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In non-Newtonian fluids, shear stress is related to the deformation rate in a non-linear

manner, i.e.

du\"
=i (5)

where n is flow behavior index and k is the consistency index.

1.1.4 Steady vs Unsteady flow

A flow in which fluid properties is independent of time is called the steady flow, while in an

unsteady flow the fluid properties do depend on time.

1.2 Mass Transfer

The mass transfer is defined as the transport of fluid from a region of higher concentration to

lower concentration.

1.2.1 Modes of Mass Transfer

The three hasic modes of mass transfer are:
¢ Molecular mass diffusion
¢ Convective mass transfer

e Mass transfer by change of phase

1.2.2 Molecular Mass Diffusion

The diffusion of molecules when the whole bulk fluid is not moving but stationary. Diffusion of

molecules is due to a concentration gradient.

1.2.3 Convective Mass Transfer

The transport of net mass between a boundary surface and a moving fluid.



1.2.4 Mass Transfer by Change of Phase

This is the process in which both diffusion and convection are involved.

1.3 Heat Transfer

Hent transfer takes place when there is a temperature difference.

1.3.1 Modes of Heat Transfer
The three basic modes of heat transfer are:
e Conduction
# Convection

e Radiation

1.3.2 Conduction

The transmission of heat through a material when tbere is a temperature difference.

1.3.3 Convection

The transfer of heat from one place to another by the movement of fluids.

1.3.4 Radiation

Energy transferred by electromagnetic waves.

1.4 Dimensionless numbers

1.4.1 Prandt]l Number

It is the non-dimensional number that gives the ratio between momentum diffusivity to thermal

diffusivity.

ot



1.4.2 Schmidt Number

Schmidt pumber is the non-dimensional number that defines the ratio of kinematic viscosity to

the diffusivity. It can be expressed as

1.4.3 Grashof Number

It is & non-dimensional number that gives the ratio of buoyancy forces to viscous forces.

_ 3
GT — 9/3 (TS 2TCD) L ;
15

1.4.4 Mass Grashof Number

Mass Grashof number G,, appears in the free convective mass transfer by concentration differ-

endce.

= gﬁ (Cs - Cm) Ls

2

Gm

1.5 Conservation Laws

1.5.1 Law of conservation of mass

This law states that the mass of the closed system remains unchanged. Mathematical expression

for this law is known as the continuity equation. For incompressible fluid, law is defined as

vV.V=40.



1.5.2 Law of conservation of momentum

This law states that the total momentum of a closed system is always conserved. For incom-

pressible fluid, the equation of motion in vector form is

av
—— =div T+pb,
pdt divT+p

where £ is the material derivative, T is the Cauchy’s Stress tensor and b is the body force.

1.5.3 Law of conservation of energy

This law states that total energy of a closed system is conserved i.e. energy is neither formed
nor decays but changes from one form to another. For incompressible fluid, the energy equation
is ag follows

dl 2
pey— = kV'T,

where cp, k are specific heat at constant pressure and thermal conductivity respectively.

1.5.4 Law of conservation of mass concentration

This law is also called the Fick’s second law. It predicts how rate of change of concentration is
caused by diffusion.

Mathematically
£

_ 2
—-=DV*C,

where C, D are concentration and diffusion coefficient respectively.



1.6 Laplace Transform Method

The Laplace transform is a linear operator L that transforms the given function f of the variable
T into a new function F' of the variable s.

Mathematically, it is defined as

o0

LIf(r)] = F(s) = f f(r)e~"dr,
1]

and Inverse Laplace Transform is defined by

o+ioo

LVF(s))=f(r) = % / F(s)e™ds.

T —i00



Chapter 2

Flow of an Oldroyd-B Fluid with
Ramped wall Temperature and

Velocity

In this chapter, we have established analytic solutions for velocity, temperature and concentra-
tion profiles for convective flow of an Oldroyd-B fluid [22) past a vertical plate of vast extent with
ramped wall temperature and ramped wall velocity. The results of isothermal solutions and

ramped wall solutions are also compared for velocity, temperature and concentration profiles.

2.1 Mathematical Formulation

Consider flow of an Oldroyd-B fluid, which is incompressible as well as electrically conducting
past on a plate parallel to y“axis through a porous medium. z-axis is considered in the upward
direction of plate while in the direction normal to plate is y“axis. The fluid is allowed by a
constant transverse magnetic field By acting along y~axis. Along 2" and z directions the plate
is of vast length and is non conductor of electricity, so all physical quantities are functions
of ¥ and . Initially, fluid and plate both are stationary with constant temperature T and
uniform concentration (. For £ > 0 the velecity and temperature of the wall is non-uniformly

distributed as



T + (Tw — Too) £ D<t<ty
T(O,ﬂ:{ °'°T ( )iy o
w (4]

H

VoL <t
u’(ﬁ,t‘): 0% ' 0
Uy t>1g

while concentration is maintained uniformly as

C0,8)=C, .
8
X C
l ' SConcentration
S A boundary layer
@ -
M —"™FT  Momentum
_____ o /.-__-. boundary layer
@
mmas TrThermal
' y boundary layer
3 |
Porous MHD

medium Oldroyd-B fluid

Fig. 2.1: Schematic diagram of problem

Taking assumption that induced magnetic field is imperceptible as comparing to the applied

one i.e. B = (0, By, 0). The polarization outcome of fluid is imperceptible as there is no outer
electric field, hence we assume E = 0.

For an Oldroyd-B fluid {22}, momentum equation can be written as

av
P =divS+ (I xB) +pgf(T - Teo) + pg8" (C - Ca) + R,

10



where

= (u{y,1),0,0),

and S satisfies the following relation

d a

and

Ay =VV+(wV)T,

N po
(1“5;) —-E(1+8 )
IxB=—-¢B2V.

The governing equations for an (ldroyd-B fluid can be obtained as

(1+X§.) '?—3‘:' = (1+,\§f) (g (B°(C—Coo) + B(T—Two)) — "‘Zg"')

(1+a—) Kot )

or_ k&1 1 o
B " pCp o Gy 0y’
aC 8ac

o = Do

(2.1)

(2.2)

(2.3)

where ,T, g, 8,07, v, 0, p, k, K, Cp, @7, D, X, and & are fluid velocity, fluid’s temperature,

11



gravitational acceleration, volumetric coefficient of thermal expansion, volumetric coefficient
of concentration expansion, coefficient of kinematic viscosity, electrical conductivity, density of
the fluid, thermal conductivity, porosity parameter, specific heat at constant pressure, radiative
flux vector, mass diffusion coefficient, retardation time and relaxation time respectively.

The initial conditions are

w{y,0) =0, T#%,0) =Tw, C(5.0) =Cx fory 20, (2.4)

and the boundary conditions are

VoL £<t
‘H:(O,t) = 0% =0 '

U >t

Too + (Tw — Too) £ 0<t<t
T(O,t') — { o0 ( w W)&o = 0 ’

l Tw >t

C(O,t) = Ctl.';
w(oo,t) — 0, T{o0,t) — T, C{0,t) — C - (2.5)

The radiative flux vector ¢, under Rosseland approximation becomes

; 40" 8T

gr = 'EFFJ’ (2-6)

and

T4 2478 7373, (2.7)

where k*, o* and T, are mean absorption coefficient, Stefan-Boltzmann constant and free

stream temperature respectively.

Using Eqs. (2.6} and (2.7}, in Eq. (2.2),we get the following equation

O _ k OT, 1 16515 OT 08
8 pCpdy®  pCp 3k* &P '

Introducing following non-dimensional quantities

12



3 4
tl‘t:

Y= ¥ 0 [N

Lo
I
|

=X
A=
T-Tew _ {C-Cu

T Te-Twl' ~ = CoCwx)’

v aBiv _ k3
+ Sc=§, M=#;‘, kl—#, (29)

gﬁu!Tw—Tm[ G Qﬂ Ugc‘\»_cﬂol,

posg
180* TS
{ to= gz N ===

Non dimensional form of equations (2.1), (2.3) and (2.8) are as follows

(o) (5 -3)

8 du
+ (1 + ,\55) (G,T +GuC — Mu— ”3?) 0, (2.10)

T (1+N)&T

_at‘=( 1;’, )6'92’ (2.11)
8C 1 &C

& 5o (2.12)

where M, ki, Gy, G, Pr, S;, A, @ and N are magnetic parameter, porosity parameter, thermal
Grashof number, mass Grashof number, Prandtl number, Schmidt number, relaxation time,

retardation time and radiation parameter respectively.

13



2.2 Solution of the problem

2.2.1 Case 1: Ramped temperature and velocity

The non-dimensional initial and boundary conditions are

u($,0)=0, T(4,0)=0,C(y0)=0 for y>0, (2.13)
and
t 0<t<1
u{0,t) = s
1 t>1
t 0<ct<l
T(O!t) = N )
1 t>1
C(O!t) = 1)
(2.14)

u(yt) — 0, T(yt)—0, C(yt)—0as y — oo.

Applying Laplace transform on both sides of Eqs. (2.10}-(2.12) and using Eq.(2.13),

we get the following forms

d*zg A2 +bs+c\_ 1+ Az =

i ("TI@?‘)“ (1+as) (G:T+GnC) =0, (2.15)
4’7 —
_dy2 — 3aT =0, (2.16)
d*’C —
Fr i 38,C =0, (2.17)

14



where

a= .P,-
1+N
The transformed boundary conditions are
— —e~s — 1
T(0,8) = T(0,8) = (1—3:—1 , TO,9) =7, for £>0,

(y,9) = 0, T{y,s)=0, C(y,8)=0 asy— oo for t>0.

Using the boundary conditions (2.18), the solutions of Egs. (2.15)-(2.17) becomes

_ 1—e*
T(y,8) = 3: e_yﬁ?

—_ e_y\/sc_a
C (y: 3) = 3 3

_ 1-—eS Ast+bs+c
Bs) = U)o v T

+ 1—e? Gy (14 As)
52 as {1+ 8s) — (As? +-bs+c)

As? +bs 4¢ s
e A e e A

38:3(1+09)—~(As?+bs+c)

As2 Fbs+c _ <
{e"p (—yv _1+9—) - T}

[ 1
= M —_— = T .
b=1+2A +k1’c M+k1

where

15

(2.18)

(2.19)

(2.20)

(2.21)



Taking inverse Laplace transform of Egs. (2.19)-(2.21), solutions for temperature

prafile, concentration profile and velocity profile are obtained as follows

where

o= (o (3) 3o

).

and the solution of velocity u (g, ¢) can be found by Stefhest method [23]

C(y.t) —erfc(

y! t) Z Vk Lh k)

where

min(k;n) n (0
ki " (25)!
=(-1) F%Lﬁ"‘ﬂwu‘””k_ﬂ””_kw

The complementary error function erfe(z) is defined as

erfc (z) =1 —erf (z) ,erf (z) = % ./: e "y,

and H (¢t — 1) is the unit step function and defined as

0 t-1<0
H(t-1)= .
1 t-120

16

(2.22)

(2.23)

(2.24)



2.2.2 Case 2: Isothermal with constant velocity

The dimensional and non-dimensional form of isothermal boundary conditions are

v(0,f) = U,
T0,8) = Ty for >0,
0(01 t‘) = Uw-;

u'(oo, f) 1 0, T(W, t‘) . Toos C(waf) —_— cm '

and

u(0,t) = 1,
TO,t) = 1 for t>0,
c (0| t) = 1

u(y!t)’T(y:t)’C(yat) — 0 as y — .

The transformed isothermal boundary conditions are

E(O: 3) = %}
= 1
T(D:S) = ;:
6(01 8) = ;,
T(y,9), T(,9), Cly,8) — 0 asy—— oo (2.25)

Using the boundary conditions (2.25) ,the solutions of Egs. (2.15) - (2.17)

are obtained as

= 1
T (y,0) = Je W%, (2:26)

17



~yv5ce

Clws) = ——, (2.27)
B(ys) = 1 . fAs*tbs+c 1 G (14 As9)
w9 = STy 1+ 0s sas(l+0s) — (As® +bs+c)

fAs? +bs+ ¢ S

+1 CGm(l+ As)
88.8(1+8s)—(As2+bs+ec)

[As? +bs+c o/ '
{exp (—y —'m—) — & y\/—S} } (2.28)

Taking inverse Laplace transform of Egs. (2.26) — (2.28), solutions for temperature

profile, concentration profile and velocity profile are obtained as follows

a

T (y,t) = erfc (g E) , (2.29)

C(y,t)=erfc(%~1/§f ’ (2.30)

and the solution of velocity u (y,t) can be found by Stefhest method [23].

2.3 Skin Friction

The skin friction measures the amount of shear stress on the boundary and is given by the

following expression

TWt) ly=o _ (1+6F) ou
oU3 (1+28) 0yl @a)

Ty (t) =

18



2.4 Nusselt Number

The Nusselt number measures the heat transfer rate on the boundary and is given by the
following form

Upt ﬂ?‘
QLo 3y J=0

oT
M= T T ey

For ramped temperature

Nu=2‘/§ (JE— vi—1H (t-—l)), (2.32)
For isothermal
a
Nu=,/—. (2.33)

2.5 Sherwood Number

Tbe sherwood number measures the mass transfer rate on the boundary and is given by the

following expression

Unto 55 e
- My 0C, _ [3e
She=—Goion) = oy =V (2.34)

19





















2.1 shows that Nu declines as N and ¢ rises. So, it shows that heat transfer rate slows down
as radiation rises. Table 2.2 explains that N« and P, have a direct relation, whereas w.r.t ¢ it
rises till £ = 1, after which it falls down.

Table 2.3 Sherwood number Sh, with the variation of Schmidt number S..

Sclt— |02 0.4 0.6 0.8 1.0

0.6 0.977205 | 0.690988 | 0.56419 | 0.488603 | 0.437019
0.8 1.12838 | 0.797885 | 0.65147 | 0.56419 | 0.504627
1.0 1.26157 | 0.892062 | 0.728366 | 0.630783 | 0.56419

The numerical values of non-dimensional Sherwood number Sh,., calculated from the ana-
lytical expression (2.34), are shown in Table 2.3. Table shows that Sh, enhances with increase
in Schmidt number S, while declines with rise of ¢.

26






Tow+(Tu-Tw)f O0<t<t
T(U,t‘)—{ =+ (T =Tl ’

Tw > 1p
and
Uo£ r<tp
H'(U, t) = to H
Usa A

while concentration is maintained uniformly as

c=0C, .

Concentration
boundary layer

¥ - . Momentum
---=-- boundary layer

====- TaThermal
.
—y boundary layer

Porous MHD second
medium grade fluid

Fig. 3.1: Schematic diagram of problem

Taking assumption that induced magnetic field is imperceptible as comparing to the applied
one i.e. B = (0, Bp,0). The polarization outcome of fluid is imperceptible as there is no outer

electric field, hence we assume E = 0.

For an MHD convective flow of a second grade fluid (a; + az = 0, a; > 0) through & porous

28



medium, momentum equation can be written as

p“;—‘t’ — divr + (J x B) + pgB(T — Too) + pgB" (C — Coo) + R,

where

v = (“(y,t)io’o)’
T=—-pl+pA)+atAs+ Ct‘zA%,

A=YV (W),

SA
Ag = a_:l +(V.V)A; + A L+ LTA,,

Re-f (srnd)v

JxB=—-0B2V,

The governing equations for a second grade fluid can be obtained as

- ((+23) (&2 ) i g -Tu) 45 (€~ G, (@

oar k T 1 160°T3, 8T .
==t g (3.2)
o pCo oy T pCp 3K Oy

ac 8:C

'ﬁ = Dw, (3.3)

where o is the second grade parameter and the redt are same as described in chapter 2.

29



The initial conditions are

W(#,0) =0, T(%0) =T, C(¥,0) =Cx fory >0, (3.4)

and the boundary conditions are

Upt ¥ <t
w(0,8) = Ve -
g t' > tg
Ty = T t (T —To) & 0<t<tg |
T i> iy
c,t = CCy,
w(00,8) — 0, T{00,£) — Ty, Cl00,t) — Cio . (3.5)

Introducing following non-dimensional quantities

s 4 .

— N 4
y='ﬂgﬁ; u—ﬁait—‘ﬁv

T-T. GO
o0 . C = OO

W‘-m,

o B2 k2
Sc=]l5'a M=;-UL§:& kl:ﬁ'v
j (3.6)

Gr — gﬂ'v!?;.;;—'f'm!, Gm _ gﬁ'y!%:_cwia

Kto’
160* TS
L tO = Euga N= RV

30



Non dimensional form of equations (3.1) — (3.3) are as follow

Ou .0 u  u
i (1+01§) (-a?— -k—l) - Mu+ G, T+ GRC,

8T _ (L+N) 9T
ot

P oy
oc _ 1 ¥C
ot~ Scoy?’

3.2 Solution of the problem

J.2.1 Case 1: Ramped temperature and velocity

The non-dimensional initial and boundery conditions are

u(y,0) =0, T(,0=0,C{y3,0)=0 for y>0,

and

¢ 0<t<l
u(0,t) = ,

1 t>1

¢ 0<t<1
T(0,8) = -,

1 t>1
c,t = 1,

w(y,t) — 0, T(y,t) — 0, C(y,t) — 0as y — ox.

31

(3.7)

(3.10)

(3.11)



Applying Laplace transform on both sides of Eq. (3.7)-(3.9) and using Eq.(3.10),

we get the following forms

. (M+ﬁ+(1+-‘,‘,—})s)ﬁ+ )

(G.T + GmC) =0,

dy? 1+als (1+ais)
-
% — 52T =0,
iTc; - 35:6 - 0,
where
a=- A
14+ N
The transformed boundary conditions are

= - (1—e®)
B(0,5) = T(O,s):T, C{0,s5)=1/s  for t>0,

T(y,s)

Using boundary conditions (3.15), to solve Eqs.(3.12)-(3.14), we get the
following solutious

o=
T ()=~ g e W

H

—_ e_'y‘\/g:_a
¢ (y: 3) = s '

32

0, T(y,3) =0, C(y,s)=0 asy— o0 for t>0.

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)









z(y,8) = le - btes
y: - 8 xP y 1+O!'1'3

1 G, _ b+ ca _~yas
+sas(1+a{s)—(b+c&) {EXP( yV1+a;3> ¢ }

1 Gm b+cs —yvBes
+s.5'cs(l+a‘;s)—(b+cs) {exp( Y 1+ajs e . (3.25)

Taking inverse Laplace transform of Egs. (3.23) — (3.25), solutions for temperature

profile, concentration profile and velocity profile are obtained as follows

T (y,t) = erf (% \/i‘-_) : (3.26)

C(y,t)=erfc(% ST , (3.27)

and the solution of velocity u (y,f) can be found by Stefhest method [23].

3.3 Skin friction

The expression of skin friction for the second grade fluid is given by the following expression

(3.28)

. _Tt) ly=o _ a,.._('i Ou (y,t)
w(t)———-—pvg = (1+ 1&) 3y

y=0

3.4 Nusselt Number

The Nusselt number measures the heat transfer rate on the boundary and is given by the

following form

Usts %- /0 aT

Nu= —-—(I:H__—_T,:)‘ = _a |y=0:

35



For ramped temperature

Nu = 2\/§ (\/E ~Vi-1H{t - 1)) , (3.29)
For isothermal
@
= —_—. '3
Nu — (3.30)

3.5 Sherwood Number

The sherwood number measures the mass transfer rate on the boundary and is given by the

following expression

Upty 25
Sh:_onayy,:g:‘80|_: Se (3.31)
T {(Cy = Coo) gy " Vo '

36















oe o 15 15 ) Y o5 10 15 1)

Fig. 3.3: Effect of (a) mass Grashof number G, (b) Grashof number G, (c) porosity para-
meter ky, (d) magnetic parameter M, (e) radiation parameter N, {f) second grade parameter
o} on skin friction with P, = 0.71 and S, = 0.6.

In Fig. 3.3 influence of different parameters on skin friction is presented graphically. We
can see that the skin friction has a non-linear behaviour before t = 0.5 after which it reaches a

constant value.

The graphs of temperature and concentration profiles are same as in chapter 2.
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Concentration profile is the decreasing function of Schmidt number S, and time {.

Velocity is the increasing function of Grashof number G, mass Grashof number Gy,
porosity parameter k, radiation parameter N and time ¢ and decreasing function of
magnetic parameter M and second grade parameter af for both isothermal and ramped

wall temperature for a second grade fluid.

The magnitude of velocity and temperature profiles are less for the ramped wall temper-

ature as compared with the constant wall temperature.

8kin friction reduces with increase in relaxation time A and retardation time & for a.n
Oldroyd-B fluid while it reduces with increase in magnetic parameter M, and second
grade parameter aj while increases with increase in radiation parameter N, Grashof

number G, mass Grashof number G, and porosity parameter k; for second grade fluid.

Both thermel! diffusion and radiation decreases the heat transfer's rate at the ramped

temperature plate while mass diffusion tends to reduce mass transfer’s rate at the plate.
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