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Introduction

In our real life, lots of models and traditional methods, are being used to handle
uncertainty and imprecision. Many traditional areas such as medical, social and
physical sciences, which utilized the imprecision and uncertainty for recognizing the
data, these methods and tools are used extensively. To handle such situations,
different theories and ideas are being presented these days. In 1965 L. A. Zadeh [28]
introduced the concept of fuzzy sets that is applicable in many situations. In addition
to this several theories are also introduced including Rough sets [22], Intuitionistic
fuzzy sets [8, 9].

Molodtsov [21], in 1999, presented the concept of soft set theory to deal data
involving uncertainties. Since then soft sets [21] attain keen attention for researchers
and are extensively spotlight both in the theory of logic and in the theory of algebraic
structures. Maji [19] introduced the concept of operations in soft sets and further
studied soft set theory and used this theory to solve some decision making problems
[16]. Aktas and Cagman [1] initiated the study of soft sets in algebraic structures and
defined soft groups. The concept of soft topology is discussed in [13, 25]. The
concept of soft fuzzy sets is developed and discussed in [17), of intuitionistic fuzzy
soft sets in [2, 18, 26] and the concept of fuzzy parameterized interval valued fuzzy
soft sets is developed by Alkhazaleh [5]. Jiang [14] extended the applications of soft
sets in description logic. Roy et al. [24] presented a fuzzy soft sets theoretic approach
towards decision making problems. In [4] the concept of lattice ordered soft sets is
discussed and in [7] the concept of lattice ordered fuzzy soft sets is discussed. The
applications of soft sets are also used in [3, 6, 11, 12, 15, 23, 27].

In this thesis, we define extended union, extended intersection, basic umion, basic

intersection, V-Product and A-Product on intuitionistic fuzzy soft sets. Further we



define Iattice ordered intuitionistic fuzzy soft set. Some operations like restricted
union, restricted intersection, extended unmion, basic union, basic intersection,
complement, V-Product and A-Product on lattice ordered intuitionistic fuzzy soft sets
are also defined. In the last section a2 Multi attribute decision making method based on

lattice ordered intuitionistic fuzzy soft sets is used to solve a daily life problem.
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CHAPTER 1

PRELIMINARIES

This chapter is of introductory nature including some basic definitions and results, which
will help us in the subsequent chapters. In this chapter we discuss lattices, fuzzy sets,
intuitionistic fuzzy sets, soft sets, soft fuzzy sets, lattice ordered soft sets and lattice ordered

fuzzy soft sets.

1.1 Latiices

In this section we discuss partial order, upper and lower bound, supremum, infimum and

lattice. For undefined term and notion we refer to [10].
1.1.1 Definition

L. # @ is said to be partially ordered (POQ), if for binary relation < defined on L, the
following conditions hold.

1) Foralll€ Ly, 1 <,

(2} for b, Iz € L,, if {; <lgand Iy <{;, then {; =,

(3) for hy,l2, I3 € L, ifly <3 and Iz <3, then §; < 3.
1.1.2 Example
Let P(L,) be the collection of all possible subsets of L,.. Then "C" is a PO on P(L,).
1.1.3 Definition

Let L, be a PO and L,, C L,. Then an element j € L is said to be
(1) lower bound of L, ifYme€ L,,,j<m,
(2) upper bound of L, if ¥ me€ L,,, m < j.

1.1.4 Definition

Let L, be a PO and L,, C L,. Then



(1) A lower bound « of L, is said to be greatest lower bound or infimum of L, iff
¥ lower bounds j of L,,, j < a. Then we write a = gib(L,,) or a = inf(L,, ).

(2) An upper bound § of L,, is said to be least upper bound or supremum of L, iff
for every other upper bounds j of L, § < j. Then we write § = lub(L,, ) or 8 = sup(L,, ).

1.1.5 Definition[10]

Let < he a PO on L,. The pair L, = (L, <) is a lattice if ¥V {;, I € L, the set {i1,{>} has
supremum and an infimum in L,,if30and 1€ L, st 0<jand <1,V j € L,. Then
L, i3 ealled a bounded lattice.

1.1.6 Theorem

Let L, # @ and A and V be two binary operations on L, Then L, = (L, A, V) is a lattice
iff for each Iy, I, I3 € L, the following hold:

Mhala=baliandlhvie=LvVY

2y (haldalg=3AlloAals)and (Lvis)Via=4 vV (laVis)

(3) hAl=hand Lvh =k

@yhathvih)=lhandlivihal) =4

1.1.7 Example

(1) Suppose L, is & set of positive integer and V denotes the least common multiple and A
denotes greatest common divisor. Then L,, is lattice.

(2) For any non-empty set W, (P (W),N,U) is a bounded lattice.

1.2 Intustionistic Puxzy Set
1.2.1 Definition[28]

Suppose X, # 8. Then A, = {(x, f(x))|>x € X\ A f: X — [0,1]}.

is known to be a fuzzy set on X,, when f is known to be membership function.
According to some authors in this case f is called fuzzy subset of X,.. FP(X,) represents
the collection of all fuzzy subsets of X,.



1.2.2 Definliion

Suppose f and g be any two fuzzy subsets of a non empty set X,,.. Then
FCg,if f{>) < g(x), for each »x € X,,.

1.2.3 Definition[8]

An intuitionistic fuzzy set F¢ in X, is defined as:

F( = {(TF((R)!KFc(x)) X E Xx}

where Tr, : X, — [0,1) and Kp, : X, — [0,1] define the degree of membership and
degree of non membership of the element » € X, and 0 < Tr,(x) + K, {») < 1. For

notation, collection of all mtuitionistic fuzzy sets over X, is represented by TFS(X,,).
1.2.4 Theorem
Consider F¢, G¢ € IFS(X,.). Then
o F; CG¢ & Tr.(x) S T (), Kp(») 2 Kg (»): x € X,
o FeNGq = {3, min{Tr (), Ta ()}, max{K, (%), Ko (<)} : € X}
o F: NG = {», max{Tr, (), Tg ()}, min{Kr (%), K¢ (%)} : x € X}
o Ff ={Kp(5), Tr, (2} : % € X}
1.8 Soft Set

In this section we define soft sets{SSs), soft subsets, soft equal, relative null SSs, relative
whole SSs, restricted union of two SSs, restricted intersection of two SSs, extended union
of two S8s, extended intersection of two SSs, basic union of two 8Ss, basi¢ intersection of

two SSs and complement of a S8s.
1.3.1 Definition{[21]

Suppose X, is an objects collection represented as » and L, C E,, is a set of parameters.
Then {F¢, L) is known to be a soft sat over X, where mapping F; defined as F : L, —
P(X,). In further notation for soft set over X,,, denotes as S5(X,.).



1.3.2 Definition[18]

For two §S(X..), (F¢, Lx) C (G¢,0y), if it gratify the conditions.
(1) L, CO,
(2) Flo=Ge)VeoeLx
(F¢, L) is said to be a soft super set of (G¢, Ox), if (G¢, Ox) is soft subset of (F¢, L)
We denote it by (F¢, Ly) 2 (G¢, Ox)-
1.3.3 Definition[3]
Suppose universe set is X,, and L, C E, is set of parameters., Then
(1) (F, L) is known to be relative null soft set. if
F(l) =0 ¥ 1€ L,, For notation, relative null soft set represented by 0y, .

(2) (F¢, L) is known to be relative whole soft set, if
F¢(l) = X, ¥ 1 € L. For notation, relative whole soft set represented by Uy, .

1.3.4 Definition(3]

Extended union of two soft sets (F;, L.} and (G, Oy) over a common universe X, is a soft

set (H¢, Py), where P, = L, U O, and for all p € P,.

Felo) if pe Ly, — Oy
Helo) = Gclo) if @ € Ly ~ Ox
Fole) U Gele) ifpeLyNOy

We write (FC:Lx)UEXT(GC: 0,) = (He, P,).
1.3.5 Definition|3]

Extended intersection of two soft sets (F¢, L) and (G, Ox) over a common universe X, is

a soft set (H¢, Py), where P, = L, U O, and for all p € P,.

He(o) =13 G(o) if p€ Ly~ O
Fe(o)NGelo) ifoe LeNO,

We write (F¢, Lx) NDexT (G¢, Ox) = (He, Puo).



1.3.6 Definition(3]

Let (¥, Lx) and (G¢, O} be two soft sets over a same universe X, such that L, N0, # 8.
Then restricted union of (#, L.) and (G¢,0,) is denoted by (F¢, L. }Ures(G¢, Ox) and
is defined by (F, Li)Ures{G¢,Ox) = (H¢, Py), where P, = L, N O, and for all p € Py,
He{g) = Fe(e) U Gelo)

if L, NOy =0, then (F,L,)Uges (G¢,Ox) = 0.

1.3.7 Definition(3]

Let (F¢, L) and (G¢, Ox) be two soft sets over a same universe X,,, such that L,NO, # 0.
Then restricted intersection of (F;, L) and (G¢, Ox) is denoted by (F¢, L) Nres (G¢, Ox)
and is defined by (F¢, L) Nges (G¢,Ox} = (H, Px), where Py, = L, N O, and for all
e € Py, He(o) = Fe(o) N Gelo)

if L,NO,=0,then (F;,L.)Nres (G¢, Ox) = 0.

1.3.8 Definition[23]

Let (F¢, Ly) and (G¢, Ox) be two soft sets aver a common universe X,.. Then the basic union
of (F¢,L,) and (G¢,Oy) is denoted by (F¢, L) V (G¢,0.) and is defined as (H¢, Py) =
(F¢s L) V (G, Ox), where Py, = L,y x Oy 8nd He (I,0) = Fe () U G¢ (o) for all ({,0) €
L, x Oy.

1.3.9 Definition(23]

Let (F¢, L) and (G,,0,) be two soft sets over the common universe X,,. Then the basic
intersection of (F¢, L) and (G¢, Ox) is denoted by (F¢, L) A (G, Ox) and is defined as
(H¢, P} = (F¢, Ly) A(G¢, Ox), where Py = L, x O, and H¢ (1, 0) = F¢ (I} N G¢ (o) for all
(l,0) € L, x O.

1.3.10 Definition[20]

Suppose parameter set is L,, O, C E,.Then conjunction and disjunction parameters are
denoted and defined as.
Ly®0x={(tAo): (l,0) € L, x Ok}



Ly@Oy,={(IVo):(l,0) € L, x Oy}.
1.3.11 Definition[20)

Let (Fy, L) and (G, 0,.) be two soft sets over & common universe X,. Then

(1) (Fey L) Na (G, Ox) = (He, Ly @ O,;) is the soft set defined as He (I Ao) = F¢ ()N
G¢(o) foralliAo€ L, ® O,.

(2) (F, L) W (G, Ox) = (H¢, L ® Oy) is the soft set defined as He (1 Vo) = Fp (U
G¢(o) forall iVo € Ly @ O,.

1.4 ILattice Ordered Fuzzy Soft Set

In this section we define lattice (anti lattice) ordered soft set, fuzzy soft set, some results

on lattice (anti lattice) ordered fuzzy soft set also investigated.
1.4.1 Definition[4]

(F¢y L) € (SS(X ) is called a lattice (anti lattice) ordered soft set over X, (LOSS(X,.))
if for mapping F; : L, — P(X.),
if o1 < ¢y, then Fe(p)) € Fe(eg) (Fe(en) € Feer)) Y or, 0 € Luc.

1.4.2 Example

Suppose P = {p1, pa, p3, Pa} is & set of four stores and L, = {py, 04, 03, 04} C Ex,where

g1 = Large store

g7 = very large store

g4 = Huge store

o4 = Very Huge store.

Ordered can be describe as g, < g3 < g3 < 04. (F, Ly) € (S5(X)) may be represented
by {Fe(e1) = {m}, Flea) = {p1, m}, Gcles) = {p1: P2, p3}, Feloy) = {m, P2, 13, pa}}.
Soft set (£, Ly) in tabular form is shown in Table 1.1.



(Fc,L,,) 1 2 03 @
1 ¢ 1 1 1

P4 0 0 0 1

Table 1.1

Clearly F(e1) € Felos) € Fe(os) € F(eq)- Thus (Fy, Ly) is an LOSS(Xyc).

1.4.3 Definition{27]

A pair (A¢, L) is known to be fuzzy soft set over X, where A is a mapping given by
X i Ly = FP(X,). For notation, collection of all fuzzy soft sets over X, is represented by
FSS(X,).

1.4.4 Definition[7]

Let fuzzy soft set be {Ac, L,). Then it is known to be lattice (anti lattice) ordered fuzzy
soft set over X, where A¢ is a mapping defined by A¢ : L — FP(X,). If

21 < gy, then Ac(e1) € Aclez) (Aclen) € Acler)) V a1, 02 € Lix
For notation, lattice ordered fuzzy soft sets over X,, is represented by LOFSS(X,.).

1.4.6 Example

Mr. Usama wants to enroll his grandson in a computer programme. He visited a few
institutions for this purpose. Suppose X, = {», »z, 23, x4} is the set of institu-
tions and L, = {g,(cheaper), p,(english medium), py(highly qualified staff), g,(good

environment)} C E, is the parameters set and order is defined as.
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(5]

Then a LOFSS(X,.) given below.

AeLu) |02 02 03 o4
) |01 01 02 05

2 03 04 04 06
3y 0.4 05 06 0.7
g 05 06 0.7 08

Table 1.2

Here for g; < gy < pg and gy < g3 < pg we have Ac(py) C A¢(o2) C© Ac(04) and
X{01) € A¢les) C A¢(oq) respectively.

1.4.8 Deflnition([7]

Let (A¢, Lu), (#;,0x) € LOFSS(X,). Then (A¢, Ly} Ugxt (3, 0x) = (H¢, Px), where
P,=L,u0,andforall g P,

‘\C(Q) ifge Ly —0x
He(o) = nelo) if g€ Ly — Oy
Ac(o) U pelo) if p€ LeNOx

1.4.7 Definition([7]

Let (A¢, Li), (8¢, Ox) € LOFSS(X,). Then (A¢, Ly) Npxr (3¢, Ox) = (He, Px), where
FPe=L.UOxand foral g€ P,



A0 i€ Ly Ox
Hele) = F((Q) if p € Ly — Oy
A‘-(g)ﬂpc(g) ifee L,NO,

1.4.8 Deflnition[7]

Let (A, Ly}, (itg,Ox) € LOFSS(X,). Then (A, L)Urgs(p, Ox) = (H¢, Py), where
Py = L, N Oy and for all g € Py, He{g) = A¢(a) U (o)
if L,xNO, =9, then (A, Ly} Urrs (¢, Ox) = 0.

1.4.9 Definition{7]

Let (A;, Lx), (4;,Ox) € LOFSS(Xx). Then (A¢, Lx) NrEs (15, 0x) = (He, Px), where
P, = LN Oy and for all ¢ € Py, He(g) = (@) N (o)
if Ly, NOx =9, then (A, Ly} Nars (¢, Ox) = 0.

1.4.10 Definition[7)

Let (A¢, Lx), (#;,O0x) € LOFSS(X,.). Then the basic union of (A¢, Ly} and {g,Ox) is
denoted by (A¢, L) V (,uc,O,,) and is defined as (H¢, Py) = (A¢, Lx) V (¢, Ox), where
P, =Ly X Oy, and H; (1,0) = A (1) U ¢ (o) for all (1,0} € L, x O,

1.4.11 Definition[7]

Let (A¢, Lx), (ti¢, Ox) € LOFSS(X,). Then the basic intersection of (A¢, L) and (0“0 Ox)
is denoted by (A, Lx) A (4, Ox) and is defined as (He, Pie) = (A¢, Lic) A (4, Ox ), where
Py =L, X Oy, and H¢ ({,0) = A ({) N pe (o) for all (1,0) € Ly x Ox.

1.4.12 Definition[7]

Let (A¢, Lx), (#;, Ox) € LOFSS(X,). Then

(1) (A¢» Lic) N {ies Ox) = (He, L ® Ox) is the LOFSS(X,) defined as H (1 Ao) =
ANy (o) forallino € Ly ® O,.

(2) (X, L) Uy (g, Ox) = (He, L ® Oy) is the LOFSS(X,) defined as H, (I Vo) =
A () U (o) for all IV 6 € Ly, @ O



27

e g

1.4.13 Proposition|7]
Suppose (A, L), (¢, Ox) € LOFSS(X,). Then (¢, L) Ures (g, Ox) € LOFSS(X,).
1.4.14 Proposition[7]
Suppose (A¢, Ly}, (¢, Ox} € LOFSS(X ). Then (A, Ly) Npes (6, Ox) € LOFSS(X,).
1.4.153 Proposition(7}

Suppose (A¢, Ly}, (g, Ox) € LOFSS(X,.). Then (A¢,Ly) Ugxr {(p¢, Ox) € LOFSS(X,0),
if (A¢, L} € (pr¢, Ox) or (3¢, Os) € (¢, Lix).

1.4.16 Proposition|7]

Suppose (A¢, L), (s, Ox) € LOFSS(X,). Then (A, L) Next (¢, Ox) € LOFSS(X,c).
1.4.17 Proposition[7]

Suppose (A¢, L), (4, Ox) € LOFSS(X.). Then (A¢, Ly} V (1, Ox) € LOFSS(X,.).
1.4.18 Proposition[7]

Suppose (A¢, Ly), (¢, Ox) € LOFSS(X,). Then (A¢, L) A (g, Ox) € LOFSS(X,).

10
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CHAPTER II

INTUITIONISTIC FUZZY SOFT SET THEORY

In this chapter the research paper [2] is reviewed, which contains some core material pro-
viding a base work for our work. The work in this chapter is about intuitionistic fuzzy soft

set containing some useful results and basic operations.

2.1 Intuitionistic Fuzzy Soft Set

2.1.1 Definition[12]

Suppose X is an initiative universe, I F(X,.) is the set of all (IF§(X,)}), Ex is a parameters
set and L, C E,. Then, an intuitionistic fuzzy soft set (F, Lx) over X, is function from
E, in to IF(X,).

(F(rL’f) = {(x$ TF((oi)(x)v KFc(ﬂi)(x)) ro; €LeAxe XK}

wbere Tr(,,)() and K, (p)(x) are degree of membership and degree of non membership
of » to the parameter g, respectively. For notation, intuitionistic fuzzy soft set represented
by IFSS(X,).

2.1.2 Example

Let X be the set of houses and E,, is the set of of parameters. Consider X,, = {511, s, s, 314, 55}

and Ly C E,,

L, = {p; (beautiful}, g, (wooden), g3 (costly), p, (moderate)}. Suppose that,

(31,0.1,0.2), (33,0.7,0.1), (3r3,0.4,0.2)
FC(QI)I 1
(33,0.2,0.6), (35,0.2,0.4)

(31,0.1,0.5), (3,0.2,0.7), (33,0.1,0.8),

Felop) = 1
(34,0.4,04}), (x5, 0.5, 0.5)

11















(HC': Px) My 3 M3 M3 My
o) (0.4, 0.1) (0.4,0.6) (0.6, 0.1) (0.2,0.5) (0.7, 0.2)
03 (0.6, 0.1) (1, 0) (0.7, U.l) (0.9, 0.1) (0.8,0.1)

Table 2.7
2.2.9 Definition

Suppose (F¢, L), (G;,0x) € IF55(X,). Then restricted Intersection of (F,L,) and
(G, O.) is denoted and defined by (Fy, Ly )Nges(Ge, Ox) = (H, Px), where Py = L,,NO,,
and ¥ p € Py, x € X,, we have H¢(p) = Fe(p) N G,(p).
T () = Min{Tg (3}, Tg ) (>}
Kp () = Maz{Kg (), K¢, ({29}
2.2.10 Example

Suppose X, = {1, g, 33, s, x5} ia a set of shoes and E, = {p,(price), g;(color),
o3{quality), pj{comfort)} is the parameters set and L., Ox C E., L. = {2y, 02, 2},

Ox = {29, €3, 04}-

(FCl Lx) M 2 3 y M5

o | (09,01) (04,02) (0504) (0.1,05) (0.8,0.1)
& | (04,02) (02,01) (03,0.7) (06,0.2) (0.3,0.5)
es 1(06,01) (1,00 (0.7,01) (0.3,0.5) (0.7,0.2)

Table 2.8

(G¢, Ou) » o >3 4 s

o2 | (03,08) (04,06) (0505 (0.1,0.3) (0.5,0.4)
es | (04,02) (0.1,09) (02,01) (03,05 (0.3,02)
2, | (02,09) (06,02 (07,03) (0.7,0.1) (0.5,0.2)

16



Table 2.9

Then clearly {F¢, L..), (G¢,0.) € TFSS(X,) and (F¢, L,.) Nres (G¢, 0.) = (He, Py)

is the restricted intersection of two IFSS(X,,).

(He, Py) ) }!2 3 Hy 5

o, | (0.3,06) (02,06) (0.3,07) (0.1,03) (0.3,0.5)
o3 | (04,02) (0.1,09) (0.2,0.1) (0.3,05) (0.3,0.5)

Table 2.10

17









(He, P} =

< Tr()(#), Kr()(3) > if g € Lx — Ox

< TGC(‘,)(x),KGC{Q)(x) > ifpe Oy — Lx

< Min{Tpc(g)(x), TG((:?)(”)}’MM{KF((O) (), KG‘{R)(X) >ifpe LyNO,

3.1.4 Example

Suppose X,, = {1, s, 3, x4, 5} is & set of men under consideration and E,

{e1(educated), g,{businessman), p;(smart), 9,,(g&mrnment employee), gs{bank balance)}

is the set of parameters and L, O, C E,, and Ly C Oy, L, = {@4, 03, 84}, Ox = {01, 02,

03, 04> 05}

(F¢y L) x 22 3 y s
[} (0.1,09) (0.2,04) {0.2,0.7) (0.2,0.6) {(0.3,0.4)
03 (0.7,0.1) (0.6,0.2) (0.5,0.2) (0.8,0.1) (0.5,0.4)
01 (0.6,0.3) (0.5,0.4) (0.55,0.4) {0.5,0.4) (0.2,0.3}

Table 3.4

(G¢, Ox) et} 7 >3 4 5
o {0.2,0.8) (0.1,0.9) (0.3,0.7) (0.5,04) (0.2,0.3)
02 (0.5,0.2) (0.3,0.4) (0.5,0.5) (0.1,0.9) (0.5,0.2)
03 (0.5,0.4) (0.1,0.8) (0.6,0.3) (0.7,0.2) (0.6,0.1)
04 (0.2,0.2) (0.7,0.3) (0.1,0.8) (0.5,04) (0.5,0.2)
o5 (0.8,0.1) (0.9,0.1) (0.9,0.1) (0.5,0.4) (0.1,0.6)

Table 3.5



OexT ) ¥ 3 Y M5
¢, |(0.2,08) (0.1,09) (03,0.7) (0.5,04) (0.2,0.3)
o | (01,09) (0.2,0.4) (0.2,0.7) (0.1,0.9) (0.3,04)
s | (0.5,04) (0.1,0.8) (0.5,0.3) (0.7,0.2) (0.5,04)
e; |(02,03) (05,04) (0.1,08) (0.5,04) (0.2,0.3)
¢s | (0.8,0.1) (0.9,0.1) (09,0.1) (0.504) (0.1,0.6)

Table 3.6
3.1.6 Definition

Suppose (F¢, Ly}, (G¢, Ox) € IFSS(X,,). Then (F¢, L) V{G¢, 0x) = (He, Py) is known to
be basic union of two IFSS(X,), where Py = L, x O, define H¢(l,0} = F;() Ures G¢(o)
and

TH ,0)(#) = Maz{Ty (), Tg,(0)(#)}
K (1,0)(%) = Min{Ty (), Tg (0)(#)} ¥ (1,0) € Py, x € X,

3.1.6 Example
Suppose universe get is X,, = {1, s, », s} and parameters set is8 L, O, C E,, = {9y,

025 03, 94} and L, = {Qh &2, 93}1 Ox = {92: 031 e}

(Fgy L) » o) 3 x4

o1 | {01,09) (0.2,0.7) (0.3,0.7) (0.5,0.4)

o | (02,07) (03,06) (0.4,06) (0.56,0.3)

os | (0.3,05) (0.6,04) (0.5504) (0.6,0.2)
Table 3.7

(GC ’ Lx) 3 Eo] M3 »y

o2 | (0.2,08) (0.4,0.3) (0.1,06) (0.5,0.3)
es | (04,04) (0.7,02) (0.4,04) (0.7,0.2)
os | (06,02) (0.9,0.1) (0.8,0.2) (0.9,0.1)
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Table 3.8

Then (F¢, L), (G¢,0x) € IFSS(X,,) and (F;, L) V (G, Ox) = (H, Py) is known to
be basic union of two IFSS{X,).

(H¢, Po) 1 3 3 k2|

(e1,09) | (0.2,0.8) (0.4,03) (0.3,06) (0.5,0.3)
(01,22) | (04,04) (0.7,0.2) (0.4,04) (0.7,0.2)
(en,a) | (06,02) (09,0.1) (08,02) (0.9,0.1)
(e2,00) | (0.2,07) (0.4,03) (0.4,04) (0.7,0.2)
(e2.05) | (04,04) (0.7,0.2) (0.4,0.4) (0.7,0.2)
(ep00) | (06,0.2) (0.9,0.1) (0.8,0.2) (0.9,0.1)
(¢s,00) | (0.3,05) (0.6,0.3) (0.55,0.4) (0.6,0.2)
(es.03) | (0.4,04) (0.7,0.2) (0.55,0.4) (0.7,0.2)
(03, 00) | (0.6,0.2) (0.9,0.1) (0.8,0.2) (0.9,0.1)

Table 3.9
3.1.7 Deflnition

Suppose (F¢, L), (G;, Ok) € IFSS(X,). Then (F¢, Ly)A(G¢, Ox) = (Hg, Py) is kmown to
be basic intersection of two IFSS(X,)}, where Py = Ly x O define H¢(l,0) = Fe(l} Nges
G¢{o) and

Th, (1,0 () = Min{Tg, (), Ta (o) (>)}

Kp 1,0)(3) = Maz{Ty_((5), Tg (){2)} ¥ (L, 0) € Py, x € X,.

3.1.8 Example

Suppose X, = {3, 32, »3, x4} and E,, = {g,, 03, 03, 04} is the parameters set and L,

O CEy, L. = {911 &2, 93}1 O = {92» 23 94}‘
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(FCsLx)

>y F. o) My My

551

22

23

(GC s Os)

(0.1,09) (0.2,0.7) (0.3,0.7) (0.5,0.4)
(0.2,0.7) (0.3,0.6) (0.4,0.6) (0.56,0.3)
(0.3,05) (0.6,0.4) (0.55,0.4) (0.6,0.2)

Table 3.10

Pl o 3 4

7]
oy

24

(0.2,0.8) (0.4,0.3) (0.1,0.6) (0.5,0.3)
(0.4,0.4) (0.7,0.2) (0.4,0.4) (0.7,0.2)
(0.6,0.2) (0.9,0.1) (0.8,0.2) (0.9,0.1)

Table 3.11

Then (Fy, Ly}, (G, Ox) € IFSS(X,) and {Fy, L) A (G, Ox) = (He, Px) is known to

be basic intersection of two TFSS(X,,).

(HCIP#)

] M2 3 4

(e1.22)
(1, 02)
(e1s24)
(2, 82)
(22, 03)
(02, 04)
(ea, 2)
(o3, 03)
(03, 24)

(0.1,09) (0.2,0.7) (0.1,0.7) (0.5,0.4)
(0.1,0.9) (0.2,07) (0.3,0.7) (0.5,0.4)
(0.1,09) (0.2,07) (0.3,0.7) (0.5,0.4)
(0.2,0.8) (0.3,0.6) (0.1,08) (0.5,0.3)
(0.2,0.7) (0.3,06) (0.4,0.6) (056,0.3)
(0.2,07) (0.3,06) (0.4,0.6) (0.56,0.3)
(0.2,0.8) (0.4,04) {0.1,0.6) (0.5,0.3)
(0.3,0.5) (0.6,04) (0.4,04) (0.6,0.2)
(0.3,0.5) (0.6,0.4) (0.55,04) (0.6,0.2)

Table 3.12
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3.2 Lattice Ordered Intustionistic Fuzzy Soft Sel
3.2.1 Definition

An IFSS(X,)
(Fg, L) = {2, T (0,)(96): Ko (5¢) : ¢; € LuAx € X} is known to be LOTFSS(X,.).
if for gy, g3 € L, such that g; < g,.
= Fe(ey) C Fe(og), i€ Try(g,)(%) < Tr(gy) (%) and K (5,)(3) 2 Kro(p,)(3) ¥ x € X,

3.2.2 Example

Suppose X, = {», 3, »3, 33} is & set of shops to buy toys and
L. = {g,(cheap), go(beautiful), gy{quality), g,(discount)} C E,,.Then Ordered among

the elements of L, is given.

24
/ AN
2z b2
AN /
]
then LOIFSS(X,) is given below.
(F¢ L) M) 2 3 4

o1 |(02,04) (0.1,08) (0.3,04) (0.50.5)
o2 | (04,03) (0.3,0.6) (0.4,0.3) (0.6,0.3)
os | (06,02) (0.6,04) (0.6,02) (0.8,0.2)
o 1(07,01) (0.9,01) (0.8,0.1) (1,0)

Table 3.13

Clearly Fe(1) € F(es) € Fele) nnd Fe(er) C Feles) € F(og), so it is LOIFSS(X,,).
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3.3 Operations and Results on Lattice Ordered Intuitionistic
Fuzzy Soft Sets

3.3.1 Definition

Suppose (F;,L.) and (G¢,0,) € LOIFSS{X.). Then (F¢, L.} is known to be Lattice
Ordered intuitionistic fuzzy soft subset {LOIFSSub{X.}) of (G, Oy),

if L, C O,, then TFC(Q)(X} < TGC(&,){;{) and Kpc(g)(x) > KG((Q)(x) YockE, »cX,.
We denote(F;, L.,) C (G¢,Ox).

3.3.2 Definition

Suppose (F¢, L), (G¢, 0y) € LOIFSS(X,.). Then restricted union of (¥, L, } and (G¢, Ox)
is denoted and defined by (F¢, L} Urgs (G¢, O.) = (He, Py}, where P, = L, N O, and ¥

0 € Py, 3 € X,,we have Hc(p) = F¢(p) U Ge(p).
Th (o) () = Moz{TF (5 {>), T ({*)}

Ky, ()(») = Min{Kp, (), Kg, 9 (3)}-
3.3.3 Theorem

Suppose (F¢, Lx), (G¢, Ox) € LOIFS8(X,). Then (F, L, )Ures{G¢,0,) € LOIFS§S(X,,). i

Proof. Since {F, L,) and (G, O,) contain in the set LOJFSS(X.). Then by Defini-
tion 3.3.2

Fe(e)UG((o) = He(o) where Py = L, N Oy,

if L, N O,, = 0, then trivially hold the require result.

Now for L,, N O, # @, since L., O, C E,, so L,, and O, inherit the partial order from
E,, therefore for any

I <1, Iy we have Fe(l)) C Fe(lo) Vi, lh € Ly,

also for any o) <, 02 we have G¢(01) C G¢{o2) ¥ 01, 02 € O,

Now for any py, p2 € Py and p; <p, p

=p,mel. N0,

=p,mE€L,andp,pe0x

= Fe(p1) © Fe(pe) and G¢(p1) € G¢(p2) whenever py < pa, p1 <0, P2
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KH((P)(x) = MM{KF((Q}(X)! KG;{Q)(")}
3.3.7 Theorem

Suppose (F¢, L), (G¢, Ox) € LOIFSS(X,). Then (F¢, Ly)Nres(G¢,Ox) € LOIFSS(X,).

Proof. Since (#, Lx),(G¢,0x) € LOIFSS(X,). Then by Definition 3.3.6,F(g) N
G¢(p) = Hc(p) where Py, = Ly N Oy,

if Lx N O, = @, then the required result hold trivially.

Now for L, N O, # 0, since Ly, O, C E, so L, and O, inherit the partial order from
E, therefore for any § <y, I; we have Fy(h) C F¢(ls) V &, 3 € L, also for any o1 <o, 02
we have G¢(01) C G¢(0a) V¥ 01, 02 € Oy,

therefore for any p), pz € Py and py <p, p2 => p1, p2 € L N Oy

= p1, P2 € Ly and p1, p2 € Oy
= F¢(p1) € F(p2} and G¢(p1) € Gelp2) whenever py <z, p2, 71 <o, P2

=
TrE)(#) < Trm) (%)  Top) (%) < T, (p) ()
Krp)(#) £ Krp)(*) Koo (p) (%) < Kg,(py) (%)
=
Min{Tr, (5,)(%), T m) (%)} < Min{Tr, (p,){5), Tg, (p) ()}
Maz{Kp,(m)(x), Ke,pm)(#)} < Maz{Kr,)(x), Kg,ipm)()}
=
T e (%) £ T(FpaInG (o) ()
K(r(pinGeea)(*) € Kim(mineep) (%)
=

Tirneen(*) £ TirnG e (%)

Krng)p)(*) £ KEanaym)()



Treon(*) < T (%)

1A

K} < Kpe(p)(%)

He(p) C H¢(pa) for p1 <p, p2
= (F¢, L) Naes (G, Ox) € LOIFSS(X,,). ®
3.3.8 Example

Suppose X,, = {1, »a, 53} is & set of shoes and
w = {e1(price), ga(color), pgg(quality}, gs(comfort)} is the parameters set and L,,

Ox € Ex, Ly = {01, @2, 03}, Ox = {921 0y: 24}

(Fe, L) ) g a3

2, 1(02,03) (04,02) (05,0.4)
o | (0.4,02) (0.8,0.1) (0.6,0.2)
es | (06,01) (1,00 {(0.7,0.1)

Table 3.20

(G, Ox) P »2 33

e | (03,0.6) (0.4,0.8) (0.5,05)
es | (0.4,02) (05,0.3) (0.6,0.4)
0. | (08,01) (0.6,02) (0.7,0.3)

Table 3.21
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Then (F(,L,‘), (G(, Ox) c LOIFSS(X,‘) and (Fc, L,,) nR_Es (GC,O,.-) = (Hc,P,‘) is the
restricted intersection of two LOIFSS(X.).

MNgEes ) g M3

o, |(0.3,0.6) (0.4,0.6) (0.5,0.5)
o; |(0.4,02) (0.503) (0.6,04)

Table 3.22
= H¢(e3) C H¢(oy), So it is an LOIFSS(X.).
3.3.9 Example

Let By = {gy, 03, 03, 04} be a set of parameter and L, Ox € Ex, Lx = {01, 03,03},

O, = {92193194} and X, = {"1: M, MY, "4]-

(FC1LK) ) M9 M3 M4

o (01,09) (0.2,0.7) (0.3,05) (0.5,0.4)

o2 (0.2,0.7) (0.3,06) (0.4,06) (0.56,0.3)

es (0.3,05) (0.6,0.4) (0.55,04) (0.6,0.2)
Table 3.23

(GC,O,,) H] 9 3 My

22 (0.2,0.8) (0.4,0.3) (0.1,0.6) (0.1,0.9)

03 (0.4,04) (0.7,02) (0.4,04) (0.7,0.1)

o4 (0.6,02) (0.9,0.1) (0.8,0.2) (0.9,0.1)
Table 3.24

Then (F¢, L), (G¢, Ox) € LOIFSS(X,) and (F¢, Ly} NrEs (G¢, Ox) = (He, Px) is the
restricted intersection of two LOIFSS(X,,).
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(Hey Py) | 3 9 >3 34

02 (0.2,0.8) (0.3,0.6) (0.1,0.6) (0.1,0.9)
0 (0.3,0.5) (0.6,0.4) (0.4,0.4) (0.6,0.2)
Table 3.25

= He(gg) C He(gs), So it is an LOIFSS(X,).

3.3.10 Definition

Suppose (F¢, L), (G¢, Ox) € LOIFSS(X,). Then extended Union of (F¢, L) and (G¢, Ox)
is denoted and defined by (F¢, Ly} UexT (G, Ox) = (H¢, Py), where Py = L, UO,and V

eE P, xeX,,

< TPc(e)(")!KFc(e)(") > ifpe L, — 0O,
(H{, Px) = << TGg(g)(x)! KG((G}(X) > ifp€ Oy — L,
< M@{Tpc(e)(x),TGde)(x)}, Min{Kpc(p)(x), Kgc(p)(x) >ifp€e L,N0,

3.3.11 Proposition

Suppose (F¢, L), {G¢, Ox) € LOIFSS(X,,). Then (Fe, Ly)Upx1(Ge, Ox} is LOIFSS(X,),
if one of them is a LOIFSSub(X,.) of other.

Proof. Since (F¢,Ly), (G¢,Ox) € LOIFSS(X,). Then (F, L) Ugxr (G;,0x) =
(H¢, Po), Fe (D) UG, (p) = H; (p) where P, = L,UO,,Y g€ Py, x € X,.

< Tpdg)(x),Kp((a)(x) > if o€ L,‘ - Ox
(He, Py) = < T ()(#0), Koy(o) (%) > i 0 € O — Ly
< ﬂfax{TFc(g)(x), TGC(Q)(J{)}, Min{KFc(O)(x)’KGc(G)(K) >ifpe L, NG,

Suppose (F¢, L) is 8 LOIF SSub(X,c) of (G¢, Ox). Then Ly C O and Tg,, (%) <

TGC(:} {») and K et

O, inherit the partial order from E,,, therefore for any I; <L, Iz we have F; (I;) C F¢ (I2)

(3) > Kgm) (¥»)Voe L, € X,, since L, O, C E, so L, and
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Y, s € L, also for any 01 <o, 0z we have G¢ (01) € G¢ (02) ¥ 01, 02 € Ox. Therefore
for any p1, ps € Py and p; <p, p2 implies py, p2 € L,,UO, implies py, p2 € L, NO, or py,
p2 € Oy and p1, p2 & L,, because L, C O,.
Now take p3, p2 € L, N0,
= p1,p2 € L, and gy, pg € O,..
= F¢ (m) € F¢ (pa) and G¢ (1) € G¢ (pz) whenever p <1, p2 and p1 <g, P2

=

Trp) (%) < Trepa) (%) T im) (%) £ T (o) (%)

K () (x) < KFc(m)(")' KG.(p) (x) £ KGc(m)(")

=
Maz {TF;(pl) (x) ’TGc(Pl) (J{)} < Max {TFC(PII) (J{) ’TG.:(P:) (J{)}
Min {Kr,gm) (), Keym) ()} < Min{Ke ) (2}, Ko ()}
=
Treouee) () £ Trp)uces (%)
Kr e ) (%) € Krp)uc ) (%)
=
T(FcUGc)(m) () < T(FcUGc)(P:) (%)
Kiruo)en ) £ Kiguoe) e %)
=

Tacp) () < Tapy) ()
Kuip) (%) € Kp(py) ()
= Hc (p-l) c Hc (pz) for ;; <p, 01,

Thus (F, L) UgpxT (G¢,Ox) € LOIFSS(X,) if p1, ;2 € Ly N Oy

Now suppose for any p1, pz € Ox and py, p3 € L, and py <o, P2,
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= G¢ (m) € G¢ (p2) whenever py <o, p2.

implies this is also a LOIFSS(X,,).

Hence (H¢, L) Upxt (G¢, Ox) is a LOIFSS(X,,) for both cases.

Similarly we can prove for (G¢,0,) is a LOIFSS(X,) of (H¢, Lyx).

Thus extended union of two LOIFSS(X, ) is a LOIFSS(X,) if one of them is a Lattice

ordered intuitionistic fuzzy soft subset of other. m
3.3.12 Example

Suppose X,, = {1, 2, »3} is & set of men under consideration and
E, = {o,(educated}, g;{businessman), gs{smart}, p,(government employee), gs(bank
balance)} is the parameters set and L., O, C E, and L, C Oy, L« = {04, 03, &4},

Ox = {01, 82, O3, @4 95}'

(FoLx) | m ) 3
ez |(01,08) (0.1,07) (0.3,0.7)
0s | (02,07) (0.3,06) (0.4,0.6)
0a  |(06,0.3) (0.6,04) (0.55,0.4)

Table 3.26

{G¢, O} ) ) sy
e, | (01,09 (0.1,09) (0.3,0.7)
& | (02,06 (03,04) (05,05)
0 | (0504) (0504) (0.6,0.3)
e | (07,02) (0.7,03) (0.6,0.2)
0s | (08,0.1) (0.9,0.1) (0.9,0.1)

Table 3.27

Then clearly (F¢, Lx), (G¢,0x) € LOIFSS(X,) and (F,L,) C (G¢,04) then ex-

tended union is defined as follows.
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UexT 3 ) 363
¢y |{01,09) (01,09) (0.3,0.7)
o, |(02,06) (03,04} (0.5,0.5)
o3 | (0.5,04) (0.5,04) (0.6,0.3)
g. | (0.7,02) (0.7,0.3) (0.6,0.2)
os | (0.8,0.1) (0.9,0.1}) (0.9,0.1)

Table 3.28
which is LOITFSS(X,).
3.3.13 Example

Let E. = (01,09, 03, 04, 05} be 8 set of parameter and L., O, C Ex and L, € Oy,

Ly = {02, 03, 04} Ox = {01, 001 03, 04+ 05} and Xy = {51, 52, 53, , 23}.

(FC: Lx) M1 Hy M3 My
o (0.1,09) (0.3,0.5) (0.3,0.7) (0.1,0.8)
03 (0.2,0.7) (0.4,04) (04,05} (0.3,0.5)
24 (0.9,0.1) (0.5,0.3) (0.6,0.4) (0.6,0.3)
Table 3.29
(G¢,Ox) | 0 ) 3 x4
o1 (0.2,0.2) (0.4,0.4) (03,06} (0.2,0.5)
02 (0.3,04) (0.4,0.3) (0.4,05) (0.4,0.4)
3 (0.4,0.2) (0.5,0.3) (0.6,04) (0.6,0.3)
24 {0.9,0.1) (0.7,0.2) (0.6,0.3) (0.8,0.2)
o5 {0.1,0.1) (0.9,0.1) {0.66,0.1) (0.9,0.1)
Table 3.30
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Then clearly (F;, Ly), (G¢,Ox) € LOIFSS(X,) and (F¢,Ly) € (G¢,Oy) then ex-
tended union is defined as follows.

Uext | m ) 33 g

0 {(0.2,0.2) (0.4,04) (0.3,08) (0.2,0.5)
02 (0.3,0.4) (04,03) (0.4,0.5) (0.4,0.4)
03 {0.4,0.2) (0.5,03) (0.6,0.4) (0.6,0.3)
04 (0.9,0.1) (0.7,0.2) (0.6,0.3) (0.8,0.2)
g5 {0.1,0.1) {0.9,0.1} (0.66,0.1) (0.9,0.1)

Table 3.31
which is LOIFSS(X,.).
3.3.14 Deflnition

Suppose (F¢, Ly}, (G¢,Ox) € LOIFSS(X,). Then extended Intersection of (F¢, L.} and
(G¢, Ox) is denoted and defined by
(FCsLx) NExT (GC,Ox) = (HC:Px)a where P, = L, U0, and Vg€ P, x€ X,..

< TFC(Q)(X), Kpc(p)(x) > fpe L, -0y
(HCa Py} = < TGQ(Q)(X), KGC(Q)(") > ifpeOx— Ly
< AIin{TpC(Q}(x),TG‘,(Q)(}C)}, Ma::{Kpc(o)(x),KGc(,)(x) > if [1 R = L,( MOy

3.3.15 Example

Suppose X, = {1, >3, »3} is a set of men under consideration and
E, = {o)(educated), g,(husinessman), gs(smart), p;(government employee), g5(bank
balance)} is the parameters set and L., Ox C Ey, and Lx C O., Lx = {03, 03, 04},

Ox = {01, 22, 03, 24> 5}
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(Fey L) » >y 3
o (0.1,0.9) (0.2,0.7) (0.3,0.7)
23 (0.2,0.7) (0.3,0.6) (0.4,0.6)
24 (0.6,0.3) (0.6,0.4) (0.55,0.4)
Table 3.32
(G(, Ox) H] Fey] >3
1 (0.2,0.8) (0.1,0.9) (0.3,0.7)
22 {(0.3,0.6) (0.3,0.4) (0.5,0.5)
o (0.5,0.4) (0.5,04) (0.6,0.3)
04 (0.7,0.2) (0.7,0.3) {0.6,0.2)
o (0.8,0.1) (0.9,0.1) (0.9,0.1}
Table 3.33

Then clearly (F¢,Ly), (G¢, Ox) € LOIFSS(X,) and (F, Ly) € (G¢,0.) then ex-

tended intersection is defined as follows.

NexT 1 Mo P

o | (02,08 (0.1,09) (0.3,0.7)

g2 | (0.1,09) (0.2,0.7) (0.3,0.7)

os | (02,07) (0.3,06) (0.4,0.6)

0, | (06,0.3) (0.6,0.4) (0.55,0.4)

es | (0.8,01) (0.9,01) (0.9,0.1)
Table 3.34

which is not a ZOTFSS(X,,).
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3.3.16 Deflnition

Suppose (F;, L,) € LOIFSS(X,). Then it is known to be null LOIFSS(X,,} with respect
to parameter Ly, if T, =0 and Kp ) =1V % € X, and p € L. It is denoted by @,

3.3.17 Definition

Suppose (F;, Lx) € LOIFSS(X,)}. Then it is known to be relative whole LOIFS5(X,.)
witb respect to parameter L, if Tr,(,) = 1 and Kp@=0VxeX,andpge L, Ttis
denoted by Uy,

3.3.18 Proposition

Suppose (F¢, L.) € LOIFSS(X,). Then

L. (F¢, Li) NrES (Fg, L) = (Fy, L)
2. (F;,Lx) Urps (F¢, L) = (F;, L)
8. (FeyLx)NREs 0L, =0z,

4. (F¢, L) Urgs O, = (F¢, L)

Proof. 01: Suppose (F, L,.) Nres (F¢, L) = (H¢, P} where Py =L, NL,.
Then by Definition 3.3.2 for g € P, and ¥ » € X,

Th (o)) = Min{Tr (o) (%), Tr(o)(#)} = Tr (%)

K (0)(3) = Maz{Kg,(y(x), Kp,(5)(#)} = KF (g(>)

= (He, Pe) = (Feo L)

= (¥, Le) NREs (Fg, La) = (F¢, Ly)

02: Suppose (F¢, L) Ures (F¢, L) = (H(, P.) where P, = L, N L,,.
Then by Definition 3.3.6 for p€ P, and ¥ > € X,

T (o)(#) = Maz{Tp,(4)(5), Tr, ()} = Tr,(3()

K (oy() = Min{Kp () (5), KF,()(%)} = Kp (9 (%)

= (H¢, Po) = (Fg, L)

= (F¢, L) Urgs (F¢ L) = (Fey L)
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03: Suppose (F, L) Naes (B, L) = (H;, Px) where P = L 0 Ly,
Then by Definition 3.3.6 for g€ P, and V xx € X,

Ty, (0)(%) = Min{Tr (o)(%), Tagy(%)} = Min{Tr,(5)(x),0} = 0 = Ty, (50)
K () = Maz{ K, () (%), Ky(g)(2)} = Maz{Tr,(g)(x), 1} = 1 = Ky(g(x)
= (H¢, Px) = (B, L)

= (F¢yLy) Nres L, =0L,

04: Suppose (Fy, L) Upgs (8, Ly) = (H, Pu} where Py = L, 0 L.
Then by Definition of 3.3.2 for p€ Py and ¥V x € X,

T () (%) = Maz{Tr (o) (%), To(g) (%)} = Maz{Tg (5)(x),0} = Tr, (g}
Ky (0)(%) = Min{ K (y(%), Kog) (%)} = Min{Tp, (5 (%), 1} = Kr (p){)
= (H¢, Pu) = (8, L)

= (F, L) Upes 01, = (F;, Lx). ®

3.3.19 Definition

Suppose (¥, L) € LOIFSS(X,). Then complement of (F;, L) denoted by (F;,L,),
and is defined by

(Fe) Le)® = {56, K g 4)(50), Tr,(0) (%)) : @i € Lue, x € X}

tben (Fy, L)€ is anti LOTFSS(X,).

3.3.20 Example

Suppose X,, = {3, »a, »3, 4} is a set of shops to buy toys and
L, = {o,(cheap}, py(beautiful}, pz(quality), g,(discount}} is the parameters set. The

order among the elements of L., is given below

s
7 N
23 &2
N 7

&
Then LOTFS§S(X,) and its compliment is shown in Table 3.35 and Table 3.36 respectively.
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IA

Treten() < Trpie(*)

Kree) (%) S Kigen)(%)

Fleg) € Fler)
= (F¢, L, )¢ is anti LOIFSS(X,). m
3.3.22 Proposition

Suppose (F¢, Lx) € LOIFS85(X,,). Then((F, L)) = (F¢, L)
Proof. Since (F¢,Ly) € LOIFSS(X,). Then complement of (F¢, L) is
TF}’(E)(") = Kr (p{*)
Krg(o)(%) = Try(o) (%)
Now the complement of (F¢,Lx)C is
Tireye(a) (%) = Kre(o) () = Trar (%)
Kire(a(#) = Tre(o) (%) = Kp(9)(>)
= ((Fo, L)) = (F, Lx). ®

3.3.23 Proposition

Suppose (Fe, Ly), (G, Ox) € LOIFSS(X,). Then (Fy, Ly)Naxs(Ge, O) is largest LOTFSS(X,)w
is contain in (¢, Lk} and (G¢, Ok}

Proof. As (Fr, L) Nrss (Ge, Ox) = (Hc, P) where Py = LN Oy # 0

and for p € P,

we have T, () (%) = Min{Tr,(;) (%), Ta ()(>)}

Ky, (5y(») = Maz{KF, (5)(%), K ()}

then Ty, () (x) < Tk (p)(3) and T (p)(3) < T, (5 (>0}

also K () (%) < Kp,(p)() and K, (p)(#) < Kp(p)(*)

= H¢(p) C F;(p) and H¢(p) C G¢(p)

then H¢(p) € Fe(p) Naes G¢(p)
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i

H¢(p) € (F; NrEs G¢)(p)

thus (He, Px) € (Fe, L) Nres (Ge, Ox)

Suppose (Y, D,.) is another LOTFSS(X,) contained in both (¥, L,) and (G¢,Ox).
Then

Y:(p) € F;(p) Nres G¢(p)

Ye(p} C (F; Nres Ge)p)

Y:(p) C (H;, Px) ¥ p € Dy, where Dy = L, NO, # 0

= (Y¢, D) C(He, Pe) Vp € Py,

= (H¢, Py) is largest LOIFSS(X,) that contain in (F;, Ly) and (G, 0x).

3.3.24 Definition

Suppose (F;,Ly), (G, 0,) € IFSS(X,). Then (Fg, L) Na (G¢,O0x) = (He, Ly ® Ox),
defined as He(l A 0) = Fe(1) Nres Gc(0) V1A 0 € Ly ® O

3.3.25 Deflnition

Suppose (¥¢,L,), (G¢,0x) € IFS88(X,). Then (F, Ly} Uy (G¢,0x) = {Hg, Ly ® Ox),
defined as Hc(I Vo) = F(l) Urps G¢(0) ViA 0 € Ly © Os.

3.3.26 Proposition

Suppose (F¢, Ly,), (G, Ox) € LOIFSS(X,,). Then (F¢,Ly) Na (G¢,0,) € LOIFSS(X,).

Proof. Since (F¢, L,), (G;,Ox) € LOIFSS(X,) (ie ¥V Uy, la € Ly), Fe(li) € F(la),
whenever 1 <, Iz and ¥ 01, 03 € Oy, G¢(01) € G¢(02), whenever o) <, 02. Then

we have to prove that (K, L,) Np (G¢, Ox) € LOIFSS(X,).

As (F¢, L) Na(Ge, On) = (Her L ® Ox)

defined as He(ly Aor) = Fe(l) NGe(o) V (hAoa) € Ly ® Oy

and H(lz A 02) = Fy(la) N Ge(o2)

Fe(h) € Fe(lz) and G¢{a) € G¢(oa)
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03: Suppose (F¢, L) Ngas (8, Ly) = (H¢, Px) where Py = L, N Ly,
Then by Definition 3.3.6 for p € P, and V x € X,

The()(#) = Min{Tg, (g)(»), Tagy (29} = Min{TF,(g)(x),0} = 0 = Typ{x)
K, (g)(#) = Maz{KF,(5(x), Ko(o) (%)} = Maz{Tr (g(x), 1} = 1 = Kp(p)(x)
= (H¢, Pu) = (0, L)

= (F¢,Lyx) Nrgs 0r, =90r,

04: Suppose (F,L,)Uges (8, L) = (H;, P) where Py =L, N L,.
Then by Definition of 3.3.2 for p € P, and ¥ x € X,

Th,(¢)(%) = Max{Tr, () (%), Tog) (%)} = Maz{Tg, (;)(x),0} = Tr,(g()
K (0) () = Min{Kp (5)(>), Ku(o)(%)} = Min{Tr,(5)(5), 1} = K, (5)(»)
= (H¢, P} =(0, L)

= (Fe, L) Urps Bp, = (F,Ly). ®

3.3.19 Deflnition

Suppose (F¢, L) € LOIFSS(X,). Then complement of (¢, Ly} denoted by (F¢,L)¢,
and is defined by

(Fo, L) = {6, K (o (%), Try(o)()) : 01 € Loy 3 € X}

then (F¢, L) is anti LOIFSS(X,,).

3.3.20 Example

Suppose X, = {1, »2, 3, 24} is a set of shops to buy toys and
L, = {e,(cheap}, py(heautiful}, ps(quality), g,(discount)} is the parameters set. The
order among the elements of L, is given below

&4
/ AN
s 2
N /

01
Then LOIFSS(X,,) and its compliment is shown in Table 3.35 and Tahle 3.36 respectively.
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Th,0)(%) = Maz{Ty,y(»), T (o)(#)}
Kﬂc{j‘o)(x) = Min{THc(;)(x), TG((O}(X)} Y (l, 0) € P, xecX,.

3.3.29 Theorem

Suppose (F, Ly}, (G¢,Ox) € LOIFSS(X,.). Then (F¢, L) v (G¢, Ox) € LOIFSS(X,).

Proof. Suppose (F¢,Lx),{G¢,0x) € LOIFSS(X,). Then (F¢,L.) V (G, 0k} =
(H¢, Py ),where P,, = L, x Oy,

Since Ly,Ox € E, so both L, and O, inherit partial order from E, also H¢({,0) =
£ () v G(o) = Fe(1) Urgs Gelo)

Now l; <, l2 we have Fe(h) C Fe(la) Vi, la € L

also for o1 <p, oz2,we have G¢(01) € G¢(oz) V 01,02 € O,.

Now for any (}),01),{l3,03) € P, and < is partial order on P, which is induced by
partial orders on L, and 0,,.

The order on L, x O is (I3,01) < (l2, 02),whenever I <;_ {3 and 0, <g, 02

=
Fe(h) € Fe(l2) and G¢(o1) € Geloz)
=
TFc(h)(x) < TFc(!z)(x)v TG((ol)(x) < TG((O:)(X)
Kr (%) < Krgy(»), K6 (03) (%) £ KG(01)()
=
Tren(2) V Tago)(*) S Trp)(#) V Tg (o) (%)
Ke ) (#) V Kg o)(%) < Kra)(3)V Kg,(01) (%)
=

Tiruveco)(*) € TR ta)vG(oa)) (%)

Kgavaco(®) = KR aive o)) ()
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Now for any(l1, 01}, (l2,02) € Py and < is partial order on P, which is induced by partial
orders on L, and O,,.

The order on L, x O, i8 (I1,01) < (2, 03),whenever [ <z, {3 and 0) <o, 03.

=
Fe(ly) € Fe(la) and Gelo1) C Geloa)
=
Tra)(2) < Tray(%) Ta(01) (%) < T (o) (%)
Kpwy(®) < Kgqyl») K (02)(%) < Kg (o) (%)
=
Tr () Ao (0)(3) S Thta)(36) AT (00) (%)
Kr @)% A Kgyo(2) < Kp,)(3) A Kg(a){)
=
Tirenceo)() < Tra)ac (o)) (%)
Kruanegon () S Krnacon)()
=
T 0% £ Th(ty,00(%)
Kﬂc(hm)(") < Kﬂc{!hon)(x)
=

He(h,01) C He(lz,09) ¥ (l1,01) < (l2,09)
= (Fe, L) A (Gc,o,‘) € LOIFSS(X.). =

3.3.33 Example

Suppose X,, = {1, 33, 73, %} and B = {gy, 83, 3, 04} is the parsmeters set and L,., Oy C
Em L= {9]: 22, 93]'; Oy = {Qm 03, 94}-
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The selection of the land will be judged by maximum score in table 3.45. Thus the
ranking of land is given by table 3.46.

Land | Score(S;) | Rank
3 -15 4th
2 -1 2nd
b2} -3 3rd
>y 15 1st

Table 3.46: Ranking

Hence best choice for Mr. X is to be sy, followed by 3.
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