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Preface

Magnetically responsive fluids called fenofluids composed of ferromagnetic

particles of approximately domain size homogeneously dispersed in a liquid carrier

have recently been synthesized in the laboratory []. One particular class of ferrofluids

consisting of colloidal dispersions of ferrite particles in organic based liquids are made

stable against particle agglomeration by the addition of a surfactant. The mechanism

preventing agglo- meration is here due to the short range repulsive force arising from

the compression of an absorbed layer of surfactant on the particle surface balancing

the affractive London and magnetic forces [2].

In this thesis, a numerical scheme namely Generalized Differential Quadrature

Matheod (GDQ) is employed to solve problem generated due to flow of magnetic

fluid. The thesis contain three chapters. First chapter contain the introduction of the

tools and basic definations which envolves in the next chapter.

Two problems are discussed in this thesis. In Chapter 2, flow of magnetic fluid with

two dipoles 'd' distance appart over flate plate is resolved using GDQ method and the

result of Necringer [5] are replicated.

Chapter three, discussed the flow of magnetic fluid due to point dipole in a channel

with wall is stretched proportional to length. Due to symmetry half channel is

considered and problem is solved using GDQ method. The graphical results are

displayed and discussed. Main findings of this research are as follows:

. The velocity component to the channel wall decreases monotonically as the

magnetic field force increases.

. In the action of a adequate strong magnetic field, the temperature decreases with an

increase in the prandtl number.
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. It is interesting to notice that, when at velocity decreases with the variation of

which is close to the boundary layer wall and opposite trend is occur for

. It is also observe that velocity profile asymptotically approaches to one that is satisf,

the boundary condition.

. The skin friction coefficient increases by increasing ferrohydrodynamic interaction

parameter as well as Prandtl number Pr.

. By boosting prandtl number Pr the Nusselt number boost up but the reverse behavior

is seen in case of ferrohydrodynamic interaction parameter'

\
e
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Chapter 1

Preliminaries

This chapter includes some basic definitions and concept relevant to the material I
I

presented in the subsequent chapters.

1.1 Fluid mechanics

I

Fluid mechanics is that branch of mechanics of applied mechanics that deals with the I

behavior of fluids (liquids or gases) at rest or in motion. 
r

Fluid mechanics may be divided into three categories: fluid statics, Fluid kinematics, I

fluid dynamics. Fluid statics deal with the study of fluids at rest, while fluid I

kinematics is the study of fluid in motion without considering the forces which cause

or accompany the motion. On the other hand fluid dynamics is the study of fluids in

motion considering the forces acting on the fluid.

1.2 Fluid

A fluid is a substance that deforms continuously when subjected to a shear stress, no

matter how small that shear stress may be. In simple words, a fluid is a substance

which is capable of flowing and which conforms to the shape of containing vessel.

1



1.3 Some physical properties of the fluid

1.3.1 Viscosity

The viscosity of a fluid is a measure of its resistance to deformation i.e. resistance to a

shearing force when the fluid is in motion . For liquids, it corresponds to the informal

notion of "thickness". For example, honey has a higher viscosity than water.

Mathematically, it is define as the ratio of shear stress to the range of shear.strain i.e.

viscosin = Lt= shear stress 
.

Where p is called dynamic viscosity. Its unit are pa.s.

(1. l)

(1.2)

1.3.2 Density

The density of a fluid denoted by p is defined as the mass per unit volume. Thus if m

is the mass enclosed in a volume V, then

mass of fluid

or

DensitY =

The unit ofdensity are kgm-3

volume of /luid'

mp--
U



1.3.3 Kinematic viscosity

The kinematic viscosity (also called "momentum diffrrsivity") is the ratio of the

absolute viscosity p to the density of the fluid p. It is usually denoted by the Greek

letter nu (u).

u
D=L,

p
(1.3)

Its unit is rz2s-r

1.3.4 Temperature

Temperature of a body is defined alr a measure of the intensity of heat. Heat always

flows from a region of higher temperature to one of lower temperature. Physical state

of a substance change with temperature. For example, water at low temperature is ice,

at higher temperature is ice, at higher temperature is water and at still a higher

temperature is steam. Temperature can be measure by different scales. Three common

used temperature scales arc the Celsius (or centigrade), Kelvin (or absolute) and the

Fatrenheit scale.

1.3.5 Enerry

Energy is the capacity of a physical system to perform work. Energy exists in several

forms such as heat, kinetic or mechanical energy, lighq potential energy, electical, or

other than form.
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1.3.6 Stress

The stress or stress vector is defined as the force per unit area of the force on which it I

acts. If the stress is uniformly distributed over the plan area A, the stress called the

t\)

average stress is defined u, + .The stress at any point P in the fluid is defined as
A

Stress any point t:g.#

Where lF is the force acting on an element of surface area AS enclosing the point P.

1.4 Typ0s of fluids

1.4.1 Compressible and incompressible fluids

It is usual to divide fluids into two groups: liquids and gases. All known liquids are 
I
l

slightly compressible and their density varies little with temperature and pressure. For 
I

most practical purposes, liquids are considered to be incompressible. But for situation

involving either sudden or great changes in pressure or temperature, their

compressibil ity becomes important.

L.4.2 Inviscid fluids

An inviscid fluids is that fluid having zero viscosity. With zero viscosity the fluid

offers no internal resistance to a change in shape. Thus an inviscid fluid, whether at

rest oi in motion, can'exert only a normal stress(i.e. pressure) or any surfaie with
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which it is in constant it is in contact. Consequently the shear stress in this case are

zero.

1.4.3 Ideal fluids

A fluid which is both inviscid and incompressible is called an ideal fluid.

1.4.4 Real fluid

A real fluid is one which has finite viscosity and thus can exert a tangential stress on a

surface with which it is in contact. The flow of real fluid is called a viscous flow. Real

fluids can further be subdivided into Newtonian fluids and non-Newtonian fluids.

1.4.5 Newtonian fluids

A fluid which obeys the Newtonian's law of viscosity is called Newtonian's fluid. In

this case, the shear stress is linearly proportional to the velocity gradient. The

viscosity p is constant for each Newtonian fluid at a given temperature and pressure.

Water and air are.the example of Newtonian fluids.

1.4.6 Non-Newtonian fluid

A fluid which does not obey the Newtonian's law of viscosity is known as non-

Newtonian fluid. In this case, the shear stress is non-linearly proportional to the

velocity gradient.



1.5 Types of flows

1.5.1 Incompressible and compressible flows

The flow of an incompressible fluid (i.e. for which the density remains constant

throughout the fluid) is said to be incompressible flow. On the other hand, the flow of

a compressible fluid i.e. for which the density is not constant is called a compressible

flow.

1.5.2 Ideal and real flows

The flow of an ideal'(i.e. in viscid and incompressible) fluid is said to be ideal flow,

while the flow of a real (i.e. viscous) fluid is called a real flow.

1.5.3 Uniforrn and non uniform flow

A flow is said to be uniform when the velocity vector as well as other fluid properties

do not change from point in the fluid. Thus

L:0.9-oP =...-oAAOS OS OS

i.e. the partial derivative w.r.t 'distance' of any quantity vanishes. '

A flow is said to be non-uniform when velocity, density, pressure, etc. change from

point to point in the fluid flow i.e.

I

I
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For example, a liquid floe through a long straight pipe of constant diameter is s

uniform flow. On the other hand, a liquid flow through a pipe of reducing section or

through a curved pipe is a non-uniform flow.

I

ll

1.5.4 Steady and unsteady flow

A flow is said to be steady (i.e. stationary) when the velocity vector and other fluid

properties at every point in a fluid do not change with time so that flow pattern

remains unchanged i.e.

...=Q

i.e. the partial derivative w.r.t time of any quantity vanishes. Thus the velocity is

constant w.r.t time but it may vary from point to point. Hence the steady flow may be

uniform or non-uniform.

A flow is said to be unsteady when fluid properties and conditions at any point in a

fluid change with time i.e. i*d "r".0t

1.5.5 Laminar and turbulent flow

A flow is said to be laminar if the fluid particles move along straight parallel path in

,, ..,j'l

layers or lariiinar. Thus in this flow, the curv6s traced out by any two different fluid

AV ^0p 0p

0t '0t 
At

ll
lr

"f,



particles do not intersect. On the other hand, a flow is said to be turbulent if the

particle of the fluid move in irregular fashion in all directions.

1.5.6 Irrotational and rotational flow

A flow is said to be irrotational if the fluid particles do not rotates about their own

axes during the flow. On the other hand, a flow is said to be rotational if the fluid

particles go on rotating about their own axis during the flow.

An extemal flow is a flow over the outside surface of an object. Common examples

are the flow around a vehicle, a truck, and an aircraft as they speed along. Depending

on the geometry, external flows can be very simple or quite complicated.

1.5.7 Internal and external flow

Internal flows are those where fluid flow through confined spaces such as pipes, open

channel, and fluid mechanics. The internal flow of liquids in which the channel does

not flow full is called an open channel flow. For example, flow in rivers and irrigation

canals.

External flows occur over bodies immersed in an unbounded fluid, such as

atmosphere through which airplanes, missiles, and space vehicle travel, or the ocean

water through which submarines and torpedoes.

- n



1.6 Prandtl number

The Prandtl number (Pr) is a dimensionless number, named after the German

physicist Ludwig Prahdtl, defined as the ratio of momentum diffusivity to thermal

diffusivity. That is, the Prandtl number is given ast

Pr-9-
d

viscous dffision rate =@:klcop
c rlt

thermal dffision rate

1.7 Reynold's number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that is used

to help predict similar flow patterns in different fluid flow situations. The concept was

introduced by George Gabriel Stokes in 1851, but the Reynolds number is named

after Osbome Reynold (1842-1912), who popularized its use in 1883.

1.8 Ferro hydrodynamics

The field of study concerned with the flow and other mechanical properties of ferrofluids.

1.9 Introduction of B'erro Fluid

Ferrofluids were first developed and classified in the 1960s by Stephen Pappell at

National Aeronautics and Space Administration (NASA) as a method for controlling

fluids in space. The scientists at NASA found that they could make to flow this

10



amazing ferrofluid by varying the extemal magnetic field. Ferrofluid is a liquid which

becomes strongly magnetized in the presence of magnetic field. There are at least

three components required to prepare ferrofluid i.e. magnetic particles of colloidal

size, carrier liquid and stabilizer (surfactant). They are slible suspensions of colloidal

single domain ferromagnetic particles of the order of lOnm in suitable non-magnetic

carrier liquid. A typical ferrofluid contain 5%o magnetic solids, l0% surfactant, and

85% carrier liquids 1lt3l. If the size of permanently magnetized nano-particles will

be less than l-2 nm, the magnetic properties will disappear and colloidal motion

increases with decreasing the size of the particle. The colloidal particles, typically

made from magnetite (Fe3O4), are coated with surfactants to avoid their

agglomeration under Vander Waals attraction forces and dipole-dipole interaction

among them. Thb presence of surfactant helps to maintain proper spacing between the

particles to provide c.olloidal stability.[4,5] .

Ferrofluid is one of such smart materials, which are not available Free State in nature,

but are to be synthesized. These fluids have variety of applications in the field of

sciences and engineering like instrumentation, electrical and electronics engineering.

etc., which are being commercialized. Ferrofluids are widely used in sealing of

computer hard disk drives, rotating X-ray tubes, rotating shafts rods and sink-float

systems for separation of materials. These are used as lubricants in bearing and

dumpers. Also Ferrofluids are used as heat controller in electric motors and hi-fi

speaker systems without the need of change in their geometrical shape Hathway [6].

Ferrofluids are being greatly used in many magnetic fluid based scientific devices like

sensor,- densimeters, .accelerometer, pressure transducers etc., also in actuating

mechanics like electromechanical converters and energy converter Raj and

Moskowitz [7]. In field of biomedicine also, they have been found very useful. These

Ll
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can be used to deliver certain drugs to a certain area of human blood. There is also an

idea to use ferrofluids for cancer treating by,heating the tumor soaked in ferrofluids

by means of an altemating magnetic fields is the prospect of influencing flow by the

magnetic field and vice-versa [8,9]. One special application of ferrofluids is their use

as magnetic ink for high-speed, inexpensive and silent printers Maruno et al. [10]

1.10 Differentiai Quadrature Method.

The method of DQ is based on the idea that the partial derivative of a function with

respect to a space variable at a given discrete point can be expressed as a weighted

linear sum of the function values at all discrete points in the domain of that variable.

Let us take the first derivative of a one-dimensional 0-D) function u(x, t) as an

example, the higher.order partial derivatives will have essentially same formation. A

DQ approximation of the first derivative of the furiction u(x, t) atthe ih discrete point

on a grid is given by

N

u,(x,,t)=lcoru(x,,t) for i = 1,2,...,N ,

i=t (1.4)

Where u,(x,,t)) is the first derivative of u(x, t\ with respect to .r at x.,l/ is the

number of discrete grids cr(') are the weighting coefficients for the first derivative

approximation. As known, the most important part of the DQ method is to determine

the weighting coefficients cr(r). Two approaches have been used in the method of

DQ.



[.10.1 Approach I

The first one is to let equation ( I .4) be exact for all polynomials of degree less than or

equal to

(N-l), g(x) : xr,k= 0,1,...,i/,

Substituting this set of polynomials into equation(1.4), we have

- b,r-' for & = 0,1,...,N-l and i = 1,2,...,N ,Z'r*l
j=l

0.s)

0.6)

I
.t
t:''

Once the grid (i.e x,) are given, this relationship leads to a set of NxN linear

algebraic equations. This set of equations has a unique solution since its matrix is of

vandermonde form. Unfortunately, it has been found that this set of equations become

ill-conditioned and it is diflicult to be solved when N is large.

In order to quantify this singularity, weighting coefficients have been calculated for

equally space grids based on Equation (1.6) for various number of grid points. From

the computation, it is found that the maximum number of grid point is 22. Once the

grid number is greater then 22, the set of linear algebraic equations become singular

and cannot be solved. The computed weighted coefficients are also compared with the

accurate coefficients obtained from the generalized DQ method to be introduced later,

it is found thatthe results from Equation (1.6) have some elrors when grid number is

more than 20. Therefore, the maximum number of grid points is practically 20 for

equally spaced grids if this method is used for determining the weighting coefficients.

13



In addition, we have to solve a set of NxN linear equations for every each order of

derivatives in the governing equations.

L.10.2 Approach 2

The other approach to determine the weighting coefficients is similar to the first one

with an exception that a different set of test functions g(x) is chosen for satisfying

Equation (1.4) exactly as

g(x) = L*(x\ 
for j:1,2,...,N,

(x-x,)Lr @,)

-(r) - 
Lr(*,)

c""j= t;ffi)fori* 
j,

c(D,, = =, 
-_r*, ,, for i = ,1," Zx,(x, -l)

0.7)

where N is the number of the grid points. L(x) is the N'h order Legendre

polynomiat and I'(x) the first derivative of Z'(x).

By choosing x, to be the roots of the shifted Legendre polynomial and substituting

equation (1.7) into Equation (1.4), Bellman et al. [11] obtained a direct simple

algebraic expression for the weighting coefficients c(r), ,

(1.8)

(l.e)

fot i,i =1,2,...N .

It is obvious that once the number of grids N is specified, the roots of the shifted

Legendre polynomidil are given, thus the distribution of the grid points is fixed no

matter what physicai problems are considered. This imposes a major restriction on the

!t



applications of this method to problems in structural analysis, since all sorts of

boundary conditions could appear and different mesh grids may be needed for

different boundary conditions and different structure geometry in practice.

From the above discussion, some deficiencies are found in the originally proposed

DQ. These deficiencies impose some restrictions on this method to structural analysis

problems. This is probably one of the main reasons that the method of DQ is not

widely used in structural analysis. In order to overcome such deficiencies, a GDQ will

be introduced and applied to solve some problems in structural analysis. The ease of

use and the accuracy of the GDQ will be demon- strated through the numerical

examples.

1.11 Generalized Differential Quadrature

As discussed in section 1.10, two approaches have been adopted for determining the

weightingcoefficients by Belman el al. Il]. Both the method needs some attention.

The first one restricts small number of the grids to be meshed besides the need to

solve sets of linear equations. The second limits the distribution of the grid points

which is critical to structural analysis. To remedy these deficiencies Shu and Richard.

[13] gave a good method to determine the weighting coefficients so that the method

has no limitation on the choice of grid meshes and still gives an algebraic expression

for partial differential equation. In order to find a simple algebraic expression for

calculating the weighting coefficients without restricting the choice of grid meshes, let

us choose the Lagrange interpolated polynomial as the set of test functions g(x)

instead of using the power polynomials or the Legendre polynomials.

15



M(x)
g'(x) : ffi for i = l'2' "'' N'

(1. l0)

)

where

lY

M(x)- fl(x-x,),
j=r (l.r l)

Ii

and MQ) (x) is the first derivative of M(x) defined as,

Mo(*,)= If (x,-x,),
i=r,ili e.lz)

and N is the number of grid points.

For simplicity, we set

M(x) = N(x,x,Xx -x,) i =1,2,...N , 0.13)

with

N(x,,x,)= MQ)(x,)6,i

Where d, is the Kronecker operator.

Thus we have

t tft) (*) - NG) (x,xr)(x- xr)+/rJy'(o-')(x,xr) for k =1,2,...,N -1, (1.14)

where Uc)(*) and N(t)(x,xr) indicate the k'h order derivative of M(x) and

N(x,x,). Substituting Equation (1.10) into (1.4) yields

16



tQ)u -
MQ)(*,)

7x,-x,)Mo(x,)
fori+j,

0.15)

c('),,=ffi fori=i,
(1.16)

for i, j =1,2,...,N .

Equation (1.15), (1.16) is a simple expression for computing c(r), without any

restriction on the choice of the co-ordinates of grid points x, . It is obvious that once

the grids (x,) are given, Mo@) is very ruJy to be obtained from Equation (1.12).

Hence, c('), can be easily calculated for i *7. The calculation lf ,t",, is based on

the calculation of the second derivative of M(x) which is more difficult to obtain.

Instead of using Equation (1.15), a more convenientrelationship can be obtained and

used for calculating c('),,. It can be shown by using Taylor series expansion that the

following relationship exists for c('),

= 0 for i =1,2,...,N ,

Thus, from Equation(l .17), the coefficient c(r),,

That is

(1.17)

can be calculated from c(), i + i .

N

cQ),, = - Z r"', for i = 1,2,...,N,
j=l'i*i

0.18)

The weighting coefficients for the second and the higher-order derivatives can be

similarly obtained. Let us consider the discretization of m'h order derivative of u(x,t) ,

the following DQ approximation is assumed

I,"',
j=l

L7



,,u(x,,t) for f = 1,2,...,N ,

Again, using Lagrange interpolated polynomials as test functions, an

recurrence relationship will be found for the m'h ordet weighting coefficients

i/
u@\,(x,,t) =lc{^t

j=r (l.le)

amazing

,t^' , .

"'^) 
ii

Where c(.), is the weighting coefficients for the m'h order derivative.

The calculation of c@\,, can be obtained from the relationship similar to Equation

(1 .1 8)

c('),, for i =1,2r.,,N ,

(n-l) \

-t' 
'ti 

I for i * i, m=2,3,...,N -1, i,i =1,2,...,N
x,-xj ) (t.ZO)

= *(,,,-,,,,,,

,(t),,

/v__sL
j=t,jri (1.21)

Therefore, Equations (1.20) and (1.21) together with equations (l'15) and (1'18) give

a convenient and general form for determining the weighting coefficients for the first

through (N - 1)" order derivatives. There are no restrictions on the co-ordinates of the

chosen grid points. There is no need to solve for the weighting coefficients from a set

of algebraic equations which could be ill-conditioned when the number of grids is

large. Furthermore, this set of expressions for the determination of the weighting

coefficients is so compact and simple and is very easy to be implemented in

formulating and programming because of the recurrence feature. All these features

give a great convenience to this GDQ for solving practical problems in structural

analysis. Thus, it is of great potential to be used in structural analysis.

18



Extension of the method to two-dimensional (2- D) problems is straightforward.

Each dimension can be simply treated individually as a (l-D) case. Assuming that

there are N, gid points in the x -direction x1s...sxy,, and N, grid points in the y -

direction !1,...,!N, .The n'h orderpartialderivative of u(x,y) withrespectto x and

the m'h order partial derivative of u(x,y) with respect to y at x;,!i can be

discretized as

&
uo),(x,, /.,) = \cQ),ru(x r, ! 1), n = 1,..., N, -1,

t=l (1.22)

ieu(xi, /*), m =1,..., N r'1,
(r.23)

As usual, this GDQ method can be used in structural analysis for solving both

ordinary differential equations and partial differential equations. The application of

this method. for static problems will lead to a set of algebraic equations with the

function values at the grid points as unknowns. While the application to time-

dependent dynamic problems will result in a set of ordinary differential equations

with the time-dependent function values at the grid points as unknowns. The time-

dependent ordinary differential equations can then be solved by existing integration

scheme. Finally, once the function values at all grids are obtained, it is very easy to

determine the function values in the overall domain in terms of polynomial

approximation, that is

Ny

u@) ,(x,,!1) =lc@)
h=l

Ii

N, N,

u(x, y) = ZZu@,, f ,)r,(x) s,(t),
i=l j=l (t.24)
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where 4(x) and sr(/) are the Lagrange interpolated polynomials along the x - md y -

direction, respectively.
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Chapter 2

Numerical Solution of Ferro hydrodynamic flow

Equation

In this chapter, numerical solution of the flow problem of a saturated ferrofluid along

a wall is examined. The Generalized Differential Quadrature Method (GDQ) is

employed for numerical simulations. The temperature distribution drops linearly

versus distance from leading edge under the influence of transverse magnetic field'

The effect of sundry parameter on the velocity, temperature, skin friction coefficient

and Nusselt number are depicted through graphs, tables and discussed in detail'

2.1 Mathematical Formulation

The flow problem is modeled using continuity, momentum and energy equation as

Joseph L. Necringer [17]. consider a 2-D flat plate flow problem. The pair of line

currents perpendicular to and directed out of the flow plane generates the field' The

wall temperature is (: rrQ-xll) where / is plate length. The selection.of a linear

variation of the wall temperature will be visible with distance from the front edge will

be visible.

The magnetic scalar potential d(H =-vo at any point (x,y) and the coffesponding

field components are
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o = -,!rl,^-' (+) *,- -' (#)],

u __00 __tol y+d - y-d 
1"x - ax 2rlx' +(y+d)2 ' x2 +(y-d)2 )'

,--_00-lo[ , * , -l

"Y - il Znlx'? +(y-d)'' x' +(y+$'z )'

xrodt=-4=-to[-zxo+il -* zx(y-il |rrrsvEz--T--Gl@*Y@r

a'd I^ | (y-d)'-x' (y+d)'-xz 1a*ry=-Cl@-y.o-frf

For boundary layer region, and for distance from the large front edge equating to the

distance of the line source from the plate, i.e. xD d ,

(vH,) - -Io 

"
tt x'

Using above stated relation for the horizontal"magnetic"force, the solution will be

suitable only for xl d .

The effect of the magnetic field on the flow is limited to a thin region close to

the wall where the fluid temperature 7 is practical different from its free

stream Curie temperature T <T0, the magneto-thermo mechanical interaction can be

narrated using boundary layer theory.

22
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From boundary layer theory, the continuity, momentum and energy equations

become,

0u 0u

-+-.0x Ay

"*.,X=-"?f,,r,-D+*"#,

(2.1)

(2.2)

(2.3)

a2T "l au ar1
arf 

=il" **" ur)'

where in the energy equation ignoring the source terms in parallel to the

conduction and convection terms. For obtaining a solution of the equations

(2.1),(2.2), and (2.3) with corresponding boundary conditions

: aty=Q, tt =U=0; T =Te(l-x I l),

at 5-co, tt =tto; T =Te,

For obtaining the similar solution, Firstly introducing the new

x and 17 , defined by

(2.4)

independent variables

(2.s)

and then introducing the non dimensional stream function and telnperature functions

f(rD and SOi defined through the non dimensional stream function and

temperature functions ty and Z defined by

1
y, =(vuox)z .f (q) ,

x = x,u =(?*), , ,

r =refr-f 
"<zr], (2.6)
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Using the transformation equations (2.5) and (2.6) in (2.2) and (2.3) and boundary

conditions equation (2.a) and remembering that

I

,=X=uor,(q);u=-*=(+) lry-ry), e7)

Equation (2.2) and (2.3) and boundary conditions equation (2.4) becomes

f'+S-rs=0,

r, *pr{+- I,s}=0, 
e.s)

And the corresponding B.C's are

ot | =0,f = f' =[ig =1,

ot q=a,f'=l;g=0. (2.10)

where the Ferrohydrodynamic interaction parameter

- - Io4offi,
r - rpluo' '

(2.8)

2.2 Solution of the Problem

Assuming that the number of grid points is .iirI, and applying the Generalized

Differential Quadrature approximation to equations (2.8) ard Q9) at each isolated

point on the grid, We get
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* f,Lr"'uf,
Z"tt'f' *-- - Tgi =o for i :l'Z'"'N
j=r

L""',g,.r,{+-[i,"',,lr,]= o ror i = 1,2,...,N
A lz \r=t ) )

and boundary conditions at each isolated point on the grid are

N

at q:0, f, =2""' r, f, = 0, g, = I
j=r

/V

at q=@, Zt"' r,.f, = 1, 8n = 0
j=l

(2.1l)

(2.12)

(2.13)

(2.14)

The set of equations (2.11)-(2.14) is superfluous because there are five boundary

condition in (2.13) and(2.A) plus N equations in (2.11) and (2.12). In order to

remove this difficulty, we just drop the equations for i : 1,2,(N -l) and N in equation

(2.11) and for f = l,(N-l) and N in (2.12). Thus

(2.1s)

(2.16)

By expanding Equations (2.15) and (2.16) for i = 3,4,...,N -l and for i:2,3,...,N -l
:r':

respectively. For i =3,4,5, Equation (2.15) takes the form

,(') rrf, t r@ rrf, * "(t) rr.f, 
* r(') rn.fo + cQ) rr7, +

, ( c@ r rf, + c@ rrf, + c@ r, f, + c@ ro fn + c@ r, frl - r", =,"[ z ) ''
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(2.17)

(2.18)

(2.re)

(2.20)

(2.21)

(2.22)

(2.23)

of linear

From boundary conditions (2.13) and(2.14) it is clear thatfr= 8N = 0. From equation

(2.14) expanding boundary condition implies that

""'r,f, 
* 

"t" 
r,f, * ""'r.ft 

* 
""'rofo 

+ co) r,7 - |

After eliminating f, and g, from above equations the remaining set

equations are

(cQ\ r, + frc"' rr) fr* ("t"r, + .frr('\ rr) fr* ("t'),o + 7c@ ro) 7o +

(c@ r, + frc"'rr) .f, = -T gs

(2.24)



ffi

("," or+ .fo"@ or).fr*(rt"o, + .forQ) or)fr*(rt"* + 1oc@ *)fo+

(c@ o, + foc"' or).f, = -/ g t

(cG),, + frc"' rr) fr* (rt"r, + .frr(4,r) .fr* (rt"ro + 1rc@,o) f o +

(c@ r, + frc"'u) f, = -Tgs

"(') 
rrf, * "(') rr.f, 

* r(\ rofo + co rrT =1

{,,',,, 
.r,(+ +)}', *t,"',, .r,(+ -+)).r,.

{",',,, 
.r,(+ -+)}" *{""',n ..,(+-?)}" =,

t",',,, 
.r,(+ -+)) 

" 
* 

{""',, 
.r,(+ - +)}r,.

{",',,, 
.r,(+ - +)} r,* 

t,"',0 
.r,(+ -;)} 

" 
='

{",,,,, 
.r,(+ +)}r, *{,,',,, .r,(+ -+)}r,.

{,,',,, 
.rr(+ -+)}" *{,"',0 .r,(+-;)}" ='

{""'0, 
.r,(+ -+)} 

" 
* 
{,"'' 

."(+ - +)l r,.

{,"'0, 
.r,(+ -+)}" *{,"'on .,,(+---)}" ='

(2.2s)

(2.26)

(2.27)

(2.28)

(2.2e)

Q.30)

(2.3r)

with Pr:10. The combination of (2.24)and(2.31) with the.help of boundary

conditions (2.13) and (2.14) gives N equations with N unknown function values

fr,-fr,...,.f* and E'g2,"',gN for the interaction parametety =0'0'4' The stream

function f(rD andheattransfer soD areobtainedbysolvingthesesetof algebraic

equations. It is important to point out that the handling of boundary conditions here is

diverse from that applied in structural problem using the original Differential



Quadrature method. The values of velocity and heat transfer rate are listed below rn

Table. I for y = 0,0.4 and Pr:10.

--]
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Table. I values of velocity and heat transfer for y = 0,0'4and Pr = l0 '

2.3 Results and discussion

The numerical results are obtained using the generalized differential quadrature

method (GDQ) by taking N:20 grid points. The set of algebraic equations and B.C's

are solved with the help of Mathematica. In Table. 2 dimensionless wall skin friction

coefficients, f'(O) are listed as function of 7. Also listed as function of y atethe

ratios of shear stress, r lro with and without the magnetic interaction. These are also

plotted in Fig 2.3.Itis observed that the increase of these ratios with increase in 7 is

/=0 T =0.4

.f; 8i f; 8i

/'(0.05) = -7.?06 x 1O-Lz g(0.05) = r /'(0.05) = -2.L90 x L,-rz 9(0.05) = r

/'(0.10) - 0.053 g(0.10) = 0.909 f'(0.10) = 0.048 gr(0.10) = 0.91

f'(0.15) = 0.107 9(0.15) = 0.819 f'(0.15) = 0.098 9(0.15) = 0.82

f'(0.20): 0.161 g(0.20) - 0.732 f '(0.20) = 0.148 g(0.20) = 0.73

f'(0.2s) - 0.2L4 g(0.25) = 0.649 f '(0.25) = 0.200 g(0.25) = 0.65

f '(0.30) = 0.268 s(0'30) = 0.570 /'(0.30) = 0.252 ,gr(0.30) = 0.57

F'(0.35) = 0.322 .q(0.35) = 0.496 /(0.35) = 0.305 g/(0.35) = 0.50

f '(0.40) : 0.375 gr(0.a0) = 0.4?7 /'(0.40) = 0.358 ,gr(0.a0) = 0.43

/'(0.45) = 0.42e g/(0.a5) = 0.364 f '(0.45) = 0.4L1 g9.a, = o'37

/'(0.50) = 0.482 .9(0.50) = 0.306 /'(0.50) = 0.465 .s/(0.50) = 0.31

/'(0.s5) = 0.535 gr(0.55) = 0.255 /'(0.55) = 0.519 sr(0.5s) - 0.26

/'(0.60) = 0.588 .q(0.60) - 0.20e /'(0.60) - 0.573 .9/(0.60) = 0.2\

F'(0.6s) - 0.647 g(0.65) = 0.168 /(0.65) = 0.6?8 s(0.65) = 0.17

f '(0.70) = 0.6e3 9(0.70) = 0.132 f '(0.70) = 0.682 9(0.70) = 0.13

f'(0.75) = 0.746 9(0.75) = 0.101 f'(0.75) - 0.736 g(0.75) = 0.L0

/'(0.80) - 0.7e7 9(0.80) :0.074 /(0.80) = 0.78e .q(0.80) = 0.07

/'(0.85) = 0.849 .9r(0.85) = 0.051 /'(0.85) = 0.843 9(0.85) = 0.05

f '(0.90) = 0.900 .q(0.90) = 0.031 /(0.90) = 0.895 ,g/(0.90) = 0.03

/'(0.e5) = 0.950 g(0.95) = 0.014 /'(0.95) = 0.948 ,9(0.95) = 0.01

f'(L):t 9(1) = o f'(\)=7 9(1) = 0
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lightly non-linear with the decrease in heat transfer, again covering noticeably

decrease in skin friction.

Table.2 Dimensionless wall skin friction f'(Q)for several values of 7 '

the

r .f"(0)
Prl0

f"(0)
Pr5

f"(0)
Pr0

T

to

Prl0

T

To

Pr:5

T

to

Pr:0

0 t.02LL6 L.OZLL6 L.O?LL6 1.00000 1.00000 1.00000

0.0s L.00796 1.00657 1.00439 0.98707 0.98571 0.983s7

0.10 0.99474 0.99197 0.9875L o.974L2 o.97t4L 0.967t4

0.15 0.9815 0.97734 0.97084 0.96116 0.95708 0.95072

0.20 0.96822 0.96269 0.95406 0.94815 0.94274 0.93429

0.25 0.95492 0.94802 0.93729 0.93513 0.92837 0.91785

0.30 0.94L6 0.93333 0.92051 0.92208 0.91398 0.90143

0.35 0.92824 0.91861 0.90374 0.90900 0.89957 0.88501

0.40 0.91486 0.9038 0.88696 0.89590 0.88507 0.85858

0.5

Lr

0.4

0.3

0.0

0.2

0.1

0.s 1.il0.80.6$.? s.4

T

Impact of 7 on stream function f (ry).Figure 2.1
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Figure 2.3 Impact of Pr on Skin friction coefficient for various valued of 7.



ChaPter 3

Numerical solution of magnetic fluid flow and heat

transfer in a channel with a stretching wall

In this chapter, we analyze the flow and heat transfer characteristics of a magnetic

fluid in a parallel plate channel with a stretching wall. The flow equation for viscous

Newtonian magnetic fluid are modeled with t'wo point magnetic dipole' The partial

differential equations are reduced to ordinary differential equation using similarity I

transform. Generalized Differential Quadrature method (GDQ) is used to obtain

numerical result of the governing nonlinear differential equation. The obtain results 
I

are presented through graph for several set of the parameters, and the salient features 
i

of the solution are analYzed.

3.1 MathematicalFormulation

Let us consider the steady laminar flow of an incompressible fluid in a parallel plate

channel bounded by the planes !=!a' The steady (2-D) boundary layer equation for

flow and energy equation in usual notation are

Au Au O'uu7'*v-=TV,dx oY oY (3.1)

0u 0u

-+- = u.
Ax Ay e.2)
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Where (z,v) is the fluid velocity component along x andy-directions' Z(x,y) is the

temperature at any point and K is the thermal diffusivity of the fluid. By considering

the flow is to be symmetric about the line .y = 0 of the channel' odr main attention for

the flow in the region 0 <.y < a onlY.

The corresponding B.C's are

ar ar --a2TU_+V_= K_,Ax Ay Ay'

u=bx,v =0 aty = o,

!=o,u=o atJ,'=0,
dy

{=oatq=Q,
oy

T =\ at t7:a,

Where f isaconstant.

Equations (3.1)'and (3.2) declare a self similar solution of the form

u =bxf'(ry),v = -abf (4),, =I,

by introducing non dimensional variables as

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

!,n=L,u*=4,u*- Y-,e=+
aaabab'T-

with these non dimensional variables, Equation (3.8) can be written as



u* = x* f' (rl),t, = -f' (4),

It is Clear that z and v satisff the continuity Equation(3.2). Substituting these new

variable in F4uation(3.1),(3.2) and (3.3), we have

(3.10)

With the use of transformation(3.S)-(3.10) the boundary condition (3'4)-(3'7)

becomes

f +.ff'-A-fO=0,

0'+H f0=O,

f (tD =0 at q4,

f'Qi=l,f(t)=0 at q:l'

e QD=$ at 7 =9,

0(q)=l at q =1,

where P, = i is a Prandtl number.
p

(3.1D

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

3.2 Solution of the Problem

Assuming that the number of grid points is /v, and applyng the Generalized

differential Quadrature (CDQ) approximation to equations (3'll) and (3'12) at each

discrete point on the grid, We have

fori=1r2,...N,
(3.r7)

L""'r?, +Pr{f,O)=o for i = 1,2,...,N ,

j=l (3.18)
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And boundary conditions

at

at

4=0,.fr=0,
iv

q =l,Zc$ tlfl =l,fy =0 ,
,=l

JV

2r"'ro, +Prlf,o,)=o for i = 2,3,"',N -l
j=l

and

(3.1e)

(3.22)

,v

at tl=0,lc0tra,=0,
,=l

d 4 =lrfln =1,

i,r'r,r, 
+ 7f;c,\ yf, -(Zo',r,\ -*,=o

(3.20)

The set of Equations (3.17)-(3.20) is superfluous because there are five boundary

condition in (3.19) and (3.20) plus l[ Equations in (3.17) and (3.18). In order to

remove this diffrculty, we simply drop the Equations for i=1,2, andN in Equation

(3.17) and for i = l, and il in (3.18). Thus

for i =3,4,...,(N-l) (3.21)

Wittr

pr=0.02 ardT=2,3,4, The combination of (3.21) and3.zz) with the help of

boundary conditions (3.19) and (3.20) gives/Vequations with ilunknown function

valuesf1,fz,..u.f*nd 01,02,...,0N. fQD nd o(ril are obtained by solving these

algebraic equations given in Q.2l) md (3.22).The values of velocity and heat transfer

rate arc lisrcd below in Table. 3 for 7 =2,3 aurdH'
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Table.3 Values of velocity and heat transfer for y - 2,3 and Pr:0.

3.3 Results and discussion

The numerical results are obtained using the generalized differential quadrature

method (GDQ) by taking N=20 grid points. By expanding Equations (3.21) and (3'22)

w.r.t boundary conditions given in (3.19) and (3.20), l8 algebraic equations with l8

unknowns i.e. .fr,.f,fo,...f* are obtained. The set of algebraic equations and

boundary conditions are solved with the help of Mathematica. Table. 4 and Table. 5

,7, ,i,,i .

/=2 /=3
.fI 8, .f; o6i

,f'{0.0S1=-0.601 .9 (0.05) = 0.99820 /'(0.05) =-0.445 g(0.05) = 0.9982

/'(o.lo) =-0.575 .q(0.10) = 0.99829 ,f'{0. to;=-0.450 s(0.10) - 0.99823

,f'(0. t 5):-0.543 .9(0.1s) - 0.99838 ,f'(0. t 5) :- 0.447 .q(0.1s) -- 0.99827

f'(0.291=-0.505 g (0.20) = 0.99848 .f'{0.201:-0.434 g(0.20) = 0.99831

f'(0.25)=-0.460 g (0.25) = 0.99857 f'(0.25):-0.413 g (0.25) = 0.99836

/'(0.30):-0.408 g (0.30) = 0.99867 /'(0.30) =-0.383 g (0.30) = 0.99841

f'(0.35)=-0.350 .q(0.35) = 0.99876 f'(0.35)=-0.344 .qr(0.35) = 0.99846

f'(0.40):-0.286 .9 (0.a0) = 0.99886 .f'(0.+91=-0.296 g(0.40) = 0.99853

f'(0.451:-0.2L6 s (0.40) : 0.99895 f'(0.45)=-0.239 g (0.40) = 0.99860

/'(0.50):-0.139 g (0.50) = 0.99905 /'(0.50):-0.173 g (0.s0) = 0.99868

f'(0.55)=-0.055 g (0.55) = 0.99914 /'(0.55) =-0.098 .9 (0.55) = 0.99877

/'(0.60) =0.034 .q (0.60) = 0.99924 "f'(0.60) 
=-0.014 g (0.60) = 0.99887

f'(0.65)=0.130 .9(0.65) - 0.9e933 f'(0.65):0.078 .9 (0.65) = 0.99898

f'(0.70)=0.233 g (0.70) = 0.99943 /'(0.70)=0.180 g(0.70) = 0.99910

f'(0.75):0.343 g (0.75) = 0.99952 f'(0.75)=0.292 s(0.75) = 0'99923

/'(0.80)=0.459 g (0.80) = 0.99962 /'(0.80)=0.414 .gr(0.80) = 0.99937

/'(0.85) =0.583 g (0.85) = 0.99977 /'(0.85) =0.545 g (0.8s) = 0.99952

f'(0.90)=0.774 g (0.90) = 0.99981 "f'(O.SO1:g.5,ga .9 (0.90) = 0.99967

/'(0.95)=0.853 g (0.95) = 0.99990 f'(0.95)=0.837 g (0.95) = 0.99983

f'(t):7 u(7) :1 .f'(r):L 9(7) = 1



lists the non dimensional wall skin friction f'(l) and heat transfer coefficients g'(0)

as function of 7. Also listed as function of y are the ratios of shear stress and heat

transfer, r I ro and Q I g, with and without the magnetic interaction. These ratios are

also plotted in Fig 3.4 and Fig 3.5. It is observed that the increase of these ratios with

increase in 7 is lightly non-linear with the reduction in heat transfer, again covering

noticeably the decrease in skin friction.

Table. 4 dimensionless wall skin friction f '(l) tor different values of 7 '

Table.5 dimensionless heat transfer g'(0) for different values of Pr'

r f'(r)
Pr=0

.f'(t)
Pr=5

f'(l)
Pr=10

T

Tr

Pr=0

T

Tl

Pr=5

T
I

Tl

Pr=10 r

0 2.22352 2.22352 2.22352 1.00000 1.00000 1.00000

0.0s 2.23943 2.23842 2.23757 1.00715 1.00670 1.00631

0.10 2.25535 2.25332 2.25164 1.01431 1.01340 t.ot264

0.15 2.27L27 2.26824 2.26573 1.02L47 1.02011 1.01898

0.20 2.28719 2.28317 2.27982 1.02863 L.02682 L.02532

0.25 2.303L7 2.298L0 2.29393 1.03579 1.03354 1.03166

0.30 2.37904 2.31305 2.30804 1.04295 1.04025 1.03801

0.35 2.33498 2.32800 2.322L8 1.05012 1.04698 1.04437

0.40 2.35091 2..34297 2.33632 L.05729 \.05372 1.05073

Pr g'(0)

/=0
g'(0)

T =0.4

g'(0)

/ =08
o
Qo

7=0

a
Qo

T =0'4

o
Qo

/ =0.8

0 -0.11953 -0.11953 -0.11953 1.00000 1.00000 1.00000

0.05 -0.L2346 -0.L2330 -0.L23t5 1.03287 1.03154 1.03028

0.10 -0.72738 -0.72707 -0.12676 1.06557 1.06308 1.06048

0.15 -0.73L29 -0.13083 -0.13037 1.09838 1.09453 1.09068

0.20 -0.13520 -0.13459 -0.t3397 1.13109 1.12599 1.12080

0.25 -0.13910 -0.13833 -0.13757 1.L6372 L.L5728 1.15092

0.30 -0.14299 -0.74207 -0.L4LL6 1.19626 1.18857 1.18095

0.35 -0.14687 -0.14581 -0.74474 L.22872 1.2L986 L.21090

0.40 -0.15075 -0.14954 -0.14832 1.26118 1.25106 1.24085
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Chapter 4

Conclusion

In this thesis, a numerical scheme namely Generalized Differential Quadrature

Matheod (GDQ) is employed to solve problem generated due to flow of magnetic

fluid. Two problems are discussed. In Chapter 2, flow of magnetic fluid with two

dipoles 'd' distance appart over flate plate is resolved using GDQ method and the

result of Necringer [15] are replicated. Chapter three, discussed the flow of magnetic

fluid due to point dipole in a channel with wall is strechted propotional to length x.

Due to symmetry half channel is considered and problem is solved using GDQ

method. The graphical results are displayed and discussed. Main findings of this

research are as follows:

The velocity to the channel wall decreases monotonically as the magnetic field

force increases.

In the action of a sufficient strong megantic freld, the temperature decreases

with an increase in the prandtl number.

It is remarkable to notice that, when at q > 0.3 velocity decreases with the

variation of 7 which is close to the bounday layer wall and opposite trend is

occur for 17 > 0.3.

It is aslo observe that velocity profile asymptotically approches to one that is

satisff the boundary conditon.

The skin friction coefficient increases by increasing ferrohydrodynamic

interaction parameter 7 as well as Prandtl number Pr'

By boosting Prandtl number Pr the Nusselt number boost up but the reverse

behaviour is seen in case of ferrohydrodynamic interaction parameter y .
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