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Definition 1.1.12 [1,4] Let f and g be self-mappings on a set X. If fz = gz = w for
some x in X, then w is called a coincidence point of f and ¢. Further more, if fgr = ¢fz
whenever z is a coincidence point of f and g, then f and g are called weakly compatible

mappings. ,

Definition 1.1.13 [19] Let X be a non emty set and a function D : X x X — R is said
to be dualistic partial metric space if it satisfying following properties for all z,y,z € X :
(D1) D(z,x) = D(y,y) = D(z,y) &z =y

(D2) D(z,2) < D(z,y)

(D3) D(z,y) = D(y, =)

(D4) D(z,y) < D(z,2)+ D(z,y) — D(z, 2).

A dualistic partial metri¢ space is a pair (X, D) such that X is a nonempty set and D is
a dualistic partial metric on X.

Definition 1.1.14 [18,21] Let X be a non—cr;fgﬁy sct and the function ¢ : X x X — R*
is said to be quasi metric if it satisfies following properties Vr,y,2 € X

(i) gz, y) =q(y,2) =0z =y

(ii) gz, 2) < glz.y) + qly. 2).

A pair (X, d,) is called quasi metric space.

Example 1.1.15 Let D : X x X — Rby D(z,y) = 2Vy = sup{z, y}. Nowif X = R then

D is dualistic partial metric space but not partial on X for x = —4 and y = —8 then

il













{v,} C X, limy_so0 D(tn, 119) = D(1ug, ug), limy 00 D(vn, 1) = D(vg,vg) and v, € T'(uy)
imply vy € T'(ug).

Remark 1.1.27 [14] Let (X, p) be a complete partial metric space. Therefore

(a) If p(z,y) =0, thenx =y

(b) If = # y, then p(z,y) > 0.

Definition 1.1.28 [5] Let (X, p) be a partial metric space. -A mapping T : X — X is

said to be Banach contraction mapping or simply contraction if k € [0, 1] such that
p(T(c),T(v) <kp(zy), VayeX
and Kannan contraction mapping
p(Tz,Ty) <k [p (z,Tx) + ply, Ty)]
Definition 1.1.29 [2] A mapping F : X — X is said to be a weakly contractive if
D(Fz,Fy) < D(z.)i— ¢(d(z,)),

for all z,y € X.
Definition 1.1.30 [18] Let be T a mapping of a complete dualistic partial metric X into

itself , then T : X — X is called a partial metric contraction mapping if there exists a
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constant L, 0 < L < 1, such that

p(Tz, Ty) < Lp(z,y)

forall z,y € X .

Definition 1.1.31 [16] A sequence {z,} in a metric space X = (X,d) is said to be-

Cauchy (or fundamental) if for every €> 0 there is an N = N(&) such that for every

m,n >N,

The space X is said to be complete if every Cauchy sequence in X converges (that is,
AR

has a limit which is an element of X).

Definition 1.1.32 [16] A sequence {z,} in a metric space X = (X, d) is said to converge

or to be convergent if there is an z € X such that lim, .., d(za,7) = 0, = is called the

limit of {z,} and we write lim, .., Z, = z or, simply z, — z. We say that {z,} converges

to z or has the limit z. If {z,} is not convergent, it is said to be divergent.

Definition 1.1.33 [12,20,27] A function f : R — R is monotone non decreasing (or

monotone or increasing) if z > y implies f (x) > f (y).

Definition 1.1.34 [11] If {z,} C X satisfies 7y < 7y <<z <or 3y 2 Tg 2002

z, >, then {z,} is called a monotone sequence.
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1.2 Classical Fixed Point Results in Partial Metric Spaces

I
it

Fixed point theorems are very important tbcﬂlg for providing evidence of existence and
uniqueness of solutions to various mathematical models. For last four decades, the lit-
erature flourished with results which discover fixed points of nonself and self nonlinear
mappings in a metric space. The Banach contraction theorem played a fundamental role
in the development of fixed point theory and has become even more important because
being based on iteration, it can be casily implemented on a computer.

Matthews [17] introduced the concept of partial metric space (in which self distance may
not he zero) as a suitable mathematical tool for program verification and proved an

analogue of Banach fixed point theorem in complete partial metric spaces.This section
e

Tty

presents some previously well known results from literature in partial metric spaces.
Theorem 1.2.1 [13,Theorem 2.1] Let (X, <) be a partially ordered set and p be par-
tial metric on X such that (X, p) is a complete partial metric space. Let F/: X — X

be a weackly contractive and F is continouse non decreasing mapping such that

ap(z,Fz)ply, Fy)
p(z,y)

p(Fz,Fy) < + Bp(z, y)

z >y, o,y € X forall x# y with a+ 8 < 1if there exists g € x with £y < Fzy. Then

F has a fixed point.
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3) such that following condition holds for z, y € X,
p(Sz,Ty) < t(z, Sz) +p(y, Ty)
for all (z,y) in B (g, 7) x B (zy, 7) NV and
p(ro ,Swo) < (1= A)r +p (w0, Sz0)]

where A = & Then there exists a point 7% such that p(z*,z*) = 0. Also if, for a

nonincreasing sequence {z,} in B (zo, 7), {rn} — u implies that © <X z,, then % =
Sz* = Tz*. Moreover, z* is unique, if for any two points z,y in B (zg, 7) such that zp X
T, 23 =y and

p(zo, Szo) + p(2,T2) < (o, 55 +p(Sixg, Tz)

where X = ;& for all z € B (zg, r) such that zo X Sxo.
Theorem 1.2.6 [26, Theorem 10] Let (X, q) be a 0-complete partial metric space,
S : X — X amap, and 7 an arbitrary point in X. Suppose there exists k € [0, 1) with

q(Sz,Sy) < kq(z,y) for all elements z, y in B (g, 7)
q (20, Sx0) < (1 = K)[r + p(z0 , T0)]-

where A = %;. Then there exists a unique point z* in B (7o, ) such that z* = Sz°.
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Further g (z*,2*) = 0.

Theorem 1.2.7 [26,Theorem 13] Let (X, =<, d) be a 0-complete ordered quasi partial
metric space, S: X — X a dominated map, and zp an arbitrary point in X be a 0-
complete ordered quasi partial metric space, $: X — X a dominated map, and zo an

arbitrary point in X. Suppose that there exists b € [0,1/2) such that
q(Sz, Sy) < bla(z, Sz) + q(y, Sy)]

for all comparable elements z,y in m And
q(70, Szo) < (1 — k)[r + q(z0, To)],

where k = (—lf—b—) If for a nonincreasing sequence {z,} in Bq(xo, Sxg), {zn} — u implies

that u < ., then there exists a point z* in B(zo, 7) such that z* = Sz* and ¢(z*, z*) Moreover,
7* is unique, if for any two points z,y in B(z,7). There exists a point z € B(xg, ) such

t.ha.t., z j"r and z < y and
q(zo, Szo) + q(2, Sz) < q{z0, 2) + q(Sx0,52)

for all z < Sx,.

16
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for every y € X.
Theorem 1.3.2 [21,Theorem 2.3] Let f be a mapping of a complete dualistic partial

metric space (X, p) into itself such that there exists 0 < ¢ < 1, satisfying

Ip(f (=), fy)I < clp(z, y)]

for all z,y € X. Then f has a unique fixed point z* € X.
Lemma 1.3.3 [21, Lemma 2.1] Let (X,p) is dualistic partial metric space, then the

function d, : X x X — R* defined by

dy(z,y) = p(z.y) — plz, T)

is a quasi metric on X such that T (p) = T (d,) for all z,y € X.
Proposition 1.3.4 [27, Proposition 2.7] Let (X,p) be a complete dualistic partial

metric space, o € X and r > 0. Suppose that f : Bp(zg,7) — X is a contraction with

contracion constant ¢ such that

Ip(f (o). z0)| < (1 = e)r = 2|p(z0,z0)| — Ip(f(za), f(z0))l-

for all z,y € B,(zo,7) then f has a unique fixed point in By(zo,7).

Theorem 1.3.5 [27, Theorem 3.2] Let f be a mapping of a complete dualistic
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(X.p) into itself such that

p(f (@), f)l < (Ip(z. y)))

for all z,y € X, where ® : [0, +00) — [0, +00) is any monotone non decreasing function
with 7Llerc}oq)”(t) =0 for any fixed t > 0.

Then f has a unique fixed point.

Lemma 1.3.6 [27, Lemma 3.4] Let (X,p) be a dualistic partial metric space and

Y C X. Then

§(dy)’ (Y) < 48,(Y).

Lemma 1.3.7 [27, Lemma 3.5] Let (X,p) be a dualistic partial metric space and let
© : X — R* be an arbitrary non negative function. Assume that inf{p(z) + @(y) :
Ip(z, )| + Ip(z. %) + [p(y, ¥)| > a} =n(a) >0 for all a > 0.

Then cach sequence (z,, ),y for which nlLrEo ¢ () = 0 converges with respect to T (d,,)" to

the same point of X.

Theorem 1.3.8 [27,Theorem 3.6] Let (X, p) be a dualistic partial metric space (X, p) and

let f : X — X be a continous mapping from (X, (d,)") to (X, (d,,)"s) such that the

function
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satisfying the following conditions:

(1) inf{o (z) + +o ) + ¢ (z) + ¥ W) : plz,y)] + p(z,2)] + Ip(y, ¥)} =€} = pla) >

0 for all a > 0.

() infaex (o (2) + 4 (£)) = 0.

Then f has a unique fixed point.

Lemma 1.3.9 [21, Lemma 2.2] If (X, p) is a dualistic partial metric space (X, p) is com-
plete if and. only if the metric space (X, (d,)°) is complete. Furthermore nh_{g (d,)° (a,z,) =

0 if and only if

p(a,a) = limp(a,r,) = lim p(z,,z.,).

n—oo 7,Mm—0a

Theorem 1.3.10 [18,Theorem 12] If X is a complete dualistic partial metric space,

PP

and T : X — X ,is such that 77 is contraction for some integer r > 0, then 77 has a
unique fixed point.
Corollary 1.3.11 [18, Corollary 15] Let (X, p) be a dualistic partial metric space and

let T7: X — X be a contraction on closed ball
B = B(zg,r) = {z : p(x,zp) <7}

Moreover, assume that

plzg, Tzy) < (1 — L)r.

20
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Then, prior error estimate is the following estimate.

p(zm,u) < L™

and posterior estimate p(zp,,u) < Lr.

21
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Chapter 2

Fixed Point Results in Dualistic Partial Metric Spaces:

2.1 Fixed Point Results of Dominating mapping in Dualistic

Partial Metric Spaces:

In the development of non-linear analysis, fixed point theory plays a very important
role. Also, it has been widely used in different branches of engineering and sciences.
Metric fixed point theory is an essential part of mathematical analysis because of its
applications in different areas like variational and linear inequalities, improvement, and
approximation theory. The fixed point theorem in metric spaces plays a significant role
to construct methods to solve the problems in mathematics and sciences.

Though metric fixed point theory is vast field of study and is capable of solving many
equations. To overcome the problem of measurable functions with respect to a measure

and their convergence, O’Neill [19] introduced the concept of dualistic partial metric
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spaces by extending the range R* to R. C;ltr:aj;ld Valero [27] established Banach fixed
point theorem for complete dualistic partial metric spaces. In this section we present
a fixed point theorem for dominating mappings in an ordered dualistic partial metric
spaces.

We begin with the following lemma.

Lemma 2.1.1 Let (X, D) be a dualistic partial metric space‘and w: X — Rbea

mapping. Define the relation < on X as follows:

=2y & D(z,y)— D(z,1) < p(r) — ¢(y).

MR LS

Then < is an order on X, named the order induced by ¢.

Proof As 0 < 0 this implies
D(x,z) — D(z.z) < pz) —p(z) = = <.

So < is reflexive.

Now if x < y and y < z, we will prove that = = y for this

Sincer <X y © D(r,y) - D(r,7) < () — o) (2.1.1)

Andy X z & D(y,z)— D(y,y) < vly) — wlz). (2.1.2)

Yo
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Adding cquations (2.1.1) and (2.1.2) we get

D(e.y)— D(e.x) + D(y.x) - D(y,y) <0

This gives

dp(r,y)+dp(y, ) <0.

since dpy(r.y) and dp(y. x) are non-negative, thercfore

dp(r.y) = dp(y.r) = O entails = - .

Thus < is anti-symmetric

Lastly, if r < y and y < z, we show that « < 2. For this

since r <y o D(r,y)— D(r,z) < o(r) — o(y).

andy =< z @ D(y.2) - D(y.y) <ely)  #(2).

Adding cquations (2.1.3) and (2.1.4) we obtain

D(r,y) — D(z.x) + D(y, 2) = D(y,y) < o(x) — ¢(2)

Which implies

d[)(.‘l‘.y) 4 (I'/)('l/. :) S ;(l") Q(C)

24
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Then T has a fixed point.

Proof Let z, € X be an initial point and z, = T(z,_,) for all n. > 1, if ther‘e exists a
positive integer r such that z,4, = z, then z, = T(z,), so we arc done. Suppose that
Ty # apy1 ¥ n € N As T is dominating mapping, so zg = T(zo) = ), so we have
To < 7,, and ¢, < T(x)) that is z; = z, and T, = T(z,) implies z; = 3 continuing in

the similar way we get;
2o <7 < 2g $ 73 < o ST S Tagr S Tni2 e
Now by definition of ¢ as defined in order we deduce that
o(To) = (m1) = @(z2) = (x3) = .. > p(an) =+ (2.2.1)

Since y is bounded below, so from (2.2.1) we infer that {(x,)};2, is monotone bounded
sequence and hence convergent sequence and {¢(7,)}5%, is a Cauchy sequence. There-

fore, for ¢ > 0 there exist ng such that for

n>m > ng lo(zn) — wlan)} < e

NS U

Since z,, = z,,, we have

Tn X Tm € D(Tn,Tm) = D(Tn, Tn) < 0(Tn) — ©(Tm)-

26




Which implics, D(z,, 1) — D(r,, z,) < |p(r,) — ¢(rm)] < ¢

In consequence, dp (., 2,,) < ¢. Since

dh(z,y) = max{dp(z.y). dp(y. )},

therefore

& (T, Tm) < €.

Thus {r,} is a Cauchy sequence in complete metric space (X.d3,). So there exist v € X
such that

lim djp(x,.v) = 0.

n—o

By Lemma (1.2.1), we get

D(v.v) = lim D(r,,v) = lim D(x,.r,).

n—oo nm—oo

lim dp(z,.x,) =0.
n,m—oc

This implies

lim D(x,,x,) = lim D(r,.1,).

n.m --00
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Now by definition of ¢ as defined in order we deduce that

p(zo) 2 w(z1) > w(x2) 2 l23) 2 ... 2 w(z0) > ...

Since ¢ is bounded above, thercfore {¢(z,)}22; is monotone bounded sequence and hence
convergent sequence. Thus {¢(z,)}32, is a Cauchy sequence, so for ¢ > 0 there exist 1
such that for n. > m > ny,

lo(z,) ~ ¢(Tm)] < e

3

On the other hand since z, < z,,, s0 we have from order defined in Lemma (2.1.1)

Tn X Tm © D(Tn,2n) — Dz, 2,) € 0(20) — ©(3m).
This implies
D(&n,Zm) — D(Tn, 7n) < |@(20) — @(zm)] < e

Therefore

dp(Tn, Tm) < €.

Since

dp(x,y) = max{dp @;’y), dp(y, )},

So, dp(zn,zm) < €.
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This implies that {z,} is a Cauchy sequence in complete metric space (X,d}). So there
exist v € X such that

lim dj(zn,v) = 0.

By Lemma (1.2.1), we obtain
D(w.v) = lim D(z,,v) = lin D(%,. Tm). (2.2.3)
n~=0oQ I —00

Since (X, D) is 0-complete so

lim D(zn,Zm) =0,

1,711 — 00

therefore from (2.2.3) we deduce that limy, oo D(:rnz,) = 0. Now as T is D-order closed
and 7,4, € T(z,), this implies that v € T(v) which completes the proof.

Example 2.2.5 Let X = R? and define multivalued mapping T' by

5.0 {(0,0), (3,4)} if pg > 0;
T(p.q) = pq nq pq Pq
, (14 14 if pg < 0.

Then T is ordered closed and V (p, q), (v,v) € R?

3
.

(p\ Q) :<., (u,v) — T(p) (I) =i T(’U,,’U).
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Further {z¢} <; T(x). Hence T satisfies all the conditions of Theorem (2.2.4) and it

has a fixed point.
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That is ¢(€) < @(€), a contradiction and therefore

lim dp(zn,zm) =0.

n,m—oo

Similarly we can prove that limp, .o dp{(Tm, Tn) = 0.

Hence lim,, 00 @3 (Zn, Tm) = 0 whjch entails that {z,} is a Cauchy sequence in (X, ds).
Since (X. D) is a complete dualistic partial metric space, so by Lemma (1.2.1) (X, d},) is
also a complete metric space. Thus, there exists v in X such that lim, . d5(zn,v) =0,

again from Lemma (1.2.1), we get

im d%(7,,v) =0 <= lim D(v,7n) =:D(v,v) = lim D(Tn, Zm). (3.14)

n—oo n—oo nm-—00

Since limy ;00 Ap(Zn, Tm) = 0, thus, lims m_eo D(zp, ) = 0. From (3.14)

D(v,v) = 0= lim D(v,zn).

Now we prove that v is a fixed point of T. On contrary supposc that v # T(v), then
using (3.1) and Lemma (1.2.1) we have

o(|D (@, T)]) = @I DT (wn-1), T@)) € @M (T-1,v)) = DM (201, ).

That is Y
(| D(@n, T(W))]) € @(M(20-1,0)) = $(M (01, ).
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Letting n — oo and using propertics of ¢, ¥ we get @(D(v,T(x))) < o(D(v,T(v))).
Which is a contradiction as D(uv, T()) > 0. Hence v = T(v) that is v is a fixed point
of T. Finally, we shall prove the uniqueness. Suppose that w is another fixed point of T

such that v # w, then from (3.1),we have
e(ID(v,w)]) € (M(v,w)) = P(M(v,w)).

which implies that

p(ID(w,w)]) < e(1D(v,w)}).

A contradiction, hence v = w. So T has a unique fixed point in X.

In Theorem (3.1), if we take @(t) = ¢ and ¥(t) = (1 — h)t where h € [0,1[ and ¢ 2 0.
. ‘;'.‘1']'; :

Then we have following result

Corollary 3.2 Let (X, D) be a complete dualistic partial metric space and T': X — X

be a mapping satisfying

D(y, T(y))(1 + D(z,T(x))
1+ D(z,y)

[D(T(z). T(y))| < hmax {]D(m,y)l, t } forall z,y € X,

(3.15)

Then T has a unique fixed point.

For if D(z,y) € Ry for all z,y € X, then D(z,y) = p(z,y). The partial metric version
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of Corollary (3.2) can be obtained as follows:

Corollary 3.3 Let (X,p) be a complete partial metric space and 7' : X — X be a

mapping satisfying

MmTwDﬁfﬂﬂT“”}fmaunyeX

p(T(z), T(y)) < hmax {p(ﬂ:,y), 1+ (e, y)

Then T has a unique fixed point.

Now if

D(y,T(y))(1 + D(z, T(z))
1+ D(z,y)

mabuwmq }:wwwu

then the result obtained by Valero [21] can be viewed as a special case of Corollary (3.2).
Corollary 3.4 Let (X, D) be a complete dualistic partial metric space and let T:X—X

be a self-mapping such that there exists « € {0, 1] satisfying
D(T(x), T@W))] < ol Dia,y)l,

for all 2,y € X. Then T has a unique fixed ﬁ%int r* € X. Moreover, D(z*,z*) = 0
and the Picard iterative sequence {T™(Zo)}»en converges to z* with respect to 7(d},), for

every z € X.
Remark 3.5 As every dualistic partial metric D is an extension of partial metric p,

thercfore, Theorem (3.1) is an extension of Theorem (3.2). Conscquently, Corollary (3.2)

44




e e e Sy — —
——— - e g - .. e - —

generalizes Corollary (3.3).

There arises the following natural question:

Whether the contractive condition in the statement of Corollary (3.2) can be replaced
by the contractive condition in Corollary (3.3). Following example will give the negative
answer to this question.

Example 3.6 Consider the complete dualistic partial metric (R, Dy). Define the self-

mapping Tp : R — R by

TD('E) = .
-1 fz=0

It is easy to check that fixed point free mapping T does not satisfy the contractive

condition in the statement of Corollary (3.1). Indeed,
1 =|Dy(~1,-1)] = |Dy(To(0), To(0))]) > hM(0,0).

Where

M(0,0) = max {'DV(O,O)!, Dy(0,T5(0))(1 + D, (0,T5(0))) }} .

1 + DV(O>0)

Nevertheless, the contractive condition in the statement of Corollary (3.3) holds true.
Indeed, e

—1 = py(=1,-1) = pv(To(0), To(0))}) < AM(0,0).
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Where

O r . ’

M(0.0) — mas {pv(o,m, PO To(0)(1+ v (0, To(0) | _
1 + pV(Or 0)

Example 3.7 Let (R, Dy) be a complete dualistic partial metric space. Define the

self-mapping 77 : R — R by

Ty(x) 0 ifz=0
W) = ’ .
-1 ifz>2

The mapping 7) has a unique fixed point © = 0. It is easy to check that T} satisfies the
contractive condition in the statement of Corollary (3.1). Indeed, for all z > y > 2 and
h> 3

B r.:‘;l:(

DT T )] < h/rnax{]DV(:.;:ry)Lva(y-.Tl(y))(l+DV(‘7::T1('T))

1+ DV('T'vy)

}

1=|Dy(~1,-1)] € hz

holds. Also note that for z = 0 = y the contractive condition in the statement of Corol-

lary (3.2) trivially holds.

Application to Functional Equations

As an application of our fixed point result [Corollary 3.2}, we present the study about

the existence and uniqueness of the solution of functional equations. We introduce some

Voadh
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notations for the sake of convenience.

S = State space.
1" = Decision space.
B(S) = Spacc of bounded functions.
¢, = Sequence of real numbers such that nli{roxo lcn) = 0.
g  SxW >R
F, @ SxWxR—->Rwheren =0.1,2.3.---.

o 1 SxW -8

In the following we shall prove the existence and uniqueness of solution of functional

equation appearing in dynamic programming. (for example see [8])

u(r) = supg(r.y) + Falr,y, w(6(r.y)))} Vo € S (3.16)

We observe that the spaces (13(5). ||.|l< ) is a Banach space and distance function in 3(5)
is defined by

doo(1t, v) = sup |u(r) — v(r)] Y u,v € B(S)

¢S
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where as for dualistic partial metric space distant function is given by

Doo(u.v) = doolu, v) + ¢n, Y u,v e B(S).

In calculations following two lemmas will be helpful.

Lemma 3.7 Let G, /] : S — R be two bounded functions then,

|supG(r) — sup H(x)| < sup|G(r) - H(x)|.

P cS €S

Lemma 3.8 Let
(1) g, F be bounded functions.

(2) 4k >0suchthat Vtre R, re Sandyell.

[Frulroy. ) = Falr g )l < kE=7]. :

Then the operator R : B(S) — B(S) defined by

(Ru)(z) = sup{g(z,y) + Fa(r,y. u(é(z. y)))}

yeW’

is well define.

Theorem 3.9 Let all the conditions of lemma (3.8) be satisfied and for n — oc

Doo(v. Ru)(1 + Do (1. Ru)
Wiy u) = Fulroy,v)] < o (U V)], 3.17
|Fu(roy.u) — Fu(zoy,v)] < h max{lD (u,v) ( Tt Dun) (3.17)
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Then the functional equation (3.17) has unique solution.
Proof Let R : B(S) — B(S) be an operator as defined in lemma (3.8). We shall show

that R satisfics contractive condition (3.17). Indeed by lemma (3.7), for all u,v € B(S).

Isup{g(r.y) + F.(r.y.u(o(r.y)))} — sup{g(r.y) + Fulr,y. v(é(r, y))) }H

yo Mats

[(Ru)(r) ~ (Ro)(r)]

I

< supg(e.y) + Fulroyou(ole y)) — gle.y) = Fulr oy v(é(r,y)]

yew
< sup |Fo(z, y.u(o(z.y))) — Fulz, y.ov(o(r, y))l
"Therefore,
D, (Ru, Rv)| = |sup (Ru)(r) — (Re)(a)| + ¢
< supl(Ru)(z) -~ (Re)(0)] + el
resS
< sup |Fur.yo (0, 9))) — Fulr.p (0l g))| + el
ye W’

When 1 — oo then by (3.17) we obtain,

o). CRu)(1 + Doo(u, Ru)
1+D (u.'{')

| Doo( Ru, Rv)| < h max{ } + nh—I-Ial-c e

Finally, definition of ¢, gives

Do (v, Ro){(1 + Dy (u. Ru)
D, (Ru, Rv)| < hmax{][)w(u‘t)l,,—v Y Do) :
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Hence, R satisfies all the conditions of Corollary (3.2). Thus there exists a unique solution
of (3.17) ug € B(S) such that Ruy = ug.
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