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Preface 
Over the last thirty years, or so, a very hot topic, namely non-Newtonian fluid flow came to 
appeared in many application in industrial processes, biology, medicine, catalytic chemistry end 
environmental applications [I-61. In bio fluids the physiological system has been investigated by 
several researchers in order to find the treatment of diagnostic problems that arise during 
circulation in a human body. There are several models which have been proposed to describe 

such physiological fluids, however their full potential has not been exploited yet and a lot of 
questions remain unresolved. Among several models, non-Newtonian Jeffrey model is 
significant because Newtonian fluid model can be deduced from it as a special case by taking 

?., = 0. It is also speculated that the physiological fluids such as blood exhibit Newtonian and 
nun-Newtonian behaviors simultaneously. 

Among all continuous system taking place in a human's body and becoming the main reason 1, 'r  
one's life, peristalsis is one of them. Basically peristaltic word comes from Greek wor~j 
pcristaltikos which means clasping and compressing. The importance of peristalsis can L .: 
assumed by the fact that, it is an automatic series of muscular contraction and relaxation, whit 1 

takes place in human's body, such as digestive tract or digestive system. Peristalsis does c a w  
the movement of food through digestive system, chyme in the gastrointestinal tract, urine froin 
kidney to bladder and bile from gallbladder to duodenum. Also, transport of lymph in the 
lymphatic vessels and vasomotion of small blood vessels like arterioles, venules and capillaries 
~ilvolve the peristaltic motion are the common examples of peristaltic motion. In additioll 
peristaltic motion has been equally, playing an important and beneficial part in physiological 
sciences by devising mechanical and biomechanical instruments such as roller pumps and heart 
lung machine, which function mainly by using the principle of peristalsis. This has opened a ncw 
d~mension for researchers to maneuver their equipment for obtaining better results in thcir 
respective field of interest. Different mathematical models have been employed by many authors 
to use peristaltic flow in Newtonian and non-Newtonian fluid 17-1 11. 

Moreover, the effects of magnetohydrodynamics (MHD) in peristalsis are very important and 
have great value in medical science such as magneto therapy, hyperthermia, arterial flo\\, 
compressor, optimization of blood pump machines, magnetic wound or cancer tumor treatmwl 
causing hyperthermia, bleeding reduction during surgeries and targeted transport of drug usili:! 
magnetic particles as drug carries. As MHD has based on a fundamental law [ $ I '  
electromagnetism that is when a magnetic field and an electric current intersect in a liquid, thclr 
repulsive intersection propels the liquid in a direction perpendicular to both the field and ti!: 
current. Due to this fact, MHD is also used in the study of electrically conducting fluitii; 
examples of such fluids include electrolytes, saltwater, liquid metals and plasmas. The controllid 
application of low intensity and frequency pulsating fields modify the cell and tissue. Magnetic 
susceptible of chyme is satisfied the ions contained in the chyme or with heat generated by t he  
magnetic field. The magnets could heat inflammations, ulceration, several diseases of uterus and 
bowel. A number of researchers have applied magnetic field on peristaltic mechanisms, one way 
or the other. An extensive literature on the said topics is now available but we can only mention 
a few recent interesting investigations here [12-191. 

Furthermore, the fluids that exhibit slip effect have many applications, for instance, the polishing 
of artificial heart valves and internal cavities. In all these studies the peristaltic flow problems 
have been extensively investigated with no slip condition. A very less emphasis has been givcn 



Additionally, the study of non-Newtonian fluids is complicated and difficult because of the 
nonlinear relationship between the stress and the rate of strain occurs in real world phenomena. I t  
i:: very easy to solve a linear problem but finding a solution of nonlinear problem is still very 
challenging task. In particular, getting an analytic solution of a nonlinear problem is often more 
difficult as compared to getting a numerical solution, despite the availability of high performam t 
supercomputers. However, results obtained by numerical methods give discontinuous points 01' a 
curve when plotted. Besides that, obtaining the complete necessary understanding of a nonlinc.ir 
problem is very much difficult. If a nonlinear problem has multiple solutions or contail!; 
singularity then this also adds difficulties to the numerical. Though numerical and analyl .: 
methods for solving nonlinear problems have their own limitations, at the same time they ha\ .: 
their advantages too. Therefore, we cannot neglect either of the two approaches but usually it ,s  
pleasing to solve a nonlinear problem analytically. In applied sciences, analytical solutions 01' 
any physical model are of great importance, if available since analytical solutions not only lend 
to draw correct physical interpretation but are also very helpful in the validating of numerical 
i~westigations. In the present study, the resulting equations are first transformed to dimensionless 
partial differential equations using the appropriate variables and then analytical are obtained by 
the method of separation of variables. 

With all abovementioned studies, one can clearly observe that no analysis for 
magnetohydrodynamic peristaltic flow of Jeffery fluid in the presence of partial slip conditions is 
reported in the available literature yet. The present work puts forward to fill this gap. The flow 
analysis is performed under the constraint of long wavelength approximation and low Reynoltfs 
number. An exact solution for the expression for both velocity of the fluid and pressure gradietlt 
are obtained by using the method of separation of variables. The pumping characteristics such ;is 
pressure rise and trapping phenomena are obtained numerically by using software Mathematic:!. 
l'he physical features of pertinent parameters have been comprehensively elaborated througl~ 
graphs. The organization of thesis is in the following fashion: Chapter 1 includes some bas:.: 
definition and governing equations for subsequent chapters. Chapter 2 is the review work ill' 
Nadeem and Akram [32]. Chapter 3 may be regarded as an extension of the problem considend 
by Nadeem and Akram [32] to serve the aforementioned purpose. 
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Chapter 1 

Introduction 

1.1 Basic definitions 

Main objective of this chapter is to make a reader, familiar with the basic concepts which 

are largely used in fluid mechanics. Furthermore, it provides an essent,ial aid to a reader in 

understanding the material presented in the subsequent chapters, as well. 

1.2 Fluid mechanics 

Fluid mechanics is a branch of engineering sciences, which deals with the behavior of the fluid 

under the conditions of both rest and motion. Moreover, one can say that fluid mechanics is 

the study of fluids (i.e., liquids and gases) and involves various properties of the fluid, such as 

velocity, pressure, density and temperature, as functions of space and time. 

1.3 Branches of fluid mechanics 

Based on the fluid's behavior, the fluid mechanics is divided into mainly two main branches. 

These are: 



1.3.1 Fluid statics 

This branch of fluid mechanics deals with the fluid when there is no relative motion between 

the fluid particles. In fluid statics, one is merely, interested in the conditions and reasons which 

cause the fluid to be in state of rest. It's practical applications are numerous. Some of which 

are Fluid Manometers, buoyancy measurements, density calculations, aircraft design and the 

airspeed indicator/controller. 

1.3.2 Fluid kinematics 

This is the branch of fluid mechanics which deals with the behavior of the fluid when it is in 

motion. 

1.3.3 Fluid dynamics 

This branch of fluid mechanics is concerned with the movement of the fluid and how different 

types of forces effect on it. It provides very significant methods to study the ocean current, 

weather pattern, evolution of stars, tectonic plates and blood circulation. It's applications 

includes wind turbines, rocket engine, oil pipelines and air conditioning systems. 

1.4 Fluid 

Fluid is defined a s  a substance which is capablc of flowing. It has no defmed shape, but it takes 

the shape of its container. Besidcs, a fluid offcrs vcry little or no resistance to the external 

force/stress, when applied on it. In simpler terms, one can also makc it out that the fluid is a 

substance which offers no resistance to shear force, when applied on it. A fluid can be liquid, 

vapor or gas. Common examples of the daily fluid include water, petrol, diesel, air and gas etc. 

1.5 Types of fluid 

Physical features and nature go a long way, in understanding the different types of fluid that 

exist in or on the planet earth. Thereforc, it is classificd into four basic kinds. These are: 



1.5.1 Ideal fluid (Non-viscous fluid) 

An ideal fluid is defined as the Huid that has no viscosity. Moreover, it is not compressible in 

nature. Physically, in our universe there does not exist, such a fluid. 

1.5.2 Real fluid (Viscous fluid) 

A real fluid is the one which has some viscosity itnd is compressible in nature. Common examples 

of real fluid in daily lives include: Kerosene oil, Petrol, Castor oil. etc. 

1.5.3 Newtonian fluid 

Newtonian fluid is defined as t,he fluid for which the shear stress is directly and linearly propor- 

tional t,o the rat,e of strain (Also known as deformation). Mathematically, it can be represented 

where p, denotes the viscosity of the fluid, T,, is called hew stress act,ing upon the plane 

normal to y - axis. The above equation is also called Newton's law of viscosity. This implies 

that Newtonian fluids obey Newtonian's law of viscosity. Moreover, for Newtonian fluids, 

viscosity entirely depends upon the temperature and pressure of the fluid. In simple words, 

in Newtonian fluids the shear stress is always the function of strain rate (velocity gradient). 

Examples include air, wat,er and petrol. 

1.5.4 Non-Newtonian fluid 

Non-Newtonian Huid is defined as the fluid for which shear stress is directly but non-linearly 

proportional to the rate of strain. Mathematically, it can be denoted as given 

Examples: Shampoo, blood, starch, paints and ketchup. etc. 



1.6 Jeffrey fluid 

Since liquids and gases are known as fluid. Jeffrey is the name of a scientist who gave a stress 

tensor for a non-Newtonian fluid, containing a ratio of timcs XI  (i.e., the ratio of relaxation 

time to retardation time) called Jeffrey parameter. It is deonted by 

Relaxation time of the fluid 
Jeffrey parameter - 

Retardation time of the fluid' 
Relaxation time of the fluid 

A, = 
A2 

1.6.1 Retardation time 

It is defined as the time taken by the Jeffrey fluid lo gel deformed subject to shear stress. It 

denoted by Xa. 

1.6.2 Relaxation time 

It is defined as the time taken by the Jeffrey fiuid to return in to its equlibrium state, from its 

purturbed or deformed state. 

1.7 Compressible fluid 

A fluid whose density changes w.r.t. either time/spaco coordinates or relative to both time 

and space coordinates. Then this type of fluid is c d e d  a compressible fluid. All gases are 

compressible fluids. Mathematically, it can be cxprcssed as 

1.8 Incompressible fluid 

A fluid whose density does not change w.r.t. either time/space coordinates or relative to both 

time and space coordinates. Then this type of fluid is called a compressible fluid. All liquids 



are incompressible fluids. Mathematically, it can be expressed as 

v.v - 0. 

1.9 Properties of fluid 

Properties of the fluid determine how fluid can be used in engineering and technology. Moreover, 

these also determine the behavior of the fluid in fluid mechanics. The following are some of the 

most important and basic properties of the fluid which are used in this dissertation. These are: 

1.9.1 Density 

Density is defined as mass per unit volume of a fluid. It can also be termed a s  the ratio of mass 

of a fluid to it's volume. Mathematically, it is expressed as 

Mass 
Demity -- -- 

Volume 

Density is denoted by the symbol p. It's unit is k g / r n 3 .  Generally, the density of a fluid 

decreases as the temperature of the fluid increases. Similarly, it increases as the pressure of the 

fluid increases. Moreover, the density of a standard liquid (i.e., water) is 1000 kg/m3. 

1.9.2 Dynamic viscosity 

Second important property of the fluid is, it's viscosil.y. 11, is a measure of friction in the fluid. 

It can also be inferred as the measure of resistance of a fluid to the shear stress, applied on it. 

In general, when a fluid flows, the layers of a fluid rub against one another. In a very viscous 

fluid, the force of friction is so great that the layers of fluid pn11 against one another. Hence it 

hampers the fluid to flow. Simply, one can describe it as the ratio of shear stress to the rate of 

shear strain (deformation). Mathematically, 

Shear stress 
Viscosity = 

Rate of shear strain' 
Shear st,ress ' = Rate of shear &rain' 



It is denoted by LL pronounced as (rneu). Unlike density, viscosity in liquids decreases with the 

increase in temperature and while in gases it increases with rise in pressure. It is also known 

as "Dynamic viscosity". Unit of the viscosity is ( ~ . s / m "  or Pascal-sccond (Pa.s) 

1.9.3 Kinematic viscosity 

It is define as the ratio of dynamics viscosity p to dcnsity oE a fluid. Mathematically, it is 

represented as: 

Dynamic viscosity 
Kinematic viscosity - 

Density of the fluid' 

Unit of kinematic viscosity is m2/s 

1.9.4 Pressure 

Pressure is basically a type of surface forces. This is defined as t,he force per unit area. Infact, 

it is the ratio of force to an area of the fluid on which the force acts (area is normal to the 

direction of the force acting upon it). It is a scalar quantity. Mathematically, it can be defined 

as 

Force 
pressure = 

Area on which the force acts ' 
Forcc 

P = (1.10) 
Area on which the force acts ' 

It is represented by 'P ' .  The fundamental S.I. unit of pressure is newton per square meter 

(N/m2). This is also known as Pascal. 

1.10 Flow 

Change in the position of the fluid particles, dne to shear stress or any external force, is called 

the flow of fluid. In simplest words it is the abilty of fluids to flow. Or a material that goes 

under deformation when different forces acL on it. If deformation increases continuously without 

any limit then the phenomenon is known as flolu. 



1.11 Types of fluid flow 

1.11.1 Uniform flow 

A flow in which the velocity of each fluid particle is same, at every point of space or region in 

which fluid is moving. Mathematically, it can be expressed as 

where v is the velocity of the fluid and s denotes the space. 

1.11.2 Non-uniform flow 

A flow in which the velocity of each fluid part,iclc? is different form the other fluid particles, at 

every point of space or region in which fluid is moving. Mathematically, it can be expressed as 

1.11.3 Steady flow 

A flow in which the properties of the fluid particle (i.e., velocity, pressure, density etc.) are 

independent of time. Mathematically, it can be expressed as 

1.11.4 Unsteady fow 

A flow in which the properties of the fluid particle (i.e.. velocity, pressure, density etc.) are 

time dependent. Mathematically, it can be expressed as 



1.11.5 Rotational flow 

A flow in which the fluid particles while in the statc of motion, rotate about their mass of 

centers. Mathematically, it can be noted as 

1.11.6 Irrotational flow 

A flow in which the fluid particles while in the state of motion, do not rotate about their mass 

of centers. Mathematically, it can be noted as 

1.12 Forces in the fluid 

In fluid dynamics, a moving fluid often comes under Lhe eflect of various kinds of forces, acting 

upon it. Which have been categorized into t,wo main types. These forces are given as follows: 

1.12.1 Body force 

Body force is a force which applies on per unit mass of the fluid. This kind of force acts 

throughout the volume of a body. Gravitational force, Centrifugal force, Electric force and 

Magnetic force, are the common examples of the body force. Moreover, it is also termed as 

"Long range force" or "Volume force". 

1.12.2 Surface force 

It is define as a force, which acts upon per unit area of the fluid. Whenever, a surface force 

applies on the surface of any fluid it acts normally over the area. Whereas, shear stress acts 

tangentially over an area. Pressure, shear stresses, resistance etc. are the common examples of 

surface force. Mathematically, is denoted by f.5. 



1.13 Dimensionless numbers 

A dimensionless number is a number that has no unit ,associated with it. In field of Fluid 

Mechanics, in order to reach better rcsults and conclusions, it is often preferred to ignore the 

dimensions of some parameters. Therefore, t,o meet this purpose a sort of numerical quan- 

titylparameter is used which is known as "Dimensionless number" or "Dimensionless parame- 

ter". Basically, this number is the ratio of a pair of forces. This can be obtained if force of 

inertia is divided by any one of these forces i.c., viscous force, force of gravity, pressure force, 

force of surface, or elastic force. 

There are various dimensionless numbcrs in use, each depending upon its use and condi- 

tion. Most commonly used non-dimensional parameters include Reynolds number, Hartmann 

number, Froude's number, Euler's number, Weher's number. Here is the mention of those 

dimensionless parameters which have becn used in this dissertation. 

1.13.1 Reynolds Number 

It is defined as the ratio of inertial force, to viscous force of the flowing fluid. The expression 

for Reynolds number is obtained and dcnotcd as: 

Forcc of inertial 
Reynolds numbcr - -- - 

Ebrce of viscosity 

Eq. (1.12) can also be written as 
U L  Rc r 

I /  
(1.13) 

where L is the characteristic length and TI is the typical velocity. 

The significance of a Reynolds number is, to help one in describing the flow pattern of a 

fluid. It determines whether the fluid's flow is a laminar or a turbulent. For instant, a fluid is 



passiug through a round pipe if: 

i ) .  Re 5 2100, then the fluid flow is tenncd as Larninar flow. 

(ii). Re 2 4000, then the fluid How is termed as Turbulent flow. 

(iii). 2100 < Re < 4000, then t,he fluid flow is termed as t,ransitional flow (which means 

part of the flow is laminar while some part of the flow is turbulent) 

1.13.2 Hartmann number 

Hartmann number (Ha) is defined as thc ratio of r:ler:tromagnctic force to the viscous force. I t  

is represented by " M .  Mathematically, it is defined as: 

Hartmannnumber = f3L .-, v! 

where 

B is the magnetic field. 

L is the characteristic length scale 

p is the dynamic viscosity. 

a is the electrical conductivity. 

1.14 Boundary condition 

It is defined as a condition, which is required to be satisfied, by the set of differential equations, 

at all parts of the boundary of a region, in which the given set of differential equations is to be 

solved. In Huid mechanics we usually deal with the following two types of boundary conditions. 

These are listed below: 



1.14.1 No-slip condition 

If velocity of the fluid and velocity of thc wall (i.e. thc surface / solid boundary of the container 

in which the Huid is flowing or preserved) are same, then this condition is said to be No-slip 

condition. This implies that either, the fluid and wall are moving with the same velocity, or 

both happen to be in state of rest. Mathcmatically, described as 

Velocity of the flnid = Velocity of the wall 

V fluzd = V u 8 a l l .  

1.14.2 Partial slip condition 

In fluid mechanics, partial slip condition also known as slip condition is of a great significance. 

For, in real life plienomcna, no-slip condition rarely cxists or docs not hold in all the situations. 

In some cascs, the fluids tend to slip at the stationary wall (solid boundary). This gives rise, 

in difference between the velocities of the fluid and the wall. 

Thc idea of partial slip was, originally proposed by Navies. This condition states that veloc- 

ity u in the x - direction is directly proportional to shear st,ress at the wall. Mathematically, 

it is defined and denoted as 

VIU~ I I  0 T r y  > 
(1.16) 

V,,II = al?-~,, 

where a1 denotes slip parameter. Eq. (1.16) is kr~own .as Slipcondition of the fluid at wall. 

1.15 Volumetric flow rate 

Volumetric flow rate is defined, as the volnme (quautity) of Huid which passes through a sur- 

faceIan orifice, in a given unit of time. It is given by 

Volume of the Hu~d 
Volumetric flow rat? - 

Time clapsed ' 
v y = -  
I 



The volumetric flow rate is represented by the symbol Q. The S.I. unit of volumetric flow is 

m3/s (cubic meters per second). 

1.16 Continuity equation 

Basically, continuity equation, in fluid dynamics, is the law of conservation of mass. It states 

t,hat the in-coming volumetric flow rate of a fluid, at one end of the hose, is same as the out- 

going volumetric flow ratc of the given fluid, at the other m d  of the hose. If Q1 denotes the 

in-coming flow rate of the fluid, and Qz denot,es the out-going Row rate, then by the condition 

of continuit,y equation, it follows: 

In-coming volumetric flow rate = Out-going volumetric flow rate, 
(1.18) 

Ui  - Q2. 

However, it is believed t,hat gases oft,cn behave AS fluids. Rut, unlike liquids gases are not 

incompressible. Therefore, the continuity equation does not apply, in such cases. 

In fluid dynamics the differential form of continuity equation, is given by 

For, incompressible fluid flow dp/dt  = 0. Then the above Eq.(1.23) becomes 

This implies that, p # 0. Therefore 

Eq. (1.26) is known as continuity equation in Cartesian form 



1.17 Momentum equations 

Equations of mot,ion describe the law of conservation of linear momentum. In fluid dynamics, 

vect,or differential form of momentum equations, is given by 

1.18 Peristalsis 

Peristalsis is one of the most important and significant systems being carried out in a human 

body. It is an automatic, series of muscular contract.ion and relaxation, which takes place in 

human's digestive system or digestive tract, and in somc organs that connect kidney to the 

bladder. Peristalsis is responsible for the movement of 

Food through digestive system. 

0 Urine from kidney to bladder. 

Bile from gallbladder to duodenum (first opening of small intestine). 

1.19 Magnetohydrodynamics (MHD) 

1111942, a Swedish scientist and Nobel Prize laureate. Harmes A1fvi.n for the very first time 

introduced the use of AiIagnetohydrodynamics (MHD). (MHD) involves magnetic fields (mag- 

neto) and fluids (hydro) that conduct electricity and interact (dynamics). MHD technology is 

hascd on a fundamental law of electromagnetism. Whcn a magnetic field and an electric current 

intersect in a liquid, their repulsive intcrscction propels the liquid in a direction perpendicular 

to both the field and the current. 

1.20 Separation of variables 

In the solution of differential equations, separation of variables is one of several methods, which 

are used to solve both an ordinary and partial differential equations. It is also known as the 



Fourier method. In the solution of PDEs, separation of variables is applicable if and only if 

The given PDE is homogenous (i.e., forcing function is not present). 

Boundary conditions are homogenous. 

Domain is finite. 

1.21 Tensor 

Tensor is defined as an array of numbers or functions, transformed under a certain rule when 

the coordinates are changed. In other words scalar and vector both are special cases of a more 

general object known as " Tensor" of order n. Specification of a tensor in any coordinate system 

requires 3n numbers, which are called the components of th? lensor. Where n = 1 , 2 , 3  .... 
Infact, the order or rank of a tenor is the number of suffixes used in it. For example, scalars 

are tensor of order 0 (Zero),  with 3 O  = 1, component. Whereas, vector is a tenor of order one, 

with 3' = 3, components. An example for the tensor of order one is velocity. However, the 

partial derivatives of velocity yields a tensor of order two. 



Chapter 2 

Peristaltic flow of a Jeffrey fluid in a 

rectangular duct 

This chapter contains the review work of Nadeem and Akram the 1321. In present chapter, the 

detail calculations for the peristaltic flow of a Jeffrey fluid in a rectangular duct are given. The 

exact solutions of velocity and pressure gradient have been found under the assumption of long 

wave length and low Reynolds number. The expression for pressure rise in a rectangular duct 

has been evaluated numerically. The physical features of pertinent parameters are discussed 

through graphs. 

2.1 Formulation of the problem 

Let us consider the peristaltic flow of an incomprcssihle non-Newtonian fluid (Jeffrey fluid) 

in a duct of rectangular cross section having the channel width 2d and height 2a. Cartesian 

coordinates system is considered in such a way that X -axis is taken along the axial direction, 

Y - axis is takcn in the lateral direction and Z -- uzis is along the vertical direction of the 

rectangular duct. 



Fig. 2.1. Schematic diagram of peristaltic How with waves propagating on horizontal walls in 

a rectangular duct. 

The peristaltic waves on the wall are represented as 

where a and b are the amplitudes of the waves, X is the wave length, c is t,he velocity of the 

wave propagation, t is the time and X is the direction of wave propagation. The walls parallel 

to XY plane remain undisturbed and a1.e not, subject to any peristaltic wave motion. It is 

assumed that the lateral velocity is zero as there is no change in lateral direction of the duct 

cross section. 



If V =(U, 0, W )  be the velocity for a rectangular duct. Then the governing equations for 

the peristaltic flow of the Jeffrey fluid in the given rectangular duct are given as 

Equat ion of conservation of mass: 

Equation of momentum: 

'The above equation of momentum in the form of velocity components is given as: 

where U and W are the velocity components, in fixed frame (X, Y). And, S denotes the shear 

stresses. Moreover, stress tensor for Jeffrey fluid is defined as 

j = (grad V) i -  ( g a d  v)'", 

;i = (VV) +(vv)'~. 

In above equation, Xlis the ratio of relaxation to retardation t,imes, A 2  is the delay time, ;l is 

the shear rate and dot denotes it's derivative w.r.t. time. 

The boundary conditions for the problem are: 

(i).U(Y, Z) = o = U, at Y = h d ,  (2.8) 

(ii).U(Y,Z) = 0 = U, at Z = *H(X, t) = + a ,  bcos - (X - c t )  . (2.9) i:" 1 
Now, by defining a wave frame (x, y) moving with the velocity c away from the fixed frame 



(X, Y) by the following given transformation, 

Selecting the following set of non-dimensional variables and parameters 

% =  x ,y  - - Y  - a , Z =  - - Z U -  - - : , l l r = 2 0 t L $ , J 1 ; H p , % R e = & 4 = c  
a 1 "3, a '  ," @ ' d r  

,j=" s.. L2-  zSZZ.IS3f " = $SzZISEQ= dSxylSjlZ PC = $Syz,Szz -- &Szz,~Qy = $Sw. 
(2.11) 

Having used the above given transformation, non-dimmsional variables and parameters. The 

Eqs. (2.2) - (2.6) after dropping the signs of bar, take the following form 

where 

Using the assumption of long wave length 6 < I and low Reynolds , terms of order 6 and higher 

power are neglected. Then Eqs. (2.12) - (2.16) will reduce to the following non-homogenous, 

linear and second order partial differential equation: 



Similarly, the corresponding boundary conditions, Eqs. (2.8) - (2.9) take the form 

where 4 is the amplitude ratio i.e., 4 = bla ,  such that 0 < 4 < 1, and /3 is the aspect ratio. 

2.2 Solution of the problem 

It is noted that Eq. (2.17), is a linear, non-hornogcneous and second order partial differential 

equation, corresponding to the boundary conditions given in Eqs. (2.18) - (2.19). In order to 

solve Eq. (2.17), the following transformation is takcn in t o  consideration 

which is sugested by Richard Haberman in his book "Elementay Applied Partial Differential 

Equations". This transformation is useful to convert non-homogenous PDEs and boundary 

conditions into homogenous PDEs and boundary conditions. By using Eq. (2.20) in Eq. (2.17). 

Which gives 

and 

Now, by using Eq. (2.20) in Eqs. (2.18) - (2.19). Corresponding boundary conditions take the 

form 

vl(&l, z) -.- 1 - wl(z), (2.23) 

and 



Here, it can be noted that the transformation yields, the main given problem into two systems 

of differential equations. First one is an ODE (i.e., Eq. 2.22) whereas, the second one is PDE 

(i.e., Eq. 2.21),  corresponding to their boundary conditions. Thus the solution of the problem 

is obtained by solving the Eq. (2.22) and Eq. (2 .21) .  one-by-one respectively. 

2.2.1 Solu t ion  of o rd ina ry  differential  equa t i on  

By considering Eq. (2 .22) ,  with the boundary conditions Eq. (2.25) such that 

d2wl  
-- d~ 
dz2  

- (1 t X I )  - 
dx' 

For the above ODE, the complementary function and pnrt,icular solution are 

where eland c2 are constants, which need to be determined. 

Thus the general solution is determined by 

Applying the boundary conditions Eq. (2 .25) ,  in above equation to obtain the values of cl,and 

cz . Such that: 

dz ' 

and 

c2 = 0 



Thus, the general solution of the given ODE is 

2.2.2 Solution of partial differential equation 

Considering the PDE in Eq. (2.21) with the corresponding boundary conditions Eqs. (2.23) - 

(2.24), such that 

Since, Eq. (2.21) is a linear, second order homogenous PDE, with homogenous boundary 

conditions at z = f h .  Therefore, the solution of thc given PDE is obtained by using method 

known as "Separation of variables". 

Let us assume that 

v(y, t) - Y ( v )  x q:). (2.30) 

is one of the possible solutions of Eq. (2.21). 

Using (2.30) in (2.21), it yields 

This implies that 

and 

Put Eq. (2.24) in Eq. (2.30). It gives 

0 - Y(y) x z(3) .  



As Y(y) # 0. This implies that 

Z(+h)  = 0 

Therefore, there are two possible cases, 

Case-I 

Consider Eq. (2.32) 

Then 

D - + (icy). (2.36) 

For the values of cu < 0 and a = 0, trivial solutions are obtained. Therefore, the only non-trivial 

solution is obtained, for the value of cu > 0, which is givcn as 

z(t)  = c3 cos ( a t )  + Y sin ( a z )  . (2.37) 

where CQ and cq are the constants that are det,ermimed by using Z(*h) -- 0, in Eq. (2.32), such 

that 

cq = 0. 

and 

c3 cos ( a h )  = 0,  d C3 f 0 

Therefore 

cos ( a h )  = 0. 



This implies that 
(2n - l )n  

a, = , n P 1 , 2 , 3  . . .  
2h 

Thus, Eq. (2.37) reduces to 

~ ( 2 n  - l)t 
Z(r )  : c3 cos --- ( 2 ) I  

Case-I1 

Now, consider Eq. (2.33) 

This implies that Y(y) # 0. Then 

D=*(;). (2.41) 

Thus, the general solution is given as 

Y(y) = q cash (;y) + is sinh (; y) . (2.42) 

Using Eq. (2.39) and Eq. (2.42) in Eq. (2.30). It is obtaincd 

or 

(2.44) 

where A = CQ x cg and E = ca x cs. 

Using the boundary conditions given in Eq. (2.23) ill above Eq. (2.44). We get 

1 - w (z) = (2.45) 

-1 - wl( t )  = (2.46) 



Replacing Eq. (2.29) in above Eqs. (2.45) - (2.46). It gives 

By using the orthogonal property and integrating Eq. (2.47) and Eq. (2.48), w.r.t. z ,  from 0 

to h, respectively, it gives 

Adding Eq. (2.49) and Eq. (2.50). It provides 

and E = O  

Substituting the values of A and E, in Eq. (2.44), wc have 

2(-l)n (1 + XI) cash 
vl(y, r )  = 

Since the values of vl(y, z )  and wl(z), are now known. Therefore, Eq. (2.20) becomes 

Now, it is assumed that 
, (2n - 1 ) ~  a, = -- 

2 

Then Eq. (2.38) becomes 



Replace a, by a: in Eq. (2.53), we obtained 

The above Eq. (2.56) shows the required velocity profile of the Jeffrey fluid peristaltically 

moving in the rectangular duct. 

In order to find volumetric flow rate of the Jeffrey fluid in the given rectangular duct, the 

velocity of the fluid is integrated twice w.1.t. z and y, respectively. As shown below 

Average volumetric flow rate over one period 'I' - X/c of thc peristaltic wave is defined as 

where 
I h 

Q = + 1)dzdy = q + h 

0 ' 0  

Therefore, the average volumetric flow rate is given as 



One can identify pressure from the above Eq. (2.61), such that 

In order to find pressure rise of the fluid, Eq. (2.62) is numerically integrated over one wave, 

by using the built-in command of the mathematical software "Mathematics", such that 

It is interesting to note that the given rectangular duct becomes a square duct by taking P = 1. 



2.3 Results and discussion 

In this section, the graphical results of the problem under cousideration are discussed. These 

graphs are obtained with the help of "Mathematics". 

In figures 2.2 - 2.5, the graphical behavior of pressure gradient d p / d x ,  for different values of 

aspect ratio p, amplitude ratio 4, Jeffrey parameter XI, and volumetric flow rate Q against x 

are sketched. 

In figures 2.2 - 2.3, it is observed that for z r [0.2,0.8], pressure gradient rises with the rise 

in aspect ratio B ,  and amplitude ratio 4.  Moreover, for x 6 \0,0.2] and x E [0.8,1.0], pressure 

gradient is very small. This implies that the flow can pass without any pressure gradient. 

In figure 2.4, however, pressure gradient starts dcclining as Jeffrey parameter X1 increases, in 

region for x r [0.2,0.8] and follows the same flow pattern in region x r [U, 0.21 and x r [0.8,1.01, as 

followed by aspect ratio P. Similarly, as figure 2.5 demonstrates a different behavior of pressure 

gradient, altogether. As it is not only decreasing in t,he region, upon increase of volume flow 

rate Q. But, it remains positive for the smaller values of Q and negative for the higher values 

of Q. Figures 2.6 - 2.7, show the velocity profile U of the wave for different values of volume 

flow rate Q and aspect ratio 8. 

In figures 2.6 - 2.7, it is observed that for z F (-1.5,1.51, the velocity profile rises, corre- 

sponding to  the rise in volume flow rate and aspect ratio, respect,ively. In figures 2.8 - 2.11, 

pressure rise Ap of the fluid is dcpictcd, for the differcnt values of aspect ratio 4, amplitude 

ratio 6, Jeffrey parameter XI, and volume flow rate Q. 

It is inferred from the figures 2.8 - 2.9, pressure rise Ap increases for the different increasing 

values of 8 with respect to Q. Similarly, Ap rises for the Jeffrey parameter XI, when it is 

sketched w.r.t. /3. Moreover, in figures 2.10 - 2.11, the values of Ap decline for rise in the 

numerical values of A1 and volumetric flow rate Q which are sket,c.hed with respect to Q and 

B,  respectively. Figures 2.12 - 2.23, represent thc stream lines for the fluid flow. The size of 

the boluses varies; correspond to  the variatiou in aspect ratio 0, volumetric flow rate Q and 

amplitude ratio respectively 9. 

In figures 2.12 - 2.15, the number and sizc of the boluses arc in increasing with the rise in 

the numerical value of /3. This indicates the passiveness of Lhe Buid flow through the rectangular 

duct. 



From figures 2.16 - 2.19, it is examined that as thc numerical value of volumetric flow rate 

rises, the boluses are getting enlarged only whereas the number of boluses remains constant. 

This phenomenon shows the swiftness of the fluid flow through the rectangular duct. 

For the different values of the amplitudc ratio, in above figures 2.20 - 2.23, the stream lines, 

not only increase in number, but also expand in size. Hcnce it can he inferred that the flow of 

the fluid, is finding a bite hard to pass / flow through the rectangular duct. 



Figure 2.2 : Variation of pressure gradient with x for different values of 0 at Q = -0.5, il = 2, 

Figure 2.3 : Variation of pressure gradient with x for different values of ( at Q = -0.5, A1 = 2, 





Figure. 2.6 : Velocity 

/3 = 0.5. 

Figure. 2.7 : Velocity profile for different values of P at d, = 0.6, y = 0.5, XI = 2, x = 0, 

Q = 0.5. 

profile for different values of Q at 4 = 0.6, y 

1.5 
. ....., 

. , 
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Figure. 2.8 : Variation of Ap with Q for different values of 0 at  4 = 0.6, XI = 2. 

Figure. 2.9 : Vzniation of Ap with B for different values of A1  at 4 = 0.6, & = 0.5. 



Figure. 2.10 : Variation of Ap with Q for different values of XI at 4 = 0.6, 0 = 2. 



Figure. 2.12 : Stream limes for B = 0. The othcr parameters are Q = 1.5, ?/ = 0.5, $ = 0.6, 

Figure. 2.13 : Stream lines for f l  = 0.5. The other parameters are Q = 1.5, y = 0.5, $ = 0.6, 

A1 = 1. 



X 

Figure. 2.14 : Stream lines for P = 1. The other parameters are Q = 1.5, y = 0.5, 4 = 0.6, 

Figure. 2.15 : Stream lines for P = 1.5. The other parameters are Q = 1.5, y = 0.5, 4 = 0.6, 

A, = 1. 



Figure. 2.16 : Stream lines for Q = I. Thc othcr parameters are f i  = 30, y = 0.5, q5 = 0.6, 

Figure. 2.17 : Stream l ing for Q = 1.5. The othcr paramctcrs are f i  = 30, y = 0.5, q5 = 0.6, 

A 1  = 1. 



Figure. 2.18 : Stream lines for Q = 2 The other parameters are 0 = 30, y = 0.5, 4 = 0.6, 

Figure. 2.19 : Stream lines for Q = 2.5. The other paramelers are /3 = 30, y = 0.5, 4 = 0.6, 

XI = 1. 



Figure. 2.20 : Stream lines for 4 = 0.7. Thc othcr parameters are B = 30, y = 0.5, Q = 1.5, 

Figure. 2.21 : Stream lines for q3 = 0.9. The other parameters are B = 30, y = 0.5, Q = 1.5, 

A1 = 1. 



Figure. 2.22 : Stream lines for 4 = 1.1. The othcr paramcters are 0 = 30, y = 0.5, Q = 1.5, 

Figure. 2.23 : Stream lines for 4 = 1.3. The other parametcrs are P = 30, y = 0.5, Q = 1.5, 

XI = 1. 



Chapter 3 

Effects of MHD and partial slip on 

the peristaltic flow of a Jeffrey fluid 

in a rectangular duct 

The purpose of this chapter is to study thc pcristaltic flow of Jeffrey fluid under the simultane- 

ous effects of magnetohydrodynamics (MHI)) and partial slip conditions in a rectangular duct. 

The influence of sinusoidal wave is also taken into account. 'Thc analysis of mathematical model 

consists of continuity and the momentum equations arc carried out under long wavelength and 

low Reynolds number assumptions. The governing equations are fmt  reduced to the dimen- 

sionlcss system of partial differential equations using the appropriate variables and afterwards 

exact solutions are obtained by applying the method of separation of variables. The role of 

pcrtinent parameters such as Hartmarin uumber , slip parameter, volumetric flow rate, Jeffrey 

parameter and the aspect ratio against the velocity profilc, pressure gradient and pressure rise 

is illustrated graphically. The strcamlines havc also bceri prescnted to discuss the trapping 

bolus discipline against the heat transfer coefficier~t,. 

After brief introduction, Section 2 contains the formulation of the problem. Solution of 

the problem is given in Section 3. Seclion 4 is devoted for results and discussion and finally 

conclusion is presented in Section 5. Comparison with the cxisting studies is made as a limiting 

case of the considered problem at the end. 



3.1 Mathematical formulation of the problem 

Let us consider the peristaltic flow of an incompressible. JefFrey fluid in a duct of rectangular 

cross section having the channel width 2d and height 2a. Cartesian coordinates system is 

considered in such a way that X - axis  is taken along the axial direct,ion, Y - axis is taken 

along the lateral direction and Z - axis  is along the vertical direction of a rectangular duct. 

The peristaltic waves on the wall are represented as 

Z =  H ( X , t )  - 1 a J  bcos (3.1) 

where a and bare the amplitudes of the waves X the wave length , cis the velocity of propagation, 

t is the time and X is the direction of the wave propagation. Thc wdls parallel to X Z  plane 

remain undisturbed and are not subject to any peristaltic wave motion. It is assumed that the 

lateral velocity is zero as there is no change in latcral direction of the duct cross section. 

Let V = (U,O, W) be the velocity for a rectangular duct. The governing equations for the 

flow problem are given below. 

(1). Equation of conservation of mass: 

(2). Equat ion of momentum: 

where J is called the current density or lo rent,^ force which is the force required by a charge 

particle to move in magnetic and electric field. Mat,hemat.ically, it is defined and denoted as 

in which B is the total magnetic field such that B =Bo+b. B is the sum of applied magnetic field 

Bo and induced magnetic field b. Induced magnetic Geld is negligible compare with applied 

magnetic field. Moreover, the XZ-Walls of thc rectangular duct. are electrically insulated 



and no energy or charge/elcetricity is added or extrected from the fluid by the electric field. 

Therefore, this implies that threr is no electric field present in the fluid region. With the help 

of these assumptions the electromagnetic force J x I3 takes the following form 

Then, the above equation of momentum in tlic form of velocity components, becomes 

Jeffrey stress tensor and shear stresses will remain same, which are used in previous chapter. 

By using the same transformation, as given in Eq. (2.10) of the previous chapter to convert 

the given Fixed/Lab frame in to the wave frarnc. Ln addition to the non-dimensional quantities 

given in Eq. (2.11) of the previous chapter, the following given non-dimensional parameters 

will also be used in this chapter: 

Neglecting the bar signs, then Eqs. (3.2) - (3.5) will be transformed into t,he following form: 

By considering the assumption of long wave length (5 < 1 and low Reynolds, neglecting the 



terms of order 6 and higher. Then the above Eq. (3.6)-Eq. (3.9) will reduce to the following 

non-homogenous, linear and second order partial differential equation: 

Therefore, the corresponding slip boundary conditions at t,he walls are described as: 

( i ) .  u ( y , z )  = -1, at y - + I ,  (3.11) 

o1 a u  ( i i i ) .  u ( y ,  3 )  = --- -- 1 ,  at a - - ~ h  (:z) = -1 -- 4~cos2n2. (3.13) 
1 + A, az  

3.2 Solution of the problem 

Solutiori of the above given problem, is sought by using the following transformation in Eqs. 

(3.10) - (3.13). 

u ( y . z )  - ~ ( y ,  s )  + wz(y) .  (3.14) 

Thus Eq. (3.10) yields 
p2 8% -- + 1 ~ " J Z  - n;1Zv2 - ,, 

1 + XI ay2 1 + A, azz 
and 

Moreover, the boundary conditions are transfornled into the following form 

(i). wz (y )  = 1 ,  al y = .tl, 

( i i ) .  u z ( y , z )  = 0 ,  at y = *I, 

81 auz (iii). u2(y, z )  = -- 1 r u z ( y ) ,  at z = h, 
I + x1 az  

(3.19) 

PI avz ( iu) .  uZ(y ,  Z) = -- I - w z ( y ) ,  at 3 = - h. 
I .i A, a: (3.20) 

Interestingly, the transformation which is considered again yields, the main given problem 

into two systems of differential equations. First one is an ODE (i.e., Eq. 3.16) whereas the 



second one is PDE (i.e., Eq. 3.15), corresponding t,o their boundary conditions. Thus the 

solution of the problem is obtained by solving the Eq. (3.16) and Eq. (3.15), one-by-one 

respectively. 

3.2.1 Solution of ordinary differential equation 

It is observed that Eq. (3.16) is a second order linear and a non-homogenous ODE, corre- 

sponding to non-homogenous boundary conditions Eq. (3.17).  Therefore, the general solution 

is given 
My- 

w 2 ( y )  = - - -!-* M 2  dx [ I  - sech(M-"b") crnh ( 
( )] . (3.21) 

3.2.2 Solution of partial differential equation 

In order to obtain the solution of Eq. (3.15),  which is a second order, linear and homogenous 

partial differential equation, subject to the homogenous boundary conditions Eq. (3.18). By 

using the method of separation of variables, it is arsumed that, 

is one the possible solutions of Eq. (3.15).  Using Eq. (3.22) in Eq. (3.15),  it provides 

and 
2 1 M 2  

-a : -- + 7 (1 + A,) 
0 2 Z  a 

using the boundary conditions Eq. (3.18),  in Eq. (3.22). This yield 



This implies that 

Y (*I) = 0. 

Then, there are two possible cases to achieve the required solution. 

Case-I 

By considering Eq (3.24) 

It is noted that a trivial solution is obtained for thc values of cr < 0 and a = 0. The only 

non-trivial solution is obtained, for the value of e > 0. Whir11 yields 

Y (y) -- c3 cos (my) + c4 sin (my) 

Now applying boundary conditions given in Eq. (3.26) in Eq. (3.27). It gives 

Thus Eq. (3.27) becomes 

Case-I1 

Similarly, Eq. (3.25), is now being considcred 



this implies that 

Substituting the values of Y(y) and Z(:)  in Eq. (3.22). This leads to 

W(Y> .?I = 

(3.30) 

For convenience, it is assumed that 

Therefore, Eq. (3.30) becomes 

111 order to calculate the values of both constants given in the above equation, use the boundary 

conditions Eqs. (3.19)-(3.20) in the above equation. This yiclds 



Subsituting the value of wz(y) in above Eqs (3.32)-(3.33) a d  intergrating both sides of Eqs. 

(3.32)-(3.33) respectivelyy, w.r.t "y" from " 0  to "h". It is obtained 

- 

32$( l+ Xl)'cos ( y )  cosh (-;J+ !- Mql + XI)) 

u2(y, t) = --- 
2n(1+ A]) [n2P2 + 4hf2(i  + XI)\ rosh (Jq 't M 2 ( l  + X I ) ( ~ +  4cos(2xx))) 

Substituting the values of wz(y) and vz(y,z) in Eq. (3.14), it gives the desired velocity profile 

of the peristaltic wave, moving in the rectangular duct. 

[32$(1 + A,)' cos ( y )  cobh (;?? + M 2 ( l  + XI))] 

2n( l  +XI) {n2p2 i- 4 M 7 1  t XI)} cosh 3y + M2(1 + X1)(l + 4cos(2nx)) , 

,n  {n2p2 + 4 ~ ' ( 1  + x ~ ) ) ;  sinh + M2(1 + X1)(1 + $cos(2?rx)) j: 
Similarly, volumetric flow rate and average volumetric flow rate of the peristaltic wave are given 

by 

--. . 

128P(1+ sinh - I -  M"1 + XI) (1 + $cos(2xx)) 
. (3.36) 

(1 + ~ C O S  (2x2)) 

x [x2 {x2p2 + 4M2(1 t -  

Average volumetric flow rate over one period T - X/c of the peristaltic wave is defined as 



where 

J J  
0 0 

Therefore, the average volumetric flow rate is given as 

Similarly, the pressure gradient can be obtained from thc above equation, such that 

Pressure rise of the fluid can be caluculated nwnerically by integration of Eq. (3.38) over one 

wave length yields 



3.3 Results and discussion 

In this segment of dissertation, the relative changes in the behavior of the fluid flow, caused by 

the variation in the different parameters, are displayed and discussed graphically. The para- 

meters which are given the variation for the considered problem are, aspect ratio P, amplitude 

ratio 6 ,  Jeffrey's parameter XI, volumetric flow rate Q, slip parameter PI,  and the Hartmann's 

number M. 

In figures 3.1- 3.5, the graphical behavior of pressure gradient d p l d z ,  for different values of 

aspect ratio p, amplitude ratio 6,  Jeffrey parameter XI, slip parameter pl,  Hartmann's number 

M, and volume flow rate Q against x  are sketched. 

Having a glance at the above graphs. It. is noticed that in figures 3.1 - 3.2, the pressure 

gradient d p l d x ,  rises with the rise in aspect ratio /3 and Hartmann number M whereas, in figures 

3.3 - 3.5,  the intensity of pressure gradient d p l d x  decreases, upon the rise in slip parameter Dl ,  
Jeffrey parameter X I ,  and volumet.ric flow rate Q, respectively. 

Figures 3.6 - 3.10, show the velocity profile U of the peristaltic wave, for different values of 

volume flow rate Q and aspect ratio 8. Jeffrey parameter XI, Hartmann number M, and slip 

parameter PI. 
Having witnessed the graph presented in the figure 3.6 - 3.8, one can easily examined that 

the velocity profile, of the wave which propagates in the rect.angular duct, is gradually speeding 

up with the passage of time, corresponding to the increase in numerical values of volumetric 

flow rate Q, Jeffrey parameter XI, and the aspect ratio 4,  rcspcctivcly. Similarly, velocity profile 

starts making the down-turn corresponding to the increa% in slip parameter al and Hartmann 

number M ,  in figure 3.9 - 3.10, respectively. In figures 3.11 - 3.30, flow- path of the fluid 

flow has been discussed. Variation in the size and number of thc boluses describes the fluid 

flow corresponding to the rise in the numerical values of Jeffrey parameter X I ,  aspect ratio P ,  
Hartmann number M, slip parameter D l ,  and volumetric flow rate Q, respectively. 

Figures 3.11 - 3.22, indicate that boluses are reducing gradually in size, with the increase 

in Jeffrey parameter XI, aspect ratio p and Rartmann riurnber M ,  respectively. Therefore, 

it can be concluded that fluid flow gets passive upon Lhe variation of the above mentioned 

parameters. It is inferred from the graph, depicted in the figures 3.23 - 3.30, that fluid is 

making its way through the considered rectangular duct, at ease. As the bohises get expanded 



corresponding to the increase in numerical valucs of slip parameter Dl and volumetric flow rate 

Q, respectively. Figures 3.31 - 3.34 and Figures 3.35 - 3.38, demonstrate the behavior of the 

pressure rise corresponding to the variation of the numerical values of different parameters, 

with respect to volumetric flow ratc Q and aspect ratio 0, respectively. 

The pressure rise Ap, in the above figures 3.31 - 3.32, as sketched with respect to volumetric 

flow rate Q. It is been noticed that Ap, is increasing corrcsponding to the rise in 0 and M. 

Whereas, for 0,and XI the trend of pressure rise is quite opposite, which can be witnessed in 

figures 3.33 - 3.34. 

Similarly, the variational trend of Ap with resped to 0, has also been displayed in figures 

3.35-3.36. Therefore, it is noticed that Ap dcclincs corresponding to the rise in M and Q, 

respectively. Whereas in figures 3.37 - 3.38, Ap increasir~gly converges to -0.2 and 0.0, for the 

greater values of slip parameter Dl and Jeffrey parameber XI, rcspectively. 



Figure. 3.1 : Variation of pressure gradient with s for different values of 4 at Q = 0.5, 

X 1 = 2 ,  4 = 0 . 6 , M = 0 . 5 , P I = 0 . 5 .  

Figure. 3.2 : Variation of pressure gradient with z for different values of M at Q = 0.5, XI = 2, 

4 = 0.6, 4, = 0.5, 4 = 0.5. 



Figure. 3.3 : Variation of pressure gradient wit,h x for different values of P I  at Q = 0.5, XI = 2, 

4 = 0.6, = 0.5, M = 0.5. 

Figure. 3.4 : Variation of pressure gradient with z lor different values of XI at Q = 0.5, = 0.5, 

4 = 0.6, M = 0.5, 8, = 0.5. 



Figure. 3.5 : Variation of pressure gradient with z for difl'erent values of Q at /3 = 0.5, XI = 2, 

d, = 0.6, A4 = 0.5, 8, = 0.5. 

Figure. 3.6 : Velocity profile for different values of Q at h = 0.6, z = 0, y = 0.5, XI = 2, 

= 0.5, M = 0.5. = 0.5. 



Figure. 3.7 : Velocity profile for different values of X1 at 6 - 0.6. s - 0, y = 0.5, Q = 0.5, 

p = 0.5, A4 = 0.5, Dl = 0.5. 

Figure. 3.8 : Velocity profile for different values of 4 at ri, = 0.6, .c = 0, y - 0.5, XI = 2, Q = 0.5, 

A t  = 0.5, = 0.5. 



Figure. 3.9 : Velocity profile for different values of 8, at 4 .= 0.6, x = 0, y = 0.5, Q = 0.5, 

M = 0.5, XI = 2, = 0.5. 

Figure. 3.10 : Velocity profile for different values of M at IP = 0.6, z = 0, y = 0.5, XI = 2, 

0 = 0.5, Q = 0.5, 8, = 0.5. 



Figure. 3.11 : Stream lines for XI = 0. The other paramekrs are y = 0.5, 4 = 0.6, = 0.5, 

Figure. 3.12 : Stream lines for XI = 1. The other parameters are y = 0.5, 4 = 0.6,D1 = 0.5, 

[j = 0.5, M = 0.5, Q = 1. 



Figure. 3.13 : Stream lines for X1 = 2. The other paramet,ers are y = 0.5, 41 = 0.6,p1 = 0.5, 

p = 0.5, M = 0.5, Q = 1. 

Figure. 3.14 : Stream lines for X1 = 3. 'The other parameters are y = 0.5, 4 = 0.6, 8, = 0.5, 

0 = 0.5, M = 0.5, Q = 1. 



Figure. 3.15 : Stream lines for = 0.3. The other parameters are ?/ = 0.5, 4 = 0.6,& = 0.5, 

Figure. 3.16 : Stream lines for P = 0.6. The other parameters are 9 = 0.5, I$ = 0.6,Bl = 0.5, 

A, = 2, M = 0.5, Q = 1. 



Figure. 3.17 : Stream lines for = 0.9. The other parameters are y = 0.5, q5 = 0.6,@, = 0.5, 

XI = 2 ,  M = 0.5, Q = 1. 

Figure. 3.18 : Stream lines for 4 = 1.2. The other parameters are 7~ = 0.5, I$ = 0.6,P1 = 0.5, 

XI = 2, M = 0.5, Q = 1. 



Figure. 3.19 : Stream lines for M = 0.3. The other parameters are 1/ = 0.5, 4 = 0.6, PI = 0.5, 

Figure. 3.20 : Stream lines for M = 0.7. The other parameters arc y = 0.5, $J = 0.6, = 0.5, 



Figure. 3.21 : Stream Lines for M = 1.1. The other parameters are y = 0.5, d, = 0.6, = 0.5, 

XI = 2, /3 = 0.5, Q = 1. 

Figure. 3.22 : Stream lines for M = 1.5. The other parameters are y = 0.5, q5 = 0.6, PI = 0.5, 

X1 = 2, /3 = 0.5, Q = 1. 



Figure. 3.23 : Stream lines for 0, = 0 The other parameters are y = 0.5, d = 0.6, X i  = 2, 

/3 = 0.5, M = 0.5, Q = 1. 

Figure. 3.24 : Stream lines for 0, = 0.3. The other parameters are y = 0.5, 4 = 0.6, XI = 2, 

0 = 0.5: M = 0.5, Q = 1. 



Figure. 3.25 : Stream lines for Dl = 0.6. The other parameters are y = 0.5, 4 = 0.6, X i  = 2, 

/3 = 0.5, M = 0.5, Q = 1. 

Figure. 3.26 : Stream lines for Dl = 0.9. The other parameters are y = 0.5, $ = 0.6, A1 = 2, 

= 0.5, M = 0.5, Q = 1. 



Figure. 3.27 : Stream lines for Q = 0. The other parameters are y = 0.5, 4 = 0.6, XI = 2, 

P = 0.5, M = 0.5, PI = 0.5. 

Figure. 3.28 : Stream lines for Q = 0.3. The other parameters are y = 0.5, 4 = 0.6, XI = 2, 

p = 0.5, M = 0.5, 4, = 0.5. 



Figure. 3.29 : Stream lines for Q = 0.6. The other parameters are y = 0.5, $ = 0.6, X i  = 2, 

0 = 0.5, M = 0.5, 0, = 0.5. 

Figure. 3.30 : Stream lines for Q = 0.9. The other parameters are y = 0.5, $ = 0.6, XI = 2, 

0 = 0.5, M = 0.5, 0, = 0.5. 



Figure. 3.31 : Variation of Ap with Q for different values of P a t  4 = 0.6, XI = 2, M = 0.5, 

Figure. 3.32 : Variation of Ap with Q for different values of A4 at  4 = 0.6, XI = 2, = 0.5, 

,!7 = 0.5. 



Figure. 

P 

3.33 : Variation of A p  with Q for different values of plat  4 = 0.6, X1 = 2, M = 0.5, 

Figure. 3.34 : Variation of A p  with Q for different values of Xlat 4 = 0.6, Dl = 0.5, M = 0.5, 

B = 0.5. 



Figure. 3.35 : Variation of Ap with 4 for different values of M a t  4 = 0.6, X1 = 2, 0, = 0.5, 

Figure. 3.36 : Variation of Ap with /3 for different values of Q a t  4 = 0.6, X1 = 2,  M = 0.5, 

P I  = 0.5. 



.9 

Figure. 3.37 : Variation of Ap with ,9 for different values of f i t  at q5 = 0.6, X1 = 2, M = 0.5, 

Figure. 3.38 : Variation of Ap with f i  for different values of XI at 6 = 0.6, f i l  = 0.5, M = 0.5, 

Q = 0.5. 



3.4 Conclusion 

The peristaltic flow of non-Newtonian flow of Jeffrey fluid with MHD and partial slip condition 

has been studied under the assumptions of long wavelength and low-Reynolds number. The 

governing partial differential equations corresponding to their boundary condition has been 

solved by using the method of separation of variables. It is noted that an increase in the 

slip parameter decreases the pressure gradient whereas the size of trapped bolus increases by 

increasing the slip parameter. It is observed that velocity profile decreases by increasing the 

Hartmann number while quite opposite behavior is noted for the case of pressure gradient. It 

is noticed that the pressure gradient rises with the rise in aspect ratio and Hartmann number. 

Moreover, the trapped bolus increases by increasing the slip parameter. It is worth to mention 

that one can recover the results of [32] by taking. Also, Newtonian fluid model can be deduced 

from the presented model as a special case by taking The present attempt will be beneficial in 

many clinical applications. This analysis gives a better judgement for the speed of injection 

and the fluid flow characteristics within the syringe. Also, the injection can be carried out more 

proficiently and pain of the patient can be extenuated. 
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