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introduction

Lotfi A. Zadeh [26] in 1965 introduced the concept of fuzzy sets. Since
then the fuzzy sets and fuzzy logic have been applied in many real life
problems in uncertain and ambiguous environment. After that, many
theories like Theory of Rough Sets [20], Intuitionistic Fuzzy Sets [5] and
Vague Set Theory [10] are all introduced. All these theories have their
own difficulties and limitations. What characterizes the traditional
fuzzy sets is the membership value or the grade of membership value.
Sometimes it may be very difficult to assign the membership value for
a fuzzy sets. Consequently the concept of interval valued fuzzy sets
was proposed [25] to capture the uncertainty of grade of membership
value. We must consider the truth-membership as well as the falsity-
membership for proper description of an object in uncertain and
ambiguous environment in some real life problems in expert system,
belief system, information fusion and so on. Neither the fuzzy sets nor
the interval valued fuzzy sets is appropriate for such situation.
Intuitionistic fuzzy sets is appropriate for such a situation introduced
by Atanassov [S]. Incomplete information considering both the truth-
membership (or simply membership) and falsity-membership (or non-
membership) values can only be handled by the intuitionistic fuzzy
sets. It does not handle the indeterminate and inconsistent
information which exists in belief system. The concept of neutrosophic
set which is a mathematical tool for handling problems involving
imprecise, indeterminacy and inconsistent data is introduced by
Smarandache [23].

In 1999, Molodtsov [19] introduced the concept of Soft Sets. Maji
(16] introduced several operations on soft sets. Ali et al [1] highlighted
many issues with operations defined in [16]. In 2001, Maji et al
proposed the concept of Fuzzy soft sets [15] and later on applied the
theories in decision making problem [17, 22]. Different algebraic
structures and their applications have also been studied in soft and
fuzzy soft context [1, 3, 7, 9, 12, 21, 24]. In [14] Maji introduced the
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concept of Neutrosophic Soft Set. Ali et al. [2] worked on lattice
ordered soft set and applied it on daily life problem.

In this thesis the concept of lattice order neutrosophic soft set is
introduced. Here also some basic definitions such as restricted union,
restricted intersection, extended union, basic union and basic
intersection of lattice order neutrosophic soft sets and some related
results are discussed. An example is given to show that lattice order
neutrosophic soft sets are very useful in certain decision making
problems.



CHAPTER 1

PRELIMINARIES

This chapter is of introductory nature including some basic definitions and results, which will
help us in the subsequent chapters. In this chapter we discuss lattices, soft sets, neutrosophic

sets and neutrosophic soft scts.

1.1 Lattices

In this section we discuss partial order, dictionary order, upper and lower bound, supremum,

infimum and lattice. For undefined terms and notions we refer to [6].

1.1.1 Definition|[6]

A set is a well-defined collection of distinct objects, considered as an object in its own right.
1.1.2 Definition[§]

For two non-émpty scts X and Y. their cartesian product is denoted and defined hy

XxY={{z,y,;,zecX,yeY}.
1.1.3 Definition[6}

Let X and Y be two non-cmpty scts. Then any subset R of X x Y is said to be binary

relation from X to Y, and we usually write it as R: X — Y.
1.1.4 Definition[6]

A binary relation B: X — X is called relation on X.

1.1.5 Definition{8)

A sct J # @ is said to be partially ordered (PO} if relation < defined on J holds the following
conditions:

(1) vYinedih<hn



(2}  for ji,j2 € J,if j1 < J and j2 < j1 then j1 = jp

3) for ji, 2,73 € J, if j1 < jp and j2 < ja then j; < 3.
1.1.8 Definition|6]
A PO set J is called to be tottaly ordered set if for any j, j2 € J, either ji < jg or j2 < 4.
1.1.7 Definition[6]

Let J; and J; be two PO sets. Then the dictionary order on J; x Jy is defined as;
(jl!j?.) SJU(J: (j3|j4) iff jl SJ] j3 and if jl = j3 then j2 SJ: j‘i' This case SJ]XJzis a
PO on J; x Jy. I J; and J; are tolally ordered, then <}, »j, is total order on Jy x J,.

1.1.8 Definition[6]

Let J be a PO set and J; C J. Then an element j € J is said to be
(1) lower bound of J; ifVm e J, j <m.

(2) upper bound of J; ifVme J1, m <.
1.1.8 Definition[6]

Let J be a PQ set and J, € J. Then

(1) a lower bound @ of J| is said to be greatest lower bound or infimum of J; iff V
lower bounds j of Jy. j € @. Then we write & = gib(J;) or o = inf{J1).

(2) an upper bound f of J; is 8aid to be least upper bound or supremum of J; iff

for every other upper bounds j of Jy, 8 < j. Then we write 8 = lub(J1) or g = sup{.1).
1.1.10 Definition{6]

Let < be a PO on J. The pair J = (J, <) is a lattice if ¥ j1,j2 € J the set {j1,J2} hes
supremum and an infimum in J, f 30and 1€ Jst0<jand j <1,V j€J Then Jis

culled s bounded lattice.
1.1.11 Theorem{6]

Let J # @ set. If A and V are two binary operations on J, then J = (J, A, V) is a lattice iff

for each jq,J2, ja € J the following hold:



(IYsiAjz=7aAfiand 1V i =72V hi
Ry ajdAd=aAGeAR)and (Vi) V=) Vv{iVi)
(3} Arji=hand 1Vii=h

(4} 51 A (1 V J2) = j1 and §; V (71 A jia) = f1.
1.2 Soft sets

In this section we define soft set (8S), soft subset (SSB), soft equal, soft F-subset, soft
F-cqual, soft M-subsct, soft M-equal, soft J-subset, soft J-equal, soft L-subset, soft L-equal,
injective 885, relative null 85, relative whole 88, restricted union of two S8s, restricted inter-
section of two SSs. extended union of two S8s, extended intersection of two SSs, basic union
of two §8s. hasic intersection of two S8s. restricted difference of two 88s. and complement

of & SS. For undefined terms and notions we refer to [1, 8, 9, 11, 13, 16, 18, 19, 21)
1.2.1 Definition[18]

Let W be an initial universe, J be the set of all parameters with respect to W and J, C J.

Then a pair (o, J1) is called & SS over W , where @ mapping given by a : J; — P (W).
1.2.2 Definition[16]

For two SSs (e, Jy) and (8, J2) over W, (a, 1) is called a SSB of (8, Jp) if
(1) C
(2 a()CBG).Vieh
We denote it by (e, J1) € (8, J2). And (8, J2) is know to be a soft super set of (e, J1).

1.2.3 Definition|[18]

Any two 8Ss (o, J) and {8, J2) over W are said to be soft equal if {a, J;} is & SSB of (8, J2)
and (3, Jg) is a S5B of (. J1}.

1.2.4 Example

Let W = {w, we, w3, wq, ws, wg, wy} be a set.
Let ‘}1 = {j1!j21 j3|j4} ' J2 = {jlvjzaja)jﬂ!jﬁ} be sets of pNMEtem'
Consider the SSs (e, J1) and (8, J2) over W s.t



(@, 1) = {a () = {wi,we}, a(f2) = {wr. wi} .2 (43) = {un.wr}, a(ja) = {we}},
(3t F) — {wi w2 ug}, 30 = {wnowah . d(a) = {wy. wa,um},
dody)
3 [J};) = {u‘l. u'ﬁ} . 13 {Js) = {u-'l. u-'4}
For computer applications it is convenicnt to represent a soft set in tabular. Tables 1.1

and 1.2, represents the soft sets (o, J1) and (8, Ja) , respeetively. If a element of W belong

to e (7;) we write 1, otherwise 0.

Table for S8 (a, Ji).

(O‘Jl)'wl wp Wy Wy Wy Wg Wy

i 1 1 0 0 0 0 0
i 1 0 0 1 0 0 0
is ‘ 0o 1 0 0 0 0 1
W Jo 0 0 0 0 1 0

Table 1.1

Table for 88 (8, J2).

(B.Je) | w1 w2 wy wy ws ws uy

Ji 1 1 0 1 0 0 O

Iz 1 0 0 1 0 0 0

J3 1 1 06 0 0 0 1

Ja 10 0 0 0 1 0O

s 1 0 0 1 0 0 0
Table 1.2

Clearly from Tables 1.1 and 1.2, we have J; C S and a (j) € 8(J) V j € Ji- Therelore
(1) € (B..a).

1.2.3 Definition[16]

Let (a, 1) and (B, J3) be two 88s over W. Then (a,J1) is known as soft M-subset of
(8, J2), denoted (a, 1) Ep (B, 2}, if h € Jp and a{j) = A(j), ¥V € J1. Two SSs



(e, J1) and (8, J2) over W are called to be soft M-equal, denoted {(a, Jy) = (8, J2), if
(e, 1)) Enm (8, 2) and (8, J3) Em (@, Nh).

1.2.6 Example

Let W = {wq,wq, w3, wq, ws, ws, wr} be a set of universe and Jy = {5, Jo, 73, ja} » Ja =
{71, 72, 33,34, Js} be sets of parameters.

Consider the S8s («, J1) and (8, J9} over W as show in Tables 1.3 and 1.4, respectively.

Table for 8S (e, Ji).

{a.hy) | wy we w3 ws ws Wy wr

v g 1 o0 1 OO 1 O

J2 1 1 0 0 1 0 O

73 1 1 1 o0 0 1 1

Ja [ 1 ¢ 0 o 1 0 1
Table 1.3

Tabie for S§ (8, J2) .

(3. Jz)jL”w we w3 W4 wWs Ws wy
_j,— 6 1 0 1 0 1 0

J2 1 1 0 0 1 0 O

is 1 1 1 0 0 1 1

J } 1 0 0 0 1 0 1

s |1 0 0 1 0 0 0
Table 1.4

Clearly from Tables 1.3 and 1.4, we have J; C J; and o (j) € B(j), ¥ j € Jy. Therefore

(Q, Jl) gM (6! Jz) +



1.2.7 Definition|[9]

Let (@, Jy) and (4, J) be two S8z over W. Then (a, J1} is known as soft F-subset of (8, J3},
denoted (a, J1) S5 (8, 42),if J; C Jzand a (5) C B(7) ¥V j € Ji. Two 8Ss {a, J;) and {8, J)
over W are called to be soft F-equal, denoted (e, Ji) =¢ (8.2}, if (o, J1) SF {8, J3) and
(8,J2) &F (a. Jy).

1.2.8 Definition[11]

Let (o, Ji} and (8, J2} be two SSs over W. Then (o, J1} is known as soft J-subset of {8, J2),
denoted (e, Jy) €5 (8. J2), if for every jy € Jj there exists jp € Jz, 5.t a(jy) = B (52). Two
88s {a, 1)} and (8, ;) over W are called to be soft J-equal, denoted (a, Ji} =5 (8, J9), if

(a1} Sy (B, J2) and (3,72) Su (o, /1)
1.2.9 Definition[13]

Let {a, J1) and (3, .J2) be two 8Ss over W. Then {a, J1) 1s known as soft L-subset of (3, J3),
denoted (o, Jy) Sp (B, fa}, if for every j; € Jy there exists j2 € Jp 5.t a(5) € (5} . Two
8Ss (e, J1) and (8, J2) over W are called to be soft L-equal, denoted (a, J;) =1, (8. J2), if

(e, 1) S (B.J2) and (8, J2) €1 (0, .]1).
1.2,10 Definition[8]

Let (o, J1) be a 88 over W. Then (o, J1) is called an injective SS over W if ¥ 71, j2 € J1,
1 # Jp implies a (j1) = a (j2)
1.2.11 Definition{1]

Let initial universe be W, J be a set of parameters and .J; € J. Then
(1) (. A1) is known as relative null 8S over W, denoted by 0, if a{j) =0V j € J.
(2} (8, /1) is know as relative whole 88 over W, denoted by uy if 8(j) =W ¥V je J;.
The relative whole 8S over W w.r.t .J is known as absolute S§ over W and denoted by
iey. In a similar way, the relative null 8§ over W w.r.t J is know as null S8 aver W and

denoted by 9.



We shall denote by @ the unique SS over W with an empty parameter set, which is
called the empty SS over W. Notc that @ and @, are different SSs over W and @y S @, €

(o, 1} € pj, € py, ¥ SS over W (a, J1) over W,
1.2.12 DeARnition[1]

Let (a,Jy) and {8, J2) be two SSs over W s.t J; N J2 # @ The restricted union of (e, J;}
and (B, J3) is denoted by (a, J;) Up (8, Ja) and is defined as (e, 1) Ug (8, 2} = (K, C),
where C=JinJandforall je C. K(j) = e(5}UB().

If J; nJy =0, then (e, 1} Ug (8, 2} = 8.

1.2.13 Definition(1]

Let (e, J1) and (8, J2) be two SSs over W s.t JiNJq # B. The restricted interscction of (e, J1)
and (B, J;) is denoted by (a, J}) Ng (B, Jo) and is defined as (¢, Jy)Ng(8, J2) = (K, 1N J2)
where K (j) = a (j) A 8(5), ¥ § € JinJa.

If J1NJy =9, then {a, 1)) Ng (8, o) = .

1.2,.14 Defnition[1]

Extended union of two SSs (o, J1)} and (B, J2) over W is denoted by (e, J1) Ue (B, J2) and
is defined as (e, J1) Ue (8, J2) = (K, G)
ai{jl ifjey -/
K(j) = 35 ifjeJ, - Jy

a(jlus(y)  ifiein

-~

where G = U JpandVj 5.
1.2.15 Definition[1]

Extended intersection of two SSs (e, J;) and (3, J3) over W is denoted by (e, J1) Ne (8, J2)
and is defined as (a. Jy) Ne (8. Ja) = (K, &)
iy} ifjc.J; - h
K- 35 ifj€Jy—- A

a(J)rdiy) Hje i
where G = hUuJyand ¥V j € G.



1.2.186 Definition[18]

For the sct of paramcters J and Ji.Jy C J, for (j1.j2) € J1 x Ja. (1 and &) is called
the conjuction parameter of (j;,7j2), and {j; or J3) is called the disjunction parameter of
ordered pair (§1. 72} . These denoted by (J) A 72) and (71 V j2) respectively.

Woe denote

N = {5 AF)i{Grde) € Sy x Ja}

also

J1®Jy = {{(71Vj2)i{d.J2) € 1 x Jo}.
1.2.17 Definition[18]

Let (a,J;) and {8, J2) be two $8s over W. Then

(1) (e, J1) Na (B, J2) = (K, Jy @ Jg)} is the 85 over W dcfined as K (j; A} = a(f1) N
BIViAjmedhal

(2) {o, 1} Uy {3, J2) = (K. Jy @& J3) is the SS over W defined as K (j1 V jo) = a(f1)V

A2V j1vijee T ®Ja
1.2.18 Definition[21]

Let (o, J1) and (8. J2) be two SSs over W. Then the basic union of (a, J1) and (8, J;) is
denoted by (a.Jy) V{8, J2) and is defined as (K, G} = (a, J1) V (8, J2) , where G = Jy x Jq,

and K (1, j2) = (1)U B (J2). ¥ (hoje) € Sy x o
1.2.19 Definition[21]

Let {o, J)) and (8, J2) be two S8s over W. Then the basic intersection of {a, Jy) and {3, .J2)
is denoted by (e, J})A(J, J2} and is defined as (K, G) = (a, J1)A(B, J2) , where G = Jy x Js,

and K (f1,j2) = a(j1)NB(32), ¥ (J1,J2) € J1 x Ja.
1.2,.20 Definition{1}

Let (@, 1) and {8, J2) be two SSs over W, s.t JyNJ; # 8. Then restricted difference of (¢, J1)
and (8, Jq) is denoted by (o, J1 )~ (83, J2) and is defined as (o, J1)—g(8,J2) = (K, 1 N J2),

where K (f) = (Y- 8(j). Y i€ N



If JyNJy =0, then (a,21) —p (8, J2) = 0.
1.2.21 Definition[1]

The complement of & SS {a, J1) over W is defined by (a, Jl)c and is defined by (a, J;)¢ =
(aC,Jl) where

a® : Jy — P(W) is mapping given by o€ (j) =W — a(j),Vj € J1.

Clearly (m..1)° = uy, ~ (0, J2) and ({@, 1)) = (0, ).

1.3 Neutrosophic sets

In this section we define fuzzy set, fuzzy SS and neutrosophic set (NS). For undefined term

and notion we refer to [15, 23, 26].
1.3.1 Definition(26]

A fuzzy set is a pair (X, f), where X is a non-empty set and f is a function from X to [0, 1]
ie. f:X — [0,1]. For cach z € X, f{x) is called the gradc of membership of x in (X, f)
and f is called membership function of (X, f}. Forz € X

1) =z is called not included in (X, /) if f{z)=0

2) z is called fully included in (X, f) if f{z) =1

3)  zis called a fuzzy member if 0 < f(z} < 1.
1.3.2 Definition

Let @ and  be two fuzzy subsets of a non-empty set J, then o C 8 iff a{w) < f{w), ¥

we W,
1.3.3 Deflnition

A fuzzy subset of W is a function from W into the unit closed interval [0, 1]. The set of all

fuzzy subset of W is called the fuzzy power set of W and is denoted by FP (W).
1.3.4 Definition[15)

A SS (e, 1) over W is called a fuzzy SS over W, where « is & mapping given by a: J; —
FP(W).



1.3.5 Definition[23]

A ncutrosephic sot Jy on the universe of discomse 1 s defined as

Ji = (o, Ty (w) Ty (w), Fy (W)}, we W}, where T)I,F : W — [0,1] and 0 <
Th )+ 1 (w)+ Fp(w) <3

Where T is membership function, [ is indeterminacy function and F is non-membership

function.

1.3.6 Definition[23]

A NS(W) Jy is containcd in another NS(W) Jo, ie. 1 € 2 ifVw € W, T, (w) < Ty, (w),
In{w) <1p(w), Fr{w) < Fj (w).

1.3.7 Definition[23]

Any two NSs(W) J; and J; are said to be NS(W) equal if Jy = K ifVwe W, Ty, (w) =

T (w). Iy (w) = 15 (w). Fp (w) = Fy, (w).
1.4 Neutrosophic soft sets and its operations

In this section we study neutrosophic soft sets and defined some new operations on neutro- |
sophic soft sets which providing a base work for our work. For undefined term and notion

we refer to [14]
1.4.1 Definition[14]

Let W, J be a universe set and sct of paramcters respectively, Consider J; € J. Lot
NS(W) be the set of all neutrosophis sets over W. The collection (o, Ji) is termed to be

the neutrosophic soft set {NSS) over W,where o is a 1apping given by a : J1 — NS(W).
1.4.2 Example

Let W be the set of houses and J is the set of of parameters. Consider
W = {?-Uln Wy, wiy, Wq, w5} and J; C J,

Ji = {71 (beautiful}, j» (wooden), ja(costly). j; (moderate)}. Suppose that,

] (. 0.6, 0.9, 0.7 fua, 07003 008 0 e 1 0 k2
o (j1) =
{wq, 0.7, 0.3, 0.6), {ws, 0.8, 0.1. 0.4}

10



_ {(wy. 0.9, 0.1, 0.5), {wq, 0.3, 0.6, 0.7), {ws, 0.7, 0.3, 0.8},
44 (J?) = 1
{uq, 0.9, 0.8, 0.4), (w5, 0.5 0.7, 0.5

_ (w1, 0.7, 0.6, 0.5), (ws, 0.4, 0.2, 0.1y, (ws, 0.3, 0.7, 0.5,
a(js) = .
{wy, 0.3. 04, 0.8). (w5, 04, 0.5. 0.9)
_ (wy, 0.7, 0.6, 0.3), (wa, 0.3, 0.5, 0.6), (ws, 0.7, 0.9, 0.3),
a(ja) =
{wq, 0.5, 0.3, 0.7}, (ws, 0.3, 0.9, 0.7}

The NS8 (a, J;) over W iy a parametrized family.

Thns we can view the NSS (. .J;) as a eollection of aproximation helow

( (i) (wy, 0.6, 0.9, 0.7y, {wo, 0.7, 0.3, 0.8}, {ws, 04, 0.6, 0.2},
o) =
{wq, 0.7. 0.3, 0.6}, (ws, 0.8, 0.1, 0.4)
) (wl, 0.9, 0.1, 0.5), (wy, 0.3, 0.6, 0.7), (‘wg, 0.7, 0.3, 0.8),
a(jz) =
(wa, 0.9, 0.8, 0.4), {(ws, 0.5, 0.7, 0.5)
{Q, Jl) =
. {un. 0.7, 0.6, 0.5}, {ug, 0.4, 0.2, 0.1}, {ws. 0.3, 0.7, 0.8},
a(fa) =
(1U4, 0.3, 0.4, 0.8), {ws, 0.4, 0.5, 0.9)
o (wy, 0.7, 0.6, 0.3), {wg, 0.3, 0.5, 0.6), {wa, 0.7, 0.9, 0.3},
aijq) =
(wg, 0.5, 0.3, 0.7), {ws, 0.3, 0.9, 0.7)

For the purpose NSS store in a computer, we present form of a table. Tahle 1.2 represents

the NSS (¢, Ji}. lu this table. the entries arc ¢, corresponding to the house w; and the

parameter j., where

e = (true-membershipvalue of w;, indeterminacy-membership value of w;, falsity-

membership value of w;) in a {jx).

Table for NS§ (o, J1).

(@, J1) | uy wy uy wy ury

n (0.6,0.9,.7) {0.7, 0.3, 0.8) (0.4, 0.6, 0.2) (0.7, 0.3, 0.6) {0.8, 0.1, 0.4)
i (09. 0.1, 0.5) (0.3, 0.6, 0.7) (0.7, 0.3, 0.8) (0.9, 0.8, 0.4) (0.5, 0.7, 0.5)
13 (0.7. 0.6, 0.5) (04, 0.2, 0.1) (0.3, 0.7, 0.5) (0.3, 0.4, 0.8) (04, 0.5, 0.9)
Ja (0.7, 0.6, 0.3) (0.3, 0.5, 0.6) (0.7, 0.9, 0.3) (0.5, 0.3, 0.7) (0.3, 0.9, 0.7)
Table 1.5
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1.4.3 Definition[14]

Let (e, Jy) and {8,J2) be a NSSs over W. Then {a, 1) is know as neutrosophic soft

subset (NS-subest) of (8, o) if J3 C Jz and Ty (w) < Ty (w), Lng) (w) < Igy (w) and

Foigy (W) 2 Fpy (w) ¥V 5 € Sy, w € W. We denote it by (a, 1} & (B, ) ora(f) <8(), ¥

je h.

(v, Ji) 15 said to be neutrosophic solt super sel of (3, J2) il (J,J2) is & NS-subsel of

(a,.Jy). We denote it by (a..];) 2 (8. 1) .

1.4.4 Example

let W = {wq, wy, ws, wq, w5} be the set of universe and J = {1, j2, 73, J4: J5. Js, 57} be a set

of parameters. Let Jy,J C J, J1 = {j1,J4.J6} . J2 = {51, 73,54, J5. 76} Consider (e, J1) and

(8, J9) NSSs over W as shown in Tables 1.6 and 1.7, respectively.

Table for NSS (e, Ji).

(a!Jl)

un

i)

wy

iy

ity

i
J4

Js

(.15,.36,.92)
(.35,.76, .34)

(.24, .53, .59)

Table 1.6

Table for NSS (3, Ja}.

B, h) |

1 (.29,.57,.44)
ja (53,.42, .69)
Ja (.66, .89,.12)
Js (.63,.91,.18)
s }(.37,.60,.46)
Table 1.7

(.34,.56,.72)
(.67,.37,.34)
(.32,.82, .93)

tra

(.63,.86,.63)
(.62,.73,.39)
(.79, .65, .05)
(.31, .48, .68)

(.37,.97,.19)

(.58,.47, .65)
(.15,.28,.64)
(.42, .66, .69)

Hiy

_L91“4“76)
(.61,.48,.29)
(.28, .69,.12)
(.35, .49, .61)

(.59, .88,.32)

12

(.74,.36,.54)
(.83,.37, .96)
(.59,.32, .28)

i1
{.75..43,.29)
(.47,.97,.51)
(.95,.58,.83)
(.59, .59,.53)

(.73, 49, .16)

(.37,.32,.99)
(.18, .53, 92)
(.51,.63, 59)

i'g

(.81,.47,.58)
(.58, .87,.35)
(.57,.79,.14)
(.25,.37,.43)
(.72,.86,.54)



Then clearly from Tables 1.6 and 1.7, we have o (j1) < B8(j1), a(js) < B8(j4) and
o (je} X B{js) s0 (o, J1) E (8, Ja).

1.4.5 Definition[14]

Two NS§8s (a, Ji1) and (8, J2) over W are called to be equal if {a, J1) € (8. J2) and (8.J4;) €
{a, J1). We denote it by (o, J;) = (8,J2).

1.4.6 Example

let W = {wy, w9, ws, wq, w5} be the set of universe and J = {j1, 7z, 43, 4. 73, J6. j7} be a set

of parameters. Let Jy, /o CJ, J1 = {1, 42,30, }» J2 = {J1, 2.4} Consider (e, J;} and

{8, .J2) NS8s over W as shown in Tables 1.8 and 1.9, respectively.

Table for NSS {a,./;).

{(l’, J[) I Yy W W W s

7 (15,.36,.92) (.24,.56,.72) (.32,.47,.65) (.74,.26,.14) (.17,.32,.99)

72 (.23,.54,.27) (.13,.64,.76) (.84,.97,.63) (.56,.27,.63) (.31,.84,.71)

ja ] (.35,.76,34) (67,.37,.34) (85,.28,.64) (83,.37,.73) (87,53, 92)
Table 1.8

Table for NSS (8, .J2).
(8,2} l iy e iy IR umw

1 (.15,.36,.92) (.24, .56,.72) (.32,.47..65) (.74,.26,.14) (.17,.32,.99)
72 (.23,.54,.27) (.13,.64,.76) (.84,.97,.63) (56,.27,.63) (.31,.84,.71)

74 ](.35..76,.34) (.67,.37,.34) (.85,.28,.64) (.83,.37,.73) (.87,.53,.92)
Table 1.9

Then clearly from Tables 1.8 and 1.9, we have (a, ;) € (8, /) and (3, J2) € (o, /1)
then (o, J1) = (3, J2).

13



Now we defined some new operations on neutrosophic soft sets which providing a base

for our work

1.4.7 Definition

The complement of NSS (a, J1) over W denoted by (a, J;}C and is defined as (a, /)€ =

(o€, 1), where o€

IDCU) (lﬂ) = la(j) ('HJ) and F,

1.4,8 Example

aC(5) (w) =

: i — NS(W) is a mapping given by

Tapw)vVieh,weW

Tac(j) (w) =

a(j) (W) s

let W = {w;, ws, w3, wq, ws} be the set of universe and J = {ji, 72, ja, 4, /5. J6. Jr} be a set

of parameters., Let Jy C J, i = {j1, j2,J4. 8. 77}- Consider (a, J;) NSS over W as shown

in Table 1.10.

Table for NSS {a,J;).

(e ) %

7

73 l

Ja (
Js
Jr

Table 1.10

15, .36, .92}

{-

(.23,.54, .27)
(.35,.76,.34)
(-

84, .93,.43)

(.54, .32,.89)

iy

(.2_4, 56,.72)
(.13,.64,.76)
(.67,.37,.34)
(.32,.82,.93)
(.26,.41,.76)

iy

(.32, .47, 65)
(.84,.97, .63)
(.85,.28, .64)
(.82,.96, .69)

(.48,.48,.51)

g

(.74,_.26, 14)
(.56,.27, .63)
(.83,.37,.73)
(.59, .32, .28)
(.86,.95, .52)

The complement of NS§ (ar, J1) is (a©, J;) as shown in Table 1.11.

14

'y
(.17,.32,.99}

(.31,.84,.71)
(.87,.53,.92)
(.81,.63,.53)
(.48,.72, 49)



a’

Table for the complement of NSS (a, /).

(Y 1wy 3 wy s

i (.92..36,.15) (72,.56,.24) (65,47,.32) (14,.26,.74) (99,.32,.17)
i | (.27,.54,.23) (.76,.64,.13) (.63,.97,.84) (.63,.27,56) (.71,.84,.31)
i (.34..76,.35) (.34,.37,.67) (.64,.28, 85) (73,.37,.83) (.92, .53,.87)
7o (43,.93,.84) (93,.82,.32) (.60,.96,.82) (28,.32,.59) (.53,.63,.81)
jr | (89,.32,.51) (76,.41,.26) (51,.8,.48) (52,.95,.86) (49,.72,.48)
Table 1.11

1.4.9 Deflnition

A N8S {(a, J;) over W is termed to be empty or null NSS over W w.r.t the parameter J; if
Ta(j) (w) = 0, Loy (w) =0 and Fi5 (w) =0, ¥V j € J1,w € W. In this case the null NSS is
denoted by @,.

1.4.10 Deflnition

Let (e, J;) and (B,J2) be two NSSs over W such that J1 N'J; # 0. Then (a, ;) Ur
(8.J2) = (K,G) is said to be restricted union of two LONSSs over W, where G =
Ji N Jg. define K (§) = a(5) U B() . Trqy) (w) = Max {T, (2)  Tayy (1)} Txgy (w) =
Maz {Io) (), Igg) (w) }and Fgjy (w) = Min {Fop (2), Fag) (wy}vieGuweW

1.4.11 Example

let W = {w;,wy, wa, wg, w5} be the set of universe and J = {71, j2, 73, j4, 35, Jo. 7} be a
set of parameters. Let '[19'13 C Ja Jl = {jl!j2|j4|jﬂ!j7} }']2 = {jlsj3|j4!j5|j5}o Consider
(e, Ji) and (B, J2) NSSs over W as shown in Tables 1.12 and 1.13, respectively.

15



Table for NSS {a,.J;).

i (.15,.36, 92) (.24,.56,.72) (.32..47,.65) (.74,.26,.14) (.17,.32,.9;
iz (.23,.54,.27) (.13,.64,.76) (.84,.97,.63) (.56,.27,.63) (.31,.84,.71)
ja (.35,.76,.34) (.67,.37,.34) (.85,.28,.64) (.83,.37,.73) (.87,.53,.92)
76 (.84,.93,43) (.32,.82,.93) (.82,.96,.69) (.59,.32,.28) (.81,.63,.53)
it (.54,.32,.89) (.26,.41,.76) (.48,.48,.51) (.86,.95,.52) (.48,.72,.49)
Table 1.12

Table for NSS (3, /o).

I
{19, J2)

] '
7 (.29,.73, .64)
i (53, .42, 69)
s (.16, .39, .92)
js (.63,.91, .18)
Js (.07, .60, .46)
Table 1.13

(.63, .86,.23)
(.62,.73,.39)
(.79,.13,.71)
(.31,.48, .68)
(.37..59,.19)

(.51,.24,.16)
(.61, .48,.29)
(.28,.69,.12)
(.35, .49, 61)
(.59, .48, 92)

(.75, .43,.29)
(.47,.97, .51)
(.29, .58, .83)
(.59, .59, .53)
(.73, .29, .36)

(.81,.42,.58)
(.58, .87, .35)
(.57,.39,.14)
(.25,.37, .43)
(.42,.16, .54)

(a, 1Y UR (B, J2) = (K,G) iz a restricted union of two NSSs over W as shown in Table

1.14, where G = J1 N Jy

Table for restricted union of two NSSs.

(WG
Ji
Ja

Je

+ —

'y

tiry

u

| (.29,.73,.64) (.63,.86,.23) (.51,.47,.16) (.76,.43,.14) (.81,.42,.58)
J(.as,.m,.u) (79,.37,.34) (85,.69,.12) (.83,.58,.73) (&7,.53,.14)

| (84,.93,.43) (.37,.82,.19) (82,.96,.69) (.73,.32,.28) (81,.63,.53)
Table 1.14
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Lag) (w) ifjef—Jy
T ) = € T (w) if j€ o~ Jia
Maz {I,(;) (w}, Iag (w)} ifjeJind,
and
Fagi) (w) ifjed—J
Fruy (w) = Fgiy (w) fjed~Jdiy VieGuweW.

1.4.15 Example

let W = {wy, wa, w3, wy,ws} be the set of universe and J = {4, j2, j3, 74, 75, 76, J7} be a
set of parameten;, Let Jll J2 g J., Jl = {jl!jzij4!j6?j7}!‘}3 = {jl:i’.’nj‘hjﬁ’jﬁ}' Consider
{a, Jy) and (8, J2) NSSs over W as shown in Tables 1.18 and 1.19, respectively.

Table for NSS (a,J1).

(e, ) | wn i ity Uy s

2 (.15,.36,.92) (.24,.56,.72) (.32,47,.65) (.74,.26,.14) (.17,.32,.99)

J2 (.23,.54,.27) (.13,.64,.76) (.84,.97,.63) (.56,.27,.63) (.31,.84,.71)

ja (.35,.76,.34) (.67,.37,.34) (.85,.28,.64) (.83,.37,.73) (.87,.53,.92)

Je l (.84,.93,.43) (.32,.82,.93) (.82,.96,.69) (.59,.32,.28) (.81,.63,.53)

J7 | (.54,.32,.89) (.26,.41,.76) (.48, .48,.51) (.86,.95,.52) (.48,.72,.49)
Table 1.1I8
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Table for NSS (3, J2).

(8,.72) | wn

A r(.29,.73,.s4) (.63,.86,.23) (.51,.24,.[&) 77_5..43,.29) (.31,.42,.53)_
i3 (53,.42,.69) (.62,.73,.39) (.61,.48,.29) (.47,.97,.51) (.58,.87,.35)
ja (.16,.39,.92) (.79,.13,.71) (.28,.69,.12) (.29,.58,.83) (.57,.39,.14)
s (.63,.91,.18) (.31, .48,.68) (.35,.49,.61) (.59,.59,.53) (.25,.37,.43)
j& (.07,.60,.46) (.37,.59,.19) (.59,.48,.92) (.73,.29,.36) (.42,.16,.54)
Table 1,19

(o, 1) Ue (8, J2) = (K,G) is a extended union of two NSSs over W as shown in Table

1.20, where G = J1 U /)

Tahle for extended union of two NSSs.

U\'._G} ) uty o ws

71 (.29,.73,.64) (.63,.86,.23) (.51,.47,.16) (.76,.43,.14) (.81,.42,.58)
2 (23,.54,.27) (.13,.64,.76) (.84,.97,.63) (.56,.27,.63) (.31,.84,.71)
ja (53,.42,.69) (.62,.73,.39) (.61,6.48,.29) (47,97,51) (.58,.87,.35)
4 | (.35,.76,.34) (.79,.37,.34) (85,.69,.12) (83,.58,.73) (.87,.53,.14)
s (.63,.91,.18) (.31,.48,.68) (.35,.49,.61) (.59,.59,.53) (.25,.37,.43)
Js (84,.93,.43) (.37,.82,.19) (.82,.96,.69) (.73,.32,.28) (.81,.63,.53)
i1 ](.54,.32,.89) (.26, .41,.76) (.48,.48,.51)} (.86,.95,.52) (.48,.72,.49)
Table 1.20

1.4.18 Definition

let (@, Jy} and {8, J3) be two NSSs over W. Then (&, J1) Ne {8, J2) = (K, G) iz said to be
extended intersection of two NSSs over W, where G = J; U J; define K () = a(H)UB (),
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( Ta(i) (w)
Tk (w) = § Tgyy) (w)
| Min {T) (W), Tag) ()}

fjeqh—J
ifjeds— Jip
ifjeind

L) (W) ifj€d—J
Ik (w) = { Ig() (w) ifjeJy—Jiz
| Min {I;) (), Iy ()} ifj€JinJg
and
Fag (w) ifjeh—J
Fryy(w) = ¢ Fyi; (w) fjcda—Jiy Vi€EGweEW

Mﬂx{Fau) (‘w').Fg(j) (w)} ifjeinNJd
1.4.17 Example

let W = {wy,un,ws,wq,ws} be the set of universe and J = {3, J2. 73, J4, Js, J6. J7} be &
set of parameters. Let Jy,Jy € J, J1 = {J1, 33, Ja, Jo. J7}, J2 = {41, J3, 34, 35, Jo}. Consider
(o, J1) and (8, 2} NSSs over W as shown in Tables 1.21 and 1.22, respectively.

Table for NSS {(a,J;).

(a,.h)lu'x u' iy L W ____U’.ﬁ -
J; _ )('15,.35,.95 —(_24_;572) _(.;2,:47,.65) (.74,.26,.14) (.17,.32,.99)
Ja x(.zs,.m,.z'r) (.13,.64,.76) (.84,.97,.63) (.56,.27,.63) (.31,.84,.71)
4 I(.35,.76,.34) (.67,.37,.34) (.85,.28,.64) (.83,.37,.73) (.87,.53,.92)
Js l(.a4,.93,.43) (.32,.82,.93) (.82,.96,.69) (.59,.32,.28) (.81,.63,.53)
e | (:54,.32,.89) (.26,.41,.76) (48,.48,.51) (.86,.95,.52) (48,.72,49)
Table 1.21
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Table for NSS (3, J2).

(4. ) l u-.
(.29,.73,.64) (.63, .86,.23)

li'y g

Hry Mig

(.75, .43, 29) (.81,.42,.58)

Table 1.23, where @ = J; U Jz

k]! (.51, .24,.16)

73 (53,.42,.89) (.62,.73,.39) (.61,.48,.29) (47,97,.51) (.58,.87,.35)

Ja {.16,.39,.92) (.79,.13,.71) (.28,.69,.12) (.29,.58,.83) (.57,.39,.14)

Js (.63,.91,.18) (.31,.48,.68) (.35,.49,.61) (.59,.59,.53) (.25,.37,.43)

J6 (.07,.60,.46) (.37,.59,.19) (.59,.48,.92) (.73,.29,.36) {(.42,.18,.54)
Table 1,22

{a. J1YNe (8. J2) = [K,G) is a extended intersection of two NSSs over W as shown in

Table for extended intersection of two N8Ss.

AR S R S —
31 (.15,.36,.92) (.24,.56,.72) {(.32,.24,.65) (.74,.26,.29) (.17,.33,.99)
2 (.23, .54,.27) (.13,.64,.76) (.84,.97,.63) (.56,.27,.63) (.31,.84,.71)
Ja (53,.42,.69) (.62,.73,.39) (61,.48,.29) (47,.87,.51) (.58,.87,.35)
4 l(.lﬁ,.39,.92) (67,.13,.71) (.28,.28,.64) (.29,.37,.83) (.57,.39,.92)
js (.63,.91,.18) (.31,.48,.68) (.35,.49,.61) (.59,.59,.53) (.25,.37,.43)
o (.07,.60,.46) (.32,.59,.93) (.59,.48,.92) (.73,.32,.28) (.42,.16,.54)
r (.54,.32,.89) (.26,.41,.76) (.48,.48,.51) (.86,.95,.52) (48,.72,.49)
Table 1.23

1.4.18 Definition

let (a, J;) be a NSS over W is termed to be relative whole NSS over W w.r.t the parameter

Jyif Ty (w) = 1, Iy (w) = 1 and Fo(y(w) =0V 5 € Ji,w € W and it is denoted by

Ug,.
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1.4.19 Definition

Let (@, /1) and (83, J2) be two NSSs over W. Then (a, /1) v (8, J3) = (K, G) is said to be

basic union of two NSSs over W, where G = J; x J; define K (m,n) = a{m)U 8 (r) and
Tty (W) = Mz {Tymy (w) , Tty (w)}

Ity (W) = Mz {Io) (), Iggn) (w)}
and Fin o (W) = Min {Foimy (w), Fginy (w)}, ¥V (myn) € Gw e W.

1.4.20 Example

let W = {wy,ws, ws, wy,ws} be the set of universe and J = {31, 72, 53, Ja. Js, Ja, j7} be a

set of parameters. Let J;,J2 C J, Jy = {J1,J4. 57}, J2 = {J3, js. j¢}. Consider (o, J;) and

(B, .Ja) NSSs over W as shown in Tables 1.24 and 1,25, respectively.

Table for NSS {a, Ji}.

[
(o, J1) | un o

1

J (.15,.36,.92) (.24,.56,.72)
ja (.35,.76,.34) (.67,.37,.34)

ir 1(54,.32,.89) (26,.41,.76)
Table 1.24

Table for NSS (3, J2) .
(B,J2) | m Wy
ja (53,.42,.60)  (.62,.73,.39)
ja (.16,.39,.92) (.79,.13,.71)

i (.07,.60,.46) (.37,.50,.19)
Table 1.25

(.32, .47, .65)
(.85,.28, .64)
(48, .48, .51)

ws

(.61, .48, .29)
(.28,.69,.12)
(.59, .48, .92)

g

(74,
{.83,
(.86,

wy

(47,
(.29,
(.73,

wy

26,.14) (.17,.32,.99)
37,.73) (.87,.53,.92)
95,.52) (.48,.72,.49)

w5

.87, 51) (.58,.87,.35)
58,.83) (.57,.39,.14)
29,.36) (.42,.16,.54)

(e, J1) v (B, Ja) = (K,G) is & basic union of two NSSs over W as shown in Table 1.26,

where G =J1 x 7y
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Table for basic union of two NSSs.

(K,6) |

(j1, 73)
(71,4
{71, Js)
(74, 73)

wy

(53, .42, 69)
(.16,.39,.92)
(.15, .60, .92)

(.53,.76,.34)

(da, 7a) l (.35,.76,.92)

{74, Ja)
(7, Ja)
(Jr. ja)
(77, 76)

Table 1.26

(.35,.76, .34)
(.54, .42, 69)
(.54..39, .89)
(.57, .60, .46)

1.4,21 Definition

"
(.62,.73,.39)
(.79,.56,.71)
(.37,.59,.19)
(.67,.73,.34)
(.79,.37,.34)
(.67,.59,.19)
(.62,.73. .39)
(.79,.41..71)

(.37,.59,.19)

wy

(.61,.48, .29) _
(.32,.69,.12)
(.59, .48, .65)
(.85, .48, .29)
(.85, .69,.12)
(.85, .48, .64)
(.61,.48, .29)
{48,.69,.12)

{.59, .48, .51)

Uy

(.74,.97, .14)
(.74, .58, .14)
(.74,.29,.14)
(.83,.97, .51)
(.83, .58, .73)
(.83,.37,.36)
(.86,.97, .51)
(.86..95. .52)
(.86, .95, .36)

Wy
(.58, .87,.35)
(.57,.39,.14)
(42,.32,

(.87, .87,

54)
85)
14)
54)

(.87,.53,
(.87,.53,
(.58, .87, .35)
(.57..72..14)
(.48,.72, 49)

Let (o, i) and (3, J3) be two NSSs aver W. Then (a, /1) A (8, J2) = (K, G) is said to be

basic intersection of two NSSs over W, where G = Jy x J3 define K (m,n) = a(m)N 3 (n)

and

and

TH(m.u) (w) = Min {Tu(m) (w) 1T3(n) {"')}
TK o oy (W) = Min {‘rﬂ(m) (W), Ian) (w)}
FK[m.nJ (w) =Maz {Fa{m) (tlJ) 1 Fﬁ{ﬂ) (w)} 1 V (mi ﬂ-) € G! weW.

1.4.22 Example

let W = {wlﬂw2tw3rw4|w5} be the set of universe and J = {jlvj?:j3|j4sj5|j31j7} be a
set of parameters. Let Jy,Jo C J, Jt = (41,41, v}, J2 = {ja,44, 76} Consider (a,.];) and
(8, J3) NSSs over W as shown in Tables 1.27 and 1.28, respectively.
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Table for NSS (a, Ji).
(@, 1) l w wy Hg 2y g
J (.15,.36,.92) (.24,.56,.72) (.32, 47,.65) (74,.26,.14) (.17,.32,.99)

i (.35,.76,.34) (.67,.37,.34) (.85,.28,.64) (.83,.37,.73) (.87,.53,.92)

Jr (.54,.32,.89) (.26,.41,.76) (48,.48,.51) (.86,.95,.52) (.48,.72,.49)
Table 1.27

Table for NSS (4, Jz) .
(ﬁ. J‘z) | " 0] ' I8 e

j3 (53,.42,.69) (.62,.73,.39) (.61,.48,.29) (.47,.97,.51) (.58,.87,.35)
ja (16,.39,.92) (.79,.13,.71) (.28,.69,.12) (.29,.58,.83) (.57,.39,.14)

Js (.07,.60,.46) (.37,.59,.19) (.59,.48,.92) (.73,.29,.36) {42,.16,.54)
Table 1.28

{a, J1) A (8, J2) = (K,G) is a basic intersection of two NSSs over W as shown in Table

1.29, where & = J; x Jy
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Table for basic union of two NSSs.

(K.G) |

th

t'

Hly

Uy

thig

(1. 7a)
(71, 74)
{71. 38}
(4> J3)
(74, da)
(74, 3s)
(97, J3)
(47,34)

(j?:jﬁ)
Table 1.29

(.15,.36,.92)
(.15,.36,.92)
(.07,.36,.92)
(.35,.42, .69)
(.16,.39,.92)
(.07, .60, .46)
(.53,.32, .89)
(.16,.32,.92)
(.07,.32, .89)

(.24, .56,.72)
(.24,.13,.72)
(.24, .56,.72)
(.62,.37,.39)
(.67,.13,.71)
(.37,.37,.34)
(.26,.41,.76)
(.26,.13,.76)
(.26, .41,.76)

(.32, .47, .65)
(.28,.47, .65)
(.32,.47,.92)
(.61,.28,.64)
(.28,.28,.64)
(.59, .48, .92)
(.48, .48, 51)
(.28, 48, 51)
(.48, .48, .92)
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(.47,.26, .51)
(.29,.26, .83)
(.73, .26, .36)
(47,.37,.73)
(.29,.37. .83)
(.73,.29,.73)
(47,.95,.52)
(.29, .58, .83)
(.73,.29, .52)

(.17,.32,.99)
(.17,.32, .99)
(.17,.16,.99)
(.58, .53,.92)
(.57..39, .92)
(-42,.16, .92)
{.48,.72, 49)
(.57,.39, .49)
(.48,.72,.54)



CHAPTER 1I

LATTICE ORDERED SOFT SETS

In this chapter the rescarch paper (2] is reviewed, which contains some corc material pro-
viding a base work for our work. The work in this chapter is about NSS containing some

useful results and basic operations.

2.1 Lattice (anti-lattice) ordered soft sets

In this section we define lattice (anti-lattice) ordered soft set and lattice ordered fuzzy soft

set.
2.1.1 Definition[2]

A SS (o, J1} over W is called a lattice (anti-lattice) ordered SS over W if for the mapping

! -][ — P(H') j] < jf_) - v N {}]) <y f}“l\ fry f’)]‘_).} < n {},\‘I Al j, ',;;1 o )’]
2.1.2 Example

Let W = {wy, wz, wy, wq, ws, we, w7 } be a sct of designs for necklaces and Jy = {1, j2, J3, J4, J5, Js }
be sei of parameters to represent manufacturing materials. j, represents bronze, jo repre-
sents silver, 73 represents gold, js represents white gold, 75 represents platinum, jg represents
diamond. The order among the clements of set J) is as shown in fig. 1, o : J; — P (W)
is & mapping representing the high cost. Therfore S8 («, J;) showing high cost for a design
in particular materrial may be considered as

a{n) = {us}. a(fj2) = {wyws}. alsz) = {wa}, @ (Ja) = {wo, wa, ws, wr},

o {(38) — fwyowgoeoes ) oo {56 — {wns wnote g oes, gLy

For computver application it is convenient to repsent a 85 in a tabular form. Table
2.1, represents the soft set {a,J;). If a design in set W has high cost for a material we
write 1, otherwise 0. From Table 1, it is clear a{ji1) € a(j2} C a{js) € a(js) and

alnyCalf)Calfs) Coags) Thas (o) s an Tattice ondered SS.
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N

7 N
J2 3
| l
Ja Js
N v
76

Fig. 1. Lattice of parameters

Table for LOSS (e, Jy).

(i) Jwr we wz wy ws wg wr
—jl 0 0 0 1 t] 0 0

J2 ¢ o o 1 1 0 O

Js o 0 ¢ 1 0 0 O

Ja 0 1 0 1 1 0 1

Js 1 1] 1 1 1 1 0

Js 1 1 1 1 1 1 1
Table 2.1

2.1.3 Example

Let §8 = {an arg gty g wg ) be a set of six stores and Jyp = {jy. J2. js. j1}. where
j1 ¢ Large stores.
j2 © Very arge siores.
71+ Huge stores.
Ja : Very huge storces.
Then clearly there is an order in the elements of parameters set Jy. This order can be

described as 1 < j2 < j3 € 74. 88 (ev, JJy) may be represented by
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afjr) = {wy, we, w3, wy, ws, we} . (Jo) = {wa, ws, wa, ws},

ce(f3) = {un.wa ws} oo (74) = {wa}
Tabular form for the 88 (a,.) is given in Table 2.2,

Clearly a(j1) 2 a(j2) 2 a(ja) 2 @(Js). Thus (a, J;) is an anti-lattice ordered SS.

Table for anti-LOSS (a, J;}.
(n,Jﬂufl wn o ws Wy Wg Wy

h 1 1 1 1 1 1

a ‘ 0 1 1 1 1 0

ia l 0 1 1 0 1 0

& |0 1 0 0 0 0
Table 2.2

2.1.4 Definition[4]

A fuzzy SS (o, J)) over W is called a lattice ordered fuzzy SS over W if for the mapping
a:Ji — FP(W), i <ip=a(i)<alja), Vi€ h

2.2 Properties of lattice (anti-lattice) ordered soft sets

In this section we study some basic properties of lattice (anti-lattice) ordered soft sets.
2.2.1 Proposition[2]

Restricted union of two lattice (anti-lattice) ordered soft sets (e, Jy) and {3, J2) is a lattice

(anti-lattice) ordered soft set.
2.2.2 Proposition(2]

Restricted intersection of two lattice (anti-lattice) ordered soft sets (a, /1) and (8, J7) is &

lattice (anti-lattice) ordered soft set.
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2.2.3 Example

Let J = {j1, ja, j3, Ja. j5} with lattice ordered as shown in Fig. 2. Let Jy = {41, Ja, j3, ja},
J2 = {j1,72,74,J5} . Consider {e, J;) and (B, J2) is a lattice ordered soft sets over a set
W = {w, wy, w3, wye, ws} as shown in Tables 2.3 and 2.4, respectively.

Here a (1) € a(f2) € a(js), a(1) € a(j3) € a(ja) and B(j1) C B(j2) € B{j1) C
B(js). Then their extended intersection {a, ;) Ne (8,J2) = (K,G), where G = LU Sz is
given in Table 2.5.

From Table 2.5, we have K (j1) € K {j2) C K (55) and K (1} € K (ja) & K (js)
but K (j3) € K (js} so (K,G) is not a lattice ordered soft set. Similarly extended union
(a, J1}Ue (B, J2) = (H,G), where G = J, U Jp is given in Table 6.

From Table 2.6, it is clear that H (1) € H (jo) € H (3s) C H (ja) but H (52} € H (J5)
and H (j4) € H (js), so (H,G) is not a lattice ordered soft set.

h

72 1
Ja
!

Js
Fig. 2. Lattiee of parameters
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Table for LONSS (e, J;).
!
{(’t,.,‘rl) ] i LTS I T L B T ] s

i {0 6 0 1 0

o ( 6 0 0 1 1

Ja 0 1 1 1 0

o1 1
Table 2.3

Table for LOSS (4, .J2).

l
(3.J2) | we wa wq o ug

n | I g 0 0 0
J2 ( 1 0 o0 1 O
44 1 0 0o 1 1
75 ) 1 1 0 1 1
Table 2.4

Table for extended intersection of two LOSSs.
|

(K.GY wy o wey wy wy o onn
2

0
b ’00010

73 0 1 1 1 0
Ja 1 o 0 0 1 1
s ] 1 1 0 1 1
Table 2.5
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Table for extended union of two LOSSs.

(H. G'L wyoowe w3 Wy Ws

it 1 0 0 1 O

72 1 0 0 1 1

Ja 0 1 1 1 0

4 1 1 1 1 1

Js 1 1 0 1 1
Table 2.6

In above example it is seen that, in general, extended intersection of lattice ordered soft
sets may not be a lattice ordered soft set also extended umion of lattice ordered soft sets

may not be a lattice ordered soft set. However we have the following,
2.2.4 Proposition(2]

Extended union of two lattice {anti-lattice} ordered soft sets (e, J1) and (8, Ja) is a lattice

{anti-lattice} ordered soft set if {a, J;) € (B, J2) or {8, J2) € (o, J1).
2.2.5 Proposition|[2]

Let {a, J1) and (8, Jz) be two lattice {anti-lattice) ordered soft sets over W. Then
1. ((e, 1) Ur (8, 22)° = (a, 1)° Nr (8, )¢
2. ({a, 1) Na (B, J2))° = (e, J1)¢ Ur (8, 12)C .

2.2.6 Proposition|2]

Basic intersection of two lattice (anti-lattice) ordered soft sets (@, J;) and (3, J3} is a lattice

(anti-lattice) ordered soft sot.
2.2.7 Proposition|2]
Basic union of two lattice {anti-lattice) ordered soft sets {a, JJi} and (3, J2) is a lattice

{anti-lattice) ordered soft set.
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2.2.8 Proposition[2]

Lot (. .fy) and (3, Jz} be two lattice (anti-lattice) ordered soft scts over W. Then
L A1) Ne {{a, 1) UR (8, B2)) = (a, /1)
2, (e 1Y Ugp (oo N)NR (8.02)) = (o, 1)

2.2.9 Proposition|2]

If (@, /1) and (8, J3) are two lattice (anti-lattice} ordered soft sets, then (e, J1) Na (8, J2)

lattice {anti-lattice) ordered soft set.
2,2.10 Proposition|2]

If (a, J)) and (A, .J2) are two lattice (anti-lattice) ordered soft sets, then {(a, 1) Uy (3, .J2)

lattice (anti-lattice) ordered soft set,
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CHAPTER III

LATTICE ORDERED NEUTROSOPHIC SOFT SETS

In this chapter we define lattice ordered neutrosophic soft set, lattice ordered neutrosophic

soft subset, operations on lattice ordered neutrosophic soft sets and derive some results.

3.1 Lattice ordered neutrosophic soft set

In this section we define lattice ordered neutrosophic soft set and initially we start with
order on set of parameters and construct an example of lattice ordered neutrosophic soft

set.
3.1.1 Definition

Let J; C J, where J is a lattice. A lattice ordered neutrosophic soft set (LONSS} over W
is & pair (a,J1) st a:J; — NS§(W) s.t for each j; € Jy, a(j1) is a nutrosophic soft set

and for j; < jp implies that a (71) < a(j2)} ¥ j1, 72 € J1.
3.1.2 Example

let W = {w.wp, w3, ws. ws} be the set of four houses and
Ji = {j1(cheap), jz(beautiful), js(airy), ja(spacc for vchicle} be the sct of paramcters.

The order among the elements of Jy is shown in Fig. 3.

71
/ N
J2 ja
N /
Ja
Fig. 3. Lattice of parameters
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Tabular form for the LONSS (o, J}) is given in Table 3.1.

Tahle for LONSS (e, Jy).

(@ J1) , Wy 1 g iy wy

i (1,3,.9) (2,5.7) (3,4,.75) (5.6,.4) (4,.3,84)

i (4,4,.7)  (3,6,.6) (4,.7,8) (56,.7,.3) (4,.7,.79)

i (6,.7,5) (6,.7,.4) (.55.8,.5) (6,.77,.2) (.8,.76,.66)

74 {.7,.9,.45) (.9..85,.3}) (.9, .85.2) (7.8,.1) (8 .81,.6)
Table 3.1

Then clearly from Table 3.1, a(j1) < a(j2) < a(f4) and a(51) = a(iz) X a(j) so
(e, J1) is a LONSS over W,

3.2 Operations and resulls on latlice ordered neutrosophic
soft sets

In this section some operations on lattice ordered neutrosophic soft sets are being studied.
3.2.1 Definition

Let (o, J1} and (3, J2) be two LONSSs over W. Then (a, J)) is said to be LONS subset of
{8,J2) if J; C J3 and Tﬂu) (w) < Tﬁ(j) (w), Iu(j) (w) < 0 {(w) and Fa(j) (w) > Fa(i (w},
Y je Jj,we W We denote (a, 1) € (8,42}

3.2.2 Definition

Let (a,J1) and (3, J2) be two LONSSs aver W. Then (a, J1) is called 8 LONS M-subset
of (8, J2), denoted (e, Jy) Su (B, %), if i € Jp and Tagjy (w) = Ty (W), Iy (w) =
Ig;) (w) and Fu;) (w) = Fgy) (w) ¥ j € Ji,w € W. Two LONSSs (@, Ji} and (8, J2) over
W are said to be LONS M-equal, denoted (a, J;) =p (8, J2), if (a,J1) Ep (8, J2) and
(8,J3) Em (a, ).

3.2.3 Proposition

Let (a. J1) and (8, J;) be two LONSSs over W.Then

1 (a,Ji) Sw (8,42) il i C Jaend B(j) = e (4) Vj € Ju.
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2. (e )=m B J)illSy=RandB(j)=a(j)Vj€ S =2

Proof. 1. Suppose (a,J1) Sar (8, J2) then by definition which implies that J; € Js and
Tag) (w) = Tagy) (w), Tagjy (w) = Iag) (w) and Fuy (w) = Fagy (w) ¥ j € J1,w € Withen
implies that Jy C Jaand B (j) =a(j) ¥V j € /1.

conversely, let J; C Jz and 8(j) = a(j} V j € J1, then T,(;) (w) = Ty (w), Loy (w) =
gy (w) and Fo(jy {w) = Fa (w) ¥V j € Ji,w € W, implies that (o, J1) Sar (8, J2).

2. Suppose (a, J1) =pm (B, Ja) then by (definition 3.2.2)(ex, J}) Eur (8, J2) and (8, Ja) Em
(a, J1}, which means J; C J; and J; C J; and also T, (w) = Tagy (w), oy (@) =
Tay () Fagy (w) = Fay(w) ¥V j € Ji,w € W oand Tog (w) = Ty (w), Iogy (w) =
Ipgy (W), Fopy(w) = Fap(w) V j € Joow € W. implies that J; = Jp and Ty (w) =
Tay (W), Iogg (@) = Iggy(w), Foy (w) = Fay(w), ¥V j € J1 = Ja. This implics that
Sh=handB(fl=a(jIVjeh =4

Conversely, let Ji = J; and 3(j) = a(j) ¥V j € J1 = Jo. Then T4 (w) = Ty (w),
Ioy (w) = Igg) (w), Fog) (w) = Fggy(w) ¥ j € Jy = Jp which implies that (a,J1) Eu
{8,J2) and (8, J2) Cu (o, J1) then (a, 1} =y (8,J2). @

3.2.4 Definition

Let {(a,J;) and (B, J2) be two LONSSs over W. Then (a, J;) is called a LONS F-aubset
of (8,Ja}, denoted (a, i) &r (B,.J2), if /1 € Ja and Ty (w) < Tyg) (w), Tog (w) <
Igg) (w) and Fo(y () 2 Fgyy (w) ¥ j € Ji,w € W. Two LONSSs (@, J1) and (8, Ja) over
W are said to be LONS F-equal, denoted (a, 1} =¢ (8, J2), if (a,J;} SF (B.J2) and
(8, J2) & (a. J1}.

3.2.5 Note

It is easy to see that for two LONSSs (a, J1) and (8, J3) over Wiif (a, /1) is 8 LONS M-
subset of (3, .J2) then {(a, J1) is also LONS F-subset of (4, J;) . However, the converse may

not true as illustrated hy the following example.
3.2.6 Example

let W = {wy,w, w3, w4} be the set of cars and
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J = {ji(cheap), ja(good looking), js(good condition), j4(speed}} be a set of parameters
with lattice order. This order can be described as §; < jo < 73 < 4. Let J1,Jo € J,
Ji = {G1. 42, Ja} . Ja = {1, 32, Ja, Ja}- Consider (e, J1), (8, J3) and (K, Jo)} LONSSs over W

as shown in Tables 3.2, 3.3 and 3.4, respectively.

Table for LONSS (e, J1).

(o, By) | wy uy w3 1y i

it (1,.3,.9) (2,.5.7) (.3,4,.75) (5,6,.4) (32,.3.8)
4o (24,7 (3,68 (4,7,6) (56,.7,.3) (4,.45,.59)

js (3,75 (6,.7,.4) (55.8.4) (6.77,2) (7,65
Table 3.2

Table for LONSS (8, J2) .

(8,J2) | uy g un titg ws

i (1,3,.9) (2,5.7) (34,75 (5.6,.4) (32,.3,.8
i (2,4,7) (3,6,6) (4,7,.6) (56,.7,.3) (4,.45,.59)
i (3,.7,5) (6,7,.4) (55.8.4) (6.77,.2) (7..6,.5)
Ja l(.ﬁ,.9,.2) {9,1,.1) (.8,.9,.2) (9,.8,.2) (.75,.8,.3T)
Table 3.3

Table for LONSS (K, J2).

(K, Ja)} | 1y iy oy g ws

}1 N (.1_,.3,.95—(.2,.55,.6) (4,.45,.7) (5,.64,4) (4,.5,.7)

ja (2,.5.6) (4,6,.3) (5.75.6) (6,75.27) (.5,.55,5)

is (5,.8.4) (7.8.2) (7,.85.3) (7,8,.1)  (75,.69,.34)
ja (6,9,.2) (9,1,.1) (89,2 (9.8.3)  (8,.75,.25)
Table 3.4
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Then it is easy to see that (@, ;) s (8,2}, since a (71} = 8(js) and a(j2) < B(js).
On the other hand, the parameter set Jy is not a subset of Jo, hence (a, 1) €r (3, J2) and

(8,J2) Ly (@, J1) then {a, J1) #14 (B, J2).
3.2.10 Proposition

Let (a, 1) and (8, J2) be two LONSSs over W. Then the following conditions are equivalent;

L. e, 1) Sy (8, 2}

2. There exists a mapping ¢ : J; — Jo st a(m) X 8{¢(m))Vme J;.

3. There exists a mapping ¢ : Ji — J2 s.t (o, Ji) EF (Bod, J1) .

Proof. (1} = (2)

Suppose (a, Jy) € (8, J2). For every m € J; by (definition 3.2.8) there exists n € Jp
s.t Togm) (W) < Ty (@), om) (W) € Iy (w) and Fyey (w) € Fam) {w) ¥ w € W, then
e (m) = A{n). Then the Axiom of choice ensures that find a mapping ¢ : J; — Jp s.t
¢ (m) = n, whence a (m} < 3 (n) = 3(é(m)) as required.

(2) = (3)

Supposc that there exists & mapping ¢: Jy — Jy st a(m) X (¢ (m)) Vm € J;. Let
define a LONSS over W (Bog, J1) over W, where Bo¢ (m) = (¢ (m)} then definition of
LONS F-subset, {a, J1} is a LONS F-subset of (80¢, J1) .

(3)=(1)

Assume that there exists a mapping ¢ : Ji — Jo st (a, /1) €F (Bo¢, ;). Then
for every m € Ji, a{m) < Bod{m) = B(¢#(m)). That is, there exists n = ¢(m) s.t
a{m) <X f(n) = 4(¢(m)). hence by definition of LONS J-subset, (a, J;) is a LONS J-
subset of (3,J3). ®

3.2.11 Definition

Let (a, J;) and (8. J3) be two LONSSs over W. Then (a, J)) is called a LONS L-subset of
{8, J2) . denoted {a, J1) &y, (8, J2), if for every m € Jy there exists n € Jy, 5.t T (w) =

Tﬂ(n) (w) s Ia(m] (w) = Ig(n) (w) and Fa{m} (w) = Fg(ﬂ) (w) then a(m) = ﬁ(ﬂ) YweW
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Two LONSSs (a, J1) and (8, J2) over W are said to be LONS L-equal, denoted (o, J1} =¢
(B, Ja), if (@, h) E, (B, J2) and (8, J2) & (a, 1)

3.2.12 Example

let W = {w;,ws,ws, ws} be the set of cars and
J = {j1(cheap}, j;(good looking), /3(good condition), j4(speed)} be & set of parameters.
This order can be described as shown in Fig. 4. Let Jy,Jo C J, &) = {j,j2}, 2 =
{31,73,3a}. Consider (a, J1) and (8, J2) LONSSs over W as shown in Thbles 3.7 and 3.8,
respectively.
h
/ N
J2 7
N /
bz
Fig. 4. Lattice of parameters

Table for LONSS (a, Ji}.

{a, J1) | wy wy 'y 1ty ws

i l(.5..8,.7) (4,4,7) (1.5,.75) (3.6.7) (5 3.8)
J2 ‘(-9‘-9|-3) (8,.7,6) (8,9,6) (9,8,.3) (8,9,3)
Table 3.7

Table for LONSS (8, J;).

(8,J2} | 'y "y wy '

._7'1 {.5, :8_,.7) (4,4, (7,56,.75) (3,6,.7 (.5,.3,.8)

3 (7.8,.5) (6,5.7) (7,8,.7) (6,.71,.5) (.1..5,.6)

74 1(9,.9,.3) (8,.7,.6) (89,6 (9,8, 3) (8,.9,.3)
Table 3.8
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Suppose that there exists a mapping ¢ : J1 — Jo st a(m) = 8{¢(m)) Y m e J;.
Let define a LONSS (Bo¢, J1) over W, where So¢ {m) = 3 (¢ {m}) then definition of LONS
equal, (e, 1) = (Fog, ).

(3) = (4)

Assume that there exists a mapping ¢ @ J1 — Jo 5.t (o, Jy) = (Bog¢, J1) . Then for every
m € Jy, a(m) = Bop(m) = 3(¢(m)). That is, there exists n = ¢ (m) s.t a(m) =G (n) =
B{¢(m}}, then {a(m): m € J1} is a subset of {3 {n) :n € Jo}

(4) = (1)

Assume {a(m}: m € J1} i8 a subset of {3 (n) :n € J3}, then for every m € Ji there

exists n € Jy 8.t a(m) = 8(n), implies that {a, 1) S; (8.J2). ®
3.2.15 Proposition

Let (o, Jy) and {3, Ja) be two LONSSs over W. Then (. )} =, (8, )il {a(m) :m e J1} =
{B(n):nedy}.

Proof. Assume that {n.J1) =4 (3, J2). Then (e, J1) S (8, J2) and (8, J2) C1 {a, J1).
Let {0, )) S (8,02), for every m € Jy there exists n € Jy st Topm (1) = Tapny (W),
Tatmy (W) = fggy (w) and Fgpy (w) = Fyqmy(w) V w € W, then a(m) = g(n). Which
implies that {a(m): m € J1} is a subset of {3 (n): n € Ja}.

Now let (4,J2) €, (n,J1), then for every n € J, there exists m € J; s.t Ty (w) =
Totm) (W), Tagny (W) = Inmy (w) and Fypny (w) = Fgy (w) ¥V w € W, then 8{n) = a(m).
Which implies that {3 (n} : n € J;} isasubset of {a (m) : m € J1}. From both result implies
that {a(m) - me 1} ={8(n):n € Jo}.

Converscly, assume that {a(m):m € 1} = {8(n) : n € Ja}, which implies that

{ae{m):m € Ji} is a subsct of {3{n):n € Jo} and also {B(n) : n € J2} is a subset of
{o{m):me .} Let {a(m):m € Ji} isasubset of {3 (n) : n € Jp}, implics that for every
m € Ji there exists n € Jy 5.t @ (m) = 3{n), which implies that {a.J;) &1 (8, J2). Now let
{8(n}:n € Jy} is a subset of {a(m):m € Jy} ,implies that for every n € Jp there exists
m € J1 st 8(n) = o {m), which implies that (3,.J;) €, (e, J1). From both result implies

that (o, J1) = (3. J2). ®
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3.2.16 Definition

Let (a, J1) be a LONSS aver W. Then (a, J1) is called an injective LONSS over W if ¥ my,

mp € J1, my # mz implies o {m;) = a(mz).
3.2.17 Theorem

let (e, J1) and (8, J2) be two injective LONSSs over W. Then (o, J1) =L (8, Ja) iff there
exists a bijective mapping ¢: J; — Ja st a(m) =8 (¢ {m)) Vm e J;.

Proof. First assume that (e, J;) and (&, J9) are two injective LONSSs over W, s.t
{a, 1) = {8, J2). For cvery m € Ji, there exists n € J2 s.t o (in) = 9 (n). In addition,
find the parameter n is indeed unique, since (3, J2) is an injective LONSS over W, Thus
we obtain a mapping ¢ : Ji — Jz given by ¢{m) = J{a(m)) = n ¥ m € J;. Now it
is casy to verify that 8{é ()} = 8(n) = a(m) ¥V m € J;. For two different paramcters
my, mg € Jp, since (a,Ji) is injective then a(m;) = a(ma). it follows that ¢ (m1) =
A{almy)) # Bla{mz)) = ¢{m1), whence & is an injective mapping. Furthermore, also
show that ¢ is surjective. In fact, for cvery n € Jy, there exists m € Jy st a{m) = 3(n).
But note thal a {m) = 3 (¢ (m)) as shown above. This yields to ¢ {m) = n since (3, Jp) are
injective LONSS over W, Thus ¢ is an bijective mapping as required.

Conversely, suppose that there exists a bijective mnapping ¢ : Ji — Jo st a(m) =
(¢ (m)) ¥ m € J;.By proposition (3.2.14), {e, /1) €1 (4, J2). Then it remains to show
that (3,.J2) S; (a,J) also holds. Since ¢ : Jy — Ja is a mapping, consider its inverse
mapping ¢~ : Jo — Ji. For every n € Jg . it is clear that g (n) =3 {¢ (r;'J_l (n))) . That
is. 7' Jp — Jy is a mapping s.t ¢ 1 Jy — Jast B{(n) =a (¢! (n)) ¥V n € Jo. Again by

Proposition (3.2.14), deduce that (3, J;) C; (e, J1}, completing the proof. m
3.2.18 Definition

Let {a, J1) and (3, J3) be two LONSSs over W such that JiNJ2 # B. Then (o, J1)Ug(4, J9) =
(K, G) is said to be restricted union of two LONSSs over W, where G = JiNJ2 define K {j) =
a (VB Ty (w) = Maz {T,;) {2), Ty (w)} Txy (w) = Maz { I (), Ingp (w)
and Frjy (w) = Min {Fyp (2} Fap (@)} Vi€ Gow e W.

44



3.2.19 Propozition

Restricted union of two LONSSs (o, J1) and (4, J2) is a LONSS,

Proof. Let {a, J;} and (8, J») be two LONSSs over W. Then (a, J1)Ur(8, J2) = (K.G),
a{c)Ud(e) = K(c) where G = JyNJa. If Jy N Jy = 0, then the required result hold
trivially, If J1 N Jy # 0, since Jy,Jo € J so J; and J; inherit the partial order from
J. therefore for any micy,my we have a(m;) < a(msy) V mi,ma € J1. also for any
ni<sny we have 3(ny) < A(ng) ¥ n1,ny € Ja. Therefore for any ¢1,¢2 € G and ¢; <g &2
implies ¢;,c; € J1 N J; implies e1,¢2 € Jy and ¢, ¢ € J implies that a(c;) X a(cz) and
A(c1} % B(cz) whenever c; <, cz and ¢) <, 2

implies that

Tu(cl) (w) < Ta(cg) (w) y Tﬁ{q) (w) < Tﬂ(cg) (w) {1)

[A

Taeyy (w) Tatea) (W), Tg(ey (W) £ Tgpey) (w)

1A

Fafesy (0} Fotery (W) Fageg) (W) € Fyeyy (w)

implies that
Moz {To(y) (W), Tgey) ()} € Maz {Ta(ey) (), T(ey) (w) }

Maz {Io(c,) (W), Jae;y (W)} € Maz {{oge,) (W), Ig(ey) () }

Min { Foey) (), Faiep) (@)} € Min{Fp(e,) (@), Fage) ()}
implies that
Tatenusten (@) € Togepyusien) (@)

Lotenusten (0} £ Ta(enupen) ()

Fateyuslen W) £ Faeugie (w)

implies that

1A

Ttaus)(ery (w) Taug)(es) ()

IA

Haug)(er) (W) Htaug)(ey) (W)

IA

Flaug)(e) (W) Flaug)(en) (W)



implies that

Ty (w) € Tiiey) (W)

1A

Treieyy (W) I(oq) (W)

Friey (w) £ Fye) (w)

implies that K (c1) < K (e3) for ¢; <g .

Thus (@, J1} Ug (8, J2) is a LONSS over W. ®
3.2.20 Example

let W = {wy,wa, w3, we} be the set of cars and

J = {j1(cheap)}, jz(good looking), ja{good condition), j4(speed), js(well asscmbled) } be
a set of parameters. This order can be described as shown in Fig. 5. Let Ji,Jo C J,
Ji = {j1.Ja.Ja} J2 = {J2,3a,Js}. Consider (o, J,} and (B, J3) LONSSs over W as shown

in Tables 3.9 and 3.10, respectively.

7
/ N
J2 Ja
N /
Ja
l
Js

Fig. 5. Lattice of parameters
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Table for LONSS (o, J1).

(v, 1) | Wy 'y ur iy
a9 (257 (34,75 (5,.6.4)
7 (2,4,.7) (3,6,.6) (4,.7,.6) (56,.7,3)
i (3,7..5) (6,.7..4) (.55,.8,.4) (6,.77..2)
Table 3.9

Table for LONSS (8, J).

(3,J2) | 11 wa Uy u'y

ja (2,.1,.8) (4,6,.3) (1,4,.6) (5,3,.9
ja (4,.5,.4) (7,8.2) (4,6,.4) (7,.7,.7)

s (6,.9,.2) (9,1,.1) (.8,.9,.2) (.9,.8,.3)
Table 3.10

(o, J1)Ug {8, o) = (K,G) is a restricted union of two LONSS over W\

Table for restricted union of two LONSS,

(K.G) | uy 1wy Uiy iy

Ja (.2,4,.7) (4,6,.3) (4,.7,.6) (.56,.7,.3)

J1 {(4.7.4) (7.8.2) (55.8. .4 (7.77..2)
Table 3.11

clearly from Table 3.11, K (j2) % K (j4) for j2 < ja, then (K,G) LONSS over W.

47















Clearly from Table 3.14, we have K (j1) < K (j2) = K (ja) < K (js} % K (js) , s0 (K, G)
is & LONSS over W.

3.2.24 Definition

let (a, J1} and (3, J2) be two LONSSs over W. Then (&, J1) Ng (8, J2} = (K,G) is said to
be restricted intersection of two LONSSs over W, where G = Jy N Jy # B, define K (5) =
a () NB (), Try) (w) = Min{Tog) (w), Ty (W)} Ixg) (w) = Min {Lag) (), Tasy (w)}
and Fij) (0) = Maz {Fo (), Fgy) (W)} Vi€ Gw e W.

3.2,26 Proposition

Restricted intersection of two LONSSs (a, J;) and (8, J;) is a LONSS,

Proof. Let (o, Jy) and (8, J2) be two LONSSs over W. Then {(a, J1)Ng(f8, J2) = (K.G),
a{cyNPB{c) = K(e) where G = JyNJy. If J; N Jg = @ then the required result hold
trivially. If J1 N Jy # B, since J1,Ja € J so Ji and J; inherit the partial order from
E. therefore for any micy,mg we have a(m;) < a{mz) V¥ my,mg € J. also for any
i<, Nz we have 8(n)) < 8(ng) ¥ n1,nz € Jo. Therefore for any ¢1,¢z € G and ¢) <¢ &3
implies ¢1, ¢z € J; N Jy implies ¢;,¢3 € J; and ¢;, 63 € J3 implies that a{c;) % a(cz) and
B{c1) % B(ca) whenever €1 €, ¢z and ¢; <y

implies that

1A

Ta(ey) (w) Taten) (W) s Taieyy (w) < Teyy (w) (3)

Fa

Ia{q) (w) Ia’(cz) (w) » Iﬂ(cﬂ (w) < IB(‘-‘?} (w)

Foteny (W) € Faepy (W), Faey) () < Fgey) (w)

implies that

Min {Ta(cl) (w) ’ Tﬁ{q) (w)} < Min {Ta(c:) (w) + TB(C:) (w)}
Min {Iy) (W), gy (W)} € Min {Ly(ey) (W), Ig() ()}

Maz { Fo(ry) (W) , Fp(ep) (w)} € Mai {Foq,) (w), Fgepy (w)}
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implies that

(74N

Tater)nf(er) () Ta(ca)n(ea) (W)

[Fa

Tagen)ng(er) (w) Taea)nB(cz) (W)

(FaN

Fo(c)ngie) () Fater)naey) (w)

implics that

IA

Tangyier) (W) Tieng)tea) (W)

A

Iarayey () Hangy(ey) (W)

(T2l

Flang)ies) (w) Flang)ie) (W)

implies that

1A

Trie (w) Tr(eq) (w)

1A

Ige, (W) I (e ()

1A

Fr(e) (0} Fre(e,) (w)

implies that K (c1) % K (c2) for c; <g e;1.

Thus {a, Ji) Ng (8. J;) is a LONSS over W. n
3.2.26 Example

J = {41, J3,Ja, ja} with lattice order as shown in Fig. 7. Let Jy,Ja € J, J1 = {j1, 72, Ja},
Jg = {j1, 1, ja}. Consider (e, J1) and (8, J3) LONSSs over W = {wjy, wq, w3, wq} as shown

in Tables 3.15 and 3.16, respectively.

A
’ N\
J2 J3
hN 7
Ja
Fig. 7. Lattice of parameters
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Table for LONSS {(a, J).

(. )Y | un ity g o

5 (1,.3,.9) (2,.5,.7) (3..4,.75 (5,.6,.4)
J2 (2,4,.7) (3,6,.6) (4,7,.6) (56,.7.3)

4 (3,.7..5) (8,.7,4) (55,.8,.4) (6,.77,.2)
Table 3.15

Table for LONSS (3, Ja).

_(5st)J U 1y ws oy
i\ Fz,.l,.s) (4,.6,3) (1,4,8) (5,.3,.9)
js )(.4,.5,.4) (7.8,2) (4,.6.4) (7,.7,.7)

is (6,92 (91,.1) (8.9.2) (9,83
Table 3.16

Now (a, J1) Ng (8, J2) = (K, G) is a restricted intersection of two LONSSs over W where

G=JinJ,.

Table for restricted intersection of two LONSSs.
|
ARG e we ows

no L9 (2.5.0) (1,4.75) (5.3.9)

i (3.8 (6,.7.4) (55,8.4) (6.77.3)
Table 3.17

Then clearly from Table 3.17, we have K (j1) % K (j1), s0 (K, G) is a restricted inter-

section of two LONSSs over W is a LONSS over W,
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3.2.33 Proposition

Basic union of two LONSSs over W is & LONSS over W.

Proof. Let {a, J;) and {3, J;) be two LONSSs over W. Let (o, 1) V (3, .h) = (K, G}
where G = Jy x Jy. since Ji,J3 € J, 50 both J; and Jo inherit a partial order from
J. Therefore mjcy, my then a(my) X a(mg) ¥ my,my € J; also for any ny<znz then
B(m) X B{n2) ¥V ny,ma € Jo.

Therefore for any {m;,n;),(ma,n2) € G and < is the partial order on G which is
induced by partial orders on J; and Jy. The order on Ji x Jp is a {my,n1} < (mg,ng) iff
micsmz and nygng. I (my,n1) < (mg,n3) then a (m) < a(ms) and 3{n1) £ 8(ns).

Implies that

Tatm1) (@) € Tagma) (W), Taay) (W) < Ty (W)

Totm1y (©) < Logmy) (@) Lginy) (w) € Iny) (w)

Foimig) (W) € Foupmyy (w) 1 Fagngy (@) € F(ny) (w)

then

Toxtmr) (@) V Ty} (@) € Tagmg) (€)Y Tging) (w)

Lagmy) (W) V- Ig(ny) (W) < Tagmg) (w) V Lg(ny) ()

Fofma) (@) V Fang) (w) € Fapmy) () V Fginyy (w)

implies

Tty vaim) (W) € Tiagmgivamgy ()

Tatmyvain) (W) £ Jamapam)) ()

Flama)vama) () € Flagmyveim)) (&)

implies

Trmyon) () < Tiefmg,ng) (W)

Tcqmy i} (@) € Tk(maing) (W)

FK{ma‘n:) (w) < FK(m].m) (w)
which is implics that K (my,n;) < K (mg,na) V (my,ny) < (ma, na).

Thus (e, J1)V (B, J2} is a LONSS over W. =
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3.2.34 Example

let J = {j1,j2, j3,J4} be a set of parameters with lattice order. This order can be described
8s j1 € jp £ 33 € ja. Let 1y, /o € J, 1 = {41, Jo, Ja}, J2 = {J2, 73, 4a} . Consider (a, Jy) and
(3. J2) LONSSs over W = {wy, w2, w3, wq} 88 shown in Tables 3.18 and 3.19, respectively.

Table for LONSS {(a, J;).

(o 1) | wn wy ws uty
i (1,.3,9) (2,57 (3,4,.75) (5.6, 4)
iz (2,4,.7) (3.6,.6) (47,6 (.56,.7,.3)

s (.3,.7,.5) (6,.7,.4) (55,.8,.4) (6,.77,.2)
Table 3.18

Table for LONSS (4, J2).

(B, J2) | w iy wy iy

o 201.8) (4.6.3) (1,.4,.6 (5.3.9
is (4,5.4) (7,82 (4.6.4) (1.7.7

ja (6,.9,.2) (9,1,.1) (8,.9,.2) (9,.8,.3)
Table 3.19

Let (a,J1) V (8, J3) = (K, G) is a basic union of two LONSS over W, where G = J; x Ja.
Since Jy,J3 C J, so both J; and J; inherit a partial order from J. Therefore for any
(my,m1}, (m2,n2) € G and < is the partial order on G, which is induced by partial orders
on J; and Jo. Define order on J; x J2 i8 & (m;,n1) < (mg, nz) iff my<ma and ny<syna. So
we bave

G= {(J'l tj2) ’ (Jl tjﬂ) ’ (j]tjﬂ) . (j2| J?) 1 (j2| .?3) ' (j2|j4) 1 (j3!j2) v (j3|j3) 1 (j3!j4)} with lat-

tice order.
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Table for basic union of two LONSSs.
(K. l 1 i 1y ty

(Gr.j2) | (2,3, 8) (4,.6,.3) (3,4,6) (5.3 4
(j1.j3) | (4,.5,.4) (7,8.2) (4,.6,.4) (7.7.4)
(71.30) | (6,.9,.2) (8,1,.1} (8,.9,.2) (.0.8..3)
Goge) [ (2,4,.7) (4..6,.3) (4,.7,.6) (.56,.7,.3)
(72.73) | (4..5,4) (7,.8,.2) (4,.7.4) (7.7.3)
(72, 7a} | (-6,.9,

(3 j2) | (.3,.7,.5) (6,.7,.3) (.55,.8,.4) (.6,.77..2)
(ja.ja) | (4..7,.4) (7.8,.2) (55.8,.4) (7.77..2)

U2 jao) 1(6,9.2) (91,1) (8,.9,.2) (9, .58.2)
Table 3.20

2) (9,1L,.1) (8.9,.2) (9.8 3

Then clearly from Table 3.20, (K, G) is a LONSS over W.
3.2.35 Definition

Let (o, J1) and (8. J3) be two LONSSs over W. Then (e, 1) A (8, J2} = (K, G) is said to be
besic interscction of two LONSSs over W, where G = J1 x J; define K (m, n) = a(m)NB{n)
and
Tk pmy (W) = Min {Taimy (), Tgimy ()}
Iy () = Min {Iomy (w), Ig(ny (w)}
and Fg,, ., (w) = Maz {Fym) (w), Fagy (w}} ¥V (m,n) € G,w € W.

3.2.36 Proposition

Basic intersection of two LONSSs over W is a LONSS over W.

Proof, Let {n,.;) and (8, J2) be two LONSSs over W. Consider {a, 1) A (8..J2) =
(K,G) where G = J; x Ja. since Jj, J2 C J, so both J; and J; inherit a partial order from
J. Therefore mi<y,m3 then a{m1) X a(mg) ¥V m;,my € J; also for any ni¢yny then

B(n) X8(na) ¥y ng€ b



Therefore for any (m1,m1),(m2,n3) € G and < is the partial order on G which is
induced by partial orders on J; and Ja. The order on Jy x J3 is & (my,n;) < (mg,na) iff
My me and nicyng. I (my,n1) < (mg, n2) then a{m1) < a{my) and 8(n1) < 3(ns).

Implies that

Tam) (W) £ Tamg) (), Tatny) (0) <€ Ty (W)

Tagmy) (0) € Ingmgy (), Tg(ny) (1) € Igpny) ()

Fu(ma) (W) € Faqmy) (@), Fa(ng) (w} < Fy(ny) (w)

then

Togmy) (@) A Tany) () € Toma) (W) A Tpng) (w)

Loty (W) A Iging) (0) € Tagmgy (W) A Tginy) (w)

Foagmg) (@) A Fging) () < Fopm,) (W) A Fig(ny) (W)

implies

Tiatma)rstm)} () € Ta(ma)rsina)) (W)

Hatmiasm)) (1) € Jatmaasina) ()

Flamansman () £ Flagmy)agin)) ()

implies

Ti(myma) (W) € Timaung) ()

Trcmiing) (W) € T(myng) (W)

Fi(mana) (&) £ Frpmm) (w)

which implies that K (m1,n1} < K (ma,na} ¥ (m1,m1) £ {ma, na).

Thus (a, ;) A (B8, J3) is a LONSS over W. ®
3.2.37 Example

Let J = {j1, j3, 33, ja} be a set of parameters with lattice order. This erder can be described

aSjl < j2 < j3 < j‘l‘ Let J11J2 Cc J, Jl = {jhja,ja}‘-f? = {j2!j3|j4} . Consider (Q,Jl) and
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Proof, If (o, J)) and (8, J2) are LONSSs over W (i.e ¥V my,mz € J1) a(mi) X a(my)
whenever m; < mg and V 11,03 € Jo  (n;) X f(na) whenever ny < na.

we have to prove that (o, J1) Uy (8,J3) is LONSS over W .

As (o, N} Uy (B, J2) = (K, & J2)

defined as K(m; Vn)) =a(m)UB(r1) ¥ (mVn)e J1 @7z

and K{mg V nz) = a(ma} U B(n3)

a(my) = a(ms) and B(n1) X B(n2}

Totm}) € Tapmy) () Tpgny) (W) < Tpinyy(w) Vw € W

Totm) () € Toimg) (), Iginy (W) € Tgnpy(w) Vw e W

Fatma) () € Eapmpy(w), Fany{w) € Fampy(w)VweW

implics

Totm (W) U Tg(ay) () € Tagma)(t0) U Tanz) (1)

Laim W) U Tty (@0) € Tapmg) (@) U Iggnyy (w)

Fafma) () U Fang)(w) S Fopmy)(w) U Fginy) (w)

implies

(Tam) Y Tamn Xw) € (Tagma) Y T p(w)

(Lagms) Y Tan)) () < (Tagma) U Tginayy (w)

(Fa(ma) Y @) (w} < (Fugm,) U Famy Hw)

implies

(Tagmyudm (@} € (Tagma)usmen (@)

(Tagmyusmn) (W) € (Tagma)usma)y(w)

(Fatmapssna) (@) € (Famppusn) (W)

implies

Txtmyonn) (W) € T pmgung)(w)

Tetmuunn) (@) € T ingung) (W)

Fr(mauma) (@) € Fi(myuny) (W)

then

K(mivn) % K(mzVng) Vmi € mg,ny < ng,mpvn; < mgVng for myVa,mayVng €

JeJ
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thus (o, 1)Uy (8, J2) is LONSS over W . =
3.2.42 Proposition

Let (@, J1) be s LONSS over W. Then

L (e, 1) 0g (e, J1) = (e /)

2. (&) Ug (e Jy) = {a, Jy)

3 (e h)Npty =0,

4, (e, 1) UR @, = (o, J1)

Proof. 1. Let (&, 1)) Ng(ea, /1) = (8,G) where G = JyNJ; = Ji then by the definition
of restricted intersection.

T (w) = Min {Tagy) (w) \ Tag (w) }

Ta (w) = Min{Io) (w), Jags) (w) )

and Fgi5 (w) = Maz {Fy) (w) , Fapn(w)} ¥ jeG=hyweW

implies that Tja;) (W} = T (w)

Taty) () = Loy (w)

Fy(y) (w) = Fagjy ()

implies that (8, G) = (a, J1) implies that (@, J1) Ng (a,J1) = (a,/1).

2. Let (&, 1) Ur (@, J1) = {8,G) where G = J;y N J1 = J; then by the definition of
restricted union

Toi (w) = Maz {Tag) (w), Tag (w)}

Ig) (w) = Maz {Io¢) (w}, Tajy (w)}

and Fy(;) {w) = Min { Fagiy (@), Fag) (mM}v¥jeCG=nweW

implies that T () = Togy) (W)

Toijy (W) = Tagy ()

Fa () = Fogy (w)

implies that (8, G) = {a, J1} implies that (e, Jy) Ug (a, }1) = (e, J1).

3. Let {a,J1) N (8,J1) = (B,G) where G = J; N J1 = J then by the definition of
restricted intersection

then Ty (u) = Min {T,,(J') (w) 1Tum (w)}
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The combination of both opinions will help to select suitable choice. In order to do so,
basic union of LONSSs is taken which is shown in Table 3.26. By definition of basis union
(3.2.32), the basic union of two LONSSs {(a, J)) and (3, J2) are denoted by (a, J1)V(8, J2) =
{K,G) where G = J; x Jy and there is dictionary order on G, define in (1.1.7) and G =

{(2. Ja) . (G2, J6) - (2. J) , (Fas 33) » (33, Je) (g3, 37) v (Jan Ja) s (Jan Js) . (Ja, 32 4 (der Ja) . (s, J) » (Fe. 37) } -
We know from proposition {3.2.33) that (K, ) is LONSS.

Table for LONSS (e, J1).
|

{a, J1) Pl "y "y 1ty tir, g

(1,3,.9) (2,.5.7) (3,4,8) (5.6.4) (3.5.8) (4,2.5)

73 (3.4,.7) (3,.6,.6) (4.7,.8) (5.7,.3) (4,.7,.4) (6, 4,.3)
i s (614 (5.8.4) (6.7.2) (1.8.2) (6.7.2)
e )(‘8..8,.3} (7,9,.1) (9.8.2) (9.8.1) (9.9.1) (83,2
Table 3.24

Table for LONSS (8, J2}.

(dwf!)i“'l g wy oo I e
33— (‘2,_.:.8]_-_(.2.6,.—3) 11,.4,.6) (5.3,.9) (7,4,.8) (4,.1,.7)
jo ((.4"5,.4) (7,8,2) (4,64 (7.7,.7) (7,88 (7,3,.4)

r ](.6,.9..2) (9,8.1) (89,2 {(9.8.3) (9,96 (9.5.1)
Table 3.25
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Car { Score in Table 3.27

ury T15.6

i, 13.3
ty 15.1
wg 133
wy | 12,8
ury 10.6
Table 3.28
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- —

1st

2nd

3rd
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