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Preface

The combined heat and mass transfer analysis under the chemical reactions have
great |1-3] importance in many processes, therefore have received a
constderable amount of attention in these days The heat and mass transfer
occurs simultaneously in the processes such as energy transfer in a wet cooling
tower, evaporation at the surface of a water body and flow in a desert cooler.
The chemical reaction between a foreign mass and the fluid occur in many
chemical engineering processes. The effect of chemical reaction and mass
transfer on the flow past an infinite plate are studied [4-6] Also soret and
dufour effect are important for intermediate molecular weight gases in coupled
heat and mass transfer Im bmary system. Many researchers [7-10] have
mvestigated the soret (thermo diffusion) and dufour (diffuso thermo) effect with

chemical reaction but few work has been done in the axisymmetric flow

There are only few papers [11-13] in which the fractional diffusion 1s
investigated for the axisymmetric flow In previous publications, problems for
the solutions to time fractional heat conduction equation 1n a half-space are
studied The Laplace integral transform with respect to time ¢, the Hankel
transform with respect to the spatial coordinate r, and the sin-cos-Fourier
transforms with respect to spatial coordinate = are used In this dissertation, the
time fractional energy and mass concentration equations are solved by the new
technique fractional VIM and HPTM [14-18] and the thesis 1s organized in the

following fashion.

In Chapter 1 basic definitions and laws are discussed. Chapter 2 1s the review of
a fractional model of a viscous fluid flow in a pipe Chapter 3 1s extended to
solve the equation of heat and mass transfer for a fractional model of viscous

flid by HPTM and fractional VIM
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Chapter 1

Basic Definitions

This Chapter comprises un the basic laws involved 1n chapter 2 and chapter 3

1.1 Fluid

Fluid 1s the matenal (hquid ot gas) that flows

1.2 Flow

A matenal that goes under deformation when different forces act upon 1t If
the deformation 1 continuously mereases without it then the phenomenon

1% known as How

1.3 Properties of Fluid

Properties of flmid determine the behaviours of Hid and charactenstics of the

flud
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1.3.1 Density
Density 1s the 1atio between mass () and volume (1) of a flud

p= i”_‘ (131)

1.3.2 Viscosity

Viscosity deterimnes the amount of resistance of the fimd to shear stress and

15 denoted by p

1.3.3 Temperature

This fluud property determmes the level of heat mtensity of a lnd

1.3.4 Pressure

Pressure of a fuid 1s the magmtude of force per umt area ol the Hud  In other
words 1t 15 the ratio of magmtude of torce on a fluid to the area of the fwud
licld perpendicular to the direction of the force

_ M
i

P (132)

1.3.5 Specific Volume

Specihic volumne 15 the volume of a flud (V) occupied per unit mass (7]

1.4 Classification of Fluids

1.4.1 Ideal Fluid

A fluid having zcro or neghgible viscosity 1s called weal flud - The occurrence

of such flwd 1 real world 1~ rare
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Free Convection

In free convection, the flmd motion 1s driven by density differences associated
with temnperature changes generated by heating or coolmg  Thus the heat
transfer itself generates the flow which conveys energy away from the pomnt at

which the transfer occurs

Forced Convection

In forced couvection, the flud motion 1s diven by some cexternal wfluence
Examples are the Qows of air mduced by a fan, by the wind or by the motion

of the vehicle etc

1.6.3 Radiation

In radiation, m the absence of intervemng mediumn  thete 15 net heat transfer
between two surfaces at different temperatures n the form of clectromagnetic

Waveh

1.7 Mass Transfer

MMass transfer 1s the net movement of mass f1om one location 1o another  Mass
transfer occuls 1 many processes such as absorption evaporation, drying,
precipitation, membrane filtration and distillation  Mass transfer 15 used by

different scientific disciplines for different processes and mechanisis

1.8 Soret and Dufour Effect

W hen small ight and large heavy molecules are seperated under a temperature
gradient the soret effect 15 considered while when a chenucal svstem s under

a concentration gradient heat fux 1s created 1t 1s described by a dufour effect
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1.9 Schmidt Number

-1

It is nou-dimensional number defined as the ratio ob viscoe=ity fmomentum

diffusivity } and mass diffusinaty

H
S = —_— C
¢ oD (191)

where D s the mass diffusivity, u1s the dynamic viscosity and p s the density

ol the Hud

1.10 Prandtl Number

The Prandt]l nummber Pr s a dimensionless number defined as the ratio of

momentum diffusivity to thermal diffusivity

P::% (1101}

where g 1s dynamic viscosity ¢, 18 specfic heat and & thermal conductivity

1.11 Conservation Laws

1.11.1 Law of Conservation of Mass (Continuity Equa-
tion)

In nature, mass cannot be created or destroyed It can be stated as the rate
of ncrease of mass m a region W equals the rate at which mass 15 (rossing the

boundary 1" 1wt the inward direction 1 ¢

if il = —/ pV dA 111 1)
dt Ju an

which 15 the ntegral form of law of conservation of mass where W a fined
subregion of region £ dA denotes the vector arca clement of dlt  Lhe surface

mtegral m Eq (111 1) can be changed to volune mtegral nsig the Gauss
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Diavergence theoremn, Eq (1 11 1} becornes

dp
—_ _- )
a{+<(pVJ 0, (1112

15 the differential form of law of comsersation of mass Lq (1112118 also
known as the contimuty equation If density of flud s constant g (111 2)
reduces to

YV=0 (1113)

1.11.2 Law of Conservation of Momentum (Equation of

Motion)

For a viscous fAuids, equation of motion 1n vecter forin 1s

p%:dn‘T-hpb (1114)

where, b 1s the body force, V 15 the veloaty of fluid and T s the Cauchy
otress temsor  In oy linderieal coordinate the equations of motion m r # and z

direction are

Ju Ju vdu i Lfo 3, dJd
p‘:aT+u5+FEJ—H+ 32]: ;[E;LTT”}"?‘%lT,g 3= —(rT,. ] (1115)
1 |
v J

Jt 61' t du ‘E_ _d_er}_a(T}q_i‘r ’
pdf_r a ]ag u():_ tr o Yz

. ' O ' J o d -
p[% u-d—u— ia—u QH—]‘—-}[—( Y+ T.p) + — (7. }] (1117)

11116}

T N FEUACSREETY o:

where u. v and w are compuonents of veloatymz, ¢ and = direction, respectively

1.11.3 Law of Conservation of Energy

It states that the temperatute of a flud element changes as it moves along
with the fluid because of heat conduction and heat production by the viscous
heating

Alathematically, we can wnte

de
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Definition 1 12.2 Liouville derivative 15 as follows

D)) = s [T - ) FE)dE - x <1<

Definition 1.12 3 Inversion gives the fractional derivative of f(t) as
Daf(t) = L™Hs"T(s)).

If f(t} =t then we can wnite

wad _ polgL{g+D TS+l L d-a
Dot = Lo (s=w) = R

1.13 Homotopy Perturbation Method

Consider the following equation

Liw) ~ Nu) = fir) =0

Where f(7)1s a known analytic function and L 1s a hncar while N 15 a non-
linear opcrator

We construct a homotopy v(r.p) 2 x [0 1] = R which satisfics

H(v p) = L{(v) ~ L{ug) + pL{uo) + p[N(v) ~ fl1)] = 0

where p € [0,1] 1s an embedding parameter  According to HPAL we use the
cinbedding parameter p as a small paramcter, and assume that the solution of

above equation can be written as a powcer senes 1n p

-

v=uy+up+npt+ = Zu,p'

=4

1.14 Laplace Transform Method

The Laplace transform of a function f(t) 1s defined as

L[f(t)]=f(b)=/:e‘s'f(t)dr (114 1)

due to the umgueness of Laplace transform, the mverse Laplace transform L

can be defined as
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L Y f(s) = ft)

1.15 Homotopy Perturbation Transform method

1t 15 the combination of Homotopy perturbation method and Laplace transform
method and used to solve various types of hinear and non-linear sv~tems of

partial differential equations

1.16 Variational Iteration Method

A non-linear problem 1s
L{w) + N{u) = g(t).
where L 1s a linear operator, V 15 a nonlnear operator, and g{t) 15 a giien

continuous function Correctional functional 15 given as

Upsr(t) — u,,(t)+/ M Lluad7)] + Munl7)] —gl7)}d7 n>0(1161)

u

where A 15 a genceral Lagrange multipher

1™
A= __(i,l —}1)'(T - m>1 (1162)

lere %, 15 considered as & restricted varation, which micans S, — 0 Consce-

quently, the solution may be obtamned as,

ult) = lun ug(t)

n—aC

1.17 Fractional Variational Iteration Method

We consider a more genelal FDE as given below

D?u + Rlu] + N[u] = fit), 0<t,0<u<] (1171)
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Correctional functional for Eq (117 1) 1s defned as [ollows
Uny1 = Up + /U! At 7)[D%un + Rlual + Nun] — J(E)dr {117 2)
where,
(—1)=(7 — )

[{e)
By using defimition 1 12 1 defimtion 1 12 2 and definition 1 12 J1n Eq (1172)

(1173

Alt 1) =

we obtamn the successive approximate solutions



Chapter 2

Fractional model of a Viscous

fluid flow in a Pipe

In this chapter, we review the paper of Devendra Kumar, Jagdev Smegh, Sunil
Kumar [19] llere, we revised a fractional model of Navier Stokes equation
formed by amisymmetnie How m a pipe  The exact solution 1s vbtamed by
homotopy perturbation transfoim method and [ractional vanational iteration

method The effect of emerging parameter 1s shown by the help ol graphs

2.1 Problem Formulation

Here. we consider the unidirectional flow of a viscous flud 1n a pipe having
radius R Initially the flmd 1s Howing by the parabolic selocaty The velocrts
1s maximum at the centre of a pipe and on the boundaiy of the pipe Hud 15 at
rest

The velocity profile for the axisymmetric flow 1< given by

V = (0,0, u(rt)) (211

13
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The cauchy stress tensor for a viscous fHud 15 defined hy

T = —pl + pAq, where Ay = (gradV) + (gradV)' (212)

where, p 1s the pressure, I 15 the identity tensor g 15 the viscosity and A 1
the first Ruvilin Enichson tensor

The «ontimuity equation 1s 1dentically satished 1 e

TV=0 (213

The equation of motion for the fractional viscous fluid 1 the abseuce of body
force 15
Vv

—— 4+ (VV)V = EanT (214)
aru Ji,

Emploving Eq (21 1) and Eq (2 1 2). then the momentum equation in y in-

derical coordinate 1s given by

Fu u 10w 13dp
Y AL L A ca<l 215
ot "'(arz rar) 00z f<as (215

whete, 0 < a < 11s the fractional parameter, v 15 the dynamic viscasity and p
1= the density of the flmd

The mtial and boundary conditions are defined as

1C u(r,0) = filr), 0<r<R (216)

BC s g(o.r)—_o, u(R 1) =0 t>0 (

The non-dimensional quantities are as follows

I
—
=1
—r

(Alys

The non-dimensional form of the IBVP in the presence of constant pressme

gradient P 1s as follows

o°u &#r lou ,
—_— - - "18
T (552+EOE)+P { )
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w(£.0) = f,(£). (219)
—(0.5) =0 1 =0 (2110}

We drop the bar fiom the cquation of motion, 1nitial and houndary conditions

mn non-dimensionalize form lor simpherty

2.1.1 Homotopy Perturbation Transform Method

Example 1. Consider the following time-fractional Navier Stokes cquation
a”u Fu  10u
i o[ =4+ =1+PF 2111
gee (052 * Ec){) (

subject to the imtial condition
u(€,0)=1-§" 2 112)

Applying Laplace transform on both sides of Eq (2111} we get

1-£* P 11{62:; ldu]

¢ 4y — gue < 2113
Llu(s. )] — + I ( )

ot | g

The wverse Laplace transform gives

a 32
e r)=1—£2+],—PT— L—l[lL[d“+39’i” (21 14)

(e +1) T e E £t

Now by applving I1PM

a0

u(€ 1) =) pual€ t) (21 15)

n={

Using Eq (2115) m Ey (2114), we have

- Pte 1 [ [
n — _ 2+ -1 i ! " £t
N pruEt) = 1-¢ r——(u+l}+p(a§ LD [052 (}:p unl ;)

n=0 n="_0

10 (v n R
- ge(Smie )l 10
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Compannuyg the coefhaents of powers of p

P w6, ) = 1-52+F_“‘i.’f_”

p e - bl

v w6, = L":%I-L:é;z—;;+%%‘él]:;g

P’ uyl 1) = L'I:JTL:%+%C:)—?]1=O (2117

For p = 0 gives mitial solution and p = 1 gives final solution for the goverming

equation Henee the solution for Eq {21 5) 15 as follows

x

uls ) = Zu,.(& t)

n=0

!l‘
- 21 18]
[la-1) 1

wl€ 1) =11 -&) (P-4

which shows the exact solution for 0 < a < 1 By substituting @ - 1 Eq

(2118) we get the solution for the Navier Stokes equation as given below
w(E, ) = (1 =EH + (P-4t (2119)

Example 2 Consider the following time-fractional Navier Stokes equation

®u (e 1du 1
W—(Fa“zsz) (2120

subject to the mmtial condition
u(f,0) =& (2121}
Applving Laplace transform on both sides of Eq (2120} we get

2
Llu(€ f)]:§+:1;L[g-£—I:+%C;—I:] (2122)

The mnetse Laplace transform gives

2
WE )y =6+1L 1[%L[3{”+%%§” (2123)
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Now, by applying HPAM
u(E‘f)=Zp“uu(§‘!} (2124

n=I]

Using Eq {2124} m Eq (2123) we have

= I B L g
Y o ptunl6t) = E+P(L ][—;L{B—J(anunlf l‘])
n=>0 § E =)
10 [
SEmc)) o
n=0
cornpanng the coellicients of powers of p
0 _
P u{§ t) = &,
! _ gL [Fue  Ldual] 17
P m{f ) = L _s,aL o2 " £og || ETla+ 1)
: _ o[l fPw 1ow]] 1 £
b wtt) = LS s T e e || ot@ar
(1 [Jd%u 18u,]] 9 $a
3 _ 1| * 2 et 0 1N
14 x 3° x x (2n — 3)° e R
n = 2126
P unl& 1) gn-l [{na+1) { )
Hence the solution 1s
1P x3x N (2n—3)2
— 2127
ulg. t) £+Z g2n-1 TI'(na + 1) [ )

n=]|
2.1.2 Fractional Variational Iteration Method

Example 1. Consider the time-fractional Navier Stokes equation Eq (21 11)
subject to the imtial condition (21 12)

The coriectional functional for Eq (21 11) 15 given as

t Fu Fu 1du,
= i — i T — = £ T) = 1) d
ur&+] Up + /Uk )‘(t T)( ()Ta (6 T) UE_; (£ {‘\ /] ) T

U<l

(2128)
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whete

_(Le(r e

Al ™) I'{a)

D<a<l {21 29)

So., we can write Eq (2 1 28) as follows

{ _ ir—1 ' 2
un+1:un-/ (t—r) (0 in aun—ldu”—P)dr, D<a<l
0

T(a) gre  9E2 £
{2130
Choose
wlé t) =1 €2,
Then we get
L - i 3
(t—7) "l /g%, Quy  10uy )
Ay =uy —~ — ——— - Pd
(€. = u _/0 [a) dru 02 £ e 7
fu
1 _ gl _
=1+ 4)1“(at+1)
t a—1 !
(f—-T} d°u1 62'{'1.1 1()&'.1
$) =y — - - — —-Pd
st = / I{a) (arﬁ 9er £ o ’
tﬂ
_1_r2 _ -
=1-£+(P 4)”(}4_1J
i a—1 I 2
(f_ T) C)ai'ig @ 2] 1()”.2 )
Sty=uy; — - - = — 1 )d
US(‘: } [13] ‘/0 F(O:) ( aTO @fi 5 Li{ T
=1~£-+(P—-1)m,
t a—1 2
(t— 1) U1 Funn 10Uy )
= — — - = - FPd
() =t / T{o) ( Jre ogt £ o€ ’
fu
1 _ g2 oy
=1-&+(P 4)F(“+1)
(2 131)

Thu~, the solution 15 as follows

ulg,t) = lﬂn ua (€. 1),

whete u, (€ t) 15 given in Eq (21 31)

Example 2. Consider the time-fractional Navier Stokes Eq (21 20) subject
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to the imtial condition {21 21)

The <orrectional functional for Eq {21 20) 15 given as

f aﬂ n d.{ T ld b4]
Upyl = Up + / ’\(t T}( - (E T) - - (\: TV — < 2 E T))(‘:T
0 121 32)

(hre JE? £
U<a<!
whete
_14a — ¢ a=1
A(t‘r)z(l)(r ) 0<a<l 12133
[a)
Su we can wnte Eq 21 32 as follows
t ea—1 ' JAK
(t—1) *'u, u, 10u,
+} = Un — - - =z 0 <
Unep = U ./u Fla) (67“ e o dr <<l
(2131
Chwose
uplé 1) =&
Then we get
f “ )(1 1 Uu_dzuu_li@_ dT
§H=u= nu g0 0f2 £ €
=i 51' a+1)
] =1 1 3V
(f— ) 8(“1 J 131 ].UU])
= u — - - == d
uy(§ 1) = -/(; T(a) oo e E o dr
B r l tu 1 tZu
oo {FluTl §3r(20+ )
U )cx ! aﬂuz 6 ['¥] 1()11’2
= - - ——= |d7
usé 0 f Tla) \are o £
1 t\ t.’n 9 t‘kl
=f+ - —
ET{a+1) 531"(‘2cx+1} £31{3a + 1)
t -1 2
(t—7) Mu, ., i, ldu”_])
— — - - - !
unll ) =t /D o) ( Gre  ogr E o )
o 1 " N 12 x32x w{2n — 3)? e
T T ETa+1) gon-l Tira - 1)
n21

{2135}
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Thus the solution 15 as follows
ulf. 1) = lin un{f )

wheie u, (€ t) s gnen n Eq (21 35)



21

fODEL OF A VISCOUS FLUID

A

FRACTIONAL

CHAPTER 2

Figure 21 {a) Veloay profile for Jifferent values of o where £ -1 £ =01

3D plot for veloaity held with 1espect 1o § and ¢ where

)

<1 (b

and 0 < ¢

< <€<1

1 0<t<1and0

a=01 P
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Fig 21 {a) shows that wntially magmtude of velocity profile moreases and
after some tune magnitude of veloats profile decreases by mcreasing the lrac-
tonal patameter and also Fig 2 1 (b) shows the diect of veloaty pronle with

respect to vanables £ and ¢



CHAPTER 3 HEAT AND MASS TRANSFER

[g]
o

C(0.1) = Co, CR.1) = (s (316)

where D 15 mass diffusivity, Az 15 thermal diffusion ratio 7,, 1» mean flud
temperature Ap 1s the rate of chemical reaction y and C'y are constant

The non-dimensional quantities are glven by

7 = T -7, - t [1%e
£ = — T: N t= > lp = a2
"R T, - T, =z T
— -Cx Dip((Ch - Cx} 1 D kR
C = —_— D = . T = = '

Co — C« ¢ ea{Ty —Tx) Sc v 1

(317

1sing the above non-dinensional quantities i Eq (31 1) - Eq (3 1 6) and drop-

ping the bar we get the following system of fractional PDE

0°T 1 (T 107 D (0-’C+1£) 318)
Gt Pr\oe " £Of “\ ot T £
3 2
_()n—(__‘:L 9-£+l_d£ Sr(£+_1_(_)£)_~( 13419y
ol Sc\ gg2 £ o ggr | €€
BC s T0 ty=1=C(0,8) T(1 6y —0- i1ty
(31 1U)
IC TE W =1-6 = CI50)

where Pr s the prandtle numbet D 1s the dufour number Ses the sclpmadt

numnber S, 1s the soret number and ~ 15 the chemical 1eaction parametcel

3.1.1 Homotopy Perturbation Transform method

Applyving Laplace transform on both wides of Eq (31 8) and Eq (319

respectively, we get

. 1-6%2 1 1 (0*T 10T FC 10C
LT )] = 3 +_>:L[FT:(O‘—§2+E§)+DU(-@{—J+EE)] {3111

1-¢2 1 1 f3°C 19C C(*T 1dT s
L[C(E:”]: SL' +;‘L[§(—((—3£—2+E§£—)+3r(0£2 —r—EFE-)—-r(}

(4 112)
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Choose
Tyl€ ) =1-¢ Col€ t) =1 - &%
Than we obtam the following
TE ) =1-& - (i +4Du)—a—,
Pr Fla+1)
o

4
CyEt)=1—-€—{ = — Y
g 1) =1-¢ (SL+4ST+’\'“ \))l‘lquH

4 t.!u
=1-€&~-(=—~+ + e De——
LiEH=1-¢ (Pr w”)l‘(nﬂ) S T

e DY (2

CZLE\'i') :1_£ _(§+4Sr+ !{1_6 ))F{O_TIJ* '(b( 1br

~ (1 -~ 52))m‘
tZo

a

3 o
e ) =1—€& - — NN PV b I —
(g =14 (P: +w”)r( TR STy
2 t3a
12 Dge—
P Ga T 1)
4 e 8
e} (1 - €2 W2 s,
Cof ) =1-¢ (SC+4Sr+r(1 E))I“(r1+1]+ (SL S
- 2‘] 2ee . 12 -lq " _r.]) i|_‘.u
AL [ +1) (5( TAS =) R 1)

LT

D)
+ 1}

4 i
T £ =1 -£¢ - | — _ “1'-'“_1
W€ 0 £ ( r+4Du)F(ﬂ-rl)+ + (r 1) ul“tm
n>1
-1”, rllu
- ; 1 -8 | ——
+45- 421 =4 ))Iﬂ(nn—%]]

_1_r2 _1ynan-l
Cul§ 1)y =1-6"+ +(( 1) (Sc

n>1

Thus the solution s as follows
T(E ) = hm T,(§ 1)
=

C(€.0) = hm Cul6,0)

where T,.(£ t) and Cp(£§ ) 15> given above equations

)

(31271

(31 2>)
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Figure 3 2 Temperature prohle for different values of a = Du and Pr (a)
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Figure 33 Concentration profile for different values of a, ~+. 5, and S¢ (a)
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Fig 32 (a) shows thal temperature prolile increases by increasing the dufom
effect also e temperature profile m Fig 3 2 {b) decicases by icreasing the
cheinical reaction parameter Fig 3 2 {¢) shows that as hactional parametet
mereases  temperature profile will decrease and m Fig 3 2 (d) temnperature
prohle decreases by mcreasing prandtl numnber Fig 32 (¢) shows change m
temperature with respect to vanables £ and ¢ aud also graph i~ showing that
both 1mtial and boundary conditions are satished

Fig 33 {a) shows that concentration profile increases hy mereasimg the soret
effect also the concentration profile m Fig 3 3 (b) decreases by 1wieasing the
chemical reaction paramecter  Fig 33 (c) shows that as schimdt number
mncreases coucentration profile will decrease and m Fig 3 3 {d) «oucentration
profile decreases by mcreasing fractional parameter g 3 3 {e) shows change
i concentration field with respect to vanables £ and ¢t and also both mitial

and boundary conditions are satisfied
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