases the
cardinality of dataset for the up coming large item-sets, and build a hash table for
contestant large (k+1)-item-sets. Part 3 is on the whole similar as part 2 apart from that it
does not utilize a hash table. Note that DHP is particularly influential to find out large
item-sets in near the beginning stages, thus improving the performance bottleneck. The
cardinality of Xk reduces considerably in later stages, thus rendering minute explanation

of its additional filtering. [2].
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Procedure gen_candidate(L;_;, Hy, Cy)
Cr = &
forall ¢ = ¢,[1] ...  cplk — 2] - cp[k — 1] ¢4k — 1],
ep g € Ly—1,lep Nyl =k — 2 do
if (He{hx(c)] > s) then
Cy = Tk U{c}; /* insert c into a hash tree */
end Procedure

Procedure count.support(t, Cy, k, f)
/* explained in Section 3.2 */
forall ¢ such that c € Cr and ¢ (=1, - - - ¢, ) € ¢ do
begin
c.count + +;
for (j=1; <k 7+ +) alij]+ +;
end
for (i=0, j=0; i< |t]; 1+ +)
if (a[i] > k) then do begin {; = t;; j + +; end
end Procedure

Procedure make.hashi(f, Hx, k, Hyyy, ?)
forall (k + 1)-subsets ¢ (= ¢;, - -{;,) of { do
if (for all k-subsets y of ¢, Hi(he(v)] > 8) then do
begin
Hk+1[hk+1(3)] + 4+
for (=1 j<k+1; j+4+)ali;]+ 4+
end
for (i=0, j=0; i< |f]; i+4)
if (a[i] > 0) then do begin {; = {;; j+ +; end
end Procedure

Figure 3 : Sub procedures for algo DHP [2]

{Above algo and details are referred from [2])
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3.3. DIC

In DIC item-sets creates a large web with the vacant item-set at the base and the set of all
items are the peak. Item-sets are recurrent if their count is large. However, it is
impracticable to calculate all of the small item-sets. Luckily, it is adequate to calculate
just the smallest ones (the item-sets that do not include any other small item-sets) since if
an item-set is not recurrent, all of its supersets are small too. An algo which counts all the
recurrent item-sets must uncover and calculate all of the large item-sets and the minimal

small item-sets. [3]

e o

[w XY]  wxz
N o S -

S, e

o
o W,

Figure 4 : An Item-set Lattice [3]

(Above algo and details are referred from [3])

DIC algo, marks item-sets in four different possible ways:

1. Solid box — definite large item-set — an item-set we have completed counting that
goes beyond that support threshold.
2. Solid circle — definite minute item-set — an item-set we have ended counting that

is underneath the support threshold.
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3. Dashed box — assumed large item-set — an item-set we are still including that
outshine the support threshold.
4. Dashed circle - assumed small item-set — an item-set we are still including that is

underneath the support threshold.
3.3.1. DIC ALGO STEPS

1. The blank item-set is associated with a sold box. Every one of the l-item-sets is
associated with dashed circles. Every one of other item-sets is unassociated.

2. Examine X transaction. For each transaction, increase the particular counters for
the item-sets associated with dashes.

3. If an associated circle has a count that goes beyond the support threshold,
transforms it into a dashed square. If any direct superset of it has all of its subsets
as solid or dashed squares, include a new counter for it and construct into a
dashed circle.

4, If a dashed item-set has been calculated through all the transactions, convert into
solid and stop calculating it.

5. If we reach at the end of the transaction file, wind back to the beginning.

6. If any of the dashed item-sets stay behind, jump to step 2.

DIC uses this technique to set up calculating just the 1-item-sets and then rapidly attaches
counters 2, 3, 4,.., k-item-sets. Subsequent to a small number of pass over the data
(typically fewer than two for small values of X) if comes to an end counting all the item-
sets. In an ideal world, X should be as minimum as possible so counting of item-sets will
set up very early in step 3. Though, step 3 and 4 gains substantial overhead so X should

be greater or equal to 100. [3]

{Above algos and details are referred from [3])
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3.4. FP GROWTH

Fiirst. a compressed data structure, called frequent-pattern tree is created, which is
comprehensive prefix-tree formation accumulating significant, quantitative details about
FPs (frequent pattern). To make certain that tree formation is packed together and
instructive, nodes of the trees will be occupied by recurrent 1-item-set, and the order of
nodes is such that probability of node is greater in more recurrently occurring nodes then
that of less recurrently occurring nodes. Fp trees set the plate form for manning process

and there is no need to rescan the dataset again and again. [4]

An FP tree-based model-fragment development mining technique is built up, which
initializes from a recurrent length-1 model (as an early suffix outline), inspects just its
“conditional-pattern base” (a “sub-dataset” which is made up of recurrent items co-
occurring with the suffix outline), creates its (conditional) FP tree, and apply mining
process repeatedly on suffix tree. The model development is accomplished when the
suffix mode is concatenated with the recent ones produced from a conditional FP tree.
Because the recurrent item-set in any transaction has always been prearranged in
corresponding path of the recurrent-model trees, model development guarantees the
comprehensiveness of the result. The most important actions of mining are count buildup
and prefix path count fine-tuning, which are generally much less expensive than
contestant production and outline matching procedures performed in most Apriori-like

algos.[4].

The search method engaged in mining is a partitioning-based, divide-and conquers
method other than Apriori-like level-wise production of the grouping of recurrent item-
sets. This noticeably decreases the magnitude of conditional-model base produced at the
succeeding stage of exploration in addition to the size of its matching provisional FP tree.

IFurthermore, it changes the problem of finding long recurrent model to looking for
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shorter ones and then concatenates the suffix. It makes use of the least recurrent items as

suffix, which offers good selectivity. All of these method contribute to substantial

decrease of search costs.[4].

Characteristics of FP Growth .

After thoroughly studying the characteristics of FP trees, it is figured out that FP
tree may not at all times be minimal.

To accelerate the growth of FP growth some optimizations are projected, for
example, a method to control particular path FP tree has been additionally be
proposed for performance enhancements.

A dataset projection scheme has also been introduced to deal with the
circumstances when it is difficult to detain FP tree in main memory—in large

datasets this case may happens.

Recurrent Pattern tree construction:

Frequent-pattern tree can be constructed as follows.

In the first step of recurrent pattern tree construction, the target dataset is
completely scanned and recurrence of each item is calculated and a list is created
[[z - 5).[y - 5).[x - 41.[w - 4],[v - 4],[u - 4]]. The number after “-“ represents the
recurrence of the item in the dataset. Items in the list are ordered in descending
order with respect to items recurrence.
In next step frequent pattern tree is constructed by scanning the dataset second
time. First a root in the tree is added and is marked with null.
o First branch of the frequent pattern tree is created by scanning the first
transaction of the database. Items in the transactions are ordered with

respect to the recurrence of items in the recurrence list {(z: 1), (y: 1), (x:

1), (v: 1), (u: 1}
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o In the next step second transaction is scanned, as item in the transaction is
ordered therefore items are checked with the first branch of the frequent
pattern tree. The frequency of the items sharing the common prefix (z, y,
x) is incremented by one and the nodes that don’t share the prefix (u, v)
are added as new nodes in the tree.

o As only one item of the next transaction share the common prefix (z), its
frequency is incremented by 1 and a new node (w) is added to the tree and
is linked with z.

o A new branch is added to the tree when fourth transaction of the dataset is
scanned as its item doesn’t share any common prefix. (y, w, u).

o As for the last transaction all the items share the common prefix,

frequency of all the items sharing the common prefix is incremented by 1.

TID Items bought (Ordered} frequent items
100 z.X,y.d.g,6.v.u Z.y.X.v.u

200 xwy.zl. v, o Z Y. X.W. V¥

200 W.Zh fo Z. Vv

400 w.y. k5. y.v.u

500 X.Z,y.e l,u, v.n Z. Y. X. v, U

Figure 5 : Construction of compact data structure for FP growth [4]

(Above algo and details are referred from [4])

With the help of this example we can develop a recurrence tree by the following method..

Definition 1 (FP tree). A frequent-pattern tree (or FP tree in short) is a tree arrangement

defined below.
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o [t consists of single root taged as “null”, a collection of item-prefix sub-structures
as the offspring of the origin, and a frequent-item-header table.

* every node in item-prefix sub-tree is made up of three fields: item-name,
calculation, and node-link, where item-name records which item this node stands
for, calculation records the total count of transactions corresponding to the
segment of the path approaching this node, and node-link relates to the next node

in FP tree having the same item-name, or null if there is not any.

;ato

Header table !G - ""’D-\
head of @ - Yol
item | node-links " ~ -
- o=z !
x — = o em. -

Figure 6 : FP Tree created from Compact data structure [4]

(4bove algo and details are referred from [4])

® every entry in frequent-item-header table is made up of two fields, (i) item name
and (ii) head of node-link (a pointer directing to the first node in FP tree carrying

the item-name).

(Above details and algos are referred from [4])
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3.5. HORIZANTAL DESIGN

Horizontal design is frequently used, it relates and integrates every item of the common
transition with respect to transaction id. In this technique the primary key of the target
dataset is the id of the transaction. The most important property of the horizontal design
is the integration of all items of the same transaction; this design also experience some

restrictions like unnecessary processing as items don’t have index created upon them. [5].

X# Items X# Items X# Items

xi| z[v[xJwlv] [afz)y(xwlv] [xi]z] x]|v
x2| zlv|x|s|T| [xelZlVix]s|T| |[x2]z]|v]x
x3|y(x|wlz|v] [xa|v{xjw[z{v] [x3|x[z]|v
x+lulz|s|T|1| [x¢]ufz]s|T|s]| |x4]z
xs|zly|[x]|v | xs{(z)y(xfv]r | (xs|z|x]v
X6 | k|z|v|1 |X] |xe¢|k{z|V}i[x] [Xe|z]| V] x
x7|z{s|v|1|1| [x7{z)s(v]T|1| |x7]{z]| vV
xs | k|L M| N|o| [Xs|k|L[M|N|o| |x9]|2Z

X9 | LIR| Q| Z| O X9|LIR| Q| Z} O X110 Z

X1 p [N |y |z M| [xwp|~n|v{z}m

Figure 7 : Horizontal Layout [5]

(Above algo and details are referred from [5])

3.6. VERTICAL DESIGN

In case of vertical design, transaction are integrated and combined with respect to the
item. In this technique the id of each trace is the item. In this technique the primary key
of the table is the item, and each item’s record contains the ids of the transactions in
which this item occurs. One of the main advantages of this technique is, on items its acts
as an index and decreases the probability of rescanning the complete dataset again and
again. On the other hand, vertical design still requires the costly candidacy generation
part. Also calculating the recurrences of item-sets turns into the tiresome job of

interconnecting records of unrelated items of the nominee patterns. Mining exceptionally
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s nearly impractical because of candidate

huge datasets with this design become

he additional processes attached with this approach. [5].

generation and t

l Item \ Transactions J
Tz [ | [ vV vii | ix | X
vy |0 | (v X

W | 3 | @i || v |vi
X R

Vv P | V| i i
u iv

T i | iv | vil

S i i | vil

I Y vi | Vil

J iv

K | vi | vii

L viii ix

N viii

N viii

0O il | ix

P X

Q ix

R iX

Figure 8 : Vertical Layout [5]
(Above details and algos are referred from (5]}

3.7. ABBM

This algo converts the transactional dataset into a Boolean matrix. As name of matrix
explains, the Boolean matrix is of bit type and each cell of the matrix requires 1 bit to
store its value in main memory. All transactions of the database containing a large
number of items are mapped into the Boolean matrix. A very simple method is adopted

to discover the frequent item-sets from the Boolean matrix. [6].
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37.4. ALGO DETAILS

i d
There are four modules of the ABBM and are given below. These modules are presente

step by step:

e Create a Boolean matrix from the dataset.
e Recurrent 1-itemset creation.
e Matrix pruning.

o Producing a list of recurrent j-item-sets Lj(G>1).

3.7.1.1. DATASET CONVERSION

There are *i’ items in each transaction, and there are ‘j’ transactions in the dataset ‘k’.
Suppose the set of items is i = {il, i2, i3, .., in} and the set of transactions is j = {j1, j2,
j3, ..., jn}. A boolean matrix having x rows and y columns is created, the matrix is
represented as Aij. Now the dataset is scanned, while reading the transaction In, if the
item Im (where 1<n<i, 1<m<j) then value of the cell 4ij is °1,” else value of the cell Aif is

‘0.” This process continues until all the transactions are mapped into the matrix.

3.7.1.2. RECURRENT 1-ITEM-SET PRODUCTION

The Boolean matrix Ai*j is examined and recurrence count of every item is calculated.
The recurrence count of Ij.supth of item [j is the count of ‘is’ in jth column of the
Boolean matrix Ai*}. If Ij.supth is lesser than the min recurrence count minsupth, item-set
{1j} is not a recurrent 1-item-set and the jth column of the Boolean matrix Ai*j will be
eliminated from Ai*j. Otherwise item-set {Ij} is the recurrent l-item-set and is added to

the list of recurrent 1-item-set L1. The sum of the element values of each row is

N x N Frequency Matrix 29



Part 111 / Literature Review

iti is
recomputed, and according to Proposition 1, the rows whose sum of element values

smaller than 2 are deleted from this matrix.

3.7.1.3. PRUNNING THE BOOLEAN MATRIX

Pruning the Boolean matrix means removing several columns and rows from it. First, the
column of the Boolean matrix is pruned according to Proposition 2. This is described in
detail as: Let I' be the set of all items in frequent set LK-1, where k>2. Compute all |LK-
1(j)| where jT1. and delete the column of correspondence item j if [LK-1(j)} is smaller
than k-1. Second, recompute the sum of the element values in each row in Boolean
matrix. According to Proposition 1, those rows of eliminated from the Boolean matrix

whose sum column count is smaller than k.

3.7.1.4. PRODUCTION OF RECURRENT K-ITEM-SETS

Recurrent k-item-sets are discovered only by “and” relational calculus, which is carried
out for the k-vectors combination. If the Boolean matrix Ap*q has q columns where
2<g=<n and minsupth<p<m, k q ¢, combinations of k-vectors will be produced. The ‘and’
relational calculus is for each combination of k-vectors. If the sum of element values in
“and™ calculation result is not smaller than the min support number minsupth, the k-item-
sets corresponding to this combination of k-vectors are the frequent k-item-sets and are

added to the set of frequent k-item-sets Lk.
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Input: The transaction database D, the minimum support number minsupth
Output: the set of frequent stemsels L ‘ -
Transform the transaction database D into the Boolean matrix &,
For each column &5 of A
If sun(A)>=minsupth ¥ sur(Af is the sum of the element value of &4
L=l
Else delete &; fom &,
For each row &g of A
If sum(Ag)<2
Delete Ay froméA,
For (k=2;|LaaPk-1, k44

0 B0 mE o R W

—
—

Produce k-vectors combination for all columns of A,
12,  For vach k-vectors combination {AjLAg,. . .Ax)

13,

14, Be aNapn.. Nag,;

15, 1f sum(By>=minsupth

16. Ly {Iaiz e (v k.. Ja) s the itemsets according to {Ag.An,.. ., Ak}
17, }

18, Foreach sem]; in Ly

19. If Lwddi<k

20. Delete the column 4; sccording Lo tem I; from A,
21, Foreachrow Ag of A

2. If sum(Agy<k+l

23 Delete Ag from A,

24. k=k+]

5. )

26. Retuml~LiUL,U . Ulg

Figure 9 : Algo to generate Frequent Item-set [6]
(Above ulgo und details are referred from [6])

3.7.1.5. EXAMPLE

This section describes a sample execution of the ABBM algo. The sample transaction
data of the transaction database D is shown in Table 1; the min support is 0.4; i=5 is the
total count of items, and j=5 is the cardinality of the transactional dataset. Therefore, the

min support number minsupsh=2. The transaction database D is converted into the
Boolean matrix A5*5:
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Itemsets
11.14
121315
11.12.13.15
1215
11.12.13
noiniMiB.
T1{! 0 01 8
210 v 1 0 1
T3 1 1 QO 1}~
T4io0 1 0 @ 1
TS{1 1 1 0 O

Figure 10 : Transactional dataset and its Boolean Matrix [6]

(Above algo and details are referred from [6])

We compute the sum of the element values of each column in Boolean matrix A5*5 and

the set of frequent 1-item-set is:
Li= {{I1}, {12}, {13}, {14}}

The fourth column of the Boolean matrix A5*5 is removed because the support number
of item 14 is lesser than the min support number 2. We then calculate the sum of the
element values of each row in Boolean matrix and removed all rows where the sum of the

element values is smaller than 2. Finally, the Boolean matrix A4*4 is produced.

The process of 2-supports is executed for the all columns of the Boolean matrix A4*4

and the set of recurrent 2-item-set is;

L2={{11,12},{11,13},{12,13},{12,15},{13,15} }
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In pruning the Boolean matrix A4*4 by the set of frequent 2-item-sets L2, the third row
of the Boolean matrix A4*4 is deleted because sum of its element values is smaller than

3. Finally, the Boolean matrix A3*4 is generated.

The process of 3-supports is executed for all columns of the Boolean matrix A3*4 and

the set of recurrent 3-item-set is:
L3 {{11.12. 13}, {12, 13.15}}

According to Proposition 3, the execution of ABBM algo is exited because there are two

recurrent 3-item-sets in set of recurrent 3-item-set L3.

{Above algo and details are referred from [6])

3.8. INVERTED MATRIX

The Inverted Matrix is the hybrid of horizontal and vertical approach; it uses the

advantages of both the techniques and tries to eliminate the disadvantages and limitations

of both the techniques up to the maximum. [5].

Item | Frequency || Item | Frequency || Item | Frequency
P 1 F 1 Q 1
R 1 J 1 O 2
D 2 K 2 L 2
M 2 N 2 I 3
G 3 H 3 B 4
C 5 E 6 A 9

Figure 11 : Frequency of Items [5]

(Above algo and details are referred from [5])
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[ loc | Index || Transactional Array ]
1 2 3 4 5 6 7 8 9
T (P |[(10.2)
T T ED TGO
3 QD1 {41
T TRD 62
F ) |82
6 102 | 82 1 02
T T2 51 [ (15.2)
g TR (122 T 0.0
0T [[(10.0) [ (187
0 [ (M2) |01 [ (11.2)
1IN {o.0) | (15.4)
D03 [ T53) [166) [ (133)
BT E3 T (A2 [ (14.3)
() [[(06.2) [ (17.4) | (17.6)
5 1 (B.4) [ (16.1) | (16.3) [ (16,3) | (18.9)
6 1 (CH (7.0 1 (17.2) [ (17.3) [(17.4) [ (75)
7T (E6) [ (18.0) [ (182) | (18.3) | (18.5) | (18.6) | (18.7)
IR A9 [ (00) | (0.0) | (d.0) | (0.0) | (6,0) | (6.8) | (9.9) | (9.9) | (9.9)

Figure 12 : Inverted Matrix [5]

(Above algo and details are referred from [5])

The Inverted Matrix is the hybrid of horizontal and vertical approaches; it uses the
advantages of both the techniques and tries to eliminate the disadvantages and limitations
of both the techniques up to the maximum. The basis idea behind this approach is to
integrate each item with all the transactions in which it occurs and to link each
transaction with its related items. Alike to the vertical design, the item is the key of each
record in this design. This technique is different from the vertical design in a sense that
each cell of the matrix is not a single value, but it is data structure made up of transaction
id and the pointer, the pointer points to the position of the subsequent item on the same

transaction. [5}.
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Algorithm 1: Inverted Matrix (IM) Construction
Input : Trausactional Database (D)
QOutput : Disk Based Inverted Matrix

Method :
Pass 1
1. Scan D to identify unique items with their frequencies.
2. Sort the items in ascending order of their frequency.
3. Create the index part of the IM using the sorted hst.
Pass II
1. While there is a transaction T in the database (D)
do
1.1 Sort the items in the transaction T nto ascending
order according to their frequency
1.2 while there are items s; in the transaction do
1.2.1 Add an entry in its corresponding
transactional array row with 2- parameters
(A) Location in index part of the 1M of the
next item $;43 in T nullif s+, does not
exist.
(B) Location of the next empty slot in the
transactional array row of s;+q, null if s;4,
does not exist.
1.3 Goto 1.2
2. Goto 1

Figure 13 : Algo to create Inverted Matrix [5]

{Above algo and details are referred from (5]}

Inverted Matrix is developed in two steps, in first step dataset is scanned completely and
recurrence of each item is calculated and then in ascending order items are ordered. In
second step dataset is scanned again and ascending order items of each transaction are

ordered and then the matrix is filled.

Developing the Inverted Matrix is understood to be preprocessing of the transactional

dataset. For a given transactional dataset, it is constructed one time and for all.
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Algorithhmm 2: Creating and Mining COFI-Trees

old o
Output: Full set of frequent patterns

DNlexthocl:
1. PFreguency_L.aeation = Apply binary search on the
inndlex part of the TN o find the Location of the
first froeguoent itemm basod on o
2. While (Freguency_Location <0 IM_Size) do
2.1 A = Freguent itemmn at
location (Freqguency_l.oc
2.2 A_Transactional = The

v A

ation)
Transactional arrany of

ate a root node for the (A)-COFI-Tree with
Freguency-count and participatior-count = ()
2.4 Index _OFf TransactionalAry = Q

P
2.5 While (Incdex _Of L
of 1tern A)
2.5.1 I3 = item from Transactional array at location
{(Index_Of TransactionalArray)
2.5.2 Follow the chain of item B to produace
sub-transaction C
2.5.3 Items on C form a prefix of the (A)-COFRI-Tree.
2.5.4 If the prefix is new then
2.5.4.1 Set freguency-count= 1 arnd participatiorn-
et = 1) for all nodes in the path

~ansactionalArray =2 Freguency

5.4.2 Adjust the fircgquenay-cownt of the already
axist part of thoe path.
2.5.5 Adjiust the pointers of the Header st if needed
2.5.6 Increment Index _Of _Thransactional Array
L

2.5.7 Goto 2.5
2.6 SOFI-Tree (A}
2.7 Release (A) COFI-Tree
2. reanent Freqguency_Loocation //to buaild the nexe

3. Goto 2
Funcetion: MineCOFI-Tree (A}

1. nodeA = select_next_node //Selection of nodes
will start with the node of most frecpuaent itern andd
following its chain, then the next less frequent itemmn
with its chain, until we reach the least freqguent i1tem
in the Header list of the (A)-COFI-Tree

2. while there are still nodes do

2.1 ID = set of nodes from nodeA to the root
2.2 V= frequency-couwrtt-participatiorn-couwrt of noded
2.3 Generate all Candidate patterns X from

items in ID. Patterns that do not hiave A
will be discarded

2.4 Patterns in X that do not exist in thhe A-Candidate
List will be added to it with frequency —= F

- frocuency with F
LpMrbiOri-cowrtt

otherwise just incremeaont th
2.5 Increment the value of pvrtd
by 1 for all items in 1D
2.6 noden = select _nvext_nodea
2.7 CGioto 2
3. Basad on support threshold o remove non-frequent
patterns from A Candidate List.

Figure 14 : Algo to create Set of Frequent Patterns [5]

| (dbove algo and details are referred from [5])

Ingrut: Inverted Matrix (IM) and a minimum support thresh-
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4, PROBLEM STATEMENT

After introduction of Apriori algo [1], there have been continuous efforts to address the
problems of repeated database scanning and large number of candidate item-sets
generation. Apriori-like algos suffer from the above mentioned problems when database

size (in terms of cardinality) is larger, and when there are so many items.
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Proposed Solution
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5.

PROPOSED ALGORITHM

The n x n frequency matrix is built in a single database scan. Method iterates through the

database starting from the first transaction to the last transaction. If there are three items

in starting transaction then three rows and three columns are added to the empty matrix.

Each item represents a row and a column. E.g. for the transactions given below:

1. Plums Lettuce, Tomatoes

System read the transaction and it found three items in transaction. For
each of the item a row and a column is added to the empty matrix.

For plums row; frequencies of lettuce and tomatoes are incremented by 1.
For lettuce row; frequencies of plums and tomatoes are incremented by 1.
For tomatoes row; frequencies of plums and lettuce are incremented by 1.
Frequencies of same items are not updated i.e. for plums frequency for
plums will not be updated and is represented by X.

For a transaction number of rows updated is equal to the number of items

in transaction.

Plums Lettuce Tomatoes
Plums 11X 1 1
Lettuce 1 X 1
Tomatoes 1 1 X

Figure 15 : Frequency Matrix after one transaction

2. Celery, Confectionery

System read the next transaction and it found two new items in
transaction. For each of the new item a row and a column is added to the
existing matrix.

For celery row; frequency of confectionery is incremented by 1.

For confectionery row; frequency of celery is incremented by 1.
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e Irequencies of same row and column items are not updated.

Plums Lettuce Tomatoes Celery Confectionery
Plums X 1 1
Leluce 1 X 1
Toratoes 1 1 X
Celery X 1
Confectionery 1 X

Figure 16 : Frequency Matrix after two transactions

3. Apples, Carrots, Tomatoes, Potatoes, Confectionery

(Same process as above for transaction # 2)

i Plums | Lettuce | Toma... | Celery | Confe... | Apples | Carrots | Potat...
Plums | X 1 1
Lettuce |1 X 1
Toma... | 1 1 X
Celery X 1
Conf... 1 1 X 1 1
Apples 1 1 X 11
Carrots 1 1 1 1
Potat... 1 1 1 X

Figure 17 : Frequency Matrix after three transactions
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4. Apples, Oranges, Lettuce, Tomatoes, Confectionery

e System read the next transaction and it found one new items in
transaction. For the new item a row and a column is added to the existing
matrix.

e Frequencies of items are incremented by the same process described for

transaction # 2.

PL LE TO CE CO AP CR PO OR
PL X 1 1
LE 1 X 2 1 1 1
TO I 2 X 2 2 1 1 1
CE X 1
CO 1 2 |1 X 2 1 1 1
AP 1 2 2 X 1 1 1
CR 1 1 1 X 1
PO I 1 1 1 X
OR 1 1 1 1 X
Figure 18 : Frequency Matrix after four Transactions

S. Confectionery

6. Peach, Oranges, Celery, Potatoes

7. Beans, Lettuce, Tomatoes

8. Oranges, Lettuce, Carrots, Tomatoes, Confectionery

9. Apples, Bananas, Plums, Carrots, Tomatoes, Onion, Confectionery

(5,6, 7, 8,9 are the transactions)
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10. Apples, Potatoes

PL [LE |[TO |[CE [CO |AP [CR [PO [OR |[PE [BE |BN [ON
PL [X [1 |2 1|1 1 1|1
LE |1 [X |4 2 |1 1 2 1
TO |2 [4 [X 4 13 |3 [t |2 11 |
CE X |1 1|1
colt |2 J4 [r [x [3 |3 |1 |2 1|1
AP [T 1 |3 3 (x (2 J2 1 1|1
CR |1 |1 |2 3 (2 [x 1 |1 1 1
PO 1 12 1 IX
OR 2 (2 |1 |2 v v |1 x|
PE 1 11 [X

BE | |1 |1 X
BN |1 1 1|1 X |1
ON |1 1 1 1 1 |X

Figure 19 : Frequency Matrix for 10 transactions

A hash table will contain information about each item and its index in ‘N x N Frequency

Matrix’.

Association rules mining using # X n matrix is an efficient process. Intersection point of
each item in matrix can be used to keep information like its support. Each cell of matrix
presents a 2-item-set association. N-item-set association can be mining with the help of a

simple mining algo
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6. SCOPE

Algo is designed for maximum of 15000 items on a machine having I GB ram and
provides support for millions of records (transactions). As matrix is of 32-bit Integer type
it supports a database of 2,147,483,647 transactions and for maximum of 15000 items.
Data entry operations for the system and data management are not included in this
solution. Algo will only read existing data for analysis and will only update matrix

database.

e e
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Methodology
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7. MODULES

There are two main modules of the proposed solution. First module is related to the
generation of N x N frequency matrix. Second module is related to the discovery of

frequent item-sets

7.1. GENERATION OF N X N FREQUECY MATRIX

C Start >

Select Dataset <Preparation>

L Process

Create Matrix
( Termination >

[ 4

Save Matrix

(End

Figure 20 : Frequency Matrix Creation Steps
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In this module each transaction of the database is read one by one and items in each
transaction is used to create or append the frequency matrix. At the start of this module,
there are no rows and no columns in matrix. When the first transaction is read, the items
in transaction are added one by one on rows and columns of the frequency matrix. During
reading the second transaction matrix is updated, if items in first transaction and the
second transaction are same then the frequency of the items are updated in matrix other
wise a new row and column for the new items is added to the matrix. This process

continues until the complete database is read.

private void GenerateMatrix()
{

try

{

Matrix.{

:.iGlobalMatrix = null;

objold = triv();

Stringl]l strItems null;

strQuery = "Select ItemsNos from Details";
reader dataReader = db.ExecuteReader (strQuery);
while (dataReader.Read())

{

e

4
dodda el

Obiect
if (obj
{

ataReader ["ItemsNos”];
i)

continue;
}
else if (obj.ToString().Trim() == Stiring.Empty)
{

continue;

else

{
A/SpLit items In transactlions.
strItems = ob]j.ToString().Split(
new char{] { '," },
StringSplitOptions.RemoveEmptyEntries);
SetValuesInHashTable (strItems) ;
CreateMatrix(htItemIndex, strItems);
1
}
dataReader.Close(};
objNew.PrintMatrix(
ref objNew, ref dgvMatrix, ref htItemIndex);
}
catch (Exaceg
{ throw new

ex)
ion (ex.Message); |}
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7.2. DISCOVERY OF FREQUENT ITEM-SETS

/ ™.,

< Start >

Y

Fix Minimum Support

<Preparation>

Select Item Rows Process

< Termination)

Discover Frequent ltemset

End

Figure 21 : Discovery of Frequency Itemsets

Frequent item-sets are discovered by exploring the frequency matrix. As described above
items are mapped on the rows and columns of the frequency matrix and each cell
determines the frequency of the items. A hashtable is used to store the maximum

frequency of each item. Rows for items are fetched from the frequency matrix for the
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items that satisfy the min support (User Input).Then a recursive method is used to

discover the frequent item-sets from the fetched rows.

private void GenerateFrequentItem-sets/()
{
try
{
ClearHashTable () ;
dashratzle htItemsIndex = new Hashtab
htItemsIndex = objFreqguentItem-
sets.GetItemsIndex {(htItemsIndex) ;
htFrequentItems = objFrequentItem-sets.GetFrequentItem-sets (
htFrequentItems, htItemsIndex, txtMinSupport.Text);
dtFrequentItems = objFrequentItem-sets.FormatHashtable(
htFrequentItems, out htFreqgltemsTemp, out alTemp);

/Print Table

DataTable dt = new DataTablel();
dt.Columns.Add("Item-sets #");
dt.Columns.Add ("Item-set Details");

for (int i = 0; i < alTemp.Count; i++)

{
if (htFreqltemsTemp.ContainsKey(alTemp{i].ToString()))
{

il

str 1. Empty;

Davakow dataRow = dt.NewRow():;
dataRow[0] = alTemp[i];

str = alTemp[i].ToString()+",";
S5tring strValues =
htFregltemsTemp(alTemp[i].ToString()].ToString();
String[) strArrValues = strValues.Split(

new Char{] { ', },
38plitOptions.RemoveEmptyEntries);

str += strArrValues([0] +",";

strValues = strValues.Replace(strArrValues([0],"");
if (strArrValues.Length > 1)

{

GetItem-set (strArrValues[0], strValues);
dataRow[1l] = str.Remove(str.Length - 1, 1);
dt .Rows.Add {dataRow) ;

continue;

else

{
dataRow[l] = alTemp[i]+","+
htFreqltemsTemp (alTemp(i].ToString(})].ToString(};
dt.Rows.Add (dataRow) ;
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//Sort items in each Item-set

dt SortlItems (dt);
//Remove duplicate entries
if (!'bGridResults)
dt = RemoveDuplicateEntries(dt);
//Get name of items
dt = objFrequentlItem-sets.GetItemNames (dt);
dgvFrequentItems.DataSource = dt.DefaultView;

jaN

}
catch (Fzoeption ex)
{
throw new huconiicon (ex.Message);
}

Tahle: i

ItemMo ItemSet
23

Close

Figure 22 : Intermediate Results for Frequency Itemsets

Item - .
Lettuce — Tomatoes
Tomatoes Lettuce, Confectionery, Apples, Carrots
Confectionery Tomatoes, Apples, Carrots
Apples Tomatoes, Confectionery
Carrots Tomatoes, Confectionery

Figure 23 : Itemsets from NxN Frequency Matrix
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7.3. Working of Recursive Method

GetltemSet(“TO”,[“LE”,”CO”,”AP”,”CR”])

For Tomatoes (TO) all the items (LE, CO, AP, CR) occurs in frequency matrix. TO
will be then added to the list.

Method is called recursively for the LE and [CO, AP, CR].

GetltemSet(“LE”,[“CO”,”AP”,”CR™])

In frequency matrix given items (CO, AP, CR) don’t occurs for Lettuce (LE). LE will

be discarded from the list.

Method will be called recursively for CO and the remaining items [AP, CR].

GetltemSet(“CO”,[“AP”,”CR”])

In frequency matrix given items (AP, CR) occurs for Confectionery CO. CO will be

added to the list

Method will be called for AP and the remaining item(s) [CR].

GetlItemSet(“AP”,[“CR”])

In frequency matrix given items (CR) don’t occurs for Apples AP. CR will be
discarded to the list and AP will be added to the list as the last item.

Recursive method will end here.

TO

CO

AP

List generated for frequent Item

N x N Frequency Matrix
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Desigh and iImplementation
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8. DESIGN AND IMPLEMENTATION

This chapter discusses in detail the design and methodology adopted for the application
development. Further hardware and software requirements are also presented in this

chapter.

8.1. FREQUENCY MATRIX GENERATION

In this part the methods used to create frequency matrix generation are discussed in detail

along with the code written in Visual C# 2005.

8.1.1. SetValuesinHashTabile ()

ke added to hash table,
erm.

:» Hashtable whioh contains

index ot

LS S e R LT N L A
GRS TN . 0

privaﬁe void SetValuesInHashTéble(string[] strltems)

{
try
{
foreach (& 1ng strltemNo in strltems)
{
if (htItemIndex.ContainsKey(strItemNo))
{
continue;
)
else
{
htItemIndex.Add({strItemNo, htlItemIndex.Count);
Matrix.CreateMatrix.htItemsFrequency.Add(strItemNo, 0);
}
}
}
catch (& ex)
{
throw new Looeption(ex.Message);
}
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8.1.2. CreateMatrix ()

private void CreateMatrix (H:

and upd rach
items and ltems indezes 1s passed,

of the transacgtion.

Stringl[] strlItemNos)

{
LTy
{
/7E te v for lst fransaction
if (ObjOld JMatrlx GetLength (0) == 0)
{
obj0ld = null;
objOld = new Cre ix{(htItemIndex.Count):;
objOld.SetFrequen01es(htItemIndex, strItemNos, ref objoOld);
Matrix.?o ix.1GlobalMatrix =
Matrix.CreateMa v.InitializeGlobalMatrix(
htItemIndex.Count) ;
Matrix.C ~eMatrix.iGlobalMatrix = objOld.CopyMatrix/(
ref objOld, Matrix.CreateMsatrix.iGlobalMatrix);
}
else if (objOld.iMatrix.GetLength(0) < 10000)
{
objNew = new (reataeMs z(htItemIndex.Count);
objNew = objNew. CopyMatrlx(

Matrix. 1t riz.iGlobalMatrix, objNew);
objNew. SetFrequenc1es(htItemIndex, strItemNos, ref objNew);
Matrix.(rx Jatrix.1GlobalMatrix =
Matrix.oC X.InitializeGlobalMatrix(

htItemIndex.Count);
Matrix.lreateMatriz.iGlobalMatrix = oijew CopyMatrix(

ref objNew, Matrix.CreateMatriz.iGlobalMatrix);
}
else
{
//Create XML
}
catch (Erception ex)
{
throw new Exception(ex.Message);
}
}

N x N Frequency Matrix
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8.1.3. SetFrequencies ()

public VOld SetFrequenc1es(

ref Creaat

4 1ls used Lo SetFreguencies in Ma
le is use index of items
teMatrix is the object that contains

table htItemIndex, string[] strItemNos,

il

{

1% objCreateMatrix)

try
{
Zoaiesn bIncremented;
“[] iIndexes = new Iinvic¢[strItemNos.Length];
i, j/'
i =3 = 0;
for (i = 0; 1 < strItemNos.Length; i++)
{
iIndexes[i] = Convert.ToIntl6(htItemIndex[strItemNos([i]]);
Matrix.CreateMatriz. htItemsFrequency[strItemNos[1]] =
o ToInt32{
2Mazi .htItemsFrequency[strItemNos[1]] + 1;
zach ftem in tra on
}
for (i = 0; 1 < iIndexes.Length; i++)
{
bIncremented = false;
for (j = 0; j < iIndexes.Length; j++)
{
if (iIndexes[i] == iIndexes([]])
{
if (!'blIncremented)
{
objCreateMatrix.iMatrix[iIndexes[i], iIndexes[j]]++;
bIncremented = true;
}
}
else
{
objCreateMatrix.iMatrix[iIndexes[i], ilIndexes[j]] += 1;
}
}
}
}
catch (&
{

throw new Exoception({ex.Message);
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8.1.4. CopyMatrix ()

4 o g 5 g e - o 4 XD 1 oy PPt s 4y A e -
G Coples an Lnutsgdl, ) array to 4

then returns t

~
N

e

2{,] array 1is copiled.

Matrix CopyMatrix(Iint3Z([,] objCopyFrom,

for (int i = 0; i < objCopyFrom.GetLength(0); i++)
for (int 3 = 0; Jj < objCopyFrom.GetLength(l); j++)
objCopyTo.iMatrix[i, j] = objCopyFrom{i, Jjl;
return objCopyTo;

}
catch (¥xoepiion ex)

{

throw new Exception(ex.Message);
return objCopyTo;
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8.2. DISCOVERY OF FREQUENT ITEM-SETS

In this part the methods which are used to discover frequent item-set from the frequency

matrix are discussed in detail along with the code written in Visual C# 2005.

8.21. Getitemsindex ()

ol e used to get ltems and index from database

dsTemp = db.GetDataSet (strltemsQuery);
if (dsTemp.Tables[0].Rows.Count > 0)

{
“for (int i1 = 0; 1 < dsTemp.Tables([0].Rows.Count; i++)
{
DataRow dr = dsTemp.Tables([0] .Rows([i];
if (htItemsIndex.Contains(dr{0]))
continue;
else
htItemsIndex.Add{(dr (0], dr[1l]);
}
}

}

catch (Exception ex)

{ throw new Exception(ex.Message); }
return htItemsIndex;
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8.2.2. GetFrequentltem-sets ()

quent ltem-sets

le GetFrequentItem-sets(

H able htFrequentItem-sets,
le htItemsIndex,
strMinSupport)

Int32 iMinSupp = 0;

if (!'String.IsNullOrEmpty(strMinSupport))
iMinSupp = Convert.ToInt32(

ConfigurationSettings.AppSettings["MinSupp"]);

else
iMinSupp = Convert.ToInt32{strMinSupport);

String strTempQuery = strQuery.Replace(
"***", "ll+iMinSupp+"") ;

dsTemp = db.GetDataSet (strTempQuery) ;
strTempQuery = "";

for (int i = 0; i1 < dsTemp.Tables[0].Rows.Count; 1i++)
{
Tatakow dr = dsTemp.Tables[0] .Rows[1i];
1f (
htFrequentItem-sets.Contains{(htItemsIndex[dr[0]]))
{

htFrequentItem-sets[htItemsIndex[dr[0]]] =
htFrequentItem-sets[htItemsIndex[dr([0]]].ToString() + dr[4]+",";

}
else
{
htFrequentItem-sets.Add (
htItemsIndex[dr[0]], dr[4]1+",").
altems.Add (htItemsIndex[dr[0]1]);
}
}
}
catch (Fxception ex)
{
throw new Exozeption(ex.Message);
}

return htFrequentlItem-sets;
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8.2.3. FormatHashTable ()

ed to

create a table that contains fregquent items

public & FormatHashtable (#lashtable htFrequentltems,

out sable htFreqltemsTemp, out Ax List alTemp)
{
try
{
htFreqltemsTemp = new liash=aklie():
if (!dtFrequentlItems.Columns.Contains("ItemNc"))
dtFrequentItems.Columns.Add("ItemNo");
1f (!dtFrequentlItems.Columns.Contains ("Item-set"))
dtFrequentItems.Columns.Add ("Item-set");
for (int i = 0; i < altems.Count; i++)
{
1Row dr = dtFrequentItems.NewRow();
dr{0] = altems([i];
String strTemp = "";
strTemp = htFrequentItems[altems[i]].ToString();
strTemp = strTemp.Trim()};
strTemp = strTemp.Replace(altems{i] + ",", "");
if (strTemp.Length > 0)
{
strTemp = strTemp.Remove (
strTemp.Length - 1, 1);
dr{l] = strTemp;
dtFrequentItems.Rows.Add(dr) ;
if (!'htFregltemsTemp.Contains (dr[0]))
htFregltemsTemp.Add (dr (0], dr[1]);
3 }
}
}
) catch (Exceg n ex)
: {
i throw new Excaeption(ex.Message);
}
alTemp = altems;
return dtFrequentlItems;
}
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8.24. Getitem-set ()

rsive method to gen

private vold GetItem-set y strltemNo, String

strlitemsValue)

{
try
{
//1if (stritemsValue.Trim().Equals{""})
s bContinue = false;
String strValues = "";
strValues = htFreqltemsTemp|[strItemNo].ToString();
iny[] strArrTempl = strlItemsValue.Split (
new Char[] { ',' },
B 3 ey ong.RemoveEmptyEntries);
Stwringl] strArrTemp2 = gtrValues Split(
new Char ! },
Stri ions.RemoveEmptyEntries);
for (int i = 0; i < strArrTempl Length; i++)
{
for (int j = 0; Jj < strArrTemp2.Length; j++)
{
if (strArrTempl(i].Equals(strArrTemp2[jl})
{
str += strArrTempl[i] + ",";
GetItem-set (strArrTempl[i],
GetRemainingltems (strArrTempl, i + 1)
):
return;
}
}
}
}
catch (Ezo ex)
{
throw new Exceptlon(ex.Message);
}
}

8.25. GetRemainingltems ()

private string GetRemainingItems(string[] strArrTempl, int i)

{
ing strTemp = Sitring.Empty;
for (int k = i; k < strArrTempl.Length; k++)
strTemp += strArrTempl(k] + ",";
{ throw new Exception(ex.Message); }
return strTemp;
}
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8.3. Software and Hardware Requirements
This application is implemented on a Pentium IV machine having 1GB ram running

Windows XP operating system.

] Fraquency Matrix

N x N Frequency Matrix

Frequency Mattw

| Plms Lettuce Tomaloes  Celery Confections: Apples Carols: Potatoss : Dranges Peach Beans Bananas Onion
r 1 2 ¢ i 1 1 ‘0 0 0 0 1 1

R 4 4 0 2 1 3 0 2 0 1 0 ¢

2 4 6 0 ‘4 3 3 A 2 0 1 1 ~1

0 0 0 2 X 0 0 1 1 I 0 0 0

1 2 4 1 3 3 3 1 2 0 0 1 1

e 1 3 0 3 4 2 2 1 0 0 1 1

1 1 3 0 3 2 3 1 1 0 0 1 1

0 0 1 1 1 2 1 3 1 1 0 0 0
0 2 2 1 2 1 1 0 3 1 0 ) 0

0 0 0 1 0 0 0 T 1 R "0 0 0
‘0 1 1 0 ‘0 ‘0 ) 0 0 0 1 0 0
1 0 1 0 I 9 a 0 ‘0 0 0 1 !

1 o 1 0 1 1 1 0 0 0 0 1 1

f ' G te Fi : Matrix ' J

Frequent ltem Sats
 Serial # i Fiequent temsets
e

2 : Laltuce, Tomatoes. Confectionery. Dranges
3 Tomaloes, Confectionery, Apples, Canols
4

Apples, Potatoes

Set Minmum Support : -2 f Generate Frequent ltemset ]

Error Messages

Figure 24 : Simulator view of Frequency Matrix
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9. CONCLUSIONS

Algo proposed provides a significant decrease in processing and 1/O cost. I/O cost is
decreased because database is read once to create a frequency matrix (once the NxN
frequency matrix is created it is stored in database for future usage and reference) and
processing cost is decreased because the frequent item-set discovery method is directly

proportional to the number of items that fulfills the min support criteria.

9.1. Example

PL |LE [TO |CE |[CO |AP |CR |PO |OR [PE |BE |BN |ON

PL | X 1 2 1 1 1 1 1

CE X |1 1 {1 |1

OR 2 12 |1 J2 i 1 1 [x |1

PE 1 | 1 1 (X

BE 1 1 X

BN |1 1 1 {1 ] X 11
ON |1 1 1 1 1 1 [X

Figure 25 : Selecting Problem Area
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9.2. Problem Area

Figﬁfé 26 : Final Problem Area

Rows and columns picked from NxN Frequency Matrix

Each item represents a row in NxN frequency matrix and the each column is also
represented by an item. Items discovery method only picks those items (rows) which
fulfill the minimum criteria and also it picks only those columns of the rows which fulfill
the minimum criteria. As it is described that each cell of the matrix represents frequency.
In this way, our problem area gets small and processing cost and 1/O cost decreases.

Constider the following example for min support 3.
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11. GLOSSARY OF ACRONYMS

Plums Plums, PL
Lettuce Lettuce, LE
Tomatoes Tomatoes, Toma.., TO
Celery Celery, CE
Confectionery Confectionery, Conf.., CO
Apples Apples, AP
Carrots Carrots, CR
Potatoes Potat.., PO
Orange Orange, OR
Peach Peach, PE
Beans Beans, BE
Bananas Bananas, BN

"Onion | Onion, ON

‘Algo Algorithm
Algos Algorithms

ISLAMABAD.
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