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Preface

During the past several years, interest in non-Newtonian fluids has increased due to their
technological applications. Many materials such as, polymer solutions or metals, drilling
mud, clastomers, certain oils and gases and many other emulsions are classified as non-
Newtonian fluids. Due to complexity of fluids, there are many models of non-Newtonian
fluids. However, to describe several non standard features, such as normal stress effects, rod
climbing, sheer thinning and sheer thickening, Rivlin-Erickson fluids [1] of differential
types have acquired a special status. Several interesting studies [2-7] are available in the
literature which deal with the equations of motions on non-Newtonian fluids of second and
third grades in various geometrical configurations. Moreover study of heat transfer plays an
important role during the handling and processing of non-Newtonian fluids. The
understanding of heat transfer in boundary layer flows of non-Newtonian fluids is of
importance in many engineering applications such as the design of the thrust bearings and
radial diffusers, transpiration cooling, drag reduction, thermal recovery of oil etc.

All the above mentioned studies have lacked the effects of variable viscosity and heat
transfer on the flow. Very little work has been reported which deals with such effects.
Massoudi and Christie [8] have discussed the effects of variable viscosity and viscous
dissipation on he flow of third grade fluid in a pipe through the numerical solution.

In this study, the analytical solutions are obtained and observations are found to be in
agreement with the numerical solution of the problem given by Massoudi and Christie [8]
for temperature dependent viscosity. For temperature dependent viscosity, the governing
equations are complicated system of coupled equations in velocity and temperature
distributions. We use homotopy analysis method (HAM) [9] to obtain analytical solution.
The HAM has already been applied successfully to discuss many flow problems [10-32].

In chapter one, the basic definitions of fluids and homotopy are given. Chapter two is
devoted to the study of influence of variable viscosity and viscous dissipation on non-
Newtonian flow. An analytical solution for the flow of a third grade fluid in a pipe using
HAM is studied.

In chapter three, we find an analytic solution for the flow consider in [9] with effect of
porous medium by using modified Darcy’s law. The governing equations are modeled and
analytical solution using HAM is studied. The fluid is assumed to be in a compressible.
Expression for velocity and temperature profiles are constructed analytically and explained
with the help of graphs.
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Chapter 1

Preliminaries

In this chapter, some basic definitions and concepts of various types of fluids are presented.
Basic equations which govern the flow are given. The basic idea of Homotopy Analysis Method

(HAM) is also explained in this chapter.

1.1 Fluid

A fluid is a substance that deforms continuously under the application of shearing, i. e.,
tangentail stress, no matter how small the shearing stress is. According to physical forms in

which matter exists, fluid comprises the liquid and gas phases.

1.2 Flow

A material undergoes a deformation when different forces act upon it. If the deformation

continuously increases without limit, the phenomena is known as flow.

1.3 Deformation

It is a relative change in position or length of the fluid particles.
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1.4 Pressure

The magnitude of force exerted perpendicularly on unit area of an object is called pressure.
Let A is the surface area of a fluid and F is the magnitude of force acting normal to the

surface, then the pressure p* due to the force on unit area of this surface is

F
= 1.1
P= (1.1)

1.5 Density

It is defined as the mass per unit volume. Mathematically one can write
m
= —. 1.2
=3 (1.2)

Here p is the density, m is the mass and V is the volume.

1.6 Viscosity

Although a fluid offers no resistance to change of shape, it does inhibit resistance to the rate
of change of shape. The property of producing this resistance is called the viscosity. It is
the property which gives rise to tangential (shearing) stresses whenever relative motion occurs
within a fluid.

In mathematical form we have

shear stress

= 1.
= Tate of shear strain’ (13)
where p is the coefficient of viscosity.
1.7 Kinematic viscosity
It is a ratio of dynamic viscosity to density. Mathematically
I3
V= ;, (14)
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1.4 Pressure

The magnitude of force exerted perpendicularly on unit area of an object is called pressure.
Let A is the surface area of a fluid and F is the magnitude of force acting normal to the

surface, then the pressure p* due to the force on unit area of this surface is
F
Y= 1.1
= (11)

1.5 Density

It is defined as the mass per unit volume. Mathematically one can write

(1.2)

)
i
<3

Here p is the density, m is the mass and V is the volume.

1.6 Viscosity

Although a fluid offers no resistance to change of shape, it does inhibit resistance to the rate
of change of shape. The property of producing this resistance is called the viscosity. It is
the property which gives rise to tangential (shearing) stresses whenever relative motion occurs

within a fluid.

In mathematical form we have

shear stress

= 1.
#= Tate of shear strain’ (1.3)
where p is the coefficient of viscosity.
1.7 Kinematic viscosity
It is a ratio of dynamic viscosity to density. Mathematically
U
v=-, 14
. (14



in which v is a kinematic viscosity.

1.8 Classification of fluids

1.8.1 Ideal fluids

The fluids which offer no resistance to flow i. e., for which viscosity is negligible are termed as
ideal fluid.

1.8.2 Real fluids

These are the fluids for which dynamic viscosity is non-zero. Real fluids are further classified
into two classes on the basis of Newton’s law of viscosity. According to this law
“shear stress is directly and linearly proportional to the rate of deformation”.

For one dimensional flow we can write as

du
Ty = l‘@a (1.5)

where T, is the shear stress and du/dy is a deformation rate.

1.8.3 Newtonian fluids

The fluids which obey Newton’s law of viscosity are called Newtonian fluids. Water, gasoline

and mercury are some examples of Newtonian fluids.

1.8.4 Non-Newtonian fluids

The fluids for which “shear stress is directly proportional to the rate of deformation but in a

non-linear manner”. Mathematically

Tye =k <g§)"’ n#l , (1.6)

or

Tyz =1 (%) ; (1.7)
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where .
du\""
- (&) o

is the apparent viscosity. Examples of non-Newtonian fluids are tooth paste, ketchup, gel,

shampoo, blood and soaps.

1.9 Types of flows

1.9.1 Uniform flow

It is a flow in which the velocities of fluid particles are equal at all sections of the flow domain.

1.9.2 Non-uniform flow

It is a flow in which the velocities of fluid particles are not the same at all sections of the flow

domain.

1.9.3 Steady flow

A flow for which fluid properties do not depend upon time. For such flow

av
5 =0 (1.9)

where V is the fluid velocity and ¢ is the time.

1.9.4 Unsteady flow

A flow for which fluid velocity depends upon time i.e.,
ov
5 #0. (1.10)

1.9.5 Compressible flow

It is a flow which possesses a variable density. All the gases are treated as compressible flows.



1.9.6 Incompressible flow

It is a flow of constant density. All the liquids are treated as incompressible flows.

1.9.7 Porosity

The measurement of openings in buildings, which allow air to enter during a period of high

wind,or a measure of the amount of voids (pores) in a material.

1.9.8 Porous medium

A porous medium is a continuous solid phase with intervening void or gas pockets. Natural
porous media include soil,sand , mineral salts, sponge, wood and others .Synthetic porous

media include paper , cloth filters , chemical reaction catalysts and membranes.

1.9.9 Prandt]l number

It is the ration of the product of dynamic viscosity and specific heat with thermal conductivity
ki e .,

p =22 (1.11)

The Prandtl number serves as a direct measure for the ratio of the thickness of the layers

in forced flow.

1.9.10 Eckert number

The ratio between square of the velocity and the two temperature difference is called Eckert

number
v

E.=—————
ep(To — Teo)

(1.12)

1.10 Homotopy analysis method

In topology two functions are said to be homotopic if one function can transform continuously

into the other.



Definition: Formally a homotopy between two continuous functions f and g from a topo-

logical space X to a topological space Y is defined to be a continuous function
H:Xx[0,1]-Y, (1.13)

from the product of the space X with the unit interval [0, 1] to Y such that for all point = in
X and

H(z,0) = f(z), H(z,1) = g(). (1.14)

If we consider second coordinate as time t then at time ¢t = 0 we have a function f and at time
1 we have a function g.

In fluid mechanics sometimes governing differential equations become non-linear, which is
very difficult to deal with. So we have no choice but to solve these numerically. Fortunately we
have some method in which we can solve non-linear differential equations by HAM.

The zeroth order deformation is defined as

(1 —p) Llu(y ;p) — uo] = pHARmp, (1.15)

in which p € [0,1] is the embedding parameter, k is auxiliary non-zero parameter and Ry, is

non-linear differential operator. For p =0 and p = 1 we have

u(ya 0) =up , u(y’ 1) = u(y)v (116)

where up is the initial guess and u(y) is a solution of a given differential equation. By Taylor’s

theorem
u(y, p) = uo(y) + > um(y)p™, (1.17)
m=1
where
1 0™u(y;
um(y) = m-——aﬁ%ﬁ at p=0. (1.18)



Note that convergence is depending upon auxiliary parameter i. Thus we can write

u(y) = uo(y) + Y um(y), (1.19)

which is a solution of given differential equation.

The advantages of HAM are

1. it is valid even if a given non-linear problem does not contain any small/large parameters

at all

2. it can provide us with a convenient way to control the convergence of approximation series

and adjust convergence regions where necessary

3. it can be employed to efficiently approximate a nonlinear problem by choosing different

sets of base functions.



Chapter 2

The influence of variable viscosity
and viscous dissipation on the
non-Newtonian flow: An analytic

solution

2.1 Introduction

This chapter is the review work of Hayat et al. [33]. In this chapter we seek the effect of
constant and variable viscosity on the velocity and temperature profile. The resultant equation
is non-linear and solved by homotopy analysis method (HAM). Different graphs has been drawn
for different parameters.

2.2 Mathematical formulation

Let us consider the incompressible third grade fluid. We choose cylinder in 2z — azis. For the

problem under consideration the velocity field is given by

V = (0,0, v(r)], (2.1)

10



In the absence of body forces, the equations governing the flow of an incompressible fluid are

V.V =0, (2.2)

dv

= —di 2.
P divT, (2.3)

where d/dt is the material derivative and T is the Cauchy stress tensor which for third grade

fluid is
T = —p1I+ pA; + a1 4z + 02 A2 + B1 Az + By (A1 A2 + Az A1) + Ba(trA2) A (2.4)

where p; is hydrostatic pressure, I is the identity tensor, u is the dynamics viscosity and
(i = 1,2) and B,(j = 1,2) are material constants. The first three Rivlin-Ericksen tensors

(A1 — As) are defined through the following expressions

A = VV +(VV), (2.5)

dA,_
An=—01 L AL+ LiAn 1, n>1, (2.6)
L =VV = gradV, (2.7)

in which V is the gradient operator and V is the velocity field. For thermodynamic third grade

fluid the coefficients p, o, ag, B;, By,and B3 satisfy the following conditions

p>0,01 20, | +ag| < /24uB3, By = B = 0,85 > 0. (2.8)
00 &

AA=VV+VVi=]|0 0 0 |, (2.9)
&0 0

A= 0o 00/, (2.10)

11



tr(A)A; =

dv dv

dv\ 2 3
TTT=p1+(2a1+az) (5) )TTZ=/L$+2/B3 (E) ’Tr0:0=7'r07

dv\?
Tgo = —P1,T6z = 0 = Tz, T2z = —P1 + 2 o)
Equation of motion in cylindrical form is

1d(r7,,) + ldrg, dr,, 8P
r dr r df dz = 8z’

S ()

where

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

In dimensionless form the equations for flow of a thermodynamic third grade in a pipe with

heat transfer was derived

o [ G|+ eGP =

T

20 1,d9, _,dv., dv gy
o2t ;(5) + I'(5) (u(r) + A(E) ) =0,

o dv(0) _ d6(0)
W) =61) =0, ==="r=0

In the above equations the dimensionless parameters are

1 @ c= C1R2 A= 2/831}3 = lu’O'Ug

12

- 0z’ B 'UO,UO’ - ,uoR2 ’ B k(91 - 90).

(2.17)

(2.18)

(2.19)

(2.20)
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Andr (0 < r < 1), v, 6,and p, are the dimensionless radius , velocity , temperature and viscosity

respectively . These terms are related to the dimensional ones as follows :

T
- 5 ) 3 2.21
Vo R Ko 61 — 6o (221)

in which R, vp, pg, 0o, 8* and 8; are the radius, reference velocity, reference viscosity, reference
temperature, pipe and fluid temperatures respectively. Also, c; is the axial pressure drop, A is

the dimensionless third grade parameter and T is related to the Prandt]l and Eckert numbers.

2.3 Analytic solution

Now, we discuss the solutions of Equations (2.17) and (2.18) in two cases :
Case 1 : For the constant viscosity
If p =1, after simplification equation (2.17) becomes

d?v  1ldv d v A dv

T2 + - ~dr 3A(——) dT) =c (2.22)

For an initial guess, we mostly take linear part of equation (2.16) as linear operator

.c=-d‘%+%%, | (2.23)
which satisfies

L[C + CInT] =0, (2.24)

and initial guess is given by
vo(r) = E(TZ’ ~1), (2.25)
(1~ p)Lf(r, ) — wo(r)] = phl - (r(3) + 2 L (r( Ty — g (2:26)
(1 = P)LIB(r,p) ~ volr)] = phEs e (r(30) + 22 (%) — ), (227)
5(1) =B =0, 20 dz(ro) -0, (2.28)
B(r;0) =vo, B(r;1) =w. (2.29)

13



As p increases from 0 to 1, T(r;p) varies from the initial guess vy to the exact solution v(r).

One can write by Taylor’s theorem
[e ]
B(r;p) =v0+ Y vm(r)p™,
m=1

1 0™0(r;
() = o L)

v(r) =vo + Z Um(7),
m=1

mth order deformation equation is given by

Lvm = XmYm-1] = ARm(r)

0, m<1,
Xm =
1, m>1.

Um(0) = vyp(00) =0

and

m—1
!

k
" 1 ! ! 1 ! "
R (r) = (Um—1 Ut A E Uik z Uk—z(;vz + 3v;)

k=0m—1—k 1=0k—1

9(1‘) = 03(1 — ’I‘4) + 04(1 — 1‘8) + 05(1 - 1-12) + 06(1 _ ,,.16)
+Cr(1—1%) + Cs(1 = 1) + Co(1 — %) + Cro(1 — r%2)

+C1(1— 1‘36) + Cr2(1 - 1‘40) + Ci3(1 — T44) + Cra(l — 1'48)

+015(1 — 1‘52) + 016(1 — 1‘56),

where the coefficients C3 — Cjg are given in Appendix A.

14

(2.30)

(2.31)

(2.32)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



Case 2 For the variable viscosity

Let u = r, the equation (2.18) becomes

KL 3 = 2.39
1L )+ 22 (2 = (239
d , ,dv d itl 3y

g (M5 H A (r(50)7) = e, (2.40)

d?v 2dv dv 2d v dvg ¢
dr? + ;dr r2 [3 ( ) dr? + (E;) I= r (2:41)

2 2d
Ly = PR (2.42)
satisfies

L1 [017 + 2Ci51n r] =0 (2.43)

dv  2dv 3A dv 2d2 A dvg ¢

(1 =p)Lalv(r,p) — vo(r)] = ph ) + dr + , J) pac) ’,_2 (d'r') - (2.44)
and mth order deformation is given by
L1[Vm = XmUm—1] = ARy, (r) (2.45)

and

m—1
Ru.(y) = < U1 + 20y + A Z Um—1- kzvk 1(‘”1 + 3, )) — (€~ Xm) (2.46)

k=0 =0

For finding the solution of temperature we use the Mathematica to solve the Cauchy-Euler

equation

0(r) = [Cio(1 =) + Coo(l = %) + Co1(1 — %) 4 Coa(1 — ")
+Co3(1 — r®) + Coa(1 — r%) + Cas(1 — r10) + Cye(1 — #11)
+Co7(1 — '2) 4 Cog(1 — r'3) + Cao(1 — ) + Cs0(1 — r'9)
+C31(1 = 718) + C32(1 — r17) + C33(1 — 718) + C4(1 — r19)

+Cs5(1 — 7'20) + Cs6(1 — 7‘21) + Cs7(1 — 7‘22)] , (2,47)

15



where the coefficients Cjg — C37 are given in Appendix A.

2.4 Graphs

In this section we drew the graphs of velocity and temperature profile for both constant and

variable viscosity.

A=1A=-15
" j ' — =1
15¢ -- ¢=-09
1.25 .y
258 N, | e=-0.
=\ L _=0a
1 CorT NS
.“o .o_..\
=075}
05| ’ '
0.25}
1 ~0.5 0 0.5 1
r

Fig. 2.1 Influence of ¢ on the constant velocity.

c =—1,h =-15
) =
8.5 - A=02
3 — A=06
A=1.0

Fig. 2.2 Influence of A on the constant velocity.
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T=1h=-15A=1

025

02

> 0.15

01}

0.05

Fig. 2.3 Influence of ¢ on the constant temperature.

r=1%=-15c=—1

nN

O
B
[T I [ 1]
R ]

Fig. 2.4 Influence of A on the constant temperature.

c=—1h=-15A=1

Fig. 2.5 Influence of I on the constant temperature.
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A=1%=-0.05

35 — =10
- - ¢=-0.

30 , - =08

25 — &=—0.7

Fig. 2.6 Influence of c on the variable velocity.

[~} =-1,h =-15
40

35 P
30
25 eI ..
> 20
15}
10

'
- g
ononon o

ON W a

[~

Fig. 2.7 Influence of A on the variable velocity.

A=1%=-005T=1

0.5}
04}

> 0.3}

0.2}
0.1

Fig. 2.8 Influence of ¢ on the variable temperature.
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c=-1%=-0.05T=1

— A=20
-~ A=10
05 —ees A=08
—-  A=08
s A0S

Fig. 2.9 Influence of A on the variable temperature.

A =1,ﬁ = —0.05,0:—1

R
NOHOD

Loe Row Row Row Row |

Fig. 2.10 Influence of T" on the variable temperature.

2.5 Discussions

Here, the solution for the velocity and temperature distributions are plotted against the pipe
radius. The velocity and temperature distributions for constant viscosity are displayed in
Figures 2.1 to 2.4 and for space dependent viscosity in Figures 2.5 to 2.9. In these Figures, the
variation of the emerging parameters A, ¢ and I' are taken into account.

In Figure 2.1, the effect of pressure gradient c is depicted when h = —1.5 and A = 1. It
can be seen that the maximum velocity of the fluid increases at the center of the pipe with the
more negative values of c. Also, the effect of ¢ on 6 ( in Figure 2.3) is similar to that of velocity.

The effect of third grade parameter A on the velocity and temperature distributions are

shown in Figures 2.2 and 2.4, respectively when h = —1.5 and ¢ = —1. As expected, an increase

19



in A results in a decrease in velocity and increases for temperature. However, the profiles are
more flatter in case of temperature distribution than the velocity distribution.

In order to illustrate the effect of I' on the temperature distribution, we prepared Figure
2.5. It is found that 6 increases with the increase of I' and hence the thermal boundary layer
thickness decreases.

Until now, we discussed the results of the velocity and temperature for constant viscosity
model. Now, we turn our attention to a discussion of the results of the velocity and temper-
ature distributions for space dependent viscosity. For this case, the velocity and temperature
distributions are plotted against the pipe radius in Figures 2.6 to 2.10, respectively for various
values of ¢, A and I'. From these figures, it is noted that the observations about ¢, A and T are

similar to that of constant viscosity model.
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Chapter 3

Effects of variable viscosity in a

third grade with porous medium

3.1 Introduction

In this Chapter we extend the work of chapter [33]. and introduce the porous medium term.
Analytic solution has been obtained by homotopy analysis method (HAM). Different graphs

has been drawn for different pertinent parameters.

3.2 Problem formulation

Let us consider an incompressible third grade fluid in a pipe. The fluid saturates the porous

medium. The velocity filed is given by

V = [070a U(T)]’ (3'1)
and the governing equations are
V.V =0, (3.2)
av )
pE = d‘L’UT, (33)
do
popy =T 1-V26, (3.4)

21



where d/dt is the material derivative, p is the specific heat, § is the temperature and the Cauchy

stress T is
T = —pil + pA; + 1Az + A2 + 81 Az + By (A1As + AgA1) + B3(trA2)A, (3.5)

where p; is hydrostatic pressure, I is the identity tensor, u is the dynamic viscosity and a;(¢ =
1,2) and ,(j = 1—3) are material constants. Note that radiation effects in the energy equation

are neglected. The first three Rivlin-Ericksen tensors (A4; — A3) are defined through the following

expressions
A1 =VV + (VV), (3.6)
A, = d“;’;-l + A, L+LPA, ., n>1, (3.7)
L=VV =gradV, (3.8)

in which V is the gradient operator and V is the velocity field. For thermodynamic third grade
fluid the coefficients p, o1, ag, 8, B9,and S5 satisfy the following conditions [34]

p> 0,00 20, |ar +o2| <4/24pB5, 8, = B3 =0,63 > 0. (3.9)

Keeping in mind the constitutive equation, the following law in an Oldroyd-B fluid is proposed

(35]:

0 U 0
<1+/\E) Vp— -—E¢ (1+/\ra) Vv (310)
and the Darcy’s resistance R is
0 B 0
(1+/\§) R= —kqﬁ (1+/\T§> Vv, (3.11)

where X and A, are the relaxation and retardation times, ¢ is porosity and k is the permeability.

Having in mind the above equation the z—components of R for steady flow of a third grade

d’U
! :ir v. (3'12)

Invoking Eq. (1) the continuity equation is identically satisfied and momentum and energy

__¢
R, =-7

22



equations reduce to

1d dv, 2B3d

1Ly + B L (2 - £

r dr

dv\* 1d do
Zi?) +k[-=—(r==)] =0.

WG+ 204

where k is the thermal conductivity and p is

(Y
pP=n 2 ar ]

The boundary conditions are

a(0) _ o) _

v(1)=61) =0, —==—>

0.

Equations (3.13), (3.14) and (3.16) in dimensionless variables become

3 2 2 2
B b2 S (5) e (5) - pfeea ($) o

drdr rdr “drz dr drZ \ dr
d20 1de dv\? dv\?
d_7'2+;d_7'+r(‘(_i;> (#(T)—FA(-‘;))— ,

w(0) _ #0) _

v(1) = 6(1) =0, I i 0,
where
2 9p1 p2 7 T
Ao B BE 9 7T
Rivo Vo ' kR R Uo
6, — 6o’ k(61 — o)’

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

where R, vo, g, 0o, 6 and 6, are the radius, reference velocity, reference viscosity, reference

temperature and pipe fluid temperatures respectively. Here ¢ is the pressure drop, P is porous

medium parameter and I' is related to the Prandtl and Eckert numbers and bars have been

suppressed for simplicity.
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3. Series solutions
In this section, Egs. (3.17) and (3.18) with boundary conditions (3.19) will be solved by
using HAM.
Case- I Reynold model
For Reynold model
p=e B9 (3.21)

For HAM solutions we select
v (r)=4("=1), 6bo(r)=5(r"-1) (3.22)

as the initial approximations of v and 6. Further we choose the following auxiliary linear oper-

ators
2 1d
Lo = 2 + ar (3.23)
such that
L2 (Cy + C2lnr) =0, (3.24)
where C) and C; are arbitrary constants.
The zeroth — order problems are
(1 =p) L2 [v* (r,p) — vo (r)] = pAN: [v" (r,p), 6" (r, P)], | (3.25)
(1= p) L2167 (r,p) — 6o (r)] = pRN2 [v* (r, p) , 6" (7, P)], (3.26)
. : ov* (r,p) 89" (r, p)
]_ = = —_— = —— = U. .
v*(L,p) =0, 6*(1,p)=0, |, 0, o | 0 (3.27)

After the Taylor’s series expansion of Eq. (3.21) and retrieving only first two components, we

get
p~1-0B (3.27a)
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In view of Eq. (3.17) and 3.27a we can write

1d a2 Bd a2 A (dv\3 dv\2 d2
B+ -Blo-piro+ (2430 (8) &
2

M [v* (r,p), 6" (r,p)] = ) (3.28)
+BPv9——Pv—PA(d—‘T’ v—c],
1dg* |, 4% dv* \2 du\2
T dr arz T I'B T g+T dar
Ne [v* (r,p), 0" (r,p)] = [ o ’ 4) (@) (3.29)
+AT ()]
For p =0 and p =1, we have

v*(r;0) =wvo (r), 6(r;0) =00 (y) and v* (r;1) =v(r), 6% (r;1) =0(r). (3.30)

When p increases from 0 to 1, v*(r,p), 8*(r,p) varies from wvp (1), o (r) to v(r) and 6 (r)
respectively. By Taylor’s theorem and Eq. (3.30) one can write

v (r,p) = v (r) + Y vm (r) P", 6" (r,p) =60 (r)+ Y Om (r) P, (3.31)
m=1 m=1
1 0™v* (r,p)

Um (1) =

1 0™6* (r,p)
oy R e (3.32)

op™

p=0 p=0

Clearly, the convergence of the series (3.31) depends upon . We choose 7 in such a way that
the series (3.31) is convergent at p = 1, then due to Eq. (3.30) we have

v(r)=w () + Y vm(r), 0(r)=00(r)+ > Om (). (3.33)
m=1 m=1

The mth order deformation problems are

L1 [vm (1) = XmUm—-1 (1)] = AR1p (1), (3.34)
L3 [0m (1) = XmOm—1 (r)] = AR2p, (1), (3.35)
vm (1) =0, v, (0)=0, 6n(1)=0, 6,(0)=0, (3.36)
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k=0 dr

Bzm—l vy, 31— k_h

B xm—1 dvpm_j—k
23 k0 bk

—B E;ﬂ 1 dvmrl ’°0k+

m—1 k m—
d'vm—l—k) dvg_ zdvz Z Z AV—1-k dvg— d2uy
> L (337)
== ( dr == dr dr dr
m—1 k dv dv L m—1
~PAY Y =0 = (1= Xm)e+ BP Y omo1-k0k = Pom-a|
k=0 =0 k=0
11 60m_1 o2 Gm_ 6vm 1-k Ovk
Rom () = |i7‘ or T Z Tor  or
m—1
OV —1-k OV
-I'B Z or or 6
k=0
p LA ov ka’vk la’vz f vi
+AD S NN ek m e (3.38)
=== or or Or Or
Case II Vogel model
Here
p= uoe('éﬁ_o). (3.39)
The problems at the zeroth order are
(1= p) L2 [v* (r,p) — vo (r)] = phN3 [v* (r, p) , 6" (, P)], (3.40)
(1—p) L2 [v* (r,p) — vo (r)] = phNg [v* (r,p), 6" (r,p)], (3.41)
. ov* (r,p) 06* (r,p)
1,p)=0, 6 (1,p)=0, 0P/} _ AARAYN B _
v*(1,p) =0, (1,p) =0, |, 0, |, 0, (3.42)
By Taylors series, Eq. (3.39) can be approximated [36] as
c A c
p=—=11- ——) where S§S=——7— 3.42a
S ( B? uoe(%"”") ( )
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In view of Eq. (3.17) and 3.42a we can write

" - “\ 3
* * %‘Zfr 'rSg2 d7‘9+§%_:§£§§%}79+% tzfr)
Nz [v* (r,p), 0" (r,p)] = gt 2 B " . (343)
FIA ()" €5 — P (4)7 0 - B — Blpe —

M (np),0"(np)l = o+ 37—\ ) * 358

dv*\*
ar(®)]

The mth order deformation problems are

* 2 * *\ 2 2
140" + ao" Ic (@_) + FCAQ (@L) (3.44)

L3 [Um (1) = XmUm—-1 ()] = AR3,, (1), (3.45)
L3 [Um (1) = XmVUm—1 (1)] = AR4, (), (3.46)
vm(1)=0, v, (0)=0, 6n()=0, ¢, (0)=0, (3.47)
dvm 1—k d9k ¢ dvgp,_1 Ac T A1k d'vm__l k QU
R3m(r) = B2S Z E dr  rsB2 L dr O + s ; dr  dr
cA d2vm_1 AT AV -1k dVk—1 dy;
sB2  dr2 9+FZZ dr  dr dr
k=0 1=0
-1 m—
3A’”E d'v":i_l_,c dz:;_, ((iiz;l _pA ! d%(,; 1k az;k Pcdv(,in_l ~
i r r dr — r r s r
PAc m—1 k
5 'Um 1- kek_c(l Xm) 3 (348)
sB?
k=0
m—1 6 Gm dvm—
% 1+1-Em1 vdrl k_%rh
Rdpm (r) = T'B z;: o Bmoick Weot g, . (3.49)

m—1 i dvm_l_k d’uk_l d‘ul_,,z d'vp
+AL Zk:o ZI:O zpzzo dr dr dr T’rz
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The above equation can be solved by Mathematica. The mth solution is given by

6m—+2 6m+2

V=) amar™, Om =Y bmnar™, m >0, (3.50)
n=0 n=0
6m—+2 6m+2_

Vip = Z AT, O = Z bma”™, m > 0. (3.51)
n=0 n=0

The related coeflicients are

min{n,6m—6k—4}
Ilm,n = > €m—1—kny Phn—n1> (3.52)
max{0,n—6k—2}
min{n,6m—6k—4}
I2m n= Z elm—1—k,n3 Ok n-ng> (3.53)
na=max{0,n—6k—2}
min{n,6m—6k—4}
I3m,n = > Frne1—k ng Ok nng>» (3.54)
ns=max{0,n—6k—2}
6m—6k—4 min{n,6m—6k—4}
I4m7 n= Z Z €em—1—kn7Fk—lngAl,n—nr—ng» (355)
n7=0 ng=max{0,n—6k-2}
6m—6k—4 min{n,6m—6k—4}
Ism,n = Z Z em—1-kn109k—Ln11 Un—n11—n1os (356)
n10=0 n;;=max{0,n—6k—2}
min{n,6m—6k—4}
I6m,n = > brm—1—kynya Dk n—nyas (3.57)
n13=max{0,n—6k—2}
6l+2 min{n—ni7,6k—61+2}
I'tm,n = Z Z €m—1—k,n—n17—n16 Fk—1,n16 U n179 (3.58)

n17=0n16=max{0,n—n17—6m+6k+4}

clm,n = clm—1,n+1, (3.59)
I8m,n =12, n41, (3.60)
min{n,6k+2}
Im,n = > CTm—1-kn20 D mgr» (3.61)

ng1=max{0,n—6m+6k+4}

I9m,n = I41 nya, (3.62)
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min{n,6k+2}
T2m,n = > Lim—1—k ri—i2 Dk gz (3.63)
nog=max{0,n—6m+6k+4}

min{n,6k+2}
I3m,n = > Em—1—k.n—nas Ok .n2s ) (3.64)
n2z=max{0,n—6m+6k+4}
min{n—na7,6k—61+2} 61+2
I4m, n= E 5 Cll,ng'yam.—1—k,n—n26~n27al,n27 ) (3'65)
ngg=max{0,n—nao7—6m+6k+4} n2r=0
min{n-nag,6k—6[+2} 6142
I5m, n= Z Z Em,'n.g-(E1n—l—k:,’n'—’n.zs—'11.2961‘:—1,71.261 (366)
ngg=max{0,n—n29—6m+6k+4} n29=0
min{n,6k+2}
T6m,n = > Emun—nzo Bk nsos (3.67)
ngo=max{0,n—6m-+6k+4}
min{n,6k+2}
ITm,n = Z Bpn—1—k,na0Ok,n—nso, (3.68)
ng1=max{0,n—6m-+6k+4}
min{n—n42,6k—61+2} 61+2 _
Itm,n = Z Z €m—1—kn—na1—n2€k—Ina1 Dlnaa, (3.69)

n4g1=max{0,n—n42—6m+6k+4} na2=0

min{n,6m—6k—4}
2m,n = > 1 kn—nas ks (3.70)
ngz=max{0,n—6k—4}

min{n—n47—na4s,6k—6p+2} 6(p—1)+2 61+2

: I3m,n = _;_ _S_ _S_ €m—1—k,n—ns—nar—ns Ck—I,n46 El—pna7 €p;nas:

n4g=max{0,n~n47—n48—6m+6k+4} nar=0 n4ss=0

C\

(3.71)
min{rn—nso,6k—6/+2} 61+2

Tim,n = 3 )

n4g=max{0,n—nso—6m+6k+4} ns0=0

O

m—1—k,n—n9—ngoCk—1,ne9 bl,nso ’ (3'72)

min{n,6m—6k—4}

m,n = Z em—l—k,n—’nslék,nsla (373)
ngy=max{0,n—6k—4}

/A Y

el

min{n—ns3—ns4,6k—6p+2} 6(p—1)+2 61+2

E E €m—1—k,n—nsa—ns3—n54€k—1,n62 El—p,n53 Ep;nsas
ngz=max{0,n—ns3—nss—6m+6k+4} ns3=0 ns4=0

|
B
3
Il

(3.74)
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and

Tmn = [Xem—2-nClm,n+ km_ 11 — BXgm—_nI1lm,n — BXgy_nI8m,n — Bxgp_nI3m,n

+AXemyo-nI9M, 0 + 3AXgmi2-nI5mM, N+ PBXgm 1o0-nl6mM, N — PXm—2-nGm-1,n

_pAX6m+2—nI7m’ n— C(]. - Xm)] s (375)
— —AC C AC - C —
Fm,n = B2S 2o Xé6m— nIm n+ SXGm n— 2C]-'m 1n — WXGm—nIlm,n + §X6m—-n—2em—1,n
AC - = - -
SE? Xem—ndI3m,n + AXsm +2_nI 4m,n + 3Axgm_ni2I5m, n — pPAXgp_nI6m, n —
pC _ AC -
?Xﬁm—n—&c‘m—l,n - 1;_B'Q—X6m—n-[7m,n (376)
Tinn = Xom—2-nClm—1,n+ Xgm—2—ndm—1,n — BT Xgm2_n I 1m, 0+ TX6ma2_n12m, n+ ATT3m, n
@)
T» = Xém—2— nC]-m 10t X6m—2~ n2 n— Bl Xgmya— nIlm n+FX6m+2—nI2m n+AI‘I3m n
(3.78)
6m+-2 C
Am,0 = XmXé6m-—nGm—-1,0 — z (n + 2 i (379)
am,1 = XmXﬁm—3am—l,1a (380)
J C
am,2 = XmXeém—40m—1n + T’O + VE (3.81)
6m+42 F
XmXGm n—20m-—1 1n + z ’I’L2 ) (3-82)
n=2
6m+2 =
— — Thn C
Am,0 = XmXém—nGm—1,0 — z y 2 A (383)
s (n+2)? 4
Bm,2 = XmX6m—48m—1,n + TO + 5 (3.84)
6m+2 f
a‘m;’n = XmXﬁm—n—2a‘m—1,n L (385)
n=2
6m+2 =
= _ Ton C
Am,0 = XmX6m—n3m—-1,0 — z ’ 3 4 (386)
— (n+2) 4
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= = fm,o C
am,2 = XmX6m—4@m—1,n t 4 + Z
6m+2 3 f
amn = XmX6m—n— 2am 1nt Z .n2 )
n=2
_ .
= = mn
aAm,0 = XmX6m—-nGm—-1,0 — 2
~ (n+2)
- T, 0, C
Am 2 = XmX6ém— 4am 1,n + 4 Z,
_ 6m+2 f
Amn = XmX6m—n— 2am—1 n+ Z n2 ’

n=2

Gm-1m+1 = Clm—1,n,
dm—1n = (n+ 1)clp_14,
em—1-kn = (M + 1)@m_1_knt1,
frm-1-kn = (n+ 1)em_1-kn+1,
Gk—tn = (0 + 1)ak_1 41,
Pi—tn = (n+ D)br_1n41,
cl = (n+ 1)amn+1,
dn-1n =0+ Dbm_in,
Emn = (n+ 1)cl,

ol = (n+ Damat1,

dm1n = (74 1)b_11

gm,n = (n+1)2l,

C

Za

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)
(3.93)
(3.94)
(3.95)
(3.96)
(3.97)
(3.98)
(3.99)
(3.100)
(3.101)
(3.102)

(3.103)

With the recurrence formulas, we can calculate all the coefficients am n, bmn, Gm n, Em,n, ﬁm,n,
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bm,ny Gmn, bmn using only

apo = Gpo =Go,0 = Qo0 =—T", Gp1 =ap) = ag,1 = ap,1 = vy

- = C = = C
boo = boo=boo=bopo= 57"2, bo, = bo,1 = bo,1 = bo1 = —o (3.104)

given by the initial guess approximations for the solutions of V' and 6 for Reynold and Vogel

models in Eq. (3.12). The corresponding Mth-order approximations of are

M 2M  6m+2
Z ’Um(T) = ag,0 + Z Z am,nrn, (3105)
m=0 m=n—1 n=0

M 2M  6m+42

Z em(T) = b0,0 + Z Z bm,nrn, (3106)
m=0 m=n—1 n=0

M 2M  6m+2

Z () = g0 + Z Z [ e (3.107)
m=0 m=n—1 n=0

M _ 2M 6m+2_

Z Om(r) = boo + Z Z brnt™, (3.108)
m=0 m=n—1 n=0

and the explicit analytic solutions are

2M  6m+2

v(r) = Mlir;loo ((100 + Z Z Um T ) (3.109)
m=n—1 n=0
2M  6m+2

6(r)= Jim | boo+ > Y bm,nr) (3.110)
m=n—1 n=0

~ M 6mA2

0(r)= Jim b0+ > Y bm,nr> (3.111)
m=n—1 n=0
2M  6m+2

v(r) = Mliriloo G0 + Z Z [ ) (3.112)
m=n~1 n=0
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3.3 Convergence of the analytic solution

The explicit, analytic expression contain Eqs. (3.37) and (3.38) the auxiliary parameter k. As
pointed out by Liao [37], the convergence region and rate of approximations given by the HAM
are strongly dependent upon the auxiliary parameter. In Fig. 3.1 and 3.2 the h—curves are
plotted to see the range of admissible values for the parameter A. It is clear from figures 3.1 and
3.2 that the range for the admissible values for % is —1.5 < A < 0. The solution given in Egs.
(3.37) and (3.38) converges in the whole region of r, when £ is in the neighborhood of —1.0. It
is also observed that the interval for the values of & converges to value —1.0 as the rest of the

parameter keeping fixed.

c=-1,8=0.1,P=0.1, A=0.1,T=1

-2 ~-1.5 -1 -0.5 0 0.5
A

Fig. 3.1 h—curve for Reynold model in 30th order approximation.

c=-1,8=2A=2 P=01,s=-1,A=0.1,T=1

-2 -1.5 -1 -0.5 0 05
A

Fig. 3.2 h—curve for Vogel model in 30t* order approximation.
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Case-I: The graphs for Reynold model have been drawn Below.

¢=—1 A=01.A=-1,T=0.1,8=0.1, P=0.1

05 e —Y
— = c=—14
0.4 e o=—1.3
=12
o e=10

0.3

0.2

0.1

-1 -05 0 0.5 1

Fig.3.3 Influence of ¢ on the velocity

c=—1, P=01,h=~1,T=0.1,8=0.1

1.4 —  A=-15
- - =14
1.2 ) -  A=-13
1 —  A=-1.2
S A=-1.0
s 0.8

—— —

a—

06
04
0.2

-1 -0.5 0 05 1

Fig. 3.4 Influence of A on the velocity
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¢ =— 1, A=01 ,'f? =-1 ,I‘:O. 1,B=0 1

0.25

02

> 0.15

0.1

005¢

Fig. 3.6 Influence of P on the velocity profile.

¢c=-1, P=01%=-1T=07

B
0.6 -~ B=30
—  B=20
05 B-10

04
0.3
0.2

0.1

Fig. 3.7 Influence of B on the velocity.

B=0.1, T =05/ =-1,P=0.1,A=0.1

0.14 — =3

—— ¢=-25

0.12 —--- c=-2

— =18

0.1 S =12
. 0.08
0.06}

0.04
0.02

Fig. 3.8 Influence of ¢ on the temparature
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c=—-1 T =0.1%=-1,P=0.18=0.1

Fig. 3.9 Influence of A on temparature

c=-1 A=0.1h=-1,P=0.1,8=0.1
0.1 . .

T

T

0.08 —- T
T

T

0.06

0.04

002}

Fig. 3.10 Influence of T on the temparature

c=-1, A=0.1/=-1I=0.18=0.1

0.004 ~ ——
- - P-35
0.003 e
o Pt

= 0.002

0.001

Fig. 3.11 Influence of P on the temparature
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¢=—1, T =05%=-1,P=0.1,A=0.1
0.02

— B=50
— - B=40
0.015 - gzgg
B=10
= 001 o TSI
Y o eI ITTIT T, SEN
/'?f"' 77‘.\“\
0.005 ’
-1 -0.5 0 0.5 1

Fig. 3.12 Influence of B on the temparature

The graphs for Vogel model have been drawn Below.

P=0.1,A=0.1,A=0.1/=—1T=1B=15=—1

7 — =7
- - ¢=-06.5

6 ---- ¢=—6

5 :'— c=-55

> 4t

3

2

1

Fig. 3.13 Influence of ¢ on the velocity

¢=-1,A=01P=0.1/=—1I=1B=15=—1

— A=5
8t — — A=4d5

---- A=4

— A=3.5
6t Seee A=3

Fig. 3.14 Influence of A on the velocity
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c=—1,A=0.1, A=0.1,=-1,=018=0.15=—1

0.8 .

o B R BB
e

2Dy

0.6

....... .
0.4 N

02

Fig. 3.15 Influence of " on the velocity

c=-1,A=01 A=01%=-1T=01B=01s=—1

— P=§
P=7
P=6
-~ P=5
- P=4

Fig. 3.16 Influence of P on the velocity

¢=—3,A=1,A=0.1/=-1I=0.21,5=-3

] — B=10
1.75 __ B-8
1.5 - B=6
- B=4
1.25' R
‘o'. e .‘._ — B=2
Y 1 [ K ’/_2\ ._' p
0.75} P A
. N
0.5} X
0.25}
-1 -0.5 0 0.5 1
r

Fig. 3.17 Influence of B on the velocity
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c=1,A=01 A=01h=-1TI=18=0.1.P=0.1

0.4
— s§=-1
- - s=-0.9
--—-  $=-0.8
03¢ e §==0.7
5=-0.6

> 0.2}

0.1}

Fig. 3.18 Influence of s on the velocity

c=-1,B= 1,A=0.1/=—1I=1,P=0.1s=-3

0.8

> 06
0.4
02

Fig. 3.19 Influence of A on the velocity

P=0.1,A=0.1,A=0.1%/=—11=0.1,8=0.1,5=—1

0.003
—_— c=-0.9
- - c=-0.8
0.0025 T eoe
0.002 e
» 0.0015

0.001

0.0005

Fig. 3.20 Influence of ¢ on the temparature
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P=0.1,A=0.1,A=0.1,/=—1T=0.1,B=0.1,5=—1
0.0025 ~

—_ A=-0.9
0.002 —  A=—04
A=-0.2
0.0015 e L
0.001
0.0005 ]
-1 -0.5 (¢} 0.5 1

Fig. 3.21 Influence of A on the temparature

¢=—1,A=01 A=01\=-1,P=01B=0.1,5=—1

0.14 — TI=8
- = TI=72
0.12 ---- I'=6.5
- T=6
0.1 ... T=54
o 008} ,:_a:_-:-__-:T_--__-_:-:-:—::-gc_._._.
0.06 i SN
0.04
0.02
-1 -0.5 0 0.5 1

Fig. 3.22 Influence of T on the temparature

c=—1,A=0.1,A=0.1A=—1I'=0.1,B=0.1,5=—1

0.06 ———
0.05} ~- ;::g
0.04} R

= 0.03}

0.021

0.01}

Fig. 3.23 Influence of P on the temperature.
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¢=—3,P=0.1A=0.1,A=—1T=0.1,A=0.1,s=—1

—  B=07
0.005 -- B=05

— g
0.004 . Bo2
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Fig. 3.24 Influence of B on the temperature.
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Fig. 3.25 Influence of s on the temparature

41



¢ =2 P=0.1A=0.1A=—10=0.1,B=0.1,5=-3

=Y
0.015} ,2'_—'8238
0.0125 Aoz
0.01 AL Py
< “-'- """""""""" o
0.0075} il
0.005 ]
0.0025
-1 -05 0 0.5 1

Fig. 3.26 Influence of A on the temparature

3.4 Discussion

Here, the solution for the velocity and temperature distributions are plotted against the pipe
radius. The velocity and temperature distributions for Reynold model are displayed in Figures
3.3 to 3.12 and for Vogel model Figures 3.13 to 3.26 are plotted. In these Figures, the variation
of the emerging parameters ¢, A, T, P and B are taken into account.

In Figure 3.3, the effect of c is depicted when A = —1. It can be seen that the maximum
velocity of the fluid increases at the centre of the pipe with the more negative values of c.
Also, the effect of ¢ on 8 (in Figure 3.8) is similar to that of velocity. The effect of third grade
parameter A on the velocity and temperature distributions are shown in Figures 3.4 and 3.9
respectively. As expected an increase in A results in a decrease in velocity and increase for
temperature. However, the profiles are more flatter in case of temperature distributions as
compare to the velocity distributions .The effect of T on the velocity and temperature distribu-
tions are shown in Figures 3.5 and 3.10 respectively. It is found that velocity and temperature
distribution increase with the increase in I'. The effect of P on the velocity and temperature
distributions are shown in Figures 3.6 and 3.11 respectively.We observe that with the increase
in P the velocity and temperature increases. The effect of B on the velocity and temperature
distributions are shown in Figures 3.7 and 3.12, respectively when 2 = —1. We observe that
with the increase in B the velocity decreases but the temperature increases.

Up to yet we discussed the results of the velocity and temperature for Reynold Model.
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Now, we turn our discussion of the results of the velocity and temperature distributions for
Vogel Model. For this case, the velocity and temperature distributions are plotted against the
pipe radius in Figures 3.13 to 3.26, respectively for various values of ¢, A, I', P and B. From
these Figures, it is noted that the observations are similar to that of Reynold Model .

In this chapter an analytic technique for nonlinear problems in general, namely the HAM
given by Liao [9] is employed to obtain the analytical solution for the pipe flow of a third grade
fluid with variable viscosity. The expressions for velocity and temperature distributions are
given into two cases. The important parameters in this study are ¢, A, T, P and B. The
validity of this analytic solutions is confirmed by the graphical results.

To the best of our knowledge, such kind of analytic solutions has never been reported. The

explicit analytic solutions might be fruitful and new contribution in literature.
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Appendix A

The related coefficients are given by

Oy = §c2(7 FRA+R)?,

Gy = mgg%(wmnc‘*h@ + B)(6 4+ B)(7+ K(4+ B))A + 3211264c4(7 + (4 + K))2A

+917504c*h(4 + B)(7 + F(4 + K))2A + 65536¢*h2(4 + R)2(7 + h(4 + h))?A),

Cs = m%%(16384c4h2(3 + h)%(6 + B)2A2 + 1966088 H2(4 + K)(7 + K(4 + h))AZ
+1605632c5 (3 + K)(6 + ) (7 + h(4 + K))A? +
458752c8h2(3 + K)(4 + B)(6 + B)(7 + A(4 + K))A% +
32768c813(3 + K)(4 4 h)2(6 + K)(7 + h(4 + K))A?
+229376c9A(3 + ) (6 + K)(7 + A(4 + B))A% +

32768c5K2(3 + h)(4+ R)(6 + h)(7 + h(4 + R))?A?),

Cs = 10—418;76(49152@713(3 + B)(4+ B)(6 -+ B)A® + 57344%K (3 + B)2 (4 -+ ) (6 + h)2 A®
+4096c3h* (3 + B)? (4 + R)? (6 + )2 A3 + 98304 K3 (7 + A (4 + R))
+2408448c3h? (4 + ) (T + K (4 + B))A3 + 688128313 (4 + k)2 (7 + A (4 + K))A3
+49152¢3h% (4 4 B)® (T4 R (4 + h))A + 1146883 h2 (3 + K)2 (6 + K)% (7 + h (4 + h))A®
+16384ch3 (3 4 K)? (4 4+ B) (6 + h)? (74 R (4 + h))A3 + 344064c8h2 (4 + K) (7 + K (4 + h))A®
)

+49152¢3h3 (4 4 B)? (74 K (4 + h))2A% + 4096c2h? (3 + B)? (6 + h)2 (7 + KA (4 + R))2A3),
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Cr

Cs

m(36864c10h4(4 + h)2A* + 24576¢1%K% (3 + h) (6 + h) A*

+602112¢'°1% (3 + h) (4 + R) (6 + B) A* + 172032¢'%K* (3 + k) (4 + R)? (6 + h) A*
+12288¢1085 (3 + ) (4 + K)% (6 + h) A* + 14336¢'°K3 (3 + K)® (6 + k) A*
+2048¢198% (3 + B)3 (4 + ) (6 + B)3 A* + 1204224¢'°K3(7 + K (4 + B))A*
+344064¢'%1* (4 + h) (7 + R (4 + B))A* + 24576¢10R5 (4 + B)? (7 + K (4 + h))A*
4344064c'°53 (3 + K) (4 + K) (6 + k) (T + h (4 + h))A*

+49152¢!°8 (3 + k) (4 + B)? (6 + h) (7T + h (4 + h))A*

+2048c1°813 (3 4 k)® (6 + h)® (7 + B (4 + R))A* + 172032 °K3(7 + K (4 + h))2A*
+24576¢'R% (4 4 B) (7T + k(4 + h))2A* +

12288¢1°A3 (3 + h) (4 + ) (6 + h) (7 + R (4 + K))2A%),

T 12p5 5 124 2 A5
T0as5g (36864 °R° (4 + R)A® + 451584c K" (4 + B)* A
+129024012h5 (4 + h)3 A5 + 9216612h6 (4 + h)4 A5

+301056¢'2A% (3 + K) (6 + h) A5 + 86016215 (3 + ) (4 + ) (6 + R)A®

- 4+6144¢'2K8 (3 4 ) (4 4 R)? (6 + K) A® + 64512¢'2K4(3 + h)2 (4 + ) (6 + R)% AS

+9216¢'2h5 (3 4 B)% (4 + h)2 (6 + B)? A5 + 256c12h% (3 + A) (6 + R)* A% +
258048c12h* (4 4 B)? (7 + K (4 + R))AS + 36864c12A5 (4 + R)® (7 + R (4 + A))A® +
172032¢'254 (3 + B) (6 + B) (4 + B2 (T + K (4 + R))A® +

24576¢'215 (3 + R) (4 + B) (6 + R)(7 + A (4 + R))AS +

9216c12k% (3 + R)2 (4 + K) (6 + R)2(T + A (4 + R))A® +

9216¢'2* (4 + B) (T + h(4 + B))*A° +

6144c'2k* (3 + h) (6 + h)(7 + R (4 + K))A®),
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Cy =

Cro

r
1048576
+129024¢14 RS (4 + K)2 A® + 9216¢1R7 (4 4 R)* AS

+96768¢14R% (3 + k) (4 + h)? (6 + A)AS + 13824¢4K° (3 + K) (4 + K)® (6 + R)AS
+32256¢1R5 (3 + K)2 (6 + K)? AS + 4608c'4HS(3 + ) (4 + h) (6 + h)2 AS
+1536¢MA5 (3 + )* (4 + R) (6 + h)® AS + 258048c'4A5 (4 + h) (7 + A (4 + B))AS +

(92161 RS AS + 451584cM 1P (4 + k) A®

36864c4R8 (4 + B)? (7 + R (4 + R))AS + 13824c AR5 (3 + k) (4 + R)% (6 + K)(7 + R (4 + K))A®
+4608c'A5(3 4+ R)2(6 + B)2(7 + A (4 + h))A® + 9216cMK5(4 + R)((7 + R (4 + K))AD),

r

= ———(112896c'SHP A7 4 3225687 (4 + k) AT

1048576
+2304c5 18 (4 4 h)% A7 + 48384c'5RS (4 + B} AT +

6912c15R7 (4 + h)* AS + 96768¢'6KE (3 + k) (4 + ) (6 + B)A7

+13824¢'8R7 (3 + k) (6 4 h) (4 + K)? A7 + 3456c'Sh8(3 + h)2 (4 + )% (6 + h)2 A7
+768¢h5 (3 + ) (6 + )> A7 + 64512 CR8(7 + K (4 + B))AT +

9216c'KT (4 + h) (7 + A (4 4 R))AT + 6912¢6R8 (4 + B)® (T + K (4 + K)A7 +
13824c'%48 (4 4+ B) (3 + K) (6 + h) (T + A (4 + K))A7 + 2304c'6A5(7 + K (4 + K))2AT),

B 1041;576 (72576¢°h" (4 + R)* A® + 10368¢'°h° (4 + ) A®

+24192¢"8R7 (3 + k) (6 + ) A® + 3456818 (3 + h) (44 1) (6 + h) A% +

3456¢'8R7 (3 + 1) (4 + h)® (6 + h) A® + 3456¢'%R7 (3 + B)% (4 + ) (6 + B)2 A% +
10368c'3h7 (4 + K2 (6 + K)2AB(T+ R (4 + ) +
3456c'3K7(3 + h) (6 4 h) AB(7 + h(4 + b)),

46



Ci2

Ci3

Cio

Cao

Can =

= Eﬁé(%%&w (4+ h) A® + 5184c™K° (4 + K)? A® +

+1296¢2°R8 (4 + )  A® +5184c°KE (3 + B) (4 + B2 (6 + h) A® +
864c2°h8 (3 + K)2 (6 + )2 A® + 5184¢®°h® (4 4 k) A%(7 + hd + ),

r

= (6048¢22R°A10 + 864c?2 K10 (4 + B) A0 +

1048576
2592¢221° (4 + h)3 A0 + 2596¢8R7(3 4+ k) (6 + K) AL0(T+ K (4 + R)) +

864c22h%(7 4+ A (4 + K) A1O,

(1944110 (4 4 R)2 A 4 432¢%*R20 (6 + ) A1)

G4 = 1048576
r

_ 26311 12
Cis = 131072 (81c™°h™ (4 + R) A™4,
C — r (81C2Bhl2A13)
16~ 131072 ’
—c?r

(—972001704011207013144000000

6912012117413027649024000000
+864001514676628456128000000% — 19200033659480632358400000042),

—cr

= (—691201211741302764902400000% +

6912012117413027649024000000
5836810232482112236953600004% — 12288021542067604709376000043),

—c?T
6912012117413027649024000000
170666965862050065408000000A — 21333370732756258176000000A* —

(—27733381952583135628800000042 +

972001704011207013144000000c%A + 1629869523982578124646400000c2Ah —
1044387016094711928038400000c>AA? + 312889437413753248000000c2ARS —
37925992413788903424000000c2AK%),
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—cT
- - 24 K3
C2 6912012117413027649024000000( 58775613243308058240000000R" +

23510245297323223296000000%* — 1586941557569317572480000000c2 Ak +

2662840042360894413318800000cAh? — 1723388055276374946201600000c? AR +
505034898979535907840000000c2 Ak — 55727988852914307072000000c2AR5),

—02F X 4
U = 3012012117413027649024000000 0000 118334111598135000007" ~

1377002414015876601954000000c2A K2 + 2166470464694937881079600000c2AR3 —

1283868917410687562354400000c2 Ak + 336000589040911066272000000c2AK° —
32000056099134387264000000c2 Ak — 248400435469530681136800000c* A2k +
486866038707543065931360000c* A2h? — 357689515952546595417600000cA2H +
116474278264534515124800000c* A%h* — 14222247155170838784000000c* A2A5),

—cT 2, 13
Co = 6912012117413027649024000000(—7762976572197416169600000006 AR +

1101091642252272698227200000c Ak — 565729386839017809408000000c2AK° +

120098975976998194176000000c2AR° + 8427998314175311872000000cAKT —
457245246038742466905600000c* A2h2 + 803766493669685360855040000c* A2K3 —
530296677259839102412800000c* A2k* + 155262457832251856486400000c*A%R° —
16855996628350623744000000c* A2AP),
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Cas

Cas

—c?T
6912012117413027649024000000
373973988945217205825280000c2A K + 154880271519810434357760000c2ARS +

(—307653872679761188220640000c2 Akt +

23893375220687009157120000c2AA” — 853334829310250327040000c2A A8 —~
402368705390515785457536000cA2H3 + 626887973068167645740505600c* A2R3c*A%K% —
354304621129615935787008000c* AZA° + 84081925181369998891008000c*A21S —
6826678634482002616320000c* A%K" — 36300863638858048912281600c5A3K2 +
71458890706313925534720000c° A3 13 — 53582474182074525905817600c° A3K* +
18027488394020992094208000c8A3K° — 2275559544827334205440000c8 A3KE),

—c?r
6912012117413027649024000000 (
84892710808447424064000000c2 AR® — 25388474260470257664000000c2A K7 +

—86611722086500097760000000c2AK° +

2115706188372521472000000c*AKE — 219738616015418099308800000c A2A* +
290063318425872693811200000c*A2%° — 131808495535608087705600000c*A2HE +
22692907857506748825600000c* A2A” — 940313861498898432000000c*A2H8 —
67248896589747468610560000c® A3K® + 115421175714336035281920000A3K4c8 —
72486705996591193681920000c8 A3K° + 195271845237937907712000005 A3 A —
1880627722997796864000000c°A3A7),
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Co7

Cas

—e?T
6912012117413027649024000000
12000021037175395224000000c2AA" — 2000003506195899204000000cAK8 —

(—17000029802665143234000000c?AH° +

79455283325571900146400000c* A%h° + 84232246432551735117600000c A28 —
27535850742094651756800000c*A%h7 + 2581074483716189260800000c*A%A8 —
57183337559201541728040000c5A3h* + 82226316990041181397440000c5 A3A5 —
41266903620517460645760000c3 A8 + 8006598398466546278400000c3 A3KT ~
395062420976967744000000c A3H® — 3604959223356348329472000c3A4H3 +
6775473342255292426752000c2 Ah* — 4750698771955625448960000c3A*K° +
1483678869891278860800000c® A4A8 — 175583298211985664000000c3A%K"),

—c?r
6912012117413027649024000000
+852072499681093152000000c2AKE — 19177942890970381795200000c* AR5 +

(—2130181249202732880000000c2 A K"

14592530513056943462400000c A% K7 — 2676138813813211084800000c*A2RE —
28404707550548612532480000c® A3K5 + 32643563692309178273280000c5 A3hE —
11715167005766233067520000c° A3K7 + 1249238803373322854400000c6A3HE —
6384701880022618994688000c3 Ah* + 9995168254479888420864000c3 A4h5 —
5561356816574232791040000c® A418 + 1226797387743861964800000c3A%K™ —
—74804718764869632000000c® A*A8),
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—eT
6912012117413027649024000000
2865311145611267839200000c*A2A” + 1240818501803170118400000c*A2H8 —

(—137755343539003261500000c> A —

8794895740786030487040000c8A3H® + 7225933554620358589440000c8 A3 KT —
1464633457034203272960000c5 A3 K8 — 4919634390941768893824000cBA4H5 +
6125812816340545840512000c® A4KE — 2419394516056499604480000c3AHT +
296699940652090060800000c® A*H® — 258127461947862590054400c'°ASH* +
437026431101563809792000c°A3H® — 267889946414858127360000c°A° K6 +
67366653191537356800000c*°A°K” — 5374998924856704000000c °A%H8),

—e2r
6912012117413027649024000000
1613066202343691096601600c° A3K” + 757044948570797388902400c8 A3HE —

(—216889269116355291456000¢* A28 —

2088278106918251781012480c® A*1E + 1852476110442971617443840c3 A4K7
—415874894591695111372800c® A*K8 — 411873341109533773037568¢ °ASHS +
552880851384376594759680c'°ASKE — 239917018676857211289600c°A5H” +
34024141342411444224000c'°A%H8),

—eT
6912012117413027649024000000
490522007622519030658500c3 A*K” + 249208484439843756828000c3 A*H8 —

(—145868311276544662430625cC A3 RS —

269944353744083846427600c'°ASHS 4 257821211015679595284000c°A5 KT —
63930153227887436490000c'°ASH® — 13351700827245734553600c 2A8H5 +
19177598015820211968000c'2A% K8 — 9071803740952592640000c12A8K7
1463194151766547200000c'2AK8),
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—cr
6912012117413027649024000000
86746758591345537484800c'°A%H7 + 47501931514621199616000c0A5HE —

(—54488692027565699904000c3 A*h8 —

Cia =

—18012852717167237529600c2AS K8 + 18413496765354442752000c 2A8 K7

—4990048982633594880000c 2A8 A8),

—r _ 105558
O3 = 912012117413027649022000000 - L2520195222516058517600c TA”RY —

8911185567014367436800c'2A3R7 + 5218846235469554688000c2A8K8 —

485734963552328089600c* A7HS + 527525982983487488000c AR —

154147202819850240000c4 A7 18),

—c’T 145718
Us = G910012117413027629024000000 L 10703789785392043104c A"

11345234127540977664c*5 A”h" + 7399065735352811520c 6 A7H8)

B 3904
"~ 3954917491875
_ 64c20A\OR8
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