To by

SOFTWARE THUMBPRINTING VIA IL CODE
TRANSFORMATIONS

Developed By:

Ahmed Hasan
Muhammad Shakeel Anjum

Supervised By:

Prof. Dr. Khalid Rashid

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF BASIC & APPLIED SCIENCES

INTERNATIONAL ISLAMIC UNIVERSITY, ISLAMABAD
2008 LT
Vo %

e o e il E

U, N~ P .

[nternational Islamic University, Islamabad
IFaculty of Basic & Applicd Scicncees
Department of Computer Sciencc

Dated: o7, 0%, 2008

FINAL APPROVAL

Itis certified that we have read the thesis. entitled “Software Thumbprinting VIA T, Code
[ransformations™, submitted by Mr. Ahmed Hasan 44-I'AS/MSSE/IFO4 and - Mr.
Muhammad Shakcel Anjum 49-FAS/MSSE/F04. It is our judgment that this thesis is of
sufficient standard to warrant its acceptance by the International Islamic University
Islamabad for the award of MS degree in Softwarce Enginecring.

PROJECT EVALUATION COMMITTEE:
External Examiner

Dr. Muhammad Ansari

Associate Professor,

Department of Computer Science,
Federal Urdu University.

Islamabad. Pakistan.

Internal Kxaminer

Ms. Muhammad Usman
l.ccturer.
Department of Computer Science,

International Islamic University, [//
Islamabad. Pakistan. et

Supcrvisor

Prof. Dr. Khalid Rashid

FFormer Dean,

Faculty of Basic & Applied Scicnces, \ ’ %‘4&&;)
International Islamic University. : @AA‘-\

Islamabad. Pakistan. ‘}]l’“"%/

In the Name of
ALLAH

The Most Merciful
The Most Beneficent

- —_—
. e

Software Thumbprinting VIA IL Code Transformations Thesis

A Thesis Submitted to the Department of Computer Science,

-

Faculty of Basic & Applied Sciences, International Islamic
University, Islamabad, Pakistan, as a Partial Fulfillment of the
Requirements for the Award of the Degree of

MS in Software Engineering

Software Thumbprinting VIA IL Code Transformations Dedication

To
The Holiest man ever born,
PROPHET MUHAMMAD (PEACE BE UPON HIM)
&

OUR DEAREST PARENTS & FAMILY
Who are an embodiment of diligence and honesty,
Without their prays and support
This dream could have never come true
&

PRECIOUS FRIENDSHIP
That made us laugh, held us when we cried
And always stood by us

B SR

aarr e

L e

Software Thumbprinting VIA IL Code Transformations Declaration

DECLARATION

We hereby declare and affirm that this thesis ncither as a whole nor as part thercof has
been copicd out from any source. It is further declarcd that we have completed this thesis
and accompanied software application entirely on the basis of our personal efforts, made

under the sincere guidance of our supervisor. If any part of this report is proven to be

copied out or found to be”a”ré';;ro"duction of some other, we shall stand by the
consequences. No portion of the work presented in this report has been submitted in
support of an application for other degree or qualification of this or any other University

or Institute of learning.

Ahmed Hasan
44-FAS/MSSE/F04

Muhammad Shakeel Anjum
49-FAS/MSSE/F04

iii

Software Thumbprinting VIA IL Code Transformations Acknowledgements

ACKNOWLEDGEMENTS

We bestow all praise, acclamation and appreciation to Almighty Allah, The Most
Merciful and Compassionate, The Most Gracious and Beneficent, Whose bounteous
blessings enabled us to pursue and perceive higher ideals of life, who bestowed us good
health, courage and knowledge to carry out and complete our work. Special thanks to His
Holy Prophet Muhammad (SAW) who enabled us to recognize our Lord and Creator and
brought us the real source of knowledge from Allah, the Qur’an, and who is the role

model for us in every aspect of life.

We consider it a proud privilege to express our deepest gratitude and grand tribute to our
supervisor Dr. Khalid Rashid, who kept our morale high by his suggestions and
appreciation. His motivation leads us to this success and without his sincere guidance and

cooperative nature we could have never complete this task.

It would not be out of place to express our profound admiration to Dr. Hafiz Faroeoq
Ahmad for his dedication, inspiring attitude, untiring help, and kind behavior through out
the project efforts.

Finally we must mention that it was mainly due to our family’s moral support during our
entire academic career that enabled us to complete our work dedicatedly. We once again
would like to admit that we owe all our achievements to our most loving parents, who
mean most to us, for their prayers are more precious then any treasure on the earth. We
are also thankful to our truly, sincere and most loving brothers, sisters, friends and class
fellows who mean the most to us, and whose prayers have always been a source of

determination for us.

Ahmed Hasan
44-FAS/MSSE/F04

Muhammad Shakeel Anjum
49-FAS/MSSE/F04

e icadk s o ol .

A

Software Thumbprinting VIA IL Code Transformations Project In Brief

PROJECT IN BRIEF

Project Title: Software Thumbprinting VIA IL Code Transformations
Organization: International Islamic University, Islamabad, Pakistan.
Objective: The objective of the project is to fulfill the degree requireraent of

MS in Software Engineering.

Undertaken By: Ahmed Hasan
Reg. No. 44-FAS/MSSE/F04
Muhammad Shakeel Anjum
Reg. No. 49-FAS/MSSE/F04
Supervised By: Prof. Dr. Khalid Rashid
Department of Computer Science,
Faculty of Basic & Applied Science,
International Islamic University, Islamabad.

Started On: June 2005
Completed On: February 2008
Research Area: Digital Rights Management, Software Protection, NET, MSIL

Tools: Visual Studio 2005, Ildasm, Ilasm, Dotfuscator Community

Edition, Remotesoft .NET Explorer, Lutz Roeder .NET Reflector

Software Thumbprinting VIA IL Code Transformations Abstract

ABSTRACT

Protection of software code against illegitimate use by its malicious users is a pressing
issue for software industry today. Researchers have been devising technological
countermeasures, both hardware-based and software-based, to resist against such user’s
attacks to violate software copy rights. Contemporary studies in software-based
protections have proposed various techniques like watermarking, obfuscation and tamper-
proofing. These schemes aim to protect software copy rights by restricting piracy, illegal
reverse engineering and tampering. Many of these mechanisms are either too weak or too
expensive to apply. Most of the technological implementation of these methodologies is
found for Java applications. Where as, protecting .NET applicatiqns is rarely discussed.
In this thesis, we present and explore a methodology that we believe can protect software
copy rights, exclusively of .NET framework based applications. We have proposed a
unique software watermarking technique called software thumbprinting, which in effect
specializes the idea of software fingerprinting. We have demonstrated our proposed

scheme to show how distinct thumbprints can be encoded into a .NET program through

IL code transformations. Our evaluation shows that th&mbprints encoded this way are
more robust and more tamper-proofed. The proposed technique has good resistance
against different types of malicious user’s attacks. Moreover we aim to emphasize the

need of developing better mechanism to protect .NET applications.

vi

ez

Software Thumbprinting VIA IL Code Transformations Acronyms & Abbreviationy

ACRONYMS & ABBREVIATIONS

ADT: Abstract Data Type

API: Application Programming Interface

BSA: Business Software Alliance

C#: C Sharp

CLR: Common Language Runtime —— — ———
DB: Database

DLL: Dynamic Link Library

DRM: Digital Rights Management

EXE: Executable Program

ILASM: Intermediate Language Assembier

ILDASM: Intermediate Language Disassembler

JVM: Java virtual Machine

MSIL: Microsoft Intermediate Language or Intermediate Language (/L)
PPCT: Planted Planner Cubic Tree

TCPA: Trusted Computing Platform Alliance

VB: Visual Basic

XML: Extensible Markup Language

vii

M A

- a

JEUSUPS SSF R

PR T

Software Thumbprinting VIA IL Code Transformations Table of Contents

TABLE OF CONTENTS

Ch. No. "'~ Contents Page No.
1. INTRODUCTION ti0utinrearencnscacascssasessssscessssasasssssssssssssssssasssssnssassnssss 1
1.1 Software Protectionccovviiiiiviniiiiiiiiiiiir e cireie e e e e 1
1.2 SOftware Piracycoovvuieiniiiiiiiiii e e e e e e 2
1.3 Piracy of .INET AppPliCationscccoevuiiiiiiiiiieentiinrniaiininiineenaenn 3
1.4 Proactive SOIUtIONSiviuiiiiiniiiiiiirerei et e en e 3
1.4.1 Hardware-based Protectionscoccvvveiiiiiiiiiiiiiiennnennenn. 4
1.4.2 Software-based Protectionscooeveviiiiiiiiiiiniiiiienieinenn 4
1.4.2.1 Software Watermarkingcooovveiviiiiiiiiiiininnennn, 5
1.4.2.2 Software Fingerprintingccoivviiiiiiiiiiniinineennnen. 7
1.4.2.3 Tamper-proofingcoovviveriiiiineniiiiniiiiirnenienenene. 8
1.4.2.4 Code Obfuscationc.ccvieviirrirnireiieiieninenneeneenenn 9
1.5 Overview of Proposed Methodologyo.vveveniveiiiieiniiininiiieennnnnee 10
1.6 Our Contributionso.oovuiiiiiiiiii e e e e 10
1.7 Thesis Organizationv.eieveenenieneninineinerieneenernereneeneenreneen 12
2. LITERATURE SURVEY AND PROBLEM DEFINITION .cceuuiiiuniretnsienncnenneee e 13
2.1 Literature Review 7 _7 r 13
2.2 Problem Rationalecooviiiiiniiiiiiiiiiiicic e 18
2.3 Software Piracy Problem Redefinedcoceiiiiiiiiiniiiiiiienenn 19
2.4 Problem Statementcoivvuiiiiini i 22
2.5 Scope Of WOTK ..eoneiniiniiiiiii e e 23
3. PROPOSED METHODOLOGY ..ecururruinrerenuerecasscsarcecascacssascascascassssasonee 24
3.1 Piracy Prevention Approachescocooeiiiiiiiiiiiiiiiiiiiiin, 24
3.1.1 Piracy Educationc.covviiiiiiiiiiiiiiii i 25
3.1.2 Piracy Preventioncoceveiiiiiiiiiiiiiiiiiniiiiieiceeaeeaees 25
3.1.3 Piracy Detectioncoviuiniiiiiiiiiiiinr e 25
3.1.4 PiraCy ASSEILIONuuuineneereninnieiniiineeieitenteeeietienaenaeeaas 25
3.2 Anti-Piracy Lines of Defenseccooviiiniiiiiiiiiiiiiiiiiiiiciieeee 26

viii

o

i, -

Software Thumbprinting VIA IL Code Transformations Table of Contents

3.3 Software Thumbprintingcoeeeveiiiiiiiiiiiiiini e eaene 27
3.3.1 Design of Proposed Methodologyccceviviiiiiiiiiiiiiniinnn, 28
3.3.1.1 Thumbprint Encodingcccovviieiiiieiiniiiininenenennen. 28

3.3.1.2 IL Code Transformationscocvieieeniinennennineininen 29

3.3.1.3 Thumbprint Decodingccoeveiiiiiniiiiiiininineanenn, 32

3.3.2 Formal Model of Software Thumbprintingcoovininie 33

4. IMPLEMENTATION teuvvtiererenenrucesasreresssesssiosssssssssssesssssssasrsssasssssasens 36
4.1 ENVITONMIMENT ..\ uitinineninitit it eeiee e eneneeeretaenenenenentnsrannenesnsssees 36
4.1.1 NET Platform ... uoueeeeieerec it eeeererrrm s reavsiie e naa e o 30
4.1.1.1 Programming Languagesccccoveerenriiinenennenennnnn 36

4.1.1.2 Microsoft Intermediate Languages (MSIL) 37

412 TOO0IS eeeenreniit e e 37
4.1.2.1 IL Code Disassembler (ildasm.exe)c.ccevvvvivivnennn. 38

4.1.2.2 IL Code Assembler (ilasm.exe)ccoeviverivriiiiiiinnennns 38
4.1.2.3Marka .o e 39

4.1.2.4 Dotfuscatorcoovieieiiiiiiiii i 40

4.1.2.5 NET Reflectorcccovviiiiiiiiiniiniiiiin e 40

4.1.3 TEChNIQUES ...euviviniiiiiiniiiiiiet it e e e nenen 41

4.2 Case Study: Tower of Hanoicoovviiiiiiiiiiiiiiii e 41
4.3 Issues regarding the Automation of Proposed Scheme........... . 48
4.4 Limitation.......cccceereeererneniiees venveneenenns .. 49
5. RESULTS AND EVALUATION .evuetietiecrencencerereniiecensensenscsassoscnsenscssccs 50
5.1 Thumbprinting VS Prior ArtScocevviiiiniiiiniieniiiiieieieceeenenenns 50
5.2 Thumbprinting Thwarts NET Reverse Engineering Toolscociene 51
5.3 Robust and Tamper-proofed Thumbprintsc.cocveviiiniviiicen. 51
5.4 Experimental Evaluation Frameworkccoooiiiiiiiiiinniii i, 52

5.4.1 Evaluation Modelcocovievnnneiiiiiiii e
5.4.2 Evaluation PIOPEITIES ...ccveeveeriiiiirienienreese st sreeveete s e e e e e e e enens
5.5 Branch FUnCtion.......ccccieiiniiininiiniiiin i
5.6 Experimental ReSUltScovvinvniiiiiniiiiiiiiin e,
5.6.1 Approachccoiiiiiiiiiiiiiiiiiiii

ix

o

Software Thumbprinting VIA IL Code Transformations Table of Contents

5.6.2 ReSUS covieiiiii e 56
5.6.2.1 Results before Implementation..........c....covviiviienenen.. 56
5.6.2.2 Results with Thumbprinting Scheme 57
5.6.2.3 Results with Branch Function Scheme 58

5.6.3 Results Analysis and DiSCUSSION.......coovireriireiieinneriereneeneranenns 59

R I I A T Y ()
5.6.3.2 PerfOrmManCe....cooeeveierereierrrerrrnennrnnnassereseesnnsnoseessnmenses 00

6. CONCLUSIONS AND FUTURE WORKS vvv0teeeeesescssosssssssssecsocessssssssssocnsases 63

TERMINOLOGY .t00ieereaerercscoccssescssocasassnscsrasssssnessassssssosnnessessnsesssssnnesssssasasse 09

REFERENCES AND BIBLIOGRAPHY 1oveceeceteecnnneesaresssscsasssssenssscesssesosscssssnses 66

APPENDIX A: PUBLICATION .tcceuuueucceetscsensscessosconssasscnssessesasscsssne ses Al-A9
APPENDIX B: CODE LISTING vevttreceecrsccorocecesssscscosssssccesssccsssassrssasssene B1-B7
APPENDIX C: INTRODUCTIONTO MSIL............... Neeeseneeeeracensanarrsanseeras C1-C3
APPENDIX D: USING Jldasm.exe AND TIaSHILEXE vevveserrvenseseesessscncsssnnasenes D1-D5

Software Thumbprinting VIA IL Code Transformations

List of Tables

e mns attondlile e

e i b e, A

LIST OF FIGURES
Fig. No. Figure Page No.
Figure 1.1 Easter Egg Watermark Examplecooooiiiiiniiinn, 5
Figure 1.2 Software Fingerprintingcccveiviviiiiiiiiiiinanienennnn.. 8
Figure 2.1 Dollar Losses Due to Piracy by Regioncc.oceeeennen 19
Figure 2.2 Types of Software Piracycoooeviiiiiiiiiniiiiiiiiiinnnn.. 21
Figure 3.1 Piracy Prevention Approachescccvvevevvieninnnnennn.. 24
Figure 3.2 Anti-Piracy Lines of Defensecocoeiiiiniieiinenanne. 26
Figure 3.3 Thumbprint Encodingc.cooviiiiiiiiiiiiin e, 29
Figure 3.4 Control Flow Graph of Thumbprint Code Block TS ~ 30
Figure 3.5 IL Code Transformation..........ceccecvververieneesrerecnennnneressnnscsanenns 31
Figure 3.6 Thumbprint Decodingccccevereeennennenn. 33
Figure 4.1 Disassembling HelloWorld.exe through lldasm..................... 38
Figure 4.2 Re-Assembling Modified HelloWorld Program using llasm 39
Figure 4.3 Software Thumbprinting Tool Markaccccnvcvrrvneneee. 40
Figure 4.4 Tower of Hanoi Applicationc.cccevveiniiiniininiiineiannn 42
Figure 4.5 Hashing and Encryption Setting in Marka.........cccccocveveveveenneens 43
Figure 4.6 Thumbnail Generation using Marka..........cccccecereneicenennnncn, 44
Figure 4.7 License File Creation using Marka........c..ccooveievcrnincnnenenne 44
Figure 4.8 License Database Maintained by Marka.........c..cccccovvvvinninnnne, 45
Figure 4.9 Control Flow Graph of Thumbprint 35,9 (1000112)................ 46
Figure 4.10 Decoding Thumbprint.........cc.ccevvvervenvrrvenvcenneevrecsvnsniresnneen. 47
Figurc 5.1 Branch Based Watermarkingccooevviiiiiiiiiiiinninnon, 55
Figure 5.2 LOC ...t 61
Figure 5.3 SIZE ..o e 6
Figure 5.4 Performanceccececeeeeviiiiiniiiniiiiiiiiniiiiinnenininiennn 62

Xi

Software Thumbprinting VIA IL Code Transformations List of Tables

e e e

LIST OF TABLES
No. Table _ - Page
Table 5.1 Results Before Implementationcccocooiiiiiiiiiininnn, 57
Table 5.2 Results with Proposed Schemec.cooiiiiinnn.e. 57
Table 5.3 Results with Branch Functionc.cooooiiiiin 58

xii

" Chapter 1

INTRODUCTION

T - “A‘

Chapter 1 Introduction

1. Introduction

Software Security has two major divisions; a) data protection and b) software protection.
Data protection refers to the security of information of an organization. Software
protection, on the other side, refers to the security of software code which is ownership of
a software vendor. We choose software protection as our major research area. In this
chapter we start by presenting a broader view of the domain of software protection. After
introducing the basics and backgrounds of software copy rights management, we will
describe the problem of software piracy and emphasize the need of protecting Microsoft
NET framework-based applications specifically. Then we explore customary solutions
against piracy and present an overview of proposed methodology. Chapter ends by

describing our contributions and thesis organization.
1.1 Software Protection

Software programs comprise of valuable intellect, art and trade secrets. Software vendors
aspire to control access to and usage of their software products on which they had spent
their invaluable time and resources. These digital products are developed to make the life
of their users easier. Among these software users, there are few crooks who aim to steal
the source or semantics of software products in order to reproduce and redistribute them
illegally. Software protection thus refers to the prevention of such unauthorized
reproduction and redistribution. Software vendors possess copyrights of their digital work
as a legal measure to enforce software copyright protection. International software
copyright laws enable copyright owners to accuse some one who infringed digital
products in order to use personally or to resale illegally. Besides this legal endorsement,
to implant some technical “protection measure inside-their-products, software vendors
coined the term Digital Rights Management (DRM). It refers to the techniques and
technologies used by software vendors to enforce their copyrights over their digital

products [1].

Technical implementation of DRM can in principle be reverse engineered, so it should be

employed in strong conjunction with legal acts enforcement, so as to make software

Software Thumbprinting VIA IL Code Transformations 1

Chapter 1 Introduction

copyright protection more effectual. In this endeavor we have proposed a technological
implication of DRM that effectively combines software licensing and digital
watermarking (as discussed in Chapter 3). Before presenting the proposed solution, we

describe software piracy problem in coming lines.
1.2 Software Piracy
Wikipedia defines software piracy as [2],

“The unauthorized use of copyrighted material is a manner that violates one of the
copyright owner’s exclusive rights, such as the right to reproduce or perform the

copyrighted works or to make derivative works that build upon it.”

Collberg et. al. defines software piracy as an activity that some malicious user carries out

by tampering with software code so as to replace or wreck its original ownership or

-

authorship mark [10]. e -

The first statement defines software piracy in general and second statement defines it in

technical terms. We may simply define the term as,
“Software piracy is the act of making and reselling illegal copies of software product.”

Many computer users intentionally or unintentionally become part of software piracy [4].
The very reason for this is misinterpretation of the word “copy” by software users. Users
consider that copying fully functional software which someone else has bought legally is
not piracy. Users don’t feel illicit when they think that they are copying it for personal
use not for resale. According to STIA “it’s more than n copy, it’s a crime” [4]. The money
loss caused by software piracy badly affects the profitability of software companies [3].
Hence, software owners and authors take scrious legal actions to protect their products
from piracy. Punishment of committing pirécy varies from financial penalties to
imprisonment. To avoid such unplcasant surpriscs, it is better to know the basic ways
which intentionally or unintentionally may lead the user towards software piracy. SIIA

and BSA describe the major types of piracy in. The greatest threat among different modes

Software Thumbprinting VIA IL Code Transformations 2

Chapter 1 Introduction

of piracy is internet piracy. There are number of pirate websites which provide cracked
versions of commercial software. Another widely used approach is CD-R piracy in which
a person obtains a legal copy of software and makes its illegal copies for commercial
resale 3, 4].

1.3 Piracy of .NET Applications

Software authors, mostly, do not consider copyright issues in early stage of development;
rather it is passed over to the later stages of development cycle. Most of the times, it
overlooked at all or if observed then weak protection mechanisms (like serial-key checks)
are employed [35]. This is also true for .NET applications, where as the technology is
getting its significant share in market. This lack of protection is derived from several
reasons. Very first cause is user resistance to accept protection mechanisms and
essentially .NET applications are more users intensive. Secondly .NET applications are
more vulnerable to copyright infringements due to the ease of reverse engineering. An
ordinary developer who is somehow familiar with .NET environment can simply use
framework’s built-in tools to expose business secrets, valuable proprietary algorithms and
functional code from executable file of an application. There are more commercial tools
on hand to disassemble .NET applications to get reverse engineered code and conversely
protection tools are available in quite less proportion [19 , 20]. Theoretic approaches
towards the solution of software piracy problem have demonstrated that a solution that
comprises of merely software based measures like watermarking, code obfuscation or
tamper-proofing is not feasible [6]. Besides this an efficient software distribution scheme
is required to detect and react against encroachment [7, 8]. Further we take a glimpse of
customary solutions which software vendors employ to protect their products against

copyright violations.

O S, . e -

1.4 Proactive Solution

The legal measure to protect software copyrights like, patent, copyright, and license does
not provide complete control against piracy. There arises the need to enforce legal

measures through technical mechanisms. For example, the serial-key check that most

Software Thumbprinting VIA IL Code Transformations 3

Chapter 1 Introduction

commercial software implements to validate the legal product user. This is a software-

based anti-piracy technique, although thwarted but still being widely used. So there is an

imperative need of developing technical protection measures besides legal means.

Researchers have been devising technological countermeasures, both hardware-based and
software-based to resist against piracy [1, 10, 14, 17, 21]. For our proposed solution,
software-based protections are of major concern which we will shortly present after

taking a quick look of hardware-based protection measures.
1.4.1 Hardware-based Protection

Hardware-based protections provide a variety of features. These are powerful, fast and
autonomous. Such solutions barricade software piracy by affixing application
authentication mechanism with some fixed hardware device which contains embedded
ownership signature [1]. These systems make functional program dependent upon certain
hardware components. The program runs successfully if it finds specific device attached
with the system and also if the device contains particular authentication mark embedded
on it. Naumovich et. al. have explored several hardware-based protection tools including
dongles, smart cards, re-writeable media installers, dedicated processing devices and
Trusted Computing Platform Alliance (TCPA) [7, 8]. Some of these also support
licensing schemes. These tools are certainly more secure but their fabricating cost and
realization overheads confine their viability to large application domains [7]. Software-
based protections discussed below, are on the other hand extensively practicable due to

their less implementation overheads and low installation cost.
1.4.2 Software-based Protection

This type of protection does not involve any special hardware device to be used to restrict
use of software product. Instead it refers to certain property of software program that
indicates the original owner and legal buyer. We will here explore particularly those
measures which are the focal point of our research and contribute in the proposed

protection scheme, like watermarking, tamper-proofing and code obfuscation.

Software Thumbprinting VIA IL Code Transformations 4

JURNEEA™" SN

o o o

Chapter [Introduction

1.4.2.1 Software Watermarking

Software watermarking is the process of embedding secret information into the software.
This information may identify the ownership of software. When an unauthorized use of
this software takes place, its copyright owner can prove her ownership by extracting this
secret information from this unauthorized copy. Software watermarks can be classified by
their extracting techniques as static or dynamic. A static software watermark is one, the
extraction of which does not require the program to be run. Instead the code statements
are analyzed to find some static string or numeric constant that can be some secret
identification or vendor name or license information. A dynamic software watermark is
embedded in the execution state of a software program. More precisely, in dynamic
software watermarking, there are two ways to insert watermarks. Firstly, what has been
embedded can be the watermark itself and secondly, some unique input sequence which

causes the watermark to be extracted can be the watermark [7, 9, 10, 12].

Dynamic watermarks are embedded in several ways and a simpler one of them is easter
egg watermarks in which watermark can only be extracted by a highly unusual input. An
example of easter egg watermark is Adobe Acrobat Reader 4.0 [11]. In Acrobat Reader
4.0 select Help -> About Plug-ins -> Acrobat Forms, the screen shown in Figure 1.1a will
be displayed. Then hold Control+Alt+Shift while clicking on the credits button. This

special input sequence will expose the watermark, as shown in Figure 1.1a.

About Acrobat Forms

' (T'Acrobat Forms Fill-in Plug-In Version 4.06

Adob (c) Copyright 1999, Adobe Systems incorporated.
0be Aoy rights reserved.

The Adobe Acrobat Forms Fill-in pkig-in (the a2t
*Software”) is licensed under the Electronic End ™
User License Agreement (the "Agreement™) :
which you accepted when you installed the ;
Software. Pursuart to the Agreement, youmay
make and distribute unlimited copies of the
Softwaere, including copies for commercial
distribution, as long as each copy that you make
and distribute contains this Agreemert, the

Figure 1.1a Easter Egg Watermark Example [11]

Software Thumbprinting VIA IL Code Transformations 5

Chapter 1 Introduction

About Acrobat Forms

' ‘("Amu Forms Fill-in Piug-in Version 408

M}“ () Copyright 1999, Adobe Systems Incorporaied.
Al rights reserved.

'.Q The Acrobat Forms Fil-in plug-in allows usersio »
»: fill in electronic forms using Acrobat.

The Widgeleers: Amer Deeba, Shawn Qather,
John MacMillan, Roberio Pereknan, Scolt
Petersen, Jane Zhou

Managerment: Htomi Kudo, Carl Orthiieb, Dina
Sakehara, Rich Sutton, Lity Tran, Ada Yue v

o | v]

Figure 1.1b Easter Egg Watermark in Adobe Acrobat Reader 4.0 [11]

This type of watermark is considered to be relatively weaker protection. There are several
other dynamic protection mechanisms which offer higher level of security. Clark

Thomberson has presented a comprehensive survey of watermarking techniques in [9].
Properties of an Efficient Software Watermarking Scheme

There are certain characteristics of an efficient watermarking scheme which are observed
while devising the software protection technique. Presented below is the list of most
significant properties which an efficient software protection scheme must eXhibit. These

characteristics also help in evaluating the strength of a watermarking technique.

Tamper-proofing: The first and foremost requirement after a watermark in inserted in a
program, is to safeguard the watermark or the code that renders the watermark against
code tampering. Tamper-proofing aspect of a protection scheme causes the watermarked

program to malfunction if its code is tampered in order to distort the watermark [13, 17].

Robustness: Refers to the characteristics of a watermarking scheme which means that
the watermark value embedded in a program must be retained after some adversary
applies semantic-preserving transformations on the watermarked program. Robustness is
one of the most significant properties that a watermarking scheme must hold in order to

prove the ownership of a program even after it is tampered [10, 14, 17].

Software Thumbprinting VIA IL Code Transformations 6

Chapter 1 Introduction

Fingerprinting: The third important characteristic of an efficient protection scheme is its
ability to trace back to the source of infringement if it is happened. For this purpose

distinct watermarks must be embedded in each distributable copy of a program [7, 10].

Resilience: The watermarked program must be resilient in terms of size, space and
performance. It means that if a watermark is encoded in a program then the size (LOC),
space (memory consumption) and performance (computation time) of watermarked
program must not be verily differing from the original program. Drastic changes in these

measures weaken the efficiency of a protection scheme [9, 10].

Data Rate: It refers to the number of times a watermark is inserted in a program. It is
usually on the contrary to the resilience trait of a watermark because increasing the rate
of watermark insertion also increases the size, space and computation time of the
program that decreases the resilience. So the goal of an effective watermarking scheme is

to increase the data rate while keeping the resilience high [7, 10].

Stealth: Watermarked program must be stealthy so that its observable behavior must be

similar to the original or its pear programs [7, 9, 10].

Cost: The cost of a protection scheme must be less in terms of time and resources
required to implement it. On the other hand this cost must be high enough for an

adversary who intends to break it [10].
1.4.2.2 Software Fingerprinting

Software fingerprinting is a technique that specializes software watermarking.
Fingerprinting refers to embedding unique watermarks in each distributable copy of
intended software [7]. Digital fingerprints can be used to identify individual copies of
pirated software programs. Technically watermarking and fingerprinting are similar to
each other because both aim to embed a secret message in a software program. While in
general a watermark identifies only the software authors and a fingerprint can also
identify the source infringer which tinkers with the fingerprinted program. To do so,

fingerprinting embeds a unique customer identification number into each distributable

- — N - -

Software Thumbprinting VIA IL Code Transformations 7

e oty Ml Y iy R p——

Chapter 1 Introduction

copy of an application to trace back the copyright violators [7]. Figure 1.2 depicts the
basic idea of fingerprinting. Alice owns a program P and she intends to sale it to Bob,
Charles and Douglas. She embeds unique fingerprints (¥}, F, ..., F,) into distinct copies
of program P to produce its fingerprinted copies (P;, P,,..., Pn). Each copy holds a

unique fingerprint that points towards its original buyer hence tracing back the source of

piracy if happens.
._-.q—)--—-_—.‘_—M\ ;o,
1 [:_J‘> -7 ' Bob
Alice 3 F1 \
N P
Ceey /‘q‘)‘“ﬁ <
2 "‘,,.'
2 E—'> ‘ ' Charle
l——-«> F, | -
P o

[___—_> . 7. Douglas

Figure 1.2 Software Fingerprinting [10]

Proposed software thumbprinting scheme realizes the idea of software fingerprinting. We
introduced the notion of thumbprinting that refers to the characteristics of intended

solution as detailed in Chapter 3. We propose to embed unique thumbprints into distinct

,,,,,, -

copies of software product.
1.4.2.3 Tamper-proofing

Tamper resistance is a technique used to safeguard the embedded watermark or
fingerprint. It aspires to cause the application crash or malfunction if tampered by some
adversary [7, 10, 35]. Tamper resistance resists unauthorized modification of protected
program code. In order to make a protection scheme more effective, tamper-proofing is
combined with other techniques like watermarking and fingerprinting, to confound an
attacker. A common approach is to calculate the hash value of the whole block of

software code and save it in the program. When program is run, this hash value is

Software Thumbprinting VIA IL Code Transformations 8

Chapter 1 Introduction

compared with the hash value of currently running copy of the software to check the
integrity of software. 1f these two hash values do not match, the software is assumed to be

tampered and program terminates or starts malfunctioning [13, 14].

Another approach to implement tamper-proofing can be to create strong dependency
among original program code structures and the protected code structures so that if some
malicious user tries to tamper with the protected code area, the program starts
malfunctioning (23, 31]. In proposed thumbprinting scheme we craft such dependencies
among the embedded thumbprint and program source code by transforming executable

instructions.
1.4.2.4 Code Obfuscation

Most of the times software vendors require to prevent malicious users from
understanding program code through reverse engineering. Code obfuscation refers to the
practice of transforming program code into functionally equivalent code which is difficult
to be understood by an adversary. This way code obfuscation restricts an attacker from
stealing the source or semantics of critical code blocks. Code obfuscation is also used to
disguise other software-based protection mechanisms like watermarking, fingerprinting
and tamper-proofing. It is done by obfuscating the whole program code or specific blocks
of code which are containing some secret information or behavior. It has been a
consensus of researchers that given enough time and resources, a determined attacker can
reverse engineer even machine level code [7]. So the practical goal of obfuscation is to
make reverse engineering too expensive, so that the cost of reverse engineering must be
no less than the cost of developing the software from scratch. Moreover obfuscation aims
to alter the code so that to make it difficult for disassembler to decompile it to higher

level language constructs which are easier to understand.

Likewise, intended protection scheme proposes similar code transformations which
thwart .NET decompilers to produce high-level language code from low-level IL code

instructions.

Software Thumbprinting VIA IL Code Transformations 9

e L OV RO 4

Chapter 1 Introduction

1.5 Overview of Proposed Methodology

We aim to prevent software piracy by embedding thumbprints into every copy of
software distribution. Software Thumbprinting works in tandem with licensed distribution
to detect and react to an infringement. The scheme is specific to protecting .NET based
applications because it has not been done before, as opposed to Java based applications
where several watermarking algorithms are available. The idea is to deter an attacker who
buys a legitimate copy with a digital watermark, and redistributes it after removing the

watermark. We identify the problem as devising tamper-proofed watermark.

Proposed solution is to obtain unique thumbprints from a thumbnail. The thumbnail itself
is a short fixed version of the encrypted license. The unique thumbprints arc then
encoded into the disassembled instance of the program. The instance of the program is
then reassembled and distributed. This license information along with the thumbprint is
also recorded in the database in order to prove ownership. The idea is that every instance
will have a unique embedded identifier. Chapter 3 discusses the proposed methodology in

more detail.
1.6 Our Contributions

Much has been done to thwart copyright infringements but not a single method discussed
so far is found to be perfect for software protection. Every method tries to make the
copyright violation harder but not impossible. In this thesis, we initiate the use of
software licensing with other technical protection measures like watermarking, tamper
resistance and obfuscation. The proposed mechanism™is called software thumbprinting.
We propose to encode unique thumbprints into cach distributable copy of software and
then distribute these thumbprinted copies along with their usage licenses to legal product
users. We contribute towards raising the level of software copyright protection for NET
applications. The feasibility of intended approach is realized by its real implementation
(in Chapter 4). Following are our major contributions while devising the proposed

software protection scheme:

Software Thumbprinting VIA IL Code Transformations 10

Chapter 1 Introduction

o Scheme specifically protects .NET framework-based applications against
copyright infringement, code tampering and reverse engineering. Most of the
protection schemes so far devised discuss Java and Assembly language programs’
protection. Where as .NET application protection specifically based on .NET
framework constructs is rarely discussed. In this dissertation we have explored
MSIL (the fundamental construct of .NET framework) to devise an anti-
infringement system for .NET applications.

o Introduced the concept of embedding unique thumbprints as ownership signatures
to protect software copyrights. The word thumbprint refers to, 1) a trace mark of
the buyer, 2) a watermark that exhibit the idea of fingerprint and 3) a thumbnail
(short length) version of complete license information which is produced at the
time of a copy-sale instance.

e Proposed scheme works in tandem with licensed distribution and supports piracy
prevention, detection and response mechanism. On every copy-sale instance, a
legal buyer is given an exclusively compiled program copi' and license file. The
program and the license file are bind to the same thumbprint value and the license
information is recorded in a license server which is afterwards queried while
decoding the thumbprint to assert program ownership.

e Protection scheme caters two of major characteristics of an efficient software
watermarking scheme, 1) Robustness and 2) Tamper-proofing. This way a robust
watermark is encoded in a .NET program at method level. The watermarked
methods are tamper-proofed through strong dependency crafted among watermark
code and original code.

e Provided complete architectural and formal design of proposed methodology and
further explained implementation details of devised watermarking algorithm
through a case study. As observed most of previous protection schemes are not
practicable due to lack of their implementation details. In this thesis, proposed
thumbprinting technique is presented with complete architectural, formal and
technical details. Moreover experimental results are calculated and evaluated

against another recently proposed protection scheme

Software Thumbprinting VIA IL Code Transformations 11

Chapter 1 Introduction

1.7 Thesis Organization
The thesis is organized as follows;

Chapter 2 presents related literature survey that highlights the significance of software
piracy problem. Then we define research problem under investigation in the same chapter
that points up research objectives and confines the scope of this work. Then proposed
thumbprinting scheme is discussed in Chapter 3. Firstly we explain where proposed
solution lies among other software-based protection mechanisms and then we present
architectural and formal model of intended solution. Chapter 4 demonstrates proposed
protection scheme through a case study that explains its implementation details. Chapter
5 presents results and evaluation of proposed scheme. Finally, future directions and

conclusion is included in Chapter 6.

In Appendix A, research publication is annexed. Appendix B contains code listing. In
Appendix C, an introduction to MSIL is provided. Lastly, Appendix C contains a

technical overview about the usage of IL code assembler and disassembler.

Software Thumbprinting VIA IL Code Transformations 12

Chapter 2

LITERATURE SURVEY AND
PROBLEM DEFINITION

Chapter 2 Literature Survey and Problem Definition

2. Literature Survey and Problem Definition

As soon as use of computers increased, unauthorized copying of software became a
critical problem. The advancement in code analysis tools and the popularity of internet
created more opportunities to steal software. The money lost due to software piracy is
included in the cost of legal software and therefore pirated copies are also paid by the
legal users. Today’s complex software is of much value to its inventor. This software
vendor can be a big company with many products or it can be a small company with a
single product. Of most concern is the protection of the software, such that it will always
retain the functionality which its creator intended. Software must always protect the
intellectual property embedded in the program, and must prevent malicious attempts to

make its illegal copies by overwriting its ownership signature.

This chapter presents related literature review which shows that major emphasis of
research in software protection is on developing such algorithms and techniques which
prevent malicious software users from distorting owner’s copyright signatures. Further it
highlights the significance of problem by presenting statistics of monitory loss being
faced by software vendors every year due to piracy. These facts and figures rationalize
the need of solving the problem of piracy from both, vendor and buyer’s point of view.
Then we outline the problem that helps identifying basic terms in the milieu. After this
we state concrete problem definition and describe our research objectives which our

intended solution will cater. Chapter ends by defining the scope of work.

2.1 Literature Review

Software protection is a continuous battlé between two forces, first one is the defender
who wants to secure her intellectual property and the second one is attacker who always
looks for loopholes to break into product protection mechanisms. One of the current
limitations with legal deterrents is that, the pirates are aware of the practical difficulties
of their enforcement. However, an adversary may be less likely to redistribute a piece of
software if he knows that it can be traced back to him. Software watermarking is a major

protection measure employed by product vendors to fight against software piracy. The

Software Thumbprinting VIA IL Code Transformations 13

Chapter 2 Literature Survey and Problem Definition

corc objective of watermarking is to prove ownership of intellectual property, while
discouraging its illegal use. Software watermarking provides a mean to prove ownership
of pirated software and in the case of fingerprinting it even identifies the source of the

illegal distribution by embedding unique identifier in it {7, 10, 22, 23, 25].

Watermarking refers to the inscrtion of static or dynamic signaturcs into a program,
which serve to identify the original owner. Static watermarks never change, and are
therefore subject to some level of reverse engineering. Dynamic watermarks change with
the program execution. Watermarks are either extracted from an image embedded inside
a program, or from program code, from program data, or from program execution itself.
A comprehensive overview of software watermarking techniques is presented in [22, 23,

24, 25].

It is also important to keep in mind, that in order to increase the effectiveness of
protection mechanism, multiple approaches should be combined. One should think
carefully about how to mingle different approaches, and strive to mask the weaknesses of
one, with the strengths of another. For example, combining watermarking with tamper-
resistance increases its effectiveness. There exists a wide range of tamper resistance
methodologies that can be used to safeguard a watermark [31, 34, 35]. Another approach
being widely used is code obfuscation [23]. It aims to obscure program code to make it
hard for an adversary who tries to steal critical functional code. Like in, combining
control flow monitoring with obfuscation can lead to a monitored program that requires

significant efforts to reverse engineer [26].

In this research we have presented a blend of software watermarking and temper
proofing. The previous approaches have mostly disused watermarking java programs.
Many researches contributed towards the definition of software protection as a major
problem. Gleb et. al. in ‘03 describes each term associated with software protection, very
precisely and clearly [7]. They discussed that software protection is not limited to
watermarking but it includes securing software through licensing files, application
servers, hardware based-solutions, temper proofing and obfuscations. We need complete

software protection framework in order to fully protect software product. Collberg in ‘02

Software Thumbprinting VIA IL Code Transformations 14

R SO [i -

Chapter 2 Literature Survey and Problem Definition

discussed watermarking, tamper-proofing and obfuscation as tools for software protection
[10]. These tools are effective against three types of attacks of a malicious host, including

software piracy, reverse engineering and tamper-proofing.

We need to apply a combination of these protection tools in order to completely secure
the software. Thomborson et. al. in ‘05 especially focuses on software watermarking as a
protection measure against software piracy. They described four major attacks on
software watermarks, including additive, subtractive, distortive and collusion attacks.
They have also discussed different algorithms proposed by other people for software
watermarking. They proposed a unique watermarking technique that refers to embed
watermarks in the addresses of caller and calling function [9]. These addresses were
dynamically manipulated according to branch-function based watermarking introduced
by Collberg in ‘05 [27]. This technique adds a dummy branch function which
dynamically generates return address. Sander et. al. in ‘98 discussed a technique that
reduces the risk of reverse engineering [28]. Their idea is to compile a distributable
instance of a program in such a way that it only contains calls to functional code. A
server is placed alongside, that hosts all the functionality of program. When ever user
runs this program, a functional call to server is made with required parameters and server
processes these parameter values and finally returns back the results. This way functional
code is never distributed to the user hence reduces the chance of reverse engineering and
tampering at all. The major downside of this approach is that it is dependent on heavy

client-server communication which hinders its applicability fo wide range of solftware.

Min Chen et. al. in ‘01 presented a detailed study of legal & technical measures to protect
software products [8]. In legal means they discuss the copy rights, patents and licenses
and in technical means they covers software distribution model. Wiener et. al. in ‘05
explored two of commercial obfuscation tools for .NET based applications [19]. These
tools are 1) Lutz Roeder .NET Reflector and 2) Remotesoft .NET Explorer. We have
employed such tools for evaluation purpose of proposed methodology. Software piracy
problem can also be solved through diversity. As described, diversity is a mechanism of
distributing unique installation to users and providing then customized updates. In this

scenario, customer has to be connected to the vendor in order to get updated functionality

Software Thumbprinting VIA IL Code Transformations 15

T T A el e (o e e

Chapter 2 Literature Survey and Problem Definition

of software. This scheme exhibits certain drawbacks, like, a) user can use and distribute
illegal version of software product as long as he don’t require an update and b) it requires

huge cost overhead in order to create customized updates for cach customer [29].

We have scen how different researchers have tried to solve software piracy problem for
Java and Assembly language. Mishra et. al. in ‘05 proposed a method of static
watermarking for whole program [30]. Watermark is inserted in at least 2N+1 methods of
a program if N methods are required to be protected. A control flow graph of a method is
constructed and values are assigned to its code constructs, including if-else, loop and etc.
Watermark is considered as a numeric value and a code block is constructed whose
statements exhibits equivalent value to that of the watermark. This watermark code block
is merged within the code of a method in order to protect it. The basic problem with this
scheme is that it lacks the implementation details of how to create a watermark code
block and how to embed it in original code while keeping it obscure. Curran et. al. in ‘03
has proposed a new technique called method-depth technique. Proposed scheme embeds
a value of watermark on the basis of call graph depth of a method. Scheme is mainly
based on recursion that increases performance overhead [16]. Another approach is
presented by Collberg et. al. in ‘04 that embeds the watermark in the dynamic branch
structure of a program. They have used temper-proofing techniques to prove that their

watermark is resilient [17].

Various techniques of temper-proofing and obfuscation have been used because if
watermark is not temper-proofed properly it can easily be detected and removed.
Thomberson ct. al. in ‘04 presented a technique based on constant encoding. They
replaced the numeric constants appearing in a program with function calls. The function
computes back this numeric value through a dynamic data structure, called (PPCT) [14].
Though this technique seems robust and tamper-proofed but at the same time the
presence and creation of a dynamic data structure makes it un-stealthy and performance
overhead. Collberg et. al. in ‘98 presents several obfuscation techniques for Java based
applications [31]. They presented opaque constructs and introduced them in the program
where there is a chance of condition evolution. They have also used basic constructs like

if-else with some abstract data types (ADT) like tree, graph or threads to introduce

Software Thumbprinting VIA IL Code Transformations - 16

S e

Chapter 2 Literature Survey and Problem Definition

opaque predicates. Another obfuscation scheme presented by Fukushima in ‘02 was
based on destructing encapsulation structure of classes by transferring one class’s local
methods, variables & instructions to another class as static members [32]. This creates
high dependency among classes, thus complicate reverse engineering by causing temper-

resistance.

Code obfuscation make reverse engineering a difficult tasks in terms of time and effort
[32]. Obfuscation is normally done by transforming original code into equivalent code
that will hard to understand using some static analysis methodology [31, 33, 34].
Obfuscation can be employed with proposed methodology to strengthen its level of
protection. Obfuscation techniques involve lexical, control and data transformations [35].
Proposed thumbprinting scheme employs control flow transformations, as discussed in

Chapter 3.

There are automated obfuscation tools available in the market for both Java and .NET
based applications. Two of these are tools LOCO (for Java applications) and Dotfuscator
(for .NET applications). Dotfuscator removes debug information and non-essential
metadata from a MSIL file as it process it [19]. This tools work on complied MSIL code,
not source code. The main thing is that obfuscated MSIL is functionally equivalent to
traditional MSIL code and will execute on Common Language Runtime (CLR) with
identical results. This tool supports both incremental and control flow obfuscation.
Another relatively new tool LOCO employs control flow flattering branch function &

opaque predicates as basic transformation on java code [21]. We have also explored some

commercial tools available to protect .NET applications, like Crypkey [41]. CrypKey is
an casy-to-use, cost-effective, digital rights management solution for protecting
intellectual property from unauthorized use. Virtually any data file that can be opened in
a Windows environment, including proprietary software, can be protected by CrypKey.
CrypKey works by protecting and binding files to a specified computer or CrypKey
USBKey, thereby thwarting illegal copying. Even the authorized access to any CrypKey
protected software can be issued for any restricted time period. Remotesoft’s Salamander
[19, 42] is another .NET decompiler that explores executable files ((EXE or .DLL) to
Intermediate Language (IL, MSIL, CIL). Salamander has been rigorously tested and is

Software Thumbprinting VIA IL Code Transformations 17

Chapter 2 Literature Survey and Problem Definition

being successfully used to produces equivalent and recompilable MSIL code from .NET
exceutables. Besides .NET explorer, Salamander also contains a .NET obfuscation tool to
protect .NET applications. Another widely used decompiler for .NET is Lutz Roeder’s
NET Reflector [19, 43]. Reflector is developed in .NET and is more user friendly tool
than Salamander. Reflector not only decompiles .NET executables to MSIL but also
generates equivalent high-level code, such as C#, managed C++, Visual Basic.NET, J#,
etc. Eziriz has provided a protection tool for .NET called, NET Reactor [43]. Reactor
thwarts reverse-engineering of .NET applications by encrypting the executables. We
tested Reactor over several .NET assemblies and found that executables protected with
Reactor are even not decompilable by Salamander and Reflector. Reactor successfully

stops these decompilers to produce MSIL code or high-level .NET code.

Besides above mentioned 3™ party tools for .NET framework, Microsoft has provided
and obfuscation tools, Dotfuscator [19, 20]. A free Community Edition of Dotfuscator is
shipped with .NET Visual Studio that renders basic code obfuscation algorithms.
Dotfuscator’s Professional Edition is also available at [20] which expose most of
obfuscation algorithms including string encryption and control flow obfuscation.
Dotfuscator also contains a utility to watermark .NET applications. Dotfuscator is one of

the most widely used tools for the protection of. NET applications.
2.2 Problem Rationale

As per our findings through above literature review, most of technological considerations
and implementations of software protection schemes are found for Assembly language’s
binary code and Java language’s byte code [13, 15, 16, 17]. Where as, Microsoft
Intermediate Language (MSIL or shortly IL) is rarely discussed. Researchers are always
on the move to devise more secure and more robust technical protection measures against
software piracy. This study will particularly consider MSIL constructs for their support to
devise generic solutions for the protection of .NET framework-based applications against
illegitimate adaptation, distribution and reproduction. Moreover it emphasizes that there
is momentous need of developing research-oriented as well as commercial tools to

protect .NET applications.

Software Thumbprinting VIA IL Code Transformations 18

Chapter 2 : Literature Survey and Problem Definition

Alongside the researchers’ call of attention towards solution of software piracy problem,
there are statistical facts from software induétry which emphasize the need to resolve this
grave trouble. According to an annual global study on software piracy conducted by
Business Software Alliance; 35% of installed software packages in year 2005 were
pirated. That cost a penalty of $34 billions to software vendors in one year, which is
forecasted to grow up to $200 billion during five years [S]. These results confirmed that
piracy will continue to be a significant problem for coming years and will keep on raising
the revenue loss bar. Figure 2.1 below, shows the geographical statistics of money losses

due to software piracy.

Vendors and authors suggest that software piracy negatively affects the global economy
because it decreases the profit which allows growth and development within the software
industry. Laws regarding copyright infringement state piracy as a crime that may cause

penalty of up to $2, 50,000, to the prosecute [3].

Central & easiern Europe $3095m -
Latin America 52026m ||

Middie EssVAfrica $1615m -

0 $000 10000 15000

Figure 2.1 Dollar Losses from Piracy by Region [5]

2.3 Software Piracy Probicni Rcdcﬁncd

We redefine software piracy problem in its real context to model the framework for

anticipated solution. It will identify different objects of problem domain.

e Alice is the owner of software program P. She intends to earn profit from P on its
copy-sale basis. So she has acquired legal copy rights of P for its reproduction

and redistribution

Software Thumbprinting VIA IL Code Transformations 19

PP

p——— e

Chapter 2 Literature Survey and Problem Definition

e Alice has embedded her ownership signature into P that proves P as an
intellectual property of Alice

e Bob purchases a licensed copy of P from Alice

e Bob determines to pirate P to earn unlawful gains from its resale. So he applies
certain attacks on P to replace Alice’s ownership signature with one ol his own

e Alice necessitates some prevention measure to be employed into P which will
resist against Bob’s malicious attacks and will safeguard Alice’s ownership mark

¢ Having enough time and resources, Bob manages to override Alice’s signature

e Bob sales pirated copies of P to Charles

e Charles shares this illegitimate copy of P with his colleague Douglas

e Alice hence requires detecting pirated copies of her software

e Moreover, Alice needs to detect the actual pirate Bob so as to prosecute him

¢ Once detected, Alice has to render her ownership signature from P, in the court of

law so that to assert her ownership

Above problem is based upon the illustration of Collberg et. al. [10]. They have discussed
basic modes of copyright infringement which Bob can opt in order to pirate P. Figure 2.2
depicts next level of formalization of context of software protection. It illustrates
technical distinctions among several types of software copyright violations. Figure 2.2 (a)
depicts an illegal copy-sale instance, as Bob makes illicit copies of Alice’s program P
and resells them to Charles and Douglas. Figure 2.2 (b) describes malicious reverse
engineering attack in which Bob buys one legal copy of P from Alice. This original
program is having several subparts like M, N and O, which perform useful functionality
in P. Bob decompiles P and extracts one of its functional modules (e.g. O) and reuses it
in his own program (, without Alice’s permission. Then he sells his program Q to

different users while claiming that this Q is entirely his own product.

Figure 2.2 (c) points up software tampering attack, in which Bob purchases a digital
container C from Alice. C contains a song file embedded in it. Alice has programmed C
in such a way that any of its users have to pay $0.05, each time he plays the song. Bob

disassembles C and performs code tampering attack on it in two ways.

Sofnware Thumbprinting VIA IL Code T ransfonhalions 20

Chapter 2 Literature Survey and Problem Definition

1) He modifies C by changing the amount $0.05 to $0.01, so that he has to pay less
for playing the media file

2) He extracts the song file from C for illegal resale or reuse

Make illegal
copies

Buy one Bob
copy l::>
(a)

Buy one Bob Reuse
copy ., module
(b)
Modify c
Receive Bob container |theSong: WAY

I rlaysong() (
pay($0.01)
play (theSong)

digital

theSong: WAVI container (e
Playsong () {
pay (50.05) @

play(theSong}
Extract
it

content

L)

()
Figure 2.2 Types of Software Piracy [10]

Bob may choose any of the above approaches to pirate Alice’s program. He can attack
Alice’s ownership by distorting or overriding her original copyright signature. Alongside,
he has to keep the semantics of P intact, so that to get benefit of full functionality of
program P even after tampering with it. Collberg et. al Classifies these types of software
piracy and maps them to their relative protection measures like software watermarking,
obfuscation and tamper-proofing respectively [10]. Researchers tend to agree on the fact
that it is almost unrealistic to prevent Bob from distorting watermark and also from using

P, at the same time, if he is given enough time and resources for a determined manual

Software Thumbprinting VIA IL Code Transformations 21

P, By

Chapter 2 Literature Survey and-Problem Definition

attack [5]. Likewise, it is unacceptable to allow him to use full functionality of P after

successfully destroying the original ownership mark.

Before stating the anticipated problem we mention the following points as basic

concerns:

a) Bob must loose the functionality of P if he distorts Alice’s ownership mark,
othcrwise
b) Bob must use 'the functionality of P only if he could not distort Alice’s ownership

mark
These concerns help us materializing problem statement in coming section.

2.4 Problem Statement

“ How to devise a robust and tamper-proofed software protection scheme for NET

framework-based applications? ”

Above problem statement highlights two major characteristics of a good watermark.
Firstly, robustness, that refers to retain the watermark inside the program even after any
attacker applies transformation attacks on it. Secondly, tamper-proofing, that aims to
safeguard the watermark and making the program malfunction if tampered by the
attacker. These two characteristics are found most imperative from the literature survey
sighted in previous section, in order to device an efficient software watermarking

technique.
Objectives

In order to solve the question points of above stated problem, research goals are set as

follows;

e Robustness

Allow Bob to use program P but keep Alice’s ownership mark intact

Software Thumbprinting VIA IL Code Transformations 22

Chapter 2 Literature Survey and Problem Definition

e Tamper Resistance
1f Bob successfully distorts Alice's ownership mark then make program P
malfunction

2.5 Scope of Work

o The protection scheme will primarily focus on .NET framework-based
applications '

¢ Scheme will impose software fingerprinting
e Proposed scheme will work in tandem with software licensed distribution
o Protection scheme will be demonstrated with sufficient implementation details

o Strength of proposed scheme will be evaluated against other protection schemes

The anticipated solution is primarily presented for .NET based application but it will be
evenly practicable for other high level and low level languages like Java, which have

similar code constructs to that of .NET.

Software Thumbprinting VIA IL Code Transformations - 23

Chapter 3

PROPOSED METHODOLOGY

Chapter 3 ‘ Proposed Methodology

3. Proposed Methodology

This chapter presents detail of proposed software brotection scheme in accordance with
the problem definition stated in preceding chapter. We start by exploring generic piracy
prevention measures. Then anti-piracy defense suit is described which comprises of
existing technical solutions to protect .NET applications. Finally proposed Software

Thumbprinting scheme, its architecture and formal model is presented.
3.1 Piracy Prevention Approaches

The customary solution against software piracy lies among certain ethical, technical and
legal measures. Piracy prevention scheme is divided into four major divisions; i.e. piracy
education, piracy prevention, piracy detection and piracy assertion. These subdivisions
at the same time help sorting out their respective anti-piracy measures. Figure 3.1
illustrates the idea that how Alice tries to protect her program P from its intended user

community by employing these defenses.

Piracy
Prevention

~——Piracy—

~—Piraey—F
Detection '

Assertion

Piracy
Education

Figure 3.1 Piracy Prevention Approaches

Software Thumbprinting VIA IL Code Transformations 24

Chapter 3 Proposed Methodology

3.1.1 Piracy Education

Software vendors at first place, ethically edify users about benefits of intellectual
property protection and its contribution towards worldwide economic growth.
Organizations like Business Software Alliance (BSA) are in force in this arena with
partnership of leading software companies like Microsoft, Apple Mac., RSA, McAfee,
etc. to promote safe and legal digital world through education and enforcement of digital
copy rights [5]. These organizations educate people about the importance of using legal

software and consequences of using illegitimate software.

3.1.2 Piracy Prevention

— Sp—

It refers to the technical defensive méasures which software providers implant into their
products so as to prevent piracy at first place. It is sure that copying digital artifacts can
not be restricted. These preventive measures cause illegitimate copies to malfunction or
stop running at all or cause enough cost overhead to pirate so that it may exceed actual

development cost of software [7].
3.1.3 Piracy Detection

If in any way a pirate successfully wrecks preventive measures and start profiting from it
through illegal redistribution or personal usage, than copy right owner needs to detect

such copy right violations in order to take some legal actions against such malicious user.
3.1.4 Piracy Assertion

Finally when some software vendor fortunately detects any illicit copy of his software,

he/she is required to prove his/her ownership in the court room.

Technical and legal measures are in strong conjunction with each other. One of the major
reasons why piracy prevention has not yet been achieved successfully is that most of the
time vendors (if do) typically employ mere technical protections without decisively

taking up reactive legal actions against their copyright’s infringements. Therefore anti-

Software Thumbprinting VIA IL Code Transformations 25

-

-~k

e

P S

Chapter 3 Proposed Methodology

piracy defense suit, discussed in succeeding section, embraces all technical piracy

deterrence mechanisms like prevention, detection and assertion.
3.2 Anti-Piracy Lines of Defense

In order to realize software protection measures discussed above, we present a
technological solution that comprises of existing lines of defense against software piracy.
Proposed anti-piracy defense suit is already in practice for .NET framework-based
applications [12]. We intend to align it in more explicable and rational order, as Figure
3.2 illustrates it. This alignment suggests how any of protection schemes can be

strengthened by combining it with other ones.

iy

Bob

Licensed Distribution

CETEE T

Piracy Detection

e

Famper Proofing

Watermarking

l)
5
b A &
JUL
Alice
Figure 3.2 Anti-Piracy Lines of Defense

- BESEES . <

In order to employ this protection suit, Alice starts by developing the inner most layer,
the program P and keeps on wrapping protection layers around it till its distribution. First
she embeds her secret ownership signature into P as a watermark, which she will
afterwards render in the court of law to assert her copy rights. Then she tamper-proofs
her watermark so that P must become useless for Bob if he determines to distort Alice’s
ownership mark. After that she obfuscates that tamper-proofed program to make P’s
source code obscure enough against malicious reverse engineering. She subsequently

encrypts executable of P to make its code indecipherable. Finally she distributes licensed

Software Thumbprinting VIA IL Code Transformations 26

R

HE

s

Chapter 3 , Proposed Methodology

copies of her software to respective licensed users. Alice may choose to employ any or all

of these lines of defense according to the required level of protection.

On the other hand, Bob needs to defeat all of the drawn protection layers, starting from
the outer most, the licensing mechanism. He keeps on infringing by decrypting the
executable and de-obfuscating program P’s source code. After that he tampers with the
code in order to get a fully functional instance after successfully distorting the

watermark.

Proposed thumbprinting technique, conforms this defense suit. It employs software
watermarking, tamper-proofing and licensed distribution and consequently realizes piracy
assertion, prevention and detection mechanism. Coming section illustrates the idea in

more detail.

3.3 Software Thumbprinting |
Software Thumbprinting refers to:

“The process of encoding unique thumbprints into each distributable instance of a

program.”

A thumbprint serves as covert signature of software vendor which he may use to prove
his ownership over the program. This thumbprint is a numeric value formulated from
licensee’s information produced at each legitimate copy-sale occurrence of source
program. This way, every time vendor sales a product to a buyer, he creates a new copy
of original program and gives it to the legal buyer after encoding unique thumbprint into
it. This unique thumbprint identifies one and only copy-sale instance, hence traces back
to the original buyer of that particular copy. The notion of software thumbprinting
implies this idea as in this technique buyer’s information is embedded into the program as
his thumbprint. This thumbprint identifies that who is the legal buyer of a particular copy
of software. Furthermore, each legal buyer will be having a custom-made copy of a
product, along with its custom-built license file. This license comprises of licensee’s

information in enciphered form. Every product user is required to bring un-tampered

Software Thumbprinting VIA IL Code Transformations 27

Chapter 3 : Proposed Methodology

version of thumbprinted program and respective license file, in order to prove that he is a
legitimate buyer of it. Otherwise Alice can accuse him for using her product illegally
without buying its legal usage license. Following section presents detail design of the

proposed thumbprinting scheme.
3.3.1 Design of Proposed Methodology
Software Thumbprinting has following parts in design;

e Thumbprint Encoding
e IL Code Transformations

e Thumbprint Decoding
3.3.1.1 Thumbprint Encoding

Once a .NET program is developed and its source code is compiled into a software
product, then Alice needs to generate unique thumbprints which are to be embedded into
each of its distributable instances. These thumbprints are distinct numbers produced from
thumbnails of license information. A thumbnail is composed of complete information
produced from a particular copy-sale instance, which may include but not restricted to,
vendor’s information, buyer’s information and product’s information. The process of

thumbprint encoding goes through following steps (illustrated in Figure 3.3).

Generate a thumbnail of vendor’s, buyer’s and product’s information. =~

Create a /icense file and save encrypted thumbnail into it

Generate a unique thumbprint by taking hash of encrypted contents of license file

I SR

Encode unique thumbprint into the original program. Encoding process goes through

following steps:

4a. Disassemble .NET program to its IL level code

4b. Embed thumbprint into IL code through proposed code transformations
(discussed in subsequent section)

4c. Re-assemble modified IL code to a thumbprinted version of original program

Software Thumbprinting VIA IL Code Transformations 28

Chapter 3 Proposed Methodology

This thumbprinted instance of original program is given to Bob along with its legitimate
usuge license. Finally, Allce preserves all the information produced in this copy-sale
instance into the database. This database can be hosted as a license server. Querying the

databasc with valid product information will yield its licensee's complete information.

Product Info.
Alice info. Bob Info.

1. Combine &
Format

' Thumbnail '

2. Encrypt &
Save in File \J

y
l License I
: e —— -
y

3. Calculate
Hash Value \

[Thumbprint

+4b. Embed J

4
Original +a. Disassemble A ¢ Re-assemble _ | Thumbprinted
l Program > LProgrnm IL Code > L Program

Figure 3.3 Thumbprint Encoding

3.3.1.2 IL Code Transformations

Step 4b in Figure 3.3 depicts embedding of a unique thumbprint into the IL code of
~qriginal program. As described above, a thumbprint is a numeric value so embedding it

~(into a program requires some property of code statements that will hold this number. For

.
\)\thls purpose we choose jump instructions in IL code, which transfer program execution

. flow from one statement to another statement in the same method. The idea is to modify
kprogram flow by introducing forward and backward jump calls, such that, jump to a
“subsequent instruction means a binary 0 is encoded and jump to a preceding instruction
means a binary 1 is encoded. Hence forming complete binary of a thumbprint number, as
shown in Figure 3.4. Such transformations preserve the semantics of target .NET

application. These transformations serve at the same time three purpose;

Software Thumbprinting VIA IL Code Transformations 29

Chapter 3 Proposed Methodology

i. Encode binary of a thumbprint in forward and backward jump calls while
maintaining program observable behavior
ii. Fabricate tamper-resistant dependencies among original program code and
thumbprint related code
iii. Prevent reverse engineering by thwarting .NET disassemblers to generate high level

language code of thumbprinted application

First step in performing code transformations is to construct a code block comprising of
forward and backward jump calls constituting binary of a thumbprint value. If we
consider 9,0 (i.e. 10013) as a thumbprint value then its control flow graph of equivalent

code block is shown in Figure 3.4.

Thumbprint = 94 (i.e. 10013) 1. nop

4
br

4, nop

A 4

br

3. nop

br

2. nop

0 \ 4
_br

5. ret <

Figure 3.4 Control Flow Graph of Thumbprint Code Block

Above control flow graph consists of two different kinds of IL instructions, a) nop: no
operation instruction, b) br: break or jump call instruction. nop does nothing but is used
as a statement place holder and compiler simply transfers control to its subsequent

instruction. As shown in figure above, dashed lines moving from nop to br instructions

Software Thumbprinting VIA IL Code Transformations 30

Chapter 3 Proposed Methodology

are depicting normal execution flow. A br instruction accepts a label of target statement
and instructs compiler to transfer the control to that statement within a method body.
Solid lines in above figure, moving from br to nop instructions this depict crafted

execution flow.

If we observe the numbers assigned to nop instructions, they represent the order of their
execution. As shown above, first of all, the compiler will execute first nop instruction and
its succeeding br transfers the control to second nop instruction. Its subsequent br
transfers execution flow to a preceding nop instruction, and so on until compiler
encounters method ret (return) statement. This way forward and backward jump
representing 1’s and 0’s of a thumbprint are embedded. One group comprising of a nop
and a br statement, encodes one bit of a binary number. So for a binary number
consisting of four bits (i.e. 10015), we need four such groups. The order of execution of
these groups is so far manually configured. An automatic Encoder can be setin place to

do this task but that is not in the scope of this work.

void main () { method void main () {

System.out.println (“Hello World™);
} IL_0001 : nop

(a) CH version of main() U IL_0002: brs IL_0007 (

£ IL_0003 : call void [mscorlib.printstr()]

method void main () { . IL_0004:brs IL_0009
IL_0001 : nop 5 1L 0005:nop :
IL_0007 : Idstr “Hello World” d 0 iL“_véadZ}"B;.; "'1”1‘;0653
IL_0003 : call void [mscorlib.printstr0] [— IL_0007:ldstr “Hello World” €—
1L_0005 : nop 1001, 0 n._oobs brs ' lL_000;
1L_0009 : ret MllLO(iOé ret < -
) ﬂ) y
(b) IL version of main() (c) IL Code Transformations to Encode

Thumbprint 94a (i.c. 1001;)

Figure 3.5 IL Code Transformations

Finally the nop instructions of above control flow graph will be replaced with available

original program statements while observing the order of original program’s instructions

Software Thumbprinting VIA IL Code Transformations 31

Chapter 3 Proposed Methodology

(Figure 3.5). This way a complete binary of a thumbprint number is embedded into a

method code while keeping its semantics intact.

Above figure demonstrate proposed IL code transformations through a trivial
“HelloWorld” example, in which one line high-level language code of method main
(Figure 3.4a) is disassembled to its IL-level code (Figure 3.4b). Then transformations ¢
are applied on it to encode binary of thumbprint 9,9 (i.e. 10015) (Figure 3.4c). Original IL
code statements of Figure 3.4b are transformed to Figure 3.5c. The observable behavior
of both blocks of code is similar because both contain same lines of functional code and

compiler executes them in the same order.
3.3.1.3 Thumbprint Decoding

Once a thumbprinted instance of an application is produced and sold to its legal buyer
along with its license file. Then vendor might need to extract the thumbprint from that
instance in order to prove her product’s ownership or to verify that her product is being
run by its legitimate license holder. For this purpose the product user is required to
provide a thumbprinted program and its valid usage license. Then process of thumbprint

decoding goes through following steps, as shown in Figure 3.5.

1. Decode thumbprint from the thumbprinted program. Decoding process goes as
follows:
la. Disassemble .NET program to its IL level code
1b. Extract thumbprint from IL code by analyzing control flow graph of
different methods’ to see if they contain forward and backward jumps such

that forming thumbprint’s binary number

2. Generate a thumbprint by taking hash of encrypted contents of license file

Two thumbprint values are obtained from; 1) decoding thumbprinted program and 2)
taking hash of license file contents. Both of these numbers will match if the program and
its license file are not tampered. Vendor will query license server“by inserting program’s
information like name of the original product and copy number of this thumbprinted

instance. Server will provide the complete information that was preserved at the time of

Software Thumbprinting VIA IL Code Transformations 32

Chapter 3 Proposed Methodology

this particular copy-sale instance. That information includes unique thumbprint value

embedded in this program copyi, its legitimate buyer's information and etc.

If first two thumbprints match with this value obtained from database and the buyer
information is same as the current user information then this particular program is proved
to be the ownership of original vendor and the user running the program is its legal user.

On the other hand there can be following cases in which vendor may accuse the buyer:

e If user fails to provide valid usage license or the license provided has been
. tampered
o If the program being run is tampered and the thumbprint extracted from it does
not match with the database thumbprint value
o If buyer’s information acquired from license server is not same as the program

user’s information

Thumbprinted
. Program ——} -

la. Disassemble \L
r Program IL Code]

1b. Extract

2. Calculate
Hash Value v

l License I————-}I Thumbprint I

Figure 3.5 Thumbprint Decoding

3.3.2 Formal Model of Software Thumbprinting

Formal model of software thumbprinting is presented below. The notion used to

formalize the context is inspired from Collberg et. al. [24].

DEFINITION 1 (SOFTWARE THUMBPRINT): Let #w be a set of mathematical construct

representing unique thumbprints, as W = {w,,w,,w,,...,w } Where Ywe # :w, = w,. Let p(w)
p 19 7V29 T3 9000y n} 1 /

be the programmatic structure equivalent to a thumbprint such that Ywe W : p(w).

Software Thumbprinting VIA IL Code Transformations 33

Chapter 3 Proposed Methodology

DEFINITION 2 (COVER OBJECT): Let P be the set of copies of a source program P, as

P ={p,,p;, p3»--» P,} and each of these copies is considered as a cover object in which
thumbprint w is to be embedded since that p,, is an encoding of a thumbprint we W into

pPEP.

DEFINITION 3 (THUMBPRINT ENCODING): Let ! be a semantic preserving
transformation to be applied on a method m of p to encode p(w) into it. If

M ={m,my,m,,...,m,} be the set of methods in P and M, the total number of methods in

P then n is the thumbprint encoding data rate.

E is the thumbprint encoder that constructs thumbprinted p, by applying { iteratively

on n methods in M, by selecting m, at random.

E.L@(m,, p(W))) — p,)
So that the resultant p, and original P are functionally equivalentas p, =P.

Let DB be the storage medium for all information used in thumbprinting different

elements in P. For each thumbprinting instance DB is updated as

ADB=DB+(l,,1,,w,n). Where I, is the product information and I, is the license

information. For any product P, a thumbprint w exclusively refers to one and only one

copy-sale record in DB.

DEFINITION 4 (THUMBPRINT DECODING): Let D be the thumbprint decoder. While
asserting the ownership, vendor needs to decode the thumbprint from claimed program
p,,- For this firstly she will query DB against product information to get actual cop-sale
information that was preserved at the time of its sale of this particular copy. This
information includes original licensee’s information, thumbprint encoded il this copy and

encoding data rate.

DB(I,) = I;,w,n Q)

Software Thumbprinting VIA IL Code Transformations 34

Chapter 3 ‘ Proposed Methodology

Then D will analyze the program p, for decoding thumbprint w from it, by detecting n

instances of p(w) from it.
D:(p,,n) > w, 3)

If decoder detects an instance of p(w) in p, then vendor successfully proves her

ownership and can prosecutes the false claimant Bob.

Proposed methodology is described in terms of architectural and formal design. Next

chapter will discuss its implementation with reference to a detailed case study.

Software Thumbprinting VIA IL Code Transformations 35

al o ad LR Gl .

e b =

P i
.

Chapter 4

IMPLEMENTATION

PSR .

o | M b i

Chapter 4 Implementation

4. Implementation

Proposed methodology discussed in previous chapter is implemented on a case study.
Firstly, the development environment required to implement software thumbprinting is
introduced. Then we run through successive stages involved in thumbprinting a .NET

application as described in Chapter 3.
4.1 Environment

The environment to implement proposed methodology comprises of specific technology

platform, several tools and some techniques, which are discussed below.
4.1.1 .NET Platform

Microsoft introduced a new development framework, intended as the unifying model for
Microsoft Windows development. The framework is being extensively used for all
Microsoft-based development, from Window-based, user applications, to web-based
database applications. The framework, called .NET framework, is modeled after Sun
Microsystem’s Java system. Similar to Java, it also consists of byte code executed in a
virtual machine, called CLR (Common Language Runtime). However, by introducing
this virtual machine, the framework allows several high level languages to be compiled
into a single abstract intermediate language, called Microsoft Intermediate Language (or

shortly MSIL). This MSIL is then converted into platform-specific machine code.
4.1.1.1 Programming Language

The proposed scheme does not restrict its applicability to any single high-level .NET
language like VB.NET, C#, J#, etc. Instead, an application written using any of .NET
framework compliant language can be protected through proposed thumbprinting
technique because thumbprinting plays at MSIL level code not higher level language
code. High level language choice does not make any difference to thumbprint encoding

and decoding mechanism. The only restriction being observed is that the final product

Software Thumbprinting VIA IL Code Transformations 36

Chapter 4 Implementation

must be a valid .NET executable or library (i.e. .exe or .dll) which is to be considered as

the distributable source.
4.1.1.2 Microsoft Intermediate Language (MSIL)

Microsoft Intermediate Language (MSIL) or simply Intermediate Language (IL) is
abstract intermediate representation of .NET applications, intended for the Common
Language Runtime (CLR). CLR is a runtime environment for .NET applications same as
JVM is for Java applications. Visual Studio compiler first of all compiles high-level
NET language program into IL code and CLR compiles this IL into machine specific
code. We will take the flavor of underlying ideas that forms the basis of our selection of

MSIL as implementation language. The compelling features of architecture of MSIL are:

o Considering MSIL as implementation language make proposed scheme independent
of source program language

o Flat structure of IL code helps encoding / decoding thumbprint without bothering
about logical and physical file structure of an application

o IL instruction set provides lot of flexibility for code transformations to embed a
numeric thumbprint in various ways

¢ One of the utmost advantages of using IL is that certain code constructs at IL level
have no equivalent in high level language, so reverse engineering such constructs

results no useful information
4.1.2 Tools

The toolset required to implement software thumbprinting over .NET applications
comprises of IL code assemblers and disassembler. Moreover for evaluation purpose we
have used an obfuscation tool and a third party reverse engineering tool. The assembler
and disassembler are shipped with .NET framework hence reducing implementation cost
overhead. The obfuscation tool used for evaluation purpose can also be employed to
strengthen the proposed protection scheme by obfuscating thumbprinted instance of a

product before distributing it.

————— oo e S e

Software Thumbprinting VIA IL Code T) rar;sformat;;ns 37

Chapter 4 ' Implementation

4.1.2.1 IL Code Disassembler (i/dasm.exe)

Microsoft .NET framework is shipped with two built-in tools called ilasm (IL Assembler)
and ildasm (IL Disassembler). ildasm disassembles an executable file like .exe or .dll and
produce its IL code. It can be found in directory [DIR]:\Program Files\Microsoft Visual
Studio 8\SDK\2.0\Bin\ on a system where .NET framework is installed. More details
regarding the use of ilasm can be found in Appendix-B. Figure 4.1 is displaying a shoot

of disassembler’s window which is displaying the disassembly of HelloWorld.exe.

¥ C:\HelloWorld.exe - IL DASM

File~ View" Help’

w4 C:\Helloworld.exe
P MANIFEST
& [JE Hello
1+ P .class public auto ansi beforefieldinit
t I .ctor : void()
<, | r1in : voidistring 1)

-{asse,mb.'v sample.

B

A% *i

Figure 4.1 Disassembling HelloWorld.exe through lldasm =

4.1.2.2 IL Code Assembler (i/asm.exe)

Ilasm assembles valid IL code to build an executable file like .exe or .dll. It can be found
in directory [DIR]:\WINDOWS\Microsoft. NET\Framework\v2.0.50727\. In order to
execute this tool, run system command prompt or use command prompt companioned
with Visual Studio. In our implementation we used command prompt‘ accompanied with
our Visual Studio 2005 framework. In order to re-assemble IL code to an executable file
we move to the above directory and run ilasm by specifying the name of file containing

complete IL code which exhibits valid syntax and semantics. Second parameter is the

Software Thumbprinting VIA IL Code Transformations 38

Chapter 4 Implementation

output switch as ‘/exe’ that instructs the assembler to build an .exe file from this IL code.

Figure 4.2 shows a successful run of ilasm to build HelloWorld.exe from HelloWorld.il.

[< Visual Studio 2005 Command Prompt !Em
a~

HC:N\UVINDOUSNHicrosof L NETNFrancuork\v2.0.50727>11aun HelloWorld. il sexe

Microsoft (R> .NET Frameuwork IL Assembler. Uersion 2.6.58727.42
Copyright <c)> Microsoft Corporation. All rights reserved.
Assenbling *Hellollor1ld.il’® to EXE --> ’Hellollorld.exe’

Source file is ANSI

Assenbled method Hello::Main
Assenbled method Hello::.ctor
Creating PE file

Emitting classes:
Class 1:

Emitting fields and methods:
Global
Class 1 Methods: 2;

Enitting events and properties:
Glohal

Class 1

Uriting PE file

Operation completed successfully

GC:\WINDOUS\Microsoft .NEIT\Franeuwork\v2.0.50727>

Figure 4.2 Re-Assembling Modified HelloWorld Program using llasm

4.1.2.3 Marka

We have developed Marka to automate the process of software thumbprinting. The tool is
developed in VB.NET. Current version of Marka partially implements the processes of
thumbprint encoding and decoding. Vendor is required to run Marka for each copy-sale
instance of a product. Figure 4.3 shows a screen shot of Marka. It performs following

functionalities for thumbprint encoding:

e Takes license information as input and create a license file
e Generates thumbprints from thumbnails of license information

e Preserves product license information in database

It automates thumbprint decoding procéss in following ways:

o Takes license file as input and computes back the thumbprint
e Helps searching database for licensee’s information against particular product

information

Software Thumbprinting VIA IL Code Transformations 39

[ewar vy

Chapier 4 Implementation

Marka

Thumbprint [.l.'.ic."':!?ﬂ

Thumbnail:

Vendos Code: L |

User Code:

Product Code: I ,.1

Copy No.: ! !

S :“"""""77.'7""""::1

R 10

[Reset J[Generate]{ Next Copy]

Figure 4.3 Software Thumbprinting Tool Marka

So far Marka does not perform thumbprint encoding and decoding operation on program
IL code. This is set out of the scope of this project. Tool employs most of standard
hashing and encryption algorithms and user can select some particular algorithm

depending upon requirements.
4.1.2.4 Dotfuscator

Dotfuscator (or .NET Obfuscator) protects intellectual property by making it extremely
difficult to be reverse engineered by decompiler tools. Microsoft uses Dotfuscator
Professional to obfuscate their .NET code [19, 20]. Microsoft has also introduced a
simplified version of .NET obfuscator for developers which is shipped with Visual
Studio. Dotfuscator can be used to obfuscate thumbprinted instances of an application to

minimize the chance of its reverse engineering.
4.1.2.5 .NET Reflector

NET Reflector is a third party decompiler for .NET applications. It allows browsing and

searching the metadata, IL instructions, resources and XML documentation stored in a

Software Thumbprinting VIA IL Code Transformations 40

A e e e

Chapter 4 Implementation

NET assembly. Reflector is one of the oldest tools that are running with .NET
Framework’s since its beta release [19]. Hence this is considered to be a reliable reverse
engineering tool used to explore .NET applications. Reflector takes a valid .NET .exe or
dll file and disassembles it to produce its I1. code. VB.NET code, C# code and J# code.
Wec¢ used this tool to evaluate the strength of proposed methodology. We have
experimented several thumbprinted executables with Reflector and found that it failed to

reverse engineer these applications to high-level language code.
4.1.3 Techniques

NET framework exposes a complete set of standard cryptographic algorithms. Proposed
scheme employs hashing and encryption techniques from .NET Cryptography API for
generating thumbprint value and creating license file respectively. MDS and SHA are
most widely used hashing algorithms which are supported by this API. Proposed
methodology can be implemented using any of these hashing techniques. Purpose is to
run it on a variable length piece of data (i.e. license information) in order to produce a
fixed length representation of that data. This fixed length representation is called a
thumbnail. It is impossible to reproduce original information from its thumbnail.
Furthermore a numeric hash value is obtained from this thumbnail which serves as a
thumbprint that is to be encoded into the program as an ownership mark. Secondly, this
API provides wealth of encryption techniques like AES, RC2, DES, 3-DES etc. The fixed
length thumbnail formed from license information is encrypted before saving it into a
license file. We have developed a tool in .NET that automates the process of thumbprint
generation and license file creation. This tool can be sectup to choose any of .NET
frameworks’ supported hashing and encryption technique. Further we demonstrate all

these ideas through a case study.
4.2 Case Study: Tower of Hanoi

The case study selected to implement proposed thumbprinting scheme, is a well known
problem called ‘Tower of Hanoi’. This classic problem has a standard algorithmic

solution which has been implemented in almost every programming language. One main

Software Thumbprinting VIA IL Code Transformations 41

Chapter 4 Implementation

reason for choosing Tower of Hanoi as our benchmark problem is that it has notable
overhead on computing resources due to recursive nature of its algorithm. Implementing
proposed scheme on such application yields significant results in terms of program
performance, size and lines of code. High-level language code and corresponding IL level
code of Hanoi application is presented in section B.1 of appendix B. The application
implements Tower of Hanoi algorithm in VB.NET. It comprises of single window

application form (as shown in Figure 4.4) and a user class named Hanoi.

Form1

Figure 4.4 Tower of Hanoi Application

User inputs total number of discs required to move from first post to third and clicks Go
button. Application assumes that all the discs are initially placed on first post and are
required to be moved to the second post while using third post as temporary. Class Hanoi
that implements the algorithm is called to move the stack of discs. It provides a list of

moves required to successfully transfer all discs from one post to another.

In order to exercise software thumbprinting-we build the-scenario such that Adlice is the
owner of this .NET application, called Hanoi. She is going to sale it to its first buyer Bob.
To protect this application using proposed methodology, she has to employ the process of
software thumbprinting described in section 3.3. Following steps execute a complete
copy-sale instance of Hanoi. These steps can be referred to extend implementation of

proposed thumbprinting scheme on small-to-large scale .NET applications.

Software Thumbprinting VIA IL Code Transformations 42

Chapter 4 Implementation

Step 1: Specify Hashing and Encryption Technigue

Firstly, Alice runs Marka and specifies which of hashing and encryption techniques will

be used to process license information. For this she clicks to Settings tab in main window
of Marka. Hashing techniques available are SHA1, SHA256, SHA384 and SHASI2.
Encryption techniques supported are DES, RC2, Rijindeal and TripleDES.

¥ Marka
License | Database| Setings { Thumbpiint | License;

Thumbnail:

Hashing: | ECGENENE v

Encryption:

Hash Code:
Thumbprint:

AT e

Figure 4.5 Hashing and Encryption Setting in Marka
Step 2: Generate Thumbprint and Create License File

Then Alice provides license information including Vendor Code, Buyer Code, Product
Code and Product Copy serial number and clicks Generate button. Marka combinces this
information and computes a fixed size thumbnail by applying selected hash algorithm on
it. The length of thumbnail string depends upon hashing technique like SHAT yields a
thumbnail of 128 bits (16 bytes), SHA256 yields a thumbnail of 256 bits (32 bytes) and
SHAS512 yields a thumbnail of 512 bits (64 bytes). The thumbnail is shown in text area
visible on the Thumbprint tab as shown in Figure 4.6. Then Marka encrypts the thumbnail

using specified encryption techniques and saves it into a license file (Figure 4.7).

Software Thumbprinting VIA IL Code Transformations 43

Chapter 4 Implementation

Marka | L)=iX]

Tome s S|

{

Thumbnail:

| [meZE ckp/iv52CingyQOU2GC
PR /pxCMn13+pHSD 2LkAzZIngD e
VYendor Code: |Alice i a8ZJCKhS63Z3+05E700WIl
- X bYh1PR+zm/IkNVFw==

Buyer Code: {B‘?b ‘

Product Code: LH°"°i l

Copy No.: [1 |

Hash Code:
e ad

|
: [Reset] [Generate] r Next Copyj

Figure 4.6 Thumbnail Generation using Marka

Figure below displays the encrypted thumbnail that is saved in a license file. The name of

license file comprises of product code concatenated with its copy number.

Marka

License | Database || Settings| ! ThumbpxinlAf License

File Path:
|C:\hanoil lic I
Vendor Code: |Alice | License File Text:
. |Bob ' | 20MvdduZ2DIGGAfkVYyIL7
Buer Code: I_M — : 2dTGhm6YVK IK0SYBX7TiL4
. Hanoi ! sI6PXA3Aa0znDkRBdIn0e2
Product Code: e BlieupTxn4BICELTN1cDTIF
. i1 #PhgF gmbqdvS alPymKbFtT
Copy No.: = KhehRkGHoMkf+wz
L Reset J [Generate] [Next Copy J I Fetch Thumbprint from LicenseJ

Figure 4.7 License File Creation using Marka

Software Thumbprinting VIA IL Code Transformations 44

Nt A s

Chapter 4 Implementation

Marka computes hash value of this encrypted license file. The hash number consists of
around 10 - 12 digits and may include both positive and negative numbers. Such long
number is not as easy to embed into methods of IL code so a simple logic is defined. That
is to sum up the digits of a hash code. This way thumbprint becomes a shorter number

like 35,0 (or 100011;) as shown in Figure 4.5.

Before encoding this thumbprint manually into Hanoi IL code, Marka saves all this

information in the database (Figure 4.8).

License | Databass | atings| | [Thumbpint | Ucense

Thumbnail:

meZE ckp/tv5zClnyyQOU2IGC
/pxCMn19+pH5D2LkAzIngDe
aBZJCKhS6323+05E700wWIl
bYh1PR+zmAkNVFw==

Copy#t 7
1

: Vendor Code Buyer Code Product Code

< ! ! >

Product: { H andi. o v
Thumbprint: [~ _[

Figure 4.8 License Database Maintained by Marka

Step 3: Encode Thumbprint

Finally Alice encodes this thumbprint into IL code of Hanoi. In order to do this, first of
all she disassembles Hanoi.exe using idasm.exe. Complete IL code of Hanoi program is
saved in single file named Hanoi.il. Then she constructs a control flow graph equivalent
to thumbprint value as show in Figure 4.9. Alice then selects n methods in which she will
embed the thumbprint by mapping original 1L code statements to the nop instructions of

thumbprint control flow graph. For instance she defines n=1 (as thumbprint encoding

Software Thumbprinting VIA IL Code Transformations 45

Chapter 4 Implementation

data rate) and embeds thumbprint into one method, i.e. DoMoves(). The thumbprinted

code of this method is given in section B.1.3 in appendix B.

Thumbprint =350 (1e 10001 15) 1. nop

\ 4
br

5. nop

br

6. nop <

br

A 4

4. nop

br

» 3. ret

0 \ 4
br

2.nop [4—

0) 4
br

7. nop <

Figure 4.9 Control Flow Graph of
Thumbprint 35, (100011,)

Applying code transformations on IL code of DoMoves() method according to above
control flow graph will embed thumbprint in it. Then this modified IL code block is
combined with rest of IL code of Hanoi.il to create a modified IL code file. Then Alice
re-assembles modified Hanoi.il into Hanoil.exe using ilasm.exe. Finally she distributes

the resultant thumbprinted Hanoil.exe to Bob along with its license file Hanoil.lic.

Software Thumbprinting VIA IL Code Transformations 46

Chapter 4 ligslementention

Step 4: Decode Thumbprint

Alice might need to extract thumbprint from a copy of Hanoi.exe which Bob would be
running. First she requires its usage license file from Bob and if he provides then it is
given to Marka as an input. She clicks on Fetch button and tool computes back the
thumbprint from it as shown in Figure 4.11. Alice then query database by providing
Product Code as Hanoi and Thumbprint as 35;p. Marka searches database and displays
the complete information against this copy-sale instance. If the buyer is same as the one

identified by database, i.e. Bob, then he is authenticated as a legal user of that particular

copy of Hanoi.exe. Also if the thumbprint value recorded in database is equal to the one

computed from license file then it proves that the license file is valid and is un-tampered.

Marka L
T (Database |Sere. ey
Ll_.g_a_ns_ef Database | Settings| ! Thumbpnnlz License |
! endor Code Buyer Code Product Cade Copy#t File Path:
D 2ice Ech | Hanoi |C:\hanoilli 1]
1 License File Text:
| |20Mvddu22DIGG4fkvYynU7
i |2dT ghmBYVKIKOIYEX7TiL4
sl6PXA3Aa02nDkRBd1n0e2
B1ieupT=xndBScELTNTcDTIF |
»PhgFgmbadvS aJPvmKbFtT i
KhehRkGHoMklJ +wz
< . i >
Product: [Henoi v ;
Thumbpiint: ’35&—_] [Fetch Thumbprint iom License J

Figure 4.10 Decoding Thumbprint

Lastly Alice manually analyzes the IL code of Hanoi program which Bob is running. If n
number of its methods contain thumbprint code block and control flow graph constructed
from that block matches with the one created while encoding 35, then the program is
proved to be un-tampered and all these authentications confirm that Alice is the buyer of

Hanoi.exe and Bob is a legal user of this product.

Software Thumbprinting VIA IL Code Transformations 47

J— S

Chapter 4 hplententation

4.3 Issues Regarding Automating the Proposed Scheme

Further work in this direction can lead to develop a thumbprinting codec to automate the
process of thumbprint encoding and decoding. The codee may cextend Marka's
functionality. Marka automates basic processes of generating thumbprints and creating
license files. Furthermore, following are the basic concerns in order to automate the

encoding process;

o The trickiest part of thumbprint encoder will be the construction of a control flow
graph which will essentially be a programmatic construct, equivalent to the
thumbprint’s binary value. Currently we are doing this manually (as shown in
Figure 3.4) and the flow graph creation is so far almost based upon heuristics.

» Next task of the encoder will be to map the original program’s instructions onto
the nop and br instructions of control flow graph. This will perform the IL code
transformations required to encode a thumbprint’s binary value. An issue arising
at this point can be that from which statement of original program the encoder
should start mapping the CFG’s nop instructions. In manual process we start by
mapping the last ret statement of the CFG and the original method. Then we map
2" last nop of CFG with 2" last statement of original program and the third last
and so one. At the same time CFG’s br statements are placed at required positions
in original program. The encoder can adopt the same or even better way of
mapping thumbprint CFG onto original program instructions. The important point
1s to remind the same position at the time of decoding, i.e. where from the decoder
should start locating a thumbprint? Another consideration can be to preserve some
identification of thumbprinted methods in the database which the decoder will
analyze in order to extract the thumbprint from thumbprinted program.

* Once the encoder have encoded a thumbprint into » methods of program by
mapping CFG’s nop‘s onto original program statement and introducing br’s then
the decoder will take the thumbprinted program and will start analyzing its
thumbprinted methods at the same position where thumbprint CFG was mapped.

This way decoder will decode 1-n instances of thumbprints in the progsam.

Software Thumbprinting VIA IL Code Transformations 48

Chapter 4 T T T;nplementation

4.4 Limitations

Proposed scheme has to undergo certain limitations in our scheme too, these limitations

can be removed in future works. Following are the limitations in presented work.

¢ Thumbprint encoding and decoding scheme is manual so far which needs to be
automated, the issues regarding its automation are listed in above which can be
referred to develop a software thumbprinting codec.

¢ Technique involves addition of digits of the calculated hash value of thumbnail to
make a shorter numeric thumbprint. It restricts the thumbprints values to very
small number, so the method of thumbprint gencration should be improved.

e Proposed scheme is embedding watermark through jump calls (i.e. IL br
instruction) which may affect the performance of large applications. So therce

should be some better way to insert the watermark so as to make it more robust.

Software Thumbprinting VIA IL Code Transformations 49

®

Chapter 5

RESULTS AND EVALUATION

P — e — -

Chapter 5 Results and Evaluation

e e -

5. Results and Evaluation

For a software watermarking technique to be effective against software piracy and
copyright infringement, it should be resilient against determined attempts at discovery
and removal of watermark. Very little work has been done on evaluating the strength of
software watermarking systems. Such limited evaluation makes it difficult to adequately
compare the various techniques. In this chapter we first evaluate proposed thumbprinting
scheme for its advantages over previously proposed techniques. Then we discuss how
better it employs robustness and tamper-proofing attributes of an efficient protection
scheme. Further we present its experimental evaluation based upon comparison of results

of” proposed thumbprinting scheme and branch function-based watermarking technique

[17].
5.1 Thumbprinting VS Prior Arts

Most of the previous software-based protection mechanisms aim to protect Java and
Assembly language applications [14, 15, 16, 17, 21, 23]. These techniques are either
specifically discussing Java or Assembly language constructs or their implementation (if
found) is in Java or Assembly language. Quite a few of these solutions are applicable to
NET application while other schemes are either strictly bound to their specific language
constructs. Proposed thumbprinting scheme has basic similarity with the idea of branch
function-based watermarks presented by Collberg et. al. [17]. Branch function-based
watermarks are the most investigated technique among other recent protection schemes
[17, 27]. This is the reason why we have chosen this scheme for comparative study.
Thumbprinting encodes 0’s and 1’s of a watermark in backward and forward jump calls
like they do. Their scheme has one major drawback that the number of calls to branch
function is quite high. This not only makes the scheme un-stealthy but also raises the
chance of single-point failure. An adversary can easily locate and tamper with the single
branch function to distort the watermark. At the same time proposed thumbprinting
scheme radically differs from their technique in several ways, like 1) it encodes
thumbprints at method level where as a branch function is for the whole application, 2) it

is more obscure because there is no more branch functions introduced, 3) its data rate is

Software Thumbprinting VIA IL Code Transformations 50

Chapter 5 Results and Evaluation

higher at low size and space overhead, 4) there is no chance of single-point failure due to
insertions of watermark at multiple places and above all, 5) it considers specifically IL

language constructs.

M. Chen in [40] by the first time highlighted the need of combining license distribution
with other technical protection schemes. They merely explored the basic software and
hardware-based protection mechanisms but did not discuss any algorithm. Software
thumbprinting realizes their idea of binding license enforcement with other technical

solutions like watermarking and tamper-proofing.
5.2 Thumbprinting Thwarts .NET Reverse Engineering Tools

Another major advantage of introducing jump calls in the way proposed is that it causes
NET reverse engineering tools like Reflector and Salamander to malfunction, if used to
generate higher level language code from disassembly of a program. None of the
previous protection schemes offer this level of code protection for .NET applications. We
have run several programs after introducing breaks at certain points in their IL code and
successfully restrained these tools to generate code in VB.NET, C#, etc. The reason is
that .NET CLR is unable to find higher level language constructs equivalent to such a
abnormal sequence of IL code instructions. Taking advantage of this limitation of .NET
runtime, we have gained a reasonable level of code protection because after this the
attacker has limited or no access to the higher level language code. He has to keenly

observe the flattened IL code instead which requires a lot of time and resource overhead.
5.3 Robust and Tamper-proofed Thumbprints

The idea behind proposed thumbprinting scheme is to embed a unique number as a
watermark in forward and backward jumps sequence of a .NET program’s IL code
instructions. The reason to choose IL code for encoding thumbprints is its flattened
structure that makes static program analysis difficult. If we have a look into the IL code
of an ordinary .NET program, we will find several similar jump calls which construct its
actual control flow. Introducing such innate transformations make it hard for an

adversary to figure out the secret behavior of the program. More over the thumbprints

o - 51

Software Thumbprinting VIA IL Code-Transformations

Chapter 5 Results and Evaluation

encoded in through proposed IL code transformations are tamper-proofed because any
change in code at IL level or at higher-level will disrupt the ultimate IL=instructions’
labels (like IL_003, etc. in figure 3.5). This will cause jump calls to hit invalid targets and
results in an malfunctioning program. This way quite obscure and rigorous dependency is
created between thumbprint and original program instructions. More over the data rate »
(number of times thumbprint is embedded) can be any number for which it becomes quite
intricate for an attacker to sort out all the hidden thumbprints from IL code. Even after
revealing maximum number of thumbprint occurrences, it is hectic to remove all of them
while keeping program’s semantics intact. Hence the thumbprint will remain in the
program or other wise program will no more function as intended. As per our exploration,
there isn’t any debugger for dynamic program analysis of IL code. Proposed scheme

ideally preserves semantics of the program without forsaking its performance.
5.4 Experimental Evaluation Framework

To evaluate the strength of a watermarking technique with respect to a particular property
requires a variety of different experiments. In these we use one or more .Net application

which varies in size and complexity.

Prior to running our experiments we will check both application and make sure the no
obfuscation scheme is apply on these programs. This step is performed to create the

baseline for our size and performance experiment which will eliminate any effects.
5.4.1 Evaluation Model

The strength of a software watermarking algorithm or techniques is evaluated based on a
well defined threat model. The threat model describes tools and techniques generally
employed by an attacker. Such attacks are categorized as manual, automated and blended.
In a manual attack the software is analyzed and modified by hand using reverse
engineering techniques. An automated attack is characterized by the use of tools which
automatically apply an attack such as the DeCSS script used to disable DVD encryption.
The most common form of attack, the blended attack, uses both manual and automated

techniques to disable the protection. For example, dissemblers, debuggers, and

Software Thumbprinting VIA IL Code Transformations 52

Chapter S Results and Evaluation

recompiles are often used by the attackers to interactively explore applications.
Information gleaned from this analysis can be used to develop automated tools for

disabling the protection on all copies ol the program,

Since an attacker has full control over the cbxccminn of the soltware, it is generally
believed that given “enough” time, effort and/or resources, a sufficiently determined
attacker can completely break any software protection technique. With this in mind, most
techniques are deigned to make the cost of the attack as high as possible. This can be
accomplished by making the attack costly to carry out or by requiring an attack which
degrades the performance of the software to an unacceptable level. For example, a
software watermarking algorithm could be considered effective if the attack required to

destroy the watermark also slows down the un-watermarked program such that it no

longer has any economic value.

The threat model specific to software watermarking algorithms include four attacks:

e Additive
e Distortive
e Subtractive

e Collusive

To illustrate the attacks consider Alice and Bob. Alice produces a program P which
contains her watermark W. she sells a copy to Bob not aware that he wants to illegally
redistribute the program. In order for a Bob to successfully redistribute P he needs to

destroy the watermurk W,

Additive Attack: In an additive attack Bob embeds his own watermark W' into Alice’s
program P. by doing this Bob has made it difticult for Alice to prove ownership since she

will have to show that her watermark was embedded prior to Bob’s.

Distortive Attack: In a Distortive attack Bob applies a series of semantics-preserving
transformations to P in an attempt to destroy W. for Bob’s attack to be successful the

watermark must be unrecognizable while preserving program functionality.

Software Thumbprinting VIA IL Code Transformations 53

et e -

—]

“il

R T

Chapter 5 Results and Evaluation

Subtractive Attack: In a subtractive attack Bob analyzes the (disassembled/recompiled)
program P to identify the location of the watermark and to remove all or part of it. As
with a Distortive attack the original functionality must be preserved for the attack to be

successful. S , -

Collusion Attack: In a collusive attack Bob obtains two different fingerprinted programs
P1 and P2. Because the programs only differ in their fingerprints, Bob compares the

programs to identify the location of the fingerprints.

5.4.2 Evaluation Properties

Through the study of software watermarking algorithms we have compiled the following
properties which we believe aid in evaluating the strength of an algorithm [23, 36, 37].

Data-Rate: The number of times a watermark is embedded in a program
Overhead: The decrease in performance and/or the increase in program size and space.

Stealth: The degree of similarity between the watermark and the original code. Stealth

can be characterized as either statistical or visual indefectibility.
Robustness: The ability to withstand the four attacks described in the threat model.

As with any software protection technique, the design of a software watermarking
algorithm generally requires a trade-off between the various evaluation properties. For
example, the embedding of a larger watermark could decrease the level of stealth and
increase the size and memory overhead. In the same way to, to increase the robustness it
is necessary to have larger data rate by increasing number of watermark insertions. But
higher data rate at the same time causes low stealth and larger program size. Hence, a
thorough evaluation of the known software watermarking techniques based on the above
properties makes it possible for a developer to choose the appropriate algorithm for the

required protection level.

Software Thumbprinting VIA IL Code Transformations 54

Chapter 5 Resulis and Evaluation

5.5 Branch Function

A branch function is a function that is called in the normal manner, but which
manipulates its return address such that, when it returns, control may be transferred to an

address different from the original call gite [38].

Consider a program containing a particular set of unconditional jumps of interest, at
locations al........... an, with targets bl........ bn respectively, p.e., the instruction at location

ai is
ai : jmp bi where 1 <i<n

With branch functions, we replace each of these jumps by a call to the branch function f,

resulting in code of the form:
ai : call fwhere 1 <i<n

The function f uses the return address to figure out the location ai (1<i< n) it was called
from, and then uses this information to change its return address to the value bi. When it
subsequently executes a ret instruction, therefore, control is transferred to the original

target bi [17]. This situation is illustrated in figure 5.1.

Original Executable Modified Executable
—— branch 1 branch 1
—» target 1 \ target 1 ~——
[~ target 2 target 2
~— branch 2 E branch 2
Branch
Function
L

Figure 5.1 Branch Based Watermarking

Software Thumbprinting VIA IL Code Transformations 55

]

L3

Chapter 5 Results and Evaluation

We have used comparative study with other watermarking algorithm and technique
chosen for this purpose is the latest state_of art technique proposed by Giner in 2006 [39].
This technique discusses the watermarking using branch method which resembles closely
to our proposed technique as we are also inserting forward and back jump in the code. we
have checked the above said characteristics for software evaluation and then compared

the results, difference between two techniques are presented below.,

5.6 Experimental Results

We have chosen Tower of Hanoi a famous example as a case study to evaluate the results

of both techniques.

5.6.1 Approach
Following steps are taken while evaluating the two techniques using Tower of Hanoi.

¢ Implementation of Tower of Hanoi using Branch function watermarking technique
e Calculation of result for Branch Function Scheme

¢ Implementation of Tower of Hanoi using Our proposed technique

o Calculation of result for Proposed Scheme

e Comparing the results of both schemes

5.6.2 Results

In coming lines we have presented the results which are divided into three categories.
¢ Results before Implementation
¢ Results with Thumbprinting Scheme

e Results with Branch Function Scheme

5.6.2.1 Results before Implementation

Tower of Hanoi is implemented in c# language and here we presented the results for

parameters discussed above before the implementation of any of the two schemes

Software Thumbprinting VIA IL Code Transformations 56

Chapter 5

Results and Fyvaluation

Paramecter Name

Measurement

1.

Size of Program

32768 bytes

Watermarked i-e

Data Rate

2. LOC (MSIL) 2301

3. Perlormance 5 Disks tukes 60 Mille Sceonds
4. System Classes S

5. User Classes 3

6. Total Method 57

7. User Method 11

8. No of Method to be n=Mp/2=5

Table 1: Results Before Implementation

5.6.2.2 Results with Thumbprinting Scheme

Implementation of case study is given in Appendix-I with complete coding details too.

Here we have shown results

Parameter Name Mcasurcment
1. Size of Program 24576 bytes
2. LOC (MSIL) 2361420
3. Performance 5 Disks takes 63 Mille Seconds
4. System Classes 5

Software Thumbprinting VIA IL Code Transformations

57

VPR

Results and Evaluation

Chapter 5
5. User Classes 3
6. Total Method 57
7. User Method 1T
8. No of Method to be n=Mp/2=5
Watermarked i-e
Data Rate
9. Tamperproof Obfuscated Pw through Dotfuscator
Community Edition. Pw retained exact
thumbprints intact. Hence proposed scheme
is resistant against transformation attacks

Table 2: Results with Proposed Scheme

5.6.2.3 Results with Branch Function Scheme

Implementation of case study is given in Appendix-I with complete coding details too.

Here we have shown results.

Parameter Name Measurement
1. Size of Program 32768 bytes
2. LOC (MSIL) 2361+16
3. Performance 5 Disks takes 63 Mille Seconds
4. System Classes 5
5. User Classes 3

Software Thumbprinting VIA IL Code Transformations

58

ot rim.

Chapter 5 Results and Evaluation

6. Total Method 57+1

7. User Method 11+1

8. No of Method to be 1

Watermarked i-e

Data Rate

9. Tamperproof As branch function is easily visible and
detectable cven it is inscrted as low level
(IL). So branch function is not temper-

proofed.

Table 3: Results with Branch Function
5.6.3 Results Analysis and Discussion

We have discussed the result analysis for LOC and Size and Performance in

coming paragraphs.

5.6.3.1 LOC

Line of code is a software metric used to measure the size of a software program
by counting the number of lines in the text of the program's source code. LOC is
typically used to predict the amount of effort that will be required to develop a
program, as well as to estimate programming productivity or effort once the

software is produced.

In our scenario LOC will help in calculating the effect on LOC by adding
watermark using both the approached. As from the figure 5.1 shown below it is
clear that our approach take much line but that is because of dependency with data

ratc as both data rate and LOC are directly proportional so when ever we will

Software Thumbprinting VIA IL Code Transformations 59

P e — =

Chaprer 5 Results and Evaluation

increase data rate in branch function then its LOC will increase drastically as

every branch function roughly add 10 line in a smaller program.
5.6.3.2 SIZE

Size is another software metrics used to calculate the total size of software in
terms of kilobytes. Size metrics is typically used to predict the amount of space

occupied by the program on hard-disk. — -

We have calculated the Size of program before implemented any watermarking
scheme then size was calculated after the implementation of two schemes. We
have shown the difference through graph in figure 5.2. We can easily see through
graph that proposed approach have a better impact on software size as compare to
branch based watermarking. There are two reasons for this one is that we are using
the existing structure of the program without adding much code and another we
are implementing our approach at assembly level which has lesser impact on size

as compare to implementing the scheme at high level language.

5.6.3.3 Performance

Performance is the major issue for every watermarking technique same is the case with
ours. Performance is generally measure as time taken by the application while performing
certain task. Our example takes disks out from the applet one by one and when we
increase the disk then the time taken to draw them out will also increase. We have fixed
the disk to 5 and check the time impact on both approaches. There was minor difference
from the original as we can see in the figure 5.3. But one thing is clear that this minor

difference will change into huge for large scale application where time matters.

Software Thumbprinting VIA IL Code Transformations 60

[P PP —

1

Chapter 5

Results and Evaluation

185 1

180 -

175 -

4 170

165 -

160

LOC

155{/

150-1 ‘ -
Original Branch Proposed

Figure 5.2 LOC

SIZE (KB)

Original Branch Proposed

Figure 5.3 SIZE

Software Thumbprinting VIA IL Code Transformations

61

Chapter 5

Results and Evaluation

[

w
E
)
O
c
©
£
£
D
o
Original Branch Proposed
Figure 5.4 PERFORMANCE

Software Thumbprinting VIA IL Code Transformations

62

Chapter 6

CONCLUSION AND FUTURE WORKS

Chapter 6 Conclusions and Future Works

6. Conclusions and Future Works

There are three major threats recognized against the intellectual property in software:
malicious reverse engineering, software tampering, and software piracy [2, 7, 10, 12, 27,
36). Researchers are striving to devise stronger protection mechanisms to defeat these
malicious attacks. The foremost of software-based protection schemes so far developed
are software watermarking, code obfuscation and tamper-resistance [7, 9, 10, 11, 13, 17,
32, 33]. In this research we have focused on addressing the threat of software piracy
particularly for Microsoft .NET framework based applications. Software piracy has been
compounded by several factors. Among those, rich distribution formats, such as provided
by Java and .Net, make attacker’s life much easier by exposing trade secrets which are
coded inside an executable [19, 20, 21, 30, 34]. The availability of high speed internet
and peer-to-peer systems also adds to the ease of distributing pirated software [3, 4, 5].
Statistical loses proves that piracy has become a prevalent problem of software industry
and it requires the utmost attention to explore software protection schemes to better

prevent and detect copyright violations [1, 3, 5, 12].

This research explores .NET framework constructs to identify its potential for developing
software watermarking algorithms which particularly protects applications developed
using .NET. We have devised a novel software protection scheme, called software
thumbprinting. Proposed technique employs control flow transformations to encode
unique thumbprints into every distributable copy of software. A thumbprint serves like a
secret signature which proves the original ownership and legal buyership of a particular
copy of .NET program. Software thumbprinting crafts non-reversible and semantic-
preserving code transformations to tamper-proof the embedded thumbprints. In order to
strengthen the theft detection and assertion mechanism, proposed technique is tied with

licensed distribution.

Moreover presented work aims to emphasize the need of developing Sand Mark and Loco
like tools, based on .NET framework constructs so that the automatic program analysis
may rise on this platform. One of the greatest challenges in this area is the lack of

evaluation of various software protection mechanisms. For that purpose, a thorough study

Software Thumbprinting VIA IL Code Transformations 63

/

/

Chapter 6 Conclusions and Future Works

2

and evaluation of contemporary software protection techniques with a practical V@poim
is presented. Research aims to practice and promote research and development of better

software protection mechanisms.

Future works in this direction could lead to develop a codec to automate the process of
thumbprint encoding and decoding. For this purpose, our thumbprint and license
generation tool Marka (discussed in Chapter 4) can be extended to perform codec’s
functionality. Technical details of issues regarding automation of proposed scheme are
presented in Section 4.3 and 4.4. Like other software based protections, thumbprinting
too aspires to make attacker’s life harder but not to make copyright violation impossible.
So there exists strong need of improving such protection mechanism and developing
better ones. For example, thumbprinting can be improved by using some alternate of CIL
br (break/jump) instructions to encode thumbprint so that to make the algorithm more
robust, stealthy and performance effective. Another approach can be to jadapt proposed
model to devise protection solutions for other languages and platforr;ns which offer

similar programming constructs, like Java.

One of the most pressing issues, we found through exploring the copyright thefts and
their respective defenses, is the detection of any infringement. Tﬁere have been
substantial studies and commercial efforts found so far to implement, pr‘; vent and assert
copyright violations but all these efforts are mean less without an effective detection
mechanism. No matter how complex algorithm is used to embed a secret signature, and
even it does not matter that how stealthily it is encoded and how good pr&gram performs
after encoding. All this is futile if we can not detect that"some one has pirated our
software. We see uncountable number of software companies who havg compromised
over the fact that software copyright violation is inexorable because wé have no such
strong detection mechanism through which we may get to know the piracy. Internet is the
only medium that can serve some how to detect pirated software. Like, Micresoft has
recently employed Windows Genuine Advantage (WGA) that enforces Window’s online
validation to detect pirated instances of Windows [45]. But this scheme works only if
some illegal user will visit WGA online, other wise the theft can not be detected. Hence

there remains a long way to go towards inventing better software protection mechanisms.

Software Thumbprinting VIA IL Code Transformations 64

TERMINOLOGY

Terminology

Software Protection: Protecting ownership rights which a vendor possess over his/her

software product

Digital Rights Management: An umbrella term that refers to the technologies used by

copyright owners to control access to and usage of their digital data
Software Piracy: The act of making and reselling illegal copies of software

Software Reverse Engineering: The act of extracting and reusing some parts of software

program, with out permission of its copyright owner

Code Tampering: The act of modifying software program code illegally so as to make it

behave unintended

Software Watermarking: Embedding some covert information into the software program

that serves as a secret signature of copyright owner

Software Fingerprinting: Embedding unique watermarks into every distributable copy of

a software product

Code Obfuscation: Transforming software code so as to make it obscure for an adversary

while keeping its semantics intact

Tamper-proofing: Safeguarding software watermarks so that an attacker’s attempt to

distort watermark must cause the program malfunction

Software Thumbprinting: The process of encoding unique thumbprints as watermarks
into each distributable instance of a program

Software Thumbprinting VIA IL Code Transformations 65

REFRENCES & BIBLIOGRAPHY 11
|
|

References & Bibliography

(1]
(2]
(3]
(4]
(5]

(6]

(7]

(8]

(%]

[10]

[11]

[12]

[13]

[14]

M. Shakeel Anjum, A. Hasan and K. Rashid. “Thumbprinting .NET Applications”,
IATED, Valencia Spain, 2007

Wikipedia, http://en.wikipedia.org/wiki/software_piracy/

BSA, http://www.bsa.org/, “Software Management Guide”

SIIA, http://www.siia.net/piracy/whatis.asp. “Anti-Piracy”

BSA, http://www.bsa.org/. “Annual BSA and IDC Global Software Piracy Study”,
2006

M. Antonio and P. Emesto, “An Efficient Software Protection Scheme”,

Proceedings of the 16th international conference on Information security: Trusted
information: the new decade challenge, pp. 385-401, 2001

G. Naumovich and N. Memon. “Preventing Piracy, Reverse Engineering, and
Tampering”. In IEEE Computer, Vol 36, No. 7, pp. 64--71, July 2003

M. Chen. “Software Product Protection”. Article in T-110.501 Seminar on
Network Security, ISBN 951-22-5807-2, 2001

W. Zhy, C. Thomborson and F.Y. Wang. “4 Survey of Watermarking”. In LNCS
vol 3495, Springer-Verlag,. pp. 454 - 458, April 2005

C. Collberg and C. Thomborson. “Watermarking, tamper proofing and obfuscation
— tools for software protection”, In [EEE transaction on software engineering, vol
28, no 8, August 2002

Ginger Myles. “Using Software Watermarking to Discourage Piracy”, 1EEE
Security and Privacy, v.1 n.4, p.40-49, July 2003

P. T. Devanbu and S. Stubblebine. “Software Engineering for Security: A Road
Map”, In Proceeding of ICSE Special Vol on the “Future of Software Engineering”,
2000

B. Fu, G. Richard IIl and Y. Chen. “Some New Approaches for Preventing
Software Tampering”, In ACM SE’06, Melbourne, Florida, USA. 2006

C. Thomborson, J. Nagra, R. Somaraju and C. He. “Tamper-proofing Software
Watermarks”, In AISW, Conference in Research and Practice in Information
Technology, Vol. 32, Dunedin, New Zealand, 2004

Software Thumbprinting VIA IL Code Transformations 66

References & Bibliography

[15] B. Anckaert, B. D. Sutter, D. Chenner/and K. D. Bosschere. “Steganography for
Executables and Code Transformation Signatures”. In LNCS 3506, Springer-
Verlag Berlen, pp. 431-445. 2005

[16] D. Curran, N. J. Hurley and M. O Cinneide. “Securing Java through Software
Watermarking”. In Kilkenny 2™ International Conference on the Principles and
Practice of Programming in Java, ACM, 2003

[17] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn and M. Stopp. “Dynamic
Path-Based Software Watermarking”. In Proceeding of the conference on
Programming Language Design and Implementation, pp.107-118, 2004

[18] eBook, Inside Microsoft .NET IL Assembler

[19] Dr. R. Wiener. “Obfuscation and .Net”. In Journal of Object Technology, Vol.4,
No.4, pp.73-92, May-June-2005

[20] Pre-Emptive Solutions, http://www.preemptive.com/. “Dotfuscator, Technical
While Paper, version 2", 2004

[21] M. Madou, L.V. Put and K D. Bosschere. LOCO, “An Interactive Code
(De)Obfuscation Tool”. In Ii’roceeding of ACM PEPM 1-59593-196-1/06
Charleston, South Carolina, US . 2006

[22] J. Cox and J.M.G. Linnartz, “I;ublic Watermarks and Resistance to Tampering”,

Proceedings of the Fourth International Conference on Image Processing, Santa
Barbara CA, October 1997
(23] C. Collberg and C. Thomborson, “Software watermarking: Models and

TX, pp. 311-324, January 1999
|
[24] Venkatesan, V. Vazirani, and S. Sinha, “4 Graph Theoretic Approach to Software

Dynamic Embeddings”, In Prindkiples of Programming Languages, San Antonio,

Watermarking”, In 4th Internatignal Information Hiding Workshop, Pittsburgh, PA,
April 2001

[25] H. Tamada, M. Nakamura, A. Monderi, and K. Matsumoto, “Detecting the Theft of
Programs using Birthmarks”, Information Science Technical Report NAIST-IS-
TR2003014 ISSN 0919-9527, Graduate ‘School of Information Science, Nara
Institute of Science and Technology, Nov. 2003

Software Thumbprinting VIA IL Code Transformations 67

References & Bibliography

[26]

[32]

[33]

(34]

[36]

K. Gopalakrishnan East Carolina University Nasir Memon Polytechnic U:‘ésity
Poorvi L. Vora Hewlett-Packard. “Protocols for Watermark Verification”. IEEE
2001

M. Madou, B. Anckaert. B.D. Sutter and K.D. Bosschere. “Hybrid Static-Dynamic
Attacks against Software Protection Mechanism”. In Proceeding of ACM DRM 1-
59593-230-5, Alexandria. Virginia, USA,November 7, 2005

T. Sander and C. F. Tshcudin. “On Software Protection by Function Hiding". In 2nd
International Workshop on Information Hiding, December 1998

B. Anchaert, B. D. Sutter and K. D. Bosschere. “Software Piracy Prevention
through Diversity”. In Proceedings of the 4th ACM workshop on Digital Rights
Management, Washington

A. Mishra, R. Kumar and P. P. Chakarabarti. "4 Method-based Whole-Program
Watermarking Scheme for Java Class Files’ . 2005

C. Collberg, C. Thomborson and D. Low. “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs”. In Proceedings of ACM SIGPLAN-SIGACT
pp.184—196, 1998

K. Fukushima, T. Tabata and K. Sakurai. “Evaluation of Obfusca)ion Scheme
Jfocusing on Calling Relationships of Fields and Methods in Methods”. In Proceeding
(440) Communication, Network and Information Security, 2003 |

S. T. Chow, Y. Gu, H. J. Johnson and V. A. Zakharov, “4n App"oach to the
Obfuscation of Control-flow of Sequential Computer Programs”, In G. 351. Davida
and Y. Frankel, editors, ISC 2001, Lecture Notes in Computer Science 2200, pages
144-155. Springer-Verlag. 2001 ‘

C. Collberg, C. Thomborson, and D. Low, “A4 Taxonomy of Obfuscating
Transformations ", Technical Report 148, University of Auckland, 19974

A Thesis for the Degree of Master of Science, “Tamper Resistance for Software
Protection”. Ping Wang School of Engineering Information and Communications
University 2005

G. Hachez. “4 Comparative Study of Software Protection Tools Suited for E-
Commerce with Contribution of Software Watermarking and Smart Cards”. Phd

thesis, University Catholique de Louvain 2003

Software Thumbprinting VIA IL Code Transformations 68

References & Bibliography

[37] G. Qu aand M. Potonjak. “Hiding Signatures in Graph Coloring Solutions in
Information Hiding”. Pages 348-367. 1999

{38] Cullen Linn and Saurmay Debray Department of Computer Science. “Obfuscation
of Executable Code to Improve Resistance to Static Disassembly”. University of
Arizons ACM 2003

[39] Ginger Myre Miles. “Software Theft Detection through Program Identification”.
PHD Thesis 2006

[40] M. Chen. “Software Product Protection”. Article in T-110.501 Seminar on Network
Security, ISBN 951-22-5807-2, 2001

CrypKey , http://www .crypkey.com/instant.asp

Salamander .NET Explorer, http://www.remotesoft.com/salamander/

NET Reactor, http://www.eziriz.com/dotnet reactor/

]
]
43] .NET Reflector, http://www.aisto.com/roeder/dotnet/
]
)

Microsoft Windows Genuine Adventage (WGA), http://www.microsoft.com/

presspass /press/2005/jul05/07-25WGA1PR.mspx

Software Thumbprinting VI4 IL Code Transformations 69

Appendix A

PUBLICATION

INTED 2007

International Technology, Education and Development Conference

b/

g

International Technology, Education and Development Conference

Proceedings

Published by

international Association of Technology, Education and Development (JATED)
C/ Dr. Vicente Zaragoza 70-9

46020 Valencia SPAIN

Web: www.iated.org

INTED2007 Proceedings

Edited by

L. Gémez Chova, D. Marti Belenguer, 1. Candel Torres

International Association of Technology, Education and Development
JATED, Valencia

INTED2007 Proceedings (CD) ISBN: 978-84-611-4517-1
INTED2007 Abstracts Book ISBN: 978-84-611-4516-4

Book & CD covers designed by t
J. L. Bernat Tomas

W e i A

e -

A,

INTED CONFERENCE, MARCH 2007, VALENCIA SPAIN /
THUMBPRINTING .NET APPLICATIONS

M. SHAKEEL ANJUM
m_shakeel_anjum@yahoo.com

Faculty of Applied Science

AHMED HASSAN
mrahmedhasan@gmail.com

Faculty of Applied Science

PROF. DR. KHALID RASHID
dr_khalid@iiui.com

Dean Faculty of Applied Science

International Islamic University International Islamic University International Islamic University

Islamabad, Pakistan

ABSTRACT:

Extensive research has been conducted on software
protection schemes like watermarking. obfuscation
and tamper-proofing. These techniques aim to
protect software copy rights by restricting piracy,
illegal reverse engineering and tampering. Most of
the technological implementation of watermarking
algorithms is found for Java based applications.
Where as, protecting .NET based applications is
rarely discussed. This paper, by the first time,
converses the subject of software copy right
protection exclusively for .NET framework based
applications. We have proposed a unique software
watermarking technique called rAumbprinting
which in effect realizes software fingerprinting.
The idea is to embed unique thumbprints as
software watermarks, in forward and backward
jump sequences of .NET program’s MSIL code.
The proposed scheme is demonstrated through an
experiment to show how thumbprints are
effectively tamper-proofed. The purpose of our
research is to initiate the need of comprehensive
watermarking solutions for NET framework based
applications.

Key Words: DRM, Watermarking, Fingerprinting,
Thumbprinting, Steganography, Obfuscation, Tamper-
proofing, MSIL, .NET.

1. INTRODUCTION

In recent years software piracy has emerged as a
major problem for software vendors. Extensive
research against [1, 2, 3, 4, 5] software piracy has
proposed various protection schemes like
watermarking, tamper-proofing, obfuscation,
encryption and licensing. These techniques aim to
protect software copy rights by restricting piracy,
tampering and illegal reverse engineering. A
common assumption among these schemes is that
the software has been delivered to a malicious
client, who aims to steal the source or semantics of
intended application by applying certain semantic
preserving attacks onto it. Not only he attempts to

A-1

I[slamabad, Pakistan

Islamabad, Pakistan

damage the original ownership signature but also
tries to overwrite it with one of his own so as to
make a false claim that the software belongs to him
originally [6, 7, 8].

Technological countermeasures against such
malicious attacks fall in two major categories,
hardware-based and software-based protections,
Hardware-based solutions include dongles, smart
cards, re-writeable-media installers, dedicated
processing devices and Trusted Computing
Platform Alliance (TCPA). These technologies
barricade software piracy by affixing application
authentication mechanism with some fixated
hardware device which contains embedded
ownership signature. Alongside the fact, these are
the most secure means, their fabricating cost and
realization overheads confine theit. viability to
large application domains [9].

Software-based protections, on the other hand, are
extensively practicable. For this elemental reason
they are focal point of our research. |First mean in
this regard is watermarking that is, embedding
some covert information as a text message (static
watermarking) or into observable behavior of the
program (dynamic watermarking) [3, 9, 10, 11]. If
this covert signature is set unique for each
distributable copy of intended software then it
becomes fingerprinting [12]. For our particular
solution, we will call it thumbprinting that refers to
the characteristic of our proposed scheme of
embedding unique thumbprints into Lach copy of
the software (as detailed in Section 4). A related
subject is Steganography that means to embed a
hidden message into an apparently innocuous
executable through assembly level code
transformations [1]. This is of our distinct interest
because in our thumbprinting technique we go by
steganographing the MSIL code of intended
program. Second protection measure is tamper-
resistance that means to safeguard the program
code against tampering by crafting vigorous
dependency among code structures [2, 3, and 9].

Tamper-proofing aspires either to cause application
crash if tampered by some attacker or to make
tampering expensive enough so that it become
impractical for an attacker to remove all of the
crafted dependencies [6]. Next software protection
mean is code obfuscation that refers to the
application of semantic preserving transformations
on program constructs to make code obscure
against reverse-engineering [4, 5, 13). Fourth
protection methodology is encrypring the
executable which requires decryption of functional
code before execution [7]. Last software-based
solution is licensed product distribution that means
to authenticate and authorize valid user to install
and run a licensed copy [9]).

In this paper we present our anticipated piracy
prevention scheme for NET framework based
applications. Among the countermeasures
discussed above, our solution is based on software
watermarking and more specifically software
thumbprinting. We will also describe, how we
tamper-proof our encoded thumbprints by
employing static code transformations.

In Section 3 we state software piracy problem.
After redefining the problem and discussing the
current state of art solutions, we propose our
methodology in Section 4. Section 5 illustrates
implementation details of thumbprinting through
an example. Related literature survey is presented
in Section 6. Section 7 discusses the problems in
previous approaches. At last we conclude the paper
in Section 8 and exploit future works.

2. MOTIVATION

Philosophically admitted that nothing is new since
the Big Bang, what interacts is how things are
combined. People make money by devising novel
combination of existing solutions. And accordingly
such inimitable solutions become targets of crooks
to get benefited from them unlawfully. Software
piracy is one of the similar acts that some
malicious user does by tampering with software
code so as to replace or wreck its original
ownership or authorship mark [3, 9]. Pirates carry
out copy right violations most of the times for
monitory gains by reselling a software product
illegitimately. Software piracy gets more severe
figures when motive of a pirate is to disrupt the
functioning of some corporation, government
agencies or online service provider.

Software piracy has become a grave trouble for
software vendors from last several years [14].

A-2

According to an annual global study on software
piracy conducted by Business Software Alliance;
35% of installed software packages in year 2005
were pirated [14]. That amount of a penalty of $34
billions to the software vendors in one year, which
is forecasted to grow up to $200 billion during
same five years. The results confirmed that piracy
will continue to be a significant problem. So, in
this endeavor we intend to contribute towards the
research against software copy rights violations.

Major emphasis of research in software protection
is on developing such algorithms and techniques
which prevent malicious hosts from distorting
owner’s copy right signatures. As per our findings,
most of technological consideration and
implementation of these algorithms is found for
Assembly language’s binary code and Java
language’s byte code [1, 2, 15, 16]). Where as,
Microsoft Intermediate Language (MSIL or shortly
IL) is rarely discussed. This paper particularly
considers IL constructs for their support to devise
generic solutions for the protection of .NET
framework based applications against illegitimate
adaptation, distribution and reproduction.
Moreover we motive to present a fine blend of
recent research proposals, current industry
practices and our proposed solution with sufficient
implementation details so as to make it enough
practicable.

3. SOFTWARE PIRACY

Wikipedia defines software piracy as “the
unauthorized use of copyrighted material is a
manner that violates one of the copyright owner’s
exclusive rights, such as the right to reproduce or

perform the copyrighted works, or to make

derivative works that build upon it” [17]. Laws
regarding copy right infringement state piracy as a
crime that may cause penalty of up to $250,000 to
the prosecute [18]. This highlights the need of
solving the piracy problem from both vendor and
customer’s point of view.

3.1. Problem Redefined

We start by redefining the software piracy problem
in its real context and then we will truss our focus
on it through out rest of the paper while presenting
our intended solution.

e Alice is the owner of P, for that she has
embedded her ownership signature into P

e Alice intends to earn profit from P on its per-
copy-sale basis as she has acquired legal copy
rights of P for its reproduction, redistribution and

¢ Bob purchased a licensed copy of P from Alice

¢ Bob determines to pirate P to dam unlawful
gains from its resale by distorting Alice’s
ownership signature

o Alice necessitated some prevention measure to
be employed into P that must resist against Bob’s
malicious attack

e Having enough time and
managed to wreck Alice’s
overwritten it with one of his own

¢ Charles purchased a pirated copy of P from Bob.

e Charles shared this illegitimate copy of P with
his colleague Dolly

¢ Alice hence required to detecting pirated copy of
her software that Dolly was running.

¢ Moreover, Alice needs to detect the actual pirate
Bob, so that to prosecute against him in the court
room

¢ In the court of law Alice asserts that P originally
belongs to her, for that she has to render
ownership signature which she has embedded
into P

resources, Bob
signature and

3.2. State of the Art

The customary solution against software piracy lies
among certain ethical, technical or legal means.
Concluding from the above problem description we
propose to divide our entire| piracy prevention
scheme into four major divisions; ie. piracy
education, piracy prevention, piracy detection and
piracy assertion, as shown in Figure 1. These
subdivisions at the same time help sorting out their
respective anti-piracy measures..

i
Piracy Education: Software| vendor -ethically
means to edify users about benefits of intellectual
property protection and its contribution towards
worldwide economic growth. Organizations like
BSA are in force in this arena with partnership of
leading software companies like Microsoft, Apple
Mac., RSA, MacAfee, etc. to promote safe and
legal digital world through education and
enforcement of digital copy righti [14]).

Piracy Prevention: It refers to the technical
defensive measures which software providers
implant into their products so as to prevent piracy
at first place. It is of sure that copying digital
artifacts can not be restricted, so these preventive
measures cause illegitimate copies to malfunction
or stop running at all or cause enough .cost
overhead to pirate so that it may exceed actual
development cost of software [9].

A-3

Piracy Detection: If in any ways some pirate
successfully wrecks preventive measures and start
profiting from it through illegal redistribution or
personal usage, then copy right owner needs to
detect such copy right violations in order to take
some legal actions.

Piracy Assertion: Finally when some software
vendor fortunately detects. any illicit copy of his
software, he is required to prove his ownership in
the court room.

Piracy Piracy
Detection Assertion

Charles

Figure 1: Means of Piracy Prevention

Resolutely speaking, technical and legal means are
in strong conjunction with each other, dejecting
one, fades other’s effectiveness. One of the major
reasons why piracy prevention has not yet been
achieved successfully is that most of the time
vendors (if do) typically employ mere technical
protection means without decisively taking up
reactive legal strokes against their copy rights
infringements. Therefore our anti-piracy defense
suit presented in next section, embraces all piracy
prevention means like prevention, detection and
assertion,

3.3. Anti-Piracy Lines of Defense

In order to realize software protection measures
discussed above, we present a technological
solution that comprises of currently available lines
of defense against software piracy. Proposed anti-
piracy defense suit is inherently in practice for
.NET framework based applications [4] but here we
intend to align it in more explicable and rational
order, as Figure-2 illustrates it.

Alice starts by developing the inner most layer, the
software P and keeps on wrapping protection layers
around it till its distribution. First she embeds her
secret ownership signature into P as a watermark,
which she will afterwards render in the court of law
to assert her copy rights. Then she tamper proofs
her watermark so that P must become useless for
Bob, or uneconomical to tamper with P, if he
determines to distort Alice’s watermark. After that
she obfuscates that tamper-proofed executable to
make P’s source code obscure enough against nasty
reverse engineering. She subsequently encrypt P to
make its code indecipherable. Finally she
distributes licensed copies of her sofiware to
respective licensed users. Alice may choose to
employ any or all of these lines of defense
according to the required level of protection.

On the other hand, Bob needs to defeat all of the
drawn protection layers, starting from the outer
most one, the licensing mechanism. He keeps on
infringing by decrypting the executable and
deobfuscating program code. Afterward he tampers
with the source code in order to get a fully
functional instance after successfully distorting the
watermark.

B €

il

Bob

Licensed Distribution Piracy Detection

Pivacy Asscrtion

Figure 2: Anti-Piracy Lines of Defense
4. PROPOSED METHODOLOGY

We have gone through different possible attacks
and their effects on intellectual property rights of
software. Bob may use them to harm Alice’s
ownership mark. There are four possible ways
through which bob can tamper the program P.

A-4

1.Bob can neither crack ownership mark nor can
he use the program P.

2.Bob may distort the watermark but he can not
use the program P.

3.Bob may use program P but can not distort the
watermark or ownership.

4. Bob distort the watermark or ownership and also
uses the application.

From Alice’s point of concem. Ist is the best case
and 4 is the worst one where as 2nd and 3rd are
equally acceptable. So as Bob should be left with
any one of the two choices. either to have a
functional product or to live with Alice’s
ownership. Researchers tend to agree on the fact
that it is almost impractical to prevent Bob in a
single tum, from doing both, distorting watermark
and using P (case 1). Also it is evenly unacceptable
to allow him to do both (case 4). Therefore our
solution considers case 2 and 3 in intention. Next
we will illustrate both thumbprint encoding and
decoding one by one.

4.1. Thumbprint Encoding

Once the target product P is developed and its
source code is compiled into P.exe, then Alice
needs to generate unique thumbprints to be
embedded into each of its dismributable instances.
These thumbprints are distinct numbers produced
from thumbnails of license information. Each
thumbprint exclusively represents one and only one
copy of P with its original licensee’s information.

This lic.txt contains a thumbnail which is a fixed
length stream of bytes generated from encrypted
thumbnail [A]. The selection of encryption scheme
is on the choice of vendor and additionally if
supported by the technology. ln our case, .NET
framework provides us with a built-in protection
API that includes wide range of popular encryption
and hashing schemes like, MD, RSA, DES, SHA
etc. The basic purpose of encrypting thumbnail is
to obscure the license information from attacker so
that s/he would not be able to revive any of the
information of original licensee and licensed
product. After having encrypted thumbnail [B] we
used .NET integral string hash code generation to
have a unique number [C]. Hash codes found this
way are usually 9-12 digits long and are both
positive and negative numbers. So we devised a
simple logic to produce a smaller number (around

100) as thumbprint so that it would be easy to be
encoded into the program code.

------ » License 4-----
X l :
Info I lnfof
'S
J License.txt T
119
L———-b Bob
Alice
SaleT
Info!

— —p Pl
Disassemble

Figure 3: Generating & Embedding Thumbprint
into P

Recompile

The idea was to sum up the digits of a hash code
[D]. There is a uniqueness constant (uc) introduced
in case of replication of thumbprint. The addition
of this constant in thumbprint has no more purpose
other than just to make the thumbprint distinctive.
This thumbprint is to be inserted as a binary
number [E]. Next thing is to calculate the data rate
N. That is the number of times (number of methods
in which) thumbprint will be embedded into the
program [F]. To make our scheme more robust and
tamper-resistant we choose to 2N+l of total
number of methods of a program in which
thumbprint will be encoded.

Finally € is our thumbprint encoder. It encodes
specified thumbprint into p by N number of times
[G]. This information is also then recorded into the
DB so that to assert the ownership and to identify
the original product licensee [H].

- licInfo = Encrypt (Vendor + Product + User +

Copy Sr #) [A]
— thumbnail = computeHash (licInfo) [B]
— hash = hashCode(thumbnail) €]
— thumbprint = T (hash) {+uc] D]
— thumbprint = (thumbprint), [E]
- N={nA2nt+l =<M(P)} [F]
— P/= g (P, thumbprint, N) (Gl

— DB = DB + (licInfo + thumbprint + N) [H]

A-5

4.2. Thumbprint Decoding

To extract a thumbprint Alice starts with Bob’s
copy of P, i.e. P’. Fist of all Alice will query DB for
specific Product to get the value N, i.e. the
minimum occurrences of thumbprint required to
prove her ownership [I]. Our decoder & will then
extract the thumbprint that was embedded by 2N+1
times in P’ [J]. Alice will subsequently requery DB
with this thumbprint for original licensee’s
information [K]. On the basis of this information
Alice may determine if Bob is the original licensee
or is a pirate. Furthermore, if Bob claims to be the
valid licensee of P’ then he must be having a lic.txt.
Thumbprint extracted from lic.txt by repeating [A,
B, C & D] onto it, must be same as the thumbprint
extracted from P’. This whole process of decoding
thumbprint is shown in figure 4.

~ N =DB (Product) 1)
— thumbprint = d (P, N) 8]
— licInfo = DB (thumbprint) (K]
| License.txt —@
Generate v

Thumbpriat

5
Bob

Plil

Decode

Disassemble

Thumbprint

(&%

Generate“

Thumbnail

License info of P !

Figure 4: Extraction of Thumbprint from P
S. Thumbprinting .NET IL Code

In this section we present a prototypical
implementation of our novel watermarking
technique for .NET, called thumbprinting. The idea
behind is to embed a unique number as a
watermark in forward and backward jumps

sequence of program’s IL code instructions. The -

reason to use IL code is that, its flattened structure
makes static program analysis difficult to be
understood. Also as per our exploration, there isn’t
any debugger that runs IL code for dynamic
program analysis. Additionally it provides much
more flexibility to embed thumbprint as employed
by our proposed scheme. Collberg has proposed a
similar technique to embed bits in forward and
backward execution flow of program in [16, 8].
Our approach differs by the fact that we are not
using any branch function instead we are encoding
bits at direct jump positions. Removing branch
function increases the obscurity of thumbprint.

We have developed an application in VB.NET that
automates the process of thumbprint generation.
This application asks vendor to input user specific
license information and produces two outputs. First
one is a license file (lic.txt) containing the license
information and secondly its thumbprint (a positive
whole number).

5.1. Experiment

Here we take our experiment through the steps
defined in Section 4.2 to encode and decode
thumbprint. For this purpose we have selected the

following data set.
*sr=1 I/l Copy Serial Number

* licInfo = Encrypt (Alice, P, Bob, 1)
=*“QalBlpICbE"

» thumbnail = computeHash (*OalBip1CbE”)
=“1@r#$ASyDFQ9u87p” I lic.txt

hash = hashCode (“!@r#$ASyDF09u87p”)
=2011013001

thumbprint = X (2+0+1+1+0+1+3+0+0+1)
=9 [+uc=0]=9=1001

* m=M(P)=30 /| No. of Methods in P
* N =10 I any No for which2N + 1 <m
DB = DB + (Alice, P, Bob, 1,9, 10)

5.2. Implementation

The code below is the disassembly of program
Hello.exe. For the sake of better understanding we
have taken a single method abe(). The IL code is
simplified to present our code transformations to
encode thumbprint’s bit stream. Such disassembly
can be produced by ildasm.exe that is shipped with
VS.NET.

A-6

method void abe () { /

IL_0001 : nop
IL_0007 : ldstr “Hello World”
IL_0003 : call void [mscorlib.printstr()]
IL_0005 : nop

IL_0009 : ret

}

Figure 5: P = disassembly of method abc ()

In its natural flow .NET compiler executes
instructions in downs ward direction. So we
fabricated a binary sequence (thumbprint) by
introducing new forward and backward jumps
(MSIL break instruction, i.e. br). Our scheme

preserves semantics of the program even after €

runs P through transformations T to produce the
thumbprinted P’. Thumbprinting IL code this way
is tamper-proofed because any change in code at IL
level or at high level with disrupt the ultimate IL
statements’ labels and that will cause jumps to hit
invalid targets. And the number of times we embed
thumbprint is quite high (like in 21 (2N+1) out of
30 methods) so for an attacker it is quite intricate to
sort out the hidden thumbprint. Presuming if some
attacker may decipher anyiof encoded thumboprint,
yet it is quit difficult to figure out all of its 21
instances or at minimum N instances. Furthermore
even after revealing max number of its
occurrences, it is hectic to remove them all while
keeping semantics intact. |

method void abe’ ()

IL_0001 : nop
IL_0002:brs 1L_0007

—> IL_0003 : call void [mscorlib.printstr()] :
IL_0004 : br.s 1L_0009

—» 1L_0005 : nop ' :
0 1L_0006 : br.s IL_0003

IL_0007 : Idstr “Hello World” <—

° —— IL_0008:brs IL_0005
IL_0009 :ret <«

Figure6: P’ =T (P)

6. RELATED WORKS

Software protection is a continuously war between
two forces, one is defender who wants to secure his
product or intellectual property rights and other is
attacker who will always look for loopholes to
break the product. In this paper we have presented
a combination of software watermarking and
temper proofing. The previous approaches have
mostly disused watermarking java programs. Many
papers contributed towards the definition of
software protection as a problem. Gleb and Nasir in
[9] describe each term i-e associated with software
protection very precisely and clearly. They
discussed that software protection is not limited to
watermarking but it includes securing the software
through licensing files, application servers,
hardware based-solutions, temper proofing and
obfuscations. You need complete software
protection framework in order to fully protect your
software. Collberg in [3] discusses the
watermarking, tamper-proofing and obfuscation as
tools for software protection. These tools are
effective against three types of attacks by any
malicious hosts. Collberg also stress that we can
protect our software if we take good care of all
attacks i-e software piracy, reverse engineering and
tamper-proofing. We need to apply all tolls
together in order to completely secure our
software. Clark Thomborson {[11] especially
focuses on the software watermarking as a mean of
protection again software piracy. He describes the
four attacks on software watermark. Clark has also
discussed the different algorithms proposed by
other people for software watermarking. We have
used these algorithms in our work. Another
technique proposed by the [8] statistically changes
the addresses of caller and calling function. These
addresses were dynamically manipulated according
to branch-function based watermarking introduced
by Collberg [16]. This technique adds a branch
function which when gets controls; dynamically
generate return address so the control is never
returned to caller functions from this dummy
branch function. Thomas sander {7] discussed the
method to hide the function means all functionality
is hidden from the user which reduce the risk of
reverse engineering. Encrypted function s
executed with out decryption that eliminates the
program analysis. In [19] Min Chen presents a
through study of legal & technical means to protect
the software. In legal means it discusses the copy
rights, patents and licenses. In technical means it
only covers software distribution model. Richard
wiener in JOT [20] discusses the obfuscation
process adopted by two tools. We have used these

A-7

tools in order to do obfuscation in our process.
Software piracy problem can also be solved
through diversity as {21] describes a mechanism of
diversity through uniqueness of installation,
customized updates. In this scenario customer will
be connected frequently to the software vendor.
Formal cost of proposed sachem is also presented.

Now we will see how different researchers have
solved the software protection problem for java.
Java is mostly used for development so software
developed wusing this language needs much
attention. Java classes are mostly protected and
watermarked. Mishra {22] proposed a method of
static watermarking for whole program. Watermark
is inserted by extracting control flow diagram of
method and by assigning it a certain value based on
pre-defined scheme. Watermark of the same value
is constructed and inserted into that method. If N
method required to be protected then at least 2N+1
method need to be watermark. Another good paper
{15] by Curran has proposed a new technique
called method-dept: technique. Proposed scheme
embeds a value of watermark on the basis of call
graph depth of a method. Scheme is mainly based
on recursion. One of similar approach as ours is
presented by Collberg [16] embeds the watermark
in the dynamic brarch structure of program. They
have used temper proofing techniques to prove that
their watermark is resilient.

We have also gone tirough different techniques of
temper proofing znd obfuscation because if
watermark is not 1zmper proof properly it can
easily be detected ard removed. It also helped us to
evaluate different teols available for obfuscation.
Clark in [6] presented a technique based on
constant encoding. He replaced the numeric value
with function call; this function computes back this
value through watermarked dynamic data structure
of actual program. Proposed scheme constructs a
graph (PPCT) by mapping WM numeric value
code through ‘codec’, i-e encoder and decode
function. Collberg in [13] presents a several
obfuscation techniques for java. They present
opaque constructs and introduce them in the
program where there is chance of condition
evolution. They have also used basic constructs
like if-else with some ADT’s like tree, graph or
even threads to introduce opaque predicates.
Another obfuscation scheme [23] presented by
fukushima is based on destructing encapsulation
structure of classes by transferring one class’s local
method’s member, variables & instructions to
another class as static members. This creates high
dependency among classes, thus complicate

»

reverse engineering by cadsing temper resistance,
Steganography is anothef method to embed your
watermark as a secret message Bertrand Anchaert
[1] discussed this approach and argues that
Steganography is different from watermarking
because for watermarking we need to have
extraction mechanism which is not required in case
of Steganography. Author has described four key
areas where we can hide our secret message. These
are instructions selections, register allocations,
instruction scheduling and code layout. Author also
developed a tool to exract and embeds a secret
message.

Two tools for obfuscations are available in the
market. These are Dotfuscator and LOCO.
Dotfuscator [4] removes debug information and
non-essential metadata from a MSIL file as it
process it. This tools work on complied MSIL
code, not source code. The main thing is that
obfuscated MSIL is functionally equivalent to
traditional MSIL code and will execute on
Common Language Runtime (CLR) with identical
results. This tool supports both incremental and
control flow obfuscation. Another relatively new
tool LOCO [24] employs control flow flattering
branch function & opaque predicates as basic
transformation on java code.

7. DISCUSSIONS

We have gone through many approaches for
software protection. The common problem with all
approaches is that,“ they all discuss the software
protection for Java. Only Dotfuscator tool has
discussed obfuscation for .net based application.
Where as market is currently captured by .net
applications. Now it is requirement of the time that
we should have some solution for .net based
application too. Technique used by [8] adds one or
more branch functions so it can be visible and
demark-able among original code. The
functionality of this branch function is also not
clearly defined. Thomas sander {7] has introduced
software as a usage toncept which can have some
architectural problems. He also used an encrypted
function but what this encrypted function ¢ontains
either some function calls or some patent
information. Most of the product protection means
discussed by the Min Chen [19] lack tamper-
proofing verification code, so they can be defeated
any ways. Another important aspect is that most of
the solution are from third party and needs to be
embedded into to the application which creates
dependency. The idea proposed by [21] is unique
one but it lacks the practicality. It is also costly to

A-8

have an automated updating system for every
product. There is no justification of details that
when software require to be updated.

8. CONCLUSION AND FUTURE WORKS

Software copy right protection is the utmost need
of time against software piracy. The purpose of our
research is to identify the need for developing new
software watermarking algorithms, especially to
protect .NET framework based applications. We
aimed to expose the need to develop Sand Mark
and Loco like tools, based on .NET framework
constructs. Our research aimed to practice and
promote research and development of better
software protection mechanisms for .NET
applications.

We have tried to present a through study and
evaluation of contemporary software protection
techniques with a practical viewpoint. Our
proposed methodology is more resilient and
stealthy then the previous ones because we have
used hybrid watermarking. It is also easy for
vendor to decode because the thumbprint is closely
coupled with license information and we can also
compare the detected thumbprint with our DB so
verify the results.

Future work in this direction can be to improve and
automate the procedure presented above and to
come up with more resilient and stealth method
with less cost impact.

9. REFERENCES

{1] B. Anckaert, B. D. Sutter, D. Chennet and K. D.
Bosschere. Steganography for Executables and Code
Transformation Signatures, /n LNCS 3506, Springer-
Verlag Berlen, pp. 431-445. 2005

[2] B. Fu, G. Richard IIl and Y. Chen. Some New
Approaches for Preventing Software Tampering. /n ACM
SE'06, Melbourne, Florida, USA. 2006.

[3]1 C. Collberg and C. Thomborson. Watermarking,
Tamper-proofing, and Obfuscation-Tools for Software
Protection. /n [EEFE transaction on software engineering,
vol 28, no 8, August 2002

[4] Pre-Emptive Solutions www.preemptive.com.
Dotfuscator, Technical While Paper, version 2, 2004.

{51 S. K. Udupa, S. K. Debray and M. Madou. De-
obfuscation Reverse Engineering Obfuscated Code. In
12" Working Conference on Reverse Engineering, IEEE
Computer Society, November 2005.

[6] C. Thomborson, J. Nagra, R. Somaraju and C. He.
Tamper-proofing Software Watermarks. In AISW,

Conference in Research and Practice in Information
Technology, Vol. 32, Dunedin, New Zealand, 2004

{71 T. Sander and C. F. Tshcudin. On Software
Protection by Function Hiding. In 2™ International
Workshop on Information Hiding, December 1998

[8] M. Madou, B. Anckaert, B.D. Sutter and K.D.
Bosschere. Hybrid Static-Dynamic Attacks against
Software Protection Mechanism. In Proceeding of ACM
DRM 1-59593-230-5, Alexandria, Virginia, USA,
November 7, 2005.

[9] G. Naumovich and N. Memon. Preventing Piracy,
Reverse Engineering, and Tampering. In [EEE
Computer, Vol 36, No. 7, pp. 64--71, July 2003

[10] P. T. Devanbu and S. Stubblebine. Software
Engineering for Security; a Road-Map. In Proceeding of
ICSE Special Vol on the “Future of Software
Engineering”, 2000.

[11] W. Zhuy, C. Thomborson and F.Y. Wang. A Survey
of Watermarking. In LNCS vol 3495, Springer-Verlag..
pp. 454 - 458, April 2005

[12] D. Bendersky, A. Futoransky, L. Notarfrancesco, C.
Sarraute and A. Waissbein. Advance Software Protection
Now. In Corelabs Technical Report available at
http-www.coresecurity.com/corelabs/projects/software
protection.php, 2003.

{13] C. Collberg, C. Thomborson and D. Low.
Manufacturing Cheap, Resilient, and Stealthy Opaque
Constructs. /n Proceedings of ACM SIGPLAN-SIGACT
pp.184—196, 1998.

[14] BSA, www.bsa.org. Annual BSA and IDC Global
Software Piracy Study, 2006.

{15] D. Curran, N. J. Hurley and M. O Cinneide.
Securing Java Through Software Watermarking. In

A-9

o

Kilkenny 2™ Internatfonal Conference on the Principles
and Practice of Prodramming in Java, ACM, 2003

[16] C. Collberg, E. Carter, S. Debray, A. Huntwork, C.
Linn and M. Stopp. Dynamic Path-Based Software
Watermarking. In Proceeding of the conference on

Programming Language Design and Implementation,
pp.107-118, 2004.

[17] en.wikipedia.org/wiki/software_piracy.

[18] UGS Corp. Guide To Software Piracy Prevention.
Jan 2005.

[19] M. Chen. Software Product Protection. Article in T-
110.501 Seminar on Network Security, ISBN 951-22-
5807-2, 2001

[20] Dr. R. Wiener. Obfuscation and .Net. In Journal of
Object Technology, Vol.4, No.4, pp.73-92, May-June-
2005.

[21] B. Anchaert, B. D. Sutter and K. D. Bosschere.
Software Piracy Prevention through Diversity. In
Proceedings of the 4th ACM workshop on Digital Rights
Management, Washington DC, USA, November 2004

{22] A. Mishra, R. Kumar and P. P. Chakarabarti. A
Method-based Whole-Program Watermarking Scheme
for Java Class Files. 2005

[23] K. Fukushima, T. Tabata and K. Sakurai. Evaluation
of Obfuscation Scheme focusing on Calling
Relationships of Fields and Methods in Methods. In
Proceeding (440) _ Communication__ Network___and
Information Security, 2003.

[24] M. Madou, L.V. Put and K. D. Bosschere. LOCO,
An Interactive Code (De)Obfuscation Tool. In
Proceeding of ACM PEPM [-59593-196-1/06
Charleston, South Carolina, USA. 2006.

Appendix B

CODE LISTING

Appendix B / Code Listing

B. / Code Listing

B.1 Tower of Hanoi

The goal of this classic problem is to get the stack of discs from one post to another.
Basically, there are three posts, one of which contains a stack of discs that get smaller as

you go up, as shown in figure below:

+ |

Figure B.1 Tower of Hanoi
Followings are the rules governing how discs can be moved:

1. only one disc can be moved at a time, and

2. never place a larger disc on top of a smaller one
B.1.1 High-level Language Code of Hanoi

The code presented below is VB.NET version of class Hanoi. This class is doing the
major functionality regarding moving the discs from one tower to another hence solving
the pfoblem. Rests of the classes in the application are system classes which do not play

any functionality but are created and used by .NET runtime environment.
t

'*'" VB.NET version of class ‘Hanoi’
Public Class Hanoi

Private discCounts(2) As Integer
Private moves(,) As Integer
Private movesIndex As Integer

''' <summary>

''' Constructor sets up the required local variables
0 ''Y </summary>

P WOo-J3on s Wh K

Software Thumbprinting VIA IL Code Transformations B-1

e

Appendix B

Code Listing

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Public Sub New{ByVal numDiscs As I-nzeger)

End

discCounts(0) = numDiscs
discCounts{l) =0
discCounts(2) = 0

ReDim moves {2 ”~ numDiscs - 2, 1}
movesIndex = 0
Sub

<summary>

GetMoves is the public method that kicks off the
recursive process.

</summary>

Public Function GetMoves() As Intezer(,)

End

DoMoves (0, 1, 2, discCounts(0;

Return moves
Function

<summary>

Recursive Method to get all disc moves
to solve the Towers of Hanoi croblem.
</summary>

Private Sub DoMoves(ByVal sourceScindle As Integer,

ByVal destSpirnZle As Integer,
ByvVal tempSpirzle As Integer,
ByVal discsTcMcve As Integer)

A recursive method needs a czse where
to simply return back (the tzse case),
and one or more cases
where to recursively call ths method
again (the recursive cases). In this
situation, if there are discs to
be moved, then it does some work,
otherwise it simply do nothing.
If discsToMove > 0 Then

' This next line is a recursive call
that moves n-1 discs frc= the source
spindle to the temp spinZle.
DoMoves (sourceSpindle, tercSpindle, _

destSpindle, discsZoMove - 1)

' These next two lines movs the last

' disc from the source spindle to the n spindle.
discCounts (sourceSpindle) -=
discCounts(destSpindle) += 1

' The next three lines recosrd this

' move in the moves array for use later.
moves (movesIndex, 0) = sourceSpindle
moves (movesIndex, 1) = deszSpindle
movesIndex += 1

' This recursive call moves the n-1

' discs back from the temr spindle to the

Software Thumbprinting VIA IL Code Transformations

Appendix B Code Listing

68 ' destination spindle.

69 DoMoves (tempSpindle, destSpindle,

70 sourceSpindle, discsToMove - 1)
71 End If

72 End Sub

73 End Class

B.1.2 IL Code of Hanoi

The IL code presented below is obtained from disassembly of Hanoi class.

1 ''' IL version of class ‘Hanoi’

2 .class public auto ansi Hanoi

3 extends [mscorlib]System.Object

4 {

5 .field private int32([] discCounts

6 .field private int32(0...,0...] moves

7 .field private int32 movesIndex

8

9 .method public specialname rtspecialname instance void
.ctor(int32 numDiscs) cil managed

10 {

11 .maxstack 3

12

13 IL_0000: nop

14 IL_0001: 1ldarg.0

15 IL 0002: call instance void
[mscorlib]System.Object::.ctor ()

16 IL 0007: nop

17 IL_0008: 1ldarg.0

18 IL_000%9: 1ldc.i4.3

19 IL_000a: newarr (mscorlib]System.Int32

20 IL_000f: stfld int32{] Hanoi.Hanoi::discCounts

21 IL_0014: 1ldarg.0

22 IL_0015: 1dfld int32([] Hanoi.Hanoi::discCounts

23 IL 00la: 1ldc.i4.o

24 IL_001lb: 1ldarg.l

25 IL_00lc: stelem.id

26 IL_001d: 1ldarg.0

27 IL 00le: 1dfld int32[] Hanoi.Hanoi::discCounts

28 IL 0023: 1ldc.id.1 »

29 IL_0024: 1dc.i4.o0

30 IL_0025: stelem.id

31 IL_0026: 1ldarg.0

32 IL_0027: 1ldfld int32(] Hanoi.Hanoi::discCounts

33 IL _002c: 1ldc.i4.2

34 IL_002d: 1dc.i4.o0

35 IL 002e: stelem.id

36 IL_002f: ldarg.0

37 IL 0030: 1ldc.r8 2.0

38 IL 0039: ldarg.l

39 IL 003a: conv.r8

40 IL 003b: call float64

Software Thumbprinting VIA IL Code Transformations B-3

Appendix B Code Listing
[mscorlib]System.Math: :Pow(float64, flo?gZ:)
41 IL_0040: 1ldc.r8 2.0
42 IL_0049: sub
43 IL_004a: call floaté64
[mscorlib]System.Math::Round(float64)
44 IL_004f: conv.ovf.id
45 IL_0050: 1ldc.id.1
46 IL_0051: add.ovf
47 IL_0052: 1ldc.i4.2
48 IL_0053: newobj instance void
int32{0...,0...]::.ctor(int32, int32)
49 IL_0058: stfld int32{0...,0...] Hanoi.Hanoi::moves
50 IL_005d: 1ldarg.0
51 IL_005e: 1dc.i4.0
52 IL_005f: stfld int32 Hanoi.Hanoi::movesIndex
53 IL_0064: nop
54 IL 0065: ret
g }
5¢
57 .method public instance int32[0...,0...] GetMoves() cil
managed
58 {
59 .maxstack 6
60 .locals init (int32(0...,0...])
61
62 IL_0000: nop ‘
3 IL_0001: 1ldarg.0 |
64 IL_0002: 1dc.i4.0 }
5 IL 0003: 1ldc.iq.1 }
6¢ IL_0004: 1ldc.i4.2
7 IL_0005: 1ldarg.0 f
6E IL_0006: 1dfld int32([) Hanoi.Hanoi::discCounts
69 IL_000b: 1dc.i4.0
¢ IL_000c: ldelem.1i4
11 IL_000d: callvirt instance void
Hanoi.Hanoi: :DoMoves (int32, int32}, int32, int32)
72 IL_0012: nop
73 IL_0013: ldarg.0 |
74 IL_0014: 1ldfld int32{0...,0...] Hanoi.Hanoi::moves
75 IL_0019; stloc.0 :
76 IL_00la: br.s : IL_00lc
77 IL_00lc: 1ldloc.0’ ;
78 IL_001d: ret
79 }
80 [
g1 .method private instance void DoMoves (int32 sourceSpindle,
int32 destSpindle, int32 tempSpindle, int32 discsToMove) cil
managed
82 {
83 .maxstack 6
g4 .locals init (int32,bool)
85
86 IL _0000: nop -
87 IL_0001: ldarg.s 4
68 IL,_0003: 1dc.i4.0
89 IL_0004: cgt
30 IL_0006: stloc.l

Software Thumbprinting VIA IL Code Transformations

B-4

o~

it o it e

£ U

Appendix B Code Listing

91 IL_0007: 1ldloc.1

92 IL 0008: brfalse.s 1IL_ 1132

93 IL_000a: ldarg.0

94 IL 000b: ldarg.l

95 IL _000c: ldarg.3

96 IL 000d: ldarg.2

97 IL_000e: ldarg.s 4

98 IL_0010: 1ldc.i4.1

99 IL 0011: sub.ovf

100 IL _0012: «callvirt inszznce void
Hanoi.Hanoi: :DoMoves (int32, ir=32, int32, int32)

101 IL 0017: nop

102 IL 0018: 1ldarg.0

103 IL_0019: 1dfld int:2[] Hanoi.Hanoi::discCounts

104 IL _00le: ldarg.l

105 IL_00l1f: stloc.0

106 IL_0020: 1ldloc.0

107 IL_0021: 1ldarg.0

108 IL 0022: 1dfld intiZ2() Hanoi.Hanoi::discCounts

109 IL_0027: 1ldloc.0

110 IL_0028: ldelem.i4

111 IL_0029: 1ldc.id4.!}

112 IL 002a: sub.ovf

113 IL 002b: stelem.:i4

114 IL 002c: 1ldarg.0

115 IL_002d: 1ldfld intzZ(] Hanoi.Hanoi::discCounts

116 IL 0032: ldarg.2

117 IL_0033: stloc.0

118 IL 0034: 1ldloc.0

119 IL_0035: 1ldarg.0

120 IL 0036: 1ldfld intZz(] Hanoi.Hanoi::discCounts

121 IL_003b: 1ldloc.0

122 IL_003c: ldelem.id

123 IL_003d: 1ldc.id.:

124 IL 003e: add.ovf

125 IL 003f: stelem.id

126 IL_0040: ldarg.0

127 IL _0041: 1ldfld intZ2{0...,0...] Hanoi.Hanoi::moves

128 IL 0046: ldarg.0

129 IL_0047: 1ldfld intIZ Hanoi.Hanoi::movesIndex

130 IL _004c: 1ldc.i4.0

131 IL_004d: ldarg.l

132 IL_004e: «callvirt inszznce void
int32([0...,0...])::Set(int32, inz32, int32)

133 IL_0053: ldarg.0

134 IL 0054: 1dfld int32{0...,0...] Hanoi.Hanoi::moves

135 IL_0059: ldarg.0

136 IL _005a: 1ldfld int:2 Hanoi.Hanoi::movesIndex

137 IL_005f: 1ldc.i4.1

138 IL_0060: ldarg.2

139 IL _006l: callvirt ins:tznce void
int32[0...,0...])::Set(int32, inz32, int32)

140 IL_0066: 1ldarg.0

141 IL 0067: 1ldarg.0

142 IL_0068: 1dfld int:2 Hanoi.Hanoi::movesIndex

143 IL_006d: 1dc.i4.1

144 IL_0O6e: add.ovf

Software Thumbprinting VIA IL Code Transformations B-5

Appendix B Code Listing

145 //'/ IL 006f: stfld int32 Hanoi.Hanoi::movesIndex

146 IL 0074: ldarg.0

147 IL _0075: ldarg.3

148 IL_0076: ldarg.2

149 IL 0077: 1ldarg.l

150 IL 0078: 1ldarg.s 4

151 IL_007a: 1ldc.id.1

152 IL 007b: sub.ovf

153 IL 007¢: callvirt instance void
Hanoi.Hanoi::DoMoves (int32, int32, int32, int32)

154 IL 0081: nop

155 IL_0082: nop

156 IL _0083: nop

157 IL_0084: ret

158 }

159 }

B.1.3 Thumbprinted IL Code of Hanoi

Original IL code of Hanoi contains three methods from which DoMoves() is
thumbprinted using proposed thumbprinting scheme. Code provided below is
thumbprinted version of IL code of Hanoi in which DoMoves() method is containing
thumbprint value 35;¢ (i.e. 100011,). The original code is simplified so that to highlight

Fhe thumbprinted code block. We can observe that on an average 6-7 original lines of

code are converted to 13 lines of thumbprinted code that adds only 7 or 6 extra lines of
code to encode a thumbprint once in a method. Another observation is that the
thumbprint is tried to be encoded in last lines of a method which ends at a return (ret) or
i no-operation (nop) statement. This thumbprint encoding place can be varied but here

this is done so for experimental purpose.

'''" Thumbprinted IL version of class ‘Hanoi’
.class public auto ansi Hanoi
extends [mscorlib}System.Object
{

.method private instance void DoMoves (int32
sourceSpindle, int32 destSpindle, int32 tempSpindle,
int32 discsToMove) c¢il managed

{

.maxstack 6
.locals init (int32,bool)

IL_0000: nop
IL 0001: 1ldarg.s 4

IL 0077: 1ldarg.l
IL_0078: ldarg.s 4

Software Thumbprinting VIA IL Code Transformations B-6

Appendix B Code Listing
1 IL_007a: 1ldc.id4.1l
2 IL Olla: br.s L_007b
3 IL_0082: nop
4 IL O0llb: br.s IL_0083
5 IL_0083: nop
6 IL Ollc: br.s IL_0084
7 IL_0081l: nop
8 IL 01ld: br.s IL_0082
9 IL_007c¢: callvirt instance void

Hanoi.Hanoi: :DoMoves (int32, int32, int32, int32)

10 IL Olle: br.s IL_0081
11 IL 007b: sub.ovf

12 IL_0l2a: br.s IL_007c
13 IL _0084: ret

B.1.4 Branch Function Implemented Code of Hanoi

1 Public Class Hanoi
2 Public Function GetMoves({) As Integer(,)
3 Dummy1l ()
4 Return moves
5 End Function
6 |
7 Public Function Du@myl() As Integer(,)
8 DoMoves (0, 1, 2, discCounts(0))
9 Return moves
10 End Function
11
12 Private Sub DoMoves(ByVal sourceSpindle As Integer, _
13 ByVal destSpindle As Integer, _ByVal tempSpindle As
Integer, _ByVal discsToMove As Integer)
14 End Sub
15 End Class
¢

Software Thumbprinting VIA IL Code Transformations B-7

Appendix C

INTRODUCTION TO MSIL

,

Appendix C Introduction to MSIL

MSIL code comprises of two main components: metadata and managed code. Metadata is
a system of descriptors of all structural items of the application—classes, their members
and attributes, global items, and so on—and their relationships. The managed code
represents the functionality of application’s methods encoded in this abstract binary form

known as IL, which defines CLR compliant instructions.

The diagram below shows the sequence of a NET program execution, from source code

to IL code and from IL code to native machine code.

Source code

3

Managed compiler }

? Common language runtime
Metadata Loader O——+| Internai data ‘
- . — structures
IL code R l) - S
2 ;;Managedﬂ?fl}}[?; \~ JIT compiler | O—] Native code

Execution engine

Figure C.1 Execution of managed .NET application [18]

MSIL is a stack-based set of instructions designed to be easily generated from higher
level language source code by .NET compilers and other compliant tools. Several kinds
of instructions are provided, including instructions for arithmetic and logical operations,
control flow, direct memory access, exception handling, and method invocation. There is
also a set of IL instructions for implementing object-oriented programming constructs
such as virtual method calls, field access, array access, and object allocation and
initialization. The IL instruction set can be directly interpreted by simply tracking the

data types on the stack and emulating the IL instructions.

Software Thumbprinting VIA IL Code Transformations C-1

Appendix C Introduction to MSIL

Y

Here we examine how IL code will look like. We will observe a trivial “HelloWo'rG

example for both of its C# version and equivalent MSIL version.

C#

public static void main(string!] args)
{

System.out.println("Hello world!");
}

MSIL

.method static void main(string{] args) cil managed
{

.entrypoint

.maxstack 8

IL_0000: nop

IL 0001: ldstr "Hello world!”

IL _0002: call void [mscorlib]System.Console::WritelLine(string)
IL_0003: nop

IL_0004: ret

Table C.1 Code Snippet of HelloWorld Program ‘
\

We can observe that a single line method written in C# is compiled into %Several IL

instructions. There will be a single IL code file of any .NET executable. Its code starts by

defining the application metadata (like assembly information) that is followed by IL code

in hierarchical structure (like namespaces containing classes and classes containing

methods’ code). Above code snippet is showing the inner most block of fcode (i.e.

disassembly of a method ‘main ()°). This is default method from which NET abplications

starts running. This is why the first line in IL code we see the word ‘.entry p&int’ which

helps .NET compiler to start application running from this method. Second line of code

‘.maxstack 8 defines the number of slots to be reserved in memory which the‘identiﬁers

of this method will use at execution time. Subsequent instructions comprises of
functional code of the method, each of these lines of code start with a label like

‘IL_0000’. .NET compiler only requires these labels for those instructions which are

targets of some jump call. As there is no jump calls in this snippet so these labels only -
serve as statement identifiers. Visual Studio compiler starts compiling from first

instruction and stops where finds the first occurrence of ‘ref’ statement in a method. As

Software Thumbprinting VIA IL Code Transformations C-2

Appendix C Introduction to MSIL

we see the last statement in above code is ‘ret’ so compiler will transfer control to the
caller of this method.

We have presented a simple introduction of this IL code block over here where as more

comprehensive details can be viewed at [18].

Software Thumbprinting VIA IL Code Transformations C-3

Appendix D

USING ildasm AND ilasm

e

Appendix D Using ildasm and ilasm

This appendix presents a simplified scenario illustrating how to use Micr?é;t IL

assembler and disassembler through a trivial HelloWorld example.
D.1 Disassembling .NET Application

Microsoft .NET framework is shipped with two built-in tools called ilasm (IL Assembler)
and ildasm (IL Disassembler). ildasm disassembles an executable file like .exe or .dll and
produce its IL code. It can be found in directory [DIR]:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0\Bin\ on a system where .NET framework is installed. In order to
execute this tool go to above directory and run ildasm.exe. It will open the disassembler

window as shown in Figure D.1.

F C:\HelloWorld.exe - IL DASM

File View Help

= & C:\Helloworld.exe
> MANIFEST
= JE Hello
P .class public auto ansi beforefieldinit
B .ctor : void()

tain : void{string(])

.assembly sample M
{ v,

Figure D.1 Disassembling HelloWorld.exe through lldasm
¢

We opened HelloWorld.exe in ildasm and its disassembly is shown in above figure. If we
observe different nodes in the tree, we see the root node ‘C:\HelloWorld.exe’ is
displaying the name of executable file that is disassembled. Second node titled as
‘Manifest’, contains the program metadata as assembly information, which is shown in

Figure D.2. It defines references to external assemblies which this application imports

Software Thumbprinting VIA IL Code Transformations D-1

Appendix D Using ildasm and ilasm

like mscorlib, etc. Moreover it defines certain properties of this assembly which

required by .NET runtime environment.

F MANIFEST

are

>

.assembly extern mscorlib
<
| .publickeytoken = (B7 7A SC 56 19 34 E0 89) /7 .z
| .ver 2:0:0:0

[}
| -assenbly sample

.customn instance void [mscorlib]}System.Runtime.CompilerServices.Compilatio
-hash algorithm 0x90008004
.ver 0:0:0:0

| .module sample.exe

)// HUID: (CF554140-297D-4ASA-BB1D-6B68933B50B3) ‘
| .imagebase 0x00400000 ‘
|.file alignhment 0x00000200
.stackreserve 0x00108000

.subsystem 0x0003 /7 WINDOWS_CUI
.corflags 0x00000001 // ILONLY

// Image base: 0x03450000

K

v

Figure D.2 Metadata Information as Contained in Program Manifest

Third node is the name of assembly ‘Hello’ and rests of the nodes are classes

and

methods it contains. If we double click the last node titled ‘Main: void(string[])’, it will

open the IL code of this method as shown in Figure D.3.

7 Hello::Main : void(string[])
Find Find Next

i-method public hidebysig static void Main(string[] args) cil managed A

i S
.entrypoint :
// Code size 13 (oxd) A
-maxstack 8 B
IL_0000: nop N
IL_0601: 1dstr "Hello Horlde™ =1
IL_0006: call void [mscorlib]System.Console::WriteLine{string) §
IL_0606b: nop)
IL_000c: ret 5

} /7 end of method Hello::Main |

>
Figure D.3 Disassembling Method Main(string[]) through lidasm
Software Thumbprinting VIA IL Code Transformations D-2

Appendix D / Using ildasm and ilasm

' D.2 Modifying IL Code

Modifying program code at this level requires reasonable level of expertise in writing

program in IL code. It is critical because these pseudo assembly instructions are sturdily

connected to each other and altering them without consideration will result in program

syntax and semantics errors. To modify this code we will take this block to some text

editor and change it with valid IL code statements. Then a complete IL code file will be

created that will contain rest of unchanged IL code of all methods of this application

along with this modified code block. This new file is required to be saved with *.il’

extension. Here is the complete IL code of modified HelloWorld.il.

// Metadata version: v2.0.50215
.assembly extern mscorlib
{

.publickeytoken = (B7 7A 5C 56 19 34 EO 89) // .z\V.4..

.ver 2:0:0:0
}
.assembly sample
{ i
.custom instance void [mscorlib]

System.Runtime.CompilerServices.CompilationRelaxationsAttribute::

.ctor(int32) = { 01%00 08 00 00 00 00 00)
.hash algorithm 0x00008004
.ver 0:0:0:0 -

}

.module sample.exe

// MVID: {A224F460-A049-4A03-9E71-80A36DBBBCD3}
.subsystem 0x0003 . // WINDOWS_CUI
.corflags 0x00000001 { // TILONLY

.class public auto ansji beforefieldinit Hello
extends [mscorlﬁb]System.Object
{

{ ‘ ‘
.entrypoint E
// Code size 13 (0xd)
.maxstack 8 5
IL_0000: nop

IL 0001: 1dstr 'I am Modified!" // changed from HelloWorld!
IL 0006: call void [mscorlib]System.Console::WriteLine(string)

IL:OOOb: nop
IL_000c: ret
} // end of method Hello::Main

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed
{
// Code size 7 {0x7) -
.maxstack 8
IL 0000: 1ldarg.0

IL 0001: «call instance void [mscorlib]System.Object::.ctor()
IL 0006: ret

.method public hideb?sig static void Main(string(] args) c¢il managed

Software Thumbprinting VIA IL Code Transformations

Appendix D Using ildasm and ilasm

} // end of method Hello::.ctor
} // end of class Hello

Figure D.4 Complete IL Code of HelloWorld.il

D.3 Re-Assembling IL Code

Above IL code file is given to ilasm to build a modified executable instance that will
show intended modifications. Jlasm assembles valid IL code to build an executable file
like .exe or il It can be found in directory
[DIR]:\WINDOWS\Microsoft. NET\Framework\v2.0.50727\. In order to execute this tool,
run system command prompt or use command prompt companioned with Visual Studio.
In order to re-assemble IL code to an executable file we move to the above directory and
run ilasm by specifying required parameters as shown in Figure D.5. The first parameter
is the name of file containing complete IL code exhibiting valid syntax and semantics.
Second parameter is the output switch, like ‘/exe’ to get an .exe file or ‘/dIl’ to get a .dll
file. Here we require an executable so we specify /exe over here. There are several other
parameters which can be used for different purposes like displaying debug information,

etc. Refer to [18] to get a complete list of ilasm commands and their usage details.

¢t Visual Studie 2005 Command Prompt !EB

C:\UINDOUS\Microsof t .NET\Francuork\vw2.8.5072?>ilasn Hellollorld.il sexe

Microsoft (R)> _NET Frameuvork IL fissembler. Uersion 2.0.58727.42
Copyright <(c) Microsoft Corporation. A1l rights reserved.
Assembling ’Hellollorld.il’ to EXE ~-> ’Hellollorld.exe’

Source file is ANSI

fAssenbled method Hello::Main
Assembled method Hello::.ctor
ECreating PE file

Emitting classes
Class 1:

Emitting fields methods:
Global
Class 1 Methods:

Emitting events properties:
Global

Class 1

Uriting PE file

Operation completed successfully

C:\UINDOUS\Microsoft .NET\Franeuork\v2.8.58727>

Figure D.5 Re-Assembling Modified HelloWorld.il through Ilasm

Software Thumbprinting VIA IL Code Transformations D-4

/

Appendix D Using ildasm and ilasm

7(e second last line in above screen is displaying a message stating successful re-
assembling of modified HelloWorld.il into HelloWorld.exe. If ilasm find some syntax

error in IL code then this message will be changed to a failure message.

Software Thumbprinting VIA IL Code Transformations D-5

