Performance Analysis of SCTP &
TCP SACK in Heterogeneous Networks

An MS Final Year Project by

Muhammad Rafiq
07/FAS/MSTE/F04
Mansoor Waheed
09/FAS/MSTE/F04

Supervised by

Engr. Raza Hasan Abedi
Dr. Syed Afaq Hussain
Department of Electronic Engineering
Faculty of Engineering & Technology

International Islamic University, Islamabad.
August 2007

CENTRAL’ -
LIARARY ‘

g
S
s~ 'A’/’;,',

ISLAMABAD,

. o s

L]

Certificate of Approval

It is certified that we have read the project report submitted by Muhammad Rafiq [07-
FAS/MSTE/F04] and Mansoor Waheed 09-FAS/MSTE/F04. It is our judgment that
this project is of sufficient standard to warrant its acceptance by the International Islamic

University, Islamabad for MS(TE) Degree in Telecommunication Engineering.

External Examiner

Dr. Muhammad Aamir Saleem
Department of Electrical Engineering
Faculty of Engineering

Air University

Islamabad

Internal Examiner

Dr. Aqdas Naveed

Assistant Professor

Department of Electronic Engineering
Faculty of Engineering & Technology
International Islamic University
Islamabad

hls

Supervisor '

Raza H.*Abedi

Assistant Professor

Department of Electronic Engineering
Faculty of Engineering & Technology
International Islamic University
Islamabad

il

DECLARATION

I/We, hereby declare that this software, neither as a whole nor as a part thereof has been
copied out from any source. It is further declare that we have developed this software and the

accompanied report entirely on the basis of our personal effort made under the guidance of

our teachers.

If any part of this report to be copied out or found to be reported, We shall standby the
consequences, no portion of this work presented in this report has been submitted in support
of any application for any other degree or qualification of this or any other university or

institute of learning.

Muhammad Rafiq
07-FAS/MSTE/F04

Wﬁb a‘w)

Mansoor Waheed
09-FAS/MSTE/F04

In the name of Allah (SWT) the most benificient, the most merciful.

An MS Final Year Project submatted to the
Department of Electronic Engineering
International Islamic University, Islamabad
In partial fulfillment of the requirements
For the award of the degree of
MS in Telecommunication Engineering

Dedicated To,
Our parents,

Who always supported us and prayed for our success

Acknowledgement

First of all we would like to take this oppottunity to our humble gratitude to Almighty Allah
who enabled us to accomplish this task. Who helped us in every crucial stage and bestowed us

the stamina to achieve our aim.

We are also fortunate to have had Professor Dr. Syed Afaq Hussain and Sir Raza Hasan Abedi
as our MS. advisor. Their ability to ask the right questions and attention to detail has never
ceased to surprise us. They were always able to make time for us, even if we just walked into
office without any notice. We would also like to mention their patience, giving us inspiration

and hope when we were stuck at dead-ends.

Special thanks go to our parents and friends for their support throughout our entite academic
careef.

Muhammad Rafiq
&
Mansoor Waheed

——l

Project Title:

Undertaken By:

Supervised By:

Date Started:

Date Completed:

Tools Used:

Project in Brief

Performance Analysis of SCTP vs TCP

SACK in Heterogeneous Network
Muhammad Rafiq

07-FAS/MSTE/F04

Mansoor Waheed

09-FAS/MSTE/F04

Engr. Raza Hasan Abedi
Dr. Syed Afaq Hussain

September 2006

August 2007

NS-2, C++, Linux, MS Excel

Performance Anabisis of SCIP vs TCP SACK in Heterggeneons Networks

ABSTRACT

The quality of Internet Applications petceived by end users depends on many factors;
more impottant are delay, Packet loss and throughput. This quality of setvice
parameters are influenced by the netwotk condition, the use of different transport
protocol and the application. In today’s wotld the wireless netwotk is growing rapidly
and heterogeneity of netwotks continues to increase so this heterogeneity of the
network motivates us to wotk in heterogeneous environment. The provision of QoS
over such heterogeneous network is complex and challenging. SCTP is a new IP
transport protocol, working an equivalent level with TCP which provide transport layer
functions to Internet traffic. SCTP has been approved by the IETF as a Proposed
Standard. SCTP has some extra feature such as multthoaming, multistreaming and
prevention against denial of service attack. TCP SACK is an extension to TCP that uses
selective ACKSs in addition to the cumﬁlative ACKs. A simulation based comparison
was performed using FTP traffic, between the two transport protocol SCTP, and TCP
SACK to analyze the delay and throughput in heterogeneous environment in two
different scenarios. In first case wired node act as a sender and wireless node act as
recetver while in second scenarios wireless act as sender and wired as receiver.
Simulation results shows that SCTP has less mean delay than TCP SACK but similar
throughput with different loss probability. This leads to the conclusion that the
introduction of this new protocol SCTP into a TCP/IP network does not degrade the

performance of the existing protocols.

1 INTRODUCTION AND MOTIVATION
2 LITRATURE REVIEW

3 INTRODUCTION TO SCTP

TABLE OF CONTENTS

3.1 BASIC SCTP FEATURES.c.covreresmerresisnsrmesessensssesssensassencanisessssstssssassessssssassassonsassss
32 MULTI-STREAMING......c.covvierririrerenseressesssssasssesmasessessssassessasassssessessesssresassnssesessossens
33 MULTIFHOMING ...vcvsininensisescesescessessansanssssesessssssesesssssmsssosssnsassessssesasessssasesssssessssasens
34 SCTP INITIATION PROCEDUREccccorvrereemerenmesererserassessnersesassassersessossossconscssesecs
341 Cookie MECHANISMc.ccovvviierccieniieiiri st
35 INIT COLLISION RESOLUTIONcveceevereiteirerersressensssessessessersssssessenssnsssassssessssessones
3.6 DATA EXCHANGEcovucieeirniensanssiserinncsntsesosssesessionsisescssssossssemissnsssessssssasmsssenss
3.7 SCTP SHUTDOWNcovtrercrcuesnsenrismmssisnmsssssasssastssnsssssseasssssesssssansssssssionsssmssrsssasssess
3.8 SCTP MESSAGE FORMATcoiimmrmimiiiiiicsnisnennsssssssessssssassessasssssssessasins
39 CONGESTION CONTROL ..euveeveenrerrerersessssssesersssssessessessssssesnassessssssensessassssssesassasansanes
3.9.1 SCTP Differences from TCP Congestion cORFOL..................cocoovvceemivrireniennn
3.9.2 SCTP Slow-Start and Congestion AVOIdAnCe...................oucuveovvcvicriecnernonrens
393 SIOW-SHAPE ...ttt e
3.94 Congestion AVOIAANCE.............ccooovveveviieiecneeeriensiveerinneicrrarernssesneaeesesasssnesenes
3.9.5 Packet Loss DeteCtion...............cucovuevrevovnerinrinsesisisseessnisssesssisssscssssssssssssns
3.9.6 Fast Retransmit o8 Gap REPOFIS..........oeveecvoireceereriiierensirniesisissenesssessssesssennes
4 INTRODUCTION TO TCP
4.1 TCP CONNECTION ESTABLISHMENTccovunterrernnrerseasressersensersssensessesansessorsssasecssses
4.2 TCP CONNECTION RELEASE ...c.veuevcorerieeeremenesressesessesssssssessessessensessrsssasssensssessessasans
4.3 TCP TRANSMISSION POLICY......c.ooveivniinrernnereiresnsessecssssscsssessssssrsssesssssssssssesssseseas
4.4 TCP CONGESTION CONTROLoeeovvveesenrirersseseesorsssesessoressessvsssonssesesrssossssesosssnsasess
4.5 DIFFERENCES BETWEEN TCP AND SCTPcoovviececierrcrnreeeeenseseeneessseesensenens
4.6 TCP SACK c.orvererianisecsrensasesascrsesiressssessssssssnnssrsssmsasiossiesesssssssssenssssesaserassssssnsesassensns
4.6.1 Difference between TCP SACK Gnd SCTP..........oeeceierceviiecenersiseeissessensens

5

EXPERIMENTAL ANALYSIS 27
5.1 PERFORMANCE METRICSc.ccvvrvrnerernsierensiesesssssessssssessessssssssssssasssesessensssesessessesssnes 28
511 TRIOUGRPUL ...t st 28
502 DIyttt s 28
52 TCP AND SCTP SOURCE CONFIGURATIONSocveruriereierniseeseeerecesnsssessresssessesonenne 28
53 EXPERIMENTAL SETUP....cccuvtiteerveeeressuessssssissssssssssssessssasssssessssesssssssssssssssessssssssaens 29
5.3.1 NEtWOrkS SCERATIOSooooocoooeeviivieeeieeeeei ettt eetr et ettt ere s ansaneon 29
5.3.2 Scenario 1: Ethernet t0 Wirelessouueeeecevmeeiioeieeecssiescvesseseeesssrnnens 29
5.3.3 Scenario 2: Wireless t0 EtREIReLoeocevcoeeeeieieeieeeieeereceeiireneeeeeeresseinnn 34
54 COMPETING TRAFFICcvvereirrrrecrineersressenssssesssssmossssssernsesensssseseessssnssososeessnssssossres 38
CONCLUSION 39
BIBLIOGRAPHY 41
APPENDICES 5
8.1 CODE LISTING SNIPPETS.....cccvvvieriiiisiisiseeissesessesesieessssessssesosssessssnssessessssesssssessasossssssses 5
82 RAW GENERATED D DATAcocvriterienrireinseceroresvesssssssssssssmsssssssessesseossessonsonsossassessises 5
8.3 POSTPROCESSED DATAL. ...covvieveeeeteieeseeeteessessesessessessssssseessssssacessssssnsassasssssssssssessesons 5
8.3.1 Packet wise delay calculatedccooovvrcrvecrininnriinnrescinssssesesesscnns 5
8.3.2 SUMMQAry Of DAtQ...........ccoouveveveeenirineeierieiereiesicses st terss st es e bt re st 5

<t

LIST OF FIGURES

3.1 SCTP MUltiStrEamiNgcvucrimmsieisiinisssisisinisiscsessssss st stssssessss st ssssssssssssssssasasess 8
3.2 SCTP MUIHROMUIG c....oovvecrrisirniasnisnisessiss s asesssss b ssss s ssssss st s sesssssssesssesssssssssssssssssassasnsans 9
3.3 SCTP Message FOIMAL ...t ssssssssss st sssssessssssssssssssassasses 13
5.1 Ethernet to Wireless.........oouvvviicivminiivveresiiniincinrans e seisi s s s s bbb Rt bAsE s n s e s 29
5.2 SCTP and TCP SACK Delay with Different Loss Probabilityccccvveunrnreenecrecrinsienns 31
5.3 : SCTP and TCP SACK with Different Loss Probability..........cccccovcvvvvvmrvmuvnrevninnirnsirrninesanns 32
5.4 SCTP and TCP SACK Congestion Window with Different Loss Probabilitycccc.uu... 33
5.5 Wireless t0 Bhernet ... sassssnessssesssesssessssnsesssssssssssssssssssssssaes 34
5.6 SCTP and TCP SACK Delay with Different Loss Probabilityc...ccconvvuvvivnvinnierrerinnanee. 35
5.7 SCTP and TCP SACK Throughput with Different Loss Probability........ccccuveruvvrivriiriniunncs 36
5.8 SCTP and TCP SACK Congestion Window with Different Loss Probability 37
5.9 Competing TIAFIC ..u.cuvuverectnrieinetisiss sttt sb s s sssras s as s ss e saens 38

LIST OF TABLES

Table 4-1 : TCP and SCTP COMPALISON.......orirrrrrierinirsssienisississssnsississsssssssssssssssssssensssassssssessess 25
Table 5-1 SCTP and TCP SACK Delay with Different Loss Probabilitycccccverrvverinrinrinenene 30
Table 5-2 : SCTP and TCP SACK with Different Loss Probability........ccccriuniiniiisnnisscnniinns 32
Table 5-3 : SCTP and TCP SACK Congestion Window with Different Loss

PrODADIHLY couccvuvrievctectectiitn sttt ap e 33
Table 5-4 SCTP and TCP SACK Delay with Different Loss Probabilitycccevovseereierernnreens. 35
Table 5-5 : SCTP and TCP SACK Throughput with Different Loss Probability..............ccccouue 36
Table 5-6 : SCTP and TCP SACK Congestion Window with Different Loss

PLODADIHLY c.vvvvvncvvviirmiierissrrisssiss it sar bbb a s 37
Table 5-7 Competing TIAffiC ... 38

v

Chapter 1

1 INTRODUCTION AND MOTIVATION

The quality of Internet Applications perceived by end users depends on many factors.
Among the more important ones there are delay, Packet loss, and throughput.
Understanding how these parameters are influenced by network conditions, by used
protocols, and by traffic profiles may prove to be useful in several cases: (i) in the
definition and implementation of Setvice Level Agreements (SLAs); (i) in the design
of new network applications; (iii) in building new network infrastructures; (iv) in the

design of new QoS aware routing algorithms; etc.

Delay is the moment when the application passed the packet to the transport protocol
and on the other side when it is received by the application. As there are two type of
delay Round-trip-delay and the one-way delay. We are only interesting to measure the
one way delay because the maximum possible one way delay is of great importance to

some application.

In today’s world the wireless network is growing rapidly and heterogeneity of networks
continues to increase so most of the transport protocols is designed to tackle the
problems related to the wired networks and they simply ignore or assume it will also
perform well in wireless networks but it is not true and there are a lot of problems
when tested different types of application with different transport protocols. These
different transport protocols and the heterogeneity of existing networks motivated us

to do research in heterogeneous networks with different transport protocols.

We petformed a simulation based comparison using FTP traffic of two transport
protocol SCTP, and TCP SACK to analyze the delay and throughput in heterogeneous
environment. We also evaluated the behavior of transport protocol in competing

traffic and the impact of loss probability on delay and throughput.

Pl

This report is organized as follow. Chapter 2 gives an overview of the related work has
accomplished in this field. Chapter 3 gives some over view of the SCTP. Chapter 4
gives an overview of TCP, TCP Sacks and the difference between the SCTP and TCP
Sacks. Chapter 5 present simulation results carried out in Network Simulator (NS -
2.30) [1]. And finally chapter 6 concludes our finding and present future work.

Chapter 2

2 LITRATURE REVIEW

In case of [2] authors proposed a new protocol which could be used for the transport
of telecommunication signaling messages over an IP based network is currently being
discussed within the IETF. The protocol is called Stream Conttol Transmission
Protocol (SCTP). Authors evaluate how the protocol performs in a wide area
network, especially when competing with TCP. The results were obtained in a test-bed
consisting of two local networks which are interconnected via an emulator of a wide
area network.

Author also shows that SCTP traffic has the same impact on TCP traffic as normal
TCP traffic. This leads to the conclusion that the introduction of this new protocol

into a TCP/IP network does not degrade the performance of the existing protocols.

In [3] author investigates the suitability of SCTP for data communications over satellite
links. They describe SCTP featutes that allow SCTP to better utilize the bandwidth of
satellite networks, while at the same time avoiding congestion collapse in a shared

network. They recommend SCTP for the satellite network.

In [4] author presents an SCTP variant, called New-Reno SCTP, which introduces
three modifications. First, a Fast Recovery mechanism, similar to that of New-Reno
TCP, is included to avoid multiple congestion window (cwnd) reductions in a single
round-trip time. Secondly they introduce a new policy which restricts the cwnd from
being increased duting Fast Recovery, thus ensuting that the newly introduced Fast
Recovery mechanism maintains conservative behavior. Thirdly they modify SCTP's
HTNA (Highest TSN Newly Acked) algorithm to ensure that Fast Retransmits are not
unnecessarily delayed. Their results show that New-Reno SCTP performs better, and
still conforms to AIMD principles. Also, they compare these two variants of SCTP
with New-Reno TCP and SACK TCP under different loss scenarios. Results show that

New-Reno SCTP petforms significantly better than New-Reno TCP, maintains
conservative behavior similar to SACK TCP, and is as robust as SACK TCP to
multiple losses in a window.

In [5] writers propose the Stream Control Transmission Protocol (SCTP), a recent
IETF transport layer protocol, for reliable web transport. Although TCP has
traditionally been used, they argue that SCTP better matches the needs of HTTP-
based network applications. Paper also discusses SCTP features: (i) head-of-line
blocking within a single TCP connection, (i) vulnerability to network failures, and (i)
vulnerability to denial-of-setvice SYN attacks. They also discuss the benefits of using
SCTP in other web domains through two example scenarios - multiplexing user
requests, and multiplexing resource access. Finally, they highlight several SCTP
features that will be valuable to the design and implementation of current HTTP-based

client-server applications.

In [6] writer analyze that the Stream Control Transmission Protocol (SCTP) is a
reliable message-based transport protocol developed by the IETF that could replace
TCP in some applications. SCTP allows endpoints to have muitiple IP addresses for
the purposes of fault tolerance. There is on-going wotk to extend the SCTP
multihoming functions to support dynamic addressing and endpoint mobility. Their
paper also explains how the multthoming and mobility features can be exploited for
denial-of-setvice attacks, connection hijacking, and packet flooding.

In case of the wired scenario, authors in [7] presented results related to the
experimentation of SCTP over high speed WAN. Their result show that SCTP
congestion control performs badly in high speed wide area network because of its slow
response with large congestion window. So they proposed a new congestion window
modification for the SCTP to improve its petformance in high speed wide atea
network. The result of several experiment proved that their suggested congestion
window improved the throughput of the orginal SCTP congestion control scheme
significantly.

In [8) the authors compare the performance of SCTP and TCP with respect to Web
traffic. The results show that SCTP can help reduce the latency and improve
throughput. This, together with some other features of SCTP like multthoming and
better protection against Denial of Service attacks, makes it a very attractive choice for
future web traffic. In this paper author focus is on the web traffic and the author feel
that the results bring out the deleterious effect of head of line blocking that
applications using TCP suffer from, because TCP couples the delivery mechanism and
reliability. By separating these two important issues and also by providing a reliable
message-oriented transport, SCTP provides developers with both flexibility and
efficiency. It will be interesting to know the mix of applications that use TCP as a byte
stream and those that use TCP as a reliable transport for messages that are delineated
by the application level protocol. There are some significant weaknesses in their work
which they plan to address in the near future. As they compare SCTP against TCP
Reno (default mode of TCP on BSD). Since, SCTP uses Selective Acknowledgements

(SACK), we believe this is not a very fair comparison.

In [9], using ns-2, the authors study the multi-streaming and the multi-homing SCTP
features. They prove that these features have advantages over TCP in the given
scenarios. In particular, they define the optimal number of streams in multi-streaming
and explain how it affects network performance. In the case of wireless networks, in
[10] the authors developed an analytical model that takes into account the congestion
window, the round trip time, the slow start and congestion avoidance processes to
predict the SCTP performance. By comparing numerical results from the analytical
model with simulation results, they demonstrate that the proposed model is able to

accurately predict SCTP throughput.

In [11] the authors presented a simulation study of delay spike of SCTP, TCP Reno,
and Eifel over wireless links. They found that Eifel performs better than TCP Reno
and SCTP when there are no packet losses. However, the opposite is happen when
packets are lost in the presence of delay spikes. Also they showed that a higher link
bandwidth does not always increase the data throughput of SCTP, TCP Reno, and

-5

Eifel. In [12] the authors provide a simulation-based performance comparison of
SCTP vs. TCP in MANET environments. They found that SCTP and TCP have
similar behavior in MANETS environment, but TCP outperforms SCTP in most cases

because of the extra ovethead present in SCTP.

And finally in [13] author present a packet level experimental analysis of SCTP in
wired, wireless and heterogeneous (wited/wireless) scenarios in term of Throughput
and jitter and compare SCTP with TCP and UDP. They introduced a traffic generation
tool that support UDP, TCP and SCTP traffic generation at packet level. Result
presented may define a reference framework for the development of the throughput

and jitter aware SCTP based network application.

Chapter 3
3 INTRODUCTION TO SCTP

SCTIP is a new IP transpott protocol, existing at an equivalent level with TCP
(Transmission Control Protocol), which provide transport layer functions to many
Internet applications. SCTP has been approved by the IETF as a Proposed Standard
[14].

Like TCP, SCTIP is a session-oriented mechanism, meaning that a relationship is
created between the endpoints of an SCTP association prior to data being transmitted,
and this relationship is maintained until all data transmission has been successfully
completed.

Unlike TCP, SCTP provides a number of functions that are critical for telephony
signaling transport and at the same time can potentially benefit other applications

needing transport with additional performance and teliability.

3.1 Basic SCTP Featutes

SCTP is a unicast protocol, and supports data exchange between exactly 2 endpoints,
although these may be represented by multiple IP addresses. SCTP provides reliable
transmission, detecting when data is discarded, reordered, duplicated or corrupted, and
retransmitting damaged data as necessary. SCTP transmission is full duplex. SCTP is
message orented and supports framing of individual message boundaries. In
compatison, TCP is byte oriented and does not reserve any implicit structure within a
transmitted byte stream without enhancement. SCTP is rate adaptive similar to TCP,
and will scale back data transfer to the prevailing load conditions in the network. It is
designed to behave cooperatively with TCP sessions attempting to use the same
bandwidth.

32 Multi-Streaming

The name Stream Control Transmission Protocol is derived from the multi-streaming
function provided by SCTP. This feature allows data to be partitioned into multiple
streams that have the property of independently sequenced delivery, so that message
loss in any one stream will only initially affect delivery within that stream, and not

delivery in other streams as shown in the Fig 3.1.

(Application {source)] (Application tddinatbn))

Strm§ (Strm3 (Sirm

e | o | v Stream
BCTP === Buffers
P
DLL
PHY
Assgociation tream

3.1 SCTP Multistreaming

In contrast, TCP assumes a single stream of data and ensutes that delivery of that
stream takes place with byte sequence preservation. While this is desirable for delivery
of a file or record, it causes additional delay when message loss or sequence error
occurs within the network. When this happens, TCP must delay delivery of data until
the correct sequencing is restored, either by receipt of an out-of-sequence message, ot
by retransmission of a lost message. For a number of applications, the characteristic of
strict sequence preservation is not truly necessary. In telephony signaling, it is only
necessary to maintain sequencing of messages that affect the same resource (e.g., the
same call, or the same channel). Other messages are only loosely correlated and can be

delivered without having to maintain overall sequence integtity.

3.3 Multi-Homing

Another core feature of SCTP is multi-homing, or the ability for a single SCTP
endpoint to support multiple IP addresses. As shown in the Figure 2 where Host X
has two paths to communicate with the Host Y. If one path goes down the alternative
path can be use. This also increases the reliability of the system. The benefit of multi-
homing is potentially greater survivability of the session in the presence of network
failures. In a conventional single-homed session, the failute of a local LAN access can
isolate the end system, while failures within the core network can cause temporary
unavailability of transport until the IP routing protocols can reconverted around the
point of failure. Using multi-homed SCTP, redundant LANs can be used to reinforce
the local access, while various options ate possible in the core network to reduce the
dependency of failures for different addresses. Use of addresses with different prefixes
can force routing to go through different carriers, for example, route-pinning
techniques or even redundant core netwotks can also be used if there is control over
the network architecture and protocols. The following figure 3.2 shows that there are
two paths available from the host X to host Y. In case of one link failure the

redundant path can be used.

3.2 SCTP Multihoming

In its carrent form, SCTP does not do load sharing, that is, multi-homing is used for
redundancy purposes only. A single address is chosen as the "primary" address and is
used as the destination for all DATA chunks for normal transmission. Retransmitted

9

DATA chunks use the alternate address (es) to improve the probability of reaching the
temote endpoint, while continued failure to send to the primary address ultimately
results in the decision to transmit all DATA chunks to the alternate until heartbeats
can reestablish the reach ability of the primary. To support multi-homing, SCTP
endpoints exchange lists of addresses during initiation of the association. Each
endpoint must be able to receive messages from any of the addresses associated with
the remote endpoint; in practice, certain operating systems may utilize available source
addresses in round robin fashion, in which case receipt of messages from different
source addresses will be the normal case. A single port number is used across the
entire address list at an endpoint for a specific session. In order to reduce the potential
for security issues, it is required that some response messages be sent specifically to the
source address in the message that caused the response. For example, when the server
receives an INIT chunk from a client to initiate an SCTP association, the server always
sends the response INIT ACK chunk to the source address that was in the IP header
of the INIT.

3.4 SCTP Initiation Procedute

The SCTP Initiation Procedure relies on a 4-message sequence, where DATA can be
included on the 3rd and 4th messages of the sequence, as these messages ate sent
when the association has already been validated. A "cookie" mechanism has been

incorporated into the sequence to guard against some types of denial of service attacks.

3.4.1 Cookie Mechanism

The "cookie" mechanism guards specifically against a blind attacker generating INIT
chunks to try to overload the resources of an SCTP setver by causing it to use up
memory and resources handling new INIT requests. Rather than allocating memory
for a Transmission Control Block (TCB), the server instead creates a Cookie patameter

with the TCB information, together with a valid lifetime and a signature for

10

authentication, and sends this back in the INIT ACK. Since the INIT CK always goes
back to the source address of the INIT, the blind attacker will not get the Cookie. A
valid SCTP client will get the Cookie and return it in the COOKIE ECHO chunk,
where the SCTP setver can validate the Cookie and use it to rebuild the TCB. Since
the server creates the Cookie, only it needs to know the format and secret key, this is
not exchanged with the client. Otherwise, the SCTP Initiation Procedure follows many
TCP conventions, so that the endpoints exchange receiver windows, initial sequence
numbers, etc. In addition to this, the endpoints may exchange address lists as discussed

above, and also mutually confirm the number of streams to be opened on each side.

3.5 INIT Collision Resolution

Multi-homing adds to the potenﬁal that messages will be received out of sequence or
with different address pairs. This is a particular concern during initiation of the
association, where without procedures for resolving the collision of messages, you may
easily end up with multiple parallel associations between the same endpoints. To avoid
this, SCTP incorporates a number of procedures to resolve parallel initiation attempts

into a single association.
3.6 DATA Exchange

DATA chunk exchange in SCTP follows TCP's Selective ACK procedure. Receipt of
DATA chunks is acknowledged by sending SACK chunks, which indicate not only the
cumulative Transmission Sequence Number (TSN) range received, but also any non-
cumulative TSN, implying gaps in the received TSN sequence. Following TCP
procedures, SACKSs are sent using the "delayed ack” method, normally one SACK per
every other received packet, but with an upper limit on the delay between SACKs and

an increase to once per received packet when there are gaps detected.

Flow and Congestion Control follow TCP algotithms. The advertised receive window

indicates buffer occupancy at the receiver, while a per-path congestion window is
11

maintained to manage the packets in flight. Slow start, Congestion avoidance, Fast
recovety and Fast retransmit are incorporated into the procedures as described in RFC
2581, with the one change being that the endpoints must manage the conversion
between bytes sent and received and TSN sent and received, since TSN is per chunk

rather than per byte.

The application can specify a lifetime for data to be transmitted, so that if the lifetime
has expired and the data has not yet been transmitted, it can be discarded (e.g., time-
sensitive signaling messages). If the data has been transmitted, it must continue to be

delivered to avoid creating a hole in the TSN sequence.

3.7 SCTP Shutdown

SCTP Shutdown uses a 3-message procedure to allow graceful shutdown, where each
endpoint has confirmation of the DATA chunks received by the remote endpoint
prior to completion of the shutdown. An Abort procedure is also provided for error
cases when an immediate shutdown must take place. Note that SCTP does not
support the function of a "half-open" connection as can occur in TCP, when one side
indicates that it has no more data to send, but the other side can continue to send data
indefinitely. SCTP assumes that once the shutdown procedure begins, both sides will
stop sending new data across the association, and only need to clear up

acknowledgements of previously sent data.

3.8 SCTP Message Format

The SCTP Message includes a common header plus one or more chunks, which can
be control or data. The common header has source and destination port numbers to
allow multiplexing of different SCTP associations at the same address, a 32-bit
verification tag that guards against insertion of an out-of-date or false message into the

SCTP association, and a 32-bit checksum for ertor detection.

12

Each chunk includes chunk type, flag field, length and value. Control chunks
incorporate different flags and parameters depending on the chunk type. DATA
chunks in particular incorporate flags for control of segmentation and reassembly, and

parameters for the TSN, Stream ID and Stream Sequence Number, and a Payload

Protocol Identifier.
""" 32 bir haeid -
Somrce Port Destination Port
SCTP
Verification” Common
erification Tag Fead
Checksum
Type Flags Length
Chunk 1
User Data
i
Type Flags Length
Chunk N
User Data

3.3 SCTP Message Format

The Payload Protocol ID has been included for future flexibility. It is envisioned that
the functions of protocol identification and port number multiplexing will not be as
closely linked in the future as they are in current usage. Payload Protocol ID will allow
the protocol being carried by SCTP to be identified independent of the Port numbers

being used.

The SCTP message format naturally allows support of bundling of multiple DATA
and control chunks in a single message, to improve transport efficiency. Use of

bundling is controllable by the application, so that bundling of initial transmission can
13

be prohibited. Bundling will naturally occur on retransmission of DATA chunks, to

further reduce any chance of congestion.

3.9 Congestion control

Congestion control is one of the basic functions in SCTP. For some applications, it
may be likely that adequate tesources will be allocated to SCTP traffic to assure
prompt delivery of time-critical data thus it would appear to be unlikely, during normal
operations, that transmissions encounter severe congestion conditions. However
SCTP must operate under adverse operational conditions, which can develop upon
partial network failures or unexpected traffic surges.

In such situations SCTP must follow correct congestion control steps to recover from
congestion quickly in order to get data delivered as soon as possible. In the absence of
network congestion, these preventive congestion control algorithms should show no

impact on the protocol performance.

3.9.1 SCTP Differences from TCP Congestion control

Gap Ack Blocks in the SCTP SACK carry the same semantic meaning as the TCP
SACK. TCP considers the information catried in the SACK as advisory information
only. SCTP considers the information carried in the Gap Ack Blocks in the SACK
chunk as advisory. In SCTP, any DATA chunk that has been acknowledged by SACK,
including DATA that arrived at the receiving end out of order, ate not considered fully
delivered until the Cumulative TSN Ack Point passes the TSN of the DATA chunk
(ie., the DATA chunk has been acknowledged by the Cumulative TSN Ack field in
the SACK). Consequently, the value of cwnd controls the amount of outstanding
data, rather than (as in the case of non-SACK TCP) the upper bound between the
highest acknowledged sequence number and the latest DATA chunk that can be sent
within the congestion window. SCTP SACK leads to different implementations of

fast-retransmit and fast-recovery than non-SACK TCP.

14

The biggest difference between SCTP and TCP, however, is multi-homing. SCTP is

designed to establish robust communication associations between two endpoints each

of which may be reachable by more than one transport address. Potentally different

addresses may lead to different data paths between the two endpoints, thus ideally one

may need a separate set of congestion control parameters for each of the paths. The

treatment here of congestion control for multi-homed receivers is new with SCTP and

may require refinement in the future. The current algorithms make the following

assumptions:

39.2

The sender usually uses the same destination address until being instructed by
the upper layer otherwise; however, SCTP may change to an alternate
destination in the event an address is marked inactive .Also, SCTP may
retransmit to a different transport address than the original transmission.

The sender keeps a separate congestion control parameter set for each of the
destination addtesses it can send to (not each source-destination pair but for
each destination). The parameters should decay if the addtess is not used for
a long enough time periods.

For each of the destination addresses, an endpoint does slow-start upon the

first transmission to that addtess.

SCTP Slow-Start and Congestion Avoidance

The slow start and congestion avoidance algorithms must be used by an
endpoint to control the amount of data being injected into the network. The
congestion control in SCTP is employed in regard to the association, not to an
individual stream. In some situations it may be beneficial for an SCTP sender
to be more conservative than the algonthms allow, however, an SCTP sender
must not be more aggressive than the following algorithms allow. Like TCP,
an SCTP endpoint uses the following three control variables to regulate its
transmission rate.

Receiver advertised window size (rwnd, in bytes), which is set by the receiver

based on its available buffer space for incoming packets.
15

e Congestion control window (cwnd, in bytes), which is adjusted by the sender
based on observed network conditions.
o Slow-start threshold (ssthresh, in bytes), which is used by the sender to

distinguish slow start and congestion avoidance phases.

SCTP also requires one additional control vatiable, partial_bytes_acked, which is used
during congestion avoidance phase to facilitate cwnd adjustment.

Unlike TCP, an SCTP sender must keep a set of these control variables cwnd, ssthresh
and partial_bytes_acked for EACH destination address of its peer (when its peer is
multi-homed). Only one rwnd is kept for the whole association (no matter if the peer

is multi-homed or has a single address).
3.9.3 Slow-Start

Beginning data transmission into a network with unknown conditions or after a
sufficiently long idle petiod requites SCTP to probe the network to determine the
available capacity. The slow start algotithm is used for this purpose at the beginning of
a transfer, or after repairing loss detected by the retransmission timer.
e The initial cwnd before DATA transmission or after a sufficiently long idle
petiod MUST be <= 2¥*MTU.
e The initial cwnd after a retransmission timeout MUST be no more than
T*MTU.
e The initial value of ssthresh MAY be arbitrarily high (for example,
implementations MAY use the size of the receiver advertised window).
e Whenever cwnd is greater than zero, the endpoint is allowed to have cwnd
bytes of data outstanding on that transport address.
¢ When cwnd is less than or equal to ssthresh an SCTP endpoint MUST use the
slow start algorithm to increase cwnd (assuming the current congestion
window is being fully utlized). If an incoming SACK advances the
Cumulative TSN Ack Point, cwnd MUST be increased by at most the lesser of

16

(1) the total size of the previously outstanding DATA chunk(s) acknowledged,

and (2) the destination’s path MTU.
In instances where its peer endpoint is multi-homed, if an endpoint receives a SACK
that advances it’s Cumulative TSN Ack Point, then it should update its cwnd (or
cwnds) apportioned to the destination addresses to which it transmitted the
acknowledged data. However if the received SACK does not advance the Cumulative
TSN Ack Point, the endpoint MUST NOT adjust the cwnd of any of the destination
addresses.
Because an endpoint's cwnd is not tied to its Cumulative TSN Ack Point, as duplicate
SACKSs come in, even though they may not advance the Cumulative TSN Ack Point
an endpoint can still use them to clock out new data. That is, the data newly
acknowledged by the SACK diminishes the amount of data now in flight to less than
cwnd; and so the current, unchanged value of cwnd now allows new data to be sent.
On the other hand, the increase of cwnd must be tied to the Cumulative TSN Ack
Point advancement as specified above. Otherwise the duplicate SACKs will not only
clock out new data, but also will adversely clock out more new data than what has just
left the network, during a time of possible congestion. When the endpoint does not
transmit data on a given transport address, the cwnd of the transport address should
be adjusted to max (cwnd/2, 2*MTU) per RTO.

3.9.4 Congestion Avoidance

When cwnd is greater than ssthresh, cwnd should be incremented by 1*MTU pet RTT
if the sender has cwnd or more bytes of data outstanding for the corresponding
transport address.
In practice an implementation can achieve this goal in the following way:
e Partial_bytes_acked is initialized to 0.
o Whenever cwnd is greater than ssthresh, upon each SACK arrival that
advances the Cumulative TSN Ack Point, increase partial_bytes_acked by the
total number of bytes of all new chunks acknowledged in that SACK including

17

chunks acknowledged by the new Cumulative TSN Ack and by Gap Ack
Blocks.

® When partial_bytes_acked is equal to or greater than cwnd and before the
arrival of the SACK the sender had cwnd or more bytes of data outstanding
(i.e., before arrival of the SACK, flightsize was greater than or equal to cwnd),
increase cwnd by MTU, and reset pattial _bytes_acked to (partial_bytes_acked -
cwnd).

e Same as in the slow start, when the sender does not transmit DATA on a given
transport address, the cwnd of the transport address should be adjusted to max
(cwnd / 2, 2*MTU) pet RTO.

¢ When all of the data transmitted by the sender has been acknowledged by the
receiver, partial_bytes_acked 1s initialized to 0.

3.9.5 Packet Loss Detection

Upon detection of packet losses from SACK, an endpoint should do the following;
Ssthresh = max (cwnd/2, 2*MTU)

Cwnd = ssthresh

Basically, a packet loss causes cwnd to be cut in half:

When the T3-rtx timer expires on an address, SCTP should perform slow start by:
Ssthresh = max (cwnd/2, 2*MTU)
Cwnd = 1I*MTU

and assure that no more than one SCTP packet will be in flight for that address until

the endpoint receives acknowledgement for successful delivery of data to that address.
3.9.6 Fast Retransmit on Gap Reports

In the absence of data loss, an endpoint performs delayed acknowledgement.

However, whenever an endpoint notices a hole in the arriving TSN sequence, it

SHOULD start sending a SACK back every time a packet arrives carrying data until
18

the hole is filled. Whenever an endpoint receives a SACK that indicates some TSN(s)
missing, it SHOULD wait for 3 further miss indications (via subsequent SACK's) on
the same TSN(s) befote taking action with regard to Fast Retransmit. When the
TSN(s) is reported as missing in the fourth consecutive SACK, the data sender shalk:

e Mark the missing DATA chunk(s) for retransmission,

® Adjust the ssthresh and cwnd of the destination addtess to which the missing
DATA chunks wete last sent, according to the formula described in Section
292

¢ Determine how many of the eatliest (L.e. lowest TSN) DATA chunks marked
for retransmission will fit into a single packet, subject to constraint of the path
MTU of the destination transport address to which the packet is being sent.
Call this value K. Retransmit those K DATA chunks in a single packet.

e Restart T3-rtx timer only if the last SACK acknowledged the lowest
outstanding TSN number sent to that address, or the endpoint is
retransmitting the first outstanding DATA chunk sent to that address.

A straightforward implementation of the above keeps a counter for each TSN hole
reported by a SACK. The counter increments for each consecutive SACK reporting
the TSN hole. After reaching 4 and starting the fast retransmit procedure, the counter
resets to 0. Because cwnd in SCTP indirectly bounds the number of outstanding
TSN's, the effect of TCP fast-recovery is achieved automatically with no adjustment to

the congestion control window size.

19

Chapter 4
4 INTRODUCTION TO TCP

Transmission Control Protocol was specifically designed to provide a reliable end-to-
end byte stream over an unreliable internetwork. An internetwork differs from a single
netwotk because different parts may have wildly different topologies, bandwidths,
delays, packet sizes, and other parameters. TCP was designed to dynamically adapt to
propetties of the internetwork and to be robust in the face of many kinds of failures.
TCP was formally defined in [15]. As time went on, various errors and inconsistencies
were detected, and the requirements were changed in some areas. These clarifications
and some bug fixes are detailed in RFC 1122. Extensions are given in RFC 1323.

The IP layer gives no guarantee that datagram will be delivered properly, so it is up to
TCP to time out and retransmit them as need be. Datagram that do arrive may well do
so in the wrong order; it is also up to TCP to reassemble them into messages in the
proper sequence. In short, TCP must furnish the reliability that most users want and
that IP does not provide.

4.1 TCP Connection Establishment

Connections are established in TCP by means of the three-way handshake. To
establish a connection, one side, say, the setver passively waits for an incoming
connection by executing the LISTEN and ACCEPTS primitives, either specifying a
specific source or nobody in particular. The other side, say, the client, executes a
CONNECT primitive, specifying the IP address and port to which it wants to
connect, the maximum TCP segment size it is willing to accept, and optionally some
user data (e.g., a password). The CONNECT primitive sends a TCP segment with the
SYN bit on and ACK bit off and waits for a response.

When this segment arrives at the destination, the TCP entity there checks to see if
there is a process that has done a LISTEN on the port given in the Destination port

field. If not, it sends a reply with the RST bit on to reject the connection.

20

4.2 TCP Connection Release

Although TCP connections are full duplex, to understand how connections are
released it is best to think of them as a pait of simplex connections. Each simplex
connection is released independently of its sibling. To release a connection, either party
can send a TCP segment with the FIN bit set, which means that it has no more data to
transmit. When the FIN is acknowledged, that direction is shut down for new data.
Data may continue to flow indefinitely in the other direction, however. When both
directions have been shut down, the connection is released. Normally, four TCP
segments are needed to release a connection, one FIN and one ACK for each
direction. However, it is possible for the first ACK and the second FIN to be
contained in the same segment, reducing the total count to three.

4.3 TCP Transmission Policy

Window management in TCP is not directly tied to acknowledgements as it is in most
data link protocols. For example, suppose the receiver has a 4096-byte buffer. If the
sender transmits a 2048-byte segment that is correctly received, the receiver will
acknowledge the segment. However, since it now has only 2048 bytes of buffer space
(until the application removes some data from the buffer), it will advertise a window of
2048 starting at the next byte expected.

Now the sender transmits another 2048 bytes, which are acknowledged, but the
advertised window is 0. The sender must stop until the application process on the
receiving host has removed some data from the buffer, at which time TCP can
advertise a larger window.

When the window is 0, the sender may not nommally send segments, with two
exceptions. First, urgent data may be sent, for example, to allow the user to kill the
process running on the remote machine. Second, the sender may send a 1-byte
segment to make the receiver renounce the next byte expected and window size. The
TCP standard explicitly provides this option to prevent deadlock if a window
announcement ever gets lost.

4.4 TCP Congestion Control

When the load offered to any network is more than it can handle, congestion builds

up. The Internet is no exception. Although the network layer also tries to manage
21

congestion, most of the heavy lifting is done by TCP because the real solution to
congestion is to slow down the data rate.

The first step in managing congestion is detecting it. Nowadays, packet loss due to
transmission errors is relatively rare because most long-haul trunks are fiber (although
wireless networks are a different story). Consequently, most transmission timeouts on
the Internet are due to congestion. All the Internet TCP algonithms assume that
timeouts are caused by congestion and monitor timeouts for signs of trouble the way
miners watch their canaries.

When a connection is established, a suitable window size has to be chosen. The
receiver can specify a window based on its buffer size. If the sender sticks to this
window size, problems will not occur due to buffer overflow at the receiving end, but
they may still occur due to internal congestion within the network.

The Internet solution is to realize that two potential problems exist network capacity
and receiver capacity and to deal with each of them separately. To do so, each sender
maintains two windows: the window the receiver has granted and a second window,
the congestion window. Each reflects the number of bytes the sender may transmit.
The number of bytes that may be sent is the minimum of the two windows. Thus, the
effective window is the minimum of what the sender thinks is all right and what the
receiver thinks is all right. If the receiver says "Send 8 KB" but the sender knows that
bursts of more than 4 KB clog the network, it sends 4 KB. On the other hand, if the
receiver says "Send 8 KB" and the sender knows that bursts of up to 32 KB get
through effortlessly, it sends the full 8 KB requested.

The congestion window keeps growing exponentially until either a timeout occurs or
the receiver's window is reached. The idea is that if bursts of size, say, 1024, 2048, and
4096 bytes work fine but a burst of 8192 bytes gives a timeout, the congestion window
should be set to 4096 to avoid congestion. As long as the congestion window remains
at 4096, no bursts longer than that will be sent, no matter how much window space
the receiver grants. This algorithm is called slow start, but it is not slow at all
(Jacobson, 1988). It is exponential. All TCP implementations are required to support it.
It uses a third parameter, the threshold, initially 64 KB, in addition to the receiver and

congestion windows. When a timeout occurs, the threshold is set to half of the current
22

congestion window, and the congestion window is reset to one maximum segment.
Slow start is then used to determine what the network can handle, except that
exponential growth stops when the threshold is hit. From that point on, successful
transmissions grow the congestion window linearly (by one maximum segment for
each burst) instead of one per segment. In effect, this algorithm is guessing that it is
probably acceptable to cut the congestion window in half, and then it gradually works

its way up from there.

4.5 Differences between TCP and SCTP

In Table I we describe other differences between the two protocols. The first three
rows compate the messages exchanged duting TCP connection/SCTP association
setup & shutdown. Half-open in the third row refers to a situation where one endpoint
has finished its data transfer while expecting to receive further data from its
cotrespondent endpoint, i.e. the connection/association is open only for one direction.
TCP supports the half-open connection through four-way handshake shutdown
sequence [16], while SCTP uses a three-way handshake for shutdown, but and does
not support half-open association. The fourth and fifth rows of the table relate to the
delivery of segments to the application at the receiver. TCP only supports strict
ordered delivery, and can result in HOL blocking in some cases. SCTP can
independently deliver to application layer the received segments that belong to
different streams, provided that the sequence within the steam is preserved; SCTP can
also support unordered delivery optionally, which is not possible in TCP. The next
comparison considers message boundary after transmission by the transport layer
protocols. TCP is a stream oriented protocol, and the application data are treated as a
continuous byte stream instead of discrete messages. Therefore, the developers must
add their own markings between messages, and have to use TCP PUSH flag to ensure
that the complete message is recetved within a reasonable time. By comparison, SCTP
1s message-oriented. As long as there is space in the receiver buffer, the whole message
is delivered without ever getting mixed with another message. The last two rows of

Table I relate to the keep-alive messages. A &egp-alive mechanism periodically probes

23

the other end of a connection when the connection 1s otherwise idle, even when there
is no data to be sent. In TCP, whether this mechanism should be implemented by the
transport layer or by the application itself is highly controvetsial. The opponents of
implementing keep-alive in TCP think that this mechanism will unnecessarily waste
bandwidth. If a specific TCP implementation chooses to implement the keep-alive
mechanism, the default value of heart-beat interval shouldn’t be less than two
hours.SCTP designers believe that the ability to monitor the reach ability of the peet’s
address is crucial in high-availability applications. For example, in the SS7 netwotk, it is
desirable to receive a link failure alarm as soon as possible to take care of the problem
immediately. In this sense, conserving bandwidth is not a principal consideration.
Therefore, the keep-alive heartbeat is provided in SCTP as a standard mechanism
instead of relying on implementations, as in TCP. In the case of SCTP, the default
heartbeat interval is also reduced to a small value of 30 seconds. This comparison of
the two transport layer protocols clearly reveals the improvements of SCTP over TCP.
These improvements reflect the better undetstanding of the deficiencies of TCP by the

research community during the past twenty years.

24

Table 4-1 : TCP and SCTP Comparison

[Protocol | TCP [SCTP
Setup mes- three-way four-way
sages

handshake bandshake
Shutdown four-way three-way
messages

handshake handshake
Half-open supported not supported
support
Ordered de- | sinct ordered ordered within
livery

stream
Unordered not supported supported
delivery
Message no boundary | boundary preserved
boundary
stream-oriented | message-oriented
Multi- not supported supported
homing
SACK sup- optional mandatory
port
Keep-alive optional mandatory
heartbeat
Heartbeat > 2 hours 30 secs by default
interval
46 TCP Sack

SACK is an extension to TCP that uses selective ACKs in addition to the cumulative
ACKs. The cumulative ACK acknowledges the reception of all the data within a
connection with a sequence number less than a certain number, whereas the selective
ACK acknowledges the reception of non-contiguous ranges of sequence numbers.
The cumulative ACK is the main mechanism to detect packet losses in TCP. If a TCP
end-point receives packets 1, 2, 3, 5, and 7, it will send ACK (1), ACK (2), ACK (3),
ACK (3), and ACK (3) again. When the sender receives ACK (3) multiple times, it

knows that packet 4 was lost and thus has to be retransmitted. However, the sender
25

does not know which packets with a higher sequence number than 4 arrived
successfully at the peer and which ones were lost as well. If the receiver had used the
SACK TCP option it would have returned ACK (3)-SACK (5) and (7). With this
information the sender is able to retransmit not only packet 4, but also packet 6.
Performance measurements [8] show that TCP SACK recovers better than TCP Reno

and New Reno from multiple losses in a single TCP window.

4.6.1 Difference between TCP SACK and SCTP

There are only two differences between TCP SACK and SCTP. The 40 bytes available
for TCP options can only carry a maximum of four SACK blocks per TCP segment,
while SCTP does not impose any limit on the number of SACK chunks in a packet.
Secondly, TCP SACK uses the information in SACKs only to retransmit lost
segments, while SCTP uses this information to petform both flow and congestion
control. SCTP uses SACKed DATA chunks to increase its congestion window,
whereas TCP SACK does not. In this way SCTP achieves a slightly higher window
growth rate than TCP SACK under congestion when both DATA chunks and SACKSs
get lost. SCTP is “TCP-friendly,” that is, it uses about the same amount of bandwidth
as a TCP connection under the same network conditions. This is not surprising since
SCTP and TCP both use the same window-based congestion control. The sender
implements a congestion window (cwnd) that limits the number of bytes that can be
injected into the network at a given point of time. The rate at which cwnd grows
depends on the state of the connection. If no congestion is detected, the slow start
algorithm doubles cwnd every time a whole window of data is acknowledged. Under
packet loss, the congestion avoidance algorithm increases cwnd more slowly, namely,

linearly rather than exponentially.

26

Chapter 5

5 EXPERIMENTAL ANALYSIS

Experiments are performed in Network Simulator 2, having built in capability to
support SCTP and TCP Sack. NS-2 simulator covers a large number of application,
protocols, network types, network elements and different traffic models. NS-2 is an
object oriented simulator, written in C++, with an OT'cl interpreter as a front end. The
simulator suppotts a class hierarchy in C++ (also called the compiled hierarchy in this
document), and a similar class hierarchy within the OTcl interpreter (also called the
interpreted hierarchy in this document). The two hierarchies are closely related to each
other; from the user’s perspective, there is a one-to-one correspondence between a
class in the interpreted hierarchy and one in the compiled hierarchy. The root of this
hierarchy is the class TclObject. Users create new simulator objects through the
interpreter; these objects are instantiated within the intetpreter, and are closely

mirrored by a corresponding object in the compiled hierarchy.

NS-2 uses two languages because simulator has two different kinds of things it needs
to do. On one hand, detailed simulations of protocols require a systems programming
language which can efficiently manipulate bytes, packet headers, and implement
algorithms that run over large data sets. For these tasks run-time speed is important
and turn-around time (run simulation, find bug, fix bug, recompile, re-run) is less
important. On the other hand, a large part of network research involves slightly
varying parameters or configurations, or quickly exploring a number of scenarios. In
these cases, iteration time (change the model and re-run) is more important. Since
configuration runs once (at the beginning of the simulation), run-time of this part of
the task is less important. Ns provide an environment where we can simulate real

network and analysis the behavior of different network parameters.

27

| ST

o Snd, Tl

5.1 Performance Metrics

Following performance metrics are analyzed during our study.

5.1.1 Throughput
We have calculated the throughput using this formula

Number of Received Packets
Number of Send Packets

Throughput =

5.1.2 Delay
We have calculated Delay using this formula
Delay =Tr -Ts (T's and Tt taken from Trace File)
Where Ts is equal to the time stamp of packet sending and Tr is time stamp of packet
receiving. We have taken mean delay for our results and calculated with this

Mean Delay = Total Delay

Where N is the total number of packet send in a simulation time.

5.2 TCP and SCTP Source Configurations

We want to calculate the delay, throughput and impact of packet loss on performance

of protocols so following configuration is used for the TCP and SCTP Sources for this

purpose.

1. Since TCP use only one connection between the source and destination, SCTP is
configuration to use only one stream.

2. The IP payload for both protocols is 1500 byte.

3. SCTP configured for ordered delivery of data.

4. Sack option is mandatory for SCTP, so TCP therefore also use Sack.

28

TH Y416

5.3 Experimental Setup

5.3.1 Networks Scenarios

In exploting the petformance of SCTP, and TCP SACK .We studied the behavior in

heterogeneous network scenarios. We used two networks scenatios.

> Ethernet to Wireless
» Wireless to Ethernet

5.3.2 Scenario 1: Ethernet to Wireless

11 Mb

2ms

2ms

5.1 Ethernet to Wireless

In the first scenario Ethernet to Wireless in Figure 5.1 we used wired node NO act as a
sender and N1 act as a receiver. In the topology R1 act as a Router connected with the
access point (AP) with 2 Mb link bandwidth and 2ms of propagation delay. Node NO
connect with R1 having link bandwidth of 5Mb. The link bandwidth between access
point and N1 is 11 Mb normally called 802.11b standard. DROPTAIL queuing
algorithm is used with queue size of 50 packets. Total simulation time is 100 sec. FTP
was used as a traffic source so that the continuous stream of bytes were transfer from

source to destination to model the large file transfer.

5.3.2.1 Delay
Table 5.1 shows the delay with and without different loss probabilities. To ensure
fairness among transport protocols we set the error module in such a way that both

SCTP source and TCP SACK source drop approximately the same numbers of
29

packets duting transmission with loss probability in the range of 0.1% - 0.4%. It can be
analyzed from the table that by increasing the loss probability the mean delay decreases
this is because as throughput decteases the mean delay also decreases due to less

queuing delay.

Table 5-1 SCTP and TCP SACK Delay with Different

Loss Probability
TCP Sack SCTP
Loss Probability | Delay (ms) | Variance Delay Variance

(ms) (ms) (ms)

No loss 263.67 69.31 252.70 63.92

0.1 % 206.97 46.13 211.49 47.66

0.2 % 190.12 40.09 172.76 33.11

03% 151.25 27.02 145.76 24.25

0.4 % 126.77 19.37 126.29 19.46

The following Figure 5.2. Shows the SCTP and TCP SACK delay with different loss
probabilities where x-axis shows percentage loss probabilities and y-axis shows mean

delay in milliseconds. Results shows that SCTP has less mean delay than TCP sack.

30

SCTP and TCP Sack Delay with Different Loss Probability

300

—ae—TCP SACK

200 +

Delay (ms)
8 8

[4)]
o
i

0 L 1 1 i 1) T
0 0.0005 0.001 0.0015 0002 0.0025 0.003 00035 0.004 0.0045
Percentage Loss Probability

5.2 SCTP and TCP SACK Delay with Different Loss
Probability

5.3.2.2 Impact of Loss probability on Throughput

Figure 5.3 shows percentage throughput achieved by the SCTP and TCP SACK for
the different loss probabilities. It can be observed that by increasing the loss
probability the percentage throughput decteases this is because as the frequency of
drops increases both TCP SACK and SCTP suffer from numerous drops.

When TCP SACK or SCTP sources detect a packet loss (such as due to error in the
link), it retransmits the lost packet based on information received by the receiver in the
acknowledgement. The performance of the protocol depends on the retransmission

mechanism. On detection packet loss sources reduce its cwnd to half.

31

Table 5-2 : SCTP and TCP SACK with Different Loss

Probability

Loss Probability TCP Sack SCTP
% age Throughput % age Throughput
No loss 100 100
0.1 % 99.89 99.89
0.2% 99.82 99.79
0.3% 99.67 99.69
0.4 % 99.56 99.53
SCTP and TCP Sack Throughput with Different Loss Probability
100.1
——TCP SACK
100 - & -SCTP

]

&

B 999 -

£

=

E‘) 99.8 1

§ 99.7 -

4

99-5 ¥ T T 1 T I T T
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045
Percentage Loss Probability

5.3 : SCTP and TCP SACK with Different Loss

Probability

Figure 5.4 shows congestion window. SCTP cwnd is less than TCP SACK but it sends

almost same number of packets this is because

(1) The TCP SACK performs cwnd and ssthresh reductions in whole packets, whereas

SCTP treduces these vatiables in bytes.

(2) an end point congestion window is not tied to its cumulative TSN ack point, as dup

Sacks come in, even though, they may not advance the cumulative TSN ack point an

end point can still used them to clock out new data. That is the data newly

32

acknowledge by the SACK diminishes the amount of data now in flight to less than
the congestion window and so the current unchanged values of congestion window
now allows new data to be send. On the other hand, the increase of congestion
window must be tied to the cumulative TSN ack point advancement as specified
above. Otherwise the duplicate Sacks will not only clock out new data, but also will
adversely clock out mote new data then what has just left the network, during a time of

possible congestion.

Table 5-3 : SCTP and TCP SACK Congestion Window
with Different Loss Probability

Loss Probability TCP Sack SCTP
Cwnd Cwnd
0.1 % 38.86 2797
0.2 % 36.01 25.88
0.3% 27.87 22.37
0.4 % 23.67 18.15

.

SCTP and TCP Sack Congestion Window with Different Loss Probability
45

AD b oo e TCP SACK!
35 A - & - SCTP

30 4
- ---------

25 . <. I

20 4 T e e .l L
15

10 +

Congestion Window (Packets)

5 4

0 T T T T T
0.10% 0.15% 0.20% 0.25% 0.30% 0.35% 0.40%

Loss Probability

5.4 SCTP and TCP SACK Congestion Window with
Different Loss Probability

33

—y, e

[y

5.3.3 Scenario 2: Wireless to Ethernet

5.3.3.1 Topology

N1

11 Mb

R1. 2Mb (8)

AP

2ms 2ms

5.5 Wireless to Ethemet

In the second scenario Wireless to Ethernet in Figure 5.5 we used wireless node NO
act as a sender and N1 wired node act as a receiver. In the topology R1 act as a Router
connected with the access point (AP) with 2 Mb link bandwidth and 2ms of
propagation delay. Node N1 connect with R1 having link bandwidth of 5Mb and
propagation delay of 2ms. The link bandwidth between access point and NO is 11 Mb
called 802.11b standard. DROPTAIL queuing algorithm is used with queue size of 50
packets. Total simulation time is set for 100 sec. FTP was used as a traffic source so
that the continue stream of bytes were transfer from source to destination to model

the large file transfer.

5.3.3.2 Delay

Table 5.2 shows the delay with and without different loss probabilities. To ensure
fairness among transport protocols we set the error module in such a way that both
SCTP source and TCP SACK source drop approximately the same numbers of
packets during transmission with loss probability in the range of 0.1% - 0.4%. It can be
analyzed from the table that by increasing the loss probability the mean delay decreases
this is because of as throughput decreases the mean delay also decreases due to less

queuing delay.

34

Sl

Table 5-4 SCTP and TCP SACK Delay with Different

Loss Probability
TCP Sack SCTP
Loss Probability Delay Variance Delay Variance
No loss 267.23 71.41 257.75 66.50
0.1 % 217.57 50.64 200.75 43.58
0.2% 181.48 37.49 186.72 39.34
03 % 157.38 28.87 148.92 25.74
0.4 % 130.29 19.99 131.74 20.40

The following Figure 5.6 shows the SCTP and TCP SACK delay with different loss
probabilities where x-axis shows percentage loss probabilities and y-axis shows mean

delay in milliseconds. Results shows that SCTP has less mean delay than TCP sack.

SCTP and TCP Sack Delay with Different Loss Probability
300

—e—TCP SACK
- & -SCTP

N

[¢)]

(=]
1

8

Delay (ms)
@
o

100 -

50 -

0 T T v T T T T
0.00% 0.05% 0.10% 0.15% 020% 025% 0.30% 0.35% 0.40%

Loss Probability

5.6 SCTP and TCP SACK Delay with Different Loss
Probability

35

5.3.3.3 Impact of Loss Probability on Throughput

Figure 5.7 shows the throughput achieved using TCP SACK and SCTP. Same

behavior can be observed as in Eth to Wireless.

Table 5-5 : SCTP and TCP SACK Throughput with
Different Loss Probability

Loss Probability TCP Sack SCTP
% age Throughput % age Throughput
No loss 100 100
0.1% 99.91 99.86
0.2% 99.80 99.79
0.3% 99.71 99.66
04 % 99.60 99.57
SCTP and TCP Sack Throughput with Different Loss Probability
100.05
100 ~e— TCP SACK|:
E- 99.9 T
go 99.85
E .
= 99.8 -
ga 99.75 -
g 997
E 99.65 -
99.6 -
99.55 -
99-5 T T 1 T T T T T
0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30% 0.35% 0.40% 0.45%
Loss Probability

5.7 SCTP and TCP SACK Throughput with Different
Loss Probability

Figure 5.8 shows the cwnd of TCP SACK and SCTP. Same behavior can be observed
as in Eth to Wireless.

36

Table 5-6 : SCTP and TCP SACK Congestion Window
with Different Loss Probability

Loss Probability TCP Sack SCTP
Cwnd Cwnd
0.1 % 43.05 27.18
0.2% 33.27 23.35
0.3 % 28.36 2141
0.4 % 23.55 19.11

SCTP and TCP Sack Congestion Window with Different Loss Probability

50
.5 —e—TCP SACK
") . & -SCTP
=
[+
&
3
-
2
=
£
0
g 10
o
5 R
0 T 1 L) T T
0.10% 0.15% 0.20% 0.25% 0.30% 0.35%
Loss Probability

0.40%

5.8 SCTP and TCP SACK Congestion Window with

Different Loss Probability

37

5.4 Competing Traffic

5.9 Competing Traffic

The topology used is shown in Figure 5.9 where N5 acts as SCTP source and N2 acts
As SCTP receiver whereas N4 act as a TCP source and N1 act as a TCP receiver. R1
act as a router. Using the ftp traffic generator generated FIP traffic So that a

continuous stream of packets (bytes) is transferred from the source to destination.

The Table 5.3 show the delay and throughput in competing where both nodes share
the link bandwidth. The tesult show that both protocol faces similar delay and simular
throughput while sharing the link bandwidth. This leads to the conclusion that the
introduction of this new protocol SCTP into a TCP/IP netwotk does not degrade the

petformance of the existing protocols.

Table 5-7 Competing Traffic

Delay Sent packets Received Throughput

(ms) Packets (%)
TCP 251.46 41641 41510 99.68
SCTP 251.83 39055 38791 99.32

38

5.5 Special case: multi-streaming
A special case to show effect of multi-streaming which is built-in feature of SCTP is
configured. This shows that as we have introduced the multi-streaming feature of
SCTP itled in performance over TCP.

Same amount of data in both TCP and SCTP results less packet loss in SCTP and less
packet delay in SCTP. This case demonstrated that when SCTP is configured for its
features it performs better. The result of simulation are displayed in Table 5-8

Table 5-8 Special Case Multi-streaming

Protocol Streams Sent Packets Received Average
Packets Delay (ms)

SCTP 2 14,709 14,675 163.90

TCP 1 14,686 14,660 190.12

39

6 CONCLUSION

After the experiments the SCTP has less mean delay than TCP SACK even having
congestion window through out less than TCP SACK. While Loss Probability is less
the both protocols performed almost equal or some times TCP performs a better with
improved throughput, but at higher loss probability SCTP taken over in throughput
due to its congestion control mechanism.

Since SCTP has four-way handshake it takes little more time than TCP to make an
association, Even though it performed overall better.

Both protocols exhibited similar performance in competing traffic.

Since we have used partial functionality of the SCTP to make the simulation and
compatison fair, SCTP performs far better when it is left unrestticted to use full
functionality.

Opver all performance of SCTP remained better than TCP, especially when there is a
lossy media like wireless, when a dropped packet by the media creates an illusion like
there is congestion occurred which reduces the congestion window size erroneously.
More over a stoppage for at least 3 acknowledgments time in TCP but not in SCTP.
This make a good packet transfer count on SCTP.

In our special case for introduction of multi-streaming in SCTP for same amount of
packets, SCTP has performed better in average packet delay due to multiple streams,
its all due to deficiency of TCP while head of line block phenomenon occurs, it is
suppressed automatically due multiple head of lines in SCTP.

40

7 BIBLIOGRAPHY

(1]
http://www.isi.edu/nsnam/ns/index.
html

[2] Andreas Michael

Jungmaier,
Schopp, Michael Tiixen, Siemens AG,
“Performance

Evaluation of the Stteam Control
Transmission Protocol”
[3] Shaojian Fu, Mohammed
Atiquzzaman School of Computer
Science University of

Oklahoma, Norman, “SCTP over
Satellite Networks”.
[4] Armando L. Caro Jt., Keyur Shah,
Janardhan R. Iyengar, Paul D. Amer
Protocol

Engineering Lab Computer and
Information Sciences University of
Delaware “SCTP

and TCP Varants: Congestion
Control under Multiple Losses”.
[5] Preethi Natarajanl, Janardhan R.
Iyengarl, Paul. D. Amer1 and Randall
Stewart

Protocol Engineering Lab, CIS
Dept University of Delaware “SCTP:

An innovative

41

Transport layer protocol for the
web
[6] Pekka Nikander and Gonzalo
Camarillo Ericsson Research, Jorvas,
Finland

“Effects of Mobility and
Multthoming on Transport-Protocol
Security”
[7] D. Nagamalai and].-K. Lee.
“Performance of sctp over high speed
wide area

networks, Dec. ’04.”
[8] R. Rajamani, S. Kumar, and N.
Gupta. “Sctp versus tcp: Comparing
the

petformance of transport
protocols for web traffic”.
(9] S. Kang and M. Fields.
“Experimental study of the sctp
compared to tcp”. Technical

report, Department of Electrical
Engineering of Texas A& M
Unuversity, *03.
[10] L. Ma, F.Yu and V. C. M. Leung.
“Modeling sctp throughput in
integrated

Wlan/ cellular networks, May05.”

(11 W. Ivancic, S. Fu, and M.
Atiquzzaman. “Effect of delay spike
on sctp, tcp Reno

and Eifel in a Wireless mobile
environment”, Oct. ’02.
{12 A. Kumar, L. Jacob, and A. L.

Ananda. Sctp vs. tcp: Performance

compatison
in Manets.” In Proc. Of the 29th
Annual IEEE International

Conference on Local
Computer Networks (LCN’04),
Washington, DC, USA, ’04. IEEE

Computer Society.

[13] Salvatore Loreto, Antonio
Pescape and Giorgio Ventre
“Measuring SCTP

Through put and Jitter over
Heterogeneous Networks”

[14] RFC 2960

[15] RFC 793 “Transmission Control
Protocol”
[16] R. Braden et. al., “Requirements
for Internet hosts — communication
layers.”IETF

RFC 1122, October 1989

8 APPENDICES

8.1 Code Listing snippets

$#4 This simulation is an example of combination of wired and
wireless
topologies.

global opt

set opt (chan) Channel/WirelessChannel ;#set what
channel is to use

set opt (prop) Propagation/TwoRayGround ;#wireless
propagation model, 2Ray

set opt (netif) Phy/WirelessPhy ; #network interface
set opt (mac) Mac/802 11 ; #MAC scheme 802.11 B/G
set opt(ifq) Queue/DropTail/PriQueue ; #Queue is drop
tail, priority queue

set opt(11) LL ;#Link layer

set opt(ant) Antenna/OmniAntenna ;#omni antenna
set opt (x) 270 ;#signal grid width

set opt(y) 270 ;#signal grid height

set opt (ifglen) 50 ;#interface queue length
set opt(tr) wireless.tr ;#trace filename

set opt (namtr) wired-and-wireless.nam ;#network
animator required data

set opt (nn) 2 ; #fnumber of
wire less nodes

set opt (adhocRouting) DSDV : #routing
algo used others DSR,AQDV

set opt (stop) 100 ; #used for simulation
secs

set num_wired nodes 3 ;#no of wired nodes

set num_bs_nodes 1 ;#AP/ Base station count

Trace set show_sctphdr_ 1 ;# show sctp trace format, default
is tcp
set ns_ [new Simulator];#instance of simulator

set up for hierarchical routing

$ns_ node-config -addressType hierarchical ;#hierarchical
address type. expicit node def.

AddrParams set domain num 2 ;#no of domain, first is wired
and second wireless

lappend cluster num 1 1 ;# 1 1, one wired one wireless

AddrParams set cluster num_ $cluster_ num

lappend eilastlevel 3 2
AddrParams set nodes num_ $eilastlevel

set tracefd
$ns_ trace-all $tracefd

set namtracefd [open $opt (namtr) w]
$ns_ namtrace-all $namtracefd

set
set
set
set
set
set
set
set
set
set
set
set

myvar 100
old_data O

old_datal
old_data2
old_data3
old_datad4
old_data5
old_dataé6
old data?
old_data8
old data?
ttime O

[oNeNeNe)

o

[oNoNoNe

[open Sopt(tr) w]

proc finish {} {

global ns_ namtracefd tracefd trace_ch ftcp ttime
global old data old datal old dataZ old_data3

old datad4
global old data5 old data6 old _data7 old_data8
old_data9

close the nam trace file
$ns_ flush-trace

close $namtracefd

close S$tracefd

#close S$ftcp

exec awk {

{
#

}
}

recieve dest
if (S1=="r" && $3=="_4_" && $4=="AGT" && $7=="sctp"
&& $8==1500)

{

throughput in packets

old datal= $6-20

0ld datal=old datal*8/($2-ttime)
ttime=$2

print $2, old datal

} wireless.tr > sctp throughput.data

exec awk {
{
recieve dest
if ($1=="-" && $4==0 && $5=="sctp" && $6==1500) { {
print $1 , $2 , $12
} o}
if ($1=="r" && $3=="_4 " && $4=="AGT" && $7=="sctp"
&& $8==1500}{ {
print $1 , $2 , $20
bl
}

} wireless.tr > sr_etoe_sctp.tr

exec awk {

{
if ($ll=="cwnd:")

old _data4=$12/1468
print $2 , old datad4

} trace.sctp > sctp cwnd.data

exec awk {
{
old data8=old data8+52
old _data%=old datag+1l
print old _dataB8 , old_data9

} sctp_cwnd.data > avg cwnd.data

#exec xgraph sctp_throughput.data &
#exec xgraph sctp_drop.data &

#exec =xgraph sctp_cwnd.data &
#exec nam wired-and-wireless.nam &
exit O

}

Sopt (mac) set dataRate 11Mb
Sopt (mac) set basicRate_ 1Mb
Sopt (mac) set bandwidth_ 22.0e6

#Mac/802_11 set dataRate_ 11Mb

#FHSS (IEEEB802.11)
$opt (mac) set SlotTime_ 0.000020 ;#20microsec
$opt (mac) set SIFS 0.000010 ;#1lQOmicrosec
$opt (mac) set PreambleLength 144 ;#144 bit
$opt (mac) set PLCPHeaderLength_ 48 ;#48 bits
$opt (mac) set PLCPDataRate_ 1.0e6 ;#1Mbps

frequency is 2.4 GHz
$opt (netif) set freqg_ 2.4e+9 ;
transmit power
$opt (netif) set Pt_ 3.3962527e-2 ;
Receive sensitivity.
$opt (netif) set RXThresh 6.309573e-12 ;
$opt (netif) set CSThresh_ 6.309573e-12 ;

set topo [new Topography]

$topo load flatgrid $opt(x) $opt(y)

god needs to know the number of all wireless interfaces
create-god [expr S$opt(nn) + $num_bs nodes]

fcreate wired nodes

set temp {0.0.0 0.0.1 0.0.2}

for {set i 0} {$i < $num wired nodes} {incr i} ({

set W(S$i) [$ns_ node [lindex $temp $il)

}

$ns_ node-config -adhocRouting $Sopt (adhocRouting) \
-11Type Sopt(11l) \
-macType S$opt(mac) \
-ifqType Sopt(ifqg) \
-ifglen $opt(ifglen) \
-antType S$opt(ant) \
-proplInstance [new $opt (prop)] \
-phyType S$opt (netif) \
-channel [new S$opt(chan)] \
-topoInstance S$topo \
-wiredRouting ON \
-agentTrace ON \
-routerTrace OFF \
-macTrace OFF

set temp {1.0.0 1.0.1 1.0.2 }
set BS(0) [$ns_ node [lindex S$temp 0]]

#configure for mobilenodes

$ns_ node-config ~wiredRouting OFF

for {set j 0} {$j < $opt(nn)} {incr j} {
set node_($j) [$ns_ node [lindex Stemp \
[expr $3+11] 1
$node_($j) base-station [AddrParams addr2id [$BS(0) node-
addr]]
}

$BS(0) random-motion 0

$BS(0) set X_ 1.
$BS(0) set Y_ 2.
$BS(0) set z_ 0.

o O O

$node_(0) set X_ 80.0
$node (0) set Y_30.0
Snode_(0) set Z_ 0.0

Snode_ (1) set X_190.0
$node_ (1) set Y_ 30.0
$node_(1) set Zz_ 0.0

fcreate links between wired and BS nodes
$ns_ duplex-link $W(1l) $W(0) 5Mb 2ms DropTail
$ns_ duplex-link $W(2) $W(0) 5Mb 2ms DropTail
$ns_ duplex-link $W(0) $BS(0) 2Mb 2ms DropTail

#position in nam
$ns_ duplex-link-op $W(l) S$W(0) orient right-down
$ns_ duplex-link-op $W(2) $W(0) orient left-down
$ns_ duplex-link-op $W(0) $BS(0) orient down

set erormodule [new ErrorModel]

$erormodule unit pkt

S$erormodule set rate_ 0.001

$erormodule ranvar [new RandomVariable/Uniform]
Serormodule drop-target [new Bgent/Null]

$ns_ lossmodel Serormodule $W(0) $BS(0)

¥ setup SCTP connections
set sctp0 [new Agent/SCTP]
8ns_ attach-agent $W(1l) $sctp0
$sctp0 set fid_1
$sctp0 set debugMask_ 0x00303000
$sctp0 set debugFilelIndex_ 0

$sctp0 set mtu_ 1500
$sctp0 set dataChunkSize 1468
$sctp0 set numOutStreams_ 1

set trace_ch [open trace.sctp w)
$sctp0 set trace all 1

$sctp0 trace cwnd_

$sctp0 attach $trace_ch

set sctpl [new Agent/SCTP]

$ns_ attach-agent $node (0) $sctpl
$sctpl set debugMask_ -1

$sctpl set debugFilelndex_ 1
$sctpl set useDelayedSacks_ 1

$ns__ connect $sctp0 S$sctpl

set ftpl [new Application/FTP]
$ftpl attach-agent $sctp0

$ns_ at 2 "$ftpl start"
$ns_ at 90 "$ftpl stop”

for {set i 0} {$i < Sopt(nn)} {incr i} {
Sns_ initial node_pos $node ($i) 30

}

for {set i } {$i < Sopt(nn) } {incr i} {
Sns_ at Sopt(stop).5 "S$node_($i) reset";

}

Sns_ at S$opt(stop).7 "$BS(0) reset";

$ns_ at Sopt(stop).7 "finish"

$ns_ at S$opt(stop).9 "puts \"NS EXITING...\" ; $ns_ halt"

puts "Starting Simulation..."
$ns_ run

6€6S9
0-60Ev61Y

6£6S9

6e659

G€5S9

628S

G€6S9

G¢SS9

0¢8S

¥68S

+68S

001
0:50ev61y

€985

€989

8C8S

58S

628S
0:S0ev61y

¥S8S

€985

€985

G¢599

S¢SS9

6¢6S9

§¢5S9

LT8S

G€SS9

§€559
G€8S59
5€559

6€6S9
5€559

o1l

0:S0EH61¥]

(==l e R i

G€659
S€SSs9
6€6S9
€GS9
0

o1l

0:1]

628S

6C8S
6¢8$
6¢8S
0¢8s
6¢8S
628S
1¢8S
S68S
GS8S

}48S
58S
6¢8S
G686
0¢e8s

6686
¥G86
689
LZ8S
LT8S
LT8S
LT8S
8¢8S

{oos

lo
{oos

loos

et o e e e e O o e OO v v e e O

0100

0100
0100
0100
0101
0100
0100
0101
0101
otrot

0101
0101
0101
0101
0101

0101
0101
0101
0100
0100
0100
0100
0101

01071
eci]
0101
0101
01071
0100
0101
0101
0100
0100
0100
ol
ecy]
0100
0100
0100
0100
0100
]
0100
0100
0100
0101
0101
0101
0101
0100

- O O O O ™ —

ds 1788
p— 89
p— 89
am— 89
a-—- 00S1

dips | 0 6198V°LE
— 15V ¥ 16S8¥LE
dps | 0 80¥8Y°LE
ds 1 0 80¥8¥'LE
ds ¢ ¢ 80+8HLE
ds ¢ 0 SGE8YLE
dps o ¢ 18184°L€
ds o ¢ 1818+'L¢
dps ¢ 0 SS18Y'LE
dis ¢ 0 10184°LE
ds g 1 1018t'L¢
— IOV ¥ 166LYLE
— IOV ¥ 166LYLS
ds ¢ 0 198.¥°LE
ds 1 198L¥°LE
ds ¢ 0 SSLLY'LE
dis ¢ 1 199LYLE
ds ¢ 0 SSSLY'LE
- IOV ¥ <Tui¥le
dis ¢ 1 12hLy'LE
dixs o 1 1ThLy'LE
dis g 4 12hivLE
dixs | 0 1ThLy LS
dips 1 0 1TV LS
dixs | 0 12LY'LE
dis ¢ ¢ 12V LE
dis ¢ 0 SS1LY'LE

elep p paerduad mey 78

Lo |

w o= T

+

W om Pt W o=t

- +

[V

0-60¢¥v61¥

G¢SS9
G¢SS9
6¢SS9

1¢86

¢8S

SESS9
G¢S99

98¢

968S

00°1

0-s0ev61v

G689

GG8S

0¢8S

9689

1€8S

968S

§686

5686

0:1]
G€SS9
GES59
SESS9
0
0
§ESS9
§€SS9
0
0
0:S0ET61Y]
0:1]
0
0
0
0
0
0
0
0

Z168
2168
2168
.88
9188
cl68
cles
1168
1168

0168
0168
€L88
1168
V.88
1168
0168
0168

1€8¢
1£8S
1€8S
€8S
€L8s
1€86
1£8¢
LS8S
LS8S

9489
9485
1¢86
L4988
[4%:39
LS8S
9686
9689

loos

lo
[008

0100
0100
0100
0101
0101
0100
0100
010l
0101

0101
0101
0101
01071
010l
0ot
0101
01071

)
0101
0101
0101
0100
0100
0101
0101
0100
0100

ol
eg]
0100
0100
0100
0100
0100
0100
0100
0100

00s1

- O O - O O O

e e e e e e e el

JLOV

S OO N O o

JLOV
JLOV

QO O O ¢ O N O O

—— O O H O O ¢ O O

e e QO - -0

69L6Y LS
8LSOY' LS
8LS6Y'LE
8LS6Y'LE
GGG6Y'LE
SSeov'Le
19¢6¥°LE
1Sc6v'Le
66T6Y'LE
6626V LE
LLI6Y LE
LLIGY' LS
6S06¥°LE
6S06¥°LE
GS68Y°LE
6588Y°LEe
SSL8YLE
61981'LE
6198%°LE
6198%°LE

o ow T

[V TR T

8.3 Post processed data.

8.3.1 Packet wise delay calculated

1 14.840072

2 18.160072

3 15.059639

4 18.199639

5 21.859639

6 14.800206

7 18.380206

8 21.920206

9 14.779774

10 18.199774
11 21.739774
12 21.039774
13 24.579774
14 27.939774
15 24.256774

16 28.096774
17 31.616774
18 30.156774
20 30.916774
21 29.696774
22 33.716774
23 37.416774
24 35.856774
25 39.936774
26 43.476774
27 42.036774
28 45.376774
29 49.456774
30 52.496774
31 54.770774
32 53.410774
19 111.256774
33 30.190774
34 30.010774
35 29.890774
36 29.490774
37 30.270774
38 23.956774
39 27.276774
40 31.176774

8.3.2 Summary of Data

Number of entries read : 28959
Number of entries sent : 14487
Number of entries received : 14472
Average delay of entries : 211.499704
Variance of delay is : 47.665602

