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Preface
The classical uncoupled theory of thermoelasticity predicts two phenomena not

compatible with physical observations. First the equation of heat conduction does not

contain any elastic term, second the heat equation is of a parabolic type, predicting

infinite speed of propagation for heat wave. Biot [] introduced the theory of coupled

thermoelasticity to overcome first short coming. The governing equations of this

theory are coupled eliminating the first paradox of the classical theory. However both

theories share the second short coming. Since the heat equation for the coupled theory

is of mixed parabolic and hyperbolic types. Different researchers have introduced

different models such as Lord and Shulman [2], Green and Lindsay [3] using one and

two relaxation times. The dual phase lag (DPL) model of heat conduction was

proposed in refs. [4, 5] as an improved theory compared to the classical model, based

on Fourier's Law and described by the heat conduction equation. Initial stresses are

developed in the medium due to many reasons resulting from the difference of

temperature, differential external forces, gravity, vibration etc. The earth is supposed

to be under high initial stress. During the last five decades considerable attention has

been directed towards this phenomenon. It was the achievement of Biot [6] to show

acoustic propagation under initial stress. In classical problem of elastic waves and

vibrations the effect of gravity, curvature and viscosity of the materials has not been

discussed in detail. Various researchers studied the effects of reflection, refraction

and initial stress which are mentioned in refs. l7-20)

Chapter one is related with the basic definitions and concepts. In chapter two, Abd-

Alla et al. [8] have considered the reflection and refraction of SV wave at the solid

liquid interface under the influence of maguetic field and initial stress. In chapter

three, we have considered the effect of gravity and initial stress on the reflection and

refraction of SV waves at the viscoelastic liquid interface'
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Chapter 1

Preliminarres

In this chapter some basic definitions and concepts are discussed.

1.1 Basic Definitions

1.1.1 'Waves

A wave is an oscillation accompanied by trnnsfer of energy through a medium (space or ma.ss)'

Waves involve transport of energy without the transport of matter. So waves are described as

a disturbance that travels through a medium from one location to another location.

L.L,z Wavelength

It is the distance between two consecutive points on the waves which a,re in the same phase,

(same phase meaxrs same state of vibrations).

1.1.3 Amplitude

Amplitude is the ma)rimum displacement of the particle from its mean position.

L.t.4 flequency

Flequency is the number of periodic oscillations completed in one second. The unit of this

measiure is hertz [Hz].

s
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1.1.5 Elasticity

The property of body due to which it tends to move back after an external force is removed is

known as elasticity.

L.L.6 Viscosity

The viscosity of a fluid is a measure of its resista^nce to gradual deformation by stress.

L,2 Ilpes of Waves

L.z.L Mechanical waves

The waves which require medium for propagation are known as mechanical waves.

L.2.2 Electromagnetic waves

The waves which does not require a,ny medium for propagation a,re known as electromagnetic

waves.

L,2.3 Elastic waves

The waves in which the propagated disturbance is an elastic deformation of the medium. In

elastic wave motion in a medium when particles a.re displaced a force proportional to the

displacement acts on particle to restore them to their original position.

L.2.4 Surface waves

Surface waves are mechanical waves that propagates along the interface between differing media.

Rayleigh naves and Love waves a,re examples of surface w&ves.

L.2.5 Body waves

Body waves are travelling through the interior of the earth emitted by an earthquake. These

waves are of higher frequency than surface waves.

P-waves aud S-waves are two types of body waves.

V
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L.2.6 P waves

P waves are a type of body waves. The narne P waves can stand for either pressure or primary

waves as it is formed from alternating compressions and rarefactions' The motion is parallel to

the particles of object. They are the first waves which a^re felt during an earthquake'

L.2.7 S waves

S waves are known as secondary or shear w&ves. It pass through the body of an object also

their motion is perpendicular to the particles of object' These are the second waves to be felt

during an earth quake.

S waves can be of two types'

SV waves'

SH waves.

1..2.8 SV waves

S waves polarized in vertical plane are known as SV Waves'

L.2.9 SI{ waves

S waves polarized in horizontal plane are known as SH Waves'

1.3 Reflection

when waves strike at interface they bounce back into the same medium' This phenomena is

known as reflection of waves.

L.3.1 Laws of reflection

The laws of reflection are as follows:

(1) The incident ray, the reflected ray and the normal ray all lie in the same plane'

(2) The angle which the incident ray males with the normal is equal to the angle which the

reflected ray makes to the same normal'

v
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L.3.2 Refraction

Refraction is the change in direction of propagation of & wave due to change in its media'

Rainbows, light bending in glass of water, glasses, ca,mera lens are examples of refraction'

1.3.3 Interface

The point where two medium a're separated'

v
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L,4 Initial Stress

The stress applied initially on a point is known as initial stress. Its value is determined by

difference of its normal component.

P : Szz -,Srr,

here ,S11 and S22 reprments normal stress component.

L,4.L Normal initial stress

The stress acting normally on a point is known as normal initial stress.

L.4.2 Incremental stress

When initial stress is applied the body is deformed to a new point then the new stress compo-

nents are known as incremental stress component.

1.4.3 Local rotation

When the initial stress is applied the point is displaced to a new direction by a^n angle 0 which

is known as local rotation of material.

0:U:

u

7 /0u Au\_ I __- I

z \0r 0a)'

s

(1.1)

(1.2)
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here a; rePresent local rotation'

L,4.4 Strain

Strain is a measure of deformation representing the displacement between particles in the body

relative to a reference length.

1.5 Elastic constants

In case of homogeneous and an isotropic medium, some elastic moduli or elastic constants are

involved. The most common elastic moduli are discussed below.

1.5.1 Youngts Modulus

The ratio between stress and longitudinal strain is called Young's modulus, i'e',

F.Lrt_" - A.LL'
(1.3)

(1.4)

where F is applied force, A is the area, A.L is change in length and I, is the original length'

L.6.2 Bulk Modulus

The ratio between stress and volumetric strain is called bulk modulus, i'e',

,_ F.V
* - A.av'

8
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where F is the applied force, A is the area, AY is change in volume and v is the original

volume.

L.5.3 Poisson Ratio

It is the ratio between strains onlS i.e., the ratio of relative longitudinal strain to lateral strain

a.nd is deuoted by o. when a rod of length tr is elongated by A'L and its width wand is

contracted by AW, then Poisson ratio is

(1.5)

L.6 Equation of Motion

The equation of motion for an elastic medium is

oiii + 7o: p(tio) , (1'6)

where oiiS isthe stress force acting on the direction of ri a:ris, fi is the body force' p is the

density of the medium and L[ is the displacement vector'

L.7 Enerry Equation

The energy describe the distribution of heat in a given section over a time' The first larv of

thermodynamicsi.e.,theenergymayneitherbecreatednorbedestroyed.

$vzr: r*(#), (1.7)

where c" is the specific heat per unit ma,ss, 19 is the thermal conductivitS 7a is the absolute

temperature of the medium p is density of medium'

dwo:#.
-T

t,

tlr
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L.8 Maxwell Equations

Ma:<well equations are the sets of four laws that relate electric and magnetic field. They also

relate electric and magnetic field to their sources, charge and current density. These equations

axe

"url? : i *^$,
-+-J Ah

curl E : -pe-fft
divB : 0,

-+divh : 0,

(1.8)

(1.e)

(1.10)

( 1.11)

where B represents electric intensity, 7 i, tlu perturbed magnetic field, 7 represents electric

current density, p" md 6s represents magnetic and electric permeability'

V

U
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Chapter 2

SV Waves between Solid Liquid

Media under Initial Stress and

Electromagnetic Field in reference of

Three Thermoelastic Theorres

2.L Introduction

This chapter is a review work of Ref. t8]. This chapter looks at the effects of initial stress

and magnetic field on SV waves under three theories. The refraction and reflection at interface

of SV waves is investigated after using the boundary conditions then the results are shown by

graphs.

Y

11



!

2,2 Mathematical Formation

ita*mrlir

iilffirai{

Fi,g.2.l: Geometry of the Problem

Let us assume a plane interface between solid liquid isotropic' homogeneous elastic half

spares which are at a primary temperature ?b. A plane sv wave is incident in medium M

which is reflected as thermal wave, P wave, and SV wave' The rest of the waves continue to

travel in the other medium Mt and refracted as T waves and P waves as shown in Fig' 2'1'

Where g is the a.ngle of the incidence for a plane wave, 01, 02, 0\ arrd d2 are the angles of

reflected waves and refracted waves The magnetic field vector H acts on z direction'

consider a two dimensional unsteady problem in ca plane with o as the origin'

The equation of motions under initial stress in absence of heat source and in presence of

Lorentz's force are

Y

*.W-eff+r,: p#,

*.W-eff+r, : p#,

(2.1)

(2.2)

where Fr and F2 arcthe component of electromagnetic field in r and y directions respectively'

i

Ors&or&
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The incremental strain component have the following form

The stress strain relations are given below

Using Eqs. (1.8 - 1.11) in above Eq.

= (^+2tt + P)d,,+ (,\+ P)dyc -, (, +,rfif),

: 
^dr. 

+(A + zp) dw - t (, * "rfir) ,

: Z4rv.

d,, :H, d,* :X, il, :Lr(H.X),

we obtain

u"u'l{-*r"#),
r"r'l{-*r"#f ,

0.

811

s22

sL2

(2.3)

(2.4)

(2.5)

V

(2.6)

d;j. is the strain component 6tt, 622, C12 axe the incremental stress components, ) and p' are

lame's constant.

The heat conduction equation is given as.

u (r + ",*)v2r: *.(# *,,#) *ro'yl*W..H) +,0d11$ (X.#),]^,..'
(2.7)

where ce represents specific heat per unit mass, tl represents the thermal conductivity' ?6 is

the natural temperature of medium, d; is the Kronecker delta, ? is the absolute temperature

of the medium , Ts alrd ,11 oxe the thermal rela:ratiou times, rp is phase lag of the gradient of

temperature.

Lorentz's body force is given as

Fi: p.(7 >< rr) . (2.8)

Fr:

Fz:
&:

(2.e)

(2.10)

(2.11)

B

13
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Maxwell's stress equation is

rii:p"lrrnr*H;h;- (Ho.ni)ou] , i, i:1,2, t. (z.rz)

where r;r' is Morwell's stres tensor which reduces to

rlt: r22 : t uH2 (#. #) , rtz : o. (2.13)

2.3 Solution of Problem

Substituting Eqs. (2.3 -2.5) and (2.9 - 2.11) into Eq. (2.1, 2.2), we get

(x+ 21,+ p + t "H2)#.(.1 *, * t * r"r') #. (,. ;) #
: (p+1,?"u2,sl#*r(f,*,r#), e.L4)

(r - ;) 3*.(,r *, * I * u"u') #. (t + 21, * r.r\ #
: (p+ t!n'.ol# *r (# *",ffi). (2 ls)

Displacemeut scalar and vector potentials O and V are defined as

aa av 00 alru:;-fr,o:fr+5;. (2.16)

Ftom Eqs. (2.1a) and (2.16), we get

v2o : 6.-k-ffim@+ ^+dFrnfi?*,,#), 
e.LT)

v2rr,: W(#) . (2.18)

U

i;

t4
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FYom Eqs. (2.15) and (2.16), we get

v2o: ffi(#)+6ffim(r*",#), (2.1e)

(2.20)

Y

where v, : #a + ffi.
Using Eqs. (2.16) in F.q, (2.7) we have

, (, * ,'*)v2r: *(# *,,#) +rotft(t*,a,,ff)o'* (z.z,)

Eq. (2.21) under the theories have the following form

1) Classical and dynamical coupled theory

dij:0, r0:0, TO:0, 71 :0.

2) Green and Lindsay's theory

dii:0, 11 )rs)0' Te:0'

3) Dual phase Lag theory

5;j:1, rg)0, 7l:0, Qlrglrg'

Eqs. (2.17) and (2.20) can be rewritten as

v2o: qe6#.d@?*,,#), ezz)

v2v : e(ffi, {2.23)

ti

15
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where

where

Rn: gr, c?:ry!!, cl,:+,
c'A : +, c': p.]-*, o:l+qc2.

Here Rs, ct, cA, c2 represent the Alfuen speed, the part of magnetic field' velocities of

dilatational and rotational waves respectively in the medium M.

Eliminating ? from Eqs. (2.21) afi. (2.22), we get a fourth order difierential equation in

terms of O as

': (, *,,*)-'1P?o:nav2o- f ff)1, Q,5)

c3,0+nrl (r +,rfi)v'o

I fr*Ra+rr)& 
-l 

or,- 
L * (tr + nr) ro + errr * eyrslii.A) # * (fr"t * evrsrl6;i) # )

.& (' *,,*)ffi: o,

c'r:#,rr:ffi, q=*,
Y

(2.24)

(2.26)

(2.27)

(2.28)

(2.2e)

(2.30)

(2.31)

er is the thermoelastic constant of the solid medium M'

Let us consider the following solution

O : q(y)explik@-ct)|,

v : r (y) exp lik(r - ct)1,

T : s (y) exp li'k (x - ct)l 
'

where ": fr.

Using Eq. (2.28) into Eq. (2.26), we have

#. o#* Bq(v):0,

v
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where

A : -2k2 + ff O * Ra * "r) *W(t' *"1 ro+ errr * eTrsdii.fr)

W(fr"+error$ii)'
B : ;:W (1 +Rr) ro+ errt+ erro;ii -fr).W

.m(' -'r"'o -$ o* Rr * 
")) '

(&,,1',,,0,,0,i)

and

By solving Eq.

where

u

Substituting Eq. (2.29) into Eq'

ciz : c3$ +nrl (r *'r*r) '

the Eq. 2.27 becomes

Dl exp (ikns)+ D2 exp (-ikns) 
I "* fr (r - cr)l ,

+D3 exP (ikn2fi * Daexq(-iknza) )

nr: r, :lt Tt2: t@'

(2.31),

,: 
I

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.36)

t,

(2.23), we have

#.-(#-r)':o

s

L7
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Eq. (2.37) suggests that the solution yields two values of r (y), then Eq. (2.29) can be written

as

![ : [Ds exp (ikn3y) * D6 exp (-iknsy)lexp [i/c (* - "t)l,
(2.38)

where

The constants Di(i:1,2,,...,6) represent the amplitudes of incident SV warrcs and reflected

(thermal waves) T, P and SV waves respectively.

Substituting from Eqs. (2.30) and (2.32) into Eq. (2.19) we get the values of s (y), then the

Eq. (2.30) takes the following form

^^ I- A. /D. pvn (ibm,q) I
T : E I u, (rr exp(ikms) * Dzexp $km1v\ 

| exp [r.k (r _ ct)), (2.a9)
T | +bz(D3 exp (ikm2fi * Da exp (-t'km2fi) )

where

":(1 -iur) bt:w2(r- (1r-n"l fr?) bz:w2(r- (1+-n") fc?)

Setting F: P - 0 in Eqs. (2.L-2.7), we obtain the basic equations for non viscous liq-

uid medium in the presence of body forces. We get displacement equations and temperature

t/

equation for the liquid medium M' us follows

(^,+ i"H'2)#.1x' + u'"n1ffi :

(t'+ u!"Hn) #.1s'+ ulu")ffi :

x'(t+*fi)v'r' :

,02u'PaF

.,'(#*,\#),
(p'+ t?e'ou")#

n'(W*r,ffi),
,o(#*,1#)
*ror' * (t +,'o,i fi) to") .

(2.40)

(2.41)

(2.42)

s
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The primes show quantities in the liquid medium M' which are defined in case of solid medium

-\ M.v
Taking

, 0Q' , 00'
o,t - 1-l-, ut :?, (2.43)u: o*'': ay'

we obtain

v2o' : qdr";# . @dr"; (, *,',ft) r, e.44)

*'(, +,;fi)v'r' : or(# *,1#) *r,.,'*(r+,'l,,i{,) {o"') ,(245)

where Cf : #.
Solving Eqs. (2.a4) and (2.45) and proceeding exactly in a same w&y as in solid medium

M, we get the appropriate solution for O' and 7, as

o' : lD'2exp (t*m'r1) * D'aexp (tx*rl)lexp [ik (, - a)1, Q.46)

f fi to;exp (*rni'v) + DL"*p (txm!r1))exp [t& (* - a)1, Q'47)

where

,' : (L - twt\) , dt :,' (t - UfA{r?) , bL:,z (r - 
(1 +rlhl ,"rf)

2,4 Boundary Conditions

(1) At the interface, normal displacement is continuous, i.e., n:ut, and this leads to

ao alr aota*;:ft. (2.48)

V

s
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i
Using Eqs. (2.32), (2.38), anap.aO; in the above continuity relation, we get

e I or@r)exp(ikn1y) + D2(-n1)exp(-ikns) + \
t Ds@z)exp(ikn2s) * Da(-n2)exp(-ikn2)y t
+ {Dsexp(iknsy) * D6exP (-iknsY)}

: {dr("\)exp (ttn'ry) + Dta@!2)exp(dknl2fi\ ,

-'r:?

atg:g
nr,Dr - ntDz * nzDe - nzDa * Ds * Da - nldz -'d4:0.

(2) At the interface, tangential displacement must be z€ro, i.e., u:0.
This leads to

ao 0v _.,
A,- Ay-''

Using Eqs. (2.32) and (2.38), we get

(2.4s)

(2.50)

I Dlexp(ikn1u) + Dzexp(-ikns) I
I *r, exp(ikn2y)*Daexp(-tkn2fi J

- {Dr(rs) exp(ilcn3y) * D6(-ns) exp(-iknsy)} : 0,

aty:g
Dr * Dz * Ds * D+- nsDs * n3D6 : Q. (2.51)

(3) At the interface, normal force per unit initial area must be continuous, i.e., Y ly : Y f 'y.

This leads to

s22*ry2: sLz*rh,

where

rii : Felfiahi + Hilu - (H.h)dtj], i,i : 1,2,3.

using Eqs. (2.3 - 2.5), (2.7), (2.L2),(2.L3),(2.16) and (2.43), we obtain

(\ + 1,,"n\ (# . #) .,, (# . ffi) -, (, * ",#)

$



: (t'+ t H") (#.#) -r'(* *,,#) Q.sz)

F Substituting Eqs. (2.32), (2.g8), (2.g9), (2.46) and (2.42) into the Eq. (2.s2), we get

* (- f, + g) + r (i- *')) (D3 exp (ikns) * Daexp(-ikns))

+ (2 + 9)ns(Dsorp (iftn3y) - D6 exp (-iknss))

-p. (1 + n|\ (olrexv (tx"io1 * Dtaexp (t*nlrv)\ : a,

atY:g

[-o* 
p)+""G uf)) (Dr+ oz)+[-tr* il+&(i-*'))

(Ds a Da) + (2 + ilns(Ds - oa)- p. (1 + n!) (o', * D'n) : s, (2.53)

where P*:*and0:&.
V (4) At interface, tangential force per unit initial area nanish, i.e., V/r :0.

s12*Pea,y*r12:Q.

Using Eqs. (2.3 - 2.5), (2.7), (2.I2), and (2.13), (2.16), (2.32), and (2.38), we obtain

D1m1 exp(ikay) * Dznfl) : nz(Dt exp(ikn2y) - Da grrp(- ikn2y))

- --1 { ni*,!a-*o$htd+Dorzte:rp (-iknsv) \ :0. 
- -<::'

' \ *i (Dsexp (iknsy) * D6exp (-ikryfi) )
at g:6

u(Dr- Dz) *n2(Dx- oa) -LW- r) (Dr * D6) : s. (2.54)

(5) At the interface, temperature is continuous, i.e, T : T.

l!
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Using Eqs. (2.39) and (2.47) with making some algebraic simplifying, we get

u 
(r - 

(t +-n"l rc?) (D1exp (ikns)* Dz exp (ikns))

+ (r - tt ffl ,'"?) x (D3exp (ihzu) + Drexp(-ikn2v))

: p >i d* I (' - 
!tP)o"sr) 

"exP 

(*n\u) + 
I

t*,* 
L I,- trlip"ci)a*o gknt2fi l'

atY:g

(r - 
(1 +i"l &?) (Dr + Dil + (r - 

(1 rn"l ,,r?) x (Ds * Da)

-p*a,, [ 
(l- L'.Ya'sr)1n1 :-ffi 

L I,- @#'r,"ri),.l:'' (255)

where f :* arrdr*:/.

v 2.5 Equations for the Refraction and Reflection Cofficients

Consider the refraction and reflection of SV-wave incident at the solid-Iiquid interface at y : g

making an angle 0 with the y - aris.

For SV-waves incident, put c: czcosegfl and Dr : Dt :0'

Generalizing, a system of five nonhomogeneous equations has been obtained

5

Dorizi: ai, (i :1,2,..,5), (2.56)

i=l

s
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v

where

alll : -Tll, &12 - -TL2t QtI.: L, aL4: -rll; ali : -nzt azl : a22 : l, a23 : Tl3,

a24: az.:0,or,: 
[- Q+il.0(&-r*)1, osz:[-** P)+"'G-*')),

a,, : -(2+p)ns, ou- at,-:-p*(L+t3), aAL:-fttt a42:-n2, oar: -0.5("3- t)'

a*r : 0, o4E : 0, o5r : (, - (t +!'d 
ozc?) , odz: (, - 

g++"1) 
,

a's : 0, os4 :-ffi(r- ttrPl ,""r), osi:-tr.(r- rtrfi'l e"cr)

where (j : L,2, ..,5) are the ratios of amplitudes of reflected thermal, P, SV-wavm and refracted

thermal, P-waves for the incident wave' respectively

UL: -olgt U2:a2$ U3:a3$ Y4: -a43, A5:o53,

zr: Di, zr: *, z, : Di, ,o: o*, ,u: od 
Q.57)

2.6 Numerical results and discussion

For numerical analysis we have used the data given in Refs. [17].

For solid medium(M crust nGranitei)

,\ : F :3 x10r0Nrn-2, ar : 1.0667 x 10-5K-1, w :7.5x 10135-1,

C" : lL00JKg-rK-1, p:290oKgm-3, K:\wm-rK-|, ?o:300K.

For liquid medium(M' water)

)' : i :20.4x L09Nrn-2, a|:69 x 10-6K-1, K' :0.6Wm-rK-r,

CL : 4L87JKg-LK-L, d :loooKgm-3, ?t : 3ooK

Considering

rO : rL: 0.9, rt : rl :0.9rt1 : rb :0.8.

!

U
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Fig. 2.2 shows the variation of angle of incidence of SV waves for three models in thermoelas-

ticity the Couple dynamic, Green-Lindsay theories as well as the DPL theory' lZLl, lz2l, lz4l

and lZsl starts from maximum value and interrupted to zero at 0 :90o but lZ3l arrives to

unity. It is shown that DPL theory in lZl and, lZal take the smallest values comparing with

the existing two relaxation times (G-L), while if there aren't relaxation times (CD) lZll and

lZaltake the la^rgest value. It is shown that Green-Lindsay theory fot lZ2l takes the smallest

values comparing with (DPl)theory, while if there are no relaxation times (CD) theory lZ2l

takes the largest value. It is shown that that Green-Lindsay theory for lZsl takes the smallest

value comparing with DPL theory, but for the CD thoery lZ5l takes the largest value'

Fig. 2.3 explains the variation of amplitudes with the angle of incidence of SV wave for

variation of initial stress under the effect of thermal rela><ation times to DPL theory. lZrl , lZzl ,

lZal and lZ5l starts from maximum value and interrupted to zero at d : 90o bfi lZsl starts from

maximum value and interrupted to one at 0 :45o and after this their direction is reversed.

The amplitude ratios lzl,lzzl, lZal and lZ5l decreases with an increasing initial stress.

Fig. 2.4 depicts the variation of the amplitudes with the angle of incidence of SV wave for

variation of magnetic field under effect of thermal relaxation times to DPL theory. lZrl, lZzl,

lZal and.lZsl start from maximum value and interrupted to zero aL 0 :90o b:ut lzsl arrives

to unity at 0 :90o and have same trend for all the values of magnetic field. The amplitude

ratios lZ2l, lZal decreases with an increasing magnetic field, but the amplitude ratios lZlland

lZ5l increases with an increasing magnetic field.

Fig. 2.5 depicts the variation of the amplitudes with the angle of incidence of SV wave for

variation of electric field under effect of thermal relaxation times to DPL theory. lZrl,lZzl'

lZal afi lZ5l start from maximum value and interrupted to zero at 0 : 90" bfi lZsl arrives to

unity at 0 :90" and have same trend for all the values of electric field. The amplitude ratios

lZ5l increases with an increasing electric field.
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Chapter 3

Influence of Initial Stress and

Gravity on Reflection and

Refraction of SV waves at Interface

under Three Thermoelastic Theories

This chapter looks at the influence of viscosity, magnetic field, initial stress, and gravity on SV

waves while traveling through the interface of two visco thermoelastic liquid layers. The basic

equations in context of three theories have been solved to drive equations for refracted P and

thermal waves and reflected thermal, sv and P waves. After using the boundary conditions

the amplitude ratios have been computed in matrix form'

3.1 Formation of the Problem

Let us assume a plane interface which is differentiating two isotropic, homogeneous viscoelastic

liquid half spaces under the effects of initial stress, gravity and magnetic field' Let ?o be the

primary temperature of both medium, a SV wave in medium N strikes at the interface of

two visco thermo elastic liquid layers, which is reflected as well as transmitted. A SV wave is

reflected as SV, P and thermal waves in the same medium N and transmitted in the form of

29



et

P and T wanes in the medium N'. We assume a rectangUlar coordinate system with origin O

and interface is held at y :0. A constant magnetic field Ho : (0' 0' I/) acts along z direction

and both medium are placed under initial stress' Since we have two dimensional problem' we

restrict our analysis in the ry plane. All rrariable.s iu medium N are without primes where as

the variables in the second medium M are shown by primes'

*ffisn*'

fr#effirrI{

Fig 3.1: GeometrY of Problem

Biot [1] proposed the equation of motion in presence of Lorentz force and gravity, when no

heat source is present formulated as follows,

V

*.W-*H*F,-ps*: e#,

*.W-rT,*F,+psH : ,#
3.2 Solution of the Problem

(3.1)

(3.2)

To obtain the equations of motion in visco elastic liquid medium .lV the larne's parameter .\ is

replaced Uv (K - 3d , the efiect of fluid viscosity is accounted for replacing pby the operator

t'

8$r*rff&-
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(rf $) i" Eqs. (2.3 - 2.5), where 4 is the fluid viscositv we have

6rr : (* *. . Irr*) a,, + (x + P -Zr*) dvu -'t ? * "#)' (3'3)

izz : (. -?r*)r,, * (*.t !*)o',-, ('* "#)' (3 4)

izr : ,r*a,n. (3'5)

Making use of Eqs. (2.9 - 2.1L) a,nd (3.3 - 3'5) in Eqs' (3'1) and (3'2) 
' 

we obtain

(" *, * P.Hz .t *)#. (* . i * tt.H2 .Ir*)

A2u / O P\ d2z Au

a*os+ \'A * Z ) W - Pe o"

: (o+,,ZH')#.r(#*,,#), (3'6)

(t *, t P.H2 . t *)#. (* . I * P.Hz .t r*)
8u 1A P\02u 0u

o"o'Y+ \'a - i )M* oe 0t

: (o*,otZH')#., (# *,rffi), (3'7)

using displacement potential iD and t[ defined as

ao 0v ao avu:6;-fr,,:fi+fi. (3'8)

v

v
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v
Using Eq. (3.8) into Eqs. (3'6) and (3'7), we get

(.*" +p"H2-,t *)v2o- -(#) : (e +'ou!H2)#

+r (r *,,#), (B'e)

Q*.*)o'* *vpg(#) : (p+'ot'2n2)#' (3'10)

(o * r"r' .t *)vzo + *t (#) : (o+,ou!H2)#\ 3 ot/ 
+r (r .,,'i), (s.11)

Q*-"u)o'* - -W) : (p+.''f;uz)# (3'12)

Eqs. (3.g) and (3.12), have scalar and vector potential O and ![r, represent the dilatational and

rotational components of wave equation moving along r-a:ris which a.re obtained by partially

integrating with respect to r. The other two Eqs. (3.10) and (3.11) involving vector potential o

and i[ represent dilatational and rotational wave propagating along y a:<is which are obtained

by partially integrating with respect to y. We consider the propagation of wave along r a:ris,

so we consider the dilatational and rotational wave Eqs. (3.9) and (3.12) only.

Making use of Eq. (3.S) in Eq. (2.7), we get

o(r+,,ff)v'r: *(#*,,#)
+r*l*(v'o) +,0611ff-(o'*)] . (8.1s)

Rewriting Eqs. (3.9) and (3.12) as

v2o : , o ,**v Y 
a(iiRn+C*#&)e''+ffi#' A(r*Ru+<+t*&)

(3.14)

?

l'*',#)

s
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and

ir' a02v s0v+--
{aP',|ay',
Fe .-P
@r' s-E'

(3.15)

o:*, d:X, o:1*#
v2,r :

Rru:

Here Rg, ctt c2t o, ( show magnetic pressure number, isothermal dilatational elastic wave

velocity, rotational wave velocity and initial stress parameter respectively.

Eliminating ? from Eqs. (3.13) and (3.14), we get 4th order ordinary diflerential equation

of scalar potential iD.

/ a\-, I d,0+na!e+#&)vro Ir: ('*"4/ l-r(#) -f (#+) I'
,a(r* Rn *r. #*)dvoo

(3.16)

(r+4, +<+fi|)g+

lr

v2o

#. (ry +erro6;i) #, *#&**#-

.e (, *,,*)#.5,('.,,*) ffi:', (a 1z)

where 4: # and er : ffi represents thermoelastic constant of the liquid medium.

We consider the solution of the form

o : /(y) e*p lik (a - ct)l , (3.18)

it, : e(y) exp [ik (r - ct)l , (3.19)

T : h(y) exp lik @ - ct)1, (3'20)

where ": ft is the phase velocitSr, Ic is the wave number a,nd u.r is the circular frequency.

I I 'o(r+ Rn+c+#&)+errr \-l \ *#*eyrs6;i I

.t
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Substituting Eq. (3.18) into Eq. (3.17), we get

t.f y*.u#*u#**fr*xr(v):0, (3.21)

!3

where

2u : -hg,L3 ul

v : -2kz +# 
[ 

(' * Rr *' 
: (;^:,7,:,':;:,;,3."'4") ],

w: #l#.'#.T1,
x : x^ - fu[(,. Rru * c* er -Y*' * (*'s * e7rsr16'i)a"

* ((**, * ( * er - Y ro + €rrt * fr*,r'o&i) 
*43 - )*' - eo)

Eq. (3.21) is 4rh order ordinary differential equation, it has four solutions for / (y) and the

general solution of the scalar potential O is given as

O : [Br "*p 
(nry) * .B2 exp (nzil + .B3 exp (ns) + Ba exp (nav)] exp lik (x - ct)l ' (3'22)

where

u
n2

ng

n4

u 1- 1-
-Z - ,{P - 2{t- z'

u 1._ t-
- 4- 2t/n+ r{t-2,

U L- I-
-4 +r{p- rt/o-2,
U 1- T_

-Z+ 2r/n+ r{Q-z'

2_nz:1krlw,

34
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g2 zv 2b V2 +tzx -tuw) 1 L
Y433hlrrZi

s2 4v zl (v2 + yf - ww) _ _L _n,q - T-T--lh B*2i

h: (r. ,

o : 2vs +27U2X -72VX -guvw +27W2,

Ir : K (-k' + d) -25nx', - !rn"Zt" - tdz - rfiwd2,

tz : K (-k' + nZ) -zrn*', - f,r"?r" - ^rds, - rfiwd,4,

2
h: -lkqw,

d,r: #(-"1*(r*", .r-ry)+n?4(,*n, *e -ry-r"')),
dz : +(-"1*(r*4, .r-ry)+nlcl(,**, *c-ry-*,))

V 
Using Eq. (3'19) into (3.15), we get

# efr-Go-t)x'"(s):0, (8.2s)

a,fter solving, we get

!t, : [Bs exp (n5y) * 86 exp (rrog)] 
"*p ltk (r - a)l . (3.24)

The a^rnplitudes are represented as B; where (i:1,..,6) Br, Bs, 85 are the amplitudes of

incident waves where as Bz, Ba, Bo corresponds to a,rrplitudes of reflected waves'

Using Eqs. (3.18) and (3.22) in to Eq. (3.24), we get the ralue of ? as

7 : ldlBtexp (n1y) * dzBzu*p (nzy) * fuBsexp (n3y) * daBtexp (nay)lexp [z/c (* - a)|.
(3.25)

ti
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v
Considering primes to all quantities of the basic equations in the visco thermo elastic liquid

medium N', we obtain the basic equations for visco thermoelastic liquid medium M, the quan-

tities c1, c2t cst RH, eT, and ( in medium N change in medium N' as given below

!'

er: #, 4:ft, ,b:ffi.
a,nd we get solution in the form

o' : [al exp ("lry) + Raexp (r{oillexp [ik (* - a)1, (3.26)

f : ld2B'2exp (rlru) + daB'aexp (doy))exp [ik (x - ct)]. (3.27)

The arnplitudes of refracted thermal and P-waves axe represented by B'2 and B'a.

3.3 Boundary Conditions

The boundary conditions for incident SV-wave and letting Bt : Bt: 0 at U : 0 are as follows

(1) At the interface, the continuity of normal displacement i.e., u : t)'

00 av ao,t

6*6:*. (3.28)

Using Eqs. (3.22), (3.24) and (3.26) in Eq. (3.28), we get

nzBz * naBa * ikBd * ikB6 - "LBL - ikBtn: g.

(2) At the interface, ta,ngential displacement must disappear i.e., u,:0

(3.2e)

ao a{,
o, - A:o' (3'30)

Using Eqs. (3.22), (3.24), in Eq. (3.30), we get

ikBz * ikBa - nsBs - noBo : 0.

v
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L

(3) At the interface, normal force per unit area is continuous i.e., o22: oLz.

This leads to

hBz * lzBa - uBs * tsBo * l\Bq, + l!28'r: g. (3.32)

(4) At the interface, ta,ngential force per unit primary axea must disappea,r i.e., ot2:0.

, ffe .,_o'v o2ut'orov'#-fi:o' (3'33)

2iknzBz * 2iknaBa + (i0z Bs + $k)2 86 - n?5Bs - nf;B6 : g. (3'34)

(5) At the interface, continuity of temperature i.e., T : T.

dzBz * daBa, - drBL - daBa: g. (3.35)

3.4 Equations for the Reflection and Refraction Coefficient

Consider the refraction a,nd reflection of SV wave incident at viscoelastic interface at

making an a,ngle 0 with y a:ds.

For incident SV wave we put c: czcosed and take 81 : 83 - g.

We get system of five non homogeneous equations,

5

DorZr:n, U:L,...,5),
d:l

where

cll : Tl2, ct2 : TlLt ctg : ik, cu, - -n!2, cts : -nL,

c2t : ik, c22: ik, c2g - -Tt6t c24:0, c25:0,

cgt : lL, .g2:12, c}g: lZ, cU: l!1, cgg: l!2,

c6r = 2ikn2, ctz :2ikn4,..c6i : - (t' + n?u) , "*: 0, c45 : 0,

c1L : dz, c62: d4, c6t:0, c54: -4,, c6s : -d4,

I

s
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at : -ik, az : r,lt az : rLTt U4: (k2 + n!) , as :0,

21 : *, ,r: ';u, zr: Bd, ,n:'*, ,u:'*u,

where j:1,...,5 are the ratios of amplitude of reflected T, Pressure and SV-waves and trans-

mitted thermal and pressure waves respectively.

3.5 Numerical result and discussion

For numerical study we used data for two visco elastic liquid layer following Dziewonski and

Anderson [20].

For visco elastic liquid medium N:

k - 748.400 x 10eNrn-2, o: 15.991 x 10-6k-1, c":SllJkg-rK-l

p - 10327.26k9m-t, 19:28.5Wk-rm-r, I:l0ms'2-

For visco elastic liquid medium N':

k' : 674.300 xTOsNrn-21 e.t :17.386 x L0-6/c-1, C":814Jkg-rK-r

p' : 70029.4kgm-', 8' :28.4Wk-rm-r.

Fig. 3.2 shows variation of amplitude ratio with incidence angle of SV-wave by taking three

model of thermoelasticity in presence of gravity. The couple dynamic, Green and Lindsay and

DPL theories. lZtl,lZzl,lZal and l25l begins with the maximum values and reaches to zero at

0 : 90" b:ut lful comes to unity at 0 : 90". It can be seen that the DPL theory in lZll obtains

minimum values in comparison of GL and CD theories. We see that CD theory in lZal and,lZ5l

obtain minimum values in comparison of GL and DPL theories. We observe that GL theory in

lZll obtains minimum values in comparison of DPL and CD theories. In Fig. 3.2, we consider

the effect of gravity where as in Fig. 3.3 we neglect the effect of gravity. In Fig. 3.2 we see

that the amplitudes of all wave reduces. ln lZsl CD and DPL theories have the same effect in

comparison of G-L theory. It can be seen that CD theory inlZll andlZ2l reaches to zero after

0 :45" and then it start increasing.
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Fig. 3.4 shows the effect of viscosity on the amplitude ratios with incidence angle of SV

waves under the influence of DPL theory. The amplitude ratio lZtl, lzql and lZsl increases

with increasing viscosity but the amplitude ralio lZ2l decreases with increasing viscosity. The

amplitude rafio lZsl reaches to unity at 0 :50o, before 0 :50" the amplitude ratio increases

after d:50o it decreases.

Fig. 3.5 gives the influence of magnetic field on the amplitude ratio with d under the

influence of DPL theory. lzl,lzal and lZ5l increases by increasing magnetic field, the amplitude

ratios lZ2l and lZsl decreases with increasing If. h lz2l all curves coincide and moves to zero

as 0 approaches to 90o but lZsl aft,er 0: 45o it has opposite effect.

Fig. 3.6 depicts the variation of initial stress on the amplitude ratio under the influence of

DPL theory. We observe that lZ1l, lZ2l increases by increasing initial stress. The amplitude

ratios lful , lZal and, lZsl decreases as initial stress increases but in lZsl initially it decrea"ses by

increasing initial stress and reaches to unity at 0 :50o after 0 :50" it ha,s opposite behaviour.

Fig. 3.7 illustrates the behavior of electric field on amplitude ratios with incidence angle

d under the influence of DPL theory. The amplitude ratios lZl and lZal increases as electric

field increases, where re lZzl and,lZsl decreases by increasing electric field while lZ3l reaches

to unity at 0:50o, before 0:50" it increases as electric field increases after d:50o it starts

decreasing.

3.6 Conclusion

The influence of gravity, magnetic field, electric field and initial stress on the reflection and

refraction of SV waves under three theories is observed. The amplitude ratios of all waves

reduces in the absence of gravity. The change in electric field produces maximum amplitude of

reflected and refracted thermal waves. The change in initial stress produces maximum amplitude

ratio of reflected and refracted P waves. The change in initial stress and electric field produce

maximum amplitude ratio of reflected SV wave.
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Fig. 3.6: Variation of amplitude with lz,l$,......5) with the angle of incidence of sv-wave for

variation of initial stress.
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