
GUI Test Path Coverage and Optimization Using Ant Colony
Optimization

Submitted By:

Mashal lbrar

291-FBAS/MSSE/FO9

Supervisor: Dr. Aamer Nadeem

Associate Professor DCS, MAJU

Co-Supervisor: Muhammad lmran Saeed

Department of Computer Science and Software Engineering

Faculty of Basic and Applied Sciences

International Islamic University Islamabad

Final Approval

INTERNATIONAL ISLAMIC UNIVERSITY ISLAMABAD
DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

Date: 28-08-2014

Final Approval

This is to certify that we have read the thesis submitted by Miss Mashal Ibrar, Registration #
291-MSSElFBASlF09. It is our judgment that this thesis is of sufficient standard to warrant
its acceptance by International Islamic University, Islamabad for the degree of MS in
Software Engineering.

COMMITTEE

EXTERNAL EXAMINER

Dr. M. Sikandar Hayat Khiyal,
Professor,
Faculty of Computer Sciences
Preston University, Islamabad

INTERNAL EXAMINER

Mrs. Zareen Sharf,
Assistant Professor,
Department of Computer Science & software Engineering,
IIU. Islamabad

SUPERVISOR

Dr. Aamer Nadeem,
Associate Professor,
Department of Computer Science,
Mohammad Ali Jinnah University, Islamabad J'

CO-SUPERVISOR

Mr. Muhammad Imran Saeed,
Assistant Professor,

FBAS, IIU, Islamabad
Department of Computer Science & Software Engineering,

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION I

A dissertation submitted to the

Department of Computer Science and Software Engineering,

Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad as a partial

fulfillment of the requirements for the award of the MS (SE)

degree

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 1

D E C L A R A T I O N

I, Ms. Mashal lbrar hereby declare that this thesis, neither as a whole nor as a part has

been copied out from any source. It is further declared that this dissertation is entirely

based of my personal efforts made under the sincere guidance and help of my supervisor.

No portion of the work presented in this report has been submitted in support of any

application for any other degree or qualification of this or any other university or institute

of learning.

Mashal lbrar
Registration#291 -FBASIMSSUFOS

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 2

ACKNOWLEDGEMENT

First of all I would like to start with the name of ALLAH who has given us the ability and

understanding that we came this far and we were able to complete my thesis. I pray that

ALLAH keep us guiding like this through every stage of our life.

I am extremely thankful to my supervisor, Dr. Aamer Nadeem, who was the real source

of encouragement and motivation during the whole work of thesis. His useful suggestions,

advice and ideas to bottleneck problems encountered during this thesis work were just

immensurable.

My appreciation's also goes to Muhammad lmran Saeed for his precious guidance, fruitful

discussions and encouragement throughout this thesis work. I am thankful for his

kindness, patience and feedbacks. His expertise, devotion and constant encouragement

was very helpful and made this effort an enjoyable one.

At last, I am thankful to my family especially my Mother and Sister for her kind support

and encouragement. Indeed, without their prayers, emotional and financial support it

would not be possible for me to accomplish this work.

Mashal lbrar

Registration # 291 -FBASIMSSElfOS

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 3

ABSTRACT

Graphical user interface (GUI) has become imperative and commonly used to interact with

software system. GUI is a type of user interface that interact with system by the user. GUI contains

approx. 50-60% [6] [34] of the total software code. However GUI make ease to the user to interact

with the software but the development process is becoming complex day by day due to large

number of GUI interactions. A software organization aims to produce a high quality software

product which can be accomplished through testing from various perspectives.

GUI testing is a critical activity that is designed to find defects in the GUI of overall application,

and aims to produce reliable, accurate and cost effective system .GUI testing is a system level

testing in which event sequences are tested to validate that the desired functionality is full filled

or not. Sequences of events are tested against the functionality. Model based software testing

(MBST) are used to generate test paths automatically by traversing the model. However test paths

generated from these models may be feasible or infeasible.

In MBST, Event Flow Graph (EFG) is used to generate test paths efficiently. In EFG model GUI

objects are denoted by events and the edges between events shows the dependencies between

events. The testing needs to be done in such a way that it provides effectiveness, efficiency,

improved fault detection rate and maximum coverage. To cover all test paths and events of EFG,

a technique is proposed that is used to test and generate all paths of event flow graph using ant

colony optimization optimally. Another challenging question in the software testing is that how

much testing is enough to achieve maximum fault tolerant software product. A better coverage

criterion is use to answer that how much testing is required. Simple graph traversal algorithm

generates both feasible and infeasible test paths. Infeasible test paths leads to unknown states

which cannot execute. Ant Colony Optimization (ACO) algorithm is also used along with the Event

Flow Graph to generate feasible test paths optimally. Due to large and complex nature of soltware

system, testing is done in minimum time to achieve full coverage through event flow graph using

ant colony optimization algorithm. The coverage criterion is used to measure software quality by

testing the whole system. This ensures that maximum coverage is achieved from event-

interaction coverage criterion as compared to simple event coverage criterion. The proposed

approach generate feasible test paths of all events and all event-pair interaction.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 4

Table of Contents

1 Introduction ... 10

1 . 1 Software Testing: ... 10

1 . 1 . 1 Test Paths .. 11

... 1 . 1 . 2 Test Data Generation 11

1.2 Graphical User Interface Testing: ... 11

1.3 Event Flow Graph: .. 12

1.4 Research objective ... 12

1.5 Organization of Thesis .. 13

2 Background ... 15

2.1 GUI TESTING: ... 15

2.2 Code coverage: ... 1 6

.. 2.3 Graphical user interface (gui) coverage 16

2.4 Event Flow Graph: .. 17

2.5 Types of Gui events .. 18

.. 2.6 Types of Event Coverage: 19

.. 2.7 Optimized Test data generation: 21

.. 2.7.1 ANT COLONY OPTIMIZATION: 21

3 Literature Survey ... 26

... 3.1 State-Based Techniques: 27

3.2 Event Flow graph .. -29

3.3 Genetic algorithm ... 30

... 3.4 Ant colony optimization 32

3.5 Coverage Criteria ... 34

3.6 Comparison of existing techniques ... 35

4 Problem Statement ... 38

4.1 Limitation on existing methodologies: ... 39

5 Proposed Approach .. 41

5.1 Research Approach .. 42

5.2 Ant colony optimization Technique ... 43

GU I TEST PATH COVERAGE AND OPT1 MlZATlON USING ANT COLONY OPTIMIZATION 5

5.2.1 Parameter setting ... 44

5.3 Proposed Approach .. 45

5.4 proposed approach algorithm ... 48

5.5 Methodology used to prove .. 49

6 Implementation ... 51

6.1 Tool architecture ... 51

6.2 Description about tool architecture ... 51

6.3 Graph representation .. 52

6.4 implementation details .. 56

... 7 Case Studies 62

7.1 Description about example ... 62

... 7.2 generated test paths 64

.. 7.3 Case study 2 70

7.4 Experimental Results of event coverage and event-interaction coverage 70

7.5 Case study 3 .. 74

7.5.1 Generated Test paths .. 75

7.6 Case study 4 .. 76

7.6.1 Generated Test paths .. 77

... 8 Results and Discussion 82

8.1 Analysis of Experimental Results ... 82

9 Conclusion and future work ... 88

9.1 Conclusion .. 88

9.2 Future Work .. 88

10 References ... -91

List of Figures

Fig 2.1 Example of Graphical User Interface (GUI)

Fig 2.2 An Event Flow Graph (EFG) for a part of MS WORD

Fig 2.3 Example of Restricted Focus Event

Fig 2.4 Example of Unrestricted Focus Event

Fig 2.5 EFG before event coverage

Fig 2.6 EFG after event coverage

Fig 2.7 EFG before event-interaction coverage

Fig 2.8 EFG after event -interaction coverage

Fig 2.9 Pheromone trail of real Ants approach

Fig 2.10 Ant Colony Optimization Algorithm Flowchart

Fig 3.1 Example of simple finite state machine

Fig 5.1 Abstract level Research Approach

Fig 5.2 Diagram of Proposed Approach

Fig 6.1 Tool Architecture

Fig 6.2 GUI of proposed framework

Fig 7.1 Event Flow Graph (EFG) Example of Notepad

Fig 7.2 Comparison of event coverage in existing and proposed approach

Fig 7.3 Comparison of edge coverage in existing and proposed approach

Fig 7.4 EFG of Internet Explorer (IE)

Fig 7.5 Coverage criterion of proposed approach

Fig 7.6 EFG of windows media player

Fig 7.7 EFG of windows Gtalk

Fig 8.1 Comparison of Event Coverage and Event-interaction Coverage

Fig 8.3 Coverage criterion of proposed approach for Case study 2

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 7

List of Table

Table 3.1 Comparison of different approaches

Table 5.1 ACO Parameter Setting

Table 7.1 Comparison of event coverage

Table 7.2 Comparison of Fvent-interaction Coverage

Table 7.3 Event Coverage of lnternet Explorer (IE)

Table 7.4 Event-interaction Coverage of Internet Explorer (IE)

Table 8.1 Comparison of Experimental Results

Table 8.2 Coverage criterion for internet explorer

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 8

CHAPTER 1 INTRODUCTION

Chapter 1
Introduction

CHAPTER 1 INTRODUCTION

Software Testing is the major and important part of software development. Testing takes

almost 50-60% [6] [34] of effort and cost of the software development. A test case

normally encompasses of an input, output, anticipated result and the actual result. A

collection of test cases are called test suite. A test suite contains goals and objectives of

each test case. More than one test case is required to test the whole functionality of the

GUI application. Due to the importance of the testing phase in a software developmental

lifecycle, testing has been divided into graphical user interface (GUI) based testing, logical

testing, integration testing, unit testing and so on. GUI Testing has become very important

as it provides ease of use to user to interact with the software. As the time passes the

complexity of GUI testing is increased. The basic aim for the software testing is to provide

effectiveness, correctness, better fault detection rate and maximized coverage. Simple

testing techniques are used to generate test cases but the generated test cases are might

be feasible and infeasible. Due to complex and real nature of software, numbers of

generated test cases are infinite. Ant colony optimization is used to generate the

optimized and feasible test cases and for finding shortest path which has been purposed

to overcome the limitations of finite test cases.

1.1 SOFTWARE TESTING:

Software testing is done through various methods like manual testing and automated

testing techniques. In Manual testing, tools such as capture and replay, scripts-driven,

and data-driven approach test cases are generated but there are numerous defects

exists due to difficulty of massive manual work, low adaptability to software variation,

and lack of management for test cases and their coverage. Manual GUI testing is done

by tester manually and having a more chance of error in it. Manual testing is

tremendously slow, time consuming and expensive. After that automated technique was

introduced that enables the process of generating test cases automatically. Automated

GUI Testing consist of automated testing tasks that have been done manually before,

using automated techniques and tools. It is more effective, reliable, accurate and cost

effective [5] [9] [28].

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 10

CHAPTER 1 INTRODUCTION

1.1.1 Test Paths

Test path is the execution of event sequence from source to the target point. The output

of a program may have a large or infinite number of paths. Input is given to the program,

as a result its expected outcome and generated outcome have to examine. Feasible and

infeasible are two types of Generated Paths [17]

Feasible Paths: A path for which a collection of input values are given resulting the
program to be executed.

Infeasible Paths: A path that cannot be executed by some set of possible input
values

1.1.2 Test Data Generation

In automated software testing sufficient test data generation is the method of finding a set

of program input data, which satisfies a given testing criterion [4]. Automated testing is

used to generate quality wise product in a low cost. For achieving this functionality test

data generation techniques such as random, symbolic, and dynamic test data generation

techniques exist. Swarm optimization techniques have been applied recently to generate

test data successfully.

1.2 GRAPHICAL USER INTERFACE TESTING:

Graphical user interface testing is the testing process of software's graphical user

interface to preserve and achieve fault free software. In GUI testing, some tasks are

performed and then the actual result is compared with the predictable output. GUI testing

is a critical activity that is designed to find faults in the GUI or in the whole application,

and increasing the self-assurance in correctness which gives reliable, accurate and cost

effective system .GUI testing is a system level testing in which event sequences are

tested to validate that the desired functionality is full filled or not. Sequences of events

are tested against the functionality. Model based GUI testing (MBST) are used to

generate test paths automatically by traversing the model. However test paths generated

from these models may be feasible or infeasible.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 11

CHAPTER 1 INTRODUCTION

Li et al. [I51 discussed in their research work that there are some important

characteristics of GUI systems and their limitation are described: [15]

In GUI there are extremely large number of input and events which indicates to

large number of states to be tested. Large number of states leads testing

complex and challenging.

The synchronizations and dependencies between objects cannot be controlled

in the similar window (e.g. object in one window may be linked to an object in

another window).

Object oriented software programming

In GUI applications the user may use a keyboard shortcuts, a button click, a

menu option, a click on another window etc. How many of these should be

tested.

If the windows are closed before finalizing a transaction may leave the

application or the database in an inconsistent state.

1.3 EVENT FLOW GRAPH:

To model GUI component and objects, Event-Flow Graph (EFG) is commonly used.

Event-Flow Graph represents all user interactions between the events in a GUI

component. In Event-Flow Graph, events are represented as vertices (nodes) and the

relationships or interaction between events are represented as edges (arrows)

connecting pairs of event vertices. The Event Flow Graph used for Automated GUI

testing.

1.4 RESEARCH OBJECTIVE

Our main objective is to generate test path which cover all the events and all event-

interaction coverage in event flow graph. We will improve efficiency of test data

generation. We will generate the test paths in less number of test execution and less time

by calculating the probability. Existing problem is that the generated test paths didn't

cover all events and their child relations (follow-relation). So, we enhance the coverage

of all events. In this research work an automated test path generation framework is

proposed for GUI testing. The main objective is to generate all possible events and event-

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 12

CHAPTER 1 INTRODUCTION

interaction relationship dynamically by using Ant colony algorithm. Also we eliminated the

infeasible test path generation whereas the test path generation is automatic. After the

experimental results it has been proved that proposed solution covers all events and all

event-interaction (follow-relation events). The generated test path from the proposed

solution also remove the infeasible test path.

t

1.5 ORGANIZATION OF THESIS

This thesis division is as follows. Chapter 2 gives the detail background knowledge of

automated software testing and Ant Colony Optimization algorithm. Chapter 3 includes

the related works of automated test data generation techniques and test data generation

from event flow graph using ACO. This chapter includes the comparison of existing

approaches. Chapter 4 include the problem definition which was deduced from literature

survey. Chapter 5 provides the proposed solution of the problem which is discussed in

literature survey. Chapter 6 include the Implementation details and tool architecture of

the proposed solution. Chapter 7 contain the case studies of different GUI examples on

which proposed approach is applied. Chapter 8 is comprised of result and discussion

which explains and evaluates the experimental results of the proposed approach.

Chapter 9 concludes the thesis work and gives the future work.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION 13

CHAPTER 2 BACKGROUND

Chapter 2
Background

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 14

CHAPTER 2 BACKGROUND

This chapter includes background of automated GUI testing techniques in detail,

coverage criteria and details of Ant colony optimization that are used to achieve accurate

and optimize test data generation.

2.1 GUI TESTING:

GUI testing is vital to make the entire system safer and more reliable. Example of GUI

is shown in Fig.2.2 which shows how the user interact with the software. GUI testing is

a challenging activity aimed at finding defects in the GUI application to increase the

confidence on its correctness and accuracy. Software testing techniques can be

categorized into two main types i.e., static testing and dynamic testing. In Static testing,

program is not executed which is used to find errors by reading the code and examination

the design as non-execution or verification technique performed by tester or automated

tool. This technique cannot perform detailed testing. Some static analysis methods are

code inspections, code walkthroughs, and code reviews. Static testing is more error

prone, extremely slow and unacceptably expensive [5].

Fig 2.1 Example of Graphical User Interface (GUI)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 15

CHAPTER 2 BACKGROUND

Dynamic testing is known as validation technique. This technique must execute the code
and verify the output with expected outcome. Dynamic testing has further classified into
two parts, i.e., black box testing and white box testing.

2.2 CODE COVERAGE:

Code coverage is a technique to ensure that code must be tested through test cases. For

accurate software, coverage criteria are used to achieve fault-free software. Coverage

criteria are sets of rules that are used to define coverage of GUI components for adequate

program. The most renowned code coverage criteria are statement coverage, branch

coverage, decision coverage, decision condition coverage and path coverage.

In Statement Coverage criteria every statement in the program need be executed at least

once. Statement coverage is known as a weaker criterion than others because it doesn't

ensure that it executes the same statement in different sequence [29].

2.3 GRAPHICAL USER INTERFACE (GuI) COVERAGE

For GUI testing various models are used to represent the GUI components as events or

nodes and relation between them is shown in dependency. For GUI testing some models

are used for testing know as Model based testing (MBST) .In MBST models are traversed

to generate test paths. For Model Based GUI testing different coverage criterion are

proposed. One of them is path coverage criterion. Path Coverage Criterion must execute

all the paths from the starting to the end node in the flow graph.

Due to complex nature of software there are various paths in a program having loops

resulting infinite test paths which didn't ensure the accuracy of a tested program through

path coverage. This means testing in a finite period of time is very challenging due to time

pressure and scarcity of other resources, software testing must be fulfilled within fixed

time period [2].

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 16

CHAPTER 2 BACKGROUND

A path coverage criterion is stronger than branch and statement coverage because it

covers all sub sequences of a program.

2.4 EVENT FLOW GRAPH:

To model GUI component, Event-Flow Graph (EFG) is commonly used. Event-Flow

Graph symbolizes all interactions between the events in a GUI component. Memon et al.

worked a lot on the GUI testing along with event flow graph. In Event-Flow Graph, events

are represented as vertices (nodes) and the relationships between events are embodied

as edges (arrows) connecting pairs of event vertices as shown in Fig 2.2. The Event Flow

Graph used for Automated GUI testing.

An Event-Flow Graph contains all events that may be executed at a given time.

When GUI components are dynamic, it may be accessed at the same time when parent

of GUI component are accessed. Event-Flow Graph always contains events for a GUI

component along with all of its child (adjacent) GUI components. In a typical GUI

component, there is a high connectivity between GUI events.

Fig. 2.2 An Event Flow Graph (EFG) for a part of MS WORD [8]

However above coverage criterion do not ensure the adequacy of GUI test cases for

following reasons. Firstly, the source code of pre-complied elements may not always be

available to be used for coverage criterion. Secondly, GUI input consists of sequence of

user events and the number of possible variations of the events that may lead to a large

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 17

CHAPTER 2 BACKGROUND
- - - - -

number of GUI states. For adequate testing, GUI events may be tested in a large number

of states. Due to high level of abstraction GUI event sequence can't be obtained from

code. Similarly the code can't be used to guarantee the adequacy of the sequence of

events that have been tested.

Memon presented some contribution related to the characteristics of the coverage criteria

[6] to overcome the above challenges of the coverage criteria based on events in GUI.

GUI events are divided in further sub groups.

2.5 TYPES OF GUI EVENTS

Restricted-focus events (Modal windows) the windows that once opened, they

control the GUI interaction, restrict the user to a specific range of events within that

window until the window is terminated by a termination event explicitly.

Open menu of file menu in MS Word is an example of restricted-focus events in GUI

systems where the user clicks on open button, a new window appear and the user

select and customize the options, and explicitly terminates the window by either

clicking Cancel or Open as shown in Fig 2.3

Fig 2.3 Example of Restricted Focus Event

Unrestricted-focus events (modeless windows) the window that do not restrict

the user's within that window are unrestricted events. Note that the difference

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 18

CHAPTER 2 BACKGROUND

between restricted events and unrestricted-focus events is that the restricted

windows have to be explicitly ended.

For example in the MS Word, open Edit menu then select Find are displayed in an

unrestricted-focus window as shown in Fig 2.4

Fig 2.4 Example of Unrestricted Focus Event

System-interaction events interact with the software to accomplish some

operation. Examples are cutting and pasting text, and opening object windows.

Termination events terminates modal windows. Examples are Ok and Cancel.

2.6 TYPES OF EVENT COVERAGE:
The are two main types of coverage criteria for events which are as follows

1. Intra-component Coverage: lntra coverage criteria contain Event Coverage, Event-

interaction Coverage (event pair coverage) and Length-n Event-sequence

Coverage. Detail of these coverage criteria is described below.

2. Inter-component Criteria: Inter coverage criteria divides into following category:

Invocation Coverage, Invocation-termination Coverage and Inter-component

Length-n Event-sequence Coverage. In this paper we only consider Intra-

component coverage criteria.

Event Coverape

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page) 19

CHAPTER 2 BACKGROUND

In Event coverage all event in the component must be executed at least once. It is

essential to check that all event are executed as expected. When all the events are

executed at least once, event coverage criteria is achieved.

For example In Fig 2.5 Empty circle shows events sequences which is not executed. In

Fig 2.6 filled circle shows that events are executed or traversed at least once.

Fig 2.5 EFG before event coverage Fig 2.6 EFG after event coverage

Event-interaction criteria is also known as event-pair coverage criteria. In GUI testing it

is essential to verify the interactions among all pairs of events in the module. For achieving

event interaction coverage the pair of events may be executed in a sequence.

Fig 2.7 EFG before event-interaction coverage , Fig 2.8 EFG after event -interaction coverage

In this criterion all event- interaction of event A should be executed at least once after an

event A has been performed, like F are executed at least once than event-interaction

criteria for event A is fulfilled as shown in Fig 2.8. Event is set as completely explored

when all its incident events are executed at least once. Lines in events shows that events

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 20

CHAPTER 2 BACKGROUND

are executed at least once. When all its incident node are executed its color changed into

solid blue like in event A.

Sometime different contexts may change the behavior of events .In that situation event

coverage and event-pair coverage criteria is not appropriate for sufficient testing. For this

purpose a criterion is defined that captures the contextual impact formally. As the length

of the event-sequence increases, the number of contexts also increases.

2.7 OPTIMIZED TEST DATA GENERATION:

State-based testing is commonly used in automated GUI testing. Test data generation is

very crucial in software testing. Test suite generation does not detect the errors in

software but also ensure cost reduction associated with software testing. State-based

testing is a normally used approach in GUI testing. There are two main problems related

to state-based software testing:

(1) Some infeasible test case are generated.

(2) Some redundant test data are generated to achieve the necessary testing coverage.

2.7.1 ANT COLONY OPTIMIZATION:

Software testing is one of the major part in the software developmental life cycle. Due to

cost, time and other environment, exhaustive testing is not feasible and selecting the right

test path is one of the problem in software testing. To overcome these problem we need

to automate testing process and generation of effective test paths can decrease the

overall cost of testing as well as chance of finding the defects in the software system. For

this situation we need to apply ant colony in our real software system to generated

feasible and optimize test paths in less time.

Ant Colony Optimization (ACO) is a meta-heuristic approach motivated from the behavior
ut

of real ants. The approach seeks ants to discover the shortest path to the food source

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 21

CHAPTER 2 BACKGROUND

with the help of a chemical substance called pheromone. Due to time and other resource

scarcity it is the need of the software to be adequately tested in an optimized way. For

this purpose ACO technique is used to obtain optimized test data generation which covers

all events and event-pair interaction.

Working of Ant Colony:

According to [32] the working of ACO is as follows

The ants walk from the nest to the food source while leaving a substance called

pheromone on their path.

Pheromone acts as a guidance to choose their paths depending upon the stronger

pheromone value.

Pheromone trail is made where the pheromone is deposited. This trail allows other

ants to find the sources of food that have previously acknowledged by other ants

showing in Figure 2.9. I

1

Fig 2.9 Pheromone trail of real Ants approach [35]

With the passage of time pheromone continuously evaporate at some exact rate.

The ant which cover shorter path would return first to the nest. Those paths which

have high probability the choose of that path is high. At the end all the colony ants

converge to follow the shortest path after some time which is shown in figure 2.9

last path where all the ants are moving through the shortest path.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 22

CHAPTER 2 BACKGROUND

To construct probabilistic solutions, the pheromone trails reflects developed search

experience of ants and heuristic information related to the problem.

Fig 2.10 Ant Colony Optimization Algorithm Flowchart

In Ant colony optimization, Local search algorithms is means to find the best and optimal

solution and find it till not found. It start from a complete initial solution and try to find a

better solution in suitably defined neighborhood of the current solution. As represented in

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 23

CHAPTER 2 BACKGROUND

Fig 2.1 0 for solution improvement, the algorithm searches the neighborhood. If improved

and optimal solution is found, it replaces the current solution and the local search

continues until no improving neighbor solution is left behind in the neighborhood of the

current solution and the algorithm ends in a local optimum.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 24

CHAPTER 3 LITERATURE SURVEY

Chapter 3
Literature Survey

GU I TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 25

CHAPTER 3 LITERATURE SURVEY

This chapter includes the literature survey of automated test data generation using

finite state machine (FSM) and event flow graph (EFG). As mentioned the research

problem in above chapter 1, the generated paths are grouped into feasible and infeasible

test paths. Some of automated test data generation techniques produces infeasible data.

In the early age of test data generation author used manual testing techniques and

strategies. These techniques requires more time and effort and the produced system are

more error-prone. To overcome the limitation of manual testing some authors used the

specified models to represent the GUI interface. Then test data is generated from these

models. This acquire less effort and cost related to testing.

Many researchers have been worked on automated test data generation as in [25]

proposed the approach of test data generation based on finite state machine. Major

research have done on State diagram for automated test data generation. Several

variation of state machine have been used for software testing, such as Finite State

Machine Models (FSM), UML Diagram-based Models and Markov Chains.

Due to large and complex software system problem of large input-space have

faced. To resolve this situation Event flow graph (EFG) are used. GUI software have

different interaction with user and other events of GUI. To represent these interactions

between events, EFG are used for GUI testing.

Many researcher have worked on the test data generation optimally. To gain this

functionality many swarm optimization techniques are used. Genetic algorithm (GA) and

Ant colony optimization (ACO) are related to swarm optimization to test software system

optimally.

Here are some techniques that is used to generate test data automatically

proposed by many researchers.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 26

CHAPTER 3 LITERATURE SURVEY

3.1 State-Based Techniques:

Many researchers have been worked on automated test data generation. The most

commonly proposed approach is test case generation through finite state machine and

its variation. To construct a state machine model, assume GUI behavior as a state

machine. State transition in the state machine shows the input events.

3.1.1 Belli et al. [7]

Finite state machines have been used to model GUls .Inside GUI there are different user

interactions and interactions between states. GUI states are represented as windows and

interaction is consider as a transition in the FSM. Test case or test path in GUI testing

corresponds to the sequence of user events. In this paper the author converted FSM into

simple formal expressions. The formal expression were used to generate event

sequences.

A : File C1 :Save

Fig 3.1 Example of simple finite state machine m

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 27

CHAPTER 3 LITERATURE SURVEY

Limitation :

Due to the large number of possible states as shown in figure and Complex GUI

events, FSM have faced scaling problems.

3.1.2 Memon and Sofa et al. [8]

Memon et al. used Artificial intelligence (Al) to accomplish the state-space problem by

eliminating unambiguous states. Software tester constructs description of GUI states

manually. Planning operators gives the description that defines the preconditions and

post-conditions of every GUI event. Test cases are generated automatically by starting a

planner which traverse the path from start to the target state. This methodology work fine

for small command language system.

Limitation:

Complex GUI have a large number of actions like windows, buttons and menus. So this

approach needs to be enhanced to manage large number of operators.

3.1.3 White et al. [lo]

White et al. divides state space problem into complete interaction sequences (CIS) by

using state machine. The test designer categorizes each user action into CIS. The CIS is

used to generate test cases. This approach is effective for unit testing that divides the

whole GUI into small functional units.

Limitation:

Huge manual effort is required in modeling the finite state machine for testing, especially

when the program is not implemented.

Modeling of state model require executive resources.

The state machine depend upon the understanding the models according to test designer.

When GUI applications are larger and complex it is difficult to manage and analyze.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 28

CHAPTER 3 LITERATURE SURVEY

Integration testing is not done through this methodology.

3.1.4 Jin and Wang et al. 1221

In this paper Finite State Machine works with operational profile (op).Probability of

random selection of input creates the OP. Then generate the test paths on the basis of

these operational profiles. At Last the process of validating the effectiveness of this

method is measured through design experiment.

Limitation:

The combinations of GUI objects state spaces are enormous, and it is impossible to test

all of them. If the object is in mediate complicated, it is almost impossible to take the

@advantage of finite state model. There might be chance of choosing incorrect operational

gprofile. Only unit testing is done in this case. -
3.2 EVENT FLOW GRAPH

To overcome the state-space problem in finite state machine and generation of large

number of states in large and complex software system, many authors generated the test

data using Event- Flow graph.

3.2.1 Memon 1161

Many authors used different graph models to generate detailed test cases. Memon

associate all of the models into event-flow model and generate test cases from theses

models from implementation [16]. GUI ripper is used to automatically generate EFG that

represents all possible event sequences of GUI. The model overcome the event-space

exploration problem for GUI testing.

Limitation:

Size of the space of all possible event interactions grows exponentially with length.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (29

CHAPTER 3 LITERATURE SURVEY

3.2.2 Lu and Wang et al. [I91

Lu and Wang et al. proposed GUI automation test model based on the event flow graph

(EFG). In EFG model, a methodology is proposed to generate test cases using smoke

testing using an improved ACO.

On the other hand, spanning tree obtained by deep breath-first search (BFS) approach is

used to generate test cases from initial point to target point.

Limitation:

GUI automation test software needs to verify the validation of the model automatically.

Lack of adaptability of the various GUI Operating system.

Event-flow graph needs improvement to explain the complex logic problem and

reduce the involvement of manual verification.

3.2.3 Memon and Yuan [23]

Memon and Yuan presented automated model based technique used to generate test

cases by using feedback techniques. The test cases in the seed test suite are aimed to

generate test cases automatically and efficiently. GUI runtime information is used as

feedback to generate test case iteratively. This technique can heal infeasible test cases

used by feedback information.

Limitation:

This approach is complicated and expensive to generate models from Event Flow Graph

to Event lnteraction Graph and then from Event lnteraction Graph to event semantic

interaction graph.

3.3 GENETIC ALGORITHM

Genetic algorithm are also used for GUI test data generation. Some of the contribution
of the researcher are following.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 30

CHAPTER 3 LITERATURE SURVEY

3.3.1 Rauf et al. [24]

Genetic algorithm finds the best possible combinations that are related to some test

criteria. This criteria measure how much coverage is achieved by coverage function. This

methodology include following steps.

Start: It generate a random population of n chromosomes.

Fitness: Evaluate the fitness of each chromosome x in the population.

New population: Create a new population by selection, crossover and mutation then

acceptance of the new populated off spring.

Fitness Function: In fitness function input is given then the fitness function produce the

result which presents the acceptability of the program.

Rauf et al. [24] used Genetic Algorithm to seek optimal test data for GUI testing. Genetic

Algorithm has been used for the test coverage optimization. A genetic algorithm is

suitable for nonlinear complex problems.

Limitation:

Manual test data generation through clicking on various GUI elements.

Increase in the number of generations for improving coverage which is time consuming

and slow.

3.3.2 Preeti et al. [27]

UML state chart diagram using Genetic algorithm are used to generate optimal test cases.

To generate new test sequence, crossover has been applied and productivity of the test

sequences is calculated by Mutation Analysis. Generate the State flow diagram and

collect all the possible paths between the starting to the ending State. Select two possible

paths and then perform crossover on these selected paths. It will generate a new path

after that mutation is applied on this new path to eliminate the dead paths or infeasible

paths.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 31

CHAPTER 3 LITERATURE SURVEY

Limitation:

If the number of test sequences are less the result should not be ideal. Only suitable for

complex and real time application

Expert's user's assumption uses longer test paths through various input event interaction

when performing different functions or actions as compared to the novice user

3.3.3 Khamis et al. [34]

This paper presents a new general technique for the automatic test data generation for

spanning sets coverage. The proposed methodology generates program units by

spanning sets to gain test coverage criteria automatically. Spanning sets are covered to

generate test data automatically. The GA starts by creating an initial population of

individuals randomly. Crossover and mutation is done on these population set to obtain

the required test data. The fitness function is calculated in some problem-dependent way.

Limitation:

The problems of infeasible paths identification and train the system to avoid the infeasible

paths during finding the optimal solution.

3.4 ANT COLONY OPTIMIZATION

In the field of GUI testing Ant colony optimization is also used to generate test path

optimally.

3.4.1 Li and P. Lam [I21

This paper proposed an Ant Colony Optimization approach for state based test data

generation. The advantages of the proposed approach are feasible, non-redundant data

generation. ACO depends on probabilistic technique that can be useful to generate

combinatorial optimization solution. To represent the State chart model a directed graph

is created. By using Ant Colony Optimization algorithm, a cluster of ants can efficiently

discover the graph and optimally generate test data to accomplish test coverage.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 32

CHAPTER 3 LITERATURE SURVEY

Limitation:

Don't cope up the redundant states of the state chart model.

Number of states grows exponentially with the size of states in the state chart.

3.4.2 Li and Zhang et al. [21]

This paper presents a model of generating test data based on an improved ant colony

optimization and path coverage criteria. In this paper, an approach combining the ant

colony algorithm with the branch function technique to automatically generate test data

based on path coverage criteria is proposed.

Limitation:

They didn't focus on the best proportion strategy to choose among poorest.

Character type problem are not handled in this techniques.

3.4.3 Huang et al. [33]

The purposed approach in this paper automatically generate GUI test cases. In ACO the

generated test cases are feasible and optimized.

Reverse engineering framework is composed to create GUI structure and Event Flow

Graph (EFG). ACO is used to generate test cases. The benefits of GUI test case

generation using EFG are generation of model automatically which represent GUI objects

to reduce the expenditure of complex modelling whereas test cases are executable. For

gaining all the above goals automated test case generation through ACO is required.

Huang et al. presented an approach in which event flow model is used to achieve GUI

object information through a new technique and implementing Ant Colony Optimization

algorithm to find all possible event sequences.

In this Paper an Ant Colony Algorithm (ACO) is used for finding all optimal path in CFG

of Software under test. This Algorithm is helpful for finding all Paths in between the nodes.

Selection of path is depends on probability. The higher the probability means higher

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 33

CHAPTER 3 LITERATURE SURVEY

chance of choosing that path. The probability value of path depends on Pheromone value

and heuristic information of path. This is an effective approach which can easily generate

optimal paths.

Limitation:

It only provide event coverage and don't provide full coverage of GUI like follow relation

events (event interaction coverage).

A single test path cannot be used to detect all the possible defects in the software.

3.5 COVERAGE CRITERIA

Test case generation coverage criteria are interlinked. Most of the literature work exists

on GUI test case generation that also focuses on describing the coverage criterion to

achieve fault-free software.

3.5.1 Memon et al. [6]

Memon et al. explains various Coverage Criteria using event sequences to identify the

adequacy for GUI software. Along with the adequacy of the software system the event

sequences can be inaccurate due to the large amount of infeasible event. Memon's model

in this paper also suffers inaccuracy. For example the three main events in this GUI

component are YES, NO and CANCEL. Events NO and CANCEL are termination events

because they terminate the modal window. However, the event YES can be a restricted-

focus event or a termination event based on preconditions before the invocation of this

modal dialog.

Limitation:

We cannot create an event flow graph for this component using Memon's definition

because we cannot classify the YES event.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 34

CHAPTER 3 LITERATURE SURVEY

3.6 COMPARISON OF EXISTING TECHNIQUES

Table 3.1 shows the comparison of the existing techniques and methodologies used
along with their limitations.

Author
Name

Belli et al.

Memon

White et
al.

Jin et al.

Memon et
al

Lu et al.

Memon et
al.
Khamis et
al.
Rauf et al.
Preeti et
al.

Li et al.
2007

Li et
a1.2009
Huang et
al.

Technique Used

Finite state
machines
event-flow graph,
Artificial
intelligence
State machine,
Complete
interaction
sequences
Finite State
Machine, OP
Feedback

event-flow graph,
ACO
event-interaction
graph ,Feedback
Genetic algorithm

Genetic Algorithm
state chart
diagram, Genetic
algorithm
State chart ,Ant
Colony
optimization
Ant Colony

Event flow graph
& Ant Colony
Optimization

Sequences
All event
sequences

Automat
ed

Coverage
Criteria

State Interaction

All paths

Partial x z k a - p f

SingleIMultip
le ~ a t h
g&eration
Multiple

Infeasible
~ a t h

Event interaction
sequences

possibility
Yes

I I I

All event
sequences
Event interaction
sequences
Data coverage

Partial

Yes Yes State Transition

Multiple

Not defined

Not defined

I I

Multiple 1 Yes 1 Yes

NO Yes

Yes

Partial
I

sequence

Yes

Multiple

Event coverage
All states

All state coverage

NO

All path coverage

Multiple
Multiple

All event coverage

Yes
No

-+ -v+r Multiple

Yes
Yes

Multiple

Single s
Table 3.1 : Comparison of different approaches

No

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 35

Partial

CHAPTER 4 PROLEM DEFINITION

Chapter 4
Problem Definition

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 37

CHAPTER 4 PROLEM DEFINITION

Due to innovation in technology day by day GUI testing is very challenging for real

time and safety critical system. GUI testing needs huge improvement to enhance the

entire system's security, safety and reliability. GUI testing can be achieved either

manually by software tester or automatically by automated methods.

GUI testing involves several tasks like to test all object events, mouse events, menus,

fonts, images, content, control lists, etc. GUI testing is performed to check the user

interface and test the functionality working properly or not. In GUI testing set of tasks

are carried out to test the event sequences against the expected result. If the results

differs with each other than it means there must be some faults in the software

system.

To automate GUI testing some models are used in Model based Software testing

(MBST). Traversing these models are easy and efficient. Simple graph traversal

algorithm may generate feasible and infeasible test path. Infeasible paths are those

paths which cannot execute by the given set of input.

Another challenging task is optimal test paths generation. To handle this problem ant

colony optimization (ACO) algorithm is used. In ACO the generated test paths are

optimized because path selection is depending upon the heuristic information.

Heuristic value depend upon problem-oriented solution. Huang et al. uses ACO to

generate optimized test paths which are not achieved through other simple traversing

algorithm.

However the generated test paths only provide event coverage leaving some follow

relation (child events) uncovered.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 38

CHAPTER 4 PROLEM DEFINITION

4.1 LIMITATION ON EXISTING METHODOLOGIES:

> Simple graph traversal algorithm can be applied for coverage but it can

generate both feasible and infeasible paths. Infeasible paths cannot be

implemented by any set of possible input values because the events are

disable or execution order among events are not appropriate.

> There are various coverage criterion used for adequate test data generation

but event coverage criterion is widely used for this purpose. Event coverage

criterion only cover events which are not enough for adequate testing.

> Infeasible test path generation.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 39

CHAPTER 5 PROPOSED APPROACH

Chapter 5
Proposed approach

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 40

CHAPTER 5 PROPOSED APPROACH

Chapter 3 includes the literature survey of automated test data generation from state

machine based model mainly FSM and event flow based model EFG. Nevertheless these

models have some limitation also, because of complex and real nature of software. From

literature we have identified the problems of infeasibility and single generated path which

affect the overall performance of software system and sometimes produced flop software

product. This chapter includes the proposed approach of event-flow graph (EFG) using

Ant Colony Optimization algorithm for optimal test data generation.

Huang et al. [33] focused on the feasible test path generation from event flow graph along

with the ant colony optimization algorithm for optimal data generation. In the paper of

Huang a new framework based on user interface accessibility (UIA) is proposed. Ant

colony algorithm (ACO) is used to generate feasible and optimal test data, which are

useful for finding errors and faults by using EFG model.

Ant colony optimization algorithm generates test paths according to the probability of the

events. Those event which have higher probability their chances of selection will be

higher. The probability depends upon the pheromone value and the heuristic value,

heuristic value tells the visibility of the event.

In proposed approach Ant Colony Optimization (ACO) which seeks for optimal test path

generation. Optimal in term of efficiency and coverage which provides the coverage of all

events and its edges based on probability and generating multiple paths from event-flow

graph. The overall work includes the following steps:-

To generate the test data, an approach is proposed that would satisfy all event
coverage and event-pair interaction coverage criteria which provide all edges and
all follow relation (child or adjacent) events in event flow graph.

Construct an optimal solution that contains sequence of events to finish the

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 41

CHAPTER 5 PROPOSED APPROACH

traversal of Event-Flow graph in the form of test cases.

The Proposed approach ensures that each event and its edges in their traversal

are executable at that time. This will ensure that only feasible paths are generated.

Developed the strategy for feasible test data generation and how to cover all follow

relationship events to eliminate the maximum faults from all perspectives

To expand the test data generation technique the test paths are generated
automatically and randomly.

Comparing our results with existing approach

Focus of the proposed approach is on feasible test paths generation and provide
full coverage

The proposed research approach contains coverage of Event-Flow graph and optimal

test path generation which will explain in detail in this section.

Fig 5.1 Abstract level Research Approach

First of all input is given in the form of Event-flow graph (EFG) which tells events and their

dependencies in the form of edges. In the proposed approach a program (ACO) is

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 42

CHAPTER 5 PROPOSED APPROACH

selected under test that randomly selects the initial event for test paths generation. In

ACO, the probability of each event is calculated by using the formula in (Huang et al.)

After calculating the probability we have to choose one node having the largest probability

among all of them. Another input is given to ant colony optimization (ACO) algorithm is

coverage criterion which guarantees that each event and each edges are visited. At the

end the generated output is in the form of test path which shows the sequence of events

and edges.

5.2 ANT COLONY OPTIMIZATION TECHNIQUE

Ant Colony Optimization (ACO) is a Meta-heuristic method to solve combinatorial

optimization problems by using behavior of ant colonies in real. In ACO algorithms

numerous generation of ants search for upright solutions. Each ant builds a solution step

by step going through a number of probabilistic decisions until a solution is established.

Frequently, ants that found a good solution mark their paths by depositing the amount of

pheromone on the edges. After that ants of the next generation are attracted by the

pheromone which was deposited by previous ants so that they will search improved

solutions. In reality ants are expert of finding the shortest path from a source to destination

in search of food (Li, Zhang et al. 2009)

- (r x y a) (?Ix# 1 Probability calculation formula:
Pv - w x y d (" y p)

Description about ACO parameters:

Pheromone trail are represented by taw (7) showing the pheromone amount from one

node to another node and is being continuously updated as the paths are navigated.

Heuristic information is represented by eta (q) showing the attractiveness of the path as

shown in equation (1). x is the initial event and destination event is denoted by y. This

equation is used to calculate the probability for the ant to choose an accurate path.

Probability depends on the feasible set, heuristic and the pheromone level of the

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 43

CHAPTER 5 PROPOSED APPROACH

corresponding path. Alpha (a) determines the relative importance of pheromone value

and beta (p) defines the visibility of heuristic information. Evaporation rate (p) must be

greater than 0 and less than 1. These are tuning parameter which are used for selecting

the optimal test paths and feasible solution.

5.2.1 Parameter setting

Parameter setting for ACO are shown in table 5.1

I PHEROMONE EVAPORATION RATE (p) 1 0.3 I

Parameter

INITIAL PHEROMONE VALUE (7)

ALPHA (a)

Table 5.1 ACO Parameter Setting

Value

0.2

0.2

Formerly when all ants have finished their tour the amount of pheromone on trial (path)

is restructured (by using the global updating rule).

Pheromone Updating rule: 7 xy (t) t (1 - p) . 7 xy (t) + p T o (where p is the evaporation

rate) [21] [33]

The pheromone updating rule is calculated so that they have a tendency to give more

pheromone toward edges which must be visited by ants. In general, the higher the two

values, the higher the probability of choosing the linked edge. Updating the pheromone

trail values in two phases. First, pheromone evaporation is applied to decrease

pheromone values. The aim of pheromone evaporation is to avoid an infinite increase of

pheromone values and to allow the ant colony to manage poor choices done previously.

Pheromone deposit is applied to increase the pheromone values that fit to good solutions

the ants have engendered.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 44

CHAPTER 5 PROPOSED APPROACH

The description of the proposed approach in detail is given below which describe
every steps of Fig 5.2

1. Build Event Flow Gra~hmFG) model
Firstly analyze the entire requirement carefully then identify all the events
regarding functionality and their dependency with each other. When all events are
identified model them in Event Flow Graph (EFG) which represents the events and
their relationship with other events.

2. Ant Colony Optimization Algorithm
a) Put Ant on EFG

For GUI events traversing place the ants on the Event Flow Graph. These
artificial ants would respond as natural ant practice for food search. Ants
seeks for the optimal solution.

b) Ant records the number of nodes
Input of Event flow graph is given in the form of Xml. Then ant traverses the
graph and records the total number of nodes and its adjacent events (child
event) .

c) Traverse the initial event
After calculating total number of nodes and its adjacent nodes the ants
traverse the initial node randomly.

d) Calculate probability
Calculate the probability of adjacent events of the current event. Choose
the highest probability node among all adjacent node of current event.

e) Update local pheromone value
After the event of high probability is selected. Update the pheromone value
using formula which is given above pp. This is step by step updating of
pheromone value.

9 Traverse until end node
Traverse or visit all events and event-pair interaction (follow-relation events)
through calculating the probability until the initial event achieved.

g) Record the path
Record the path of all node which have highest probability among other
child or adjacent nodes. Record each event step by step having greatest
probability.

h) Print generated path

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 45

CHAPTER 5 PROPOSED APPROACH

Print the recorded path which shows the all the events and their path
towards other events depending upon the probability and covers unvisited
events on high priority.

i) Update global pheromone
When the path has been recorded. Update the global pheromone value
using formula. The aim of pheromone evaporation is to avoid an infinite
increase of pheromone values and to allow the ant colony to manage poor
choices done previously.

3. Coveraae criterion fulfilled

After all the paths are traversed check whether the event coverage and event interaction
coverage criterion satisfied or not. If the paths covers all events and their edges its means
that coverage criterion is complete otherwise repeat the procedure of event interaction
coverage using ACO rule.

4. Print all paths havinq events and event- air relation

At the end when coverage criterion is fully satisfied. Print all the paths having events and
event interaction nodes. The generated test paths shows the path having sequence of
events and edges which shows event-pair relation.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (46

CHAPTER 5 PROPOSED APPROACH

Fig 5.2: Diagram of Proposed Approach

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 47

CHAPTER 5 PROPOSED APPROACH

5.4 PROPOSED APPROACH ALGORITHM

1. Initialization:

a. Set initial parameters: variable, events, function, input trail and output path.

b. Set initial pheromone value, pheromone evaporation rate, alpha, beta and individual

pheromone rate.

c. Start traversing the node from the initial event.

+ While termination conditions do not encounter, do (visit all events)

2. Traverse the graph using TraverseGraph function

+While termination conditions do not meet, do

a. Construct Optimal Solution:

Each ant constructs a path by continuously calculating the getHighestProbability

function which tells the probability of adjacent event depend upon the

attractiveness of the path, and the pheromone level of the path.

1. Select highest probability event

2. Apply Local pheromone updating rule

3. Record the path (trail)

End While

3. If the path is traversed, update it.

a) Update Trails

b) Update global updating rule (it contains pheromone deposit and pheromone

evaporation)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 48

CHAPTER 5 PROPOSED APPROACH

- Evaporate pheromone on a fixed amount continuously (which is less than 1 and greater

than 0).

- For each trail apply global pheromone update.

- Emphasize the best tour by depositing the Individual pheromone on the trail.

4. + while coverage criterion full filled

Print event and edges path

Else

Go to step 2 (traverse the graph)

End While

EndWhile

5.5 METHODOLOGY USED TO PROVE

To test our proposed methodology following test paths are generated. These results are

generated from I st iteration. The program first ask from the user which types of paths are

generated. Two option given to the user either to select event coverage or select edge

coverage which shows the edges between events. The results are saved into the file

which contains all the event coverage and all edge coverage.

Event Path I: filemenuitem -> openmenuitem -> filetypeitem -> encodeitem ->
filenameedit -> encodeitem -> filetypeitem -> filenameedit -> cancleopen

Edge Path 1 : (filemenuitem-openmenuitem) -> (openmenuitem-filetypeitem) ->
(filetypeitem-filenameedit) -> (filenameedit-filetypeitem) -> (filetypeitem-encodeitem) ->
(encodeitem-filetypeitem) -> (filetypeitem-filenameedit) -> (filenameedit-encodeitem) ->
(encodeitem-filenameedit) -> (filenameedit-filetypeitem) -> (filetypeitem-encodeitem) ->
(encodeitem-filetypeitem) -> (filetypeitem-openbutton) -> (openbutton-filemenuitem)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 49

CHAPTER 6 IMPLEMENTATION

Chapter 6
l mplementation

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 50

CHAPTER 6 IMPLEMENTATION

In this chapter we will describe the implementation phases of proposed approach. It also

includes the implementation of Ant Colony Optimization for optimized test path generation

along with the feasible test paths generation and then presents the results of proposed

approach.

6.1 TOOL ARCHITECTURE

System

Fig 6.1 Tool Architecture

6.2 DESCRIPTION ABOUT TOOL ARCHITECTURE
The detail of proposed approach tool is as follows:

1. Graph input

Input of a program is event flow graph (EFG). Graph is saved in the XML file and

then used by system under test (SUT). In XML file the event is given with their child

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 51

CHAPTER 6 IMPLEMENTATION

nodes for easily access.

2. Ant Colony Optimization

Ant colony Optimization algorithm is used for optimal generation of test path. ACO

algorithm depend upon the pheromone value and the heuristic value. Heuristic value

depend upon the problem-oriented solution. Here problem-oriented solution is to

cover all events and their edges between events.

3. Coverage Criterion

The main purpose of my research is to answer that how much testing is required for

fault free system. For testing we need coverage of full system so that maximum error

would be detected. There are many types of coverage criterion. In previous

technique event coverage criterion is used that is not enough to produce error free

system. For accurate and adequate system we purposed event pair coverage

criterion that ensure that each event and each edge between events is covered at

least once.

4. Feasible test paths

In simple graph traversal algorithm there are chance of feasible and infeasible test

paths generation which leads to the state which are not available at that time. This

problem lead to number of useless test paths.

5. Test path generation

The resulted output is in the form of generated test paths which covers all the events

and the edges between events. Also the generated test paths are feasible test paths.

6.3 GRAPH REPRESENTATION

The above graph example is saved in XML format which can be easily accessed by the
program. The xml format shows the nodes of EFG and its child or adjacent nodes.

<Graph>

<Node name="File-Menu-Item">

ChiIdNode name="Open-Menu-Item1'/>

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 52

CHAPTER 6 IMPLEMENTATION

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 53

CHAPTER 6 IMPLEMENTATION

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 54

CHAPTER 6 IMPLEMENTATION

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 55

CHAPTER 6 IMPLEMENTATION

6.4 IMPLEMENTATION DETAILS

Step 1 : Initialization

Double ALPHA, Double BETA

Double PHEROMONE-EVAPORATION-RATE

Double INITIAL-PHEROMONE-VALUE

Double INDIVIDUAL-PHEROMONE-VALUE

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 56

CHAPTER 6 IMPLEMENTATION

Step 2: Start traversing the edge from the initial event

while (hasUnVisitedEdges()) {

if (selectedEdgeLabel != null && !selectedEdgeLabel.isEmpty()) {

edgelndex.setVisited(true);

path.append(selectedEdgeLabe1);

nodeLabel = tempEdge.getEndingNode();))

Step 3: Construct Optimal Solution:

for (String childNode : childNodes) {

int nodelndex = this.nodelndexMap.get(childNode);

Node tempNode = this.nodes.get(nodelndex);

double updatedPheromoneValue = ((1 -
Constants.PHEROMONE-EVAPORATION-RATE) *
(Constants. INDlVl DUAL-PHEROMONE-VALUE)) ; 1

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTlMlZATlON
Page 1 57

CHAPTER 6 IMPLEMENTATION

- - - --

A. Select highest probability edge

--

for (String nodeEdge : nodeEdgeslist) {

String dependson = tempEdge.getDependsOn();

if (dependson != null && !dependsOn.isEmpty()) (

Edge dependsOnEdge = this.edges.get(this.edgelndexMap.get(depndsOn));

if (dependsOnEdge.isVisited()) {

double occurrence = calculateOccurrenceOfEdge(tempEdge);

tempEdge.setOccurrence(occurrence);

totalOccurrences += occurrence;)

else { tempEdge.setOccurrence(O.O);)) else {

double occurrence = calculateOccurrenceOfEdge(tempEdge);

tempEdge.setOccurrence(occurrence);

totalOccurrences += occurrence;))

for (String nodeEdge : nodeEdgesList) {

double probability = tempEdge.getOccurrence() 1 totalOccurrences;

probabilities.add(probability);

probabilityEdgeMap.put(probability, nodeEdge); }

Collections.sort(probabilities);

Collections.reverse(probabiIities);

highestProbabilityEdge = probabilityEdgeMap.get(probabilities.get(0));

return highestProbabiIityEdge;

B. Apply Local pheromone updating rule

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (58

CHAPTER 6 IMPLEMENTATION

C. Record the path (trail)

String selectedEdge = getHigestProbabilityEdge(selectedNode);

tempEdge = this.edges.get(this.edgelndexMap.get(selectedEdge));

evaporateEdgePheromoneValue(tempEdge);

pathEdges.add(selectedEdgeLabe1);

} while (!nodeLabel.equals(this.rootNode.getLabel()));

updateEdgePathPheromoneValue(pathEdges);

System.out.println("Edge Path: " + path.toString());

Step 4: Update global updating rule (it contains pheromone deposit and

pheromone evaporation)

- --

for (String tempEdgeLabel : pathEdges) {

double evaporatedPheromoneValue = ((1 - Constants.PHEROMONE~EVAPORATI0N~RATE) *
edge.getPheromoneValue()) + (Constants.PHER0MONE-EVAPORATION-RATE *
Constants.INITIAL-PHEROMONE-VALUE);

edge.setPheromoneValue(evaporatedPheromoneValue); }

Step 5. End

6.5 PROPOSED FRAMEWORK INTERFACE

The Graphical User Interface (GUI) of the proposed methodology is shown in Fig. 6.2

First of all we have to select the input file in the form of XML. Another option Output

Directory saves the result of generated paths of nodes and edges in the selected location

or directory. Than the results are generated upon the selection of various choices like

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 59

CHAPTER 6 IMPLEMENTATION

traverse nodes, traverse edges, generate nodes output file and generate edges output

file.

Fig 6.2 GUI of proposed framework

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 60

CHAPTER 7 CASE STUDIES

Chapter 7
Case Studies

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 61

CHAPTER 7 CASE STUDIES

-

To justify our proposed approach, four case studies are used to perform experiment. One
on them is the example of Notepad Graphical User Interface (GUI) which is already used
in existing paper [33]. Example shown below in Fig 7.1 demonstrate the events and
edges. Events define the functionality of the system represented in circle and the arrow
between them shows the dependency between each other.

Fig 7.1 Event Flow Graph (EFG) Example of Notepad [33]

7.1 DESCRIPTION ABOUT EXAMPLE

We are using the same example of Notepad for proposed approach as used 1331 .This

example expresses how dynamically the ants create the feasible test cases. At first

choose the initial event randomly which is not depending on other events. Then at every

step it travels along with the follow relationship events (adjacent events) of the EFG. The

program chooses an event by calculating the probability of each adjacent event and leave

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (62

CHAPTER 7 CASE STUDIES

some pheromone on that selected adjacent event. The probabilistic rule is based on

pheromone rate and heuristic information. The probability will be higher when the

pheromone and the heuristic value of an event will be higher after that an ant will choose

that particular event.

7 is the current pheromone rate placed on every node and q is the heuristic information

which is calculated by sum of followed by events of current event(y) + I / sum of event y

have been visited + I as shown in equation 1. Choose the highest probability node alter

that update pheromone rate on that chosen event.

Local pheromone updation rule: 7 xy (t) - (1 - p) - 7 xy (2)

After every step the pheromone values will be decreased by fixed amount by applying

local pheromone updating rule. An ant created a solution when it has visited all the events

and edges or it cannot move onward (no follow events left unvisited). p E (0, I] is the

evaporation rate shown in equation 2.

Take the EFG of notepad as shown in Fig. 7.1 at starting an initial event (filemenuitem)

is selected randomly from Event Flow Graph filemenuitem is in enabled mode means it

is not dependent upon other event. editmenuitem and openmenuitem are the adjacent

event of filemenuitem which shows follow relation. To choose the next event, probability

of current event is calculated by equation (1) (filemenuitem) follow relations e.g.

editmenuitem, openmenuitem. 7 (taw) = 0.2, q (eta) of openmenuitem = 6+1 /0+1 =7, q

of editmenuitem = 4+1 /0+1 = 5

0.20-2 *70.9
P (filemenuitem, openmenuitem) =

0.20.2 *70.9+0,20.2*50.9
= 0.5751

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 63

CHAPTER 7 CASE STUDIES

The probability of openmenuitem is greater than probability of editmenuitem, so we
choose openmenuitem. After that update pheromone value as shown in equation (2).

7 (openmenuitem) t (1- 0.3) 0.2 =0.14 so current pheromone value is decreased by
0.14.

Now we check the follow relation of openmenuitem for choosing the next event through
the probability calculation formula and local pheromone updating rule is applied on the
selected event. Similarly do until all events are traversed.

When a path is traversed deposit some individual pheromone to strengthen the optimized
path and pheromone evaporation to remove the infinity of the increase in pheromone
value as shown below in equation (3)

Global pheromone updation rule: T(Y) + (1 - p) 7 xy (t) + p 7 0 (3)

p is the pheromone evaporation rate . TO is the initial pheromone value and 7 xy is the
current value of pheromone at time t.

When one path is generated or traversed update the global pheromone value on the
whole path. On every iteration the generated test path generates the following sequences.
The output of 1 St iteration is: filemenuitem -> openmenuitem -> filetypeitem -> encodeitem
-> filenameedit -> encodeitem -> filetypeitem -> filenameedit -> cancleopen

When one path is generated the control goes to the initial node then start traversing the
path again similarly in each iteration the program generate the sequence of events in the
test paths and edges.

7.2 GENERATED TEST PATHS
All traversed test path events are following which shows that every event is covered or
visited at least once:

Path 1 : filemenuitem -> openmenuitem -> filetypeitem -> encodeitem -> filenameedit ->
encodeitem -> filetypeitem -> filenameedit -> cancleopen

Path 2: filemenuitem -> editmenuitem -> findmenuitem -> casecheck -> findedit -> upitem
-> downitem -> findedit -> casecheck -> upitem -> downitem -> editmenuitem ->
findmenuitem -> canclefind -> editmenuitem -> findmenuitem -> findbutton ->
editmenuitem -> copymenuitem -> editmenuitem -> pastemenuitem -> copymenuitem ->
editmenuitem -> findmenuitem -> casecheck -> findedit -> upitem -> downitem -> findedit
-> casecheck -> upitem -> downitem -> findedit -> casecheck -> upitem -> downitem ->
canclefind -> editmenuitem -> pastemenuitem -> copymenuitem -> editmenuitem ->
findmenuitem -> findbutton -> editmenuitem -> findmenuitem -> casecheck -> findedit ->
upitem -> downitem -> findedit-> casecheck -> upitem -> downitem -> canclefind ->
editmenuitem -> pastemenuitem -> copymenuitem -> editmenuitem

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 64

CHAPTER 7 CASE STUDIES

Path 3: filemenuitem -> openmenuitem -> openbutton

No of path generation Event coverage in Existing Event coverage in Proposed :

i approach ! approach

Table 7.1 Comparison of event coverage

Path 1 Path 2 Path 3 Total number of events

Event coverage in Existing approach Event coverage in Proposed approach

Fig. 7.2 Comparison of event coverage in existing and proposed approach

All traversed edges of event flow graph which covers all event-pair relation are as follows:

Edge Path:

Edge Path 1: (filemenuitem-openmenuitem) -> (openmenuitem-filetypeitem) ->
(filetypeitem-filenameedit) -> (filenameedit-filetypeitem) -> (filetypeitem-encodeitem) ->

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 65

CHAPTER 7 CASE STUDIES

(encodeitem-filetypeitem) -> (filetypeitem-filenameedit) -> (filenameedit-encodeitem) ->
(encodeitem-filenameedit) -> (filenameedit-filetypeitem) -> (filetypeitem-encodeitem) ->
(encodeitem-filetypeitem) -> (filetypeitem-openbutton) -> (openbutton-filemenuitem)

Edge Path 2: (filemenuitemeditmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-findedit) -> (findedit-casecheck) -> (casecheck-findedit) -> (findedit-
upitem) -> (upitem-findedit) -> (findedit-downitem) -> (downitem-findedit) -> (findedit-
editmenuitem) -> (editmenuitem-findmenuitem) -> (findmenuitem-casecheck) ->
(casecheck-upitem) -> (upitem-casecheck) -> (casecheck-downitem) -> (downitem-
casecheck) -> (casecheck-editmenuitem) -> (editmenuitem-pastemenuitem) ->
(pastemenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 3: (filemenuitem-openmenuitem) -> (openmenuitem-filenameedit) ->
(filenameedit-encodeitem) -> (encodeitem-filenameedit) -> (filenameedit-openbutton) ->
(openbutton-filemenuitem)

Edge Path 4: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-upitem) -> (upitem-downitem) -> (downitem-upitem) -> (upitem-
editmenuitem) -> (editmenuitem-copymenuitem) -> (copymenuitem-editmenuitem) ->
(editmenuitem-findmenuitem) -> (findmenuitem-downitem) -> (downitem-editmenuitem) -
> (editmenuitem-pastemenuitem) -> (pastemenuitem-editmenuitem) -> (editmenuitem-
filemenuitem)

Edge Path 5: (filemenuitem-openmenuitem) -> (openmenuitem-encodeitem) ->
(encodeitem-openbutton) -> (openbutton-filemenuitem)

Edge Path 6: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-editmenuitem) -> (editmenuitem-copymenuitem) -> (copymenuitem-
editmenuitem) -> (editmenuitem-findmenuitem) -> (findmenuitem-findedit) -> (findedit-
casecheck) -> (casecheck-findedit) -> (findedit-upitem) -> (upitem-findedit) -> (findedit-
downitem) -> (downitem-findedit) -> (findediteditmenuitem) -> (editmenuitem-
pastemenuitem) -> (pastemenuitem-copymenuitem) -> (copymenuitem-editmenuitem) ->
(editmenuitem-filemenuitem)

Edge Path 7: (filemenuitem-openmenuitem) -> (openmenuitem-filemenuitem)

Edge Path 8: (filemenuitem-openmenuitem) -> (openmenuitem-filetypeitem) ->
(filetypeitem-cancleopen) -> (cancleopen-filemenuitem)

Edge Path 9: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-casecheck) -> (casecheck-upitem) -> (upitem-casecheck) -> (casecheck-
downitem) -> (downitem-casecheck) -> (casecheck-editmenuitem) -> (editmenuitem-
pastemenuitem) -> (pastemenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 10: (filemenuitem-openmenuitem) -> (openmenuitem-filenameedit) ->
(filenameedit-cancleopen) -> (cancleopen-filemenuitem)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 66

CHAPTER 7 CASE STUDIES

Edge Path 11 : (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-upitem) -> (upitem-downitem) -> (downitem-upitem) -> (upitem-
editmenuitem) -> (editmenuitem-copymenuitem) -> (copymenuitem-editmenuitem) ->
(editmenuitem-findmenuitem) -> (findmenuitem-downitem) -> (downitem-editmenuitem) -
> (editmenuitem-pastemenuitem) -> (pastemenuitem-editmenuitem) -> (editmenuitem-
filemenuitem)

Edge Path 12: (filemenuitem-openmenuitem) -> (openmenuitem-encodeitem) ->
(encodeitem-cancleopen) -> (cancleopen-filemenuitem)

Edge Path 13: (filemenuitem-editmenuitem) -> (editmenuitem-copymenuitem) ->
(copymenuitem-editmenuitem) -> (editmenuitem-findmenuitem) -> (findmenuitem-
editmenuitem) -> (editmenuitem-pastemenuitem) -> (pastemenuitem-copymenuitem) ->
(copymenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 14: (filemenuitem-openmenuitem) -> (openmenuitem-openbutton) ->
(openbutton-filemenuitem)

Edge Path 15: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-canclefind) -> (canclefind-editmenuitem) -> (editmenuitem-
copymenuitem) -> (copymenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-findbutton) -> (findbutton-editmenuitem) -> (editmenuitem-
pastemenuitem) -> (pastemenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 16: (filemenuitem-openmenuitem) -> (openmenuitem-cancleopen) ->
(cancleopen-filemenuitem)

Edge Path 17: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-findedit) -> (findedit-canclefind) -> (canclefind-editmenuitem) ->
(editmenuitem-copymenuitem) -> (copymenuitem-editmenuitem) -> (editmenuitem-
pastemenuitem) -> (pastemenuitemcopymenuitem) -> (copymenuitem-editmenuitem) ->
(editmenuitem-filemenuitem)

Edge Path 18: (filemenuitem-openmenuitem) -> (openmenuitem-filetypeitem) ->
(filetypeitem-filenameedit) -> (filenameedit-filetypeitem) -> (filetypeitem-encodeitem) ->
(encodeitem-filetypeitem) -> (filetypeitem-filenameedit) -> (fiienameedit-encodeitem) ->
(encodeitem-filenameedit) -> (filenameedit-filetypeitem) -> (filetypeitem-encodeitem) ->
(encodeitem-filetypeitem) -> (filetypeitem-openbutton) -> (openbutton-filemenuitem)

Edge Path 19: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-casecheck) -> (casecheck-canclefind) -> (canclefind-editmenuitem) ->
(editmenuitem-copymenuitem) -> (copymenuitem-editmenuitem) -> (editmenuitem-
pastemenuitem) -> (pastemenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 20: (filemenuitem-openmenuitem) -> (openmenuitem-filenameedit) ->
(filenameedit-encodeitem) -> (encodeitem-filenameedit) -> (filenameedit-openbutton) ->
(openbutton-filemenuitem)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 67

CHAPTER 7 CASE STUDIES

Edge Path 21: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-upitem) -> (upitem-canclefind) -> (canclefind-editmenuitem) ->
(editmenuitem-findmenuitem) -> (findmenuitem-downitem) -> (downitem-canclefind) ->
(canclefind-editmenuitem) -> (editmenuitem-pastemenuitem) -> (pastemenuitem-
editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 22: (filemenuitem-openmenuitem) -> (openmenuitem-encodeitem) ->
(encodeitem-openbutton) -> (openbutton-filemenuitem)

Edge Path 23: (filemenuitem-openmenuitem) -> (openmenuitem-filemenuitem)

Edge Path 24: (filemenuitem-editmenuitem) -> (editmenuitem-copymenuitem) ->
(copymenuitem-editmenuitem) -> (editmenuitem-findmenuitem) -> (findmenuitem-
editmenuitem) -> (editmenuitem-pastemenuitem) -> (pastemenuitem-copymenuitem) ->
(copymenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 25: (filemenuitem-openmenuitem) -> (openmenuitem-filetypeitem) ->
(filetypeitem-cancleopen) -> (cancleopen-filemenuitem)

Edge Path 26: (filemenuitem-editmenuitem) -> (editmenuitem-copymenuitem) ->
(copymenuitem-editmenuitem) -> (editmenuitem-findmenuitem) -> (findmenuitem-
findedit) -> (findedit-findbutton) -> (findbutton-editmenuitem) -> (editmenuitem-
pastemenuitem) -> (pastemenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 27: (filemenuitem-openmenuitem) -> (openmenuitem-filenameedit) ->
(filenameedit-cancleopen) -> (cancleopen-filemenuitem)

Edge Path 28: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-casecheck) -> (casecheck-findbutton) -> (findbutton-editmenuitem) ->
(editmenuitem-copymenuitem) -> (copymenuitem-editmenuitem) -> (editmenuitem-
pastemenuitem) -> (pastemenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

Edge Path 29: (filemenuitem-openmenuitem) -> (openmenuitem-encodeitem) ->
(encodeitem-cancleopen) -> (cancleopen-filemenuitem)

Edge Path 30: (filemenuitem-editmenuitem) -> (editmenuitem-findmenuitem) ->
(findmenuitem-upitem) -> (upitem-findbutton) -> (findbutton-editmenuitem) ->
(editmenuitem-copymenuitem) -> (copymenuitem-editmenuitem) -> (editmenuitem-
findmenuitem) -> (findmenuitem-downitem) -> (downitem-findbutton) -> (findbutton-
editmenuitem) -> (editmenuitem-pastemenuitem) -> (pastemenuitem-copymenuitem) ->
(copymenuitem-editmenuitem) -> (editmenuitem-filemenuitem)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 68

CHAPTER 7 CASE STUDIES

. -. .- ...--

Path 7 0 . -- ,I - . . -..
Path 8 0
Path 9 0 1 . . . - . - "-.--
Path 10 0 I I ~ - ~ - ~ - - - - -,- -. -- -
Path 11 0 ,I - . .- .-..... ----. -. . - --- -- ---
Path 12 0 14

- - - - - - *

Total number of edges 35 6 1
covered

Table 7.2 Comparison of Event-interaction Coverage

rrx Edge coverage in Existing approach H Edge coverage in Proposed approach

Fig. 7.3 Comparison of edge coverage in existing and proposed approach

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 69

CHAPTER 7 CASE STUDIES

From the table and the generated paths it is proved that the proposed approach provide

better coverage than the existing approach. The proposed approach generates the all

events and all edges which enhance the testing of GUI system.

7.3 CASE STUDY 2

There is another example which strengthens the proposed approach. lnternet Explorer

(formerly Microsoft lnternet Explorer) abbreviated as IE is a series of graphical web

browsers. lnternet Explorer is a web based Graphical user interface which provides ease

to the browsing all over the world. lnternet Explorer (IE) is one of the most widely used

web browsers.
n

7.4 EXPERIMENTAL RESULTS OF EVENT COVERAGE AND EVENT-INTERACTION
COVERAGE

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 70

CHAPTER 7 CASE STUDIES

Experimental Results of Event Path Coveraqe:

Path 1 : file-menu -> open-file -> file-type -> open-button -> cancel-open -> file-name
-> cancel-add -> add-bookmark -> bookmark

Path 2: file-menu -> edit-menu -> find-menu -> match-whole -> find-menu ->
match-case -> find-menu -> next -> find-menu -> previous -> find-menu

Path 3: file-menu -> open-file -> file-type -> open-button -> cancel-open -> file-name
-> cancel-add -> add-bookmark -> add-button -> add-bookmark -> bookmark-name -
> add-bookmark -> bookmark -> show-bookmark -> bookmark

Path 4: file-menu -> edit-menu -> copy -> edit-menu -> paste -> edit-menu -> cut ->
edit-menu -> paste -> edit-menu -> copy -> edit-menu -> cut -> edit-menu

Path 5: file-menu -> new-window

Path 6: file-menu -> new-tab

No of paths generation

Table 7.3 Event Coverage of Internet Explorer (IE)

Experimental Results of Edne Path coverane:

Edge Path 1 : (file-menu-open-file) -> (open-file-file-menu)

Edge Path 2: (file-menu-edit-menu) -> (edit-menu-find-menu) -> (find-menu-
file-menu)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 71

CHAPTER 7 CASE STUDIES

Edge Path 3: (file-menu-bookmark) -> (bookmark-file-menu)

Edge Path 4: (file-menu-open-file) -> (open-file-file-type) -> (file-type-file-menu)

Edge Path 5: (file-menu-editmenu) -> (edit-menu-file-menu)

Edge Path 6: (file-menu-new-window) -> (new-window-file-menu)

Edge Path 7: (file-menu-new-tab) -> (new-tab-file-menu)

Edge Path 8: (file-menu-bookmark) -> (bookmark-add-bookmark) -> (add-bookmark-
bookmark) -> (bookmark-file-menu)

Edge Path 9: (file-menu-open-file) -> (open-file-cancel-open) -> (cancel-open-
file-type) -> (file-type-open-button) -> (open-button-file-type) -> (file-type-file-name)
-> (file-name-file-type) -> (file-type-file-men u)

Edge Path 10: (file-menu-edit-menu) -> (edit-menu-find-menu) -> (find-menu-
file-menu)

Edge Path 11 : (file-menu-open-file) -> (open-file-open-button) -> (open-button-
cancel-open) -> (cancel-open-open-button) -> (open-button-file-name) -> (file-name-
open-button) -> (open-button-file-type) -> (file-type-open-button) -> (open-button-
cancel-open) -> (cancel-open-file-name) -> (file-name-cancel-add) -> (cancel-add-
file-menu)

Edge Path 12: (file-menu-edit-menu) -> (edit-menu-file-menu)

Edge Path 13: (file-menu-bookmark) -> (bookmark-add-bookmark) -> (add-bookmark-
cancel-add) -> (cancel-add-add-bookmark) -> (add-bookmark-add-button) ->
(add-button-file-menu)
Edge Path 14: (file-menu-new-window) -> (new-window-file-menu)

Edge Path 15: (file-menu-new-tab) -> (new-tab-file-menu)

Edge Path 16: (file-menu-open-file) -> (open-file-file-name) -> (file-name-file-type) ->
(file-type-file-name) -> (file-name-open-button) -> (open-button-file-name) ->
(file - name-cancel-add) -> (cancel-add-file-menu)

Edge Path 17: (file-menu-edit-menu) -> (edit-menu-paste) -> (paste-edit-menu) ->
(edit-menu-copy) -> (copy-edit-menu) -> (edit-menu-cut) -> (cut-edit-menu) ->
(edit-menu-find-menu) -> (find-menu-match-whole) -> (match-whole-find-menu) ->
(find-menu-match-case) -> (match-case-find-menu) -> (find-menu-next) -> (next-
find-menu) -> (find-menu-previous) -> (previous-find-menu) -> (find-menu-file-menu)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 72

CHAPTER 7 CASE STUDIES

Edge Path 18: (file-menu-bookmark) -> (bookmark-show-bookmark) ->
(show-bookmark-bookmark) -> (bookmark-file-menu)

Edge Path 19: (file-menu-open-file) -> (open-file-file-menu)
Edge Path 20: (file-menu-edit-menu) -> (edit-menu-file-menu)
Edge Path 21 : (file-menu-bookmark) -> (bookmark-add-bookmark) -> (add-bookmark-
bookmark-name) -> (bookmark-name-add-bookmark) -> (add-bookmark-bookmark) -
> (bookmark-file-menu)

Edge Path 22: (file-menu-new-window) -> (new-window-file-menu)
Edge Path 23: (file-menu-new-tab) -> (new-tab-file-menu)
Edge Path 24: (file-menu-open-file) -> (open-file-file-type) -> (file-type-file-menu)
Edge Path 25: (file-menu-edit-menu) -> (edit-menu-find-menu) -> (find-menu-
file-menu)

Edge Path 26: (file-menu-bookmark) -> (bookmark-add-bookmark) -> (add-bookmark-
cancel-add) -> (cancel-add-add-bookmark) -> (add-bookmark-add-button) ->
(add-button-add-bookmark) -> (add-bookmark-bookmark) -> (bookmark-
show-bookmark) -> (show-bookmark-bookmark) -> (bookmark-file-menu)

: No of path generation i Unvisited edge coverage in Proposed /
i approach

covered

Table 7.4 Event-interaction Coverage of Internet Explorer (IE)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 73

CHAPTER 7 CASE STUDIES

Total Events Events Covered _ _ a _ w --- Total Ekes* " E ~ H s - C E K ~ ~ * *

Fig. 7.5 Coverage criterion of proposed approach

From the resulted test paths of events it is concluded that all events in the EFG are visited

at least once. As shown in the generated paths there is no event unvisited left behind so

from these test paths it is concluded that event coverage criterion is satisfied.

As discussed earlier that event coverage criterion is not enough to detect the faults in

software system so we have to choose stronger coverage criterion than the simple event

coverage criterion. For this purpose event-interaction (event-pair) coverage criterion is

used. This criterion ensures that all the events and the edges of the event flow graph are

traversed. If all edges or event pair relation are visited this confirms that every event and

every edge is covered so these are less chance of error left. Since all the events and

edges between events are covered it means that functionality of the software system is

tested fully and the system will become fault tolerant.

7.5 CASE STUDY 3

The 3rd case study is about the GUI of Windows media player. Media player is a

Graphical user interface which provides ease to user to play the audio and video files.

The user can listen songs, video clips, audio clips etc. The user can also add the favorite

clips into favorite list and many more. Figure below is the event flow graph of windows

media player in which there are 30 events and 67 follow relation events.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 74

CHAPTER 7 CASE STUDIES

Fig 7.6 Event Flow Graph (EFG) Example of windows Media player

7.5.1 Generated Test paths

The output of the generated tests paths in the form of events and edges are given below

which cover all events and completely explore all user interaction among events.

Event Path: file -> navigate -> view

Event Path: file -> play -> volume -> play -> navigate -> favorites -> view

Event Path: file -> open-file -> browse -> select-folder -> cancel

Event Path: file -> favorites -> navigate -> view -> language -> view -> full-screen ->
view -> zoom -> view -> controls -> view -> seek-bar -> view -> hide-menu -> view

Event Path: file -> open-dvd -> select-folder -> cancel

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTlMlZATlON
Page 1 75

CHAPTER 7 CASE STUDIES

Event Path: file -> quick-file-open -> open

Event Path: file -> play -> pause -> stop -> play -> volume -> mute -> volume -> down
-> volume -> up -> volume -> play -> navigate -> favorites -> add-fav -> favorites ->
organize-fav -> favorites -> navigate -> title-menu -> navigate -> jump-to -> navigate -
> next -> navigate -> previous -> navigate -> title-menu -> navigate -> jump-to ->
navigate -> next -> navigate -> previous -> navigate -> play -> pause -> stop -> play ->
pause -> stop -> play

Another case study which enhance our work strength and validation is a Gtalk which is

a web based application. Gtalk is a social messenger in which different user interact with

each other, share files and other stuff. The user can also add new contacts in your

contact list. Figure below is the event flow graph of Gtalk in which there are 24 events

Fig 7.7 Event Flow Graph (EFG) Example of Gtalk

GU I TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (76

CHAPTER 7 CASE STUDIES

7.6.1 Generated Test paths

Event Path: select-contact -> view -> setting -> apperance -> selectgicture-style ->
cancel-apperance -> setting -> connection -> ok-connection -> setting -> general ->
cancel-setting -> setting -> apperance -> ok -> apperance -> selectgicture-style ->
cancel-apperance -> setting -> connection -> start-monitor -> setting

Event Path: select-contact -> view -> add-contact -> next -> view -> showgicture -> view ->
check-email

Event Path: select-contact -> view -> show-email-contacts -> view -> show-offline-friends ->
view -> sort-by-name -> view -> add-contact -> cancel-add -> add-contact ->
choose-from-contacts -> cancel-add -> add-contact -> next -> view -> showgicture -> view ->
check-email

Event Path: select contact -> view -> show-email-contacts -> view -> show-offline-friends ->
view -> sort-by-name -> view -> add-contact -> choose~from~contacts -> cancel-add ->
add-contact -> next -> cancel-add -> add-contact -> next -> view -> setting -> general ->
change-font -> setting-ok -> setting -> connection -> cancel-connection -> setting -> apperance
-> ok -> apperance -> select_picture-style -> cancel-apperance -> setting -> general ->
cancel-setting -> setting -> connection -> ok-connection -> setting -> general -> change-font ->
setting-ok -> setting - connection -> start-monitor -> setting -> apperance ->
select-picture-style -> ok -> apperance -> select-picture-style -> cancel-apperance -> setting

Edge Path:

Edge Path: (select-contact-view) -> (view-setting) -> (setting-apperance) -> (apperance-setting)
-> (setting-connection) -> (connection-setting) -> (setting-general) -> (general-setting-ok) ->
(setting-ok-setting) -> (setting-select-contact)

Edge Path: (select-contact-setting) ->(setting-apperance) -> (apperance-select_picture-style) -
> (select-picture-style-cancel-apperance) -> (cancel-apperance-setting) -> (setting-connection)
-> (connection-setting) -> (setting-general) -> (general-change-font) -> (change-font-setting-ok)
-> (setting-ok-setting) -> (setting-select-contact)

Edge Path: (select-contact-view) -> (view-add-contact) -> (add-contact-next) -> (next-view) ->
(view-select-contact)

Edge Path: (select-contact-view) -> (view-setting) -> (setting-apperance) -> (apperance-setting)
-> (setting-connection) -> (connection-ok-connection) -> (ok-connection-setting) -> (setting-
general) -> (general-cancel-setting) -> (cancel-setting-setting) -> (setting-select-contact)

Edge Path: (select-contact-setting) -> (setting-apperance) -> (apperance-cancel-apperance) ->
(cancel-apperance-setting) -> (setting-connection) -> (connection-start-monitor) ->

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 77

CHAPTER 7 CASE STUDIES

(start-monitor-setting) -> (setting-general) -> (general-setting-ok) -> (setting-ok-setting) ->
(setting-select-contact)

Edge Path: (select-contact-view) -> (view-show~icture) -> (showgicture-view) -> (view-
show~email~contacts) -> (show-email-contacts-view) -> (view-show-offline-friends) ->
(show-offline-friends-view) -> (view-sort-by-name) -> (sort-by-name-view) -> (view-
check-email) -> (check-email-select-contact)

Edge Path: (select-contact-check-email) -> (check-email-select-contact)

Edge Path: (select-contact-view) -> (view-add-contact) -> (add-contact-cancel-add) ->
(cancel-add-add-contact) -> (add-contact-choose~from~contacts) -> (choose-from-contacts-
cancel-add) -> (cancel-add-add-contact) -> (add-contact-next) -> (next-view) -> (view-
select-contact)

Edge Path: (select-contact-setting) -> (setting-apperance) -> (apperance-ok) -> (ok-apperance)
-> (apperance-setting) -> (setting-connection) -> (connection-cancel-connection) ->
(cancel-connection-setting) -> (setting-general) -> (general-change-font) -> (change-font-
setting-ok) -> (setting-ok-setting) -> (setting-select-contact)

Edge Path: (select-contact-view) -> (view-setting) -> (setting-a pperance) -> (apperance-
select-picture-style) -> (select-picture-style-ok) -> (ok-apperance) -> (apperance-setting) ->
(setting-connection) -> (connection-setting) -> (setting-general) -> (general-cancel-setting) ->
(cancel-setting-setting) -> (setting-select-contact)

Edge Path: (select-contact-view) -> (view-add-contact) -> (add-contact-cancel-add) ->
(cancel-add-add-contact) -> (add-contact-choose~from~contacts) -> (choose-from-contacts-
cancel-add) -> (cancel-add-add-contact) -> (add-contact-next) -> (next-view) -> (view-
select-contact)

Edge Path: (select-contact-setting) -> (setting-apperance) -> (apperance-cancel-apperance) ->
(cancel-apperance-setting) -> (setting-connection) -> (connection-setting) -> (setting-apperance)
-> (apperance-ok) -> (ok-apperance) -> (apperance-selectgicture-style) ->
(select~picture~style-cancel-apperance) -> (cancel-apperance-setting) -> (setting-connection) -
> (connection-ok-connection) -> (ok-connection-setting) -> (setting-general) -> (general-
setting-ok) -> (setting-ok-setting) -> (setting-select-contact)

Edge Path: (select-contact-view) -> (view-setting) -> (setting-apperance) -> (apperance-setting)
-> (setting-connection) -> (connection-start-monitor) -> (start-monitor-setting) -> (setting-
general) -> (general-change-font) -> (change-font-setting-ok) -> (setting-ok-setting) -> (setting-
select-contact)

Edge Path: (select-contact-check-email) -> (check-email-select-contact)

Edge Path: (select-contact-setting) -> (setting-apperance) -> (apperance-setting) -> (setting-
connection) -> (connection-cancel~connection) -> (cancel-connection-setting) -> (setting-
general) -> (general-cancel-setting) -> (cancel-setting-setting) -> (setting-select-contact)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 78

CHAPTER 7 CASE STUDIES

Edge Path: (select_contact-view) -> (view-showqicture) -> (showjicture-view) -> (view-
show-email-contacts) -> (show-email-contacts-view) -> (view-show-offline-friends) ->
(show-offline-friends-view) -> (view-sort-by-name) -> (sort-by-name-view) -> (view-
check-email) -> (check-email-select_contact)

Edge Path: (select-contact-view) -> (view-add-contact) -> (add-contact-next) -> (next-view) ->
(view-select-contact)

Edge Path: (select-contact-setting) -> (setting-apperance) -> (apperance-selectgicture-style) -
> (select_picture-style-ok) -> (ok-apperance) -> (apperance-setting) -> (setting-connection) ->
(connection-setting) -> (setting-general) -> (general-setting-ok) -> (setting-ok-setting) -> (setting-
select-contact)

Edge Path: (select-contact-view) -> (view-setting) -> (setting-apperance) -> (apperance-
cancel-apperance) -> (cancel-apperance-setting) -> (setting-connection) -> (connection-setting)
-> (setting-general) -> (general-change-font) -> (change-font-setting-ok) -> (setting-ok-setting)
-> (setting-select-contact)

Edge Path: (select-contact-view) -> (view-setting) -> (setting-apperance) -> (apperance-ok) ->
(ok-apperance) -> (apperance-setting) -> (setting-connection) -> (connection-setting) -> (setting-
general) -> (general-cancel-setting) -> (cancel-setting-setting) -> (setting-select-contact)

Edge Path : (select-contact-setting) -> (setting-apperance) -> (apperance-selectgicture-style) -
> (select-picture-style-cancel-apperance) -> (cancel-apperance-setting) -> (setting-connection)
-> (connection-ok-connection) -> (ok-connection-setting) -> (setting-apperance) -> (apperance-
setting) -> (setting-connection) -> (connection-start-monitor) -> (start-monitor-setting) -> (setting-
general) -> (general-setting-ok) -> (setting-ok-setting) -> (setting-select-contact)

Edge Path: (select-contact-view) -> (view-add-contact) -> (add-contact-cancel-add) ->
(cancel-add-add-contact) -> (add-contact-choose~from~contacts) -> (choose-from-contacts-
cancel-add) -> (cancel-add-add-contact) -> (add-contact-next) -> (next-cancel-add) ->
(cancel-add-add-contact) -> (add-contact-cancel-add) -> (cancel-add-add-contact) ->
(add-contact-choose~from~contacts) -> (choose-from-contacts-cancel-add) -> (cancel-add-
add-contact) -> (add-contact-next) -> (next-view) -> (view-select-contact)

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 79

CHAPTER 8 RESULTS AND DISCUSSION

Chapter 8

Results and
Discussion

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 81

CHAPTER 8 RESULTS AND DISCUSSION

8 RESULTS AND DISCUSSION

In this chapter we will describe and calculate the appropriate ability of the proposed

approach. This chapter includes the comparison of the existing and the proposed

approach then presents the results of proposed approach.

In this research we have covered the event coverage and event-interaction coverage
criteria which calculate all paths having events and their edge coverage. This coverage
ensures that all events and their follow-relation event are covered from all edge views.

In the previous chapter we discussed the parameters and how we performed the

experiment in detail. We also showed the results of selected examples after performing

experimentation. Now in this chapter we will compare our results of proposed

approaches with Huang et al. results.

When ACO is performed on the Event flow Graph (EFG) all events that are selected are

constructed based on calculating the probability of every event. Then we find out the

results that are given below.

We also implemented the Huang et al. work and found out the results, and then we

compared our work with the work of Huang et al. work. Results show that event coverage

gives the same result as Huang et al. [33] proposed, but the event-interaction coverage

criteria gives better results than Huang et al. results. It means that our proposed method

are better than Huang et al. method.

For easy illustration, EFG example in Fig. 7.1 is used for experiment result. The EFG of

Notepad contain 17 events along with the 61 follows relationship events as shown in the

Fig. 7.1

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 82

CHAPTER 8 RESULTS AND DISCUSSION

We can see the results of Fig.7.1 that all 17 events and 61 follow relations are visited.

Huang et al. only covered 35 out of 61 follow relations. Existing research used simple

graph traversal algorithm to generate test cases. Therefore some paths of EFG are not

xecutable due to different event context. Like if we use Depth First Search (DFS)

algorithm the selected path to PasteMenultem is FileMenultem->EditMenultem-

>PasteMenultem->CopyMenultem. The selected path is infeasible because

PasteMenultem is not enabled. PasteMenultem can only be enabled when

CopyMenultem is executed before it. To overcome the infeasible problem the depending

paths are identified earlier and describe their depending relation.

Table 8.1 Comparison of Experimental Results

Edges Covered Total Events

Huang et al.
Proposed
Approach

Total Events Events Covered Total Edges Edges Covered

Huang et al N Proposed Approach

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (83

Events
Covered

17
17

Total Edges

17
17

61
61

35
61

CHAPTER 8 RESULTS AND DISCUSSION

Fig.8.1 Comparison of Event Coverage and Event-interaction Coverage

As shown in the table 8.1 that the event coverage fulfill the criteria of covering all the

events at least once. In the Fig. 7.1 there are total 17 events in the EFG and the resulted

output also covers the 17 events this means the event coverage is satisfied. Existing

approach generated one long path to cover all events but in our approach we have

generated multiple paths which has also covered all the events. In the existing

methodology there are total 17 events and 61 event-pair relation. To achieve the full

coverage that make the software fault free we have to cover all these 17 events and 61

event-pair relation (follow relation events). In our proposed approach these criteria are

enhanced and instead of covering 35 out of 61 follow relation, 61 follow relation events

are covered. From the above table it is concluded that our proposed approach is better

than the existing approach.

Case study 2 Total Events c
Proposed
Approach

Table 8.2 Coverage criterion for internet explorer

Events
Covered

23

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 84

Total Edges Edges Covered

CHAPTER 8 RESULTS AND DISCUSSION

Total Events Events Covered Total Edges Edges Covered

Proposed Approach
- - - -

Fig 8.3 Coverage criterion of proposed approach for Case study 2

From the above table 8.2 it is concluded that the proposed approach covers all

events along with the event-interaction coverage. This coverage criterion is stronger

than the simple event coverage criterion because it cover the edges and events both.

Simple event coverage might be miss some edges or follow-relation of the events.

That's why for adequate testing we need stronger coverage criterion which provide full

events and full edge coverage. From the experimental result it is shown that the existing

methodology only cover events of the Event Flow Graph (EFG) leaving some follow

relation unvisited. But the proposed approach cover all events of the EFG and also

provide full coverage to traverse the edges of the EFG. Hence proved from the

experimental result that the coverage criterion in the proposed approach is better than

the existing approach.

There are many GUI path coverage criterion that are used for GUI testing. Among

all of them Event coverage criterion covers all the events which shows the GUI objects

and components. For stronger GUI testing Coverage criterion event-interaction

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (85

CHAPTER 8 RESULTS AND DISCUSSION

coverage criterion is used that covers all the edges which shows the follow-relation

events (Child events). In event coverage all events are covered but might be some edges

are left uncovered. These uncovered edges might produce faults in software system. To

cover these edges which represent the dependencies between different edges, event-

interaction coverage criterion is used. It is proved from the case studies that existing

approach used only event coverage so there is a change of error. To overcome this

missing or uncovered edges, event- interaction coverage is used. The test path covers

all feasible events and all their feasible edges.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 86

CHAPTER 9 CONCLUSION AND FUTURE WORK

Chapter 9

Conclusion and
Future WorK

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (87

CHAPTER 9 CONCLUSION AND FUTURE WORK

9 CONCLUSION AND FUTURE WORK

In conclusion we summarize our main influence of thesis work and also suggests some
future work.

GUI testing is a vital phase in development of software which confirms the software quality

and reliability. Automated GUI testing makes software testing more efficient and less error

prone. In our work we are implementing feasible test paths generation. A lot of work has

done on test data generation along with the coverage criterion and generation of feasible

test paths. One of the authors worked on coverage criterion for effective testing but does

not perform the full coverage for event flow graph (EFG).

So, our main contribution is to generate the test path having full coverage and eliminating

the infeasible paths using Ant Colony Optimization (ACO) algorithm. In proposed

approach event-interaction coverage criterion is used to provide full coverage which

covers events and their adjacent edges (child events). We perform the experimentation

to validate our methodology. We compare our results with other work Huang et al. Our

methodology are effective and efficient than huang et al approach. Existing approach

provide only events coverage while missing some edges uncovered. Our hypothesis

accepted that accuracy is improved due to event-interaction coverage criterion. Feasible

path generation and event-interaction coverage using ACO are automated.

In future work we consider other GUI coverage criterion for effective test path generation

on complex and huge case study. Our main focus is generation of feasible test paths. We

will also consider the infeasible paths repairing in future work. We have selected initial

event but we are not considering the initial event randomly. So, it will be also our future

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (88

CHAPTER 9 CONCLUSION AND FUTURE WORK

work that we will select initial node randomly on the basis of event availability. This means

event is not depending upon the other event when selection of event is random.

Generation of all coverage criterion and all feasible paths from program is automated but

event flow graph representation in XML form is not automated which will consider as

future work for automation.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 89

REFERENCES

References

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 90

REFERENCES

REFERENCES

[I] Beizer Boris. "Software Testing Techniques", ISBN-13: 978-1850328803 New York.

1990.

[2] Hamlet, Dick. "Foundations of somare testing: dependability theory. "ACM SIGSOFT

Software Engineering Notes. Vol. 19. No. 5. ACM, 1994.

[3] Zhu, Hong, Patrick AV Hall, and John HR May. "Software unit test coverage and

adequacy." Acm computing surveys (csur) vol29.4 pp. 366-427, 1997.

[4] Tracey, Nigel, et al. "An automated framework for structural test-data generation."

Automated Software Engineering, 1998. Proceedings. 13th IEEE International

Conference on. IEEE, 1998.

[5] Whittaker, James A. "What is software testing? And why is it so hard?." Software,

IEEE VOI 17.1 pp. 70-79, 2000.

[6] Memon, Atif M. "A comprehensive framework for testing graphical user interfaces".

Diss. University of Pittsburgh, 2001.

[7] Belli, Fevzi. "Finite state testing and analysis of graphical user interfaces. " Software

Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th International

Symposium on. IEEE, 2001.

[8] Memon, Atif M., Mary Lou Soffa, and Martha E. Pollack. "Coverage criteria for GUI

testing." ACM SIGSOFT Software Engineering Notes vol. 26.5 pp. 256-267, 2001.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (92

REFERENCES

[9] Memon, Atif M., Martha E. Pollack, and Mary Lou Soffa. "Hierarchical GUI test case

generation using automated planning. " Software Engineering, IEEE Transactions on

27.2 pp. 144-1 55, 2001.

[lo] White, Lee, Husain Almezen, and Nasser Alzeidi. "User-based testing of GUI

sequences and their interactions. " Software Reliability Engineering, 2001. ISSRE

2001. Proceedings. 12th International Symposium on. IEEE, 2001.

[I I] Memon, Atif M. "GUI testing: Piffalls and process. " Computer vol. 35.8 pp. 87-88,

2001

[I21 Li, Huaizhong, and Chiou Peng Lam. "Software Test Data Generation using Ant

Colony Optimization." International Conference on Computational Intelligence. 2004.

[I31 Memon, Atif M. Adithya Nagarajan, and Qing Xie. "Automating regression testing

for evolving GUI software. "Journal of Software Maintenance and Evolution: Research

and Practice vol. 17.1 pp. 27-64 , 2005.

[I41 Dorigo, Marco, Mauro Birattari, and Thomas Stutzle. "Ant colony optimization."

Computational Intelligence Magazine, IEEE vol. 1.4 pp. 28-39, 2006.

[I 51 Li, Ping, Toan Huynh, Marek Reformat, and James Miller. '% practical approach to

testing GUI systems." Empirical Software Engineering vol. 12.4 pp. 331-357,2007.

[I61 Memon, Atif M. "An event-flow model of GUI based applications for testing."

Software Testing, Verification and Reliability vo1.17, No.3, pp.137-157, 2007.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page (92

REFERENCES

[I71 Naik K &Tripathy P. "Soffware Testing and Quality Assurance Theory and

Practice", ISBN-1 3: 978-0471 7891 16 , John Wiley & Sons, 2008

[I81 Yaseen, Saad Ghaleb, and Nada MA AL-Slamy. "Ant colony optimization."

IJCSNS Vo1.8 No.6 pp.351, 2008.

[I91 Lu, Yongzhong, Danping Yan, Songlin Nie, and Chun Wang. "Development of an

improved GUI automation test system based on event-flow graph." Computer Science

and Software Engineering, 2008 lnternational Conference on. Vol. 2. IEEE, pp. 712-

715,2008.

[20] Srivastava, Praveen Ranjan, K. M. Baby, and G. Raghurama. "An approach of

optimal path generation using ant colony optimization." TENCON 2009-2009 IEEE

Region 10 Conference. IEEE, 2009.

[21] Li, Kewen, Zilu Zhang, and Wenying Liu. "Automatic test data generation based

on ant colony optimization. " 2009 Fifth lnternational Conference on Natural

Computation. Vol. 6. 2009.

[22] Jin, Hu, Shuo Wang, Nian-Wei Chen, and Zhen Ye. "Finite State Machine for

Automatic GUI Testing." Computational Intelligence and Software Engineering, 2009.

CiSE 2009. lnternational Conference on. IEEE, 2009.

[23] Yuan, Xun, and Atif M. Memon. "Iterative execution-feedback model-directed GUI

testing." Information and Software Technology Vol. 52 No.5 pp.559-575, 2010.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 93

REFERENCES

[24] Rauf, Abdul, Sajid Anwar, M. Arfan Jaffer, and Arshad Ali Shahid. "Automated GUI

test coverage analysis using GA." In lnformation Technology: New Generations

(ITNG), 201 0 Seventh lnternational Conference on, pp. 1057-1062. IEEE, 2010.

[25] Miao, Yuan, and Xuebing Yang. "An FSM based GUI test automation model."

Control Automation Robotics & Vision (ICARCV), 2010 I l t h lnternational Conference

on. IEEE, 2010.

[26] Yuan, Xun, and Atif M. Memon. "Generating event sequence-based test cases

using GUI runtime state feedback." Software Engineering, IEEE Transactions on

V01.36 No.1 pp. 81-95, 2010

[27] Gulia, Preeti, and R. S. Chillar. "A new approach to generate and optimize test

cases for UML state diagram using genetic algorithm" ACM SIGSOFT Software

Engineering Notes Vo1.37 No.3 pp. 1-5, 2010.

[28] Myers, Glenford J., Corey Sandler, and Tom Badgett. "The art of software testingn.

ISBN-1 3: 978-1 1 18031 964 John Wiley & Sons, 201 1.

[29] Yuan, Xun, Myra B. Cohen, and Atif M. Memon. "GUI interaction testing:

Incorporating event context." Software Engineering, IEEE Transactions on vol. 37.4

pp. 559-574, 201 1.

[30] Rauf, Abdul, Arfan Jaffar, and Arshad Ali Shahid. "Fully automated GUI testing and

coverage analysis using Genetic Algorithms." lnternational Journal of Innovative

Computing, lnformation and Control (IJICIC) Vol. 7, 201 1.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 94

REFERENCES

[31] Retna and Emi "Study paper on the test case generation for GUI based testing."

International Journal of Software Engineering & Applications Vo1.3 No.1, 2012.

[32] Suri, Bharti, and S hweta Singhal. "Literature survey of Ant Colony Optimization in

software testing." Software Engineering (CONSEG), 2012 CSI Sixth International

Conference on. IEEE, 2012.

[33] Huang Y and L. Lu. "Apply ant colony to event-flow model for graphical user

interface test case generation." IET software Vo1.6 No.1 pp. 50-60, 2012.

[34] Khamis, Abdelaziz MI Moheb R. Girgis, and Ahmed S. Ghiduk. "Automatic

software test data generation for spanning sets coverage using genetic algorithms."

Computing and Informatics Vo1.26 No.4. pp. 383-401, 2012.

GUI TEST PATH COVERAGE AND OPTIMIZATION USING ANT COLONY OPTIMIZATION
Page 1 95

