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ABSTRACT

In this dissertation we shall prove some existence results of solutions for a new
class of generalized bi-quasi-variational inequalities for quasi-pseudo-monotone
type | operators in non-compact settings in locally convex Hausdorff topological

vector spaces.

In obtaining these results on generalized bi-quasi-variational inequalities for quasi-
pseudo-monotone type | operatore in non—cdmpact settings, we shall use -the
concept of escaping sequences, introduced by Border ‘[2],‘ and apply Chowdhury‘
and Ten’s result on generali,zed‘ bi-quasi-variational“inequalities for quasi—'pseudo-

monotone type | operators on compact sets [1 1];



Symbols and Abbreviations

2 . the family of all non-empty subsets of X.
I(X) oo L e the family of all non-empty finite subsets of X.
O SR eifer e real ik R or the complex fisd C.
C o the set all compléx numbers.
R e the real line.
N o the set of all natural numbers.
D e e e e the empty set. |

' E DU . ............. the dual space of E.
G(T) ..ooovo . ST . ... the graph of the mapping T, -

KKM Theoem ......... e Knas‘te"r-)Kuratowski-Mazurkiewicz Theorem.
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CHAPTER 1

Introduction

In this dissertation we shall review and obtain some resUIt_s on gene‘ralized bi?quasi-
variational inequalities in non-compact settings. Thus we éhall begin this chapter by |
defining the generalized bi-quasi-variational : ineqﬁalities. For this we need to
introduce sohe notations which will be used throughout this thesis.

Given a non-empty set X, we shall _denote by 2% the class or family of all non-
empty subsets of X, and by J3(X) the family of all non-empty finite subsets of X:

Moreover ® will denote either the real field R or the cbmplex field C.

Definition 1.1. Suppose X, ¥ and Z are vector spaces and B maps Xx7Y into Z.
Associate to each xe X and to each yeY the mappings B, :Y—) Z and B’ X>2Z
by defining B, (y)= B(x,y)= B”(x). B is said to bé bilinear if every B*and every B’is
linear.

We shall present some examples of bilinear mappings:

Examples 1.1

» Matrix multip‘lication is a bilinear map: M(m, n) x M(n, p) — M(m, p).

» If a vector space V over the real numbers R carries an inner product, then thé ‘
inner product is a bilinear njap‘ VxV-oR.

+ Ingeneral, fora vector space V over a field F, a bilinear form on Vis the same

as a bilinearmap Vx V — F.



« If Vis a vector space with dual space V* then the application operator, b(f, “v) =
f(v) is a bilinear map from V* x V to the base fi‘eld.‘

+ Let Vand W be vector spaces over the same base field F. If fis a member of
V* and g a member of W*, then b(v, w) = f(v)g(w) defines a bilinear map V x W
— F.

« The cross product in R® is a bilinear map R® x R®* — R®.

o LetB:VxW— X be abilinearmap,and L: U — W be a linear operator, then

(v, u) = B(v, Lu) is a bilinear map on V x U.

The generalized bi-quasi-variational inequality problem was first introduced by Shih
and Tan [14] in 1989. The following is the definition due to Shih and Tan in [14].

Definition 1.2. Let E and F be vector spaces over @,let <,> FxE —>® be a
bilinear functional, and X be a non empty ‘subs‘et‘ of E. if SiXo2%
and M,T:X — 2", the generalized bi-quési variatiohal inequality (GBQV!) problem
for the triple (S, M ,T) istofind ye X satisfying the properties

() yeS() and

(i) inf)Re(f— w,y—x)<0 forall xeS(¥) and for all f e M(¥).

weT (§

When T is single-valued, a generalized bi-quasi variational inequal‘ity problem
reduces to a bi-quasi variational inequality problem. Note _that‘the generalized bi-
quasi variational inequality problem include the following generally knowh variational
type inequality problems: |

Suppose E is a topological vector space, F = E°, the vector space of all continuous
linear functionals on E and (,) is the usual duality pairing between £ and E. Then:

(i) If T=0, a generalized bi-quasi-variational inequality problem for (S,M,0)
becomes a generalized quasi-variational inequality (GQVI) problem. Chan and Pang |

2



[5] first studied GQVI problems in finite dimensional case and Shih and Tan [15]
studied them in infinite dimensional case.

(i)If T=0 and M is single-valued, a generalized bi-quasi-variational‘inequaliﬂty‘
problem for (S,M ,0) becomes a quasi-variétional inequality problem”which‘w‘as
introduced by Bensousséh and Lions [1].

(i) If S(x)=X and M =0, a generalized bi-quasi-variational inequality problem
becomes a generalized variational inequality problem which was studied by Browder

[4] and Yen [16] among many others.

The following definition of géneralized bi-quasi-variational inequality problem due to

Chowdhury and Tan in [8] is a slight modification of Definition 1.2.

Definition 1.3. Let E 'énq F be vector spaces over @, let <,>FxE—>® be a
bilinear functional, and X be. a non-empty subset of E. 'lf S:X 2%
and M,T: X ——}2” , then the generalized bi-quasi variational inequality (GBQVI)
problems for the triple (S, M ,T) is: |

(i) to find a point yeX and a point WeT() éuch that $e<S(» and
Re(f—w,p—x)<0 for all xeS(¥) and for all feM(H)
or

(i) to find a point $ € X, a point w e T(§) and a point f € M(§) such thét yeS()
and Ré( Fetp-x)<0 foraﬂ x € S(). |

Our main result will be obtained on generalized bi-quési-\}ariational inequalities

using Chowdhury and Tan's following definition of quasi-pseudo-monotone type |

operators given in [11]:



Definition 1.4. Let E be a topological vector space, X }be a non-empty subset of
E and F be a topological vector space over ®. Let (,):FxE —>® be a bilinear
functional. Suppose we have the following three maps:

(i) h: X - R.

(i) M:X - 2" and

(i) T:X —2".

Then T is said to be an (1) h—quasi—pseudo-monotone type | operator if for each

ye X and every net {y, }

ael

in X converging to y with

lim sup[ inf inf )Re(f —UY, =~ Y)y+h(y,)- h()’)} <0

a SeM(y)ueT(y,

we have

lii‘n sup[ inf inf Re(f-u,y, —x)+h(y,)- h(x)]

FeM(x) ueT(y,)

> inf inf Re{f-w,y~x)+h(y)~h(x) forall xeX;

FeM (x)weT ()
(2) a quasi-pseudo-monotohe type | operator if T is an h-quasi—pseudo-monotone
type | operator with 2 =0. | |
Note that when M =0, and T is ‘replaced‘ by ~T, and F=E", an h-quési—
pseudo—monofone type | operator is reduced to the following A-pseudo-monotone
operator (respectively, h-demi-monotone opérator) defined in [6].
Definition 1.5. Let E be a Topological vector space, X be a non-empty subset of

E,and T:X -2 If h:X > R, then T is said to be an h-pseudo-monotone:

(respectively, h-demi-monotone) operator if for each ye X and every net {ya }aerm

X converging to y (respectively, weakly to y) with

lim sup’[ irr%f )Re(u,ya ~»+h(y,)- h(y)] <0
UEI Y,

&

4



we have

lim sup { iTn(f )Re(u, Yo —X)+h(y,)— h(x):|
uel(y, .

a

> irTl(f)Re(w,y-x>+h(y)-h(x) forall xe X;
wel (y

T is said to be pseudo-monotone (respectively, ‘demi-monotone) if T is h-pseudo-
monotone (respectively, h-demi-monotone) with 4 =0. This definition is slightly more
general than the definition of h-pseudo-monotone operator given in [7]. |

Later, these operators were re-named as pseudo-monotone type | operators in
[9]. The pseudo-monotone type | operators are ‘set-valued generalization of the
classical (single-valued) pseudo-monotone operators with slight variations. The
classical definition of a single-valued pseudo-monotone operator was introduced by
Brézis, Nirenberg and stampacchia in - [3].

We observe that the definition of quasi-pseudo-monotone' type | operators given
in Definition 1.4 above is a generalization of pseudo-monotone type | operators. In
this dissertation we shall obtain some general theorems on solutions for a new class
of generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type |

operators defined in non compact settings in topological vector spaces.
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CHAPTER 2

Preliminary Concepts, and Results on Quasi

Pseudo-Monotone Type | Operators

2.1 Preliminary and Basic Definitions, and Examples

We shall begin with some basic definitions.

Definition 2.1.1. Let E be a vector space over a field ® where @ is the field

of real or complex numbers. A norm on E is a function | - |: £ —> R satisfying

the following conditions:

N1: |x|=0 forall xe E and |x|=0 ifand only if x = Ov.
N2: |ax|=|a]lx| forall ae® and xekE.

N3: |lx+ y| < |« + || forall x, y e E.

Then (E|| . ||) is called a norrﬁed space.

Definition 2.1.2. A sequence {x,} in a normed space N is said to be a

Cauchy sequence in N if for every £>0 there exist a natural number n, e N

 such that mn>n, =[x, -x,[|<e.

Definition 2.1.3. A complete metric space is a metric space in which every
Cauchy sequence is convergent.

Definition 2.1.4. A complete normed space is called a Banach space.



Definition 2.1.5. A subset X of a vector space E is said to be convex if for
all x, ye X and ¢ €[0,]], ax+(1-a)ye X.

Definition 2.1.6. Let X be a subset of a vector space E. For any elements

x,,%, %, of X, the linear combination > ax;, with > ¢, =1, and a, 20,for

e il
i=12,.--,n is called a convex combination.

Definition 2.1.7. Let X be subsét of a vector‘ space E. For each subset X of
E, there is a unique smallest convex set containing X namely the intersection
of all convex subsets containing X. We shall call this intersectioh the convex hull
of X which will be denoted by co(X).

Definition 2.1.8. Suppose that (X,3) is a topological space. Then a

collection Q of subsets of X is to be a coverfor X if X = UG.

GeQ
Definition 2.1.9. If every set of a cover Q isin 3 then Q is called an open
cover for X.

Definition 2.1.10. A finite sub collection Q, of Q is said to be a finite sub-

cover for X if X = UG.'

GeQ,

Definition 2.1.11. A topological space (X ,3) is said to be compact if every

. open cover of X contains a finite sub-cover.

Definition 2.1.12. Let (X ,3J) be a topologic;al space and xe X. Then a sub-

collection S of 3 is said to be a neighborhood base or simply a base at x , if for

any U e 3 with xeU, thereisa B €. such thatxe Bc U.



Definition 2.1.13. A topological space (X ,3J) is said to be a Hausdorff space
if for any two distinct points a,b in X theré exist opeﬁ sets U and ¥ such that
ae U,beV and UnV =¢.

Definition 2.1.14. A topological space (X ,3) is said to be a regular space if
for any closed set 4 and any point x not in 4, there are open sets U and V

| suchthat xeU, 4 < ¥V and UnV =4.

Definition 2.1.15. A topological space (X ,3J) is said to be a normal space if

for any two disjoint closed subsets 4 and B of X there are open sets U and V

suchthat A c U, B c V and UnV =4¢.

Definition 2.1.16. (Partially Ordered Set) A partially ordered set, consists of

a set D and a binary relation “<* on D which satisfies the following properties:

(1) aga forall aeD (reflexive property);

(2)if a<band b<a,then a=5b forall a,beD (anti—symmetric properfy);

(3) if a<b and b<c, then a<c forall a,b,c € D (transitive property).
Definition 2.1.17. (Directed Set) A directed set is a partially ordered set‘

(D,<) such that whenever a,be D thereis an xe D suchthat a<x and & <x

(finite upper bound property).

Example 2.1.1. If Nis a set of natural humbers then (N ,<) is a directed set
where “<” is the usual less then or equél to relation.

Example 2.1.2. If R is the set of real numbers then (R,<) is a directed set .

where “<” is the usual less then or equal to relation.
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Definition 2.1.18. A function f:D — (X,S), from a directed set (D,<) intoa’
topological space (X,3) is called a net in (X,3). A point f(a) e X is usually

aeD

denoted by x, and a net f itself is denoted by (x,) or simply by (x,) if the

index set is understood.
Definition 2.1.19. Let £ be a vector space. Then a subset X of £ is called a

subspace of £ if X is itself a vector space under the operations of addition and
scalar multiplication inherited from E.

Note that in tﬁe above definition, X becomes a subspace of E, if X is closed
under the operations of addition énd scalar multiplication inherited from E. In
particular, X will be a subspace of E, if we can show that au+ fve X for all |
vectors u,v e X and all scalars «,f € ©.

Definition 2.1.20. If X is a subset of vector space E, then X is said to be
convex if

X +(1-H)X c X forall ¢ with 0<¢<1;
or x+(l-t)yeX forall x,ye X andall r with 0<z<1.

Definition 2.1.21. A subset B of a vector space X is said to be balanced if
o B c B forevery ae® with o] <1.

- Definition 2.1.22. Let E be a vector space and r be a topology on E. The
(E,7) is said to be a topological vector space if tﬁe vector space‘ operations, i.e.,

addition and scalar multiplications, are continuous with respect to 7.



Definition 2.1.23. A subset X of a topological vector spacé E is said to be
bounded if to every neighborhood ¥ of 0 in E corresponds a ‘number s>0
such that X <V for every t>s.

Definition 2.1.24. Let X and Y be subsets of a vector space E such that

co(X)cY. Then T:X->2" is called a KKM-map if for each

Ae 3(X), co(A)c Y T(x) where 3J(X)is the family of all non-empty finite

subsets of X. Note that if T is a KKM-map, then x e T(x) for all x e X.

Definition 2.1.25. If Xand Y are topologfcal spaces and T :‘X — 2", then the
graph of T is defined to be the set G(T) = {(x, ») e XxY|ye T(x)}

Definition 2.1.26 (Closed Graph) If Xand ¥ are sets and f maps X into ¥,
the graph of 1 is the set of all points (x, f(x)) in the éartesian product X x7Y. If

Xand Y are topological spaces, if XxY is given the usual product topology
(the smallest topology that contains all sets UxV with U and ¥V openin X and

Y, respectively), and if f:X — Y is continuous and Y is Hausdorff, then the

graph G of f isclosed.

10



2.2 Preliminary Results on Quasi-Pseudo-Monotone

Type | Operators

Recall that throughout this dissertation, ® will denote either the real field R or

~ the complex field C. Let E be a topological vector space over ®, F be a vector

space over ® and {(,):FxE—>® be a bilinear functibnal. Foreach x,ekF,

each non-empty subset 4 of E and each € >0, let

W(xy;6)=1{ye Fil<y,x, > < £}

and U(4;¢) = {y € F:supl< y,x>| < g}.

xed

Let o<F,E> be the (weak) topology on F generated by the family
{W(x;e);xe€E and é>0} as a sub-baseNfor the neighbprhood system at 0 and
8 < F,E > be the (strong) topology on F generated by the family {U(4,¢): 4 is a
non-empty bounded subset ofE and ¢>0} as a base for a néighborhood system
at 0. We note then that F, when equipped with the (weak) topology o < F,E >
or the (strong) topology 6 < F,E >, becomes a locally convex topological vector

space which is not necessarily Hausdorff. But if the bilinear functional

<,>:FxE — ® separates points in F, i.e.,foreach y e F with y # ‘O,‘ there exist

x € E such that< y,x ># 0, then F also becomes Hausdorff.
Furthermore, for a net {y, },.. in F andfor y e F, (i) y, >y in o(F,E) if and

only if (y, x)—(y,x) for each xeE and (i) y, >y in &(F,E) if and only if

11



(y.,x) > (y,x) uniformly for xe 4 for each non-empty bounded subset 4 of £.
Let X be a non-empty subset of E, then X is a conein E if X is convex and

AXcX for al 420. If Xis a cone in £ and (,);:FxE—>® is a bilinear
functional, then X = {we F:Re(w,x)20 forall xe X} is also a cone in F, called

" the dual cone of X (with respect to the bilinear functional (,)).

Definition 2.2;1. (Linear mapping) Let X ahd Y bé vector spaces over the
same scalar field ®. A linear mapping, T: X > 7Y, isa fuﬁction such that
T(ox+ py) = al (x) + ST (y)
forall x and y in X and all scalars « and pg.

Proposition 2.2.1. Let E be a topological vector space and T:E — 2f be a
set-valued linear mapping. Then T is always single-valuéd.

Proof: We have T'(0) = 07(0) = {0}. Then for any vector z ¢ E, we have
P}=T(z-2)=T(2)-T(2)

by the linearity of T.But T'(z)-T(z) = {x- y | x,y € T(2)} = {0}. Thus x— y =0 for all

x,ye€T(z). Hence, x=y forall x,ye T(z). Consequently, T(z) is single-valued,
say T'(z) =x, forsome xe E.

Definition 2.2.2. Let X be a convex set in a topological vector space E£. Then
f:X > Ris called

/

(i) lower semi-continuous &< forall Ae R, {xe‘le(x)S‘/l} is closed in
X, ‘ ‘
(i) upper semi-continuous < - f is lower semi-continuous, i.e., for all .
AeR, {xeX|f(x)24}isclosedin X. |

12



Definition 2.2.3. Let X and Y be topological‘spacés and T:X —2". Then
T is said to be upper (respectively, lower) semi-continuous at x, € X if for
each open set G in Y with T(x,) c G (respectively, T(;co)mG # ¢, ) there exists
an open neighborhood U of x, in Xsuch that T(x) c G (respectively,
T(x)NG #¢) forall xeU. Moreover,» T is said to be continuous at the point
x,€ X if T is both upper semi-continuous and lower se‘mi-continuous at
x,€X. And T is said to be continuous on X if T is continuous at each

point x, of X.

Definition 2.2.4. Let X be a convex setin a vector space E. Then f: X —
Ris:

(1) convex if and only if forall x,ye X andforall 0<A1<1,
| SAx+(1-)y) s H () +A-2)f(»)
(i) concave if and only if for all x,y e X and for all 0<a<l ,
f+ (1= D) 2 3 () + (1= D).
(iii) quasi-concave ifand only ifforall Ae R

{xeX|f(x)>A} is convex.

The following definition was given by K. C. Border in [2]:

Definition 2.2.5. Let X be a topological space such that X =U?_ C, where
{c, }:;, is an increasing sequenée of non-empty compact subsets of X. Then a

* if for each né

n=1

sequence {x }""

nin=

1is said to be escaping from X relative to {C,}

13



N, there exists m e N such that x & C,, forall k> m.

In obtaining the results on generalized bi-quasi-variational inequalifies (GBQVI)
for quasi-pseudo-monotone type | operates in non-compact settings, we shall use
the concept of escaping Sequences introduced by Border [2] with the application
of Chowdhury and Tan’s result [Theorem 2.2.2 below] on generalized bi-quasi-
.variational inequalities for quasi-pseudo-monotone type | operators on non

compact sets.

We shall first state the following result of M. S. R. Chowdhury and K. K. Tan in -
[11, Theorem 3.1]: :

Theorem 2.2.1. let £ be a IoCélIy convex Hausdorff topological vector space

over O, X be. a non-empty compact convex subset of £ and F a Hausdorff
topological vector space over ®. Let (,):FxE — @ be a bilinear functional which
is continuous on compact subsets of F x X. Suppose that

(@) S:X —2%, is upper se‘mi-continuous such that each S(x) is closed and
convex ; ”

(b) 71: X — R is convex and continuous ;

(c) T:X—-2% is an h-quasi-pseudo-monot‘onetype | operator and is upper
semi—continuoqs such that éach T'(x) is compact and convex and T(x) is
strongly bounded;

(d) M:X - 2" is a linear map in X (and is therefore single-valued for each
xeX);

(e) the set

14



2={yeX: sup [ inf Re<M(x)—w,y—x>+h(y)—h(x)]>0}

xeS(y) weT(y)

isopenin X.

Then there exists a point § € X 'such that
(i) yeS(») and
(i) there exists a point we T(p) with Re<M(p)-w,y-x>< h(x)—-h(p), for all
x e S(P).
Moreover, if S(x)=X forall xe X, E is not required to be locally convex and

if T=0, the continuity assumptibn on ( , > can be weakened to the assumption

that for each f e F, the map x+< f,x > is continuous on X.

Applying the above Theorem 2.2.1, Chowdhury and Tan obtained the following

result in [11, Theorem 3.2]:

ﬂi Theorem 2.2.2. Let £ be a locally convex Hausdorff topological vector space

over®, X be a non-empty compact convex subset of £ and F be a vector

1 space over ®. Let (, ):FxE—® be a bilinear functional such that (, )

separates points in F and for each f € F, the map x < f,x > is continuous on
X. Equip F with the strong topology 6 < F,E >. Suppose that
(a) S:X—>2% isa continuous map such that each S(x) is closed and convex;

(b) h:X—>R is convex and continuous;

15
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(c) T:X —»2F is an h-quasi-pseudo-monotone type I operator and is upper
semi-continuous such that each T(x) is strongly (5 < F,E >)-compact and

convex;

(d) M:X - 27 is a continuous linear map in X and for each y e Z, where

xeS(y) eIy

AZ‘,;{yeX: sup [ in{')Re<M(x)—w,y-—x>+h(y)—h(x)]>0},

inf Re <M (x)—w,y—x>+h(y)—h(x)>0 for some point x in S(y).

weT (y)

Then there exist a point y € X such that
() yeS() and
(i) there exists a point we T'(p) with Re %M(jz) —w,y-‘x >< h(x) - h(y) for all
x e S(P).

Moreover, if S(x) =X for all xe X, E is'not required to be locally convex.

For completeness we shall.incl‘ud'e the proof here as ‘outlineyd in [11];

Proof: As (, '):FxE — @ is a bilinear functionél ‘sucﬁ that for each f e F,
the map x+—< f,x> is continuous on X and as F is equipped with strong
topology & < F,E >, the bilinear functional, ( , ) is continuous on compact

subsets of Fx X. Thus by Theorem 2.2.1, if suffices to show that the set

xeSy)L*eT ()

Z={yeX: sup[ inf Re<M(x)—w,y—x>+h(y)—h(x):' >O} '

16



is an open in X. Indeed, let y, € Z;} then by the last part of the hypothesis (d),

M is a continuous linear map on X and -

inf Re<M(x,)-w,y,-Xx,>+h(y,)-h(x,)>0

weT(yo)

for some point x, in S(y,). Let
a:= inf Re<M(x,)-w,y,-%x,>+h(y,)-h(x,).

weT(yo)

Then ¢ >0. Also let

W:={we F: sup |<w,z, -z, >'<a/6}.

Z1,2,€X

Then W is an openineig‘hborhood of 0 in F so that U, :=T(y,)+ W is an open
neighborhood of T(y,) in F. Since T is u‘pper ‘semi—con"tinuous at y,, there
exists an open neighborhood N of ¥, in ‘X such that ‘T(y)cUl forall ye N,.
Let U, :=M(x,)+ W, then u, is an open neighborhood of‘M(xo) in F. Since
M is continuous at x,, there exist an open neighborhood y, of x in X such that
M(x)eU2 for all xeV,.
As the map x— inf Re<M(x,)-w,Xx,-x>+h(x,)-h(x) is continuous at x,,

weT(yo)

there exist an open neighborhood ¥, of x in X such that

<%

inf )Re<M(x0)-w,xo -X >+h(x,)-h(x)

weT'(y,

17



—4

for all xeV,. Let V,:=V,nV,; then ¥, is an open neighborhood of x in X.

since x, eV, NS(y,)#¢ and S is lower semi-continuous at y,, there exists an

open neighborhood N, of y in X suchthat S(y)nV, =¢ forall yeN,.

Since the map ym— inf Re<M(x,)-w,y-y,>+h(y)-h(y,) is continuous at

weT(yo)

¥,. there exists an open neighborhood N, of y in X such that

<%

inf Re<M(x,)-w, Y’YO>+h(Y)‘h(YO)

weT(yy)

forall y eN,.
Let Ny:=N,nN,NN,. Then N_isan open neighborhood of y,in X such that
for each y, e N,, we have

(i) Ty cU, =T(y,)+W as y, eN;; ‘

(i) S(y)nV,#¢ as y, eN,; sowe can choose any x, € S(y,)NV,;

inf Re<M(x,)-w,y, -y,>+h(y,)-h(y,)

weT(yg)

(iii)

<% as y, € Nj;
(iv) M(x)eU,=M(x,)+W as x, eV;

(v)

inf Re<M(x,)-w,x,-%x, >+h(x,)-h(x,)

weT(yy)

<% as x, el,.

It follows that

weT(y)

inf Re<M(x,)-w, y, -x, >+h(y,)-h(x,)

> }rexlf,[werlgg+W]Re<(M(x0)+f)-w, y, -X, >+h(y,)-h(x,)
| | ~ (by (i) and (iv)),
> inf Re<M(x,)-w,y,-x, >+h(y,)-h(x,)

weT(yg)

18



+1inf inf Re< w, X, >
JeW weW . f yl

> inf Re<M(x,)-w,y,- yo>+h(y1) -h(y,)

weT(yg)

+ inf Re<M(x0) A yo-xo>+h(yo) h(x,)

wel(yq)

+ inf Re<M(x,)-w,x,-x, >+h(x,)-h(x,)

weT(yq)

+}n£Re<fy1 X, > +1nfRe< —-W, ¥ - X, >

> —£+a———————=%>0 (by (iii) and (v)).

Therefore

sup { inf Re<M(x)-w, y,-x>+h(y,)- h(x)J>0

xeS(y) LYETOD

as x € S(y,). This shows that y eX for all y, eN,. Thus N, is an open

neighborhood of y, which is contained in . Hence, £ is open in X.

Consequently, the conclusion of Theorem 2.2.2 follows from Theorem 2.2.1.
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CHAPTER 3

Generalized Bi-Quasi-Variational Inequalities for Quasi-
Pseudo-Monotone Type | Operators in Non-Compact

. Settings

In this chapter we shall bresent our main resuit of exiétence theorem on non-
compact generalized bi-quasi-variational inequalities fo} quasi-pseudo-monotone
type | operators. In obtaining this result we shall mainly use the concept of
escaping sequences given in Definition 2.2.5 and apply-Theorem 2.2.2. |

We shall now present our main result: -

Theorem 3.1. let £ be a locally convex Hausdorff topological vector space
over ®, X a non-empty (convex) subset of £ such that X =U%_C , Wh‘e‘re‘

{Cn }” is an increasing sequence of non-empty compact convex subsets of X
n= . . o . |

and let F be a vector space over ®. Let ( , ):FxE— @ be a bilinear functional
such that ( , ) separates pointsin F and foreach feF, themap x—>< f,x>
is continuous on X. Equip F with the strong topology & < F,E >. Suppose that

(1) §:X — 2% Is a continuous map such that

(a) foreach xeX, S(x)is a closed and convex subset of X and
(b) foreach neN, Sx)cC, forall xeC_;

~ (2) h:X > Ris convex and continuous;
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T N U

(3) T:X—>2" is an h-quasi-pseudo-monotoné type | operator and is upper

semi-continuous such that each T(x) is & < F,E >-compact and convex;

(4) M : X - 2" is a continuous linear map in X and foreach y e £, where

xeS(y) weT(y)

= {yeX sup[ inf Re<M(x)-w,y—x>+h(y)— h(x)]>0}

inf Re<M(x)-w,y—x>+h(y)—-h(x)>0 for some pomt x in S(y);

weT ()

(5) for each sequence {yn }‘”_1- in X, with yn € Cn for each ne N, which is

escaping from X relative to {C,}7 , either there exists n €N such that

n=1?

Yo, €5(y,,) orthere exist n €N and x, €S(y, )such that

min Re<M(yn) w, Ya, xno >+h(Yno)-h(xno)>O (*)

WET()’ )

holds.

Then there exists a point y € X such that |
(i) yeS@) and
(ii) there exists a point we T(9) with Re< M (p)~w,y—x >< h(x)—h(p) for all

xe S(P).

Moreover, if S(x)=X forall xe X, E is not required to be locally convex.

Proof. Let us fix an arbitrary n e N. We note that C is a non-empty compact
and convex subset of E. Let us define s,:¢, »2%, h,:C, > R and

:C, > 27 by S (x)=5x), h,(x)=h(x), M,(x)=M(x), and T,(x)=T(x)

n’
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respectively for each xéC,,; e, S, =‘S lc.» B, =hlc,, M, =M lc.-and T, =T |,
respectively. Then by Theorem 2.2.2, there exists a point j, € C, such that

¢ y,e8,(,)and

(i) there exists a point w, e T(p,)=T,(p,) with

Re<M,($,)-W,,, -x ><h(x)-h(,)

forall x e Sn (3/n ).

Note that {5,]”, isa seduence in X=U" C with y eC for‘éach neN.

Case 1: {§,}7 is escaping from X relative to {C,}~,. Then by hypothesis (5),
there exists n e N such that j, ¢S(,)=8, (¥, ), which contradicts (i)' or
there exist n e N and x, €8(7,,)=S8,, (7,,) such that

min Re< M (5, )-w, ¥, -X,, >+h, )-hx, )>0,

WeT(§,, )

which contradicts (i7)".

Case 2: {§ ), is not escaping from X relative to {C,}",. Then there exist

n=| l

n €N and a subsequence {jzn.}‘f"l of {5’n}:=1 such that j, C, for all
3= 1

J=123,---. Since C, is compact, there exist a subnet {£, ). Of {5) }‘?1 and
. =

y €C, c X suchthat z, - §.

Foreach a €T, let z, =y, , where n, —. Then according to our choice of

V., in C, , we have

n, 2

(l)” 911" € Sn" (911")=S(§,nu )’ and
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(ii)" there exista point w, €T, (3, )=T(y, ) with
Re(M(5,, )~y .3y, — %)+ h(3, )~ h(x) S O
forall xeS§, (3, )=8(, ). Since n, -, there exists @, e I" such that n, >n,
for all a2q, Thus C, cC for all a>a,. From (i)' above we have
'(j/,,a,)‘z,,a)eG(S) for all ael. Since S is upper semi-continuous with closed

values, G(S) is closed in X x.X; it follows that j € S(9).

Moreover, since {M(j/,,a‘)}

and {7, } are nets in the compact sets
azay a ‘a2ay

U M(x)=M(C,)(since M isa contlnuous smgle valued function) and U T(x)

xeC

respectively, without loss of generality, we may assume that the nets

{M(yna)}aerand {ﬁz"a }ae converges to M(y) and some point we U T(x)

xeC,,
respectively. Note that M has a cIoseyd‘graph. Also, since T has a closed
graphon C,, | weT(P).

Let x e S(9) be arbitrarily fixed.‘ Let n, 2n, be such that xeC, .Since S is
lower semi-continuous at j), without loss of generality we may assume that for
each ael, there is an x, €S(y,) such thatx,, —»x. By | (ii)" we have
Re(M(3, )= W, 5, —%, ) +h(3, )~ h(x, )S0 for all ael. Note that
M3, )~ W, = M@)-% in &FE) and {§, -x, | i a net in the compa;ct‘

(and hence bounded) set C, - U S(»). Thus for each £>0, there exist "
yeCpy .
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a, 2 a, such that IRe(M(ynu )=W, - (M(P)~W), 5, —x, )I < % for all aza,.
Since (M(3)-W,§, —x, )= (M () - 5~x) , there éxists a, 2 s‘uch that
|Re(M(Sf) -7, —’x"u y-Re(M(®y)-w,y - x>| < % forall @ 2 a,.

Thusforall a=a,,

[Re(M(§,, )= W, .9, =%, )-Re(M(@)-W,¥-x)|

<[Re(M(3,,)~ ¥, ~(M(G)~#),5,, -x,.)|

+Re(M@) -, 3, —x, -§-%)

< % +&, =¢.

Thus,

imRe(M (9,,) =W, , P, ~x, »=Re(M@H)-¥,§-x).

Since /1 is continuous, we have

R&(M(P)-W, P ~x )+h(F)-h(x)
= lim[ Re(M (5, )~ Wrg.9,, =%, )+h(3,,)~h(x,) ]

<0.

This completes the proof.
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