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ABSTRACT

It is well known that the mixed monotone operator equation is important for the applications
point of view because of a quite extensive class of integro-differential equations as well as
the boundary value problems in nonlinear analysis which are related to the solvability of this
kind of equation. Multivalued monotone operators were introduced in 1984, by
Nishniannidze [19].Nguyen [15] showed the existence of fixed points for multivalued
increasing operators. Mixed monotone operators were introduced by Guo and
Lakshmikantham [13] in 1987. Bhaskar and Lakshmikantham [7] established the notion of
coupled fixed point and proved some coupled fixed point results in a partially ordered space.
Huang and Fang [9] generalized the notion of mixed monotone operators to multivalued
mappings and also provided an application for a class of integral inclusions. In all the above
mentioned results the existence of a lower or an upper solution to the operator inclusion was
necessary.

Feng and Wang [10] relaxed the condition of existence of a lower or an upper solution by
using the characteristics of reproducing cones in a partially ordered Banach space and
discussed the existence and uniqueness of fixed point in a partially ordered set based on the
characterization in the context of reproducing cones. Feng and Wang [11] established some
fixed point theorems for multivalued monotone and mixed monotone operators on the basis
of characterizations of reproducing cones and also compare some results by removing the
requirement of the existence of lower or upper solution. They also established some coupled
fixed point theorems for single-valued and multivalued mixed monotone operators. In the
final section, as an application of these results, the solvability of fraction integral inclusion
was discussed.

In this thesis the fixed point and the coupled fixed point results given by Feng and Wang in
[11] are extended by improving the contractive condition in the view of contractions used by
Beg and Azam [5], Lakshmikantham [7] and Azam and Mehmood [2] in coupled.

Chapter 01 is introductory and is related with some basic concepts and results that will be
useful in the upcoming chapters.

In Chapter 02 we include some relations on the subsets of a partially ordered set, fixed point
results for multivalued operators having monotone and mixed monotone property, coupled
fixed point results for single valued as well as for multivalued mappings taken from the Feng
and Wang [11], Lakshmikantham [7] and Azam and Mehmood [2].

In Chapter 03 we will prove fixed point theorem for multivalued operator by
generalizing contractive condition used in Beg and Azam [5]. This result will generalize
theorems of Feng and Wang[11]. We will also prove some coupled fixed point results for
mixed monotone operators which are generalizations of [2 ,7,11] .
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Chapter 1

Preliminaries

This chapter is introductory and is related with some basic concepts and results that will be
useful in the upcoming chapters.

1.1 Basic Definitions

In the following section we will discuss fixed point, coincidence point, complete metric space,
Banach space, contraction, cone, multivalued monotone operators.

1.1.1 Fixed Point and Coincidence Point

1. A point of a set that is invariant under any transformation is called a fired point.
2. A point z € 0 is called common fired point of the pair (S, T), where §,7 : @ — Q if

3. A point z € 2 is said to be coincidence point of the pair (5, T) where 5,7 : 2 —» Q if
Sz =Tz

4. A point ¥ € Q is said to be point of coincidence of the pair (5,T) where 5,7 : Q@ — 2 if
y =Sz ="Tz for some z € .



1.1.2 Complete Metric Space

Conaider (£2,4) be a metric space. A sequence{z,}

1. Converges towards z if for every £ > 0 there is a natural number rg such that §{(z,,z) < ¢
for all » > ry.

2. Cauchy sequence if for every m > 1,7 2> 7¢,0(Zm,z,) < e foralle >0 and r, € N.

3. A metric space ({2, §) is complete if each Cauchy sequence in Q converges (to a point in 3.

4. A complete normed space is & Banach space,

1.2 Contraction Principles

For a metric space {§2,4), a map 7' : Q — 1 is a Banach contraction [4] on { if there exists
a € {0,1) for which
§(Tz,Ty) < ad(z,y) for each z,y € . (1.1)

Theorem: For a complete metric space (§2,8), if " :  — {2 satisfies (1.1) then T has a unique
fixed point in Q.

For a metric space {§},4), a map T': } — CB(QQ) is a Nadler contruction [17] on { if there
exists a € [0, 1) for which

H(Tz,Ty) < ad(z,y) for all z,y € 0.

1.3 Cone

For a complete normed space I, N CS is said to be a cone [14] if it satisfies the conditions
given ag;

1. N is nonempty closed and ¥ # {f}.

2. az + By belongs to N, whenever z,y are in N and a, 8 in R(a, 8 > 0).

3. Nn(-N)={6].

Given a cone N C Q, a partial ordering < with respect to IV is defined as follows:

z<yiff y— z € N{z <y implies z < y, where z £ y).



For z,y € N, o « y represents y — z € I(N), where I{N) representa the interior of N.

A cone N is

1. normal, if ||z|| < !||y|| for all z,y € 9, whenever # < z < i and { > 0 is a real constant.

2. reproducing [10] if £ = e — f(e,f € N), for each £ € 9. The elements e and f are not
necessarily unique.

1.3.1 Lemma

For a complete normed space S and a cone N C 9, the equivalence of the following conditions
is achieved [10]:

1. N is reproducing,

2. for each z,y € < a lower bound exists;

3. for every 7,y € ¥ an upper bound exists;

4. for all z € , there exist € > 0 in such a way z < ¢;

5. for each z € Q, there exist ¢ < 0 in such a way z > e.

1.3.2 Cone Metric Space

For a set {2 # ¢. A vector-valued function § : 2 x {2 — Q become a cone metric [14] if for each
z,¥, z € 1 it satisfies:
L §(z,p) 286
2. §(z,y)=0ifz=y.
3. d(z,y) = 8y, 2).
4. 8(z,y) +8(y, 2} 2 §(z, z).
Then (12, §) become a cone metric space.
For a cone metric space (Q2,4), z € 2 and consider {z,} be a sequence in ) then
1. {z,} converges towards z if for all r > rp,8(z,,z) < c for each ¢ € & where § < c with
rg € N in such a way we have lim,_,, 2z, = z.
2. {z,;} be a Cauchy sequence if for all r,m > ry,8(2r,Tm} < c for each ¢ € ¥ where § € ¢
with rg € N,
3. If the Cauchy convergence implies the convergence for every sequence in {2, then (£2,4) is

complete,



1.4 Mhultivalued Monotone Operators

In this section we will discuss increasing, decreasing, and fixed point of multivalued operator.
Consider (€2, <) be a partial ordered complete metric space, where the partial order < is induced
by cone N and < is & partial order on 2 [11].
1. A multivalued operator T : 2 — 27\ {¢}, if for each w, z € Q,w < z implies T(w) < T(z)
then T is increasing,
2. A multivalued operstor T : Q — 2%\{¢}, if for every w,z € Q,w < z implies T(z) < T(w)
then T is decreasing.

Let T : © — 29\{¢} be a multivalued operator, w € { becomes a fixed point of T, if
w € T(w). A point w € £ is said to be a coincidence point of a pair of multivalued mapping
(T, 8) if Twn Sw # ¢ and if w € TwN Sw, then w is a common fized point of the pair (T, S).



Chapter 2

Fixed Points and Coupled Fixed
Points of Single-valued and

Multivalued Mappings

In this chapter we include some relations on the subsets of a partially ordered set, fixed point
results for multivalued operators having monotone and mixed monotone property, coupled
fixed point results for single-valued as well as for multivalued mappings taken from the articles

2, 11, 7).

2.1 Fixed Points for Multivalued Monotone Operators

Feng and Wang [10] established some fixed point theorems in partial ordered Banach spaces.
Then in [11] Feng and Wang proved some fixed point results for multivalued monotone and
mixed monotone operators on the basis of characterizations of reproducing cones. In this

section we will include the fixed point theorems presented in [11].

2.1.1 Relations on Subsets of a Partially Ordered Set

We consider two nonempty subsets G and H of (2, <}, G and H have relations which are define
as follows {2}:

1. G <3 H if for each g € G, there exists i € H in such a way g <

7



2, G <3 H if for each h € H, there existe ¢ € G in such a way ¢ < h;

3. Gy Hif G < Hand G <3 H;

4. G <4 H if for each g € G, there exists h € H in such a way ¢ < h (read as ;"a is compareble
with b");

5. G <5 H if for each h € H, there exists g € G in such a way g = h.

2.1.2 Theorem

Suppose T': 2 — 29/(¢), fulfil the following conditions [11]:

1. For all w € , T(w) is 2 nonempty and closed in 1.

2. A linear operator I' : {2 — {2 with spectral radius ¥(I') < 1,I'(N) C N in such a way that
for every w,m € {},w < m we have:

(¢) For every & in T(w) there exists ¢ in T'(m) for which
6 Ri-h<T(m—w)
(4) For every i in T'(m) there exists h in T(w) for which
§<i—h=<T(m—w)

Then a fixed point of T exists in €.

Remark
1. In Theorem 2.1.2, the assumptions 2(¢) and 2(i4) implies that T(w) < T'(m) for w < m, that
is T is & multivalued increasing operator.
2. Theorem 2.1.2 does not implies the uniqueness of a fixed point.
3. If T is single-valued, condition 1 of Theorem 2.12 is satisfied and the condition 2 is as follow:
"A linear operator I : {3 — ) with spectral radius ¥(I') < 1,I(N) C N in such a way for every
w,m € {1, w < m we have

T(m) - T(w) < T{m —w)."

In this case we have the existence of fixed point of T which is unique.
Remark



In the absence of any one of the conditions of Theorem 2.1.2 the existence of a fixed point

is not possible.

2.1.3 Theorem

Suppose T : Q — 28/(¢), fulfil the following conditions {11]:

1. For some w € 2, T(w) is a nonempty and closed subset of 2.

2. A posditive constant a € (0, 1) exists in such a way for every w,m € £}, w < m we have
(¢) For every h in T'{w) there exdists i in T'(m) for which

—afm—w)}Xi—-h <6
(i) For every i in T'(m) there exists & in T'(w) for which
—a{m—w) <i—h <0

Then a fixed point of T' in 2.

2.2 Coupled Fixed Point for Single-valued Mappings
In the upcoming section, we will consider some results of coupled fixed point for single-valued

mappings taken from [7, 11].

2.2.1 Coupled Fixed Point
The mapping 9 : & x @ — Q has a coupled fizxed point (u,v) € 2 x Q if ¥u,v) = u,Hv,u)=v

[7-

2.2.2 Mixed Monotone Property

Consider s partial ordered set (£2, <) and the mapping 9 : 2 x 2 —  has mized monotone
(MM) property if 9(u, v) is monotonically nondecreasing in first component

ty, ug € 0,11 < ug = ¥{uy,v) < 9(ug,v) for any u,v € Q,



and monctonically nonincreasing in second component [7].
v1,v3 € Q,v1 < vg = 9(u,v1) > 9(u,vq) for any u,v € Q.
Coupled fixed point results taken from [7].

2.2.3 Theorem

Consider a continuous mapping 9 : & x {3 — {} having the MM-property on {}. Assume
1. for some A € [0,1),

5(8(z,m), 9(h, 1)) < %[6(:, h) + 8(m, b)), forall z > h,m < i,

and

2, if there exdst g, mg €  in such a way that

zH < 0(101‘"‘0) and Mg 2 0("]'0130)'

Then £, m € (} exist such as
z = ¥(z, m) and m = I(m, ).

2.2.4 Some Properties

The properties of product space {} x I equipped with partial arder are as follows:

1. For every (h,i) € {2 x  a lower bound ar an upper bound of {h, ¢) exist.

2. (see [18] ) that condition (1) is similar to:

"For every (h, 1), (K, 1) € x, there exists an element (h*,*) € 2 x  which can be compared
to both (h,) and (h,7).”

10



2.2.5 Theorem

Consider a continuous mapping 9 : {2 x { — € having the MM property on ). Aussume
1. for some A € [0,1),

§(d¥(=, m),ﬂ(h, 1)) < i[‘f'j(i':i h’) + é(m, h)], forallz > h,m <1,

and

2. If there exdist xp, mg € £ in such a way

Tg < H{zg, mo) and mg > I(mo, 2o)

Then z,m € £} exist such as

z = ¥(z,m) and m = H(m, z).

3. In addition if consider property 2 of (2.2.4) then coupled fixed point of ¥ will be unique.

2.2.6 Theorem

Consider a continuous mapping ¥ : { x §t — {} having the MM property on ). Aussume
1. for some A € [0,1),

5(9(z,m), 3k, ) < 316(z,h) + (m, h), for all 2 > h,m <

and

2. If there exist zp, mg € {2 in such a way

zg < Hzo,mp) and mg > ¥{mo, To}

11



Then z,m € £ exist such as

z = ¥z, m) and m = ¥(m, z).

3. In addition, if we consider that every pair of elements of £} has an upper bound or a lower
bound in §). Then £ =m.

2.2.7T Theorem

Consider a continuous mapping ¥ : ) x {1 — ) having the MM property on Q). Aussume
1. for some A € [0, 1),

5(8(z, m), B(h, 5)) < %[J(m, B) + 8(m, k)], for all z > hym < i,

and

2. If there exist zp, mp € {1 in such & way

zg < 9{zo, mp) and mg > H(my, zp)

Then z, m € £ exist such as
z = ¥z, m) and m = Hm, z).

3. In addition, if we consider that zp, Mg in {} are comparable. Then z = m.

Coupled fixed point theorem taken from [11].

2.2.8 Theorem

Suppose a mixed monotone operator T : 2 x § — {}. Consider that two linear opera-
tors IS : 2 — Q with {T')| + ||$]] < L,I{N) c N,S(¥) C N in such a way, for any

12



T1, T2, M1, Mg € Q,I] S I2,M2 S my

T(Iz, mg) - T(I],ml) < 1-‘(:2 — 31) + S(m1 - mg).

Then a unique coupled fixed point (Z, ) of T in  x 2. For every {z,m) € 2 x (1.
bim,_,o0 T7(z,m) = Z,lim, 0o T (m, ) = .

2.3 Coupled Fixed Point of Multivalued Monotone Operator

In this section we will, consider some results of coupled fixed point for multivalued mappings
taken from [2, 11).

Assume T : & x Q — 2\ {¢} be a multivalued operator. Then
1. T has a coupled fired point (z,m) € Q x Q of, if x € T(z, m) and m € T(m, z) [11].
2. T is called mized monotone, if for all xy,ze,m1,mp € N,y < Tg,Mm2 < my implies
T{z1,m1) < T(z3,ma) [11].

Coupled fixed point theorem for multivalued operator taken from [11].

2.3.1 Theorem

Suppose T : @ x 2 — 2% ig a multivalued mixed monotone operator, fulfil the following
conditions:

1. For every (z,m) € 0 x , T{z,m) # ¢ and closed in Q.

2. Two linear operators I', § : (¢ — 2 exist with ||T'|| + ||S} < 1,T(N) C N, S(N) C N in such
a way, for every z1, %z, m1, ma € @, 21 < 73, m2 < m; we have:

(%) For every h € T(z1,m1), there exist i € T'(z3, m3)
0 <i~h<T(z3—z1) + 5{m1 — ma).
(#%) For every i € T(z2, my), there exist h € T(z1, m1),
0<i—~h <T{zg —31) + S(m1 — ma).

Then a coupled fixed point of T in £ x 0.

13



We define
J(U1 V) = nuEU,ueV-‘J('u - ‘U) for U,V e C(Q).

2.3.3 Lemma

Consider a cone metric space (,d) with a cone N, If ¢ € o(U, V) then §(u,v) < ¢ for all
vueUveV 2.
Coupled fixed point theorem for multivalued operator taken from [2].

2.3.4 Theorem

n

Consider (§2, §) be a complete cone metric space endowed with a partial order ” < ” on L
Assume 9 : (2 x & — C(2) be a multivalued mapping having CCM property on (2. Consider
that

1. € has limit comparison property,

2. there exiat a 0 < k < 1 such that
k . ,
5[‘5(2’ k) + 8(m,1)] € a(¥(z, m}, 9(h, 1)),

for every £ < h,m =1, and
3. if there exist zg,mg € Q in such a way that {zo} <4 ¥(zo, mo} and I(my, Zg) <5 {mq}.
If (¢ has limit comparison property then there exist Z,7 € {2 such that Z € 9(Z,7) and

m € 9(m, %).

15



T, T3, M1, mz € ﬂ, Ty <23, Mg <MY

Tz, mg) — T(zx1, my) < T(zq — z) + S(my — my).
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Chapter 3

Fixed Points and Coincidence Points

of Multivalued Monotone Operators

In this chapter, we generalize the fixed points and coupled fixed points results already presented
in [2, 7, 11].

3.1 Fixed Point of Multivalued Monotone Operators

In this section we will prove fixed point theorem for multivalued operator by considering gen-

eralized contractive condition used in {5]. This result will generalize Theorem 3.1 of [11].

3.1.1 Theorem

Suppose T : @ — 2%/(¢#), fulfil the following assumptions:

1. For every w € §,T(w) # ¢ and closed in 2.

2. A linear operator I' : £ — £ with spectral radius v(I') < 1,T'(N) C N, exists in such a way
that for every w,m € f, w < m we have:

(¢) For every h € T'(w), there exists ¢ € T(m) for which
g<i_h< T(m ~ w), D(h — w), [(s — m), =W Thom)
S D(hmw) 0(im) ,

2

16



(¢%) For every i € T(m), there exists A € T'(w) for which

0<i_h~ T'(m - w),T(h ~ w), D — m), HE=wtTh—m)
HimhIee D{h—w)+D(i—m} .

Then a fixed point of T' in Q.

Proof:

Case 1: If p = I'(m — w). Already proved by [11].

Case 2: If p = ['(h — w). There exists uyp € £}, such that {we} <3 T{wp). In fact

(2) if {6} <1 T(F), then wp = 8;

(i5) if {6} <1 T'(8) is not satisfied .

Consider mg € T(8). As N is reproducing, by Lemma 1.3.1, there is ¢ € (—/N) in such a way that
1 % myg. Because of given condition (") < 1, by Banach’s contraction theorem the equation
(I - T)w = —¢ has a unique solution & € N. Let wy = ~%y by condition 2(ii), there exists
hp € T(wp) in such a way that

917“0_’10'111(’10_“’0):

that is
mg ~ T'(ho) — T'(to) < he.

Since i < myg,
ho = i — T'(to) — T'(ho).

Since £g is the solution so we have

ho +P(hﬂ) > wy,

a8 hg < mg € —N therefore hg € —N and so

ho > ho +T'(ho) > wy,
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which implies {wg} <1 T'(wo).
Assuming w4 = hp and because of condition 2(3), there exists we € T(w;) in such a way that

f <X wy —wy < T(wr — wyp).
Due to the fact that N is normal, there exists {; > 0, such that
llws — wall < 4|[T||]|wr — woll.
Now for wy € T(w,) by condition 2(¢), there exists w3 € T(wg) in such a way that
¢ < wy —wy < I'(wz —w1),

that is

A

fg“]."""mg - w1||, where Iz > 0,

ol ||T1? |01 — wwol]-

||ws — wal]

A

Continuing in this way, we have
llewrs1 — well < b d2la[[T]"flwn — wol,
by considering I....l3l; = I, we obtain
lltr+1 — wel| < T flwy — wo.

Since {imy,.oo(JIT7[)¥" = g < 1, we have [|I"}| < ¢" for some g € (0,1) and for all sufficiently
large v

e+ — wyfl < Ig7(jwr — woll.

UPThis implies {w,} is fundamental. As {2 is complete, s unique element w* € € exists in such
a way that w, — w*, Since {w,} is an increasing sequence such that wy1 € T(w,), therefore
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w, < w* for all r. By condition 2(5), there exists m, € T(w*) such that
8 < my — wep1 X Tw,e —wpey).

Due to the fact that N is normal, there exists { > 0 such that
Iy — wesall S UT(l[eer — wrsally

which implies lim, oy = w*. As we know that T(w*) is closed, we have w* € T(w*}.

Case 3: If p = I'(i — m). There exists wy € £, such that {wp} <1 T(wp). In fact
(5) if {6} <1 T(6), then wo = 6;
(#8) if {#} <1 T(#) is not satisfied.
Consider mg € T(#). As N is reproducing , by Lemma 1.3.1, there is i € {—N) such that
i < mg. Because of given condition r(I') < 1, by Banach’s contraction theorem.the equation
{I - I)w = —i has a unique solution ¢p € N. Let wg = —tg, by condition 2(i¢), there exists
ho € T'(wp) in such a way that

that is
hg = i — [(my).

Since 2y is the solution so we have,

ho = i — T(mg) + I(to) — T(to) = wp + It — mo).

As ty, —mg € N, therefore
hg = wo + (2o — mg) = wo,

which implies {wg} <1 T{wp).
Assuming wy = kg and using condition 2(z), there exists wg € T(w;) in such a way that

8 < wa —wy < D{wg — w1).
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Due to the fact that N is normal, there existe {1 > 0, such that
ltwz — wn]| < &||T|[Jwz — will,

that is
A =4Il lwe —wnll <0,

which gives wy = . Hence w; € T(wy).

Case 4: If p= Hﬂ)ﬁ'}&"—m) There exists wy € 2, such that {wp} <1 T(wp). In fact
(2). if {6} <1 T(8), then wy = 6,
(¢¢). if {#} <1 T(6) is not saiisfied.
Consider mp € T'(6). As N is reproducing , by Lemma 1.3.1, there is { € {— N} in such a way that
i < mg. Because of given condition 4(T') < 1, by Banach’s contraction theorem(J — I'N'w = —i
has s unique solution £p € N. Let wp = —tp by condition 2(#i), there exists hy € T'(wp) in such

a way that
which implies
ho x mg— [0 w0+ Tlo)
> z._I‘(m-o—tt;q):)+1'(ho)

I'(mg — wo) + I'(hg)

x i~ T{to) +T(to) ~ .
> wo+ r(_;"“) + P(_;n“) + r(;h’“).
Since wo, Mg, hg € —N, therefore
hg ¥ wy,

which implies {wp} <3 T'(2wp).
Assuming wy = hy and using condition 2(i), there exists wp € T'(w,) in such a way that

T(wz —wo) + T(wn —wy) |, T(wa —wy) +T(wr — wo)
2 - 2 )

02w —w <
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Due to the fact that N is normal, there exists {; > 0, such that

ffwrg ~ wr | < L) (llwe — w12|| + w1 — wn[]),

which gives

LT L]r
(1= 200 o - st < 2 .

As 2 - 4|iTl| # 0, 50

LTyl
—wn | € 2N i — g,
o =) < 20— wl

Iﬁtﬂl=m?'"'r“'<1

llwe — wil < ay||T}jlwn — wol|.
Continuing in this manner we have
llwr41 — ol < ar..ar||Tf" w1 - wol,
that is
llwr1 — we|| < a||T)|"Jwy — wp]|, where a = ar...0;.

Since lim, oo ([T7)|)/" = ¢ < 1, we have|I"|| < ¢" for some g € (0,1) and for all sufficiently
large r

llr1 — el < ag"l01 — woll.

This implies {w,} is fundamental. As  is complete, & unique element w* € §} exists, in such
a way that w, — w*. Since {w,} is an increasing sequence such that w,,; € T'(w,), therefore

wy < w” for all r. By condition 2(f), there exist m, € T(w*) in such a way that

— _ *»
0 %y — 4 < T ‘"')+2P('"'+‘ w)

Due to the fact that & is normal, there exists ! > 0 such that

Hr
e —wesall < By, — e+ g0 — 0
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which implies {imy_,.omy = w*. As we know that T(w*) is closed, we have w* € T(w*).

Case 5: If p= ﬂ"_—“)—"iﬂﬂ'l There exists wp € {2, such that {wp} <1 T(wo). In fact
(i) if {6} <1 T(6), then wp = 6;
(i4) if {6} <1 T(6) is not satisfied.
Let mg € T(6). Since N is reproducing , by Lemma 1.3.1, there is i € (—N) such that i < my.
Because of given condition 4(T') < 1, hy Banach’s contraction theorem the equation (f —T)w =
~i has a unique solution tg € N. Let wy = —fg, by condition 2(ii), there exiats hg € T'(wo} in
such a way that

T'(ho — wo) + I'(ma)

which implies

§ = T() + Ti{to) - o0~ 0) + ()

wo +F(t¢)) _ P(hﬂ _w02)+r(7n0)

T{wo) T'(he) T'(mo)
W= TTy T3

h g

Y

Y

Since wp, My, hg € — N, therefore
ho & wp,

which implies {wp} <1 T'(wo).
considering @y = hy and using condition 2(i), there exists wg € T(w;) in such a way that

[(wp —w1) + Twy — WO).

=~ — -
3_!02 wy = 2

By using the same arguments as in case 4, we observe that {w,} is fundamental. As 2 is
complete, a unique element w* € {2 exists, in such a way that w, — w*. Since {w,} is an

increasing sequence such that wyi; € T'(wy), therefore w, < w* for all r. By condition 2(i),
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there exist m, € T(w*) such that

— — *
6 <y — w1 < T{wr41 w,-)2+ T'(my —w ).

Due to the fact that N is normal, there exists { > 0 such that
ir )
e — el < TD a3~y + e — )],

which implies lim,e_com = w*. As we know that T'(w*) is closed, we have w* € T'(w*).

3.2 Coincidence Point of Multivalued Monotone Operator

We will prove coincidence point theorem for a pair of multivalued operators.

3.2.1 Theorem

Suppose T, S : 2 — 2%/{¢} fulfil the following conditions:

1. For every w € , T(w) and S(w) are nonempty and closed subsets of {2.

2. {8} <1 §(B) is not satisfied.

3. A linear operator T : { — ) with spectral radius ¥{I') < 1,I'(¥) C N in such a way for
every w,m € {}, w < m we have:

{¢) For every h € T'(w), there exists i € S(m) or

(#3) For every h € S(w), there exists i € T(m) or

(44%) For every i € S(m), there exists h € T(w) in such a way that

B <i—h~ P(m - W),P(h— w),I‘(s - m)’ ﬂi—_w)iéﬂf:m,
Rit—NAXpcE E(fh_w)—;ﬂ'__m! .

Then T and S have a common fixed point in {2,
Proof;
Case 1: If p = I'(/n — w). Since {8} <1 §(8) is not satisfied.
Let mg € S(8). As N is reproducing, by Lemma 1.3.1, there is ¢ € (—N) such that ¢ < my.
Because of given condition 7¥(I') < 1, by Banach's contraction theorem the equation (I —-TMw =
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—i has a unique solution tg € N . Let wp = —ig, by condition 3(ii) for mg € S(8), there exists
ho € T(wg) in such a way that

Bjm'ﬁ—hﬂjr(g_wﬂ)’

that is
8 < mg — hg = T'(—wo)
or
mg — ['(to) =X mo — [{—wp) X ho.

As i <X my,

i — (o) < ho. (3.1)
As tg is the solution therefore

(I -ty = —1,
which gives

i T (o) = —to. (3.2)

By using equations 3.1 and 3.2, we have
hg = —t, = we,

which implies that {wo} <1 T(we)
considering wy = hg and using condition 3(5), there exists wz € §(wy) in such a way that

wy — wy X D{w; — wo).
Due to the fact that N is normal, there exists {; > 0, such that

flwz — w1 € 4|C|||fws — wel|, where L > 0.
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Now for wz € S{w;) by condition 3(¢i}, there exists w3 € T'(w;) in such a way that
w3 — wy =% ['(wz — w1),

that is

A

lws —wal| < I|\T||lws — wnl), where I >0,

Lo ||TY? lwy — wo)].

Fa

Continuing in this way, we have
llwr+1 — wrll < & dghy [T ||y — woll.
that is
lwrs1 — wel < T |[w1 — woll, where Ir..02 =1L

As lim, o(||T7|DY" = ¢ < 1, we have ||[[7|| < ¢ for some g € (0,1) and for all sufficiently
large r

llwes2 — well < YT {}lw1 — wol] < Ig"ljws — wol.

This implies {w,} is fundamental. As §) is complete, a unige element w* € {2 exists, in such a
way that w, — w*. As {w,} is an increasing sequence, w, < w*, for r =0, 1, 2,3, ..... Now there
exist two subsequences {ww,.1} and {waorig}, where way; € T{wa,) and wary2 € S(wye41),
such that we, < w* and wgry <% w*, for r = 0,1,2,3,.... So by given conditions 3(i) {and
3(it}), there exist my € S(w*) (and ¢, € T{w*)) in such a way that

0 X my — wory1 S T(w" —wo,) (and 8 <t — wa 3 <X D(w® — worpa)).
Due to the fact that N is normal, there exist I3, > 0, in such a way that
e — wargall < LlT(|llw™ — wor|| (and || — w2e|| < )T [|w" — woria]))
which implies lim,_ ooy = w* = [iMm,, xtr. As we kmow that T(w*) and S{w*) are closed, so

25



we have w* € T(w*) N S{w*).
Case 2: If p=D(h — w). As {6} <1 S(6) is not satisfied.
Let mg € §(0). As N is reproducing, by Lemma 1.3.1, there is i € (—N} such that § < my.
Because of given condition «(I') < 1, by Banach’s contraction theoremthe equation (I —Tw =
—i has a unique solution tg € N. Let wg = —ty, by condition 3(%ii) for mp € 5(8), there exists
ho € T(wg) such that
8 < mg — hg X D(hg — wo),

that is,
—ho X —mg +F(h0 - wﬂ)!

which impljes
i —I(to) X mg — (o) X ho + I'(ho).

As t; is the solution so we have

ho +T'the) = wy.

As hg <X my € —N therefore hy € —N and so
ho = ho +T'(ho) = wo,

which implies {wp} <1 T(wp).
consider wy = hp and using conditions 3(¢), there exists wy € S(w) insuch a way that

f < wy — wy % T(w1 — wa).
By condition 3(¢), there exists w3 € T{w3) in such a way that
0 < w3 —wy X Dlwy —un).

Now applying the same procedure as in Case 1 we have a fundamental sequence {w, } in . As
{w,} is an increasing sequence, w, <X w*, for r =0, 1,2, 3, .... Now there exists two subsequences

{war41} and {woey3}, where wery; € T{wa) and woiz € S(wor4), such that wy < w*
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and waep; X w*, for r = 0,1,2,3,.... So by given conditions 3(¢) (and 3(ii)), there exist
m, € S(w*)(and ¢, € T(w*)) such that

8 X my — woryy XT(wary1 —wzr) (and 8 Xt — waysp =< T(warpe — Warp1))
By using triangular inequality and the definition of normality we deduce
limy ooy = W' = limy_ oo,

Ag we know that T(w*} and ${w*) are closed, so we have w* € T'(w*) N S(w*).
Case 3 : If p=T(i — m). As {f} <1 S(8) is not satisfied.
Let mp € 5(6). As N is reproducing , by Lemma 1.3.1, there is ¢ € (—N) such that { < my.
Because of given condition y(I') < 1, by Banach’s contraction theorem the equation (I — INw =
—i has a unique solution ¢p € N. Let wp = —tp, by condition 3(iit}, for my € S(8), there exists
hy € T{wyp) such that
8 < mg—hg 2T (mp — ),

that is
ho = i —T'(mg).

As tp is the solution so we have,
ho = i — T'{mo) + I'(to} — I'(to) = wo + T'(tp — ma).

As tg, —myg € N, therefore
ho = wo + I'{to — mg) > wy,

which implies {wg} <1 T(wp).
Assuming w; = hy and using condition 3(), there exists wy € S(w,) such that

8 <X wg — uy <X I'(we — wy).
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Due to the fact that N is normal, there exists I; > 0, such that
flwa — w]| < &[T} |lwa — wal,
that is
(1= 4|0} Jwz —wnl| <0

which gives wy = ws. By condition 3(i}, for we € §(we) there exists w3 € T'(ws) such that
6 < w3 — wp <X D(wz —ws)

that is wg = wa. Hence we € S{w2) N T{ws).

Case 4: If p= 5@-&23";"11 As {8} <1 S(6) is not satisfied.
Let mg € §(#). As N is reproducing , by Lemma 1.3.1, there is i € (~N) such that i < my.
Because of given condition ¥(I") < 1, by Banach’s contraction theorem the equation (F —-T)w =
—1 has a unique solution ¢y € N, Let wg = —t, by condition 3(3), for mg € 5(8), there exists
ho € T'(wp) in such a way that

T(mo — wo) + L(he)

which implies
ho > mo- P(mo—w;)+P{ho)
. i P(m-o~-‘w§)+f‘(ho)
r i~ Tlto) + () - e t0) 1 T
> wo+ P(_zw") + F(_2m°) + F(;h") .
As wg, Mg, kg € —N, therefore
h'O > o,

which implies {wg} <1 T(wo).
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Assuming wy = hg and using condition 3(i), there exdists we € S{w,) such that

0% wy —wy < F(wz_w“)'gr(wl“”l) jr("ﬂ‘wl);f‘(wrwn)'

Due to the fact that N is normal, there exists ) > 0, such that

LT (w2 — w1} + Jlwr ~ wol)
2 ¥

llwz —wnff <
which gives
4L|Ir LT
(1~ Y o — i < 20 s .

As 2 - '!1"]:‘” ?é Ds 80

L{IT)Y
ol < —HEL e wll.
lhoz —wnfl < 37 llen — woll

Iﬁtﬂl=2—_'?“'r“'<1

w2 — w1]| < aaf|T°([[{201 — wol.
Continuing in this manner we have
flwr41 — we|| < @r.0q|| T ffwy — wolf,

that is
w1 — well < a|[T" oy — wol, where @ = ar...az.

As lim, o (JT7[)Y/" = ¢ < 1, we have||[*|| < ¢" for some g € (0,1) and for all sufficiently large

r

llwr+1 — wel| < ag" w1 — woll.

This implies {w,} is fundamental. As {w,} is an increasing sequence, w, < w*, for r =

0,1,2,3,.... Now there exist two subsequences {wszry1} and {wory2}, where woryy € T(wa,)

and wy9 € S(wgesy), such that wy, % w* and waryy < w*, for r =0,1,2,3,.... So by given

conditions 3(3) (and 3(i%)), there exist m, € S(w*) (and ¢, € T'(w*)) such that

T(m, — r —wr
g < my — wyr 1 X (m, m)+2 (war 1 = ")




and

I'{t. - r - w*
0=ty — ez < O "’""1); (wrrga = w7)

By using the definition of normality we deduce lim,_,oom, = w* = limr_ty. Noting that
T(w*) and S(w*) are closed, so we have w* € T'(w*) N S{w*).

Case §: If p= H"_—"')—;ﬂ'—_ﬂ As {6} <1 8(0) is not satisfied.

Let mg € S(6). As N is reproducing , by Lemma 1.3.1, there is ¢ € (—N} such that ¢ < my.
Because of given condition ¥(I') < 1, by Banach’s contraction theorem the equation (I ~T)w =
—i has & unique solution ty € N. Let wp = —1p, by condition 3(#ii) for mg € S(0), there exists
hg € T(wy) in such a way that

T'(ho — wo) +T'(mo — 6)

0 j mg — hO j 2 ]
which implies
he > me— L(ho —wc2+F(nm)

- i F(—z‘wo) + I‘(—2"’!-0) + I'(—zho)

> i—'r(to) +F(t0) _ F(;O) ¥ I‘('_zm'()) + P(;"’O)

= wp+ F(—z‘wn) L F(—zmo) + F(;ho).
As wp, mg, hp € — N, therefore

hg = wy,

which implies {WO} <1 T(‘w'o)
Consider w; = Ay and using condition 3(i}), there exists wq € S{w;) in such a way that

I'(w1 ~wo) + (wg —wy)
5 .

0 <wg—wy X

By using the same arguments as in case 4, we observe that {w,} is fundamental. As {w,}
is an increasing sequence, w, X w*, for r = 0,1,2,3,.... Now there exists two subsequences
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{war41} and {wory2}, where wary; € T{w2:) and war2 € S(wory1), such that wy, < w*
and wor4y X w*, for r = 0,1,2,3,.... So by given condition 3(i) (and 3(i)), there exist m, €
S(w*) (and ¢, € T(w*)) in such a way that

I'{w ~we)+T - w'
8 X my — worp1 X (Wares 2'; (mr ),

and

< t, — waeig < F(w2r+2_w2r-;1)+r(t,.—-w )

By using the definition of normality we deduce lim, ot = w* = lith,—ootr. As we know that
T{w*) and S(w*) are closed, so we have w* € T(w*} N S{w*).

3.3 Coupled Fixed Point Theorems for Operators having MM
Property

In this section we will prove some coupled fixed point theorem for a mixed monotone operator,
which are geralizations of [7, 11].

3.3.1 Theorem

Suppose ¥ : 2 X & — N is & mixed monotone operator. Consider a linear operator I': 2 — 0
with [|T'|| < 1,T'(N) C N and there exists k € [0, 1) in such a way

8(z,m) ~ 0(hi) < & ([(z — ) + T~ m)),
for every z,m,h,s € Q with A < z,m <{. If £g, mp €  exdist in such a way that
zo = 9(z0, mo) and mg > ¥(me, Zo).
Then there exist z,m € 0 in such a way

z=9(z,m) and m =9 (m, z).
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Proof: As zy < 9(zo, mo) = 71 (say), mo = ¥{mg, 2o) = m, (say).
Letting z3 = #(z1,m1) and mg = #(mq, 21).
Due to mixed monotone property of 9,

T2 = 9(F{zo, ma),?(me, o)) = I(z1,m1) = 21,

I

™ (9 (mo, To), ¥(z0, Mo)) = H(my, 21) X M.
Further forr=1,2,3...,

Tryl = ‘91‘1-1 (30} Tnﬂ) = 0(19"(:0} m): 19’-("“0! IO)) =49 (zl‘;l ﬂ'l-,-) t Ty,

Mep1 = 9"V (mg, 20) = H(9"(mg, 20), 9" (20, mo)) = F (My, T2) < .
Then by using given condition,

z—a1 = Iar,m) — H(zo, ma) < & (D = z0) + oo — ma)),

my—mg = dmg,zo) — Im1,21) X g {{mo — m1) + T'(z1 — z0)),

which gives from the normality of cone N,

alk

ez~ < 2 Gl (lzs ~ zoll + o — ),
bk

lm1 —mall < <= [ITll (Ime — mu]| +[j21 — 2.

z3—xz = V(z2,ma) — (1, m1) =2 g (T(zz — 1) + T(my — m2)),

mg—my = I(my,z1) - 9(my,x3) < ; (C(my — mg2) + D(zg — 21)),
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which gives from the normality of the cone N,

azk
lzs —2all < 222 (22 — 2l + Yimy — mall),

azk "P“( 4 100 (21 — zoll + lmo — mall) )

LA

2 +8 [Tl (llmo — mall + =1 — o))

ke
ITH? 55 (a1 + b1) aa(llz1 — 2oll + llmo — mafl),

1A

1A

bk
[ma —msll < =2 T (s — mall + 12z — 2]

bk Bk Tl (flmo — ma ]| + Jlz1 — zoll)
2 +4E T (21 — zoll + Jlmo — ma))

IA

12 £ (o1 + )bl — 20} + o — )

IA

se=ss = Oz, ms)— O(zs,ma) < 3 (Tas ~ 22) + Tma — ma)),

mg—my = F(ma,z2) — I(my,z3) < ; (T(mz2 —m3) + I{z3 — z2)),

which gives from the normality of the cone N,

k
lze =3l < 2T (s = zall + mz — mal),
< gk [ WU 5 (e - Br)eallmn — zol} + o = mal)+
-2 ITI* § (a1 +b1) Be(lz1 — zo]| + fjmo — mal()
%
< IV 55 (@1 + b (02 + b2) as(lls ~ zall + [fmo — mu]),
k
s~ mall < 2N (ma — msll + 125 ~ )
< bk [T G (o1 4 00) Ballen — mol] + fimo — mal)+
o ITI* & (a1 + 1) az(llez — =oll + flmo — m)
i3
< TP 25 (01 + bu) (oa + ba) bz ~ o] + ljma — mal).

33



Continuing in this way, we have

leess = 2ll < ACI 3 (a1 4+3) (22 + B3) . (001 + Bri) r X
(22 — zoll + llmo ~ mal),
lmr — mraf) < IT° ;; (a1 + by) (a2 + b2) .. (@1 + Br1) by X

(ll21 — zoll + [Imo — mal),

where o; and b; are positive, for all i = 1,2,...,r. This implies {z,} and {m,} are fundamental.
Letting r — oo we have ||z, — 2,|| — 0 and |my — mp4a|| — 0. As Q is complete so there

exdst T, m € Q, in such a way
z, = r]i];.loﬂ"(zo, mg) — ¢ and m, = r]iﬁlg‘l?’(ﬂlo,ﬂ:o) — m. (3.3)

Finally, we claim that 9(z, m) = z and d{m,z) = m.
Since (3.3) holds, so for 1;,15 > 0, there exist rg, mg such that, for r > rg,m > mp

197 (0, mo) ~ z| < my and [|F™(mo, 20) — mlf < .

Now, for r > max{rg, mo},

19, m) ~ 2 = |[9(z, m) 9™+ (z0, mo) + 9" (2o, ma) ~ ]|
< [19(z, m) — O (&r, me)| + ||+ (20, 70) — 2|
< k3 ‘ ; (T(z, —z} + D(m — m.,.))‘ + “15"'"'1(220, mg) — a:“
< 5B 0 e — 2l + llm = mel} + 07+ (20, mo) — 3.

2
Letting r — oo, we have

¥z, m) — z|| =0,

which implies #(z,m) = z. Similarly, we have #(m,z) = m.
If the product space £ x Q endowed with the partial order, we can prove the uniqueness of
coupled fixed point by using the property 1 and 2 of (2.2.4).
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3.3.2 Theorem

Suppose ¥ : 2 x Q@ —  is a mixed monotone operator. Consider that a linear operator
[:Q— Qwith ||I|| < 1,I'(N) C N and there exista k € [0,1) in such a way

8(z,m) - 0(h, 1) < £ (D& — ) +T( — m),
for every &, m, h,1 € Q with A % z,m < i, If there exist =y, mg € 2 such that
29 % ¥{xo, mg) and mg > P?(mg, zo).
Then there exist z,m € Q such that
z=49(z,m) and m =9 (m,z).

In addition if we consider condition 2 of (2.2.4), we have coupled fixed point of # is unique.
Proof: Suppose (z', m) € Q x  is another coupled fixed point of ¥, then we show that
"(:s, m) — (=, m)” = 0 where

rll[gotﬁ"(zo, mﬂ) =z and t]i-l-g; ﬂt(mo, 30) =m.

We prove this result by considering two cases:
Case 1: If (x,m) and (z,m) are comparable with respect to the ordering in Q x Q, then for
every r =0,1,2,3..., (z,m) = (§(z,m),? (m,z}) and (z,m) = (§"(z,m), 9" (m, z)) are also



comparable. So, we have

"(z, m) — (:..-‘, m)” = [|[(¥"(z,m},9"(m,z)) — (z?”(x', m), ¥ (m, z)) "
= (t?‘"(:r, m) — 9" (z, m), 9" (m, z) - V" (m, z))”
0" (m, z) — I (m, z)“

= |9z, m) - &=, m‘)“ v

V(8" z, m}, 9"} (m, z})
—v (ﬂ'_lfx', m), 0" " m), :.:))

9 (9" (m, 2),97" (2, m))
-9 (0" m, z), 9= m}) ’

By using the normality of the cone N, there exist normal constants k;, &, > 0 such that

- N f Tt e m) - m))
”(z,m) B (:r:,m)ll < My ( +T( Y m, ) — 0" Hm, x)) )H
ol (et - o)
2\ 4@, m) - 97z, m))

1A

kT ( Jozm) =9zl ) ,

+ “ﬂ"_l(m, z) — z?'"_l(m, :c)“

where l; = max{ki, k; }. Continuing in the similar manner we have

[tz - (=m)

1A

”19(5, m) - 9{x, m')]l )

+||9(m, 2} — 9(m, 1)

be—1 k720" (
)

Letting r — oo, we have (z,m) = (z,m).
Case 2: If (z,m) and (z,m) are not comparable with respect to the ordering in §2 x 2, then

there exists an element (z*,m*} €  x §2 which is comparable to both (z,m) and {z,m).
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So we have,

Jtem - (zm)]

=]+ =

* — :c” + |[m—m*|l +
Ii?"(a:", m*) -9 (z, m')”
¥ (m*,z*) — 9" (m, :c)" .

m‘-—m”

1A

il

19 (@, m) ~ 9" (a®, m*)] +
+ 187 (m, 2) — 9" (m", 2} + |

By using the normality of the cone N, there exist normal constants ky, ky, ky, k; > 0 such that

fiwm - Gim)] < &

E F(ﬂr—l(m, m) _ zﬂr'l(z*,nz‘)}
23\ 4T (07 (m*, z*) — 97w, x))

|l Pz, m) — 0N, m)) )
2 frrton, 5 — 07 e, )
i |5 T mz) 0 e 2)) \
"2 +L( Yz, m*) — 0" e, m))
oK g COlm* z*)— 9 (m,z))
H[2 T Yz, m) — 9" z*, m*))
”191‘ 1(:1: m) g 1
< LE(TY + || et 2y - l(m )l
= + | (=, m) — 97" 1(3: m)||
[ o, 7) —

where !; = max{ky, ky, k;, ¥, }. Continuing in the similar manner we have

I9(z, m) — 9(=*, m%)|

. 3 et ey | FF(mM*,2%) — 9(m, )|
"(”"m)_(z’m)" < ko + [[9(z*, m*) — 8(z, m)||

+ [|[F(m, 2) ~ F(m*, z*)|
iz = 2]l + m* - m ) |

H=® = 2| + [|m - m|

A

— lr_lkr_l "I-"r—l (
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Letting r — oo, we have (z,m) = (z,m).

3.3.3 Theorem

Suppose ¢ : £} x § — £} is a mixed monotone operator., Consider that a linear operator
I': 02— Q with ||| < 1,I'(N) C N and there exists k € [0,1) in such a way

9z, m) — B(h,i) < ;(I‘(a:— B) + T — m)),
for any z,m, h,i € § with A < z,m < i. If there exist zg, mg € £ such that
zg < ?¥(zg, mo) and mg = #(mg, zg).
Then there exdst z,m € Q in such a way
z=49(z,m) and m =9 (m,z).

In addition, if we consider that every pair of elements has either a lower bound or an upper
bound. we obtain £ = m.
Proof:

Case 1. If z is comparable to m then £ = ¥(z,m) is comparable to m = ¥(m, ) and we have

leg—mll = |[9"(z,m) - 5" (m,z}
= “19(‘9'._1(3’ m)s #! (m's T)) - ‘9(19'-_1(’“1 I)’ ﬂr_l(zl m)}“

By using the normality of the cone N, there exists a normal constant k; > 0 such that

Rl 0@ z,m) — 07 m, ) + T (@, m) ~ " (m, 2))|
Ky |T)l [0 Yz, m) — 0"~ (m, ).

[z = m|

A

1A

Continuing in this manner we have
lle —m|| < k" k. ket |17 (|9(z, ) — B(m, )] -
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Letting r — 0o, we have £ =m.
Case 2. If x and m are not comparable then there exists an upper bound or lower bound of =
and m that is, there exists a z € {2 comparable to both x and m. Suppose that z < z, m < 2

holds, then we have

Iz, m)

N

¥z, m) and 9(z, m) = Iz, 2},

dm,z} <X I(z,z) and I(m,z) > I(m, 2).

By using the mixed monotone property of 9, we have

(i) *(z,m) = I(V(z,m), B(m,z)) X HB(z,m),I(m, 2)) = $*(z, m).
(%) 9*(m,z) = I(I(m,z),9(z,m)) 2 I((z,x),9(c,2)} = 9*(2,2).
(#ii) 9%(x,m) = BH(@(z,m),d(m,z)) = I(I(z,2),9(z,z)) = 9*(z, 2).
(i) 9*m,z) = V(B(m,2),9(z,m)) = H(I(m, z),9(2,m)) = *(m, z).

Similar relations can be shown to hold for any + > 2. Now consider

Iz —ml = [[#"(z,m} - 9"(2,2) + 9" (2, 2} — 9"(m, z)||

195"z, m), 9"~ (m, z)) — H(F" (2,2}, 9" (z, 2))
(9 (2,2), 97z, 2)) — I (m, ), 9"z, m))|
9 (2, m), 9"} (m, z)) — (" (2,2), 9" (=, )|

Fal

+[[ (I (2, 2), 9Nz, 2)) — I m, 2), 9z, m))|.
Due to the normality of N there exist k1, %, > 0, such that

lo=mll < klSIE (z,m) 97 (,2)) + Tz, 2) 9" m, D)
R z,2) = 07 m, ) + T, m) — 7z, )

< Ilg TN {97 (2, m) — 8" (z,2) || + [[9" (2, 2) = 0" (m, &) || + (1977 (2,2} — 9" }(m, z)|| -
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where !y = max{k, k; }. Continuing in this manner we have

le—m] < Ir—l(g)"l T~ {[[9(=, m) — ¥(z, 2)|| + [[¥(=, 2) — " (m, )|
19z, ) — I(m, 2)| -+ (9, m) - 9(=, 2)|[}-

Letting r — oo, we have z =m,

3.3.4 Theorem

Suppose ¥ : 2 x 1 — {1 is a mixed monotone operator. Consider that & linear operator

[:Q— Qwith ||T]| < 1,[(N) C N and there exists k € [0, 1) such that
o K ,
9(z,m) ~ 9(h,i) < 5 (C(z — b) + T - m)),
for any z,m, h,i €  with b < z,m < 4. If there exist zy, mg € {2 such that
zp < ¥{(zp, me) and my = 9(my, 7o)
Then there exist z, m € {2 such that
z=19(z,m) and m =9 (m, ).

In addion, if we consider that zp and myg in § are comparable then z = m.

Proof: Recall that g € {2 is such that ¢ < 9(zp, mp). Now if zyp <X mg we claim that, for all
re Nz Xm.

Indeed by the mixed monotone property of 9

z1 = ¥{xg, mo) X 9(mg, To) = m1.
Assume that z, < .., for some r. Now consider

Tryl = 0r+1 (ID? 7”‘0) = 0('0r(:n! 7710), 19"(7"0, IO))

= 92y, my) X ¥, 2p) = My
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Hence for all r € N, z, < m,. Now

197 (z, m) — 9" (z0, mo) + 9" (20, mo) — ¥"(m, )|

167 (=,m) — 9" (20, m0)|| + 15" (20, m0) — 8" (m, )]

l9(8" " (z,m), 8"~ (m, 2)) — 9(F™ (o, ma), &~ (mo, 20))
+[8(8" (2o, mo), 9"~ (mo,z0)) — 99" (m, z), 8"z, m))|.

ll= — ml|

IA

Due to the normality of N there exist ki, k; > 0 such that

k

_ < k
ffz—m| < L5

Lz, m) — 97 {zg, mp))
+L(" Y mg, 2g) — 9" Hm, z))

N [ oo, mo) — 97 Hm, ) |
+ky 3 1 .
| +I(7 (7, m) - 97 (mo,20)) |
([ e m) — 9 o, mo)| )
3 W Ymg, ) — 9" Hm, z
< hg”F” +|) 1( 0 Zo) _I(m )l ,
[0 (g, mp) — O" (m-fx)llJ

\ HI (@, m) — 9" mg z0) |

where {; = max{k;,k; }. Continuing in this manner we have

le=mh < leoa(a) T {19, m) ~ 820, mo)] + [9(ro, 20) — 8, )]

+197~ (20, mo) — 9"} (m, 2)|| + (97 (z, m) — 7 (mo,z0)}.

Letting r — oo, we have £ = m. Similarly, if zg > my, it can be shown that z. > m, for all

recNand £ =m.

3.3.5 Theorem

Suppose # : 2 x N — 1 is a mixed monotone operator. Consider that two commuting and
nondecreasing linear operators T, § : 2 — Q with ||T']| +||S|| < 1,T{N} C N,S(N) C N in such
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a way for any z,m,k,i € Qwithz <hi<m
9z, m) — I(h,i} <T(h—z) + S{m —9).
If there exist zg, mp € §2 in such a way
2o =< 9(zp, mp) and mo = F(me, o).
Then z,m € {1 exist in such a way that
z =49 (z,m) and m =9 (m,z).

Proof: Since g < 9{xg, mp) = 11 (say), mg = J(mep, Zo) = my (say).
Letting z2 = 9(z1, m1) and m3 = 9(m1, 1).
Because of MM-property of ¥,

23 = 9(H zo, mo), 9(mo, 2p)) = F(z1,m1) = 21,

my = 9(J(my,z0),9(z0, mo)) = F(m1,21) X m1.
Further for r = 1,2,3..,,

zry1 = 9"(z0, mg) = 99" (20, mo), F" (Mo, Zo)}) = I (£, m,) = 21,

Mey1 = 19!'+l(m0’ 50) = '9(‘9'-(7"0, xﬂ)s ,07'(50, mo)) =4 (ﬂ]’f! 31-) = my,
Then by using given condition,

za—z1 = {21, m1) — ¥zo, Mmo) X T(21 — z0) + S(mo — ma),

my — my #(my, o) — ¥(m1, 1) X T(mo — my) + S(z1 — 20),
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LA

T3 — Z2

LA

LA

5
|
3
A 1A

LA

T4—T3 =

LA

my—Mmy =X

1A

A

I'(z3 — z1) + S(m1 — my)
I(T'(z1 — zo) + 8(mp — m1)}) + S(T'(mo — m1) + S(z1 — o))

(1 — zp) + 2T'S(mg — my) + 8%(z1 — o),

I'(my — ma) + S(z2 — 71)
I (T(my — my) + 8(z1 — o)) + 5 (T'(21 — z0) + S(mo — m1))
I'(mg — m1) + 2T'S(z1 — 20) + 53(mo — m1),

I'(z3 — z3} + S(ma — m3)

T(I%(zy — 20) + 20'S(mo — m1) + §%(z1 — o))

+5(T?(mg — my) + 2T8(z1 — %o) + S3(mo — m1))

3 (zy — zp) + 3T28(mg — ma) + 3TS%(z1 — zp) + §¥(mp — my),

T(mq — ma) + S{z3 — z3)

I ({T*(mo — m1) + 2T'S(21 — 20) + S%(mo — m1))

+S(T3(x1 ~ z0) + 208 (mg — m1} + 8%(z; — 20))

3(mg — my) + 3T2S(z1 — 20) + 3T S%(mp — my) + §3(z1 — =)

Continuing in this way we have

Trel —Fp =X

My — Mgy X

(;)P’(ml — 3} + ('1' - —my) + (;)r'-zsz(zl )

oo + (r z 1)I‘n‘:i"_l(ﬂ?l — o) + (:)S"(mo —m),

(;)F "(mo —m1) + (;)F_IS(II — 0) + (;) I™25%(mo — m1)

Fowne (ri I)I‘S"‘l(mu —my) + (:)S"(zl — zp).
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Due to the normality of cone N, there exist constants {1, {3 > 0, such that

Q)T (21 — zo} -+ (TSm0 — 1)

iy —zell < h|| +(OT728% (21 — 7o) + ... + (TS 2y — )
+(7)87(mo — m1)

I@ITH 21 = 2oll + [T 1181 llmo — mal]

i1 4 HEMTI 2SI 21 — 2ol + ..

HECID TSI 21 = 2ol + [(DUS] 1Mo — mal

[ 7aN

3

(O (mo —my) + (I S(z1 ~ o)
[me —mepall < o +(;)PT"ZSQ(mg —my}+ .+ (ril)FS’"“l(mg —1m)
+(:)Sr(11 — .TB(])
U Nmo — |l + | (DT 18] 21 — o
b +H{HUTI2YSIPlmo — ]| + ..

H TSI Imo — mall + [(ISH 21 — ol

A

Letting r — oo then ||zy41 — z¢|| — 0 and ||m, — my4q)| — 0. As Q is complete so there exist
z,m € {], such that

T, = .-Ii."o]o 9" (zp, mg) — 7z and m, = Jlim 9" (mg, Tg) — m. (3.4

We finally claim that 9(z, m) = z and 9(m, z)} = m.
Since (3.4) holds, so for %,,%, > 0, there exist ry, ty such that, for » > rg,t > &

197 (20, mo} — zl| < 1, and |6 (g, zo) — m|| < n,.



Now, for r > max{rg, 5},

|#(=z,m)—z|} = Ilﬁ(z,m) — 9™ (29, mg) + 97 (zp, mg) — z“
192, m) — 9 (e, me)] + |87+ (20, mo) — =]
13 [T (zr — 2) + S(m — ma)| + [ (20, o) ~ 2

I3 {1l |z ~ 2l + 1| lrm — x|} + |97+ (@0, mo) — =] .

A IA

IA

Letting r — 00, we have
¥{(z, m) —zj| =0,

we have that 9(z, m) = z. Similarly, we have prove that 9(m, z} = m.

3.4 Coupled Fixed Point Theorem for a Multivalued Operator
having CCM Property

In this section we will prove the generalization of [2].

3.4.1 Theorem

Consider {2 be a complete normed space and N be a normal and reproducing cone in {2 and
partial order ” < is induced by the cone N. Let 9 : §2 x @ — C(§2} be a multivalued mapping
having CCM property on 2.Two linear operators I, § : 2 — (2 exists. Assume that there exists
a k €[0,1) such that for all z < h,m =< ¢

;[I‘ (z — 1) + S(m — i)] € o((z,m), (A, i}) = Nzca(s,m)weap,3(z — wh

and
k ) .
5{T(m — 9) + 5(z — k)] € o(9(m, ), 93, h)) = Nmesim,z) reopms(m — 7)-
If there exist zg,mg € Q such that {zp} <4 ¥{zo, mg),¥(mo,zp) <5 {my} and Q has limit
comparison property then T, 7 € {1, exist in such a way that
Z €Y (T, M) and 71 € 4 (W, E).

45



Proof: Since {29} <4 9(zg, mo) and 9(mg, Tp) <5 {mg}, then there exist some z; € ¥(zq, mg)

and my € 9{myg, 7o) such that y x z; and mg < my,s0 by given conditions we have
k
E[F(Io — z3) + S(mg — my)] € a(F(zo, Mo}, 9(z1,m1))

and

 IDmo — ma) + Sz = 22)] € o (3o, z0), 9(ms, 22)).

Aleo by using CCM property we have
19(30a "]‘0) <a 6(Ilsm1) and "(mﬂ:zo) <4 ﬂ(mlszl)!

then there exist z2 € ¥(z1,m1) and g € 9(m1, ;) such that z; =< 3 and m; < mg. By using
Lemma we have

k

Eﬂ"(zo — 21} + S(mp ~ ma)] € 3(z1 - z2),

which implies
21~ 23 % 5 [0m0 ~ 21) + S(emo — my)],
and also
g[l"(mn —mq) + S(zo — 21)] € 8(m1 — my),
which gives

my ~ mg < S[D(me — my) + S(zn — 71)].

Due to the normality of the cone N we have

IA

k-
lz1— 22l < a15 (7] llz0 = 2all + [[S]] lmo ~ ma]),

k
lIm —mali < bag (1T [lmo — mal + (ISl lleo — z:1).



If I} = max{aj,b;} then

k
iz —2all < bz (PN Nlzo — 22l + IS o — mall),

k
lImy —mall < bz (IF| lImeo ~ mal| + ||S] lizo — 2a]l)-
As 1) > z3 and m; < m2 s0 again by using CCM property we have
9z1,m1) <4 (22, ma) and 9(my, 2;) <4 F(my, 22),

then there exist z3 € 9(z2, mg) and mg € ¥(mag, z2) such that z3 < 23 and my < m3. Again by
using Lemma we have

A

-7y X I~ 22)+ Sm — ma)],

k
Mo — My =% E[l"(ml - mg) + S(I] - Ig)].
Again by the normality of the cone ¥V we have

k
lz2 —2sll < aag (V] ll22 = 2l + [|S1] m2 = mm2l])

5( ITH (1§ Q) Yizo — 2+ 18] 1 — ma ) )

< a
"2 1S @E AT o — mall + 151 170 — =:1))

k2
5712 ((IT12 + 1812) llzo — 2l + 2 D1 S]] o — )

[Fa

and

(Tl flma — mafl + (S]] flzs — 22l))

( 1T (4% (T mo — mal + 1T lizo — 1)) )
IS (1 & QT 120 — zal + 151) o — mal)))

[mz —mal| < b

o
(=)
b & B3| o

A

A

k?
5213 ((IT12 + 1512 imo — mall + 2 ITN 181 Nzo — 2all)
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where Iz = max{ag, b2,11}. As 3 < z3 and mj < my so again by using CCM property we have
Pxa, ma) <4 9(z3,m3) and 9(m3, 22) <4 9(m3, z3),

then there exist z4 € ¥(x3, m3) and my € 9(myg, z3) such that z3 = 74 and my < my. Again by
using Lemma we have

Z3—2z4 = ;ll"(zz — 23} + S(ma — ma)],

my=my 2 E[Dma—ms)+ S(aa - a3)

Again by the normality of the cone N we have

lzs —zall < asy (01 lle2 = zs]| + (1S fmz — mall)
2 2\ g — 2
- (5@ ( (IT1® + 1817 120 — 22 ))
Lk 2[NS im0 —
g OV + 1) g —
+1S| (.g.,:g( ( C ))
+2IT 18] flzo - 1]
. L;;fa( (1m0 + 31T 1S o ~ 21 )
ZEN (IS + 31T 4S0) o —
and
s —mall < oz (T lmz — s + S]] =2 - 2]

2 2
Iy (g;zg ( (1P + 1S12) o — ))
+2|[T|[ 15| lzo — 1))
4 2
+ 18]l (ﬁ,z ( (IPW? + 1181) Y7o = ] ) )
+2 [T o — maf

8o (T + 30T 1) o — ma
2N+ (U1 + 301 181) flmo — 1]l )

(P4l

b3

bo|

A



where {3 = max{ag, b, {3}. Continuing in this manner we have

A

k!‘
2 = Zr4al] 7l (Allzo — zall + B [lmo — mal)),

kl’
e —meall < 20 (Cllmo — mull + D20 — zall),
r

where A, B,C and D are the combinations of powers of ||I']| and ||S||. This implies {z,} and
{m.} are fundamental. Applying limit r — oo, a8 ||T|| < 1,||S|} < 1 and k" — 0, we have
|Zr+1 — Z¢|| — 0 and |[m,; — mp41]| — 0. As 2 is complete so there exist F,7 € (1, such that
limy_,o Z = T and lim,_,o M, = 7. Hence for every e > 0, there exist natural numbers &; and

kg such that
||=,.—£-||5§, for all r > ky and ||m, — 7| g%, for all v > ky.

Now we prove that T € (%, m) and T € ¥(T%, Z). By limit comparision property of {2 we have
T, = T and M, < 7, for all r 50 we have

g[[‘(a:,. B+ 8(m—T)] € o(dzs,my),0E M),

k
§[r(m"‘ - f_ﬁ) + S(zf - E)] € a(‘?(mﬂ 3,-), ‘?(ﬁv E))‘
Then there exists a sequence i, in ¥(F, ) such that
, Lk _ _
Tyl — b = E[I‘(z.- - I) + S(m, — ™)),
and also there exists a sequence h, in (7%, Z) such that
k _
Mey1 — by X 20(my — ) + S(z, — 7).
Now consider

E—iy = (ZTr41— %)+ (2 - 2r41)

EDler — 2) + S(me ~ )] + (&~ 7o4).

IA
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Due to the normality of the cone ¥ a normal constant ¢ > { exist in such a way that
- k - — =
12 ~ir < e{ 5 (Tl lzr — 2l + 1SH lmr =1} + |12 — 2l ) -

Applying limit r — co, we have ||Z — i,]| — 0, which implies i, — Z. Since ¥(Z, ™) is closed so

T € 9(x,m). Similarly b, — ™ and 9¥(, Z) is closed so 7 € (M, Z).
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