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Preface

The study of non-Newtonian �uids continues to engage scientists due to their complex

�ow characteristics and importance across various engineering and geophysical applications.

Second-grade �uids, in particular, incorporate both viscous and elastic responses, making them

well-suited for modeling viscoelastic behaviors beyond the reach of Newtonian models.

Corner �ow problems are known for their complexity, primarily due to the sharp boundary

angles that create stress singularities and secondary �ow patterns. The addition of inertia and

leakage at corner, increases this complexity and calls for more re�ned analytical and numerical

method.

Di¤erent researchers like Taylor [1], Hancock et al. [2] and Riedler et al. [3] have examined

scraping �ow problems for creeping and inertial �ows of a Newtonian �uid between two inter-

secting planes. Their study showed that the �ow was generated due to the movement of one

plate near a corner and regular perturbation technique was used to observe the leakage e¤ect

on �ow and expressions for normal and tangential stresses to the plate. Mansutti et al. [4] have

con�gured the non-inertial �ow of a shear thinning �uid between intersecting planes and used

multi-parameter continuation technique to analyze both converging and diverging �ow. Huang

et al. [5] calculated the �ow of Oldroyd-B �uid between two intersecting plate, one of which was

�xed and the other one was moving and observed the �ow pattern with the help of streamlines.

Hills et al. [6] examined the corner �ow induced by the rotation of plate with �xed angle and

determined the �ow in three di¤erent geometries. Mahmood [7] has compared the inertial and

non-inertial �ow by regular perturbation technique. Cha¢n et al. [8] analyzed Taylor�s paint

scraping problem for Carreau �uid and reveals the perturbation results for dynamics of the

�uid near and far from the corner.

In this research, steady and non-creeping �ow of second grade �uid with leakage at corner is

described which has not been addressed by a single author. The mathematical model represents

the set of non-linear di¤erential equations which are solved by recursive approach introduced

by Langlois [10 � 12]. This study presents the e¤ects of angle of the scraper with the �ow

and emerging parameters on velocity pro�le, stresses and pressure distribution near a corner.

Our results subsume Mahmood et al. [7] results as a special case of Newtonian �uid and

comparison between inertial and non-inertial �ow behavior is also shown through graphical
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results. Recently, researchers have studied the di¤erent �ow problems near a corner with its

applications [13� 18] :

Keeping view of the literature survey, this research is organized in following three chapters.

Chapter one includes the preliminaries, chapter two presents the mathematical modelling of

second grade �uid for creeping �ow near a corner and chapter three examines the inertial and

leakage e¤ects when leakage is present at the apex of two intersecting planes.
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Chapter 1

Preliminaries

This chapter includes the basic concepts and de�nitions of di¤erent types of �ows, �uid prop-

erties, and laws of �uid mechanics.

1.1 Fluid

The �uid is a type of matter which is continuously deformable, and which spontaneously tends

to adopt its shape to its container by occupying all of the space made available to it.

1.2 Fluid Mechanics

Fluid mechanics is a branch of engineering that explores the characteristics and behavior of

�uids and forces acting on them. It is divided into two main sub disciplines �uid statics and

�uid dynamics.

1.3 Types of Flows

Flows can be categorized based on various characteristics:

1.3.1 Laminar vs Turbulent Flow

Laminar �ow refers to a type of �uid �ow where all �uid particles follow a certain path and

move smoothly without crossing each other. On the other hand, turbulent �ow is characterized
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by �uid particles that do not follow a speci�c path and the �uid �ows in an irregular pattern.

1.3.2 Steady vs Unsteady Flow

In steady �ow, �uid properties such as velocity, pressure, and density remain constant over

time and do not change with respect to time i.e. S 6= S (t); while in case of unsteady �ow �uid

properties change with respect to time i.e.S = S (t).

1.3.3 Compressible vs Incompressible Flow

Compressible �ow have a notable change in density with varying pressure, temperature, and

space components. On contrary incompressible �ow have a density that does not change with

respect to space, pressure and temperature.

1.3.4 Creeping vs Non-Creeping Flow

In creeping �ow the viscous forces are dominant over the inertial forces, it is also known as

Stokes �ow, but in non-creeping �ow inertial forces have signi�cant contribution in the �ow

�eld.

1.4 Flow Properties

1.4.1 Density

The density � is de�ned as mass per unit volume at a speci�c pressure and temperature.

Mathematically, it is de�ned as

� =
m

V
; (1.1)

where V denotes the volume and m is mass of �uid.

1.4.2 Pressure

Pressure is the magnitude of force per unit area and mathematically, it is represented as follows:
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p =
jFj

A
: (1.2)

1.4.3 Shear stress

A force per unit area that tends to create deformation in �uid �ow is known as shear stress. It

is denoted by � and mathematically, de�ned as

� =
F

A
: (1.3)

1.5 Inertial and Non Inertial Flow

The term "inertial �ow" refers to a �uid�s motion in which internal friction causes viscous

forces to oppose the �uid�s motion, yet inertial forces, which are connected to the �uid�s mass

and acceleration, are important. On the other hand, "non-inertial �ow" happens when viscous

forces predominate and the �uid moves steadily and smoothly.

1.6 Newtonian Fluids

Newtonian �uids are those which obey Newton�s law of viscosity. Most common �uids such as

water, air, gasoline, glycerine and syrup are Newtonian under normal conditions. Mathemati-

cally, Newtonian �uid hold the following relation:

�xy = �
@u

@y
: (1.4)

The Cauchy stress tensor T satisfy the following relation for Newtonian �uids

T = �pI+ �A1; (1.5)

A1 = gradV + (gradV )
T ; (1.6)

where p is the hydrostatic pressure, I is the unit tensor, � is the dynamic viscosity of the �uid,

V is the velocity of the �uid.and A1 is the �rst Rivlin-Erickson tensor.
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1.7 Non-Newtonian Fluids

A �uid in which the viscosity varies with the applied strain rate is called a non-Newtonian �uid.

As a result, the non-Newtonian �uids may not have well-de�ned viscosity. Mathematically, non-

Newtonian �uid hold following relation:

�xy = �
@u

@y
; (1.7)

where � =
�
@u
@y

�n�1
and n 6= 1.

There are di¤erent types of non-Newtonian �uid.

1.7.1 Dilatant (Shear thickening)

In such type of �uid viscosity is an increasing function of shear stress.

1.7.2 Pseudoplastic (Shear thinning)

In such type of �uid viscosity is constant at low shear rate but decreases at intermediate shear

rate.

1.7.3 Thixotropic

It has time dependent shear thinning property. e.g. gels, clays, and cytoplasm.

1.7.4 Rheopectic

This type of �uid has increasing viscosity with stress over time.

1.7.5 Viscoelastic �uids

This type of �uid formed by viscous and elastic component. In other words it is a mixture of

polymer and solvent. e.g. second grade, FENEP �uid model and Maxwell �uid model.
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1.7.6 Visco-inelastic �uids

It is also known as generalized Newtonian �uids, such type of �uid has shear rate dependent

viscosity. e.g. Carreau, Ellis, Power law and Williamson �uid model.

1.8 Second Grade Fluid

A second-grade �uid is a type of non-Newtonian �uid that exhibits elasticity and common

stress e¤ects. This theoretical model is used in �uid mechanics to analyse materials whose

behavior deviates slightly from that of Newtonian �uids (like water or air), particularly when

memory-e¤ect or slow �ows are present.

In contrast to Newtonian �uids, the stress in a second-grade �uid is dependent on both

acceleration (second derivative of velocity) and strain rate (�rst derivative of velocity) and

satisfy the following Cauchy stress tensor

T = �pI+ S; (1.8)

and

S = �A1 + �1A2 + �2A
2
1; (1.9)

in above equation � is the viscosity coe¢cient and �1, �2 are the second grade �uid parameters,

A1 and A2 are Rivilain Erickson tensor de�ned as follows:

A1 = rV + (rV)
T ; (1.10)

A2 = (V � r)A1 +A1 (rV)+ (rV)
T
A1: (1.11)

The second order �uids are �uids for which the Cauchy stress tensor T is expanded as a

power series in the rate-of-deformation tensor and its derivatives, truncated after second-order

terms."The second-order �uid" is a second-order asymptotic approximation about the state of

the rest of a viscoelastic �uid.

It is possible to think of second-grade �uid models as simpli�ed or idealized versions of more

intricate polymer �uid models. They provide a more straightforward mathematical representa-
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tion of the elastic and normal stress behavior of polymers. Utilized frequently in theoretical and

scholarly research to understand viscoelastic e¤ects without having to solve di¢cult constitutive

equations.

1.8.1 Polymer Fluid

Polymer �uid demonstrates viscoelasticity, shear thickening or shear thinning and normal stress

di¤erences. The behavior of polymer �uids is often modeled with more complex constitutive

models like Oldroyd-B, Maxwell, Giesekus, and FENE-P.

1.9 Types of boundary condition

1.9.1 Slip boundary condition

In slip boundary conditions, there is relative velocity between the surface and �uid. For example

ice skating, the skates slide over the snow with very little friction. This is because a thin layer

of water forms between the skates and the surface, mathematically it is de�ned as follows

@V

@y
= 0: (1.12)

1.9.2 No-slip boundary condition

In no slip boundary conditions the velocity of �uid is supposed to be velocity of surface. For

example when you drive, your tyres grip the road, as tyres are designed to grip the road and

avoid slipping e¤ect.

For a �at wall located at y = 0, and �uid velocity V satisfy the following condition:

V = Vwall on the boundary (1.13)

If the wall is stationary:

V = 0: (1.14)
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1.9.3 Partial-slip boundary condition

In partial slip, both slip and no slip condition occurs between �uid and wall. For example blood

�ow in blood vessel because walls of blood vessels are not perfectly smooth. Mathematically it

is represented as:

V = �
@V

@y
; at y = 0: (1.15)

1.10 Geometrical arrangement of �uid �ow

Numerous geometrical arrangements of �uid �ow are possible, and each has unique physical

properties and uses. The following list of �uid mechanics geometries is frequently used, partic-

ularly for theoretical and experimental analysis. Flow between parallel plates, �ow in a circular

pipe or tube, annular �ow (between two coaxial cylinders), corner or wedge �ow, �ow over a

�at plate, �ow past a cylinder or sphere, channel �ow (rectangular duct), jet and plume �ows,

and open channel �ow.

1.10.1 Corner Flow

The term "Corner Flow" describes the �ow of �uids caused by capillary forces in wedge-shaped

structures, including corners or gradients. This phenomenon is important for a number of

applications, such as spacecraft �uid management, CO2 sequestration, and oil recovery.

1.11 Coordinate systems and their types

A coordinate system is a mathematical framework that uses coordinates to represent a point�s

location in space. In �uid mechanics, physics, and engineering, it aids in the de�nition of

geometry, motion, and �elds (such as pressure or velocity).The main purpose of coordinate

system are used to specify position in (1D, 2D, or 3D).
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1.11.1 Main types of coordinate systems

Cartesian Coordinate System (Rectangular)

This system is used for rectangular or �at geometry and its coordinates de�ne distances along

three perpendicular axes x; y; and z. e.g. a box-shaped room, �ow between two �at plates.

Cylindrical Coordinate System

This system is used for cylindrical symmetry and its coordinates radial distance, angle around

the axis, and distance from the centre axis to the boundary. e.g. whirling machinery and �ow

inside a pipe.

Spherical Coordinate System

This system is used for spherical symmetry and its coordinates de�ne angle about the horizontal

plane, angle from the vertical axis, and distance from the origin to the boundary. e.g. radiation

patterns, gravitational �elds, and �ow around a sphere.

1.12 Non-dimensional Parameters

1.12.1 Reynold�s Number

The Reynold�s number is a dimensionless quantity that is the ratio of inertial to the viscous

forces. It is used in �uid mechanics to predict �ow patterns in di¤erent �uid �ow situations. It

helps to determine whether the �ow is laminar, turbulent, or in transition. Mathematically, it

is de�ned as

Re =
�VL

�
: (1.16)

Where � denotes density, � is dynamic viscosity, V represents velocity of �uid and L is charac-

teristics length.

The Re < 2300 represents the laminar �ow and 2300 < Re < 4000 indicates the transition

from laminar to turbulent �ow but Re > 4000 predict the turbulent �ow.
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1.13 Basic Laws of Fluid

1.13.1 Principle of Conservation of Mass

This law states that mass cannot be created or destroyed during �ow. It remains constant with

respect to all physical changes. Mathematically, it can be de�ned as

@�

@t
+r (� �V) = 0; (1.17)

where � is the density of �uid, t is the time, r is the divergence, V is the velocity vector. For

any incompressible �ow, above equation becomes

r �V = 0: (1.18)

1.13.2 Principle of Conservation of Momentum

The principle states that the total momentum of an isolated system remains constant within

some domain if no external forces act on it. Mathematically, it can be de�ned as

�

�
@

@t
+ (V �r)

�
V +rp� �f =r� : (1.19)

where � is the density of �uid, t is the time, r is the divergence, V is the velocity vector,

p is the pressure, f is the body force term, and � is stress tensor.

1.14 Methodology

The technique which is going to be used in this research is Recursive Langloi�s technique, which

was introduced by W.E.Langlois in 1963. This method will help us to make the non-linear

system into linear system. After linearizing, we will use inverse method to convert the linear

PDE�s into set of ODE�s. In this approach, one can linearize velocity pro�e, shear stress and

pressure with the help of small dimensionless number ". In order to obtain the 1st; 2nd and 3rd
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order solutions for velocity pro�le, shear stress and pressure, we consider following series i.e.

u =
1X

i=1

"iu(i); v =
1X

i=1

"iv(i); p = p(0) +
1X

i=1

"ip(i): (1.20)
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Chapter 2

Creeping �ow of second grade �uid

near a corner

This chapter is the extension of review work of Mehmood et.al.[9] about a creeping �ow of

second grade �uid near a corner. His study investigated the steady state incompressible �ow

near a corner for Newtonian �uid. This chapter extend the idea of Mehmood et.al. for second

grade �uid model. The creeping �ow of second grade �uid model near a corner presents a

system of non-linear partial di¤erential equation. The non-linear system is solved by Langloi�s

recursive approach and inverse method to obtain the approximate results for stream function,

velocity �eld, pressure distribution, and shear stress. The results of mathematical expression

can be visualized by the graphs that are plotted by the Software Mathematica.

16



2.1 Mathematical Modeling

(a)

(b)

Fig.2:(a) The �at plate corner model. (b) Corner �ow geometry.

The creeping �ow of second grade �uid over a moving plate making an angle � with a scraper

is modeled by the corner �ow. The corner �ow is sketched in �gure 2 (b), the �ow is assumed

incompressible, steady state, and two dimensional therefore, following governing equations are
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used.

r:V = 0; (2.1)

� (r:V)V = divT; (2.2)

where Cauchy stress tensor T for second grade �uid Ref.[19] is given as follows.

T = �pI+ S; (2.3)

and

S = �A1 + �1A2 + �2A
2
1: (2.4)

In above equation � is the viscosity coe¢cient and �1, �2 are the second grade �uid parameters.

A1 and A2 are Rivilin Erickson tensor de�ned as follows:

A1 = rV + (rV)
T ; (2.5)

A2 = (V � r)A1 +A1 (rV)+ (rV)
T
A1; (2.6)

where,

V = (u (r; �) ; v (r; �) ; 0) : (2.7)

After using Eq.(2:3)� (2:7), equation of continuity and momentum take the following form

1

r

@ (ru)

@r
+
1

r

@v

@�
= 0; (2.8)

r�component of momentum equation is

0 = �
@p

@r
+
1

r

@

@r
(rSrr) +

1

r

@Sr�
@�

�
S��
r
; (2.9)

��component of momentum equation is

0 = �
1

r

@p

@�
+
1

r2
@

@r

�
r2Sr�

�
+
1

r

@S��
@�

: (2.10)
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The no slip boundary condition is imposed at the moving boundary (� = 0) and is given as

follows

u ="U; v = 0, at � = 0; (2.11)

where U is speed of moving plate.

The �ow is stationary near the scraper (� = �w) and satisfy the following expressions.

u = 0; v = 0; at � = �w: (2.12)

2.2 Methodology

We will employee the Recursive technique [10� 12], which will linearize the velocity pro�le,

pressure, stream function, and shear stress using a small dimensionless number ". This is

achieved by assuming a series solutions in the following form

V (r; �) = "V(1) + "2V(2) + :::; (2.13)

p (r; �) = const+ "p(1) + "2p(2) + :::; (2.14)

 (r; �) = " (1) + "2 (2) + :::; (2.15)

S (r; �) = "S(1) + "2S(2):::: (2.16)

This leads to dynamical equations and boundary conditions for
�
V(i); p(i);  (i);S(i)

�
where i =

1; 2; 3 so that (V;p;  ;S), as given by Eqs.(2:13) � (2:16) ;provides a solution to the equations

of motion (with appropriate boundary conditions) for Rivilin-Erickson �uid, retaining terms

up to third order in ", neglecting all higher-order terms. At each stage of the analysis, the

dynamical equation of system is linear, with the results from the previous stage used explicitly

in the analysis.

Making use of Eq(2:13)�(2:16) ; in Eq(2:8) � (2:10) , one can get the �rst and second-order

problem given as follows:
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2.2.1 First Order Problem and its Solution

The �rst order problem represent the creeping �ow of Newtonian �uid as this system does not

involve second grade parameters.

1

r

@
�
ru(1)

�

@r
+
1

r

@v(1)

@�
= 0; (2.17)

0 = �
@p(1)

@r
+
1

r

@

@r

�
rS(1)rr

�
+
1

r

@S
(1)
r�

@�
�
S
(1)
��

r
; (2.18)

0 = �
1

r

@p(1)

@�
+
1

r2
@

@r

�
r2S

(1)
r�

�
+
1

r

@S
(1)
��

@�
: (2.19)

where, stress tensor are given as follows

S(1)rr = 2�
@u(1)

@r
; (2.20)

S
(1)
r� = S

(1)
�r = �

 
@v(1)

@r
+
1

r

@u(1)

@�
�
v(1)

r

!

; (2.21)

S
(1)
�� = �2�

@u(1)

@r
: (2.22)

To reduce the number of unknown from above equation we introduce stream function  (1) (r; �)

in the following form

u(1) =
1

r

@ (1)

@�
; v(1) = �

@ (1)

@r
: (2.23)

Using above relation in Eq.(2:20)� (2:22), and incorporating the Eq.(2:18)� (2:19) one can get

the following form of equations

0 = �
@p(1)

@r
+
�

r

@

@�
r2 (1); (2.24)

0 = �
1

r

@p(1)

@�
� �

@

@r
r2 (1): (2.25)

After eliminating the pressure gradient from above equation by cross di¤erentiation one can get

the following expression.
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r4 (1) = 0: (2.26)

B.C�s in stream function are given as follows

 (1) = 0;
1

r

@ (1)

@�
= U at � = 0; (2.27)

 (1) = 0;
1

r

@ (1)

@�
= 0 at � = �w: (2.28)

The following solution is assumed as suggested by the Krutchko¤, R. G.[20]

 (1) = Urf1 (�) : (2.29)

Using Eq.(2:29) in Eq.(2:26)� (2:28), one can get the following BVP

f
(iv)
1 (�) + 2f

00

1 (�) + f1 (�) = 0; (2.30)

with B.C�s

f
0

1 (0) = 1; f1 (0) = 0; (2.31)

f
0

1 (�w) = 0; f1 (�w) = 0: (2.32)

The solution of above problem is expressed as follows

f1 (�) = B sin � + C� cos � +D� sin �: (2.33)

where B;C;D are de�ned in Appendix.

After using Eq.(2:29) in stream function, one can get following radial and axial components

of velocity

u(1) =
1

r

@ (1)

@�
= Uf

0

1 (�) ; (2.34)

v(1) = �
@ (1)

@r
= �Uf1 (�) : (2.35)

To �nd the pressure gradient, we require the momentum equation in the following form
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@p(1)

@r
=
�

r

@

@�
r2 (1); (2.36)

@p(1)

@�
= ��r

@

@r
r2 (1): (2.37)

Integrating Eq.(2:36) with respect to r and then di¤erentiating the resulting expression with

respect to �, after comparing the expression with Eq.(2:37), one can get following expression of

pressure for the �rst order

p(1) (r; �) = p0 �
�

r
U
�
f
0

1 + f
000

1

�
: (2.38)

where p0 is constant.

Finally, we obtain tangential and normal stresses in the following form

T
(1)
r� =

�

r
U
�
f1 + f

00

1

�
; (2.39)

T (1)rr = T
(1)
�� = �p

(1): (2.40)

It is noted that pressure, normal and tangential stresses has singularity at r = 0 that can be

removed by introducing the di¤erent boundary conditions.

2.2.2 Second Order Problem and its Solution

Second order problem represents the creeping �ow of second grade �uid also it involves the

parameter of second grade �uid.

The momentum equation for the second order takes the following form

0 = �
@p(2)

@r
+
1

r

@

@r

�
rS(2)rr

�
+
1

r

@S
(2)
r�

@�
�
S
(2)
��

r
; (2.41)

0 = �
1

r

@p(2)

@�
+
1

r2
@

@r

�
r2S

(2)
r�

�
+
1

r

@S
(2)
��

@�
; (2.42)

where stress tensor components of the second order are

S(2)rr = 2�
@u(2)

@r
+
2�1U

2

r2

�
f1 + f

00

1

�2
+
�2U

2

r2

�
f1 + f

00

1

�2
; (2.43)
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S
(2)
r� = S

(2)
�r = �

 
@v(2)

@r
+
1

r

@u(2)

@�
�
v(2)

r

!

�
�1U

2

r2

�
f
0

1f
00

1 + 2f1f
0

1 + f1f
000

1

�
; (2.44)

S
(2)
�� = �2�

@u(2)

@r
+
�2U

2

r2

�
(f1)

2 +
�
f
00

1

�2�
: (2.45)

To reduce the unknown function, introduce the following stream function  (2) (r; �)

u(2) =
1

r

@ (2)

@�
; v(2) = �

@ (2)

@r
: (2.46)

Using stress tensor components and stream function for second order, Eq.(2:41) � (2:42) take

the following form

@p(2)

@r
=

�

r

@

@�
r2 (2) �

�1U
2

r3

�
2 (f1)

2 + 3
�
f
00

1

�2
+ 6f1f

00

1 + 2
�
f
0

1

�2
+ 2f

0

1f
000

1 + f1f
iv
1

�

�
�2U

2

r3

�
2 (f1)

2 + 2
�
f
00

1

�2
+ 2f1f

00

1

�
; (2.47)

1

r

@p(2)

@�
= ��

@

@r
r2 (2) +

�2U
2

r3

�
2f1f

0

1 + 2f
00

1 f
000

1

�
: (2.48)

After eliminating pressure gradient, one can get following system of BVP

�r4 (2) =
1

r4
��
E1 + E3� + E5�

2
�
sin 2� +

�
E2 + E4� + E6�

2
�
cos 2�

�
; (2.49)

and B.C�s in stream function take the following form

 (2) = 0,
1

r

@ (2)

@�
= 0 at � = 0; (2.50)

 (2) = 0,
1

r

@ (2)

@�
= 0 at � = �w: (2.51)

Where constants Ej ; j = 1:::8: are de�ned in Appendix.

To �nd the second order stream function following form of function is assumed

 (2) =
f2 (�)

�
: (2.52)
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Using Eq.(2:52), in Eq.(2:49)�Eq.(2:51) ;following BVP can be obtained

f iv2 + 4f
00

2 =
�
E1 + E3� + E5�

2
�
sin 2� +

�
E2 + E4� + E6�

2
�
cos 2� + E7� + E8; (2.53)

with B.C�s

f2 = 0; f
0

2 = 0 at � = 0; � = �w: (2.54)

The solution of above BVP is mentioned as follows:

f2 (�) = U1 + U2� +
�
U3 + 
1� + 
3�

2 + 
5�
3
�
cos 2� +

�
U4 + 
2� + 
4�

2

+
6�
3
�
sin 2� + 
7�

3 + 
8�
4: (2.55)

where, 
i ; Eiand Uj are de�ned in Appendix. Here, i = 1:::8; j = 1:::4 .

Now, radial and axial velocity with help of:

u(2) =
1

r

@ (2)

@�
=
1

�r
f
0

2; (2.56)

v(2) = �
@ (2)

@r
= 0: (2.57)

To calculate expression of second order pressure, integrating Eq.(2:41) with respect to r and

then di¤erentiating the resulting expression with respect to �, after comparing the expression

with Eq.(2:42), one can get the expression of pressure for the second order as follows

p(2) (r; �) = �
1

2r2
f
000

2 +
U2�2
2r2

�
(f1)

2 +
�
f
00

1

�2�
: (2.58)

Finally, we obtain tangential and normal stresses as follows

T
(2)
r� =

1

r2
f
00

2 �
�1U

2

r2

�
f
0

1f
00

1 + 2f1f
0

1 + f1f
000

1

�
; (2.59)

T (2)rr = �p(2) �
2

r2
f
0

2 +
(2�1 + �2)U

2

r2

�
f1 + f

00

1

�2
; (2.60)
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T
(2)
�� = �p

(2) +
2

r2
f
0

2 +
�2U

2

r2

�
(f1)

2 +
�
f
00

1

�2�
: (2.61)

2.2.3 Third Order Problem and its Solution

The momentum equation for the third order takes the following form

0 = �
@p(3)

@r
+
1

r

@

@r

�
rS(3)rr

�
+
1

r

@S
(3)
r�

@�
�
S
(3)
��

r
; (2.62)

0 = �
1

r

@p(3)

@�
+
1

r2
@

@r

�
r2S

(3)
r�

�
+
1

r

@S
(3)
��

@�
; (2.63)

where stress tensor components of the third order are

S(3)rr = 2�
@u(3)

@r
+
2�1U

�r3

�
3f1f

00

2 + 2f
00

1 f
00

2

�
+
2�2U

�r3

�
f1f

00

2 + f
00

1 f
00

2

�
; (2.64)

S
(3)
r� = S

(3)
�r = �
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+
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r

@u(3)
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�
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�r3
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00

2 + 2f
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0
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2

�
; (2.65)

S
(3)
�� = �2�

@u(3)

@r
+
�1U

�r3

�
�4f

0

1f
0

2 � 2f1f
00

2

�
+
�2U

�r3

�
2f

00

1 f
00

2 + 2f1f
00

2

�
: (2.66)

To reduce the unknown function, introduce the following stream function  (3) (r; �)

u(3) =
1

r

@ (3)

@�
; v(3) = �

@ (3)

@r
: (2.67)

Using stress tensor components and stream function for third order, Eq.(2:62)� (2:63) take the

following form

@p(3)

@r
=

�

r

@

@�
r2 (3) +

�1U

�r3

�
�9f1f

00

2 � 9f
00

1 f
00

2 � 3f
0

1f
000

2 + f
000

1 f
0

2 + 5f
0

1f
0

2 � f1f
iv

2

�

+
�2U

�r3

�
�6f

00

1 f
00

2 � 6f1f
00

2

�
; (2.68)

1

r

@p(3)

@�
= ��

@

@r
r2 (3) +

�1U

�r4

�
�4f

0

1f
00

2 � 5f
00

1 f
0

2 � f1f
0

2 � f1f
000

2
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+
�2U

�r4

�
2f

00

1 f
000

2 + 2f
000

1 f
00

2 + 2f
0

1f
00

2 + 2f1f
000

2

�
: (2.69)
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After eliminating pressure gradient, one can get following system of BVP

�r4 (3) =
�1U

�r5

�
16f

0

1f
00

2 + 10f
00

1 f
0

2 + 3f1f
0

2 + 12f1f
000

2 + 8f
000

1 f
00

2

+12f
00

1 f
000

2 + 4f
0

1f
iv

2 � f
iv

1 f
0

2 + f1f
v

2

� ; (2.70)

and B.C�s in stream function take the following form

 (3) = 0,
1

r

@ (3)

@�
= 0 at � = 0; (2.71)

 (3) = 0,
1

r

@ (3)

@�
= 0 at � = �w: (2.72)

To �nd the third order stream function following form of function is assumed

 (3) =
f3 (�)

�2r
: (2.73)

Using Eq.(2:73), in Eq.(2:70)�Eq.(2:72) ;following BVP can be obtained

f iv3 + 10f
00

3 + 9f3 =
�
M1 +M2� +M3�

2 +M4�
3 +M5�

4
�
cos �

+
�
M6 +M7� +M8�

2 +M9�
3 +M10�

4
�
cos 3�

+
�
M11 +M12� +M13�

2 +M14�
3 +M15�

4
�
cos 2� sin �; (2.74)

with B.C�s

f3 = 0; f
0

3 = 0 at � = 0; � = �w: (2.75)

The solution of above BVP is mentioned as follows:

f3 (�) =
�
Q4 +N1� +N2�

2 +N3�
3 +N4�

4 +N5�
5
�
sin �

+
�
Q2 +N6� +N7�

2 +N8�
3 +N9�

4 +N10�
5
�
sin 3�

+
�
Q3 +N11� +N12�

2 +N13�
3 +N14�

4 +N15�
5
�
cos �

+
�
Q1 +N16� +N17�

2 +N18�
3 +N19�

4 +N20�
5
�
cos 3�: (2.76)

26



where, Nkand Qj are de�ned in Appendix. Here, k = 1:::20; j = 1:::4 .

Now, radial and axial velocity components are :

u(3) =
1

r

@ (3)

@�
=

1

�2r2
f
0

3; (2.77)

v(3) = �
@ (3)

@r
=

1

�2r2
f3: (2.78)

To calculate expression of second order pressure, integrating Eq.(2:68) with respect to r and

then di¤erentiating the resulting expression with respect to �, after comparing the expression

with Eq.(2:69), one can get the expression of pressure for the second order as follows
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: (2.79)

Finally, we obtain tangential and normal stresses as follows
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; (2.80)
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; (2.81)
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: (2.82)

By merging �rst, second and third order solutions, one can get the stream function, velocity

pro�le, pressure distribution and stress components in the following form:

V (r; �) = V(1) +V(2) +V(3);

p (r; �) = const+ p(1) + p(2) + p(3);

 (r; �) =  (1) +  (2) +  (3);

S (r; �) = S(1) + S(2) + S(3):
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Following the recursive approach, and using values from previous sections, one can get

 = Urf1 (�) +
f2 (�)
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; (2.83)
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00
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00
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00
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00
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2.3 Graphs and Discussion

2.3.1 Velocity Field

Figures 2:2(a � c) show the behavior of velocity for the variations of the involved parameters.

It can be observed from �gures 2:2 that the velocity of the �uid rises when the velocity of the

plate and second grade viscoelastic parameter increases. Because the plate velocity reduces

the friction and causing to increase the �ow in radial direction, also the viscoelasticity help

to reduce the resistance in the �uid causing to increase the �ow. The �uid �ow in reverse

direction with the growing values of second grade parameter when the contact angle is [0; �=4]

and[�=2; 2�=3]. The plate velocity causes to escalate the angular velocity in clock wise direction

that can be observed due to negative values of velocity.

2.3.2 Pressure Distribution

Pressure near a corner varies due to variations in di¤erent parameters which is shown graphically

in �gures 2:4. The e¤ect of second grade parameter and plate velocity on pressure is shown in

�gure 2:4 which explains that viscoelastic nature of the �uid and plate velocity help to build

the more pressure in the region [�=4; �=2] but due to high speed and sharp corner the pressure

drops in the region [0; �=4] and [�=2; 2�=3].

2.3.3 Normal and Tangential Stresses

Figures 2:5 explain the graphical behavior of normal and tangential stress to the plate against

di¤erent parameters. The impact of viscoelastic �uid parameter on normal and tangential stress

shows that when viscoelastic �uid parameter increases then viscoelastic forces become dominant

near a corner and rate of deformation become high which results to increase the stress near a

corner which leads to a rise in normal and tangential stress. Figures 2:5 demonstrate the e¤ect

of plate speed U on normal and tangential stress which explains that the velocity gradient

enhances as the plate moves with high speed so the shear rate increases and as a result normal

and tangential stress also rises.
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(a) (b)

Fig 2:3(a� b) : Fluctuations in velocity u with respect to �1 and U .

Fig 2:4 : Fluctuations in velocity v with respect to U .

(a) (b)

Fig 2:5(a� b) :Variation in tangential stress Tt for �1and U .
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(a) (b)

(c) (d)

Fig 2:6(a� d) :Variation in normal stresses Trr and T�� along �1and U .

(a) (b)

Fig 2:7(a� b) :Variation in pressure P along �1and U .
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Chapter 3

Inertial and leakage e¤ects on

viscous �uid �ow near a corner

This chapter deals with two dimensional , in-compressible �ow of second grade �uid between

two intersecting walls through a speci�c angle. Inertial and leakage e¤ects which are already

discussed by Riedler and Hancock [21; 22] for Newtonian �uid but in this chapter, we will discuss

these e¤ects simultaneously for second grade �uid near the corner. Mathematical model of the

problem provides a complex system of non-linear partial di¤erential equations which are solved

using Langloi�s approach. The resulting boundary value problems are solved by inverse method.

Mathematical results for velocity, pressure, stream function, normal and tangential stresses are

found in explicit form and displayed the impact of emerging parameters through graphs.

3.1 Governing Equations

Consider two dimensional , incompressible, second grade �uid �ow near a corner between two

rigid walls that intersect at a constant angle �w. Assume that the liquid is moving with wall

velocity "U at � = 0 but �uid and walls are at rest at � = �w. We further assume a mass

source(or sink) of strength "Q at the apex corner due to leakage.
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Fig 3.1: Corner �ow geometry

The governing equations of motion for an incompressible, steady state, second grade �uid, in

the absence of body forces are as follows:

r:V = 0; (3.1)

� (r:V)V = divT; (3.2)

where T is brie�y explained in Eq.(2:3)� (2:6) :

For steady plane �ow in polar coordinates, one can choose following velocity and pressure

�elds.

V = u (r; �) er + v (r; �) e�; p = p (r; �) : (3.3)

After using tensor and vector properties Eq.(3:2) can be written in the following form:
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� (r:V)V = �rp+ �divA1 + �1 (div ((V � r)A1) + div (A1 (rV))

+ div
�
(rV)T A1

��
+ �2 div (A1)

2 : (3.4)

The following properties can be used for further simpli�cation:

div ((V � r)A1) = (V � r) divA1 + div
�
A1 (rV)

T
�
; (3.5)

div (A1 (rV)) = �div
�
A1 (rV)

T
�
+ div

�
(A1)

2
�
; (3.6)

div
�
(rV)T A1

�
= (rV)T divA1 +A1

�
r (rV)T

�
; (3.7)

(V � r)V =
r jVj2

2
�V � (r�V) : (3.8)

After using the above identities, Eq.(3:4) takes the following form:

�

 
r jVj2

2
�V � (r�V)

!

= �rp+ �divA1 + �1 ((V � r) divA1

+(rV)T divA1 +A1

�
r (rV)T

��

+(�1 + �2) div (A1)
2 : (3.9)

Now, component form of above equation can be written as follows:

r� component of inertial part:

�

 
r jVj2

2
�V � (r�V)

!

r

= �

�
1

2

@

@r

�
u2 + v2

�
� v!

�
; (3.10)

�� component of inertial part:

�

 
r jVj2

2
�V � (r�V)

!

�

= �

�
1

2r

@

@�

�
u2 + v2

�
+ u!

�
; (3.11)

where, vorticity function ! is de�ned as follows:
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! =
@v

@r
+
v

r
�
1

r

@u

@�
: (3.12)

r� component of dynamic part:
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�
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�� component of dynamic part:
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: (3.14)

After using Eq.(3:10)� (3:14) ; momentum equation (3:9) takes the following form:

r�component of momentum equation
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; (3.15)

or

@

@r

�
�

2

�
u2 + v2

�
+ p�

(3�1 + 2�2)

4

�
tr (A1)

2
�
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@r
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= �v! �
�

r

@!

@�
+ �1

�
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; (3.16)
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�� component of momentum equation
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or
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�
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: (3.18)

Now, from Eq.(3:16) and Eq.(3:18), we will de�ne following modi�ed pressure h (r; �)

h (r; �) =
�

2

�
u2 + v2

�
�
(3�1 + 2�2)

4

�
trA21

�
� �1

�
v
@

@r
�
u
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@
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! + p (r; �) +
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where,

trA21 = 8

�
@u

@r

�2
+ 2

�
1

r

@u

@�
+
@v

@r
�
v

r

�2
: (3.20)

Now using modi�ed pressure h (r; �) in Eq.(3:16) and (3:18) one can write the following form

@h

@r
� �v! +

�

r

@!

@�
+ �1vr

2! = 0; (3.21)

1

r

@h

@�
+ �u! � �

@!

@r
� �1ur

2! = 0; (3.22)

where,
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@2

@r2
+
1

r

@

@r
+
1

r2
@2

@�2
: (3.23)
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Following non-dimensional quantities are de�ned for further analysis:

r
0

=
r

R
; u

0

=
u

U
; v

0

=
v

U
; p

0

=
p

�U2
; h

0

=
h

�U2
;

�
0

1 =
�1U

�R
; �

0

2 =
�2U

�R
; T

0

=
TR

�U
; Re =

RU

�
: (3.24)

After using the above non-dimensional quantities in Eq (3:21)�(3:22), one can get the following

form
@h

@r
� v! +

1

Re

1

r

@!

@�
+
1

Re
�1vr

2! = 0; (3.25)

1

r

@h

@�
+ u! �

1

Re

@!

@r
�
1

Re
�1ur

2! = 0: (3.26)

To reduce the number of unknown functions from above equations, we introduce the following

relation of stream function  (r; �)

u =
1

r

@ 

@�
; v = �

@ 

@r
: (3.27)

After using stream function, Eq(3:25)� (3:26) take the following form
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after eliminating h (r; �) from Eq.(3:28) and Eq.(3:29), we have
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@r

�
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��
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(3.30)

B.C�s in stream function are given as follows

 = 0;
1

r

@ 

@�
= "U at � = 0; (3.31)

 = "Q;
1

r

@ 

@�
= 0 at � = �w: (3.32)
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3.2 Methodology

To solve the above problem, we will follow the Langiois recursive approach which is brie�y

explained in chapter. 2

3.2.1 First Order Problem and its Solution

@h(1)

@r
�
1

Re

1

r

@

@�
r2 (1) = 0; (3.33)

@h(1)

@�
+
1

Re
r
@

@r
r2 (1) = 0; (3.34)

where,

h(1) (r; �) = p(1) (r; �) : (3.35)

Eliminating h(1) (r; �) from Eq.(3:33) and Eq.(3:34)

r4 (1) = 0: (3.36)

with B.C�s

 (1) = 0,
1

r

@ (1)

@�
= U at � = 0; (3.37)

 (1) = Q;
1

r

@ (1)

@�
= 0 at � = �w: (3.38)

One can consider  (1) as suggested in Ref. [20] in the following form:

 (1) = Urf1 (�) +Qg1 (�) : (3.39)

Using above value of  (1) , in Eq.(3:36)�(3:38) , one can get the following fourth order boundary

value problems in terms of f1and g1:

f iv1 + 2f
00

1 + f1 = 0; (3.40)

f1 = 0; f
0

1 = 1 at � = 0; (3.41)
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f1 = 0; f
0

1 = 0 at � = �w: (3.42)

Also,

giv1 + 4g
00

1 = 0; (3.43)

g1 = 0; g
0

1 = 0 at � = 0; (3.44)

g1 = 1; g
0

1 = 0 at � = �w: (3.45)

After a signi�cant amount of e¤ort, solutions of above boundary value problems are obtained

and are given as follows:

f1 (�) = B sin � + C� cos � +D� sin �; (3.46)

and

g1 (�) = 2K sin
2 � +N (sin 2� � 2�) : (3.47)

Where B;C;D;K;N are de�ned in Appendix.

Now radial and tangential velocity in terms of f1 (�) ; and g1 (�) are as follows:

u(1) =
1

r

@ (1)

@�
= Uf

0

1 +
Q

r
g
0

1; (3.48)

v(1) = �
@ (1)

@r
= �Uf1: (3.49)

Using Eq.(3:33)� (3:35), we obtain pressure �eld in the following form:

p(1) (r; �) = p0 �
1

Re

U

r

�
f
0

1 + f
000

1

�
�

1

2Re

Q

r2
g
000

1 ; (3.50)

where p0 is a constant.

Finally, we obtain the normal and tangential stresses in the following form

T (1)rr = �Re p(1) �
2

r2
Qg

0

1; (3.51)

T
(1)
�� = �Re p

(1) +
2

r2
Qg

0

1; (3.52)
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T
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1 ; (3.53)

3.2.2 Second Order Problem and its Solution
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where,
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Eliminating h(2) (r; �) from Eq.(3:54) and Eq.(3:55), we have
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�Re
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�
 (1);r2 (1)

�

@ (r; �)
+
�1
r

@
�
 (1);r4 (1)
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; (3.57)

with B.C�s

 (2) = 0,
1

r

@ (2)

@�
= 0 at � = 0; (3.58)

 (2) = 0,
1

r

@ (2)

@�
= 0 at � = �w; (3.59)

where,
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 (1);r2 (1)
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@ (1)

@r

@
�
r2 (1)

�
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�
@ (1)
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@
�
r2 (1)

�

@r
: (3.60)

The second order system (3:57)� (3:60) contains a fourth order PDE. To change this PDE into

a system of ODE, one can consider the stream function  (2) in the following form
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 (2) (r; �) = Re
�
r2U2f2 (�) + rUQf3 (�) +Q

2f4 (�)
�
+ �1

�
U2g2 (�) +

UQ

r
g3 (�) +

Q2

r2
g4 (�)

�
:

(3.61)

Using Eqs.(3:39) and (3:61) in Eq.(3:57) � (3:60) ,we get the following fourth order boundary

value problems in terms of f2; f3; f4; g2; g3 and g4 .

f iv2 + 4f
00

2 = (�1 + �3�) sin 2� + (�2 + �4�) cos 2�; (3.62)

f2 = 0; f
0

2 = 0 at � = 0; � = �w; (3.63)

f iv3 + 2f
00

3 + f3 = (T1 + T5�) cos 3� + (T2 + T6�) sin 3� + T3 cos � + T4 sin �; (3.64)

f3 = 0; f
0

3 = 0 at � = 0; � = �w; (3.65)

giv2 + 4g
00

2 = 0; (3.66)

g2 = 0; g
0

2 = 0 at � = 0; � = �w; (3.67)

giv3 + 10g
00

3 + 9g3 = 0; (3.68)

g3 = 0; g
0

3 = 0 at � = 0; � = �w; (3.69)

giv4 + 20g
00

4 + 64g4 = 0; (3.70)

g4 = 0; g
0

4 = 0 at � = 0; � = �w: (3.71)

After a considerable amount of work, solutions of boundary value problems (3:62)� (3:65) are

represented as follows:

f2 (�) = R1 +R2� +
�
R3 + �5� + �7�

2
�
cos 2� +

�
R4 + �6� + �8�

2
�
sin 2�; (3.72)

f3 (�) =
�
A1 +A3� +B3�

2
�
cos � +

�
A2 +A4� +B4�

2
�
sin � + (B1 +B5�) cos 3�

+(B2 +B6�) sin 3�; (3.73)
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f4 (�) = D1 +D1� + (D3 + F1�) cos 2� + (D4 + F2�) sin 2� + F3 cos 4� + F4 sin 4�: (3.74)

As in boundary value problem (3:65) � (3:71) , equations and boundary conditions both are

homogeneous,so g2 (�) = g3 (�) = g4 (�) = 0:

Where �j ; Tl; Fi; Ri; Ai; Bl; and Di are constants that are given in Appendix, where i =

1:::4; j = 1:::8; l = 1:::6.

The velocity components can be obtained as follows:

u(2) =
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@�
= Re
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�
; (3.75)

and

v(2) = �
@ (2)

@r
= Re

�
�2rU2f2 � UQf3

�
: (3.76)

From Eqs.(3:54) and (3:55) and using Eq.(3:56), we obtain pressure �eld of order two and is

given as follows:

p(2) (r; �) =
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U2C1 (�) log r �
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Re

Q2

r4
C6 (�) : (3.77)

Here Cl (�) are de�ned in Appendix , where l = 1:::6:

Finally, we obtain the normal and tangential stresses as well

T (2)rr = �Re p(2) +ReO1 (�) +
U2

r2
O2 (�) +

UQ

r3
O3 (�) +

Q2

r4
O4 (�) ; (3.78)
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(2) +ReO5 (�) +
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O6 (�) +
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r3
O7 (�) +
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r4
O8 (�) ; (3.79)

here Oj is de�ned in Appendix, where j = 1:::8:
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+ (3.80)

U2

r2
W4 (�) +

UQ

r3
W5 (�) +

Q2

r4
W6 (�) ; (3.81)

here Wl is de�ned in Appendix, where l = 1:::6:

3.2.3 Third Order Problem
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where,

h(3) (r; �) =
1

2

�
2u(1)u(2) + 2v(1)v(2)

�
�
1

Re

�
3�1 + 2�2

4

��
trA

(3)2
1

�

�
1

Re
�1

 

v(2)
@

@r
�
u(2)

r

@

@�

!

!(1) �
1

Re
�1

 

v(1)
@

@r
�
u(1)

r

@

@�

!

!(2)

+p(3) (r; �) +
1

Re

�1
2
!(3)2: (3.84)

Eliminating h(3) (r; �) from Eq.(3:82) and Eq.(3:83), we have
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with B.C�s

 (3) = 0,
1

r

@ (3)

@�
= 0 at � = 0; (3.86)

 (3) = 0,
1

r

@ (3)

@�
= 0 at � = �w; (3.87)

The third order system (3:85)� (3:87) contains a fourth order PDE. To change this PDE into

a system of ODE, one can consider the stream function  (3) in the following form

 (3) (r; �) = � (Re)2
�
r3U3f5 (�) + r

2U2Qf6 (�) + rUQ
2f7
�
� +Q3f8�

��

+�1Re

�
rU3g5 (�) + U

2Qg6 (�) +
UQ2

r
g7 (�) +

UQ3

r2
g8 (�)

�
: (3.88)

Using expressions for �rst, second and third order stream functions, pressure �elds, velocity

components, and stresses computed in previous sections, one can get the following solutions .

 (r; �) =  (1) +  (2) +  (3); (3.89)

u (r; �) = u(1) + u(2) + u(3); (3.90)

v (r; �) = v(1) + v(2) + v(3); (3.91)

p (r; �) = const+ p(1) + p(2) + p(3); (3.92)

Tt = T
(1)
t + T

(2)
t + T

(3)
t ; (3.93)

Trr = T (1)rr + T
(2)
rr + T

(3)
rr ; (3.94)
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T�� = T
(1)
�� + T

(2)
�� + T

(3)
�� : (3.95)

3.3 Graphs and Discussion

3.3.1 Velocity Field

Figures 3:2(a� c) show the behavior of velocity for the variations of Reynolds number, leakge

at the apex and plate velocity. It can be observed from �gures 3:2 that the velocity of the �uid

rises when the velocity of the plate, Reynolds number and leakage parameter increases. Because

the plate velocity reduces the friction and causing to increase the �ow in radial direction, also

the dominance of inertial forces reduce the resistance in the �uid causing to increase the �ow.

The leakage at the apex also reduce the resistive forces and vortices near the corner that makes

the �ow fast.

Figures3:3 shows that angular velocity also increases with the growing e¤ect of leakage,

moving boundary and leakage but the angular �ow is in clockwise direction.

3.3.2 Pressure Distribution

Pressure near a corner varies due to variations in second grade parameter, plate velocity, leakage

at the apex and Reynolds number which is shown in �gure3:4. Figure 3:4 shows that when

inertial e¤ects of �uid become dominant internal pressure reduces due to fast movement of

the �uid particles but the leakage, plate speed and viscoelastic property of the �uid causes to

enhance the pressure near corner.

3.3.3 Normal and Tangential Stresses

Figures 3:5 explain the graphical behavior of normal and tangential stress to the plate against

second grade parameter, plate velocity, leakage at the apex and Reynolds number. The impact

of viscoelastic �uid parameter on normal and tangential stress shows that when viscoelastic

�uid parameter increases then viscoelastic forces become dominant near a corner and rate of

deformation become high which results to increase the stress near a corner which leads to a

rise in normal and tangential stress. Figures 3:5 demonstrate the e¤ect of plate speed U on

normal and tangential stress in the presence of inertial forces and leakage which explains that
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the velocity gradient decay and enhance in di¤erent regions as the plate moves with high speed

so the shear rate increases and decreases in di¤erent regions and as a result normal stress

in angular direction rises by the dominance of inertial forces but shows dual behavior due to

moving boundary. and tangential stress also rises. The normal stress in radial direction decays

by the dominance of inertial and leakage e¤ects but normal stress enhances by the plate velocity

and viscoelastic e¤ect.

The e¤ect of the Reynolds number on tangential stress is shown in �gure 7 which describes

that the inertial e¤ects become dominant over viscous forces due to a rise in Reynolds number

then the shear rate enhances near a corner and this leads to a rise in tangential stress but in a

reverse direction

(a) (b)
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(c)

Fig 3.2(a-c): Variation in velocity components u for Re; U;Q:

(a) (b)
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(c)

Fig 3.3(a-c): Variation in velocity components v for Re; U;Q:

(a) (b)
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(c) (d)

Fig 3.4(a-d): Variation in pressure p for Re; U;Q and �1:

(a) (b)
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(c)

Fig 3.5(a-c): Variation in tangential stress Tt for Re; U;Q:

(a) (b)
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(c) (d)

(e) (f)

(g) (h)
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Fig 3.6(a-h): Variation in normal stresses Trr T�� for Re; U;Q and �1:

3.4 Conclusion

In this work, we have emphasized the importance of inertial and non inertial forces of a two

dimensional second grade �uid with the e¤ects of leakage at the apex of corner. The mathe-

matical models of second grade �uid are represented by the set of intricate non-linear partial

di¤erential equations and their solutions are obtained by Langloi�s recursive technique using

no slip boundary conditions. The analytical results of various �ow characteristics like velocity

pro�le, pressure, and shear stresses are calculated in this study, and graphical results for these

�ow characteristics are observed for di¤erent parameters. It is concluded from graphical results

that radial component of velocity rises with the extending values of Reynold�s Number (Re),

plate velocity (U), and leakage parameter (Q). It is also observed that anngular component

of velocity also rises when there is increase in Reynold�s Number (Re), plate velocity (U), and

leakage parameter (Q) but in clockwise direction. Pressure near a corner varies due to variation

in involving parameters. Pressure reduces due to fast movement of the �uid particles but other

parameters causes to enhance the pressure near a corner. This research also concludes that wall

shear stress rises with the rising values of all emerging parameters.

52



3.5 Appendix
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924M13

18522
+
505806M15

2722734

�
;

N8 =

�
�147M8

9261
+
990192M10

1361367
+
6468M14

129654

�
;

N9 =

�
�3087

4

M9

64827
�
135828M15

2722734

�
;

N10 =

�
�64827

5

M10

1361367

�
;

N11 =

�
M2

64
�
15M4

512
+
M11

32
�
10M13

512
+
15M15

1024

�
;

N12 =

�
4M3

256
�
30M5

512
�
30M14

1024

�
;

N13 =

�
8M4

512
+
16

3

M13

512
+
24M15

1024

�
;

N14 =

�
�8M15

512
+
8M14

1024

�
; N15 =

�
32

5

M15

1024

�
;

N16 =

�
�44M7

441
+
126898M9

64827
+
M11

96
�
3368M13

18522
+
19094336M15

2722734

�
;
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N17 =

�
�924M8

9261
+
5058060M10

1361367
+
M12

882
�
35364M14

129654

�
;

N18 =

�
6468M9

64827
+
147M13

18522
�
990192M15

2722734

�
;

N19 =

�
�135828M10

1361367
+
3087

4

M14

129654

�
;

N20 =

�
64827

5

M15

2722734

�
;

P =
�
N1�w +N2�

2
w +N3�

3
w +N4�

4
w +N5�

5
w

�
sin �w +

�
N6�w +N7�

2
w +N8�

3
w +N9�

4
w

+N10�
5
w

�
sin 3�w +

�
N11�w +N12�

2
w +N13�

3
w +N14�

4
w +N15�

5
w

�
cos �w

+
�
N16�w +N17�

2
w +N18�

3
w +N19�

4
w +N20�

5
w

�
cos 3�w;

P1 =
�
N1�w +N2�

2
w +N3�

3
w +N4�

4
w +N5�

5
w

�
cos �w +

�
N1 + 2�wN2 + 3�

2
wN3 + 4�

3
wN4

+5�4wN5
�
sin �w +

�
N6 + 2�wN7 + 3�

2
wN8 + 4�

3
wN9 + 5�

4
wN10

�
sin 3�w + (3N6�w

+3�2wN7 + 3�
3
wN8 + 3�

4
wN9 + 3�

5
wN10

�
cos 3�w +

�
N11 + 2�wN12 + 3�

2
wN13

+4�3wN14 + 5�
4
wN15

�
cos �w �

�
N11�w +N12�

2
w +N13�

3
w +N14�

4
w +N15�

5
w

�
sin �w

+
�
N16 + 2�wN17 + 3�

2
wN18 + 4�

3
wN19 + 5�

4
wN20

�
cos 3�w �

�
3N16�w + 3�

2
wN17

+3�3wN18 + 3�
4
wN19 + 3�

5
wN20

�
sin 3�w;

Q1 =
(N11 +N16)

�
� cos 2�w � 2 (cos �w)

2
�
� P (�3 sin 3�w + sin �w)

(�6 + 16 cos 4�w � 4 cos 2�w)

+
P1 (cos 3�w � cos �w)

(�6 + 16 cos 4�w � 4 cos 2�w)
;

Q2 =
�Q1 (3 cos 3�w � 3 cos �w) + cos �w (N11 +N16)� P1

(�3 sin 3�w + sin �w)
;

Q3 = �Q2; Q4 = �3Q1 �N11 �N16:
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