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Preface

The study of non-Newtonian fluids continues to engage scientists due to their complex
flow characteristics and importance across various engineering and geophysical applications.
Second-grade fluids, in particular, incorporate both viscous and elastic responses, making them
well-suited for modeling viscoelastic behaviors beyond the reach of Newtonian models.

Corner flow problems are known for their complexity, primarily due to the sharp boundary
angles that create stress singularities and secondary flow patterns. The addition of inertia and
leakage at corner, increases this complexity and calls for more refined analytical and numerical
method.

Different researchers like Taylor [1], Hancock et al. [2] and Riedler et al. [3] have examined
scraping flow problems for creeping and inertial flows of a Newtonian fluid between two inter-
secting planes. Their study showed that the flow was generated due to the movement of one
plate near a corner and regular perturbation technique was used to observe the leakage effect
on flow and expressions for normal and tangential stresses to the plate. Mansutti et al. [4] have
configured the non-inertial flow of a shear thinning fluid between intersecting planes and used
multi-parameter continuation technique to analyze both converging and diverging flow. Huang
et al. [5] calculated the flow of Oldroyd-B fluid between two intersecting plate, one of which was
fixed and the other one was moving and observed the flow pattern with the help of streamlines.
Hills et al. [6] examined the corner flow induced by the rotation of plate with fixed angle and
determined the flow in three different geometries. Mahmood [7] has compared the inertial and
non-inertial flow by regular perturbation technique. Chaffin et al. [8] analyzed Taylor’s paint
scraping problem for Carreau fluid and reveals the perturbation results for dynamics of the
fluid near and far from the corner.

In this research, steady and non-creeping flow of second grade fluid with leakage at corner is
described which has not been addressed by a single author. The mathematical model represents
the set of non-linear differential equations which are solved by recursive approach introduced
by Langlois [10 — 12]. This study presents the effects of angle of the scraper with the flow
and emerging parameters on velocity profile, stresses and pressure distribution near a corner.
Our results subsume Mahmood et al. [7] results as a special case of Newtonian fluid and

comparison between inertial and non-inertial flow behavior is also shown through graphical
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results. Recently, researchers have studied the different flow problems near a corner with its
applications [13 — 18].

Keeping view of the literature survey, this research is organized in following three chapters.
Chapter one includes the preliminaries, chapter two presents the mathematical modelling of
second grade fluid for creeping flow near a corner and chapter three examines the inertial and

leakage effects when leakage is present at the apex of two intersecting planes.



Chapter 1

Preliminaries

This chapter includes the basic concepts and definitions of different types of flows, fluid prop-

erties, and laws of fluid mechanics.

1.1  Fluid

The fluid is a type of matter which is continuously deformable, and which spontaneously tends

to adopt its shape to its container by occupying all of the space made available to it.

1.2 Fluid Mechanics

Fluid mechanics is a branch of engineering that explores the characteristics and behavior of
fluids and forces acting on them. It is divided into two main sub disciplines fluid statics and

fluid dynamics.

1.3 Types of Flows
Flows can be categorized based on various characteristics:

1.3.1 Laminar vs Turbulent Flow

Laminar flow refers to a type of fluid flow where all fluid particles follow a certain path and

move smoothly without crossing each other. On the other hand, turbulent flow is characterized



by fluid particles that do not follow a specific path and the fluid flows in an irregular pattern.

1.3.2 Steady vs Unsteady Flow

In steady flow, fluid properties such as velocity, pressure, and density remain constant over
time and do not change with respect to time i.e. S # S (t); while in case of unsteady flow fluid
properties change with respect to time i.e.S = S ().

1.3.3 Compressible vs Incompressible Flow

Compressible flow have a notable change in density with varying pressure, temperature, and
space components. On contrary incompressible flow have a density that does not change with
respect to space, pressure and temperature.

1.3.4 Creeping vs Non-Creeping Flow

In creeping flow the viscous forces are dominant over the inertial forces, it is also known as
Stokes flow, but in non-creeping flow inertial forces have significant contribution in the flow

field.

1.4 Flow Properties

1.4.1 Density

The density p is defined as mass per unit volume at a specific pressure and temperature.

Mathematically, it is defined as
= — 1.1
p=1 (1.1)
where V' denotes the volume and m is mass of fluid.

1.4.2 Pressure

Pressure is the magnitude of force per unit area and mathematically, it is represented as follows:



|F|

p="7 (1.2)

1.4.3 Shear stress

A force per unit area that tends to create deformation in fluid flow is known as shear stress. It
is denoted by 7 and mathematically, defined as

(1.3)

T =

F
Z.
1.5 Inertial and Non Inertial Flow

The term "inertial flow" refers to a fluid’s motion in which internal friction causes viscous
forces to oppose the fluid’s motion, yet inertial forces, which are connected to the fluid’s mass
and acceleration, are important. On the other hand, "non-inertial flow" happens when viscous

forces predominate and the fluid moves steadily and smoothly.

1.6 Newtonian Fluids

Newtonian fluids are those which obey Newton’s law of viscosity. Most common fluids such as
water, air, gasoline, glycerine and syrup are Newtonian under normal conditions. Mathemati-

cally, Newtonian fluid hold the following relation:

ou
The Cauchy stress tensor T satisfy the following relation for Newtonian fluids
T = —pl+ pAy, (1.5)
Ay =gradV + (grad V)T | (1.6)

where p is the hydrostatic pressure, I is the unit tensor, p is the dynamic viscosity of the fluid,

V' is the velocity of the fluid.and A is the first Rivlin-Erickson tensor.



1.7 Non-Newtonian Fluids

A fluid in which the viscosity varies with the applied strain rate is called a non-Newtonian fluid.
As a result, the non-Newtonian fluids may not have well-defined viscosity. Mathematically, non-

Newtonian fluid hold following relation:

ou
Ty = T]aiy’ (17)

P n—1
where 1 = (ETZ) and n # 1.

There are different types of non-Newtonian fluid.

1.7.1 Dilatant (Shear thickening)

In such type of fluid viscosity is an increasing function of shear stress.

1.7.2 Pseudoplastic (Shear thinning)

In such type of fluid viscosity is constant at low shear rate but decreases at intermediate shear

rate.

1.7.3 Thixotropic

It has time dependent shear thinning property. e.g. gels, clays, and cytoplasm.

1.7.4 Rheopectic

This type of fluid has increasing viscosity with stress over time.

1.7.5 Viscoelastic fluids

This type of fluid formed by viscous and elastic component. In other words it is a mixture of

polymer and solvent. e.g. second grade, FENEP fluid model and Maxwell fluid model.



1.7.6 Visco-inelastic fluids

It is also known as generalized Newtonian fluids, such type of fluid has shear rate dependent

viscosity. e.g. Carreau, Ellis, Power law and Williamson fluid model.

1.8 Second Grade Fluid

A second-grade fluid is a type of non-Newtonian fluid that exhibits elasticity and common
stress effects. This theoretical model is used in fluid mechanics to analyse materials whose
behavior deviates slightly from that of Newtonian fluids (like water or air), particularly when
memory-effect or slow flows are present.

In contrast to Newtonian fluids, the stress in a second-grade fluid is dependent on both
acceleration (second derivative of velocity) and strain rate (first derivative of velocity) and

satisfy the following Cauchy stress tensor

T=—-pI+8, (1.8)

and

S = uA1 + 1Ay + azAf, (1.9)

in above equation p is the viscosity coefficient and a1, ao are the second grade fluid parameters,

A4 and As are Rivilain Erickson tensor defined as follows:

A =VV (VW) (1.10)
Ay=(V-V)A + A (VV)+(VV)T A, (1.11)

The second order fluids are fluids for which the Cauchy stress tensor T is expanded as a
power series in the rate-of-deformation tensor and its derivatives, truncated after second-order
terms."The second-order fluid" is a second-order asymptotic approximation about the state of
the rest of a viscoelastic fluid.

It is possible to think of second-grade fluid models as simplified or idealized versions of more

intricate polymer fluid models. They provide a more straightforward mathematical representa-
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tion of the elastic and normal stress behavior of polymers. Utilized frequently in theoretical and
scholarly research to understand viscoelastic effects without having to solve difficult constitutive

equations.

1.8.1 Polymer Fluid

Polymer fluid demonstrates viscoelasticity, shear thickening or shear thinning and normal stress
differences. The behavior of polymer fluids is often modeled with more complex constitutive

models like Oldroyd-B, Maxwell, Giesekus, and FENE-P.

1.9 Types of boundary condition

1.9.1 Slip boundary condition

In slip boundary conditions, there is relative velocity between the surface and fluid. For example
ice skating, the skates slide over the snow with very little friction. This is because a thin layer

of water forms between the skates and the surface, mathematically it is defined as follows

v

=" (1.12)

1.9.2 No-slip boundary condition

In no slip boundary conditions the velocity of fluid is supposed to be velocity of surface. For
example when you drive, your tyres grip the road, as tyres are designed to grip the road and
avoid slipping effect.

For a flat wall located at y = 0, and fluid velocity V satisfy the following condition:

V = Vyan on the boundary (1.13)

If the wall is stationary:

V=0 (1.14)

11



1.9.3 Partial-slip boundary condition

In partial slip, both slip and no slip condition occurs between fluid and wall. For example blood
flow in blood vessel because walls of blood vessels are not perfectly smooth. Mathematically it
is represented as:

ov

V=\— ty=0. 1.15

1.10 Geometrical arrangement of fluid flow

Numerous geometrical arrangements of fluid flow are possible, and each has unique physical
properties and uses. The following list of fluid mechanics geometries is frequently used, partic-
ularly for theoretical and experimental analysis. Flow between parallel plates, flow in a circular
pipe or tube, annular flow (between two coaxial cylinders), corner or wedge flow, flow over a
flat plate, flow past a cylinder or sphere, channel flow (rectangular duct), jet and plume flows,

and open channel flow.

1.10.1 Corner Flow

The term "Corner Flow" describes the flow of fluids caused by capillary forces in wedge-shaped
structures, including corners or gradients. This phenomenon is important for a number of

applications, such as spacecraft fluid management, COs sequestration, and oil recovery.

1.11 Coordinate systems and their types

A coordinate system is a mathematical framework that uses coordinates to represent a point’s
location in space. In fluid mechanics, physics, and engineering, it aids in the definition of
geometry, motion, and fields (such as pressure or velocity).The main purpose of coordinate

system are used to specify position in (1D, 2D, or 3D).
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1.11.1 Main types of coordinate systems
Cartesian Coordinate System (Rectangular)

This system is used for rectangular or flat geometry and its coordinates define distances along

three perpendicular axes x,y, and z. e.g. a box-shaped room, flow between two flat plates.

Cylindrical Coordinate System

This system is used for cylindrical symmetry and its coordinates radial distance, angle around
the axis, and distance from the centre axis to the boundary. e.g. whirling machinery and flow

inside a pipe.

Spherical Coordinate System

This system is used for spherical symmetry and its coordinates define angle about the horizontal
plane, angle from the vertical axis, and distance from the origin to the boundary. e.g. radiation

patterns, gravitational fields, and flow around a sphere.

1.12 Non-dimensional Parameters

1.12.1 Reynold’s Number

The Reynold’s number is a dimensionless quantity that is the ratio of inertial to the viscous
forces. It is used in fluid mechanics to predict flow patterns in different fluid flow situations. It
helps to determine whether the flow is laminar, turbulent, or in transition. Mathematically, it

is defined as

__ pVL
o

Re (1.16)

Where p denotes density, p is dynamic viscosity, V represents velocity of fluid and L is charac-
teristics length.
The Re < 2300 represents the laminar flow and 2300 < Re < 4000 indicates the transition

from laminar to turbulent flow but Re > 4000 predict the turbulent flow.
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1.13 Basic Laws of Fluid

1.13.1 Principle of Conservation of Mass

This law states that mass cannot be created or destroyed during flow. It remains constant with

respect to all physical changes. Mathematically, it can be defined as

op B
5 TV V)=0, (1.17)

where p is the density of fluid, ¢ is the time, V is the divergence, V is the velocity vector. For

any incompressible flow, above equation becomes

V.V =0. (1.18)

1.13.2 Principle of Conservation of Momentum

The principle states that the total momentum of an isolated system remains constant within

some domain if no external forces act on it. Mathematically, it can be defined as

p<§t+(V-V)>V+Vp—pf:VT. (1.19)

where p is the density of fluid, ¢ is the time, V is the divergence, V is the velocity vector,

p is the pressure, f is the body force term, and 7 is stress tensor.

1.14 Methodology

The technique which is going to be used in this research is Recursive Langloi’s technique, which
was introduced by W.E.Langlois in 1963. This method will help us to make the non-linear
system into linear system. After linearizing, we will use inverse method to convert the linear
PDE’s into set of ODE’s. In this approach, one can linearize velocity profie, shear stress and

pressure with the help of small dimensionless number €. In order to obtain the 1st,2nd and 3rd

14



order solutions for velocity profile, shear stress and pressure, we consider following series i.e.

u = Z eu®, v = Zsiv(i), p=p0 + Zsip(i). (1.20)
=1 i=1 i=1
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Chapter 2

Creeping flow of second grade fluid

near a corner

This chapter is the extension of review work of Mehmood et.al.[9] about a creeping flow of
second grade fluid near a corner. His study investigated the steady state incompressible flow
near a corner for Newtonian fluid. This chapter extend the idea of Mehmood et.al. for second
grade fluid model. The creeping flow of second grade fluid model near a corner presents a
system of non-linear partial differential equation. The non-linear system is solved by Langloi’s
recursive approach and inverse method to obtain the approximate results for stream function,
velocity field, pressure distribution, and shear stress. The results of mathematical expression

can be visualized by the graphs that are plotted by the Software Mathematica.
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2.1 Mathematical Modeling

Scraper Moving Plate Motor

Second Grade
Fluid

(a)

Fi

Moving wall ——— u=€l,v=

Fig.2:(a) The flat plate corner model. (b) Corner flow geometry.
The creeping flow of second grade fluid over a moving plate making an angle 6 with a scraper
is modeled by the corner flow. The corner flow is sketched in figure 2 (b), the flow is assumed

incompressible, steady state, and two dimensional therefore, following governing equations are

17



used.

V.V =0, (2.1)
p(V.V)V =div T, (2.2)

where Cauchy stress tensor T for second grade fluid Ref.[19] is given as follows.

and

S =puA; +a1As + agA% (2.4)

In above equation p is the viscosity coefficient and a1, ae are the second grade fluid parameters.

A, and A5 are Rivilin Erickson tensor defined as follows:

A =VV+(VV), (2.5)
Ay =(V-V)A1 + A (VV)+ (VV)T Ay, (2.6)

where,
V= (u(r6),v(r0),0). (2.7)

After using Eq.(2.3) — (2.7), equation of continuity and momentum take the following form

10 (ru) 10v
- = 2.
r Or + r 00 0 (2:8)
r—component of momentum equation is
_ Op 10 1059  Ses
0 —E + ;87 (7"57'7‘) ; 90 - r (29)
f#—component of momentum equation is
10p 10 ,, 1 0Spy
=———=+ 5= - 2.1
0=T50 "o 50+ 5 (2.10)



The no slip boundary condition is imposed at the moving boundary (6§ = 0) and is given as

follows

w=eU,v=0, at 0=0, (2.11)

where U is speed of moving plate.

The flow is stationary near the scraper (f = 6,,) and satisfy the following expressions.

u=0,v=0, at 6=20,. (2.12)

2.2 Methodology

We will employee the Recursive technique [10 — 12], which will linearize the velocity profile,
pressure, stream function, and shear stress using a small dimensionless number €. This is

achieved by assuming a series solutions in the following form

V (r,0) =V 4 2v@ 4 (2.13)
p(r,0) = const + epM +2p@ 4 (2.14)
Y (r,0) = e 2@ (2.15)

S (r,0) =eSW 4283 (2.16)

This leads to dynamical equations and boundary conditions for (V(i), p(i),w(i), S(i)) where ¢ =
1,2,3 so that (V.,p,1,8S), as given by Eqgs.(2.13) — (2.16) ,provides a solution to the equations
of motion (with appropriate boundary conditions) for Rivilin-Erickson fluid, retaining terms
up to third order in e, neglecting all higher-order terms. At each stage of the analysis, the
dynamical equation of system is linear, with the results from the previous stage used explicitly
in the analysis.

Making use of Eq(2.13) —(2.16) , in Eq(2.8) — (2.10) , one can get the first and second-order

problem given as follows:
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2.2.1 First Order Problem and its Solution

The first order problem represent the creeping flow of Newtonian fluid as this system does not

involve second grade parameters.

= += =0, (2.17)

0= B 12 () 1055 S o
- iag(;) izag GEIE iagé?. (2.19)
where, stress tensor are given as follows
S — 2uags), (2.20)
s — g — (822) + ia;;” - 1’;”) : (2.21)
S —2M83;1) (2.22)

To reduce the number of unknown from above equation we introduce stream function () (, )

in the following form

o0 T or

1 1
S Lot Y (2.23)

Using above relation in Eq.(2.20) — (2.22), and incorporating the Eq.(2.18) — (2.19) one can get

the following form of equations

_ op) o 2,/(1)
0=-— or + ;%V Py, (2.24)
_1pW) 9 o2, (1)

After eliminating the pressure gradient from above equation by cross differentiation one can get

the following expression.

20



Vi = 0. (2.26)

B.C’s in stream function are given as follows

€]

»® =0, iage = at 0=0, (2.27)
1)

b =0, ia‘é’e =0 at 6=0,. (2.28)

The following solution is assumed as suggested by the Krutchkoff, R. G.[20]

Yy =Urfy(0). (2.29)

Using Eq.(2.29) in Eq.(2.26) — (2.28), one can get the following BVP

7 (0) +2f1 (0) + f1(0) = 0, (2.30)

with B.C’s
[0)=1,  f(0)=0, (2.31)
fi(0w) =0, fi(0,)=0. (2.32)

The solution of above problem is expressed as follows

f1(0) = Bsinf + Cfcosh + Dfsin 6. (2.33)

where B, C, D are defined in Appendix.
After using Eq.(2.29) in stream function, one can get following radial and axial components

of velocity

1 9™
L 10Y

== =UNH©), (2:34)
(1)
oM = _&gr =—Uf (0). (2.35)

To find the pressure gradient, we require the momentum equation in the following form
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op 4o

or =rag” 0 (2.36)
opV) 0

oo = M VU (2.37)

Integrating Eq.(2.36) with respect to r and then differentiating the resulting expression with
respect to 0, after comparing the expression with Eq.(2.37), one can get following expression of

pressure for the first order

P (r0) =po = LU (A + 1) (2.38)

where pg is constant.

Finally, we obtain tangential and normal stresses in the following form

Ty =tU (r+ 1), (2.39)

M = 1) = —p). (2.40)

rr

It is noted that pressure, normal and tangential stresses has singularity at r = 0 that can be

removed by introducing the different boundary conditions.

2.2.2 Second Order Problem and its Solution

Second order problem represents the creeping flow of second grade fluid also it involves the
parameter of second grade fluid.

The momentum equation for the second order takes the following form

w10 oy, 1085 sk
0=~ * oy (152) + L5 - 2 (241)
1 6p(2) 10 /5.2 1 85'%)
0= 75< 5 > r 00’ (242)
where stress tensor components of the second order are
ou® 20,02 « U2
(2) _ 1 @2t
s@ == 2 (o )+ O () (2.43)
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av(2) 1au(2) 'U(Q) o U ron "
SSZ’—SéJ=u< S+ — | =S (AR 2R+ ART) (249)

ou? 2 y
Ssg = —2u gr +a2U <(f1) (f1)2>- (2.45)

To reduce the unknown function, introduce the following stream function ¢(2) (r,0)

2 _ 1ow®? @ w?

ro6 T or

ul

(2.46)

Using stress tensor components and stream function for second order, Eq.(2.41) — (2.42) take

the following form

O (2) o 172 N ) )
o~ %%W” ai < P +3(5) +onsl +2(5) +2in + sl
2
18 (2) 8 U "o
r ge :_Mgv%/J(Z) a2 (2f1f1+2f1f1)- (2.48)

After eliminating pressure gradient, one can get following system of BVP

pVip@ = % [(B1 + B30 + E56%) sin20 + (Ey + E40 + Eg0?) cos 20] (2.49)

and B.C’s in stream function take the following form

1 5@

v =0, 2T 0w 0=0 (2.50)
(2)

p® = iage =0 at 6=40,. (2.51)

Where constants Ej, j = 1...8. are defined in Appendix.

To find the second order stream function following form of function is assumed

£(0)
L

W@ = (2.52)
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Using Eq.(2.52), in Eq.(2.49) —Eq.(2.51) ,following BVP can be obtained

2+ Afy = (By+ B30 + E50%) sin 20 + (B + E40 + Eg0%) cos 20 + E-0 + Es,  (2.53)
with B.C’s

fo=0, f,=0 at 60=0,0=0,. (2.54)

The solution of above BVP is mentioned as follows:

f2(0) = Ui +Us0+ (Us 4710 + v30° + 750%) cos 20 + (Us + 720 + 7467

+760°) sin 20 + v76° + 50", (2.55)

where, 7, , EF;and U; are defined in Appendix. Here, i =1...8, j = 1..4 .

Now, radial and axial velocity with help of:

(2)_181/1(2) 1,

== Ef% (2.56)
(2)
v = —&gr =0. (2.57)

To calculate expression of second order pressure, integrating Eq.(2.41) with respect to r and
then differentiating the resulting expression with respect to 6, after comparing the expression

with Eq.(2.42), one can get the expression of pressure for the second order as follows

2
b (r,60) =~ o1y + S <(f1)2 T (fi’)2> . (2.58)

2r2 2r2

Finally, we obtain tangential and normal stresses as follows

1 (6 U2 ron ’ "
19 = 58 = (AR + 200 + A1), (2.59)
2 / 20[ +Od U2 " 2
TP = —p? _ﬂf2+(17“22) (f1+f1) ; (2.60)
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2
Te(g)Z—P@)Jr%fé a2U <(f1) (f{')2>- (2.61)

2.2.3 Third Order Problem and its Solution

The momentum equation for the third order takes the following form

3 3 B
»» 19 (T (3)> L1959 e

0=~ or ror 00 r’ (2.62)
16p®) 10 /5.3 1 QSéz)
_ = - 2700 2.
0 r 00 r2 Or ( S > r 00’ (2.63)
where stress tensor components of the third order are
au(3) 2 U "on 2 U "on
SP =+ S (SR 42 B+ = (A +HE). 26

Sﬁg) = Séi) - ( 2f1f2 +2f1 f2 +flfQ flf;/) , (2.65)

B 1oud B a1U
a or +r 00 T

r pr’

ou®) U Y .
S =2 g+ (k- 2Af ) + 2 v 2ns). (260)

To reduce the unknown function, introduce the following stream function ¢ (r,0)

3) 3)
u® — 10Y 3 _ _9Y

ro6 T or

(2.67)

Using stress tensor components and stream function for third order, Eq.(2.62) — (2.63) take the

following form

8]7(3) 12 8 oa1U 7 "on ron "o o iv
o ;%V%ﬂ(g) + ,ul <—9f1f2 =9f1fa =3fifa +[1 o+ 5fifa— fifs )
asU "o
el QU ) (2.68)
18}9(3) _ gv2¢(3) CklU ( 4f,f” 5f//f/ f f f f///>
r 89 - a 1J2 1J2 — J1J2 — J1J2

U 1" " " 1" i " 1"
@2 ( ) (2.69)

ot (2 2 20 420 fs
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After eliminating pressure gradient, one can get following system of BVP

"L

ort (16£1f +10f] fy+311f5+ 12103 +8F' f3

"o ) el

W SR AR - B RS)

pviy® =

and B.C’s in stream function take the following form

3)
p® =0, 132’0 =0 at 6=0,
T
3)
2 =0 18?9 —0 at 6=06,.
T

To find the third order stream function following form of function is assumed

@3 _ [3(0)
w - MQT .

Using Eq.(2.73), in Eq.(2.70) —Eq.(2.72) ,following BVP can be obtained

W 10fs +9f5 = (M + M0+ M3b? + M6 + Ms6*) cos §
+ (Mg + M70 + Mgb* + Mo6® + M190") cos 30

+ (M11 + M0 + M1392 + M1403 + M1594) cos 26 sin 6,

with B.C’s

The solution of above BVP is mentioned as follows:

f3(0) = (Qa+ N0+ Nof? + N30 + N40* + N56°) sin 0
+ (Q2 + Nob + N76* + Ngb? + Nob* + N100°) sin 30
+ (Qg + Ny160 + N1292 + N1303 + N1494 + N1595) cosf

+ (Ql + Nig0 + N1792 + N1803 + N1994 + N2095) cos 36.
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where, Niand @; are defined in Appendix. Here, K =1...20, j =1...4 .

Now, radial and axial velocity components are :

4@ _ 1 ow® 1,

=g = 22 f3, (2.77)
8¢ 1
v = = ng. (2.78)

To calculate expression of second order pressure, integrating Eq.(2.68) with respect to r and
then differentiating the resulting expression with respect to 6, after comparing the expression

with Eq.(2.69), one can get the expression of pressure for the second order as follows

"o

1 U ! "
PO r0) = 5 (Bt ) = g (FORS — RS 3AE A
5ty 1Y) = 525 (<6515 — 60 f3). (279)

Finally, we obtain tangential and normal stresses as follows

1" U "o / "

T,ss)m(f?,_gﬁ) W (o fenhoAE), e
2 U " 1" 2 U " "

T = <0 =+ SO (0 2 )+ S (R ). ey
4 ! U 1" " 1"

1) = —p9 + 51+ ‘fj (-ariss—2nfs) + 5 (2f1f2 2h0fy).  (282)

By merging first, second and third order solutions, one can get the stream function, velocity

profile, pressure distribution and stress components in the following form:

A% (’I"7 9) = V(l) + V(2) + V(3)’
p(r,0) = const + pM 4 p@ 4 53,
b (,6) = 9V + 9 + 4O

S (r,0) = SW + 5@ 4 5O,
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Following the recursive approach, and using values from previous sections, one can get

p(T, 9) =

"y (f1 YR +oads -

p=vrf; () + 28 5O
w2
199 1,
u = 89 f1+ f2 2T2f3,
o 1
V=TT —Uf1+mf33

po——U(flJrf{”)— sl + 52 (o (1))
(B 8) - 5o (-ons; —9f1’f;’ 31161

AT RN B G ATV

alU <f1f1 +2f1fy + fufy )

5 (55 =) + C”U( 215+ 2 fy+ il — 1)

- Sp+ G () - L
o (nh 4 55).

2‘“U (385 +2715) +

2
e Sh+ 22 (P (f{')2>+;3fé

+20¢1U (

2f1f2 flfz) (fff; flf;).
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2.3 Graphs and Discussion

2.3.1 Velocity Field

Figures 2.2(a — ¢) show the behavior of velocity for the variations of the involved parameters.
It can be observed from figures 2.2 that the velocity of the fluid rises when the velocity of the
plate and second grade viscoelastic parameter increases. Because the plate velocity reduces
the friction and causing to increase the flow in radial direction, also the viscoelasticity help
to reduce the resistance in the fluid causing to increase the flow. The fluid flow in reverse
direction with the growing values of second grade parameter when the contact angle is [0, 7 /4]
and[r/2,27/3]. The plate velocity causes to escalate the angular velocity in clock wise direction

that can be observed due to negative values of velocity.

2.3.2 Pressure Distribution

Pressure near a corner varies due to variations in different parameters which is shown graphically
in figures 2.4. The effect of second grade parameter and plate velocity on pressure is shown in
figure 2.4 which explains that viscoelastic nature of the fluid and plate velocity help to build
the more pressure in the region [r/4, /2] but due to high speed and sharp corner the pressure

drops in the region [0, 7/4] and [7/2,27/3].

2.3.3 Normal and Tangential Stresses

Figures 2.5 explain the graphical behavior of normal and tangential stress to the plate against
different parameters. The impact of viscoelastic fluid parameter on normal and tangential stress
shows that when viscoelastic fluid parameter increases then viscoelastic forces become dominant
near a corner and rate of deformation become high which results to increase the stress near a
corner which leads to a rise in normal and tangential stress. Figures 2.5 demonstrate the effect
of plate speed U on normal and tangential stress which explains that the velocity gradient
enhances as the plate moves with high speed so the shear rate increases and as a result normal

and tangential stress also rises.
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Fig 2.5(a — b) :Variation in tangential stress T; for ajand U.
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Chapter 3

Inertial and leakage effects on

viscous fuid flow near a corner

This chapter deals with two dimensional , in-compressible flow of second grade fluid between
two intersecting walls through a specific angle. Inertial and leakage effects which are already
discussed by Riedler and Hancock [21, 22] for Newtonian fluid but in this chapter, we will discuss
these effects simultaneously for second grade fluid near the corner. Mathematical model of the
problem provides a complex system of non-linear partial differential equations which are solved
using Langloi’s approach. The resulting boundary value problems are solved by inverse method.
Mathematical results for velocity, pressure, stream function, normal and tangential stresses are

found in explicit form and displayed the impact of emerging parameters through graphs.

3.1 Governing Equations

Consider two dimensional , incompressible, second grade fluid flow near a corner between two
rigid walls that intersect at a constant angle 8,,. Assume that the liquid is moving with wall
velocity eU at 8 = 0 but fluid and walls are at rest at § = 0,,. We further assume a mass

source(or sink) of strength @ at the apex corner due to leakage.
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Fig 3.1: Corner flow geometry

The governing equations of motion for an incompressible, steady state, second grade fluid, in

the absence of body forces are as follows:

V.V =0, (3.1)
p(V.V)V =div T, (3.2)

where T is briefly explained in Eq.(2.3) — (2.6) .
For steady plane flow in polar coordinates, one can choose following velocity and pressure

fields.

V=u(rb)e +v(r,0)ey, p=p(r6). (3.3)

After using tensor and vector properties Eq.(3.2) can be written in the following form:
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p(V.V)V = —Vp+pudivA; +ap (div((V-V)A;) +div(A; (VV))

+ div ((VV)T A1>> + an div (Ag)?. (3.4)

The following properties can be used for further simplification:

div (V- V) Ay) = (V- V) div A + div (A1 (VV)T) , (3.5)
div (A1 (VV)) = — div (Al (VV)T> + div ((A1)2) , (3.6)
div ((VV)7 A1) = (VV)" div Ay + A (V (VV)T> , (3.7)

(V-V)V:V’?V’Q—VX(VXV). (3.8)

After using the above identities, Eq.(3.4) takes the following form:

V2
p <W2| -V x (V x V)) = —Vp+pdivA; +a; (V-V)divA;

(v divA; + A, (v (VV)T))

+ (a1 + ) div (A})%. (3.9)

Now, component form of above equation can be written as follows:

r— component of inertial part:

2
P (V ‘2V‘ —V x(Vx V)) =p <;§ (u? +0?) — vw) , (3.10)

r

0— component of inertial part:

p(v’;[‘z—Vx(VxV)>

where, vorticity function w is defined as follows:

0—p<2rae(u +v)+uw>, (3.11)
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w10 (3.12)

) Op pow (3a1+2a2) 0 2
(divT) ar 1 o0 gy (r(A?)
0 0 wuod 10
o2 o( 0 uwoy 10 .9
+a; (—vViw) + B <U8r 7“89) e w (w?), (3.13)
60— component of dynamic part:
) 1 6p 8w (Ba1 +2a3)1 0
(divT), = - ~59 THG T 1 790 (757“ (A1) )
10 0 wuo 190

After using Eq.(3.10) — (3.14) , momentum equation (3.9) takes the following form:

r—component of momentum equation

LO 22y _ O pdw  (Bar+209)
<28r(u +v%) vw> - Or T8¢9+ 4 8r< Al)
A v2 9 (0 ud 19 o
+aq (—vV w)+8r (var r89> 55y (w?), (3.15)

or

0 3 2 0 0 0 1
— <p (u® +0*) +p — (B +203) (tr(Al)Z) —a1gs <U8r :89) w+a1§( 2))

= pow — %—w + oy (—vV%) , (3.16)
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f— component of momentum equation

1 0 9 9 _ _18}? Oow (3a1+2a2)1 0 9
p<2ra.9(“ +”)+W> = et g (A7) F e (uVR)
19 (0 ud 118, ,
+7’69<8r_7“80> “2rag ) (317
or

0 3a1 + 2 0 5] 0 1
o (B 4y p= B2 () —an 2 (o] -2 Dby ()

= —puw + ug + a1 (uViw). (3.18)

Now, from Eq.(3.16) and Eq.(3.18), we will define following modified pressure h (r, )

h(r,0) = g (u + o ) (3a11—2ag) (trA%) - (Uar — :fa) w+p(r,0)+ %w2, (3.19)

where,

ou 10u v v\?
2 — — —
trdi =38 (87“) 2 (r 20  or r) ' (3:20)

Now using modified pressure h (r,0) in Eq.(3.16) and (3.18) one can write the following form

oh 1 ow

p— 2 —
o — pow + 90 + a1vViw =0, (3.21)
10h Ow 9
~ 50 + puw — by, auVow =0, (3.22)

where,

92 10 1 92

2—7 PR— —
Vi= Or? +r8r+r2802'

(3.23)
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Following non-dimensional quantities are defined for further analysis:

7’/ - 1 u/ - E 'Ul - E / - p h/ o h
- R7 - U7 - U7 p = pU27 pU27
’ OélU ’ OéQU ’ TR RU
— - T =~ Re= —"_. 3.24
o3 MR, o’ ,UR, ,UJU7 e v ( )

After using the above non-dimensional quantities in Eq (3.21) —(3.22), one can get the following

form
oh 110w 1 )
E VW + §;% + 7041"Uv w =Vu, (325)
10h 10w 1 )

To reduce the number of unknown functions from above equations, we introduce the following

relation of stream function 1 (r, 6)

1 811} oY
roo’’ " o (3:27)
After using stream function, Eq(3.25) — (3.26) take the following form
oh O 10 o
fe <87’ “or WM) rog (V0) + e ( > v (3:25)
1Oh 100 Y L D (g A
fe (r 96 a0 " w) Ta (VOIS (ae) =0 (3.29)
after eliminating A (r,6) from Eq.(3.28) and Eq.(3.29), we have
B o 0 V2 - 4 oY 0 v - B
7 (G0 (720 = Gy (7)) = () + 5 (53 (7'9) = g (749 ) =
(3.30)
B.C’s in stream function are given as follows
B 10y B
$=0, ~So=cU at 6=0, (3.31)
B 10y B
P = eQ, 50 =0 at 6=0,. (3.32)
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3.2 Methodology

To solve the above problem, we will follow the Langiois recursive approach which is briefly

explained in chapter. 2

3.2.1 First Order Problem and its Solution

oY 110 _,
_ - Y 1 —
or Rer@@v v 0,
oM 1 9 _,
g 2 Y 1 —
00 + Rerﬁrv ¥ 0,

where,

A (r,0) = pM (r,0).

Eliminating 2(!) (7, 0) from Eq.(3.33) and Eq.(3.34)

vy = .
with B.C’s
(1)
P =0, iagg =U at =0,
(1)
P = Q, %&g@ =0 at 0=0,.

One can consider ¥(!) as suggested in Ref. [20] in the following form:

M =Urf1 (6) + Qa1 (0).

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Using above value of (") | in Eq. (3.36)—(3.38) , one can get the following fourth order boundary

value problems in terms of fiand g¢;.

P42 + A =0,

fi=0, fi=1at 6=0,
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fi=0, fi=0 at 0=0,.

Also,

g’ +4g, =0,
g1 =0, g,1:0 at =0,

g =1, g/lz() at 0 =10,.

(3.42)

(3.43)
(3.44)

(3.45)

After a significant amount of effort, solutions of above boundary value problems are obtained

and are given as follows:
f1(0) = Bsinf + Clcos + Dfsin 0,

and

g1 (0) = 2K sin* 0 + N (sin 20 — 20) .

Where B,C, D, K, N are defined in Appendix.

Now radial and tangential velocity in terms of f1 (0), and g1 (0) are as follows:

199 Q.
m_ = — x
v =0 —Uf1+rg17
o)
U(l):—%:—[]fl.

Using Eq.(3.33) — (3.35), we obtain pressure field in the following form:

1 Q "

1 U ’ "
PV (r,0) =po— —— <f1 + f1 ) T 5Rer291

Re r

where pg is a constant.

Finally, we obtain the normal and tangential stresses in the following form

2 /
Tr(1}) = —Rep(l) - T*QQQL

2 ’
Te(;) = —Rep® + ﬁQQL
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(3.47)
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(3.49)

(3.50)

(3.51)

(3.52)



(1)_U " Q "
T, —?<f1+f1)+772917

(3.53)
3.2.2 Second Order Problem and its Solution
on® gy _, 110 1 oy
_ (ORI v 2 AN C) B 4,,(1)
o or Rerag’ © TR™M oy VY0 (3:54)
10n®  19pWM _, 10 1 oy Oy
Z _ - D L = Ty -2 4,,(1)
a0 r a0 YV TRear ¥ TRer a0 VU0 (8:55)
where,
1 2 2 1 /301 + 2 1 g w9
(2) 2 (@ M) _ & (2811 242 2y - meZ _2 771,
P () 2<“ v ) Re< 1 ><”Al ) Re ! (” o r o00)”
1l
(2) Halibet PNCYP;
+p' (1, 0) + Rea W (3.56)
Eliminating 2 (r,0) from Eq.(3.54) and Eq.(3.55), we have
.0 w(l)’v2¢(1) o ¢(1),v4¢(1)
v4¢(2) — Re < ) —i—ﬂ ( >, (3.57)
o (r,0) r o (r,0)
with B.C’s
10yp®
2 — - — =
WP =0, =0 at =0, (3.58)
10y®
(2 — - — =
WP =0, ~To =0 at =0, (3.59)
where,

o(405740) _pu00(T) _puro(es)
o (r,0) T or B

06 00 or . (3:60)
The second order system (3.57) — (3.60) contains a fourth order PDE. To change this PDE into

a system of ODE, one can consider the stream function @ in the following form

40



¢ (r,0) =Re (U £ (0) + 1UQS3 (0) + Q*fa (0)) + n (U292 0+ 245 0) + ?2294 <0>) :

(3.61)
Using Egs.(3.39) and (3.61) in Eq.(3.57) — (3.60) ,we get the following fourth order boundary

value problems in terms of fs, f3, f4, 92,93 and g4 .

Wy 4f) = (By + Bs0) sin 20 + (By + B40) cos 20, (3.62)

fa=0, f,=0 at 0=0,0=0,, (3.63)

W4 2fs 4 f3 = (T1 + T50) cos 30 + (T + Tsh) sin 30 + T cos O + Ty sin 6, (3.64)
fs=0, f3=0 at 6=0,0=0,, (3.65)

gy +4gy =0, (3.66)

g2=0, g,=0 at 6=0,0=0,, (3.67)

g% + 10g; +9g3 = 0, (3.68)

9g3=0, g3=0 at 6=0,0=0,, (3.69)

gy’ +20gy + 6494 =0, (3.70)

94=0, g;=0 at 0=0,0=0,. (3.71)

After a considerable amount of work, solutions of boundary value problems (3.62) — (3.65) are

represented as follows:

f2(0) = Ry + Rof + (R3 + B50 + B76%) cos 20 + (Ry + B0 + Bs6?) sin 20, (3.72)
f3 (9) = (Al + A3 + 3392) cos 6 + (A2 + A40 + B492) sin 6 + (Bl + 359) cos 360
=+ (BQ =+ B69) sin 39, (373)
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fa(0) = D1+ D10 + (D3 + F16) cos 20 + (D4 + F20)sin 20 + Fzcos46 + Fysin46.  (3.74)

As in boundary value problem (3.65) — (3.71) , equations and boundary conditions both are
homogeneous,so g2 (0) = g3 (#) = g4 (0) = 0.

Where §;,1;, I, Ri, Ai, B, and D; are constants that are given in Appendix, where i =
1.4,7=1..81=1..6.

The velocity components can be obtained as follows:

1093 , , 2,
u(2) — ; a0 = Re (TU2 f2 + UQ f3 + 7 f4) ; (375)
and
2)
02 = _oT Re (—2rU%f> — UQf3) . (3.76)

or

From Eqgs.(3.54) and (3.55) and using Eq.(3.56), we obtain pressure field of order two and is

given as follows:

2
»? (r,0) = (Uzcl O1ogr — 20y 0) - L0 (9))
1 U2 1 UQ 1 Q?
Here C (6) are defined in Appendix , where [ = 1...6.
Finally, we obtain the normal and tangential stresses as well

U? Uua Q?
Y = ~Rep® +ReO1 (0) + 502 () + 5703 (0) + 7704 (0), (3.78)

U? U 2
Tjy = ~Rep®™ + ReOs (6) + 506 (0) + 7?07 (0) + %08 ), (3.79)

here O; is defined in Appendix, where j = 1...8.
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7% = Re <U2W1 0) + UTQWQ (6) + ijwg (9)> + (3-80)

2 2
%m (6) + %Q% (0) + %Wﬁ OF (3.81)

here W is defined in Appendix, where [ = 1...6.

3.2.3 Third Order Problem

on® gy _, oy 110
_ @ _ 9 o2, L L0 o)

or or VY or ¥ Rer 00 ¥

1 oMy ey WPy )
10r®  19ypM 1093 10
1 1 @ _ 2,0 4 9 52,03
" 00 a0 ¥ ¥ a0 YV T Rear Y ¥

1ag (0@ _, 1) oy _, @\ _
tao (ae viplh 4 =-vi® | =0, (3.83)

where,

1 o u? o 1 o uM o
_ Y =Y 1 _ - me =Y (2)
Real (U or T &9) v Rea1 <U or r 00 v

Lo @2, (3.84)

Eliminating 2®) (r,6) from Eq.(3.82) and Eq.(3.83), we have
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vip® = —Re (8w(1) 9 <V2¢(2)> . @ 0 (V%pﬂ)) oy 9 <v2w(2)>

r or 00 or 00 00 or
9 () oy (a5 (T) gy (7)
~ o0 or T o 0 o0 or {3.85)
with B.C’s
1098
(3): — = =
¥ 0, —=5 =0 at 0=0, (3.86)
10y©®)
®3) _ L _ _
¥ 0, — =0 at 0="0, (3.87)

The third order system (3.85) — (3.87) contains a fourth order PDE. To change this PDE into

a system of ODE, one can consider the stream function ¥ in the following form

&) (r,0) = —(Re)? (r*Uf5 (0) + r*UQfs (0) + rUQ f7 (6 + @ f30))

2 3
+mmovmwwﬂm%@+Ufm@+T§%@) (3.85)

Using expressions for first, second and third order stream functions, pressure fields, velocity

components, and stresses computed in previous sections, one can get the following solutions .

¥ (r,0) =D + @ 4 B, (3.89)
u(r,0) = u® 4 u® +u®), (3.90)

v (r,0) = v 4 0@ 4o (3.91)
p(r,0) = const + p 4 p@ 4 p®) (3.92)
T, = Tt(l) + Tt(2) + Tt(3)’ (3.93)

T =T + TP + T, (3.94)
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Tpo = Ty +Tog + Ty . (3.95)

3.3 Graphs and Discussion

3.3.1 Velocity Field

Figures 3.2(a — ¢) show the behavior of velocity for the variations of Reynolds number, leakge
at the apex and plate velocity. It can be observed from figures 3.2 that the velocity of the fluid
rises when the velocity of the plate, Reynolds number and leakage parameter increases. Because
the plate velocity reduces the friction and causing to increase the flow in radial direction, also
the dominance of inertial forces reduce the resistance in the fluid causing to increase the flow.
The leakage at the apex also reduce the resistive forces and vortices near the corner that makes
the flow fast.

Figures3.3 shows that angular velocity also increases with the growing effect of leakage,

moving boundary and leakage but the angular flow is in clockwise direction.

3.3.2 Pressure Distribution

Pressure near a corner varies due to variations in second grade parameter, plate velocity, leakage
at the apex and Reynolds number which is shown in figure3.4. Figure 3.4 shows that when
inertial effects of fluid become dominant internal pressure reduces due to fast movement of
the fluid particles but the leakage, plate speed and viscoelastic property of the fluid causes to

enhance the pressure near corner.

3.3.3 Normal and Tangential Stresses

Figures 3.5 explain the graphical behavior of normal and tangential stress to the plate against
second grade parameter, plate velocity, leakage at the apex and Reynolds number. The impact
of viscoelastic fluid parameter on normal and tangential stress shows that when viscoelastic
fluid parameter increases then viscoelastic forces become dominant near a corner and rate of
deformation become high which results to increase the stress near a corner which leads to a
rise in normal and tangential stress. Figures 3.5 demonstrate the effect of plate speed U on

normal and tangential stress in the presence of inertial forces and leakage which explains that
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the velocity gradient decay and enhance in different regions as the plate moves with high speed
so the shear rate increases and decreases in different regions and as a result normal stress
in angular direction rises by the dominance of inertial forces but shows dual behavior due to
moving boundary. and tangential stress also rises. The normal stress in radial direction decays
by the dominance of inertial and leakage effects but normal stress enhances by the plate velocity
and viscoelastic effect.

The effect of the Reynolds number on tangential stress is shown in figure 7 which describes
that the inertial effects become dominant over viscous forces due to a rise in Reynolds number
then the shear rate enhances near a corner and this leads to a rise in tangential stress but in a

reverse direction
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Fig 3.2(a-c): Variation in velocity components u for Re, U, Q.
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Fig 3.3(a-c): Variation in velocity components v for Re, U, Q.
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Fig 3.6(a-h): Variation in normal stresses 1, Ty for Re, U, Q and ay.

3.4 Conclusion

In this work, we have emphasized the importance of inertial and non inertial forces of a two
dimensional second grade fluid with the effects of leakage at the apex of corner. The mathe-
matical models of second grade fluid are represented by the set of intricate non-linear partial
differential equations and their solutions are obtained by Langloi’s recursive technique using
no slip boundary conditions. The analytical results of various flow characteristics like velocity
profile, pressure, and shear stresses are calculated in this study, and graphical results for these
flow characteristics are observed for different parameters. It is concluded from graphical results
that radial component of velocity rises with the extending values of Reynold’s Number (Re),
plate velocity (U), and leakage parameter (Q)). It is also observed that anngular component
of velocity also rises when there is increase in Reynold’s Number (Re), plate velocity (U), and
leakage parameter (@) but in clockwise direction. Pressure near a corner varies due to variation
in involving parameters. Pressure reduces due to fast movement of the fluid particles but other
parameters causes to enhance the pressure near a corner. This research also concludes that wall

shear stress rises with the rising values of all emerging parameters.
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3.5 Appendix

Ey = U? [on (=20D% + 20C* + 8BC) + ap (—2B* — 6BC — 2C* + 2D?)]
Ey = U?[a1 (—=8BD — 40CD) + a3 (6BD + 4CD)],
E3 =U?[oq (160D) + az (~4BD — 120D)],
Ey=U?[oq (8C* = 8D?) + a3 (6D* — 6C* — 4BC)]
Es = U? [ag (2C% — 2D?)] , Es = U? [ (—4CD)],
Er = U? [205 (C* + D?)] , Bs = U? 205 (—BD)] ,

_Ev 5Bs 51Es 8Es5
=76 64 38475 334"
_—B» 5By 5lE; _ —8E
7276 T 64 T 3s4 6T T3ga
_ 2By 30Es _ Es Iy
VBT 64 384T 24 06°
_2E, 30E; jo8
V4= -

64 384 ' 187 96°

V = 7104 €08 20, +7501 5in 2047302 cos 20, +7,02, sin 20,,+7502, cos 20,4603, sin 20, +7,03 +50% |

Vi = 71(cos20y, — 20y, sin20,,) + 74 (sin 26, + 20, cos 20,,) + 3 (29w cos 20, — 20121} sin 29w)

+74 (20, sin 260, + 262 cos 20w) + Vs (30,21} o8 20, — 262 sin 20.) + Ve (30121, sin 20, 4+ 263 cos 20.,)
+37707, + 450y,

Ur

2V —2V10y — (71 — V1) sin 260y, + 2 (V — v10,,) cos 20,,]
4 (cos 20y, + 0, sin 26, — 1) ’

U — i+~ — (Vi +7p)cos 20, — 2V sin 20,
2 2 (cos 26y, + 0, sin 26, — 1) ’

U = —Us = —1[2V = 2V10y — (71 — V1) sin 20y, + 2 (V — 7,04,) cos 20,,]
8oL 4 (cos 20y, + 6, sin26,, — 1) ’

g Vi+ (Vi —7;)cos20, +2(V — v5) sin 26,,
1T 4 (cos 20y, + 0,,sin 26, — 1) ’
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Ri — 2X —2X40, — (B5 — X1)sin20  2(X — B50u) cos 20y,
1=y (cos 20y, + 0, sin 20, — 1) 4 (cos20y, + 0, sin 20, — 1)’

X1+ 85— (B5 + X1) cos 20, — 2X sin 20,
- 2 (cos 260y, + 0, sin 20, — 1) ’

Ry

_2X —2X30y — (Bs — X1)sin20 2 (X — B50uw) cos 20,
4 (cos 20y + 6, sin 26, — 1) 4 (cos 20y, + 0, sin 20, — 1)’

R3 =

R
1Ty (cos 20y, + 0y sin 20, — 1) 4 (cos 20y, + 0, sin 20, — 1)’

B sint 6, — (6, — sin 0y, cos Qw)z — 262 sin? 4,

= (93) — sin? Hw)z

I

8, = 2 (0 — sin By, cos b,,) 4 (0y —sinby, cos ) sin? 6,
? (62, — sin? 9w)2 e (62, — sin? 9w)2 ’

w

B 2sin* 6, — 2 (0, — sinﬁwcosﬁw)2 Bs = & _ EB

Pa 16 64

1

3*2547

5 1
Be = — <f(25+6453) ,Br = 3353758 =-

X = B50u c08 20y, + Bghy sin 20, + 8702 cos 20, + B0 sin 20,

X1 = f5cos20y — 2850y, sin20,, + B¢ sin 20, + 2840, cos 20, + 23,0,, cos 20,, — 2ﬁ79?U sin 20,

42830, sin 20, + 2502 cos 20,

Al = _B17
B0, + (3B2 + Bs) 0%0 =Y (sinfy, + 0y cosby)  (0,Y1 + Bicosby)sin by,
Ag = — 7 2 - 2 _ in2 ’
(67, — sin*6,,) (67, — sin®6,,)
4 B10,, + (3B + Bs)sin? 0, — Y (sin 0, + 0, cos 0,,) N (0,Y1 + By cosBy,) sin 6y,
3 pu—

(9121; — sin? ) (0120 — sin?f,,) ’

s = By sin? 0, + (3By + Bs) (0, — sin,, cos0,,) B Y1 (0 cos by, — sinby,) + Y0, sin b,
T (9%0 — sin? Ow) (93, — sin? Gw) ’

1 3 1 1
Bi=—|T1+=-T5)|,B3=—=15,By = —-T,
1 64<1+26>,3 83’4 84’
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1 3 1 1
By = 61 (T2 - 2T5> , Bs = aT5736 = @T(S,
T, = —8BK —4CK — 6DN,
Ty = 8BN + 2CK + 8CN — 6DK,
T3 = —4CK +6DN, Ty, = CK — 4CN + 2DK,

Ts = 8CN — 8DK, Ts = SDK + 8DN,

B 9% o sin? 6, D= (0 — sin @y, cos O,,)
02 —sin?6, 0% —sin?6, 62 —sin?6,,
K M= 2sin? 6,
B  4sin® 0, + sin 26, (sin 260, — 260,,)’
N oL sin 20,

T2 sin® 6, + sin 20,, (sin 260, — 20,,)’

Y = Bjcos 30, + Bssin 360, + 33912” cos 0, + B46%U sin 0, + Bs0,, cos 30, + Bgb,, sin 36,,,

YT, = —-3B;sin360, + 3Bscos 30, — 339121; sin 0., + 2B30,, cos 8, + 34931 cos 0, + 28B40, sin 0, + Bs cos 30,

—3B50,, sin 30, + Bg sin 30,, + 3Bg0,, cos 30,

S1=16KN, Sy =—16N? S3=—16KN, Sy =8 (N? - K?),

1 1 1 1
Fi=—S, Fo=——05, F3=—8 Fy=—
1 1652’ 2 1651’ 3 19253, 4 19254,
D — 4(F3+ Z)sin? 0, — 20,7, B (Fy + 4Fy) (sin 20, — 26,, cos 20,,) B (4F30,, — Z7) sin 26,,
17y (cos 20y, + 0, sin20,, — 1) 4 (cos 20y, + 0y sin 20, — 1) 4 (cos 20y, + 0, sin 20, — 1)’
Dy — (Fy +4F4s+ Z1) (1 — cos 20,,) (2F3 — 2Z) sin 20,
277y (cos 20y, + 0y sin 20, — 1) 4 (cos 20y, + 0, sin 20, — 1)’
4(F3 — Z)sin? 0, + (204, —sin20,,) Z1  (Fy + 4F)) (sin 20, — 20, cos 20,,)
D3 = - + ; )
4 (cos 20y, + 6, sin 26, — 1) 4 (cos20y, + 0,y sin20,, — 1)
(Fy +4Fy + Z1) (1 — cos 20,,) (2F3 — 2Z)sin 20 2(Fy + 4Fy) (04 sin 260,,)

17y (cos 20y, + 0y sin 20, — 1) 4(cos20y, + 0,y sin20, — 1) 4 (cos 20y, + 0, sin 20, — 1)’

Z = F10,, cos 20,, + F50,,sin 260, + F3 cos460,, + F4sin46,,,
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Z1 = Fycos260,, — 2F10,,sin 20, + F5sin 20, + 2F50,, cos 260, — 4F3sin 460, + 4F4 cos 40,,,
Cr(0) = [()+ Afi + 5 +41),
C2(0) = [ frg) + fi' + Js+2h101]
" ’ 2
Js (0) = [f4 + (91) } )

A
2

2
Cy(0) =an [(f;) +2f1f1 +

() Rl (1) e |+ () 420

flgw 4 ” o ’ "o "on
31 +§f191 + figr + gt t2fia

Co(6) =ar gt + (51)" +6 (51)"] + e | (a1) "+ (1))

2
0:0) =2 |v*f; - %),

05 (9) =

+ 2ap [flgl + f1 91] ;

02.(6) =2 |(*+ (A1) 2uf] |+ a2+ (1) 2087
03 0) = 201 25161 + A1l + 24047 + 30 o+ A4

04 (0) = 21 [(9'1')2 +4 (91)2] + [(9'1')2 +4 (91)2] ,

’ Q2 ’
Os5(0) =—-01(0) = -2 [UZf2 — T4f4} ,

00.(0) = az | (1% + (7).

non

07 (0) = -2 [2f{g'1 + flg'{} + 207 [fl 91} ,

Og (0) = a [(9;)2 +4 <9/1)2] ;
W) = £ —2£] W2 (0) = [fa+ f5]. Wa(0) = [fs+ 5.
Wa(0) = a1 [=fify = 20181 = Af)'].

Ws (0) = a1 {f{/gi + figy — 2191 — fig1 } :
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W (0) = aa [—9,19,1,} )

u . 8BR3 — 12Bf3, — 8Bf; — 24Bfg + 96 Bfs — 24CR3 + 52C 3, + 40C 35
1= Q1 5
+24CBg + 96CBg + 24DRy — 24DRy — 52D, + 40DB, — 24DB; + 144D,

- 8D Ry — 36Dy — 112D85 + 96D + 672D 85 + 8C Rs + 8C Ry
2 = 1 ;
13603, — 11208, — 96C 85 + 48C 3, + 8BS, — 24B3, — 24Bfs + 48B3,

e — gy BB~ 485, — 150D +120D; + 8B, — 3655,
3 =01 3
H96B + 8C3y + 48C 35 — 18008 + 96C B

My = onU (8DB3 — 60D B¢ + 192D + 8BB5 — 8C 3, — 60C 35 — 24C83,) ,

M5 = O(lU (8D55 - 8066 - 160/88) y

Mg = oqU (=120DRy + 248DB, + 168DB5 — 212D, + 120CRs — 248C 35 + 168C 3

—212C B, + 24BRs — 84BB, + 7283 — 168B33)

My; = ayU (24DR3 — 204Dy — 592D 5 + 960D 3¢ + 24C Ry + 204C3; — 592C 53,
—960C 35 + 24BB, — 168B8,)
Mg = ayU (24DB; — 288D, — 1140DB5 + 24C B, + 288C 35 — 1140085 — 252884 + 24B35) ,
My = oy U (24D — 372D ¢ + 24C S, + 372C 5 + 24B35) ,

Mo = aqU (24Df5; + 24CP,),

24 (6DRs — 11DBy — 12D By + 6DBg + 4DfBg) — 2 (4BRy + 16BRy + 48B3, — 8385,
My =oqU | —96BBs — 12C Ry + 48C Ry + 80C3; — 104CB, — 96CB5 — 72C B, + 120C Ry — 248CB, | -
—168C 85 + 120D R3 — 248D 35 + 168D + 24BRy + 8483, — 168B3, — 216 B3;)

8 (4Bfy + 24Bf; — 66B4) + 8 (—DRy + 4D Ry + 30D, — 88Df, — 132Dp;
Mz =oqU | —6DB; — 2CRs + 21C By + 60CB; — 108C 35 — 84CBs — 6CRs + 51C B, + 148CH; | -
—240CBg + 6DRy + 51DB, — 148DB, — 240D + 683, + 42885 — 126 BB;)
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Mis = 801U (4BB, + 368835 — 3BB; + 4D By + 42DBs) ,

My = 801U (ABBg — 4BBg + 4DB4 + 54DB5 — 3D B, — 2CB5 + 39C B — 24C B4
—6CB5 + 39CBs + 6DBy + 93CB5 + 6B8g) ,

Mis = 8aU (4DBg — 4DBg — 2CB5 — 6C S5 + 6Dfg) ,

M 10M. 15M, M 15M
Ny = (22 3 . 5 Mz 1)
16 256 512 128 1024

30My 4M13+30M15
1024 )’

2M,
N, = - -
2 ( 64 512 512

<16 Mz 24Ms5 8M14>
5= 5 om0 + - ,

3256 512 1024
8M4 8M15 32 M5
= —_— N = — - =
4 <512 T 102 ) T\ Bz )
No (M, 3368Ms  19094336Myg  44Myp | 126896y,
67\ 48 9261 1361367 882 120654 )

353640My  924M;3 n 505806 M 15
18522 2722734 )’

—21 My
N7< 5 441 64827
990192Mio | 646804
1361367 = 129654 )’

No _ (3087 My 135828Mus
9 4 64827 2722734 )’

[ —147Mg
8 9261

N _ (64827 Mo
10— 5 1361367 )

% _ 15M4 I M11 B 10M13 i 15M15
64 512 32 512 1024 )’

4Ms _ 30M5 _ 30M14

256 512 1024 /)’

8My 16 Myz  24Mis
Nyg=(—aty2218
13 <512 3512 1024 )

_ [(—8Mys  8Myy (32 My
M= ( 512 1()24> 15 = <5 1024) ’
19094336M15>

Mir  3368Mi3
96 18522 2722734

—44 M- 126898 M,
Nig = T 2
441 64827

58



Py

Noo — —924M8+5O58060M10 Mz 35364M14
7 9261 1361367 882 129654 )’

64827 18522 2722734

<6468M9 147M;3 990192M15>
Nig = ,

—135828My9 ~ 3087 My
Nig = + )
1361367 4 129654

No _ (64827 Mis
7\ 5 2722734 )

(N10y + Nob2 + N303 + Nyby + N503) sin 0y, + (Noby + N762, + Nsbo, + Nob:,
+N1063,) sin 30y, + (N110w + N1202% + N13b3, + N1aby, + N1505,) cos by,

+ (N160w + N176% + N1gbs, + N1g0y, + Nagb5, ) cos 30.,,

(N10y + Nob2 + N303 + Nyby + N503) cos 0y + (N1 + 20, No + 302 N3 + 4605 Ny
+504,N5) sin 0y, + (Ng + 20, N7 + 30% Ng + 405 Ng + 503, N1o) sin 30, + (3Neb.
+302 N7 + 303 Ng + 307, No + 305 N1g) cos 30, + (N11 + 20, N12 + 362 Ni3

+4603 N14 + 500, N15) cos Oy — (N110 + N1262, + Nisbs, + N1abyy + Nis03,) sin 6y,
+ (N6 + 20,y N17 + 302 Nig + 4602 N1g + 507, Nag ) cos 30, — (3N160 + 302, N17

—1—39?1,]\[18 + 39iN19 + 362}]\720) sin 36,,,

(N11 + Nyg) (— 08 20 — 2 (cos aw)2) — P(—3sin30y, + sinf,,)

@ = (—6 + 16 cos 40,, — 4 cos 20,,)
Py (cos 30, — cosby,)
(—6 + 16 cos 40, — 4 cos 20,,)’

Qs = —Q1 (3co8 30y, — 3cosby,) + cos by, (N11 + Nig) — Py
2T (—3sin 36, + sinb,,)

Q3 = —Q2,Qs = —3Q1 — N11 — Nis.

)
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