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Preface

Fixed point theorems deals with the assurance that a mapping f ou a set X has olte or

more fixed points, i.e. the functional equation r : Tr, ha"s one or more solutions. A large

variety of the problems of analysis and applied mathematics relate to finding solutions

of nonlincar functional cquations which can bc formulatcd in tcrms of finding thc fixcd

solutions of nonlinear mappings. In fact, fixed point theorems are extremely substantial

tools for proving the existence and uniqueness of the solutions to various mathematical

rno<lels (differential. integral and partial differential equations and variational inequali-

ties etc.) exhibiting phenomena arising in broad spectrum of flelds, such as steady state

tcmpcrature distribution, chemical equations, ncutron transport thcory, economic thco-

ries, financial analysis, epidemics, biomedical research and flow of fluids etc. Thus the

fixed point theory started as purely analytical theory. This field of mathematics can be

divided into three major area^s: Metric fixed point theory, Topological fixed point theory

and Discrete fixed point theory. Classical and major results in these areas: Brouwer's

fixed point theorem, Banach's fixed point theorem and Tarski's fixed point theorem.

The Banach fixed point theorem is commonly known as Banach contraction principle,

which statcs that if X is a complctc mctric spacc and 7' is a singlc-valucd contraction

self mapping on X, then ? has a unique fixed point in X. This theorerns certainly plays

an important and fundamental role in the fleld of fixed point thcory and has become

even more important because being based on iteration, it can be easily implemented on

a computer. Subsequently many authors generalized the Banach fixed point theorems in

differerrt way.

R,an and Reuring [23] proved an analogue of lanach's fixed point t]reoretn in metric

space endowed with an order and gave applications to matrix equations. In this way,

they weakened the usual contractive condition. Subsequcntly, Nicto [20] extended this

result for nondecreasing mappings and applied it to obtain a uniquc solution for a first or-

der ordinary differential equations with periodic boundary conditions. Samct and Vetro

[10] generalized these results in ordered metric spaces and introduced the concept of



a-tf.t contractive type mappings and establishe&,fixed point theorems for such mappings

in complete metric spaces.

Matthews [17] introduced the concept of partial metric space (in which self distance

may not be zero) as a suitable mathematical tool for program verification and proved

an analogue of Banach fixed point theorem in complete partial metric spaces. O'Neill

[19] introduced the concept of dualistic partial metric, which is more general than partial

metric (which allows negative values also) and established a robust relationship between

dualistic partial metric and quasi metric. Oltra and Valero [21] presented a Banach fixed

point theorem on complete dualistic partial metric spaces, Valero [27] generalized the

main theorem of [21] using nonlinear contractive condition instead of Banach contractive

condition.

In our thesis, we establish an order relation on quasi dualistic partial metric spaces.

Then using this order relation, we prove fixed point theorems for singlevalued mappings.

Same results are then proved for multivalued.mp,ppings in dualistic partial metric space.

Instead of monotone mappings, the notion of dominating mappings is userl. Our work

improves/generalizes various well known prirnary and conventional results. In support

of our results we will present some examples which proves that our results are applica-

ble. Moreover we have discussed the application of our fixed point results to show the

cxistencc and uniqucncs of solution appcaring in dynamic programing. Sornc important

corollaries are developed as a generalization of our theorems.

Let us recall some mathematical basic and results to make our thesis self sufficient.Throughout

these thesis the letters R+, R and N will represent set of positive real numbers, set of

real numbers and set of natural numbers respectively.

Chapter 1, is essentially an introduction. where we fix notations and terminologies to

be used. It is a survey aimed at recalling some basic definitions and facts. Moreover,

some of the recent results about fixed point existence are also presented in this chapter,

Chapter 2, concerned with the study OtO*:O,,q1oints resuls of dominating mappings in

dualistic partial metric spaces.



Chapter 3, is devoted to the study of dualistic partial metric spaces and some corre-

sponding results for a mapping satisfying generalized contraction. An application of our

fixed point results to show the existence of solution has been discussed.



Chapter 1

Preliminaries

The aim of this chapter is to present basic concepts and to explain the terminologies used

through out this dissertation. Some previously known results are given without proof.

Section 1.1. is concerned with the introduction of dualistic partial metric space and some

other basic definitions. Section 1.2, deals with some classical fixed point results including

partial spaces and dualistic partial metric spaces.

1.1 Basic Concepts

i,

Deffnition 1.1.1 [4,16] Let (X, d) be a metric space. A point x e X is said to be a

fixed point of mapping T : X --+ X if n : Tr.

Definition 1.1.2 [5] Define a sequence {2"} in X by a simple iterative method such that

xn: Tfitt-1, where n e {0, 1,2-..}. This particular sequence is known as Picard iterative

sequence and its convergence plays a very important role in proving an existence of a



fixed point of a mapping ?.

Deffnition 1.1.3 [16] A pair (X,d,) where X is a set and d is a metric on X (or distance

function on X), that is, a function defined on X x X is said to be metric space such that

for all r,U,z e X if it satisfyies the following properties:

(M1) d (*,y) > 0 where d is real-rralued, finite and nonnegative.

(M2) d (r,y) -- 0 if and only if r : U.

(M3) d (*,a): d(a,r) (Symmetry).

(M4) d (r, r) S d(r,a) * d(9, z) (tiangle inequality).

A metric space is a pair (X,,1,) such that X is a nonempty set and d is a metric on X.

Example1.1.4 [16] This is the set of all real numbers, taken with the usual metric

defined by

d(r,A) : lr - yl for all r,y e X .

Definition 1.1.5 [4,19 ,L4,,L8r24 A partial metric on a nonempty set X is a function

p : X x X -- R+ such that for all x,y, z e X:

(i) r : y if and only if p@.r) : p(n,tl) : p(a,U),

(ii) p(r, x) < p(t,A),

(iii) p(r, y) : p(y,,d,

(iv) p(2. z) < p(r,y) + p@, z) - p@,y).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial



metric on X.

Example 1.1.6 [13] A partial metric space is the pair (fi*,p) where

p(r,u): max {r,Y} for all n,a e R+ '

Then(r?+,p) is a partial metric space.

Deffnition L.L,7 Let X be a non empty set. Then (X,rl) is called an ordered metric

space if (X,d,) is a metric space and (X, <) is a partially ordered set.

Definition 1.1.8 [5,26] Let (X, <) b" a partial ordered set. Then r,!l € X are called

comparable if s < U or A { r holds.

Deffnition 1.1.9 [1,4,5,26] Let (X, <) be a partially ordered set. A self mapping ,f on

xissaidtobe '' tt

(i) a dominated map if f r < o for each r in X,

(ii) a dominating map if r < f n for each a in X.

Deftnition 1.L.10 Let T: N --+ N be defined by T(t) : r& where k is positive integer,

T(x):2'and T(r): xlY r € N are dominating mappings with respect to usual order

defined on N. Dominating mappings frequently occurs in agriculture and industry.

Example 1.1.11 [5] Let X : [0,1] be endowed with the usual ordering and F : X

--.+X bedefinedby Fx:frnforsomer?e N.Since Fr.:fin lrforall fre X. Therefore

F is dominated mapping.



Definition L.L.L2 [1,4] Let / and g be self-mappings on a set x. If fr : gr : u, for

some u in X, then u.r is called a coincidence point of / and 9. Further more, it Jgr: gf I

whenever r is a coincidence point of l' and g, then I and g are called weakly compatible

mappings. 
i,i

Definition 1.1.13 [fS] rct X be a non emty set and a function D : X x X --+ .8 is said

to be clrralistic partial metric space if it satisfying following properties for all r,'y, z e X :

(D1) D(r, r) : D(y,a) : D(r,U) e r: Y

(D2) D(r,r) < D(r,y)

(D3) D(r, y): D(a,r)

(D4) D(r,y) S D(r, z) + D(z,y) - D(2, z).

A dualistic partial metri6 space is a pair (X, D) such that X is a nonempty set and D is

a dualistic partial metric on X.

Definition L.1..14 [18,2].] Let X be a non-cmpty sct and thc function q: X x X -' R+

is said to be quasi metric if it satisfies following properties Yr,,U,z e X

(i) q(r, y) : q(a,r) : 0 #'r : a

(ii) q(r, ,) < q(r,y) + qfu,z).

A pair (X,d,r) is called quasi metric space.

Example 1.L.15 Lel D: XxX -' iR.by D(r,a) - nVa: sup{r,y}' Nowif X: Rthen

D is dualistic partial metric space but not partial on X for r : -4 and y : -8 then

r(



rYy:-4:D(r,,A).

If (X,D) is a duatistic partial metric space, then the function dp : X x X --+ R+ defined

by

do(r,a): D(x,Y) - D(x,a)

is a quasi metric on X such that r(D) : r(do) Y x,y e X.

Remark 1.1.16 It is obvious that every partial metric is dualistic partial metric but

converse is not true. To support this comment, define Dy : R x ft ---- fi by

Du(r,u): sY y: sup{r, a} Y n,? € IR.

It is clear that Dy is a dualistic partial metric. Note that Dy is not a partial metric,

because DI(-L,-Z): -l i R,*. However, the restriction of Dv to R+, Dylx*, is a

partial metric.

Example L.1.17 If (X, d) is a metric space and c e R is arbitrary constant, then

D(n,il: d(n,il + c.



defines a dualistic partial metric on X and the cOiresponding metric is do(t,il -- d(t,y).

Dxample L.1.1E Let X : R and define the functioa D : X x X --' .R by

D(r,y):n*A-ny Vr(AAl.

Then (X, D) is dualistic partial metric space.

Deffnition 1.1.L9 [19] Let (X,D) be a dualistic partial metric space, then

(1) A sequence {r,,},,.n in (X, D) converges to a point r € X if and only if

D (x,x): J$O (r,rn) .

(2) A sequence {2,"},.o in (X, D) is called a Cauchy sequence if 
- 

lim_D (nn,r*) exists

and is finite.

(3) A dualistic partial metric space (X, D) is said to be complete if every Cauchy sequence

{.rr,}r.n in X converges, with respect to r(D), to a point fr e X such that

D (n,r) : lim D (rn,t*) .
,lrm+&

Defrnition 1.L.20 [26] Let (X,q) be a quasi partial metric space. A sequence {r"} in

X is said to be GCauchy sequence if lim,,**Q(rn,r*):0 and (X,q) is said to be 0-

complete if every GCauchy sequence converges in to a point r € X such that q(r, r) : 0.

Definition 1.1.21 [11] Let .4 a,nd B be two nonempty subsets of an ordered set X, the



relations between A and B is defined as follows:

If for every ae A, there exists be B such that a i.b, then A 1r B.

Example 1.L.22 Let X : R, A: [*,1], B 
= l-L,l], < be usual order on X, then

A <r B.The relation tl, is reflexive and transitive, but are not antisymmetric. For

instance, let X : R, A: [-1,3], B : [-1,1] U [2,3], I be usual order on X, then

A <t B and B <t A, but A f B, Hence, {r is not pa.rtial orders on}x.

Remark 1.1.23 [11] The relation {1, is reflexive and transitive, but are not antisym-

metric. For instance, let X : R, A: [-1,3], B : [-1,1] U [2,3], { be usual order on

X, then A <r B and B 4t A, but .4 I B. Hence, (1 is not partial orders on 2x .

Deffnition L,t,24 Let X be a nonempty set. Then, (X, i, D) is called an ordered

dualistic partial metric space if:

(a) (X, D) is a dualistic partial metric space, '1

(b) (X, J) is a partially ordered set,

(c) D(n,n) S D(y,37) whenever n 7 u.

Definition L.L,26 [11] A multivalued mapping T : X -- 2x is called order closed if

for monotone sequences {zr,}, {ur,} in X, Ur, +'tto, I)rt ) us and an € T(ur,) imply

us e ?(us).

Definition L.1.26 Let (X, <, D) be an ordered dualistic partial metric space. A mul-

tivalued mapping T : X - 2x is called D-order closed if for monotone sequences, {u,,},

10



{r,} c X, linr,-,* D(t6,rro) - D(rt,s,tls), lintr-oo D(ttn,tts) : D7r,., trs) and un € T(u,)

imply uo e T(uo).

Remafk L.L.27 [14] Let (X,p) be a complete partial metric space. Therefore

(a) If p(:r, y) : 0, then r : A

(b) If r f y, then p(r,A) > 0.

Definition l-.1.28 [5] Let (X,p) be a partiat riibtri" space. A mapping T: X ------, X is

said to be Banach contraction mapping or simply contraction if ft e [0,1[such that

p(T (r) ,T (a)) < kp(*,a) , Y r,y e X

and Kannan contraction mapping

p(Tr,Ta) < k lp (r,Tr) + p(a,Ta))

Definition t.L.zg [2] A mapping F : X - X is said to be aweakly contractive if

D(Fr,Fil < D(r,,a)i- $@@,uD,

for all r,a € X.

Delinition 1.1.30 [1Bl Let be 7 a mapping of a complete dualistic partial metric X into

itself , then T :'X * X is called a partial metric contraction mapping if there exists a

11

, 
'l l



constant L. 0 < [, <-1, such that

'p(T r, T'a) a L'p(:r,'y)

flor all r,A e X

Definition 1.1.31 [16] A sequence {r,,} in a metric space X : (X,d) is said to be-

cauchy (or fundamental) if for every €> 0 there is an Iy' : Ar(€) such that for every

rn,n> N.

The space x is said to be complete if """rr,9ff.hy 
sequence in X converges (that is,

has a limit which is an element of X)'

Definition L.L.32 [16] A sequence {r,,} in a metric space X : (X,d) is said to converge

crr to be convergent if there is an z € x such that limr- * d(rn,u) : 0, z is called the

limit of {z,r} and we write lim,,-"o rn.: r or, simply rn + fr' We say that {r''} converges

to z or has the limit z. If {r,,} is not convergent, it is said to be divergent'

Definition L.1.33 112,20,,27) A function / ' 
R --+ IR is monotone non decreasing (or

monotone or increasing) if r ) g implies f (r) >- I fu)

Definition L.L.34 [11"] If {r,) c X satisfies r,1 { 12 1"'1 rn <"'or 11 ) 12)"'2

r,n)..., then {zr} is called a monotone seqye1ngg:'

L2



L.2 Classical Fixed Point Results in Partial Metric Spaces

, . i.,i,
Fixed point theorems are very important tools'ior providing evidence of existence and

uniqueness of solutions to various mathematical models. For last four decades' the lit-

erature flourished with results which discover fixed points of nonself and self nonlinear

mappings i1 a metric space. The Banach contraction theorem played a fundamental role

in the development of fixed point theory and has become even more important because

bcing bascd on itcration, it can bc casily implcmcntcd on a computcr.

Matthews [17] introcluced the concept of partial metric space (in which self distance may

not be zero) as a stritable mathematical tool for program verilication and proved art

alalogue of Balach fixed point theorem in complete partial metric spaces.This section

. , ,,:;
presents some previously well known results from literature in partial metric spaces'

Theor:em 1.2.1 [L3,Theorem 2.1] Let (X, <) be a partially ordered set and p be par-

tial metric on X such that (X, p) is a complete partial metric space' Let F : X -' X

be a weackly contractive and F is continouse non decreasing mapping such that

p(Ft,Fy) <
ap(r,Fr)p(A, Fa)

+ 7p@,a)p(r,a)

r2a, r,aeX for allgfgwith a*0<1if thereexists rse r with16(Frs.Then

F has a fixed point.

<:

13



Theorem L.2.2 lL4, Theorem 2.21 Suppose that (X,p) is a complete partial metric

space and ?, ,S are self mappings on X. If there exists an ? € [0, 1) such that p(Tr,fA) S

lM(r,g) for any r, A e X, where

M (r,il : max{p(Tt,x),p(Sy,a),p(x,a),

1

,btrr,v) + p(sv,r)ll,

then there exists z e X such that Tz: Sz: z.

Theorem 1,2,4 W Theorem 2l Let (X, <, p) be a complete ordered partial metric

space and S, T : X ---+ X be two dominated mappings. Suppose that there exists , € [0,

i) sucfr that following condition holds for n,y e X,

p (Sr;Ta) < @, Sn) + p (a,Ta)

for all r,y in V. Then there exists a point z* such that p(r',r*) : g. AIso if, for a

nonincreasing sequence {or} in X an -r u implies that u <.rn, then c' : Sfr* :Tr''

Moreover, r* is unique, if for any two points x,y in X there exists a point zs € X such

that

zs {ra\dzs1y.

Theorem L,2,6 W Theorem 1] Let (X, 1, p) be a complete ordered partial metric

space and ,9, T : X -, X be two dominated mappings. Suppose that there exists , € [0,

L4



|) suctr that following condition holds fot r, y e X,

'p(St,T'y) < t(x, Sr) + p('y,Ta)

for all (z;, y) in B (ro, r) x B (rr, ,) o V anrl

p(ro,Srs) < (t - 
^)[r 

*P(rs,Sro)]

where,l : *.Then there exists a point i* such that p(r.,2*) :9. Also if, for a

nonincreasing sequenc e {n*} \n B (rs, r) , {**} -- u, implies that tr, 4 frn, then z* :

Sr* : Tr*. Moreover, u* is unique, if for any two points n,yitt B(ro, r) such that ze I

I,, Zg 1y and

p (zs, Szs) +'p(z,Tr) < (,r1,, ri *'p(S:ts,Tz)

where .l : * for all z e B(u1, r) such that zo I Sro'

Theorem L.2.6 126, Theorem 10] Let (X,q) be a 0-complete partial metric space,

,s : x -- x amap, and . s &n arbitrary point in X. Suppose there exists k e [0,1) with

q(Sr,,Sg) S kq(r,il for all elements r, y \ntrG;T

q (26, Szs) < (1 - ,k)[r + P (uo , uo)].

where l: *. The, there exists a unique point r* in B(,6,,; such that tr* : Str*.

15



-

Further q(r*,r*) - g.

Theorem L,2.7 l26,,Theorem 13] Let (X, 1, d) be a O-complete ordered quasi partial

metricspace, S: X --+ X adominatedmap, and26allarbitrarypointinX bea0-

complete ordered quasi partial metric space, S : X -- X a dominated map, and i[6 &rI

arbitrary point in X. Suppose that there exists b e [0,1/2) such that

q(Sr, Sy) < blq@,Sr) + q@, Sa)l

for all comparable elements r,y in rBG; r)' Ana

-4.

q(rs, Sro) < (1 - k)[r + q(no, ro)),

where k: i-.,.If for a nonincreasing sequence {r,} in &Go,.9ro) , {'.) -- u implies

that ,rr i tr,,, then there exists a point r- in B(rs;) such that tr* : Str* and g(r*,:r*) Moreover,

r:* is unique, if for any Lwo points r.y inE6;i.There exists a point z e B(n63) such

thatz rcand 7]-yan<l

q(rs, 516) + q(2,5") : q(ro,z) + q(Srs,Sz)

forallz4Sro.

16



L.3 Some Fixed Point Results in Dualistic Partial Metric Spaces

O'Neill [19] introduced the concept of dualistic partial metric, which is more general

than partial metric (which allows negative values also), established a robust relationship

between dualistic pa,rtial metric and quasi metric. Oltra and Valero [21] presented a

Banach fixed point theorem on complete dualistic partial metric spaces.In this section

presents some previously well known results from literature in dualistic partial metric

spaces.

Lemma L,3.L 127,, Lemma 2.Ll

(1) Let (X,p) is a dualistic partial metric (X,p) is complete if and only if the metric

space (X,d;) is complete.

(2) A sequence {rr},.n in X converges to a point t e X, with respect to r(di) if and

only if

lim p (r, x,) : p(r,r) : lim--P(t*,x^).
,1'm+@

(3) If lim,r-oo rn:1) such that p(u,u): 0 then

Jggr(r", a) : p@,u)

77



t-
rtl i

for every A e X.

Theorem L.g,z [Z1,rTheorem 2.31Let / be a mapping of a complete dualistic partial

metric space (X,p) into itself such that there exists 0 ( c ( 1, satisfuing

lpU @),/(v))l < 
"lp@, 

a)l

for all fr,!) e X, Then / has a unique fixed point n* e X'

Lemma 1.3.3 [21, Lemma 2.1] Let (X,p) is dualistic partial metric spa'ce, then the

function do: X x X "-.&+ defined bY

d,o@, tl) : P(n,u) - P(', n)

is aquasi metric on X such that T(p) : -r(dr) for allr,'y e X'

Proposition 1.3.4 [27, Proposition z.z1 ret (x,p) be a complete dualistic partial

metricspace, rse X andr > 0. Supposethat !: Br(n6,r) -. X isacontractionwith

contracion constant c such that 'i

lpj@il,r0)l < Q-c)r -2lp(rs,rs)l - lp(/('o),/('o))l'

for all r,U € Br(ro,r) then / has a unique fixed point in Bo(rs,r)'

Theorem 1.3.5 127, Tileorem 3.2] Let f be a mapping of a complete dualistic
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u li

(X.p) into itself such that

lp(/(r), /(rv))l S o(lp(r"v)l)

for all r,y < X, where Q : [0, *oo) -, [0, +oo) is any monotone non decreasing function

*ith ,]$O"(t) 
:0 for anY fixed t > 0.

Then ./ has a unique fixed point.

Lemma t.3.6 127,, Lemma 3.4] Let (X,p) be a dualistic partial metric spa,ce and

Y C X. Then
,

6(dr)" (v) < 45r,(Y).

Lemma L.5.7 127,, Lemma 3.5] Let (X,p) be a dualistic partial metric space and let

g : X --+ Ii+ be an arbitrary non negative function. Assume that inf{rp(r) + 9@) :

lp@,il]+ lp@.r)l + lp!,u)l 2 a,) : ,,,(o,) > 0 for all a' > 0'

Then cach sequence (ru),,eN for which,|gif (*,) :0 converges with respect to T (dr)' to

the sarne point of X.

Theorem 1.8.8 [27,Theorem 3.6] Let (X,p) be a dualistic partial metric space (X, p) and

let ./ : X --+ X be a continous mapping from (X, (dr)") to (X, (drj") such that the

function

p(r): dr(r,f (z)) and ,b@): tlr(.[ (r) 'r)
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satisfving the following conditions:

(1) inf{e @) + +e@) + rl,@) + 4;(il, lp@,a)l + lp@,*)l + lp@,u)l >€} : p(a) >

0forall a>0.

(2) inf,6y (p@) + /,(r)) : o.

Then / has a unique fixed point.

Lemma 1.8.g [21, Lemma 2.2)It(X,p) isac]ualisticpartialmetricspace (X.2) iscom-

plete if and only if the metric space (X, (dr)') is complete' Furthermore ,]r{L 
(dr)" (o, rn) :

0 if and oniy if

p (o,, o,) : JI}, (o', *n) :,,IiT-p (r,n' r*) .

l.heorem 1.8.10 [18,Theorem 12] If X is a complete dualistic partial metric space,

.' ,)
and Z' : X --- X , is such that ?1 is contraction for some integer r ) 0, then 71 has a

unique fixed point.

Corollary L.3.11 [t8, Corollary 15] Let (X,p) be a dualistic partial metric space and

let 7 : X -- X be a contraction on closed ball

B : B(ro,r) : {t: p(r,rs) < r}.

Moreover, assume that

p(rs,Tr') < (l- L)r.

20



I
I

Then, prior error estimate is the following estimate'

p(r*,u) 1 L"r

and posterior estimate P(rn,,u,) I Lr.
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Chapter 2

Fixed Point Results in Dualistic Partial Metric spaces:

2.L Fixed Point Results of Dominating mapping in Dualistic

Partial Metric Spaces:

In the development of non-linear analysis, fixed point theory plays a very important

role. Also, it has been widely used in difierent branches of engineering and sciences.

Metric fixed point theory is an essential part of mathematical analysis because of its

applications in different areas like variational and linear inequalities, improvement, and

approximation theory. The fixed point theorem in metric spaces plays a significant role

to construct methods to solve the problems in mathematics and sciences.

Though metric fixed point theory is vast field of study and is capable of solving many

equations. To overcome the problem of measurable functions with respect to a measure

and their convergence, O'Neill [19] introduced the concept of dualistic partial metric
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spaces by extending the range R+ to R. Oltra and Valero [27] established Banach fixed

point theorem for complete dualistic partial metric spaces. In this section we present

a fixed point theorern for dominating mappings in an ordered dualistic partial metric

spacesl

We begin with the following lemma.

Lemma 2.1.L Let (X,D) be a dualistic partial metric space and p '. x -+ 1l be a

mapping. Define the relation J on X as follows:

r <a + D(r,a) - D(r,r) 3P@) -P(a)'

. i,i;

Then J is an order on X, named the order induced by tp'

Proof As 0 ( 0 this irnPlies

D(r,:r) - D(r,:r) < pQ;) - P(.t) ) t 4 r.

$s { is reflexive.

Now if 't I'y and g { ,, rve will prove that r : y for this

Sincer J u eD(*,y)-D(r,r)<9(t)-pfu)' (2'1'1)

Ands J x) eD(a,")-Q@,ilae(a)-p(n). (2't'2)
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Adding equations (2.1.1) and (2.1.2) we get

D(x,y) - D(r,r) + D(y,r) - D(Y,Y) < 0'

This gives

do(x,y)+dD(Y,r)<0.

since dp(r,y) and do(y,x) axe non-negative, therefore

do(t,Y) : do(a,') : 0 entails r : a'

Thus { is anti-symmetric

Lastly, il. x 4U and y 3 z, we show that o { z. For this

Adding equations (2.1.3) and (2.1' ) we obtain

D(s,y) - D(r,r) + D(y,z)' D(y'v\ 3 p(n) - p(z)

Which implies

do(r,y) + dD(a, z) S p@) - P(z).

24,
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By triangular inequality

do(x, z) < d,p(r,y) + d'pfu, z).

Consequently, we have

do(x,z) < d,p(r,y) * do@, z) 3 p@) - p(z),

that is

D(x, z) - D(r,r) S p@) - p(z) + x I z'

Therefore J is transitive. Hence J is a partial order on X.

It can be observed from lemma (2.1.1) that p is decreasing function, with respect to

usualorder" ("

2.2 Fixed Point Results For single-valued mapping in Dualistic

Partial Metric Space

Theorem 2,2.L Let (X, i) be a partially'ordefud set and (X,D) be a Gcomplete du-

alistic partial metric space. Suppose that rp : X --+ IR is a bounded below function. If

T:X--+Xisa

(1) r(D)-continuous map.

(2) dominating map.
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Then ? has a fixed point.

Proof Let rs€ x be an initial point ancl rn:T(rn-1) for all n ) 7'if there exists a

positiveintcgerrsttchthatz.al:J'thenr,:T(r,)'Sowearedone.Supposet}rat

:rn f t;,,,,.1Y n € N. AsZis dominatingmapping' so:16 { ?(:16) :"17, sowe have

rs 1 11, and 11 < T(r,) that is 11 I x:2, and 12 < T(,r) implies x;z 3 rs continuing in

the similar way we get;

rs 11 12 1rsI... Irn5rn+r3rn+2 I.,.

Now by definition of g as defined in order we deduce that

e@i >- p@) 2 p@) > e@i > ...2 P@") > ''' (2.2.1)

Since cp is bounded below, so from (2.2.1) we infer that {9(2,,)}L, is monotone bounded

sequerlce and hence convergent sequence and {cp(r,)}p, it a Cauchy sequence' There-

fore. for e > 0 there cxist rzs such that for

rL) nl,) lU) lV@,,) - qb,,)l 1e.

; iL '

Since rr, I rr,r, we have

rn <r,^ e D(rn,r^) - D(*n,r^) S p@") - p(r*).

fi
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Which itnplies, D(rn,r*) - D(rn,nn) l lp@") - 9@;l < ('

In consequence, d,p(r,r,t*) 1r. Since

d"r(*, a) : max{do( r, Y), dp(Y' t)}'

therefore

d"o(rn,r^) 1€.

Thus {r,} is a Cauchy sequence in complete metric space (X,dir). So there exist u e X

such that

,lr1a;('"' r') = o'

By Lemma (1.2.1), we get

D(u,u): lint D(rn,tt): lin- D(rn,r*).

Iim do(tn,r:,,) :0.

This implies

Iinr D(r,,rn,) : lint 1)(r:,,,.r,).

As
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Since (X, D) is 0-complete dualistic partial metric space' so

Jlg D(r", s-) : 0.

This implies that

jgg o(r", u) : 0.

This shows that {2,} is GCauchy sequence in (X, D) which converges to u. Now since

? is continuous. therefore

u: J!gr,: J!g""(ro) 
: jggr*'1"o) :?(J!gr^(roD:r(u).

'.1 ,

Hence u : T(u) that is u is fixed point of ?.

If we assume that g(X) is compact in IR instead of boundedness of g$) in Theorem

(2.2.1), we can have the following theorem.

Theorem 2.2.2Let (X, D) be a 0-complete dualistic partial metric space' I : X --+ R. be

a function such that rp(X) is compact and J be an order induced by rp, and T : X --+ X

is a r(D)-continuous, dominating mapping. Then ? has a fixed point in (x, D).

Example 2.2.3Letp(r):l+* for all ne R- {0}, thenp(r) :1*}'1so it is

bounded below. Let Dy(r,a) : xV y Y r,A € R and { be an order as defined in Lemma
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(2.1.1). Thcrefore

:r 1'a e Dy(r,A) - Dr(r,r) S V@) - P(Y).

This implies either

11r4A <+ 0< ,r- a,

or

x 4,!) e 'y-,r r*- h

Let the mapping T : X -, X is deflned bY

( r'-1 ifz€(-m.-l);
"l T@): I -

n 
-\*/ 

[" ifr€[-l,*).
\o
I r is dominating and if 

"(r) 
: r then the result is obvious

\,
tF 

and if T(r) -- 12 - 7. then

r(t) jr(,y) e r(r)v r(il Sr(t) + C# - ;h

this implies either

"(,) 
<r(ilea2s*.*!O #* ir 

"(r)vr(il:r@)'
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r@)ir(v) <+ 0< o,+ -dry ir r(r)vr(v):7.(r)'

So in both cases we have

T(r)<r@) erla.

So all the conditions of theorem (2.2.L) are satisfied and ? has a fixed point.

Theorem 2,2.4 Let (X, D) be a Gcomplete dualistic partial metric space, tp : X --. IR

be a bounded below function and { be an order induced by rp. Suppose that 7 : X -' 2x

is a D-order closed and satisfies following property

Y x,u e X, r 1U + T(t) <17(y) (2.2.2)

Then T has a fixed point in X.

Proof Since 7(r) is non-empty set and {zs} <r 7(ro) for some xs e. X. We can choose

q e T(ro) such that x:o 1x:t by equation (2.2.2), we get ?"(rr) <tT@). For every

11 e T(rs), there is z2 € T(rr) such that x1 1\ i2which implics T(rr) <r T(xz)'Again

for every nz e T(ri, there exist 13 e T(n2) such that n2 I xs and this implies that

T(rr) <t ?(rr). Continuing in a similar way we get a monotone sequence

:xs 1 11 3 rz 4 rs I ... 3 t" a ....
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Now by definition of p as defined in order we deduce that

e@o) > v@) 2 e@2) > e(4) > "'> P(r") 2 ""

Since g is bounded above, therefore {p(r")}L, is monotone bounded sequence and hence

convergent sequence. Thus {cp(z,,)}P, is a Cauchy seqttence, so for e > 0 there exist ns

such that for n. ) 7n. ) Tt,s,

lv@)-e(,,,)l<u'

i.

On the other hand since tr,, 1fr,,,, so we have frbm order defined in Lemma (2'1'1)

r,7 r* e D(r,,,r^) - D(*,,,rn) ( P(r") - V@i.

This implies

D(rn,r*) - D(*,,r,.) l lP@") - 9@;l < e'

Therefore

do(rn,r^) I e.

Since

d,"p(t,'v) : max{dp ( i,t'u),'l o('u,'')),

So, d"o(rn,r*) 1e.
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t

This implies that {r"}

cxistu€Xsuchthat

is a Cauchy sequence in complete metric space (X,d'|)' So there

81, Lemma (1.2.1), we obtain

D(r.t. u) :,,1-,lI D(rn,r) :,,*T* D(r,*. n-).

Since (X, D) is 0-complete so

Iim D(rn.,r*) :0,
ntm+@

thcrcforc from (2.2.3) wc dcducc that lim,,,'-.D.(r,,u):0' Now as ? is D-orclcr closcd

&Ird n,,n1 e T(r,), this implies that a e T (u) which completes the proof.

Example 2.2.5 Let X : R,2 and define multivalued mapping T by

|, {(o, o), (3,4)}
r(P'q): 

I ttffi'ffit tr*fht+ffi)]
Then 7 is ordered closed and V (p,q),(tL,u) e R2

if pq > 0;

ifpq<0.

(p,q) : (u,u) <=+ T(P,q) <1T(u,u).

32
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Further {ro} <, T(rd. Hence 7 satisfies all the conditions of Theorem (2.2.4) and it

has a fixed point,
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Chapter 3

Fixed Point Results of Generalizesd Contraction on Dualistic

Partial Metric Space.

Valero [27] generalized the main theorem of [21] using nonlinea,r contractive condition

instead of Banach contractive condition.

We introduce the notion of generalized contraction on dualistic partial metric spaces. We

discuss an application of our fixed point results to show the existence of solution.

Theorem B.L Let (X,D) be a complete dualistic partial metric space and 7 : X -+ X

be a mapping satisfying

e(lD$(r),r(y))l) < p(M(r,il) -',h(M(r, s)) for all r,v € X, (3'1)

where

M (r,y): m&x 
{ 
trtr, rlf , lW I }
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and

g : [0, *) * [0, *) is a continuous and monotone non-decreasing function with p(t) : O

if and only if t : 0 and ty' : [0, m) -- [0, oo) is a lower semi-continuous function with

,l'(t) :0 if and only if t : 0. Then T has a unique fixed point.

Proof Let rs be an initial point of X and let us define Picard iterative sequence {r"} by

fin: T(nn-1) for all rz € N'

If there exists a positive integer i such that ti: fri+rt then rt : fii+t:T(ri)' so 'i 
is a

fixed point of 7. In this case proof is complete' On the other hand if. r^ * r,,11 for all

n € N, then from contractive condition (3.1) we have for $n,an41€ X

p(DV@*-,),7(r,))l) 3 p@@,,-r, r,,)) - ,h(M(r"-r, r,"))'

That is

p(lD(x^,z,+r)l) S p(M(r*-r, z,)) - rb(M(r"-r, r,")). (3'2)

Where

M(a*-1,rn) : ** 
{ 
lD(rn-r,"^Y,1ffi

: ma>c{lD(r,-r, r,,)1, lD(*^,r"+r)l}'
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If

lD(*,-r, r,)l ( lD(r".r,+r)1,

bhen

M (rn-r, rn) : lD (*,,r,+r) 
I

and therefore (3.2) imPlies,

Which is a contradiction due to the fact lD(:r,,r,r r)l > 0' llence

lvl (t:,, r. Ln.) : lD(t:",- r, r,)1.

So in this case (3.2) gives,
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Thus, {lD(*^,rr,+r)l}r,ex is a nonincreasing sequence of positive real numbers. There

exists a number L > 0 such that

jgg lD(c", rn+)l: L.

We claim that I : 0. On contrary suppose that I > 0 and taking upper limit of

p(lD(r,,r,+r)l) 3 V(lD(""-r, r,)l) - ,b(lD(n"-r, r")l).

we get

eQ) S eQ) - jgginf ,l'(lD(x"-r,'")l)'

Which is a contradiction, so .L : 0 and hence

jgglp(r,,r,+r)l :0 implies Jim D(*n,nn+r):0 (3'3)

Now to find lim,,-- lD(t,,r,r)1, we use (3.1) again,

g(DQ@"-r),T(xn-r))l) S p(M (x*-t,r*-,)) - rb(M (r"-r, r,-r))'
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That is

p(lD(r,,:r,)l) < g(M(an-r,r.-r)) - ,h(M(""-r, r,,-r)). (3.4)

M(*u-,,r:,.-r)):max{l,{,,.-,,,,.-,)l,lffil}

If

Ivl(an-1,rur,-r):lWl

, then taking upper limit on (3.4) and using (3.3), we obtain,

jSr(lo(r*,2")l) S o.

This implies that

i$r(lo(r"'r")l) : o'

By continuity of pr w€ have lim,- *lD(tn,r,)l : 0. Similarly if

M (rn-r, nn-r) : lD (, *-r, fi n-t)|,

then

e(lD(x*,,t,)l) S p(lD(r*-r,r,-r)l) -rh(lD(r"-r,r,*r)l)' (3.5)
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Thus {lD(rr., u,,)l}rex is a nonincreasing sequence of positive real numbers and a.rguing

like above, we get

Jgg 
P("' 0") : o' (3'6)

Since

do(rn, frn+t) : D(ro, rn+t) - D(tn, rn)

, so using (3.6), we get

)f*a'iu,*''"+t) 
: o' (3'7)

Now we show that {o,} is a Cauchy sequence in (X, d'r). For this we have to show that

limr,,rr-- dr(rn,r*):0. That is

lim do(nn,r^) :0 - llm dP(r*,rn)'
n,m4co fl,.t??,+@

Suppose on contrary that limr.,*-*d,p(xn,x^) * 0. Then there exists e ) 0 for which

we can find two subsequencc {r,,n}, {r-n} of {o,} such that n6 is smallest index for

which

n1, ) rnlr and, d,p(xn*,t*n) f e. (3'8)
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This means that

dp(rnr-r,r*u) I €'

Now using (3.8) and (3.9), we have

(3.e)

(3.10)

Taking litne-- and using (3.7), we obtain

.lim dp(lr,o ,rrnn) : €.
/r..m

Due to triangular inequality, we get

But then
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Taking lim&-- in above expressions and using (3.7), (3.10) we obtain,

.lim dp(rno-t,fimt-r) : €. (3'11)
Ic+o

Following (3.1) for nno * rme, we have

p(lD (T (x *o -r), T (n *n-, ) ) I ) < e(M (r nn -t r-* -, ) ) - rb (M (x 
"n- 

r, r,,,* - r ) )'

That is

g(lD(nnr,o-o)l) 3 p(M(n*o-r,r-*-r)) - rh(M(n,r-r, r-*-r)). (3.12)

Where

M (nnr-t, r^t-t): max 
{ 
lr{r,--r, r-r-t)|,

By using (3.10) and (3.11), we deduce that

.lim M(rnr-t,nn*-r) : €. (3'13)
Ici@

Now applying upper limit on (3.12) and using (3.10), (3.11) along with properties of p,

r/r we get

p(e) < p(r) - nl$i"f $(M(x*r-r,r,,*-t)).
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That is p(e) < pk), acontradiction and tneiefoie

Iim dp(:rn,:t*,) :0.
n,m-ico

Similarly we can prove that lim,,- -* do(r*.' 7r) : 0.

Hence lim,,.,,,*"o ,tb(*r,rrn) :0 which entails that {rr,} is a Cauchy sequence in (X'd'r).

Since (X. D) is a complete clualistic partial metric space, so by Lemma (1'2'1) (X, d'|) is

also a complete metric space. Thus, there exists u in x such tha,t lim,,-- d,'o(r,,, u) : 0,

again from Lemma (1.2.1), we get

,l!gd|(r,,'u) 
: g a+ lim D(tt,t,):;"D(u,') :,.HT* D(nn'r*)' (3'14)

Since lim,r,-. -*do(rn.,r*):0, thus, limr,-.*- D('n,r*,):0' From (3'14)

D(u,u): 0 : 
nlim 

D(u, r,).

Now wc prove that u is a fixcd point of ?. on contrary supposc thatT.r I 7(u), thcn

using (3.1) and Lemma (1.2.1) we have

p(lD(r*,"(T,')l) : elDg(rn-t),7('u))l) a p(M(n -r, u)) - {(M(r"-r' r'))'

That is , .. ;.'L

r.

plD("*,2("))l) ! 9@I(r,-r, u)) - tl.t(M(x,,-1,u))'
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l,etting n --' oo and using properties of 9, tft wc get 9(D(tt,7(u))) < g(D(t'"(r")))'

whictr is a contracliction as D(u,T(")) ) 0. Hence u : T(u) that is 'u is a fixed point

of 7. Finally, we shall prove the uniqueness. ,sulrpose that ar is another fixed point of 7

such that u * Q, then from (3.1),we have

p(D(u,u)l) < eQt[ (u,r,,,)) - 4'(M (u,w)).

which implies that

p(D(",tr) l) < e(lD(u, w)l).

A contracliction, hence 1): u). So T has a unique fixed point in X'

In Theorem (3.1), if we take,p(t) -t and r/(t).: (1 - h)t where h e [0,1[ and t > 0.

, 
. .:,:l)

Then we have following result

corollary 3.2 Let (X, D) be a complete dualistic partial metric space and ?. : x --., x

be a mapping satisfYing

llt(r@).r(u))l ( hmax 
{lotr,u)1,

D(y, T(y))(t + D(r, r(z)) l) for al] n,y e x,
| * D(r,Y) l)

(3.15)

Then 7 has a unique fixed Point'

q For if D(:r,g) e RJ' for all :L,U e X, then D(*,'y) :'p(t;,g)' The partial metric version
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of Corollary (3.2) can be obtained as follows:

corollary 3.3 Let (X,p) be a complete partial metric space and T : x + X be a

mapping satisfying

Then ? has a unique fixed Point.

Now if

p('1'(r),rfu)) th nrax 
{r(r,,.u),

r.
)

p(

,lJ

))(t +
+ p(n

.,1;

p(v,T(y
1

7("))
i for all r,y e x,

.* 
{ 
lD@,ili,

bhen the rcsult obtained by valero [21] can be vierved a^s a special case of corollary (3'2)'

corollary 3.4 Let (X, D) be a complete rlualistic partial rnctric space ancl let'I : X -' X

be a self-mapping such that there exists o € [0' 1[ satisfying

lD (T (r),r(3/)) I < alD (r, Y)1,

for all r.y e X. Then T has a unique fixed p6int f e X. Nloreover, D(n*,f*) :0

ald the Picarcl iterative sequence {?""(ro)},.p conver$es to u* with respect to r(d})' for

every r e X.

Rernark 3.5 As every drtalistic partial metric D is an extension of partial metric p'

thcrcforc, Theorcm (3.1) is an cxtcnsion of Thcorcm (3.2)' Conscqucntly, Corollary (3'2)

.:, I ili
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, r iil

generalizes CorollarY (3.3)'

There arises the following natural question:

Whether the contractive condition in the statement of Corollary (3.2) can be replaced

by the contractive condition in corollary (3.3). Following example will give the negative

answer to this question.

Example 3.6 Consider the completc dualistic partial metric (R, Du)' Define tlie self-

mapping?o,R--RbY
I o .irr*oro(,) 
t _r,,,r,:o

It is easy to check that fixed point free mapping ?s does not satisfy the contractive

condition in the statement of Corollary (3'1)' Indeed,

1 : lDu(-1, -1)l : lDu("0(0),rr(0))l) > hI4(0'0)'

Where

( 
| 
D"(0,7i(0))(1 + D"(0' 70(0))) l) .(0' o; : max 

{ 
lDu(O' o)l' l l I

Nevertheless, the contractive condition in the statement of Corollary (3'3) holds true'

Indeed, ,' -"i'li

-l : pv(-1, -1) : pu(70(0), 
"r(0))l) 

< hI4(0,0)'
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Where

Example 3.7 Let (R, Du)

self-mapping ?r :R + IR bY

pu(0, ?i(0))(1 + py(0, rr(0)))

complete

1 + pv(0,0)

dualistic partial metric

):o
space. Define the

o),
{r"{0,

bear

I,1(0,0) : max

rr.,):[ o

|. -1

ifr::0
ifr>2

The mapping ?r has a unique fixecl point :r : 0, It is easy to check that 7r satisfies the

contractive condition in the statement of Corollary (3.1)' Indeed' for all r > Y ) 2 and

h,, i

lDu(?'("), r,(u))l

1 : lDv(-1. -1)l

Dr(u,r, (y))(l * Dy(r,71
L + Dy(r,y)

holds. AIso note that for !, 
: o: g the contractive condition in the statement of corol-

lary (3.2) trivially holds.

Application to Functional Equations

As an applica,tion of our fixed point result [corollary 3'2], we present the study about

the existence ancl uniqueness of the solution of functional equations. We iutroduce some
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notations for the sake of convenience.

S : State space.

W : Decision space. 
il

B(S) : SPace of bounded functions'

c1t : Sequence of real numbers such that -lim lc,rl : g'

g : SxlT--+lR.

Fn :,S x W x R ---+lR where n:0,1,2,3,"''

O : ,SxW-.5.

In the following we shall prove the existence and uniqueness of solution of functional

equation appearing in dynamic programming. (for e:cample see [8])

u(t): sup{g(r, v) + F*@,!t,'u(0(*,v)))} vr e s (3'16)

vew

We observe that the spaces (B(S), ll.ll-) it a Banach space and distance function in B(S)

is defined by

rl*(u',u) : sup lr@) - u(r)l V u',u e B(S)
o€.9
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where as for dualistic partial metric space distant function is given by

D*(u,u): d*(u,u) + cn, Y u,a € B(s)'

In calculations following two lemmas will be helpful.

Lemma 3.7 Let G, H : S -* R be two bounded functions then,

lsupG(z) - sup H(r)l < sup lc(r) - H(*)1.
'c€S u€S o€S

Lemma 3.8 Let

(1) S, F be bounded functions.

(2) ) k) 0 such that V t,r Q. R, r € S and y e W'

lFnb,u,t) - Fn(n,y,r)l S /clt - rl.

Then the operator R: B(S) - B(S) defined by

(Eu)(z) : 
rs;r;{o(o, 

y) + F,(a,v,u(0@,Y)))}

<\l

is well define,

Theorem 3.9 Let all the conditions of lemma (3.8) be satisfied and for n -{ oo

lF^(l,U,1l)_Fn(x,a,u)|<h**{lD*(u,,)l,|#l}(3.17)



sI

Then the functional equation (3.17) has unique solution.

proof Let R: B(S) -- B(^9) be an operator as defined in lemma (3.8). We shall show

that R satisfies contractive condition (3.17). Indeed by lemma (3.7), for all u, u € B(^9).

l(nu)(r) - (nu)(r)l : I sup{e(r, a) + F^(t,y,u,($(n,s)))} - p;to(r, Y) + Fnb,Y,a(0(n,v)))}l

S sup fg(r, y) + Fn@,y,u(d(x,y))) - g(r,v) - Fn(x,y,u(6@,uD)l
vew

uew

Therefore,

lD*(Ru, Ru)l : lsup l(Ru)(t) - (Ra)(r)l + c"l

S supl(Ru)(c) - (RuXr)l + l""l
o€S

v€w

When n --+ oo then by (3.17) we obtain,

lD*(Ru,Rr)l s h ma:< 
{ 
lr-tr, r)1, l#l } 

. ;*,*,'

Finally, definition of c,, gives

lD*(Ru,Rr)l S hma>< 
{lo-{r,r)i,
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Hence, R satisfies all the conditions of Corollary (3.2). Thus there exists a unique solution

of (3.17) uo € B(S) such that Ru6:'11,0.

.- t;
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