Aspect Design Pattern for Non Functional Requirements

ﬁaél

Developed by:

Ansar Siddique
Fazal-e-Amin
MS(Software Engineering Fall 05)

Ny

CENTRAL
LIEAR
ISLAMASAD,

>,

Supervised by:
Dr. Hafiz Farooq Ahmad

DEPATRTMENT OF COMPUTER SCIENCE
FACULTY OF BASIC & APPLIED SCIENCES
INTERNATIONAL ISLAMIC UNIVERSITY ISLMABAD

e ——— e

In the Name of

ALLAH

The Most Merciful
The Most Beneficent

Aspect Oriented Software DeveZOprhent | Project in Brief

PROJECT IN BRIEF
Project Title: Aspect Design Pattern for Non Functional Requirements
Organization: International Islamic University Islamabad, Pakistan.
Objective: The objective of the project is to fulfill the degree requirement of

‘ MS in Software Engineering.

Undertaken By: Ansar Siddique
70-FAS/MSSE/F05
! Fazal-e-Amin
‘ 84-FAS/MSSE/F05
| Supervised By: Dr. Hafiz Farooq Ahmed
Associate Professor
| | SEECS, NUST |

Rawalpindi

Started On: - February 2007

Completed On: ~ June 2008

Research Area Aspect Oriented Software Development (AOSD)

International Islamic University, Islamabd
Faculty of Basic & Applied Sciences
Department of Computer Science

Dated: 30 August, 2008

FINAL APPROVAL

It is certified that we have read the thesis, entitled “Aspect Design Pattern for Non-
Functional Requirements”, submitted by Mr. Ansar Siddique 70-FAS/MSSE/F05 and Mr.
Fazal-c-Amin 84-FAS/MSSE/F0S it is our judgment that this thesis is of sufficient
standard to warrant its acceptance by the International Islamic University Islamabad for
the award of MS degree in Software Engineering.

PROJECT EVALUATION COMMITTEE:

Fxternal Examiner

Zafar Igbal Malik M\
Director EMIS

Ministry of Education \

Internal Kxaminer

Muhammad Usman u
Lecturer W

Department of Computer Science

International Islamic University /
/8

Supervisor 7

Dr. Hafiz Farooq Ahmed

Associate professor /
SEECS, NUST | 4
Rawalpindi

Aspect Design Pattern for Non Functional Requirement Thesis

A thesis submitted to the Department of Computer Science,
Faculty of Basic & Applied Sciences, International Islamic University, Islamabad
Pakistan as a partial fulfillment of the

Requirements for the Award of the Degree of

MS in Software Engineering

Aspect Design Pattern for Non Functional Requirements Dedication

OUR DEAREST PARENTS & RESPECTED TEACHERS
Their efforts and guidance
Made us able to achieve this endeavor,
Without
Their prays and support

This dream could have never come true

il

e M.

Aspect Design Pattern for Non Functional Requirements Declaration

Declaration

We hereby declare and affirrn that this thesis neither as whole nor as part thereof has been
copied out from any source, we have provided proper references and citations wherever
required. It is further declafed that we have completed this thesis on the basis of our
personal efforts, made under the sincere guidance of our supervisor. If any part of this

report is proven to be copied out or found to be a reproduction of some other, we shall

-stand by the consequences. No portion of the work presented in this report has been

. submitted in support of an application for other degree or qualification of this or any

other University or institute of learning.

Ansar Siddique
70-FAS/MSSE/F05
Fazal-e-Amin
84-FAS/MSSE/F05

il

Aspect Design pattern for Non Functional Requirement Acknowledgements

ACKNOWLEDGEMENTS

First of all we express our sincere thanks to ALLAH and bestow all praise and
appreciation to Almighty Allah, The most Merciful and Compassionate, The Most
Gracious and beneficent, whose bounteous blessings enabled us to pursue and perceive
higher ideals life, who bestcwed us good knowledge to complete our work successfully.
And Specially we are grateful to His Holy Prophet Muhammad (SAW) who enabled us
to recognize our creator and provide us a true path to follow for success in this world and
for hereafter.

Secondly we wish to express our profound gratitude to our supervisor Dr.Hafiz Farooq
Ahmed, whose suggestions led us throughout this thesis. This thesis would not have been
possible without the kind support, the trenchant critiques, the probing questions, and the

remarkable patience of our research advisor.

Dr. Naveed Ikram for his inspiring attitude and kind behavior throughout the project
effort. And to advisory committee especially to Mr. Usman who provide us guidance

and support to accomplish this challenging task.

Finally we are thankful to our parents who ever provide us warm encouragement, love

and moral support during our entire academic career.

Ansar Siddique
70-FAS/MSSE/F05
Fazal-e-Amin
84-FAS/MSSE/F05

iv

Sr. No.

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4
1.4.1
1.42
1.4.3
1.5
1.5.1

,._.._.._.
P)

2.1
2.1.1
22
2.3
24

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

Topic
Chapter-1 Introduction to Aspect Orientation

INtroduction.o et e
Motivation for AQP........coiiiriiiii i,
Aspect Oriented Programming..............c.cooviviiiiiiiiiiiii i
ASPECES. .. vttt
WHhY ASPECtST? ..ot
Types of Crosscutting........... et a et e e et in e ataaaaees
Development & Production ASPects...........cvceveuverneineiiiiiinennienennnna.
ASPECt WeAVIME. .. uiuiitiiiiiiiiiie it e
Design Pattern.. .
Brief history of de51gn patterns e
Design Pattern.......coovvviiiiiiiiii
Elements of Design Pattern..............c.cooiiiiiiiii
Design pattern DOSCIIPtioN.ovuevnivniniininiiiniiviceneiiaeiiiee e,
Categories Of Patterns.c..cocoviviiiiniiiiiiniiiein e,
Structural PatternS.ovvviiiiuiiiiiti i
Creational patterns..........ooovvivniiiiiniiiii i e
Behavioral patterns.ooviviiiiniiiiiiiii

1T ol D014 10) DO SR
B o111 (074 T P
AsSpect MOdel.....ouinieiiiiiiiiii
Implementation of Design Pattern using AOP.............c......oii
Aspect Oriented Technology and Design Patterns..............................

. Chapter 3 Definition of the Problem
Problem definition.oevvieiiiei
Research qUestions.........cc.vvevvneiniiiiiiiniin, e
Research objectives..........ooviviviiiiniiiiiiiiai
Comparative analysis of Aspects & design pattern.............o.cooieiininni.
L 1o PP

Chapter 4 Proposed Solution
Identification of P.ecurring ASpect...........coovvviiiiienniin i,

Identification Of Patternccovvivieii i e e i A

Proposed PAtterm.vuuvuiuiieiiiniin ittt iiieineeenieeieteiniieaaiaaes
Discussion on Proposed Pattern...........c..ccooviviiiiiniiiiiiinn,
Description of Pattern Elements.................o.

5.1
5.1.1
5.12
5.1.3

5.2
52.1
522
523

5.3
5.3.1
53.2
533

6.1
6.1.1
6.1.2
6.1.3
6.14
6.1.5

Chapter 5 Implementation

Case Study 1(Shopping Cart)ccveiieiiiiiiiiici e, 30

CONCEINS ..ottt e e et et a e, 30
Basic course of action: Narrative styleccooiiiiiiii 31
Application of Proposed Solution on Case Study...........c..coocoieninni. 32
Case Study 2(Student Registration System)ococeiiivineneennnnn. 35
L0000 0TS o - P 35
Basic course of action: Narrative styleo.c, 36
Application of Proposed Solution on Case Study..................ooeeenne. 38
Case Study 3(Motorway Toll System)ccooiiiiiiiiiiiiiiiiiiiiiinnn 41
COMCEITIS ... evveeeeeeetieteeeeeterieaeeeeeee st e e ee e e e se e e e st eeeeeaanens 41
Basic course of action: Narrative stylecoooviiiiiiiiiiiinnnn, 42
Application of Proposed Solution on Case Study.....................c.oee. 43
: Chapter 6 Validation
Quality of proposed pattern............cooviiiiiiiiiiiiii i 46
Encapsulation.........ouuveiureniriiniiii e 46
L€ 111 LA A 1 46
ADSEIACHION. ...t tes e 47
OPEINESS. .. cuueviiniiiei i e 47
ComPOSADILILY. ... vienine e, 48
COonCIUSION. ..ot 49
References

Appendix A Publication
Appendix B Terminologies

Sr. No.
1.1
1.2
2.1
3.1
4.1
4.2
5.1
52
5.3
5.4
5.5
5.6

List of Figures

Name

Working of Aspect Oriented Programming
Join point illustration
Aspect Model
Abstract diagram of proposed solution
Abstract diagram of proposed solution
Structure diagram
Use Case diagram of shopping cart case study
Structure of classes case study-1
Use Case diagram of student registration system
Structure of classes case study-2
Use Case diagram of Motorway toll system

~ Structure of classes case study-3

Page no.

16
24
27
28
31
34
36
39
40
44

Aspect Design Pattern for Non Functional Requirements

Acronyms & Abbreviatian

OOP:
AOP:
AOSD:
00A:
00D:
OMT:
AP:
CF:
SOP:

SOC:

MDSOC:

ASOC:

GOF:

GUI:

ACRONYMS & ABBREVIATIONS

Object Oriented Programming
Aspect Oriented Programming

Aspect oriented Software Development

.Object Oriented Analysis

Object Oriented Design
Object Modeling Technique

Adaptive programming

Composition Filter

Subject Oriented Programming
Separation of Concern

Multi Dimensional separation of Concerns

Advance Separation of Concern

Gang of Four
Application Programming Interface

Graphical User Interface

Aspect Design Pattern for non Functional Requirement _ Abstract

ABSTRACT

Aspect Oriented Technology has emerged in recent years with the invent of the aspect
oriented programming language and provided the solution to the problems that were not
handled by the existing Object Oriented and Procedural approaches of software
development. Initially the software practitioners used the aspect oriented language for the
implementatioh (coding) afterwards the researchers and software developers found that it
is not enough to use the aspect oriented technology just for the coding, rather this
technology should be used throughout the software development to get the true benefits
of this technology and an other motivation for this thought was the gap which remain
between different software artifacts as the design is supported by the standard modeling
languages which have no representation of aspects. So, the aspects have no representation
at design level and the coding is in aspect-oriented language that is why the trace-ability
between software artifacts.is an issue to be solved. Currently there is a lot of work in
progress to identify the aspects at the analysis level and to represent them at design level.
We have contributed in this effort by developing aspect oriented design pattern. This
pattern deals with crosscutting concerns like logging. And the pattern bridges the gap

existing between different stages of aspect oriented software development life cycle.

Chapter-1

Introduction to Aspect Orientation

nmrm—

Introduction Chapter-1

1.1 Introduction

Software engineering is a relatively a new field, and it has continued to evolve rapidly
since its inception. In order to improve the ability to produce qualitative software systems
researchers and theorists are always seeking for new dimensions. The basic desire is to
produce engineering methods that allow for the efficient creation and maintenance of
software. There are several key software quality attributes that software engineers desire

to improve:

* The moduiarity of the software
» The usability and reusability of the software
* The readability and understandability of the implementation

* The correctness and testability of the software

There are already rémarkable improvements ‘in the field of software engineering like
object-oriented technology has made great progress in improving above mentioned
qualities, but still there is much room for improvements, even in a well-implemented
object-oriented program, there is often functionality spread over most of the modules in a
system. This functionality can include such things as security handling, logging,
synchronizatibn, memory management and other more advanced functionality like
state management. These and other properties are called crosscutting concerns.

A crosscutting concern is a characteristic of a software implementation that is spread
throughout the implementation, instead of being modularized. Devising methods to

modularize these properties is the chief concern of Aspect-Oriented Programming [1].

1.2 Motivation for AOP

Before discussing the details of aspect oriented programming we wiil see the potential
uses of this technology and the particular problems that it tries to resolve. A very basic
problem is the need to use dévelopment code, such as logging or contract reporting code,
to help create and test software. Inserting this type of code into a software

implementation can be a tedious and time-consuming process. To compound the

Aspect Design Pattern for Non Functional Requirements

Introduction Chapter-1

problem, much of this code is only useful during the development phasés of a project,
and leaving this code in a production build is often undesirable because it can create
performance problems, as well as inadvertently introduce software defects [2].

With the use of aspect-oriented programming techniques, it is possible to implement this
development code in a modularized fashion, so that it can be inserted easily and
efficiently into the production code. Additionally, because this code is well modularized,
it can be easily maintained or removed as well [1].

Overall, this usage of aspect-oriented programming can help to decrease development
time, improve production system performance and minimize the chance of development
code introducing defects into the implementation [3].

However, note that_this is a trivial usage of aspect-oriented programming as software
developers can accomplish this functionality with macros or other similar tools.

There are other more complicated problems with software development that aspect-
oriented programming is trying to solve, such as state management, synchronization, and
session management [3]. With existing software development tools, it is difficult to
modularize this type of functionality. To explain, the difficulty with object-oriented
design methods is that they rely on the modularizing the system into components based
on decomposition into functional ﬁnits, represented by classes. A clean object-oriented
design may then have to be modified to add a feature, such as state management, which
will involve several functional units. Therefore, the code that implements that feature

will need to be placed in all of those components[3].

The intent of aspect-oriented pro'gramming is to create language mechanisms that allow
all the funétionality present-in the system to be modularized, including the functionality
that is scattered throughout multiple components of the system([2]. If this is done, it can
greatly enhance the maintainability, reusability and other qualities of the software.
Although this is similar to the goals stated earlier dealing with development code, the
specific goal here is to allow all of the main functionality of an implementation, whether -
or not it is a crosscutting concern, to be quickly and efficiently modularized.

It is easy to see how modularizing aspecfs can increase the maintainability of a program
since it allows changes to particular functionality to happen in only onc location, and this

can lead to more reusable code. The idea is that, for example, an aspect that controls the

Aspect Design Pattern for Non Functional Requirements

Introduction Chapter-1

screen updates for one drawing can be used again, without modification, to provide the

same functionality to another similar program. This is where the most exciting potential

of aspect oriented technologies rests.

Another, added benefit of aspect-oriented programming is to produce software that is

efficient to run, without sacrificing other qualities, such as the readability and

maintainability of the code. As an illustration of this, consider the example explored in

the paper Aspect-Oriented Programming, by Kiczales,et.al. paper describes an

experiment in which the authors create three separate implementations of an algorithm

that is part of a graphics-filtering program [2].

The first implementation is a hand-coded algorithm ‘that is well modularized, using

procedural techniques, and easy to read. Unfortunately, this implementation is highly

inefficient in both execution time and storage requirements.

The second implementation is a hand-optimized version of the latter. This version, while

much more efficient in both execution time and space requirements, is very difficult to

read and understand by any.oné, including the original author. The reason is that since

many different concerns are tangled within a very complicated procedure.

The third implementation makes use of aspect-oriented techniques to construct a working
unit of code that is both easy to read and maintain, and also roughly as efficient as the

hand optimized solution.

So far, only functional uses of aspect-oriented programming have been discussed, but

there are many other uses of aspéct-oriented programming that are not specifically related

to functionality. An example of a non-functional use includes enhancing the readability

of the implementation. The readability of the code is important because it can affect
many other qhalities, such as the understandability, maintainability, correctness and

reusability of the code. The techniques of aspect-oriented programming have the potential
to create a- mote readable code base, because they can physically separate the different

functional concerns in the code In effect, aspect-oriented techniques create layers of
functionality in a software implementation. Each new aspect introduces a new functional

characteristic of the program, and each layer can be read separately from the others. If

properly done, this can make understanding and implementation much easier.

Aspect Design Pattern for Non Functional Requirements

Introduction Chapter-1

1.3 Aspect-Oriented Programming

Before the influence of aspect-oriented techniques on software engineering are discussed,
it is important to uhderstand the basis of these techniques. There are many different
languages that take advantage of aspect-oriented technology, all at various stages of
development. Aspect] is used because it is one of the more mature projects.

Aspect] is “a simple and practical extension to the Java programming language that
builds upon the object model of Java with enhancements that allow aspect-oriented
programming techniques to be used” [1]. It is compiled into standard Java bytecode, and
it is able to run on any Java platform.

Aspect-Oriented programming is a method of software engineering that is intended to
build upon fhe earlier successes of procedural, functional and object-oriented
programming by introducing aspect-oriented techniques to these programming .
paradigms. It does not intend to replace these programming techniques, but rather to
augment and improve their abilities [4]. The aim of aspect-oriented programming is to

allow the clean modularization of crosscutting concerns using aspects.

cl-cn: cross-cutting concern

Coniponents
> —

cl Problem

domain

c2
csl —_—
Weaving
Mapping \
Join points

Aspects

Figure 1.1: Working of Aspect Oriented Programming

Aspect Design Pattern for Non Functional Requirements

Introduction Chapter-1 |

AOP Mechanisms

Abstraction Mechanism:

An aspect description languages used to encapsulate crosscutting concerns
into modules according to the join point model

Composition Mechanism:

A weaver is used to merge the aspects and components into an

application that only contains traditional language constructs.

Joihpoint Model
o Identifying joinpoints

o Points in the execution of components where aspects should be applied

i.e. method invocation or object construction
e describe behavior at join points

o Wrap join points with extra code just before or jus after execution. i.e.

log before and after method or lock and unlock shared data.

after

Figure 1.2 Join Point Illustration

Aspect Design Pattern for Non Functional Requirements

Introduction _ Chapter-1

1.3.1 Aspect

Aspect-Oriented techniques provide mechanisms that allow crosscutting concerns to be
expressed as separate units from the main implementation. These units are referred to as
Aspects, and they are the basic unit of modularization for crosscutting concerns in
aspect-oriented programming. However, as aspect-oriented programming is only
intended as an extension to existing programming methods, aspects work in conjunction
with a base implementation represented with other constructs, such as classes or

procedures more specifically known as Component {4].

1.3.2 Use of Aspects

Aspects are designed to allow crosscutting concerns to be easier to maintain, and more
reusable. For éxample, in the case of logging, the programming statements that generate
log entries for the entire implementation can be maintained in one aspect, and changes to
those statements need only be made in just one place, versus having to modify the entire
code base. In languages such as Aspect], aspects are represented in structures that are
very similar to classes.

Following are some of the advantages of the aspects:

» A system concern is treated in one place and can be easily changed.

= Evolving requirements can be added easily with minimal changes to previous
version

» Configurable components become practical (“on demand computing”)

* Reuse 6f code that cuts across usual class hierarchy to augment system in many

places.

1.3.3 Types of Crosscutting

There are two types of crosscutting that an aspect can facilitate. The first type is called
dynamic crosscutting. Dynamic crosscutting makes it possible to “define additional
implementation to run at certain well-defined points in the execution of the program” [4].
Dynamic crosscutting, contrary to the appearance of the nafne, does not mean that the

code is modified at runtime.

Aspect Design Pattern for Non F unctional Requirements

Introduction Chapter-]

Instead, dynamic crosscutting refers to the selective modification of the primary
abstraction at certain points of the program without affecting the static type signature of
the program [1]. |

There are different methods used to define dynamic crosscutting in aspect-oriented
programming. Aspect), and languages similar to it, use the concept of a join-point to
facilitate the introduction of aspect code into the primary abstraction. Join-points are the
“Well-defined points in the execution of a program”. Put simply, join-points are places in
the program code that are easily distinguishable from each other and the rest of the code.
Examples of join-points include the beginning and end of a method or function, an object
instantiation, and an exception handler execution.

When dynamic crosscutting is used in an aspect, it has two crucial parts. These parts are
the new implémentation code to add to the primary abstraction, and a specification of
where to add it. In the Aspect] language, these parts are called the advice and the point-
cut, respectively. To be more specific, a piece of advice is a method or procedure-like
construct used.to define additional behavior at a join-point, and point-cuts are a means of
referring to collections of join points [4].

As this definition suggests, a point cut can refer to more than one join point in the
primary abstraction. The process of inserting an aspect’s advice into the places
designated by the point cut is commonly referred to as aspect weaving.

When a developer writes a piece of advice, they specify which point-cut or point-cuts that
the advice should be inserted at, as well as the temporal ordering of the insertion of the
advice. To that effect, there are three types of advice, called before, after, and around
advice. The different types of advice correspond to the temporal placement of the advice
at the join-points defined by the point cuts. For example, if a before advice is inserted at a
join-point which refers to the start of a method, then the advice is inserted before the rest
of the method body. The temporal placement of before and after advice is clear, but
around advice requires some explanation. Around advice is advice that can selectively
preempt the normal computation at the join-point. [4] This means that the advice can run
instead of, or in addition to, the code at the join point [1].

In addition to dynamic crosscutting, aspects can modify the static structure of other

elements in a program, a process called static crosscutting.

Aspect Design Pattern for Non Functional Requirements

Introduction : Cizapter-]

This type of crosscutting, referred to as introduction in the AspectJ language, is similar to
dynamic crosscutting in that it introduces additional implementation into the primary
abstraction. However, instead of modifying the behavior of the primary abstraction at a
Join-point, it defines or modifies new members in the primary abstraction. For instance,
in Aspect] introductions can add methods or fields to an existing class, modify an
existing class to inherit from another, implement an interface in an existing class, and
convert checked exceptions into unchecked exceptions. [1] This is a powerful use of
aspect-oriented programming, because it not only changes the behavior of components in

an application, but also changes their relationship. [1]

1.3.4 Development and Production Aspects

Aspects caﬁ be used at many points in the system development life cycle, but generally
there are tWo types of aspecté. One type is called a development aspect. A development
aspect is intended only for use during the development of software, and is expected to be
removed from the final application [3]. This means that the functionality that the aspect
provides will not be included in a production release. A good example of a development
aspect is one that deals with execution logging or contract checking. Generally speaking,
a developer will only need a contract checking aspect while he or she is trying to develop
and test the software, and would not necessarily want that aspect to be included in the
final product. |

The other type of aspect is called a production aspect. Unlike a development aspect, these
aspects deal with code that is intended to be used in the normal operation of the software.
[3] The classic example of this type of aspect is an aspect that controls screen updates for
a system, similar to the role of the observer in the observer pattern. In fact, many of the
classic design patterns can be implemented with aspect-oriented techniques [9]. These are
the types of aspects that are of the most interest to researchers. Aspect-oriented
programming has the potential to make it easy to modularize these types of operations to

make them easier to create and maintain for future developers.

Aspect Design Pattern for Non Functional Requirements

Introduction Chapter-1

1.3.5 Aspect Weaving

Finally, there are two ways in which aspects are currently woven into the primary
abstraction. The first method is when the weaving process takes place at compile time,
rather that at runtime [3]. This is sometimes called static aspect weaving. Static aspect
weaving is the-method that AspectJ uses to weave aspects into the primary abstraction
[1]. The other method is a weaving process that occurs at the program run-time,
sometimes referred to as dynamic aspect weaving. This type of aspect weaving has the
advantage of allowing aspects to be removed from the primary abstraction, or
“unwoven”, at runtime [3].

1.4 Design Patterns

1.4.1 Brief History of Design Patterns

Design patterns were first described by architect Christopher Alexander in his book 4
Pattern Languagé: T owns, Buildings, Construction (Oxford University Press, 1977). The
concept he introduced and called patterns, abstracting solutions to recurring design
problems, caught the attention of researchers in other fields, especially those developing
object-oriented software in the mid-to-late 1980s.[5]

Research into software design patterns led to what is probably the most influential book
on object-oriented design: . Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside‘s (Addison-
Wesley, 1995); These authors are often referred to as the "Gang of Four" and the book is
referred to as the Gang of Four (or GoF) book.

1.4.2 Design Patterns

In "Understanding and Using Patterns in Software Development”, Dirk Riehle and Heinz

Zullighoven give a nice definition of the term "pattern” which is very broadly applicable:

“A pattern is the abstraction from a concrete form which keeps recurring in specific non-
arbitrary contexts”[6].

The above authors point out that, within the software patterns community, the notion of a
pattern is "geared toward solving problems in design." More specifically, the concrete

form which recurs is that of a solution to a recurring problem. But a pattern is more than

Aspect Design Pattern for Non Functional Requirements

Introduction _ : Chapter-1

just a battle-proven solution to a recurring problem. The problem occurs within a certain
context, and in the presence of numerous competing concerns. The proposed solution
involves some-kind of structure which balances these concerns, or "forces", in the manner
most appropriate for the given context. Using the pattern form, the description of the
solution tries to capture the essential insight which it embodies, So that others may learn
from it, and make use of it in similar situations. The pattern is also given a name, which
serves as a conceptual handle, to facilitate discussing the pattern and the jewel of
information it represents. So a definition which more closely reflects its use within the
patterns community is:

“A pattern is a named nugget of instructive information that captures the essential
structure and insight of a successful family of proven solutions to a recurring problem

that arises within a certain context and system of forces”. [6]
A slightly more compact definition which might be easier to remember is:

“A pattern is a named nugget of insight that conveys the essence of a proven solution to a
" recurring problem within a certain context amidst competing concerns”. [6]

“Each pattern is a three-part rule, which expresses a relation between a certain context, a
certain system of forces which occurs repeatedly in that context, and a certain software

configuration which allows these forces to resolve themselves”.[6]
Alexander describes patterns in [17] as:

Each pattern is a three-part rule, which expresses a relation between a certain context, a

problem, and a solution.

“The pattern is, in short, at the same time a thing, which happens in the world, and the
rule which tells us how to create that thing, and when we must create it. It is both a
process and a thing; both a description of a thing which is alive, and a description of the

process which will generate that thing”[6]

Documenting good patterns can be an extremely difficult task, good patterns do the

following:

10

Aspect Design Pattern for Non Functional Requirements

Introduction Chapter-1

» It solves a problem: Patterns capture solutions, not just abstract principles or
strategies.‘

« Itis a proven concept: Patterns capture solutions with a track record, not theories
or speculation.

o The solution isn't obvious: Many problem-solving techniques (such as software
design paradigms or methodé) try to derive solutions from first principles. The
best patterns generate a solution to a problem indirectly, a necessary approach for
the most difficult problems of design.

o It describes a relationship: Patterns do not just describe modules, but describe
deeper system structures and mechanisms.

o The pattern has a significant human component: All software serves human
comfort or quality of life; the best patterns explicitly appeal to aesthetics and

utility.

1.4.3 Elements of Pattern

The Gang of Four described patterns as "a solution to a problem in a context". These

three things problem, solution, and context are the essence of a pattern. For documenting

the pattern it is additionally useful to give the pattern a name, to consider the
“consequences using the pattern will have, and to provide an example or examples.

Different catalogers use different templates to document their patterns. Different

catalogers also use different names for the different parts of the pattern. Each catalog also

varies somewhat in the level of detail and analysis devoted to each pattern.[5]

1.5 Design Patterns Description

Design Patterns uses the following template (GoF Form):

* Pattern name and classiﬁcation: A conceptual handle and category for the pattern

* Intent: What problem does the pattern address?

* Also known as: Other common names for the pattern

* Motivation:iA scenario that illustrates the problem

* Applicability: In what situations can the pattern be used?

* Structure: Diagram using the Object Modeling Technique (OMT)

* Participants: Classes and objects in deéign

Aspect Design Pattern for Non Functional Requirements 1

Introduction ' Chapter-1

* Collaborations: How classes and objects in the design collaborate

* Consequences: What objectives does the pattern achieve? What are the tradeoffs?
* Implementation: Implementation details to consider, language-specific issues

* Sample code: Sample code in Smalltalk and C++

* Known uses: Examples from the real world

* Related patterns: Comparison and discussion of related patterns

1.5.1 Categories of Patterns:
There are three categories of patterns namely Structural, Creational, and Behavioral

patterns.
1.5.1.1 Structural patterns:

Structural patterns prescribe the organization of classes and objects. These patterns are
concerned with how classes inherit from each other or how they are composed from other
classes. _

Corhmon structural patterns include Adapter, Proxy, and Decorator patterns. These
patterns are similar in that they introduce a level of indirection between a client class and
a class it wants to use. Their intents are different; Adapter uses indirection to modify the
interface of a class to make it easier for a client class to use it. Decorator uses indirection
to add behavior to a class, without unduly affecting the client class. Proxy uses

indirection to transparently provide a stand-in for another class[5].

1.5.1.2 Creational patterns

Creational patterns prescribe the way that objects are created. These patterns are used
when a decision must be made at the time a class is instantiated. Typically, the details of
the classes that are instantiated, what exactly they are, how and when they are created and
are encapsulated by an abstract superclass and hidden from the client class, which knows
only about the abstract’ class or the interface it implements. The specific type of the

concrete class is typically unknown to the client class.

Aspect Design Pattern for Non Functional Requirements 12

Introduction - Chapter-1

The Singleton pattern, for example, is used to encapsulate the creation of an object in
order to maintain control over it. This not only ensures that only one is created, but also
allows lazy instantiation; that is, the instantiation of the object can be delayed until it is
actually needed.

This is especially beneficial if the constructor needs to perform a costly operation, such

as accessing a remote database.[5]

1.5.1.3 Behavioral patterns

Behavioral patterns prescribe the way objects interact with each other. They help make
complex behavior manageable by specifying the responsibilities of objects and the ways
they communicate with each other.

Behavioral patterns include observer, strategy, template, concurrency patterns. [5]

Aspect Design Pattern for Non Functional Requirements 13

Chapter-2

Literature Survey

Literature Survey Chapter-2

2.1 Introduction

We have studied a lot of literature but in this chapter only those papers are included
which are directly related to our problem definition. The first paper of this chapter is
Aspect Oriented Programming by Kiczales, et al. [2]. He introduced the aspect oriented
elements and laid the foundation of Aspect Oriented Software Development (AOSD). He
extracts these elements by the implementation of examples, details of his work are
mentioned below.

Kickzales et al., in his paper' “Aspect-Oriented programming”, 1997 coined the term
aspect and distinguished the properties as Aspect and components, a component is the
property of a system that can be cleanly encapsulated in a generalized procedure, where
as the aspect can not be cleanly encapsulated. AOP allows separate specification of the
components as well as of fhe aspects and combine these specifications automatically
through the proéess'of Wéaving. Furthermore they have elaborated the concepts of AOP
with help of irﬁage processing example. By comparative analysis between the procedural
approach and AOP they concluded that AOP implementation of that system was smaller
than its OOP counterpart. And given some future direction which was the development of
a collection of the Aspects and Components for different applications, languages and
study of current system to examine the presence of AOP elements in their design, and
development 6f theoretical support and training methods for AOP and integration of AOP
with current approaches. '

2.1.1 Terminologies

Following are some of the Terminologies introduced by them:

With respect to a system and its implementation using a GP-based language, a property
that must be implemented is:

A component, if it can be cleanly encapsulated in a generalized pfocedure

(i.e. object, method, procedure, API). By cleanly, it means well localized, and easily
accessed and composed as necessary. Components tend to be units of the system’s
functional decémposition, such as image filters, bank accounts and GUI widgets.

An aspect, if it can not be cleanly encapsulated in a generalized procedure.

Aspect Design Pattern for Non Functional Requirements 14

Literature Survey | Chapter-2

Aspects tend not to be units of the system’s functional decomposition, but rather to be
properties that affect the performance or semantics of the components in systemic ways.
Examples of aspects include memory access patterns and synchronization of concurrent
objects.

Using these terms it is now possible to clearly state the goal of AOP: To support the
programmer in cleanly separating components and aspects from each other, by providing
mechanisms that make .it possible to abstract and compose them to produce the overall
system. | |

In general, whenever two properties being programmed must compose differently and yet

be coordinated, we say that they cross-cut each other

Aspect weaver

Aspect weavers must process the component and aspect languages, composing them
properly to produce the desired total system operation. Essential to the function of the
aspect weaver is the concept of join points, which are those elements of the component

language semantics that the aspect programs coordinate with.

Aspect Design Pattern for Non Functional Requirements 15

Literature Survey Chapter-2

2.2 Aspect Model

Christina et al. in their paper “Theory of Aspects for Aspect-Oriented Software
Development”[7] presented an Aspect model of Aspect-Oriented Software Development
which is based on the corcept of separation of concern and modularity and provided
terminologies and concepts of the basic elements of the Aspect Oriented Software
development. This paper presents a disciplined, yet still informal, theory of aspects — a
conceptual framework for aspect-oriented programming that provides consistent
terminology and basic semantics for thinking about a problem in terms of the concepts
and properties that characterize the AOP style as an emerging paradigm to software
development. These concepts. and properties have already been described informally.

Following is the picforial representation of their aspect model.

Aspect language Join point model
specifies / support
adopts refers to
adopt Vv v
Weaving model [<€ Aspect model Component model
adopt
define , adopt Q
' \
_— | * core model
* *
Aspect rule >| Aspect core component
constraint 4
aspect crosscutting

Figure 2.1: The Aspect Model

Aspect Design Pattern for Non Functional Requirements 16

Literature Survey , Chapter-2

2.3 Implemenfation of Des"ign Patterns using AOP

Oufa Hachani et al. in “Using Aspect Oriented Programming for Design Patterns
Implementation” [11] has implemented visitor design pattern using AspectJ programming
language and proposed the solution to the problems related to the visitor pattern in its
implementation using object oriented programming.

Jan-Hannemann et al. “Design pattern Implementation in java & Aspect]” [8] have
implemented the GOF pattern in both JAVA and Aspect] and concluded that the
implementation in AspectJ resulted in better code locality, reusability and composeability
and said that these improvements are directly related to the removal of the crosscutting
structures in the patterns.

The degree of improvement in implementation modularity varies, with the greatest
improvement coming when the pattern solution structure involves crosscutting of some
form, including one object playing multiple roles, many objects playing one role, or an
object playing roles in multiple pattern instances. |

Deepak Dahiya et al. has raised the issues in “Approaches to Aspect oriented Design: A
Study ” [10] that there is a gap between the requirements, design and code. The extension
of AOP to the modeling level can bridge the gap and provide better traceability
throughout requirements to source code.

The author mentioned, for aspect oriented software development (AOSD) to live up to
being a software engineering paradigm, there must be support for the separation of
crosscutting concerns across the development lifecycle including traceability from one
lifecycle phase to another. Concerns that have a crosscutting impact on software (such as
distribution, persistence, etc.) present well documented difficulties for software
development. Since these difficulties present throughout the development life cycle.

A gap exist between requirements and design on one hand and between design and code
on the other and if Aspect oriented programming(AOP) extended to the modeling level
where aspects could be explicitly specified during the design process will make it
possible to weave these aspects into a final implementation model. Another step could
be extension of AOP to the entiré software development life cycle. Each aspect of design

and implemehtation shduld be declared to during the design phase, so that there is clear

Aspect Design Pattern for Non Functional Requirements 17

Literature Survey | | v Chapter-2

traceability from requirement through source code thus using UML as the design
language to provide an aspect oriented design environment.

Peter Coad in “Object Oriented Patterns” [9] stated about the patterns raised the question
that how we can find patterns and presented some object oriented analysis and design

patterns with examples and guidelines to use pattemns.

2.4 Aspect Oriented Technology and Design Patterns .
Oufa Hachani et al. in “On Aspect-Oriented Technology and Design Patterns” [12]- has
criticized and commented that Aspect oriented implementation improves the design
patterns because AO was meant to do so, and can we claim such implementation is AO
design pattern and concluded: that there is a need to find new patterns related to the
Aspect Orientation.

The authbr commented that it is not very amazing that aspect-oriented programming
mechanisms that have been introduced with the hope to provide better programming
techniques than the previously existing object-oriented ones can improve object-oriented

design patterns.

Aspect Design Pattern for Non Functional Requirements 18

Chapter-3
Definition of the Problem

Problem Definition Chapter-3

3.1 Problem Definition

While observing both the design patterns and AOP, we observed that the design patterns
lies at higher level of abstraction and the solution provided by the AOP is at the lower
level of abstraction. Here when we say level of abstraction it has various meanings, if we
consider the people working on software then the design patterns are used by the analysts
and software designers and programmers who implement the design patterns. On the
other hand AOP is a programming technique and the programmer is responsible for
coding of software, in current situation when design patterns are implemented through
AOP it depends on the wisdom of the programmer that how well he understand and
translate the software design into AOP code. So we can say that there is a gap between
the design patterns and Aspects. As mentioned in [10] the gap between the Aspects and
Design Patterns can be bridged by extending Aspects to the modeling level.

But both the design patterns and Aspects have a common characteristic that they provide
solution to recurring problem at two different levels of abstraction. Adding to it AOP
provides solution to the recurring aSpécts within an application as well as the same aspect
recur in different applications and behave similarly. For example the concerns like
security, logging, and error checking etc. are the causes of code scattering and tangling
that is why these are treated as aspects in an application on the other hand these aspects
recur in different applications. -

The work mentioned in [8] and [11] considered the AOP for the implementation of .
Design Patterns to produce better results which could work well but the question is that
the object oriented design patterns are meant to use the concept of object oriented and
provide better design solution in object oriented paradigm. On the other hand AOP
addresses the limitations of dbject oriented technology. Due to this difference there are
issues of traceébility and consi.stency between different software artifacts. In [12] Hanchi
et al. have raised the question that, can we say such implementation of design pattern as
aspect oriented design pattern and concluded that there is a need to find design patterns
that are directly related to the aspects.

Therefore, We are going to develop an Aspect Pattern for Non Functional Requirements,
in which it will be tried to cover the gap between the requirements and design. And we

have raised the issues like:

Aspect Design Pattern for Non Functional Requirements 19

Problem Definition Chapter-3

3.2 Research Questions
e How to represent aspect as design pattern?
The first question which rose after the literature survey was about the representation
of the aspect i.e. can we represent the aspect as there is a representation format is
available for design patterns (the elements of design pattern).
e Does aspect pattern for non functional requirements help at design level?
Can we claim that the aspect pattern for non functional pattern will help at the design
level?
o Identification of recurring aspects and their representation at design level and

creation of aspect oriented patterns.

3.3 Research Objective
. Comparaﬁve analysis of aspécf and design patterns.
o Finding elements to describe the Aspects.
As the design patterns are represented through the elements of design pattern likewise
can we find the elements which represents an aspect or can we find equivalent
description of aspects.
¢ Comparing the elements of design_pattems & aspects.

o Equivalent description of aspects in form of design pattern elements.

3.4 Comparative analysis of aspect and design patterns
After the studying the nature aspects and design patterns, we found the similarity and

differences between them on following points:

¢ Recurring Problem

o Scope

¢ Representation

e Implementation

o When to use/ guidelines
e Understandability

¢ Modularity

Aspect Design Pattern for Non Functional Requirements 20

Problem Definition Chapter-3

e Modifiability
e Reuse

¢ Maintainability

Recurring Problem

The first common characteristic of design pattern and aspect is that both provide solution
to the recurring problems, the difference is that the design patterns solve the design
problems at design level and AOP provides the solution to the recurring aspects on code

level.

Scope

Scope of the design paftems is limited to the design phase and the pattern vanishes in
code, so it is difficult to find/see design pattern in code. Design pattern become trivial
after coding it. Aspects are not trivial and have a vast scope than the design patterns and

aspects remain observable all the time.

Representation
Design patterns are represented by the elements of design patterns; object oriented design
patterns uses the constructs of object oriented languages. Aspects are represented by the

constructs available in aspect oriented languages.

Implementation

Design patterns are implemented with code and ultimately they vanish in code. After the
implementation of design pattern programmer can not trace what patterns were applied
and what design decisions were made. Weaving mechanism is used to weave the
components and Aspects. Cblmponents and Aspects are implemented separately and
weaving is the process which combines them together for this purpose aspect oriented

languages use weaver.

Aspect Design Pattern for Non Functional Requirements 21

Problem Definition _ Chapter-3

When to use/ guidelines

Experts advise that don’t use patterns prematurely. In other words, use design patterns to
optimize the design solution. As the design patterns are more mature area so there are
certain guidelines are available for the use of design patterns. But aspect oriented
software development is in evolving phase so there are no concrete guidelines when to

use the aspects.

Understandability

Design patterns may increase or decrease the understandability of design or
implementation. They can decrease understandability by adding indirection or increasing
the amount of code, and can increase the understandability by improving modularity,
better separation of concern and easing description. Aspects can improve
understandability by removing the redundant code and tangled code which is unclear and

difficult to understand.

Modularity

Modularity is-one of the key design features along with the others like abstraction,
decomposition, encapsulation, information hiding, and separation of concern.

The root of both the Aspects and design patterns is same (Object Oriented) and
modularity is a one of the characteristic of object oriented, so aspects and design patters
are modular by nature. Aspects take the concept of modularity one step further. AOP
provided solution to the problems/shortcomings of the object oriented technique

(crosscutting).

Maintainability

After the implementation of design pattern programmer can not trace what patterns were
applied and what design decisions were made. Thus, when changes have to be made the
entire design has to be almost entirely reéonstructed.

Tangled code is difficult to change because one has to find all the code involved and to

be sure to change it consistently.

Aspect Design Pattern for Non Functional Requirements 22

Problem Definition : Chapter-3

Reuse

According to the classical definitions of the design patterns design patterns facilitates the
reuse of architecture and design of the software. Aspects support the reuse at the lower
level of abstraction i.e. the components and the aspects because the aspects and
components are implemented separately and have loose coupling between them.

Design patterns have poor maintainability because they vanish in code and hard to

identify again.

3.5 Out put
e Aspect design pattern, which will help to model the aspects at design level.

3.6 Research Method
Our research methodology is literature survey based analysis of the existing aspects and

design patterns, to find relationship between aspects and design patterns and the inclusion

of aspects at design level.

3.7 Validation of pattern
o We will use the criteria present in literature to evaluate/validate the design
patterns.

e And case study to validate the results.

Doug Lea in his paper [13] has enlisted some properties that a good pattern should

exhibit which are as following:

e Encapsulation
* Abstraction

e Openness

e Variability

o Genérativity

e Compose ability

Aspect Design Pattern for Non Functional Requiremehts 23_

Problem Definition Chapter-3

While defining these properties he mentioned that a pattern should encapsulate a well
defined problem and provide a solution at the abstract level, we compared the proposed
aspect design pattern with this definition and we found that it is encapsulating a well
define problem and providing the solution at an abstract level. The proposed pattern is
quite simple and it can be composed with other patterns and it has generativity in the
sense that it can be used by all software development participants. Aspect design pattern
has the property of openness because it can be used for other non functional
requirements. It has variability in itself as it is independent in terms of implementation

the only limitation is the use of an aspect oriented programming language.

3.8 Scope
Our scope limits to the design level representation of aspect pattern for non functional
requirements, and for-this purpose we will consider Logging (aspect) and the discovery of

pattern particularly for non functional requirements.

Requirement ===p OO Design F-- o
Analysis patier Implementatio
eref -

(a) Poor Traceability between diff

. . A0
Requirement Aspect design) | Implementatio
Analysis Pattemn

(b)
Better Traceability between different phases

| Identification of Aspects I

Figure: 3.1 Abstract diagram of proposed solution

Description of Figure 3.1

This figure depicts that there is a gap between analysis level and implementation level.
This gap is due to the absence of AOP constructs in traditional design pattern description.
The focus of this work is to bridge this gap by describing design pattern description with

inclusion of AOP constructs. As represented by the part (b) of the figure.

Aspect Design Pattern for Non F un.ctional Requirements 24

Chapter-4

Proposed Solution

Proposed Solution | Chapter-4

4.1 Identification of Recurring Aspect

There are concerns that crosscut the core functionality of the system and become the

cause of code tangling and code scattering. Code tangling is the situation when more than

one concern are handled by one module and code scattering is the case when one concern

is implemented in one module.

Logging is a concern which crosscut other modules of the system and become a cause of
code tangling and code scattering. Basically this concern has a recitative nature. It repeats

in an application that is why it is treated as Aspect

We have observed that this aspect also repeat in a number of applications, so we consider

it as a recurring aspect.

Because it recurs in a number of applications so it may have a pattern.

As peter code mentioned in his paper [9] raised a question that “how to find pattern” and:
answered it as “look more closely what is repeating there”.

Keeping in mind this view of peter cod we observed and identified that logging is

repeating in number of apglications:.

We also observed its general behavior that in most of the cases there is a need to record

information at entry or exit point.

4,2 Identification of Pattern

We have found by considering various systems that logging required either on entry or
exit. It is common that systems record information of event, when it enters or exit.
Therefore we derived a pattern.of logging that it will occur on entry and exit because we
determined that this is a general behavior of logging entry/exit may be at any level

system level or on lowest point function level.

4.3 Proposed Pattern
In [9] Peter Coad raised the question that how to find the pattern and referred [17] to

answer which says, look more carefully that what is repeating there [17].

Aspect Design Pattern for Non Functional Requirements 25

Proposed Solution Chapter-4

Christopher Alexander who is considered the pioneer in field of design patterns describes
the patterns as “each pattern is a three part rule, which expresses a relation between a
certain context, a problem and a solution”.

Mainly four forms of patterﬁs are available in literature the Alexander form (Alexander et
al. 1977) which contain the elements pattern name, problem statement, context, forces,
solution, example, force resolution, design rationale, GoF Patterns (Gamma et al. 1994)
which have the elements intent, motivation, applicability, structure, participants,
collaborations, consequences, implementation, sample code, known uses, and related
patterns, Coplien form (Coplien et al 1995) with the key elements of problem, context,
forces, and solution, POSA form (POSA Book 1996) which is similar to GoF form but
have differenf names of elerhents as summary, example, context, problem, solution,
structure, dynamics, implementation, example resolved, variants, known uses, see also
and consequences [13]. All these forms of design pattern contain the basic categories
name, problem statement, context, description of forces and solution.

Our studies lead us to the solution and the solution emerged in form following elements.

Our proposed pattern has the following elements:

e Pattern Name

e Problem Statement

e Forces |

e Context

e Participants

e Structure

e Implementation

o Join Points
4.4 Discussion on proposed pattern
As described in the previous chapter of problem definition that we have found from
literature that there are issues like tractability, consistency and a gap between artifacts of

the software engineering process. The reason behind is that early stages of software

Aspect Design Pattern for Non Functional Requirements , | 26

Proposed Solution ' . Chapter-4

development life cycle are based on object orientation, and later stage (implementation)
is accomplished by using Aspect Oriented Programming (AOP).

Our proposed pattern handles the non functional requirements at the design level up to a
significant level by capfuring these Aspects in design level document. The combination
of identification of aspects and our proposed design pattern will help to solve the above

mentioned issue as depicted by the following figure.

- Requirement - 0O Design L _ . o
Analyais prttem Implementatio

(a) Poor Traceability between diffe

: - A0
Requirement Aspect design ™11 Implemeation
Analysis Pattern

®

Better Traceability between different phases

| Identification of Aspects I

Figure 4.1 Abstract diagram of proposed solution

4.5 Description of Pattern Elements
Following is the description of the elements of pattern.

e Pattern Name
The first element of the pattern template is the pattern name according to the best
practices in the_ﬁeld of design pattern. The name should be short and descriptive.

¢ Problem Statement |
Problem statement describes the problem for which the pattern is going to provide the
solution. In our case “How to handle recurring aspect”.

e Forces
Force is the element that describes rationale behind the use of this pattern in case of our
proposed pattern the existence of aspect i.e. any implicit or non functional requirement is
the force.

o Context
Context contains the scenario which illustrates the situations where this pattern is

applicable, as we have established in chapter-3 that the aspects recur in different

Aspect Design Pattern for Non Functional Requirements 27

Proposed Solution Chapter-4

applications and behave almost in same manner, so it is quite simple to illustrate such
situation or context.
¢ Participants
Participants are the entities (classes) that can be affected by the presence of an aspect.
¢ Structure
The structure element of the aspect design pattern describes the abstract structure of the

pattern as depicted in following figure.

Abstract logging aspect

+abstract pointcut trace

<<{asynchronous} Aspect>>

AN

Exit Aspect Entry Aspect
+Fointcut trace +Pointcut trace
Advice() Advice()
| <<crosfcut}>
<<crosscut>>
Component A Component A
Component B Component B
Component N Component N

Figure 4.2 Structure diagram
The generalized behavior of logging is captured by abstract aspect logging, with an
abstract pointcut trace. Entry énd Exit aspects are inherited by the base aspect logging.

Both inherited aspects contain separate implementation of the abstract pointcut trace. The

Aspect Design Pattern for Non Functional Requirements | 28

Proposed Solution Chapter-4

association between aspects and components is represented by link with a stereotype

<<crosscut>>,

¢ Implementation
Implementation -contains the general implementation of the pattern or may have some
sample code.

Sample code of pattern
Following is the sample code of pattern

public abstract aspect Logging ({
public abstract pointcut trace():

before() : trace(){
//advice

}
after(): trace(){
//advice
}}
public aspect AspectEntry extends Logging(
public pointcut trace():call (desired methods);

before(): trace(){
//advice code '

b}

public aspect AspectExit extends Logging{
public pointcut trace():execution (desired methods);

after(): trace(){’
//advice code

b}

e Join Points
The last element of the design pattern is join points which are well defined points in the
execution of a program or a point where the requirements crosscut each other. Join point
is a construct of aspect oriented languages. The inclusion of this element makes the
pattern unique because it has incorporated a construct of the aspect oriented languages
into the desigh pattern. Now the join points are visible at the design level which will

result in a better tractability between the artifacts of the design and implementation level.

Aspect Design Pattern for Non Fi unctional Requirements 29

Chapter-5

- Implementation

—————

A S b

_ A

Implementation Chapter-5

In this chapter we have implemented our proposed pattern on three case studies which are as
following:

5.1 Shopping Cart _

A customer selects the items she wants to purchase and adds to the cart, customer may
remove the item from the cart or she can empty the cart. These are the operations a
customer can perform. When customer add an item to the cart, the cart operator updates
the stock and remove that jtem from the total and when customer remove item from the
cart, cart operator adds that item to the stock and when customer empty the cart, cart
operator again update the stock and add all items removed from the cart to the stock. As
any of the above mentioned operation is performed, it is recorded in a log file. The
information has to be recorded in a log file that what item is added, removed and update

in stock on which date and time.

5.1.1 Concerns .

We have identified the .following concerns of customer and cart operator from the above
mentioned case study

Customer is concerned with:

1- Add item to cart

2- Remove item from cart

3- Empty the cart _

Cart Operatbr is concerned with:

1-Updating the Stock in case of add, remove, empty (this concern of the cart operator is
crosscutting the concerns of customer). Whenever there is an update in stock is it has to

be recorded in the log file.

Aspect Design Pattern for Non Functional Requirements 30

Implementation ' Chapter-5

Update Inventory

Customer > Pri v Shoping Cart Operator

Figure 5.1 Use Case diagram of shopping cart case study

5.1.2 Basic course of action: Narrative style

o Customer wants to 'puréhase an item

o Heview the listofitem

o Customer add item into cart

o Customer view the selected items

o Customer removes the item from the selected items
o Customer view the selected items

Customer can remove all items from the cart

(o]

(o]

Customer can check the price of an item

Add remove or empty are updated in the stock

o O

In case of add, added items are deducted from the stock in case of empty and

remove item, items are added into stock

Name Add item to cart

Description Customer add an item to cart which he want to purchase

Precondition Customer should log in the system

Item should be available in stock

Post condition The item is added to cart and the information is recorded in a log file

Aspect Design Pattern for Non Functional Requirements 3

Implementation

Chapter-5

Name

Remove item from cart

Description

Custormer can remove item from cart

Precondition _

Customer should log in the system
Item should be in cart

Post condition

Item is removed from the cart and information is recorded into log
file

Name

Empty cart
Description Customer can empty the cart
Precondition Customer should log in the system
o Items should be in cart
Post condition Items removed from the cart, information of the event is logged into
the log file
Name Check price
Description Customer can check prices of items
Precondition Customer should be log in the system

Post condition

Price is displayed

Name Update inventory
Description Items purchased by the customer should be updated in stock
Precondition Customer must have selected one or more items

Post condition

Stock is updated
Information of the event is logged into log file

5.1.3 Application of Proposed Solution on Case Study

I-Name

Aspect design patterh (for Logging)

II- Problem Statement

“How to handle logging”

Aspect Design Pattern for Non Functional Requirements

32

Implementation _ : Chapter-5

In our case study whenever there is an update in the stock it has to be written in a log file
or a log of all transactions is required to be maintained. This requirement of maintaining
the log is crosscutting the customer concerns.

III- Forces |

The logging requirement is crosscutting multiple modules. So, it is necessary to capture it
at design level. Logging does have an occurrence pattern that is log is maintained at the
entry and exit point.

IV- Context

Our case study is serving the purpose of context here.

V- Participants | N

Classes involved in logging or the classes affected by logging are the participants, in this
case study four classes are involved but only two are affected by the logging so, the item

class and shopping cart class are the participant.

Aspect Design Pattern for Non Functional Requirements 33

Implementation

Chapter-5

VI- Structure :

Following is the structure diagram for the case study.

Abstract logging aspect

.+abstract pointcut trace

AN

<<{asynchronous} Aspect>>

Exit Aspect

+Pointcut trace

Entry Aspect

+Fointcut trace

Advice() Advice()
| <gcrosgcut>>
<<crosscut>>
Item Item
Shopping Cart Shopping Cart

5.2 Structure diagram for case study

VII- Implementation

This pattern can be implemented with any aspect oriented language. Pattern uses the

construct of aspect oriented language. Following code is in AspectJ language:

public abstract aspect Logging {
public abstract pointcut trace();

before() : trace() {
"//advice '

}

after(): trace() (
//advice

b}

Aspect Design Pattern for Non Functional Requirements

34

Implementation . Chapter-5

public aspect AspectEntry extends Logging{
public pointcut trace():call (desired methods of Item
Class/Shopping Cart Class);

before(): trace() |
//advice code

H

public aspect AspectExit extends Logging({
public pointcut trace():execution (desired methods of Item
Class/Shopping Cart Class);

after(): trace()t
//advice code

}}

VIII- Join point .
The three operations of the customers i.e. add item, remove item empty and update are
the join points because the update operation occurs at the same time as any of them is

initiated.

5.2 Student Registration System

Student contact the student registration office & present his registration card, registration
officer verifies that he is a valid student & offer him the courses. Student selects the
courses. Registration officer verifies that the fee is paid and the prerequisite courses are
passed & then register the student. And update the list. Whenever student select course
and registfatidn officer perform verification, register the student and update the list,
information of ‘all these events is recorded in a log file. So, logging concern is

crosscutting the student concern (select course) and registration officer concern.
5.2.1 Concerns

Student is concerned with the

1- Presentation of card

2- Selection of courses

Registration officer is concerned with

Aspect Design Pattern for Non Functional Requirements 35

Implementation Chapter-5

1- Verification of student

2- Checking the fee & prerequisite

3- Register the student

Student ‘ Ragistraton OHlcar

Verification

{ Register Course y

(" Updaterist

Figure 5.3 Use Case diagram of student registration system

5.2.2 Basic course of action: Narrative style

o Student contact the registration officer

o Present his university card |

o Registration officer offer him courses

o Student selects the courses

o Registration officer verifies that fee is paid and prerequisites are passed
o After verification stu_deht_ is registered

o Registration officer update the list of registered students.

Name ‘ Present university card

Description Student will contact the registration officer and present his university

Aspect Design Pattern for Non Functional Requirements 36

Implementation

Chapter-5

card

Precondition

Student should have a valid university card

Post condition

Card is accépted as valid

Name

| Select course

Description

Student will select the course from the list of offered courses

Precondition

Student should be authenticated

Post condition _

Student select the desired course and information is recorded in a log
file

Name

Offer course

Description

Registration officer offer list of courses to the student

Precondition

Student present his identity

Post condition

Student is provided with the list of offered courses

Name

Verification

Description

Registration officer perform the verification that fee is paid and pre
requisite courses are passed.

Precondition

Student must have selection of courses

Post condition

Successfully verified and information is recorded in a log file .

Name

Register course

Description

Officer register the student for the selected courses

Student is verified and have a selection of courses

Precondition

Post condition Student is registered and information is logged in log file.
Name Update list

Description Officer update the list of registered students

Precondition A new student is registered with some courses

Aspect Design Pattern for Non Functional Requirements

37

Implementation ~ Chapter-5

Post condition List is updated and information is logged .

523 Application of proposed pattern on case study

I- Name

Aspect design pattern (for Logging)

II- Problem statement

In this case logging concern is crosscutting the student and registration officers concerns,
which lead to concern scattering and tangling.

III- Forces

The requirement of logging the events is force for this pattern.

IV- Context
Our case study (student registration) serving the purpose of context here.
- V-Participants
There are total three classes involved in this case study and classes affected by the aspect

is Registration Officer class and student class.

VI- Structure

Following is the structure diagram for case study.

Aspect Design Pattern for Non Functional Requirements 38

Implementation - Chapter-5

Abstract logging aspect

+abstract pointcut trace

<<{asynchronous} Aspect>>

AN

Exit Aspect Entry Aspect
- +Pointcut trace +Pointcut trace
Advice() Advice()
I <<crospcut>>
<<crosscut>>
Registration Officer Registration Officer
Student Student

Figure 5.4 Structure diagram for case study-2

VII- Implementation
This pattern can be implemented in any aspect oriented programming language like

Apect]. Pattern uses the constructs of aspect oriented language.

public abstract aspect Logging {
public abstract pointcut tracel():

before() : trace(){
//advice
} .

after(): trace(){

//advice

}}
public aspect AspectEntry extends Logging{

public pointcut trace{):call (desired methods of Registration
Officer/Student Class);

before(): trace(){

Aspect Design Pattern for Non Functional Requirements 39

Implementation Chapter-5

//advice code

}}

public aspect AspectExit extends Logging{
public pointcut trace():execution (desired methods of Item
Class/Shopping Cart Class);

after(): trace(){
//advice code
|3

VIII- Join point
The logging concern is crosscutting the concerns of the student at the join point select
course and registration officer at the points offer course, verification, register, and update

list.

Aspect Design Pattern for Non Functional Requirements 40

Implementation Chapter-5

5.3 Motorway Toll System

When a car enters the motorway a card is issued to the driver with car no., time & entry
point. On exit the driver show his card, toll collection officer calculate the time, distance

and total toll money his toli is displayed on screen, driver pay the toll & exit.

5.3.1 Concerns _

Driver is concerned with

1- Receive the card

2- Show the card at exit

3- Pay the toll-

Toll Collection Officer is concerned with
1- Calculate the total time, total distance

2- Calculate the total toll money

3- Receive the toll

Raceive Card

Toll Officer
" Display Toll
Recsive Tall & Exit Y’

Figure 5.5 Use Case diagram Qf Motorway toll system

Aspect Design Pattern for Non Functional Requirements 41

_Implementatioh ' Chapter-5

5.3.2 Basic course of Action

o Vehicles are entered to travel as motorway

o Vehicles present their visibility on entry point

o Driver receive the card to travel

o Vehicle driver show card at exit point toll collection officer calculate time and
distance

o Toll collection officer receive money and exit the vehicle.

Name Receive card

Description - The driver enters into the toll plaza and receive card from toll

collector. Information of the vent is logged

Precondition Present vehicle

Post condition Card is issued.
Information is of the event is logged

Name Calculate time and distance

Description Vehicle driver present the card to the toll officer. Officer performs

calculation of time and distance and generates receipt. Information of
the event is logged

Precondition Card should be valid

Post condition | Receipt generated successfully, information is logged
Name Show card v

Description The vehicle driver present card to toll collection officer
Precondition Present vehicle

Post condition Card accepted

Name Receive toll and exit

Aspect Design Pattern for Non Functional Requirements 42

Implementation : | Chapter-5

Description The toll collection officer receives the toll money. Information is
logged.

Precondition Receipt generated

Post condition Receive money and exit car, information is logged.

5.3.3 Application of proposed pattern on Case study-3
I- Name

Aspect design pattern

II- Problem statementA

In this case logging concern is crdsscutting the other concerns, which lead to concern
scattering and tangling.

III- Forces

The requirement of logging the events is force for this pattern.

IV- Context

Our case study (motorway toll system) is serving the purpose of context here.
V- Participants

The participants of this system are toll officer, card and the logging aspect.

Aspect Design Pattern for Non Functional Requirements 43

.

Implementation Chapter-5

VI- Structure

Abstract logging aspect

+abstract pointcut trace

- <<{asynchronous} Aspect>>

AN

Exit Aspect ' Ehtry Aspect
+Pointcut trace +Pointcut trace
Advice() :) Advice()
l <Jcrospcut>>
<<crosscut>>

Toll Officer Toll Officer

Card _ Cand

Figure 5.6 Structure of classes case study-3

VII- Implementation

This case study can be implemented by any aspect oriented programming language.

public abstract aspect Logging {
public abstract pointcut trace():

before() : trace() {
.//advice
) .
after(): trace!){
//advice
b} :
public aspect AspectEntry extends Logging(
public pointcut trace():call (desired methods of Toll
Officer/Card Class);

Aspect Design Pattern for Non Functional Requirements

44

Implementation

Chapter-5

before(): trace()({
//advice code

1}

public aspect AspectExit extends Logging{
public pointcut trace():execution (desired methods of Toll
Officer/Card Class);

after(): trace(){
//advice code
}}

VIII- Join point
All operations of driver and toll officer represent join points.

Aspect Design Pattern for Non Functional Requirements

45

Chapter-6

- Evaluation

I

——
-

Validation | Chapter-6

6.1Quality of Proposed Pattern

Doug Lea in his paper [13] has enlisted some properties that a good pattern should
exhibit which are as following. We analyzed our pattern regarding these parameters and

found that it fulfill the criteria.

e Encapsulation

J Abstraétion

e Openness

e Variability

e Generativity

e Compose ability .
6.1.1 Encapsulation
Each pattern encapsulates a well-defined problem/solution. Patterns are independent,
specific, and precisely formulated enough to make clear when they apply and whether
they capture real problems and issues, and to ensure that each step of synthesis results in
the construction of a complefe, recognizable entity, where each part makes sense as an in-
the-small whole.
Our pattern has a well defined problem how to handle the aspect and provide solution for

it.

6.1.2 Generativity.

Each entry contains a local, self-standing process prescription describing how to
construct realizations. Pattern entries are written to be usable by all development
participants, not merely trained designers. Many patterns are unashamedly '‘recipes",
mirroring the ‘“unselfconscious” procedures characteristic of traditional method less
construction. An expert may still use a pattern in the same way that an expert chef uses a
cooking recipe -- to help create a personal vision of a particular realization, while still

maintaining critical ingredients and proportions.

Aspect Design Pattern for Non Functional Requirements 46

Validation ' Chapter-6

Our pattern exhibit the generativity as it includes the constructs of AOP, which are
helpful for the coding commﬁnity and a developer with less experience may use the

pattern more efficiently.

6.1.3 Abstraction

Patterns represent abstractions of empirical experience and everyday knowledge. They
are general within the stated context, although not necessarily universal. (Each entry in
Patterns is marked with a “‘universality" designation of zero to two stars.) Pattern
construction is an iterative social process collecting, sharing, and amplifying distributed
experience and knowledge. Also, patterns with a structural basis in or similarity with
natural and tréditionally constructed artifacts exploit well adapted partitioning of the
world. Sometimes, patterns may be constructed more mechanically, by merging others
and/or transforming them to apply to a different domain. And some patterns are so tied to
universals that they emerge from introspection and intuition uncontaminated by
formalism. Heuristics based on participatory design, introspection, linkage to existing
artifacts, and social consensus all increase the likelihood of identifying central fixed and
variable features, and play a role even when that environment is purely internal and/or
artificial, but where each part helps generate a context for others.

Proposed pattern defines problem and provide solution at an abstract level and have the

concept of abstraction.

6.1.4 Openness

Patterns may be extended down to arbitrarily fine levels of detail. Like fractals, patterns
have no top or bottom -~ at the lowest levels of any design effort, some are merely opaque
and/or fluid (e.g., plaster, concrete). Patterns are used in development by finding a
collection of entries addressing the desired features of the project at hand, where each of
these may in turn requirg other sub patterns. Experimentation with possible variants and
examination of the relationships among patterns that together form the whole add
constraints, adjustments and situation-specific specializations and refinements. For
example, while only a small set of patterns would typically apply in the design of a

certain housing community, each house will itself be unique due to varying micro-

Aspect Design Pattern for Non Functional Requirements 47

Validation Chapter-6

patterns. Because the details of pattern instantiations are encapsulated, they may vary
within stated constraints. These details often do impact and further constrain those of
other related patterns. But again, this variability remains within the borders of higher-
level constraints.

Pattern is providing solution on a higher level of abstraction and it is independent of
implementation tool and languages. So, it enhances the flexibility of solution. And the
pattern may be used for other recurring aspects.

6.1.5 Composibility.

Patterns are hierarchically related. Coarse grained patterns are layered on top of, relate,
and constrain fine grained ones. These relations include, but are not restricted to various
whole-part relations. Most patterns ‘are both upwardly and downwardly composible,
minimizing interaction with other patterns, making clear when two related patterns must
share a third, and admitting maximal variation in sub-patterns. Pattern entries are
arranged conceptually as a language that expresses this layering. Because the forms of
patterns and their relations to others are only loosely constrained and written entirely in
natural language, the pattern language is merely analogous to a formal production system
language, but has 'vab.o'ut ‘thé same properties, including infinite nondeterministic
generativity. .

Pattern can be composed with other patterns because it is providing the solution without
other entities of the system. . |

The proposed pattern is quite sirriple and it can be composed with other patterns and it
has generativity in the sense that it can be used by all software development participants.
Aspect design pattern has the property of opehness because it can be used for other non
functional requirements. It has variability in itself as it is independent in terms of
implementation the onIy limitation is the use of an aspect oriented programming

language.

Aspect Design Pattern for Non Functional Requirements 43

Aspect Design Pattern for Non Functional Requirements Conclusion

R i T AR W A T

Conclusions

In this thesis we have identified that there is a gap between different stages of Aspect
Oriented Software Development life cycle. We analyzed both the design patterns and
aspects and found that there is one thing common that they provide solution to the
recurring problems. We surveyed different forms of design patterns and proposed a
representation of aspects at design level as a design pattern. We have used pattern
description elements to describe the aspect. This kind of representation of aspect will help
to remove the inconsistencies between different software artifacts. Aspect design pattern
improves the traceability between analysis, design and code because the aspects are
identified in requirement analysis ph‘ase and represented at design level, that design is
translated into code using aspect oriented language. We have answered the questions
which we have raised in the chapter 3 that whether an aspect can be represented as a
design pattern and such representation helps at design level. We have examined our
pattern under the quality criteria and found that it has the quality characteristics such as
encapsulation, abstraction, genrativity, openness, variability, compose ability.

Our reseérch focus is on two things first is the description of pattern and second is
pattern. We observed that all the aspects have same kind of effect that is they modify the
behavior of system on specific join points.

Our pattern is providing solution to a problem "how to handle the aspect (logging)". In
software world currently the mechanism to document or to provide the solution the way
used is patterns. We have used this way; we have used the elements to provide the
solution. Our pattern elements describe the problem and provide the solution and bridge
the gap between different artifacts of software engineering, no such element is available
currently which consider the constructs of the AOP at design level in design pattern our
pattern does. Description of pattern is generic we may handle other aspects using this

description.

Aspect Design Pattern for Non Functional Requirements 49

References & Bibliography

References

[1] Aspect] Programming Guide. 2003, Xerox Corporation.

[2] Gregor Kiczales et al, “Aspect-Oriented Prégramming”, Proceedings of European
Conference on Object-Oriented Programming, 1997

[3]. Harbulot Betal”An Investigation of Aspect-Oriented Programming”, in Department
of Computer Science. 2002, University of Manchester UK.

[4] Gregor Kiczales et al. “An Overview of Aspect]”. in 15th European Conference

on Object-Oriented Programming. 2001.

[5] “Java design patterns 1017, David Gallardo

[6] “Patterns and Software: Essential Concepts and Terminology”

by Brad Appleton http ://www.bradapp.riet 02/14/2000

[7] Christina et al. “A Theo‘ry of Aspects for Aspect-Oriented Software Development”
Proceedings of the 7th Brazilian Symposium on Software Engineering, 2003.

t8] Jan Hannemann et al. “Design Pattern Implementation in Java and Aspect)”,
Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 2002

[9] Peter Coad, “Object Oriented Pattern”, Communication of ACM vol. 35, No. 9 1992
[10] Deepak Dahiya et al. “Approaches to Aspect Oriented Design: A study” ACM
SIGSOFT Software Engineering Notes, v.31 n.5, 2006

[11] Ouafa Hachani et al. “Using Aspect-Oriented Programming for Design Pattern

Implementation”, Workshop of the 8th International Conference on Object-Oriented

Aspect Design Pattern for Non Functional Requirements

References & Bibliography

Information Systems OOIS, 2002

[12]] Oufa Hachani et al. “On Aspect-Oriented Technology and Object-Oriented Design
Pattern” ECOOP 2003 AAOS Workshop, 2003

[13] Doug Lea, “Christopher Alexander: an Introduction for Object Oriented Designers”
ACM SIGSOFT Software Engineering Notes, v.19 n.1, p.39-46, 1994

[14] “Survey of Anéiysis and Design Approaches” Ruzanna Chitchyan et al. version 1.0,
2005 |

[15] Sue et al. “Aspect Oriented Software Development: Towards A Philosphical Basis”,
Technical Report TR-06-01, Department of Computer Science, King’s College London,
2006 |

[16] “Software Engineering A Practitioners Approach” written by Roger S. Pressman 6"
edition pg 267

(171 “The Timgless Way of Bu_ilding” written by Christophér Alexander, Oxford
University Press, 1979

(18] IBM Dictionary of Computing International Edition

[19] http://trese.cs.utwente.nl

[20] Ruzanna Chitchyan et al. “Sufvey of Analysis and Design Approaches” version 1.0, ‘
2005 |

[21] Gefei Zhang, “Toward Aspect-Oriented Class Diagrams” proceedings of the 12

Asia-Pacific Software Engineering Conference (APSEC’05)

Aspect Design Pattern for Non Functional Requirements

References & Bibliography

[22]Martin Fowler,“Writing Software Patterns” availab lé at
http://www.martinfowler.com/articles/writingPatterns

[23] Aspect] Documentation Page. 2003, Xerox Corporation.

Aspect Design Pattern for Non Functional Requirements

Appendix A
| 'Publication

7th WSEAS Int. Conf on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

Aspect Design Pattern for Non Functional Requirements

FAZAL-E-AMIN', ANSAR SIDDIQ? HAFIZ I'AROOQ AHMAD?
" International Islamic University Islamabad, Pakistan
NUST Institute of (nformation Technology, Chaklala Scheme I1I, Rawalpindi
'fazal amin@hotmail.com *ansar siddique@yahoo.com

Abstract

Aspecet oriented technology is created to address the problems (crosscutting) that were not effectively solved

through object oriented techniques, the current research has contributed

to fill the gap between Aspect

Orienled Prograiming (AQP) and other phases of software development life cycle this gap is now decreasing.
In object oricnted software “design, patterns arc tools of softwarc cngincers to solve the recurring design
problems while at programming level AOP is the solution to recurring aspects. The proposed Aspect Design
Pattern for non functional requirements considers the aspect at design level and provides a design level
solution that handles the aspects and mainly non functional requirciments.

Kevwords: Software design patterns, aspect oriented design, non functional requirements

I-Introduction

Object oriented s well known and established
mcthodology and software engineers all over the
world arc using it in all phasecs of softwarc
development life cycle from over three decades.
Previously it was assumed that object oricnted
technology can provide solution to almost all the
real world problems, which were not solved by the
proccdural approachcs. As the systems started
growing larger it was observed that some problems
can not be cfectively solved by the object oriented
or procedural approaches [1]. And this point became
the starting point for Aspect Oriented Softwarce
Developmient (AOSD), and AOSD addressed the
limitations of the object oricnted [2].

Divide and conquer is considered as a key software
design principle. According to this principle a
probicm is divided into smaller units, these smaller
problem units are then solved and combined to form
a solution, these smaller units are called modulces.

A module is a “separatcly named and addressable
component” (3]. Modularity can be defined as “the
extent to which a system is composed of modules”
[4].

A systemt can have different concerns; a concern is
arca of interest or property of a system that must be
mplemented to have a successful solution of a
problem [5]. Traditional software cngincering is
involved in the identification of concerns and these
concerns are used to modularize a system |2]. These
concerns arce divided into two categorics; Aspect and
Components. If a concern can be cleanly
cincapsulated in & module it will be a component,
and it will be an aspect if the concern crosscul and
can not be cleanly implemented in a single module

ISBN: 978-960-6766-49-7

141

[1], these separate speccification of aspects and
components are then combined to provide the
solution by the process of wecaving [1][6]. The
implementation of a singlc concern over more than
onc module is crosscutting [3] that crcatc the
problem of concern/code tangling and scattering.
Aspcect Oricnted Software Engincering introduced a
new mecchanism to modularizc a systcm and
scparating the crosscutting concerns {2] [6].

Concern scattering is a situation when one concern
is implemented in more than onc module and
concern tangling is a situation when more than one
concern is implemented in a single module [3].

In softwarc design phasc patterns have great
importance becausc they not only provide solution
to the recurring design problems but also optimize
the solution as wcll. Design patterns can be detined
as: “Design patterns focus morc on reuse of
recurring architectural design theme, while
frameworks focus on detailed design---and
implementation.” (Copeland, Schmidt 1995).

“A pattern addresses a recurring design problem that
ariscs in a spccific design solution and presents a
solution to it.” (Bushman ct al. 1996).

“Patterns identify & spccify abstractions that arc
above the level of single class and instance, or of
component” (Gamma ct. al. 1995).

By observing thesc definitions it can be inferred that
object oricnted design patterns provide solution to
recurring design problems in a specific context.
After the identification of design pattern in a
problem situation, the pattern is then implemented
using objcct oricnted language. As mentioned carlicr
the aspect oricnted languages provide better -and
cfficient implementation than the object oriented
languages, a lot of work is donc.to implement objcct

ISSN: 1790-5117

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

cxample resolved, variants, known uscs, sce also
and consequences |16]. All these forms of design
patlern contain the basic categorics name, problem
statement, context, description of forces and
solution.

On the basis of the above we have proposcd our
Aspect Design Pattern for Non TFunctional
Requirement. which mainly constitutcs on
Alexandrian form with some of the clements of
other pattern forms.

Our proposed pattern has the fotlowing clements:

o Pattern Name

a Problem Statement
e lorces

o (Context

e Participants

e Structure

o Implementation
Join Points

4-Description of Pattern Elements

The first clement of the pattem template is the
pattern name according to the best practices in the
ficld of design pattern. The name should be short
and descriptive. Problem statement describes the

problem for which the pattern is going to provide.

the solution. A force is the clement that describes
rationale behind the use of this pattern in casc of our
proposcd pattern the existence ol aspect t.c. any
implicit or non functional requircment is the force.
Context contains the scenario which tllustrates the
situations where this pattern is applicable, as we
have cstablished in section 2 that the aspects recur in
different applications and bchave almost in samc
manner, so it is quite simple to illustratc such
situation or context. Participants arc the entities
(classes) that can be affected by the presence of an
aspeet. The structure element of the aspect design
pattern describes the abstract structure of the pattern
as depicted in figuie 2. Implementation contains the
general implementation of the pattern or may have
some sample code. The last clement of the design
pattern is join points which arc well defined points
in the exceution of a program or a point where the
requirements crosscut cach other. Join point is a
construct of aspect oriented languages. The
mclusion of this element makes the pattern unique
because it has incorporated a construct of the aspect
oriented fanguages into the design pattern. Now the
join points are visible at the design level which will
result in a better tractability between the artifacts of
the design and implementation level.

1SBN- §78-960-6766-49-7

143

Class A Class 1 Class ¢
Atributes Atiributes Attributes
Teal functi Mothadsifunctio Tethodsifuncti
Aspect
Pt cua «
Adviee <

Figure 2: Abstract structure diagram of pattern

5-Casc Study

We have considered the scenario of a shopping cart
with a focus on logging ({non functional
requirement) for the application of proposed pattern.
We have used minimum number of classes to
represent the case study and used the approach given
in [15] to represent the aspect.

5.1 Shopping Cart case study

A customer sclccts the items she wants to purchase
and adds to thc cart, customer nay remove the itcm
from the cart or she can cmpty the cart. The
customer can add an item to the cart, the cart
opcrator updates the stock and remove that item
from the total and when customer remove item from -
the cart, cart operator adds that item to the stock and
when customer cmpty the cart, cart operator again
update the stock and add all items removed from the
cart to the stock. As any of the above mentioned
operation is performed, it is recorded in a log file.
Congerns

We have identified the following concerns of
customer and cart opcrator from the above
mentioned casc study

Customer 15 concerned with

I- Add item to cart

2- Remove item from cart

3- Empty the cart

Cart Operator is concerned with

|-Updating the Stock in casc of add, remove, cmpty
(this concern of the cart operator is crosscutting the
concerns of customer). 'Whencver there is an update
in stock 1s it has to be recorded in the log file.

- it

Vit Drvsyrian

Figure 3: Usc casc ‘diagram of the system

ISSN: 1790-5117

3.2 Application of Proposed Solution on Case
Study

[-Name

l.ogging Pattern

ti- Problem Statement

Whenever there is an update in the stock it has to be
written in a log filc or a log of all transactions is
required to be maintained. This requirement of
maintaining the log is crosscutting the customer
coneerns,

H1- Forcees

The logging requirement is crosscutting multiple
modules. So, it is necessary to capturc it at design
level. Logging docs have an occurrence pattern that
is log is maintained at the entry and exit point.

IV- Context

Qur casc study is serving the purposc of context
here.

V- Participants

Classes involved in logging or the classes alfected
by logging arc the participants, in this casc study
four classcs arc involved but only two are affccted
by the logging so, the item class and shopping cart
class arc the particip.

VI- Strueture

e Shoppma Coaa

h

Logging

Point cut
Advice

Figure 4: Class level representation

VII- Implementation

‘This pattern can be implemented with any aspect
otiented language. Pattern uses the construct of
aspect ortented language.

VI11- Join point

The three operations of the customers 1.c. add item,
remove item and cmpty are the join points because
the update operation occurs at the same time as any
of them is initiated.

6-Quality of Proposed Pattern

Doug Lea in his paper (13| has cnlisted some
propertics that a good pattern should exhibit which
are as following:

ISBN: 878-360-6766-49-7

144

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

* Encapsulation

e Abstraction

e Opcnness

e Variability

e Gcenerativity

e Composc ability
Whilc defining these propertics he mentioned that a
pattcrn should encapsulatc a well defined problem
and provide a solution at thc abstract level, we
compared the proposed aspect design pattern with
this definition and we found that it is encapsulating
a well define problem and providing the solution at
an abstract lcvel. The proposed pattem is quite
simplc and it can be composed with other patterns
and it has gencrativity in the sense that it can be
uscd by all software dcvelopment participants.
Aspect design pattern has the property of openncss
because it can be used for other non functional
requircments. It has variability in itself as it is
independent in terms of implementation the only
limitation is the usc of an aspect oriented
programming language.

7-Conclussion

In this paper we have proposed a representation of
aspects at design level as a design pattern. We have
uscd pattern template to describe the aspect. This
kind of representation of aspect will help to remove
the inconsistencics between different software
artifacts. Aspcct design pattern improves the
traceability betwecen analysis, design and code
because thc aspects identified in requircment
analysis phase is represcnted at design level and that
design is translated into code using aspect oricnted
language. We have answered the questions which
we have raised in the scction 2 that whether an
aspect can be represented as a design pattern and
such representation helps at design level. We have
cxamined our pattern under the quality criteria and
found that it has thc quality characteristics such as
cncapsulation, abstraction, genrativity, opecnncss,
variability, compose ability.

8- Future Work

Our futurc dircction is to find morc patterns for
other aspects, implementation of aspect design
pattern on large scale software dcvelopment to
analyze the impacts and to refine the pattern. Such
work will help to improve the quality of pattern.

ISSN: 1790-5117

References
t1] Gregor
Programming”,
Conference on
1997

{21 Suc ct al. “Aspect Oriented Softwarc
Development: Towards A Philosophical Basis™,
Technical Report TR-06-01,
Computer Science, King’s College London, 2006
[3] Roger S. Pressman,” Software Engineering A
Practitioners Approach™ 6" edition pg 267

(4] IBM Dictionary of Computing International
Edition.

[51 http://trese.cs.utwente.nl
Conference on Objeet-Oriented
Systems QOIS 2002

{91 Peter Coad, “Object Oriented Pattern”,
Communication of ACM vol. 35, No. 9 1992

{10] Christopher Alexander, “The Timeless Way
of Building” Oxford University Press, 1979

[L1] Deepak Dahiya ct al. “Approaches to Aspect
Oriented Design: A study” ACM SIGSOFT
Softwarc Engincering Notes, v.31 n.5, 2006

[12] Oufa Hachani ct al. “On Aspcct-Oricnted
Technology and Object-Oriented Design Pattern™
1ECOOP 2003 AAOS Workshop, 2003

Kiczales ct al, *“Aspect-Oricnted
Proccedings of Europcan
Object-Oriented Programming,

Information

ISBN: 978-960-6766-49-7

Department of

145

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

6] Christina ct al. “A Theory of Aspects for
Aspeet-Oricnted Software Dcvelopment”
Proccedings of the 7th Brazilian Symposium on
Softwarc Engincering, 2003,

[7] Jan. Hanncmann ct al. “Design Pattern
Implementation in Java and Aspcet)”, Procecdings
of the 17th ACM SIGPLAN confcrence on Object-
oricnted programming, systcms, languages, and
applications, 2002

|87 Ouafa Hachani ct al. “Using Aspect-Oricnted

Programming for Design Pattern
[mplementation”,Workshop of the 8th
International

[13] Doug Leca, “Christopher Alexander: an

Introduction tor Object Oriented Designers” ACM
SIGSOFT Softwarc Engincering Notes, v.19 n.l,
p.39-46, 1994

{14] Ruzanna Chitchyan ct al. “Survey of Analysis
and Design Approaches” version 1.0, 2005

[15] Gefeir Zhang, “Toward Aspcct-Oriented Class
Diagrams” procecdings of the 12" Asia-Pacific
Softwarc Engincering Conference (APSEC’05)
[16] Martin Fowler,“Writing Softwarc Pattemns’
available at
http://www.martinfowler.com/articles/writingPatte
ms

*

ISSN: 1790-5117

Appendix B
Terminologies

Aspect Design Pattern for Non Functional Requirements Terminology

Terminology

Concern: “something the developer needs care about” (e.g functionality, requirement)
Problem Concern: a feature from application domain.

Solution Concern: A feature resulting from the solution technique.

Separation of Concern: handiing of each concern separately

Code Scattering: One concern in many modules

Code Tangling: One module many concern

Join Point: Join Point are elements of the component language semantics that as'pects
coordinate with.

Static Join Point: Static join point is a location in the structure of a component.
Dynamic Join Point: Dynamic join point is a location in the execution of a component
program.

Point Cut: Collection of well deﬁned points (Joinpoint). Point cut is a predicate that
matches join point.

Advice: Aspect functional implementation

Aspect: a property or conce.rn that can not be cleanly encapsulated in generalized
procedure.

Component: a property or concem. that can be cleanly encapsulated in generalized
procedure (i.e. object, method, procedure, API). :

Aspect Weaver: Aspect weaver combines aspects and components at the join points

Aspect Design Pattern for Non Functional Requirements Terminology

N e o i AN S T LSy e Taena 2N B i et 1y 4L e el et baetemen

;gé;iﬁed by the aspect.

Crosscutting: Crosscutting is defined as a phenomenon that is observed whenever two
properties being programmed must compose differently and yet be coordinated.
Crosscutting Context: Join Point may expose additional information related to context
where they show up.

Crosscutting Features: ar,e‘ attfibufeé and operations that describe enhancements to the
structure and behavior of components.

Crosscutting Interface: Set of join points specified inside the aspect.

In-Place Modification: is destructive, that is original component code is no longer
available after weaving.

Client Migration: means that both the original component and the woven version are
available. -

Weaving Time: Weaving can be static (compile time or load time) or dynamic (run
time). | |

Quantification: In programs P, whenever condition C arises, perform action A

over “conventionally” coded programs P. This impliés three major dimensions of concern
for the designerand implementer of an AOP system: QUANTIFICATION, INTERFACE
WEAVING.

Obliviousness: forgetfulness

