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Preface

In this thesis, the center of discussion 1s some Limitations of soft set
matrices and 1ts uses The soft sets concept was expressed by Molodtsov in 1999
[17] This concept s used to solve some complications 1n the fields of economics,
engineering and environment because all these areas have some distinctive
uncertainties regarding these problems The concept of soft set 15 applied mn
fuzzy sets, intuibiomistic fuzzy sets, vague set, interval mathematics and rough
sets In this thesis, some discussion 1s also done on matnces, which have a
significant role m the vast field of engineering, economics and science But, the
old theory related to matrices 1s failled 1n solving the uncertainties, which are
caused due to maccurate circumstances Matrices have different properties
which include' commutative law, associative law and distnbutive law

In the study, the 1dea of soft sets is described by linking an advantageous
method with soft matrices This study also involves the Naim Cagmanis and S
Enginoslu [5] research which highlights the usage of soft set theory in more
precise manner He describes the different dimensions of 1ts applications
Imitially, with the help of rough sets, he gave the theory of soft sets 1n decision
making problems Xiao et all [27] had done a research highlighting business
competitive capacity based on soft sets Map et al, [13] defined the fuzzy set, as
the time passes a lot of work has done n fuzzy soft set The definition of soft
group was given by Aktas and Cagman [1]. They also made a comparison
between soft sets to the rough soft sets and fuzzy soft sets Subsequently, many
other researchers have done a lot of work on this concept and gave many other
theones related to the soft sets Roy and maj {25] have also done some work on
the applications and decision making problem Majumdar [16] introduced the
reduction of fuzzy soft set and then examine a decision making problem by fuzzy
soft sets The theory of the Rough sets 1s explained by Pawlak [23] for the
analysis of the data possibly with inconsistent information. This theory has been
used 1n many fields such as beauty contest, pattern recognition conflict analysis
and switching circuits

In the light of above mentioned facts, we indicates some limitations of the
products of soft matrices given by Naim Cagman [5]. We pointed out that the
products of soft matrices are not binary It does not satisfy many laws which
mnclude Closure law, associative law and distributive law Keeping 1n view this
drawback in this thesis we have introduced new products of soft matrices, which
are binary We have also shown that accociative laws and distributive laws also
holds

Structure of the Thesis

The thesis is organized chapter wise as follows



Chapter 1:

This chapter 1s introductory and sets up the background for the problems taken
in the thesis Semirings, Soft Sets, Soft-Union-Intersection Surn, Soft-Union-
Intersection Product and related results are discussed

Chapter 2:
In this chapter the article “Soft matrix theory and its decision making” iIs

reviewed

Chapter 3:

In this chapter, keeping n view the drawbacks and hmitation such as the
products of soft matrices defined in the paper reviewed are not binary and that
associative and distnibutive laws are not satisfied, we improved the products of
soft matrices and named them B-products of soft matnices It 1s also shown that
the defined products are binary Further 1t 1s also shown that these products now
satisfy the associative laws and distnbutive laws as well



Chapter 1

Preliminaries

Thus chapter provides the essential defimtions and preliminary results, which are useful
for our subsequent chapters For undefined terms and notions we refer to ({1} [2] [3].
[4] 1], [81, [10], (14]. [26], [15), [7). [23]. [25]. [27])

1.1 Semigroups

Let S be a non-empty set and "+ be a binary operation on S Then (S, =) 15 called

a semigroup 1f this operation 15 associative, that 1s
ax{bxc) = (axb)*c for all a,b,c€ S
A semigroup (S, #) 1s called commutative 1f

axb=bx*a for alla.be &

1.1.1 Definition

Let (S, #) be a semmgroup If there exists an element ¢ € S such that
o =cxaq1=—4a forallaES.

then e 15 called the wdentity element in § and (S, *) s called a monod

An clement z € S 15 called 1dempotent if z ¥z = £ If every element of 5 1s
idempotent then we say that S 1s 1dempotent

Usually instead of wniting (S, *) we write S & instead of wniting x »y we write ry,
forallz,y € 8§
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1.1.2 Examples
1 (N, +) 1s a sermigroup

2 Let § = {a), ag, a3, } such that » be defined on S by a,*a;, =a Then

{S,%) 18 a semigroup
3 (Np, +) 15 a Monoid, where Ng = NU {0}

4 {(Z, ) 1s a Monod

[T

5 {0, 1} 1s a monoid under

6 For any set X, (P(X), U) and (P(X), M) are monoids

1.2 Semirings

A semunng 15 an algebraic system consisting of a non-empty set IR together with two
binary operations called “addition” and “multiphcation” (denoted by '+" and "

respectively) such that (R,+) and (R, ) are sermugroups and multiphication distributes
over addition from both sides, that 18

a (b+c)=a b+a ¢, and (b+c) a=b atc a

foralla, b,ce R

1.3 Soft Sets

Soft set theory was introduced by D Molodtsov [17] It 1s a new approach for the real
world problems i the field of economics, engineering, management etc Molodtsov’s
soft set theory was proposed for dealing with ambiguty He alsc defined some opera-

tions for soft set theory

1.3.1 Definition [17]

Let U be an mitial universe , £ be the set of all possible parameters under consider-
ation with respect to U and A be a subset of £ Then a parr (F, A) 1s called a soft
set over U, where F 1t a mapping given by F A — P(U)

For e € A, F(e) may be considered as the set of e—approximate elements of the
soft set (F, A)

Parameters are often attributes, characteristics, or properties of objects m soft

sets For example big, airy, tall, cool, hot, wooden, expensive, cheap etc
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In other words, a soft set over U/ 1s a parameternized family of subsets of the universe
U For ec A, F(e) may be considered as the set of e—approximate elements of the
soft set (F, A)

1.3.2 Definition [15]

For two soft scts (F. 4) and (G, B) over a common umverse {/, we say that (I A) s
a soft subset of (G, B)

1 AC B and

2 Fle)C Ge)forallec A

We wnite (F, A)C(G, B}
In this case (G, B) 1s said to be a soft super set of (F, A}

1.3.3 Definition [15)

Two soft sets (F, A) and (G. B) over a common universe [’ arc said to be soft equal
if (F, A) 15 a soft subset of (G, B) and (G, B) 15 a soft subset of (£, A)

1.3.4 Definition (2]

Let {/ be an imtial universe set, E be the set of parameters, and ACE

1 (F, A) s called a relative null soft set (with respect to the parameter sct A),
denoted by 04, 1f Fla)=0forallac A

2 (G, A) 15 called a relative whole soft set (with respect to the parameter sct A),
denoted by 4, f Gla) =U for alla € A

The telative whole soft set with respect to the set of paramecters E 15 called the
absolute soft set over U and denoted by Ug In a sumilar way, the relative null soft set
with respect to E 1s called the null soft set over U and 1s denoted by $g

We shall denote by ¥ the umque soft set over U with an empty parameter sct,
which 15 called the empty soft set over U Note that B and B4 are different soft sets
over U and BaC04C (F. AYCUACUE for all soft set (F, A) over U

1.3.5 Definition [2]

Extended unton of two soft sets (F, A) and (G, B) over the common unnverse U s
the soft set {(H, C). where C = Au B and for all e € C,
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Fi(e) 1feec A-B

H{e)= ¢ Gle) ifecB-A
Fle)UG(e) 1fec AND

We wnite (F, A)Ug (G, B) = (H.C)

1.3.6 Definition [2]

Let (F, A) and (G, B) be two soft sets over the same universe U, such that ANB #

The restricted unton of (F, A) and (G, B) 1s denoted by (F, A)Ur{C. B) ands defined

as (F, A)Ur(G, B) = (H.C), where C = AnB and foralle € C, Hle) = Fle)uGle)
IfANB =0, then (F, A)Ur (G. B) =

1.3.7 Definition (2]

The eztended intersection of two soft sets (F, A) and (G, B) over a common universe
U, 1s the soft set (H, C) where C = AUB andforalle€ C,

F(e) 1fec A-B
H{e)=¢ G{e) 1ifee B-A
FeyNG(e) fe€e ANB
We wnite (F, A)Ng (G, B) = (H, C)

1.3.8 Definition [2)

Let {F, A) and (G, B) be two soft sets over the same universe U such that AN B #¢

The restricted wntersection of (F, A) and (G, B) 1s denoted by (F. ANz (G, B} and 1s

defined as (F, A)Ng (G. B) = (H, AN B), where H{e) = Fle)nGle) foralle ¢ ANB
f ANB =0then (F, A)Ng (G, B) =W

1.3.9 Definition (2]

Let (F, A) and (G, B) be two soft sets over the same universe L’ such that AN B # ¢
The restricted difference of (F, A) and (G, B) 1s denoted by (F' A) —-r (G. B) and
1s defined as (F, A} —x (G, B) = (H, AN B) where H{e) = F(e) - G(¢) for all
ec ANDB

If AnNB =¥ then (F, A} -g (G, B) =1y

1.3.10 Definition (2]

The complement of a soft set (F, A) 1s denoted by {(F. A) and 1s defined by (F,
A)® = (F°, A) where F¢ A — P(U) 1s mapping given by Fele) = U - F{e) for all
ec A
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clearly (F, A = Uy —g (F. A) and ((F. A))* = (F, A)

1.3.11 Definition [15]

Let (F, A) and (G B) be any two soft sets over a common universe {" Then the basic
intersection of two soft sets (F, A) and (G, B) is defined as the soft set (H C) =
(F A)A(G, B), where C = Ax B, and H (a, b) = F (a)nG {b) for all (a. bje Ax B

1.3.12 Definition [15]

Let (F. A) and (G, B) be any two soft sets over & common universe {" Then the
basic union of two soft sets (F. A) and (G, B) 13 defined as the soft set (H () =
(F A)V(G, B),wherceC=AxB,and H(a b) = F(a)uG(b)forall{a b)c AxB

1.3.13 Theorem

Let (F, A) and (G, B) be two soft sets over the same universe U suchthat ANB # ¢
Then

(1) ((F, A)ur (G, B))® = (F, A)"= (G, B)*

(2) ((F, A)nr (G, B)) = (F, A)Ur (G, BYF

1.3.14 Distributive Laws for Soft Sets

In this section, we discuss distributive laws on the collection of soft sets [t 15 1nteresting
to see that the equality does not hold 1n cach and every case Vo ee the improperness
\n some assertions and counter example 1s given to show 1t Let U be an imtial universe
and E be the set of parameters then we denote the collections of soft set as follows
SS(U)E  The collection of all soft sets defined over U
S8S(U)a The collection of all those soft sets defined over U with a fixed parameters
set A4

1.3.15 Proposition (3]

Let (F, A) be a soft set over the unwerse set U
(1) (F, A)a(F,A) = (F. AYforall a € {Nr,Ur}
(2) (F. A)m 8,4 = W4
(3} (F, A)ur Ba = (F. A)
(4) (F, A)Ng Uy = (F, A)
(5) (F, Ayur ity =t
Proof. Straghtforward ®
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1.3.16 Remark (3]

Let @, 8 € {U,N, Ug, N} Then
(F. A)a{(G, B)B(H, C))=((F, A)a(G. B))3((F Ala(H ()

holds when we have 1 otherwise 0 1n Table 2

Table 2 shows that, if &, 3 € {Ugr, Nr, U, Ne }. then there are sixteen combinations
in all, there are four combinations 1n which @ = 3 and for eight combination equal-
ity (F, A)a{(G, B)B(H. C)} = ((F. A)a(G. BY)B((F. Aya (H. C)) will holds
Proofs 1n the case where squality holds can be followed by defimtions of respectine
operations For four remanung o and 3 this equahty does not hold To show this we
have following example

Ug | Mr [ Ue [ Ne
Ur |1 1 1 1
Mr |1 1 1 1
Ue | 0 1 1 |0
Me | 1 0 o |1
Table 2

1.3.17 Example (3]

Let I/ be the set of sample designs andE be the set of available colors for dresses 1n a
boutique,

U= {Sl. Sg. 54, 54, Ss, 55, 5=, S.}‘

E = {Red, Green, Blue, Yellow, Black, White, Pink}

Suppose that

A = {Red, Green, Blue, White}, B = {Green, Blue, Yellow . Black}

and C = {Blue, Yellow, White, Pink}

Let (F, A), (G, B) and (H, C) be the soft sets over U, which are defined as follows

F(Red) = {51, S'z, 53, Sq,}, F(Grecn) = {33, Sq, 35, Sﬁ},
F(Blue) = {51, S2, S4. 57} F{Whte) = {52, 53, S4}
G{Green) = {54, S5, Ss. Ss}. G(Blue) = {8y, Sz, S3. 54}

G(Yellow) = {S4, S5, S5, S7. Ss}. G(Black) = {S1, S.. St St}
and

H{Blue) = {S3, S4. 57, Ss}, H(Yellow) = {84, 55, 57}
H(White) = {83, 51, Ss, S}, H{Pink) = {S2. 53, Sz, 571
Let
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(F, AU, ((G, B)Ugr (H, C)}= (I, Au(BNC}),

((F, A) U, (G B))Ur ((F, AYu, (H, C)) = (J. (AUB)N (AU C))
(F, A) U (G, B)Ur (H, C)) = (K, AU{BNC)),

((F, A)UE(G BY)ugr ((F, A) U (H, C)) = (L, (AU B)N{AUC)).
(F, AU ((G, B)Ue (H, CY) = (M, AU(BULC)),

((F, A) Ue (G, B))Ue ((F, A) U (H, C)) = (N , (AU B)U(BUC)),
(F, A) U, ((G, B)Ue {H, C)) = (0, AU(BUC)),

((F, AU (G, BY) U ((F. A)Ue (H, ) = (P, (AuB)L(BUC))
Then

I(Red) = {S}, Sg, 33, .5'4}, I(Grecn) = {Sa, Sq. Sg, Sﬁ},
I{Blue) = {S1, S2. S3, S4, 57, Ss}, I(Yellow) = {S4, S5, Ss. S7, Ss}.
I(White) = {Sz, S3. Sq}

J(REd) = {Sl, Sg, 33, S;}, J(Greon) = {33, 54, 55 Ss. Ss}q
J(Blue) = {S1. 52, Ss, S4, S7. Ss}, J(Yellow) = {S4, S5, So. S7. S}
J(Whte) = {S3, S3, S1., 6. Ss}

Thus

(F, A) U, ((G, B) U (H, C)) # ((F, A)U (G, B)) Ur ((F, A) e (H, C))
Now,

K(Red) = {S1, 52. Sa. S¢}. K(Green) = {Ss, S1. S5 So}.
K (Blue) = {541},

K (Yellow) = {S4, Ss. S7}. K(White) = {52, 53, 54}
L(Red) = {S1. S2. Sa. Sa}. L(Green) = {S4, Ss. S},
L(Blue) = {54}, L{(Yellow) = {S4, S5, S:}.
L(Whte) = {S2, S4}

Thus

(F, A)N. (G, By (H, C)) # ((F, AN (G, B)) nw ((F, A) 0 (H, C))

Again, we see that

ﬁf{Red) = {S], S:z, 53, Sq}, M(Grecn) = {33, 51, 35, 56; Sg},
M(Blue) = {51, Sz, 53, S4, S}, M (Yellow) = {S4. S5, St}

M (Black) = {51, Sz, 54, 57}, M{White) = {52, S3, S, So, S5},
M(Pmk) = {S2, S3, Ss, S}

and

N(Red) = {81, S2. 53, 54}, N{Green) = {Ss, 54, Ss, Se}.
N(Blue) = {S1. Sz. S3, 51, 57}, N(Yellow) = {S4, S5, St}

N(Black) = {51, 52. 54, S7}, N{Whte) = {S,, S, S1}
N(Pink) = {52, S3, 55, S7}

Thus

(F, A)Ue ((G, BYN. (H, C)) # ({F, A)Ue (G, B)) Ne ((F, A) e (H, C))
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Now,

O(Red) = {S), 52, S3, S}, O(Green) = {S4, Ss. Ss}.
O(Blue) = {51, S;, S, S7} O{Yellow) = {Si, 55, Ss, S7 s}
O(Black) = {51, S2, S4, 57}, O(Whate) = {52, Saf,

O(Pink) = {S;, 53, Ss, St}

and

P(Red) = {51, Sz, S3, Sa}, P{Green) = {S3, S4, 55. Ss},
P(Blue) = {5, S2, 84, St} P(Yellow) = {54 S5, 56, S7 Sst}
P(Black) = {51, 82, 54. St} P(Whte) = {83, Sa, S¢}
P(Pink) = {52, S3. Ss. 57}

Thus

(F, AN (G, B)Us (H. C)) # ((F, AN (G, B)) Ue ((F, A) N (H. C))

1.3.18 Definition[15]

Let I/ be an mtial umversal, P(U/) be the power set of U, E be the set of all parameter
and A,BCE,

Let (F, A) and (G, B} be the two soft sets over a common urverse U

Then the basic mtersection of the two soft sets (F, A) and (G, B) 1s definc as the
soft set

(H, C) =(F, A) A (G, B)

where C = A x B such that

H(ey, e2) = Flel) NG(e2) V(e1 e3) € Ax B

1.3.19 Definition [15]

Let U be an mitial umversal , P(U) be the power set of U, E be the set of all parameters
and A, BCE

Let (F, A) and (G, B) be the two soft sets over a common universe U

Then the basic Union of the two soft sets {F, A) and {G. B) 1s defined as the soft
sets

(H,C) = (F, A) v (G, B)

where C = A x B such that

Hie;, 62) = F(cl) U G(ez} Y (e1. 62) cAx B

1.3.20 Theorem [2]

If (F, A), (G, B) and {(H, C) are three soft sets over U, then

1 ((F.A)A{(G.B))A(H.C) = (F,A)A((G,B) A{H,C))
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2 (FAVIG.DB)V(HC)= (F,AYV{(G,B)v (H.C))
3 (F.A)A((G.B)V (H.C)) = (F.A) A (G, B) V{(F, A A(H C))

1 (F, AV{(G,B)A (H.C)) = (F.A) V(C.B)) A({(F.A) vV (H C))

The following remark shows that the parameter sets on both sides of the above

assertions 3 and 4 are inconsistent 1n general

1.3.21 Remark [2]

Let (F, A}, (G, B) and (H, C) be soft sets over a common umniverse U The soft
set (F,A) A ((G.B)V (H,C)) on left side of 3 has the parametcr set A x{(BxC)
and the soft set ((F, AYA(G, B))V ((F, A)A(H, C}) on nght side of 3 has a sct
of parameters as (A x B) x (A x C) But n [15] we can not find any notion which

cnsure
Ax(BxC)=(Ax B)x{AxC) Hencem Proposition 2 6 (15, two statements

1 (F AAWG,B)V(HC)={(F.AA(G.B))V((F A)A (HC)H

2 (F, A)V ((G.B)A (H.C)) = ((F.A)V(G.B)) A ({F. A) V{H.C))

are not true



Chapter 2

Soft Matrix Theory and its
Decision Making

In thus chapter we review the paper of Naim Cagman and Serdar Enginoglu 5!

2.1 Soft Matrices

2.1.1 Definition [5)

Let U be an imtial universal, P(U) be the power set of U, E be the sct of all paraineter

and ACFE
A soft set (f4 E) over U is defined by the set of order paurs

(f1. E) = {(fale), €} fale) € P(U). e€ E}

where f4 E — P(U) such that fa(e) = ¢1fe¢ A
Here f4 15 called approximation function of the soft set {f4, E) The set {(fy. E)
1s called e-approximate soft set The element f () 1s called the e-approximate value,

which consists of related object of the perameter e € E

2.1.2 Definition [5]

Let {f4. E) be an approximate soft set over U Then a umqgue subset of I7 x E 18
defined by
Ra={(u. e) u€falc) e€E}

1s called approximate relation

10
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2.1.3 Definition {5)

Let us define a mapping yg, U x E — {0, 1} such that

1, if (u,e) € Ra
XRA (u!c) =
0, if (u.e) g R4

If U = {uy, ua. ug, um} and E ={e;, 2,3, .en}and AC E, then R4 can be

presented by a table as 1n the following form

Ra 1 €2 €n

Ul | XH, (u1,€1) XRA(U1:¢2) AR, {11, )
uz | xg,(u2,e1) | Ag,(u2.e2) YR, (u2.€0)
um | XR,(Bmi 1) | Xz, (U, €2) Xp 4 (U €n)

f o,y = xg, (U, €,) we define a matrix

a3 112 Qin

azi agz a2n
Ia'Jlm xn

aml Qm2 Cyyin

Which 15 called an m x n soft matnix of the soft set (f4 E) on a umverse U
Various types of products for the elements of SM, .. are defined 1 the following we
reconsider these products

According to the definition, soft set (f4, E)is uuquely characterized by the matrix
[a,,] It means that a soft set (f1. E) 1s formally equal to 1ts soft matnx [@;)mxn
Therefore we shell 1dentify any soft set with its soft matrix and 1s use thesc two
concept as interchangeable

The set of all m x n soft matrices over {/ will be denoted by SMp, <, From now

on we shell delete the subscripts m X 1 of [a,;]mxn We use [a,;] mstead of [a,]mxn

2.1.4 Example (5]

Assume that U = {u,, u2, u3, 14, us} 15 a umversal set and E = {e), €2, €3, €3, e} 1sa
set of parameters If A = {e2, €3, €4} and fa(e2) = {uz, wa}, falea) =@ ,Faleq) = U,
then we wribe a soft set (fa, E) = {{{uz2. usa}, €2), (U, e4)} and then the relation form
of (fa, £) 15 wnitten by Ra = {(uz, e2), {uq, €2), (u1, es). (u2. €1). {uz ca). {us eq}}

hence the soft matrix {a,;] 1s wnitten by
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0001
0101
la]=| 0 0 0 1
0101
000 1)

2.1.5 Definition [5]
Let [a,;] € SMmxn Then [a,)] 15 called
1 A zero matrx 1s denoted by [0], i a;; = 0 for all ¢ and 3

2 An A-universal soft matnix [&,,], 1f a;; = 1for 3 € In = {3 e,€ Atand:=1,
2,3, m

3 A umversal soft set matrix denoted by [1], 1f a;; = 1 for all 2 and J

2.1.6 Example {5]

Assume that U = {u1, ug. u3. ug, us} 18 a umversal sct and E = {e1 ez. e3 eq}15a
set of parameters and [ay,],[c,;], [di;] € SMsxs
If A= {e1, e} and fa(e1) = ¢, fa(ea) = ¢ then la;] = [0] 15 a zero soft matrix

written by
- .

0000
0000
a,]=10]=]0 000
0000
o000

If C = {e1, e3} and fo(er) = U, folez) =U Then [c.;] = [&,] 18 2 C-Umversal
soft matrix wrntten by
(11 0 0

[eg] =

— et
o

0
0
0
0

— e

1 0
If D=E and fple) = U. for alle, € D then [dy;] =[1]1s 2 Universal soft matrix

written by

[du] =

[
— et e et

— el et e
e e e
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2.1.7 Definition [5]

Let [a,;] € SMmxn Then

1 [ay] 1s the soft submatrx of [bs;], denoted by la,;) C [by). 1f @y, < by, for all =
and )

2 [a,,] 15 the proper soft submatrix of [b,,], denoted by [ay] € Tby;) ol 0y < by for
at least one item a,, < b, all 2 and )

3 lay] 15 the soft equal matnx of [b,,], denoted by [a,;] = [b,), if @y = byy for allz
and )

2.1.8 Definition [5]

Let [a], [by;] € SMmxn Then the soft matnx [e,;] 15 called

1 Umion of [a,,] and [b;], denoted by [@y;] W ibyy} = o] f [ey] = max{a,;,b,,} for
all 1 and

2 Intersection of [a,;] and [b,;], denoted by [a.,]h[bu] = [ty ! o) = nanay b))
for all » and 3

3 Complement of [a;]. denoted by [a,;]° = [&y) i &y = 1 = @y, for all 2 and J

2.1.9 Definition [5)

Let [ay]. [bi;] € SMmxn Then [a,;] and [b,;] are disjoint, 1f (@] M {Brg] = [0] for all ¢
and 7

2.1.10 Example [5]

[0 1 0 0] [0 0 1 1]

1 000 010 1

Assume that [a;J =10 1 0 0 byl=10 0 1 1

1 000 0 0 01

(0000 (0 0 0 1]

Then

[0 11 11 (1 0 1
) 1101 ] 011
[a,lUby)=]0 1 1 1|, [,y )N By, = (0], [a)®=11 0 1
1 001 01 1
LOOUI_ (11 1

[
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2.1.11 Proposition [5]

Let [ay;] € SMumxn Then
1 [[ay]°)° = lay]

2 [0 =[]

2.1.12 Proposition [5]

Let [a,,], [Bi;], [6:5] € SMypmxn Then
U [y € (1
2 [0] C [a,]
3 [ay] € lay]
3 [ay) € [by] and [by) € o] = lay] € [eo]

2.1.13 Proposition (5]

Let [ay], (8], [e2y] € SMpmxn Then
1 {ay,] = [b,] and [By;] = [ce] & lay;] = le;)
2 fauy] € [by) a0d o] € lany] & [any] = [b)

2.1.14 Proposition [3]

Let [a,,], [by], [6;] € SMmxn Then

1 [ay] Ulay) = lay]

]

(2, U 0 = [ay)]

%)

la] U [1] = [1]

] U lag]® = [1]

[1=Y

[

(eny} U [bes] = [Bos] U]

(6] U [bu,]) U leny] = [aes] U ([B1r] U fexy))

o
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2.1.15 Proposition (5]

Let [ay], [bis); [ery] € SMmxn Then
L feg] Nlay] = o]
2 [ay]N[0] = [0
3 lay] N1 =[]
4 [og] Nlayl® =10}
5 [ag) N [By] = bl Nla]
6 ((an] P bus]) N el = la] O (1] A [65))

2.1.16 Proposition [5)

Let [a,;], [by;] and [c;) € SMmxn Then De Morgan's laws are valid

L (lay] 0 [byg])® = a2 U B0

2 (lay) [J [bu])n = [aulu F-1 [bulo

Proof For all 1 and }
1
(2] O [, ])° = [max{ay. by}
= [1 — ma)({ﬂ-u‘bu”
= [mm{} —ay.1 - by}
= [ﬂu]o n [bulo
n

It can be proved simularly =

2.1.17 Example (5]

Let [ay]. [b:;] € SMsxs as 1n Example 211 10 Then

1000

0 0 1 0

(lay] Vb, =l N [pyl°= |1 0 1 0
0100

111 0

and i
([a) N by )0 = e ]® U (B ]° = {1]
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2.1.18 Proposition [5]

Let [a,,], [b,] and [c,;] € SMxr Then

1 {ay] U (lbuyl) 1 o)) = (an] O o)) N (o] U o)

2 [aey) O ([ ]) U lexg]) = (s3] 1 b)) 01 (1225] 1 [e35])

2.2 Product of Soft Matrices

In this section we define four special products of soft matrices to construct soft decision
making methods

2.2.1 Definition [5)

Let [a,;] [b,] € SMmxn Then And product of [a,;] and [bik] 15 defined by
A SMuxn * SMuxn — SMu 02, [aey] A [bok] = 1Cp]
Where ¢,, = min(a,;, bix) such that p=n(3 — 1)+ k

2.2.2 Definition [5]

Let [ay], [b4;] € SMmxn Then Or- product of [a,;] and [bis] 15 defined by
V SMon X SMxn — SMyyna, [as,] V [bu) = fep)
Where ¢,, = max(a,;, b,x) such that p = n{3—1}+k

2.2.3 Definition [5]

Let [ay], [bi;] € SMmxn Then And-Not-product of [a,;] and [b,i] 1> dehned by
A SMpnn X SMmxn — SMypxnz [ag} A [ba] = [ap)
Where ¢,, = min(a,;, 1 — bu) such that p= n(j-1)+k

2.2.4 Definition [5]

Let [ay], [by;] € SMmxn Then Or-Not- product of [a,;] and [bik] 16 dehned by
! Sﬂfmxﬂ x Sﬂfmxﬂ. - Smen’! [G"IJ] ! [bikl = [C‘P}
Where ¢,p = max(a,y, 1 — bu) such that p=n(y —1) +k

2.2.5 Example (5]

Assume that [a,,], [bi;] € SMsxa
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0 011 1001
0111 1001
layJ=]10 1 1 0 |, bs]=10 0 1 1
0100 0011
(0010 1] 001 1]

Then )
000000001001100 1]
00001001100 11001

[a,;] A b)) = 00000O0D1100110000¢0
00000O01100000000
lo0o00001100000011

simlarly we can find the other product [ay,] V [bue] - [as,] A [b,,j, {u,;] Y b
note that the commutativity 1s not vahd for the soft matrices

2.2.6 Proposition [5]

Let [a,]. [by] € SM(mxn) Then the following De Morgan's types of result are true
1 (Jag) Aoy = (e} v [b:,°
2 (Jay] V [by])° = fay]° A by
3 (lay,] ¥ b,]))° = [a,,)° A [b)°

1 (ley] A [bu])u = [au]u ¥ [bu]o

2.3 Soft min-max Decision Making

In this section we construct a soft max-min decision making(SMmDM) method by
using soft max-rmn decision function which 1s also defined here The method sclects

optimum alternative from the set of all alternatives

2.3.1 Definition {5]

Let [c,;] € SMuxa2, Ik = {p 31, cp# O (k- n<p<kn}forallkel= {1,

2,3, ,n} Then the soft max-min decision function, denoted by Mm, 1» defined as
follows
Mm SM, . n2 — SMmsa. Mm[c.p] = [l’ilg.}({tk}]
where
min{cyp}, il #¢
te = pels
Uv lf IK =g

the one column soft matnx Mm [c.p] 15 called Max-min decision soft matnx
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2.3.2 Definition [5)

Let U = {u1.u2, .un} bemtial umverse and Mm [esp] = [di1] Then a subset of U
can be obtamned by using (d,;] as in he following way

opt|a,| =4y, wel di1= 1}

which 15 called the optimum solution

Now, by using the defimtions we can construct a SMmDM method by the following
algonthm

Step 1 Choose feasible subsets of the set of parameters,

Step 2 construct the soft matrix for each set of parameters,

Step 3 find a convement product of the soft matrices,

Step 4 find a max min decision soft matrix,

Step 5 find an optimum set of U

Note that, by the similar way, we can define soft min max, soft min mn and soft
max max decision making methods

which may be denoted by SmMDM, SmmDM, SMMDM respectively One of thern
may be more useful than others according to the type of the problems

2.4 Applications

Assume that a real estate agent has a set of different types of houses U = {u1. uz.
ug, w4, us} which may be characterized by a set of parameters E = {e1, €2, €3, €4}
For 3 = 1, 2, 3, 4 the parameters ¢, stand for “mm good location”, “cheap”, “modern”,

‘large”, respectively Then we can give the following examples

2.4.1 Example (5]

Suppose that a married couple, Mr X and Mrs X, come to the real cstate agent
to buy a house If each partner has to consider their own set of parameters, then we
select a house on the basis of the scts of partners’ parameters by using the SMmDM
as follows

Assume that U = {u1. u2, u3, U4, us} 15 a umversal set and F = {e], €2, ¢34, eq} 18
a set of all parameters

Step 1 Fust, Mr X and Mrs X have to choose the sets of their parameters,
A={es, €3, eq4) and B = {e1, e3 e} respectively

Step 2 Then we can write the following soft matrices which are constructed ac-

cording to their parameters
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[0 01 1] '1011]
0111 1001
fag]=10 1 1 0 bel=10 0 1 1
0100 0011
0101 |0 0 01

Step 3 Now. we can find a product of the soft matrices -[a,_,l and [b,4] by uang
And-product as follows

00000000101 11011]
000010011001 1001
) Abel={0 000001 100110000
0000O0CO0OD110010000°¢0
|0 000C000100100001

Here, we use And-product since both Mr X and Mrs X's choices have to be
considered

Step 4 We can find a max min decision soft matrix as
g

Mm{[a,,] A [bik]) =

o o o =

=

Step 5 Fmally, we can find an optimum set of U according to Mm [a,,] A b
optMm o a) (U) = {1}

where u; 1s an optimum house to buy for Mr X and Mrs X

Note that the optimal set of U may contain more than one element

Simlarly, we can also use the other products ([as;] V [Bak]) + {[2e5] A (b ))and ([agy] ¥ [bi])

for the other convenient problems



Chapter 3

Soft Matrix Theory and its

Decision Making: A New
Approach

In this chapter we are gomng to define new type of products which are binary and

satisfies associative laws and distributive laws

3.1 Binary-Product Of The Soft Matrices
3.1.1 Definition [5]
Let [ay], [b;] € SMmxn Then,
1, And-product of [a,,] and [b,,] 15 defined by
A SMonin X SMonxn = SMipxnz, (2] A o] = el
Where ¢,p = min(ayy, bu) such that p = n(z—1)+k
n Or-product of [a,;] and [by] 1s defined by
vV SMon X SMumxn — SMpnt. (8] V [Bik] = [ep]
Where ¢,p = max(a,), b) such that p = n(y —1) + k
m And Not-product of [a,,] and {b,;] 18 defined by
A SMumxn X SMxn — SMoyma. (] A [bi] = (6]
Where ¢,p = min{a,,. 1 - by) such that p=n(3 — 1)+ &

20
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w  Or Not-product [a,)] and [b,;] 15 defined by
Y SMoxn X SMusn — SMo a2, 0] Y [bud = [Gp)
Where ¢,;, = max(a,,. 1 — b) such that p= niyg—1)+k

From above defimtion 1t 1s clear that all these products are not binary operations
Even if we consider two soft square matrices from SMosm. any of ahove mentioned
product will not give us a soft square matnx from SMy.m As above mentioned
products are not binary operations, therefore there 18 no question of associativity 1n
these soft matrix product

In the following products, for soft matrices are redefine 3o that they happen to be
associate binary operations for the elements of SM,,x» These products will be called

Bmary-Product or simply we can wnte it as B-Products

3.1.2 Definition

Let [ay], [by;] € SMmxn Then And-B-Product of [a,,] and [b,;] 1s defned by

q'n
A SMoxn X SMmxn — SMmxn, [64) A [b] = {dig] = Vo @)

p=(g—1n+1

forall: = 1,2, ,mandg=1, 2,7

Where ¢, = mun{a,;. b,g) such that p = n(z-1)+k

3.1.3 Definition

Let [ay,] , [byy) € SMman Then Or-B- product of [a,;] and [by] 15 dehned by

™
v SMaxn X SMoxn — SMpn, [at_',l] £ [blk] = [dﬂ}l = /\ (c‘lp)
p=(g—1n+1
forall: = 1,2, .mandg=1,2 ,n

Where ¢,p = max(a,;, by) such that p = n{g—1)+k

3.1.4 Definition

Let [ay,], [b;]) € SMmxn Then And -Not-B-product of (@,,] and [b:k) 15 defined by

q'l"l

A SM:Mpxn X SMpxn — SMuxn, [au] A [blk] = [dwq] = V (C1p)
p={g-1Im+1

forall: = 1,2, .mandg=1 2, .n

Where ¢,, = mun(a,;. 1 — b;) such that p=mn(3 — 1) + k
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3.1.5 Definition

Let [ay] . [bi;] € SMpmxn Then Or-Not-B-product of [a,;] and [b:] 15 defined by

i<

qn
Smen X SMupxr — Sﬂfmxnw [atj] v [blk] - [dlq] = [ A (Qp):\
p=(g—1)jn+1
foral: = 1,2, ,mandg=1,2, .n

Where ¢,; = max(@,;, 1 — bx) such that p = n{y -1} +k

3.1.6 Theorem

The And -B-Product 1s a binary product

Proof. Let [a,] and [b,] € SMmnxn Then And-B-Product of [ay,] and [b;] 15
defined by

A SMoxn X SMuxn = SMuixn

[a._,] A [blkl = [d-tq]

m
Where d,;, = ( V (e.p}) forall:=1,2 .mandg=1, 2

p=(g—1in+1
T

where e,, = min(a,;, byx) such that p =n(y — 1) + k, then [a,;] A [buk] = [dig) ®

3.1.7 Theorem

The Or-B-Product 15 2 binary product

Proof. Let [a,,] and [b,] € SMmxn Then Or-B-Product of (a,,] aud iby] 15 defined
by

V. SMoxn X SMuxn = SMoxn

(@] V [bik] = [9sq]

b8
Where gq = /\ (f.p)) forallz=1,2 ,mandg=1,2,

p={g—1In+1
. n

and f,, = max(a,;, bx) such that p= n3—1)+k =m

3.1.8 Theorem

The And-Not-B-Product 1s a binary product
Proof. Let [a,;] and [b,;)] € SMm«n Then And-Not-B-Product of [a,;] and [b;] 15
defined by
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A SMoun X% SMupxn — SMman

[au] A [bux] = [dhe]

qn
Where d,q = ( V {e,p)) foralli=1,2, .mandg=1, 2,
n p=(g-1)r+1

and e,; = min{a,;, 1 — by) such that p = n{g—-1)+k m

3.1.9 Theorem

The Or-Not-B-Product 18 a binary product

Proof. Let [a,] and [b,;] € SMmxn Then Or-Not-B-Product of [a,;] and [b,,} 18
defined by

YV SMpuxn X SMmxn — SMmxn

[ﬂul Vibi] = [th]

qn
where g,q = ( /\ (f,p)) forallz =1,2, .mandg¢=12 ,

p=(g—1jn+l
n

and f,p, = max(a,y, 1 — by) such that p = niz—-1)+k m

3.1.10 Example
(And-B-Product)

Let U = {uj, ug, uz} be the umversal set, E = {ey, €2, ¢3 e4} be the set of parameters
and A = {e1, €2}, B = {ea. e4} be the subsets of E

Let fo E — P{U) be such that

faler) = {u1, u2}

falez) = {u2, us}

fales) = faled) = @

Ra = {{u1, 1), (u2, e2). {u2, €2}, (ua, ea)}

Ryle |ex|es|e

w |1 ;0 0
PRERE 0

uy |0 |1 M
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A= {G‘IJ] =

and fg E — P{U) be such that
feles) =U
fales} = {m, ua}

faler) = fple2} = ¢

RB = {(uls 83)1 (u'Z) 63), (‘I'..I.3, 8'3)‘ (ul! 64)1 (1‘3- 64)}

fe I S I

— -

[ e T
o o o

Rg|lei|e2les|ea
w [0 [0 |1 1
Uy 0 (1 ]0
u3 g 1|0 1 1
0011
B=[b;]=10010
0011
1000 0
laylAfbkl=]1 10 0 |A}O
0100 0
00110000DO02¢0
dp) = 0010001000
D 0O00O0OO0O1100
and d,p = mmn{a,, b) such that p=mn(y— 1) +k

g4
Where 3 = V (dip)
p=(g-1)4+1

Then
Y] = ['U:q]axq = lay) A [byk]

[aul A [blkl =

1
1
0

o o o

o o O

oS =

o o <

forallz =1, 2, 3andg =1, 2, 3.4

— O

e e T

o o O
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3.1.11 Example

(Or-B-Product)

Let U = {u), ug, u3} be the universal set, £ = {e1. ea, €3, €4} be the set of parameters

and A = {e;, ea}, B = {e3, e4} be the subsets of E
Let f4 E — P(U). be such that
faler) = {u1, w2}
faleg) = {ug, us}
fales) = faled) = o

Ri = {{u1. €1), (u2. €2) {u2, €2), (us, €2)}

Ryje |22 |es|e4

i 1 0 0 0

up (1 |1

ug |0 |1 |0 [0

A= [“u] =

O =
— ke

and fg E — P(U) be such that
feles) =U
foled) = {u1, ua)

fale1) = felea} =9

Rg = {(u1. e3), {u2, e3), (u3, €3), (w1, eq), (uz ed)}

[ S e i o
[ B -

Rp|e1 | e |e3 €4

u°) U 0 ]. 1

wg |0 |0 |1 [0

uyg |0 [0 |1 |1
0011

B = [by] 0010
0011

1000 0

laylvibal=]11 1 0 0|V ]O
0100 0

o o O

— bt

[l T
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11110011001 10011
fol = |3 111 111100100010

60111111001 100011
and f,, = max{a,. by) such that p= n(3—1)+k&

4
iz, = ( /\ (f.p}) forall:=1,23andg=12 3,1

p=(g-1}4+1

SO
(X} = zl,,, = lay] V [bu)

[a,;) V (0] =

Dl—-ll—l
- = O
o o O
o o o

3.1.12 Example
(And-Not-B-Product)

Let U = {u;, up, u3} be the umversal set, E = {e}, ez, €3, €4} be the set of parameters
and A = {e. e2}. B = {£3, ¢4} be the subsets of E

Let f4 E — P(U) be such that

faler) = {u1, vz}

faleg) = {uz, us}

falea) = falea) =@

Ra = {{u1. 1), (u2, e2). (ug, €2}, (u3, e2}}

Ra|eir|ex]ealea
w |1 |0 |0 |0
wg (1 |1 |0
ug |0 [1 [0 |0

1 000
A=fay,]=]1 1 00
0100

and fz E — P(U) be such that
foles) =U
fa(ed) = {1, ug}
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faler}) = fe(ez) =@

Rp = {(u1, 3). (uz, e3), (ua, €3), (u1, e4), (u3. €4} }

Rg|e1|e2|e3|ea
u) 0 0 1 1
ug |0 |0 |1 (D

ua |0 1
011
B=[btJ]: o010
0 011
1000 0 1
la,]Afbkl=]1 1 0 0JAJO O 1 0
0100 0 1 1
11000000000000O00
[dip] = 11011101000 0000
00 0011000000D0O0OU0O
and dp = mun{a,;;, 1— bi) such that p=n{z — 1) + &
q4
where y,, = V  (dp) forall:=1. 2 3andg=1, 2, 3, 4
p={g-1)4+1
Then
[Y]= [yiq]3x4 = [G;J] A [bu)
1 00090
faylAlbuj=|1 1 0 0
0100

3.1.13 Example
(Or-Not-B-Product)

Let U = {uy, ua, ug} be the umversal set, E = {e;, e2. €3 €4} be the set of parameters
and A = {e1. e2}, B = {e3. e4} be the subsets of £
Let f4 E — P{U) be such that
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faler) = {uy, uag}
falez) = {ug, ua)
fales) = faled) =9

Ra = {{u1, e1), (u2, e2), (u2, e2). (us, e2}}

RA €] | ez | €3 | €a
Ul 1 0 0 0
ug |1 |1 |0 [0

uy |0 |1 [0 |0
1000
A= [a'l_',l] = 11060
0100

and fg E — P(U) be such that
feles) =U

felea) = {u1. us}

fBler) = fele2) = ¢

Rp = {(u1, €3), (uz. e3), (u3, e3). (u1, eq), (u. €1)}

RB ey | €2 | €3 | €4
vy ;010 |1 |1
up |0 |0 [1 |0

ug [0 [0 |1
0011
B=[b,j=0 010
0011
1 000 001
[ay)¥bal=11 1 0 0¥ [0 0 10
0100 0 01
1111110011001 100
[fp] = 1111111111011 101
1100111111001 100

and f,, = max{ay;, 1— by) such that p= n(g-1)+k
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1
Where I,q = /\ {(fip) forallz=1, 2, 3andg=1, 2, 3, 4
p=lg-1j4+1

50

[X] = [Itqlan = [a,;] ¥ [buk]

0
[G'U] v [blk] = 0

O -

00
1 0
1 00

50 the above example shows that the defined product 1s a binary operation

3.1.14 Theorem

The associative law holds with respect to And-B-Product
Proof. Let [a,;]. [b;]. [c;} € SMmxn
Then And-B-Product of [a,,] and [b,] 15 define by
A SMpxn X SMuan — SMmxn

[@:;] A (b} = (g

qn
where d,g = V (€sp) forall: =1, 2 mandg=1 2 n
p=(g—1In+1
and e,; = min(a,,, b,x) such that p=n{z - 1)+ k
now

([ass) A [Buk) A feyg) = fdig) A ey

{[a] A [Buc]) A leag) = [hlql

qn
where h,g = ( V (3‘,,)) forall:=1,2 ,mandg=1, 2, n
p=(g—1n+1
and s,, = min{d;,, cu) such that p =n(y — 1+ k
now RHS

[bsy] A [eak] = [92a]

qn
Where g, = ( V (f,p)) forall: =1, 2,

mandg=1 2
p=(g—1)n+1

and f,p = mn(b,;, cx) such that p=n(3 — 1)+ &
[au] A ([blk} A [C‘IJ]) = [a"J] A {[giq])
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Now
[ay;] A ([buk] A [} = [Pug]
qn
Where h,y = V (tip) foraliz=1,2, ,mandg=1, 2, . n
p=(g—1jn+l

and t,, = mun(a,;, gu) such that p=n(; - 1)+ &
than
([ay] A fouk]} A [en] = 2] A (o) A [e;]) =

3.1.15 Theorem

The associative law holds with respect to Or-B-Product
Proof. Let [a,,], [by,] [6y] € SMuxn
‘Then Or-Product of [a,,] and [b;;] 1s define by
vV SMpxn ¥ SMuxn — SMmxn

[ﬂu] v [btk] = {dlq]

gn
Where d,q = ( /\ (e.P)) foraliz=1,2, , mandg=1 2,

p={(g—1)n+1
and e,, = max(a,;, bi) such that p = n(z-1)+k
(o] V [ba]) V [e;] = [dg] V e}

([“u] V [be]) v [GIJ] = [hug]

'
Where h,q = |: /\ (s,p):l foralle=1,2 ,mandg=1 2,
r=(g-1)n+1

and s,, = max(d;, &x) such that p=n(y - 1) + E(lay,) V [bi]) V ley] = [reg]
now RHS
(6] V [ek] = [9:a)

qn
Where g, = ( /\ (f,p)) forallz =1, 2, mand g =1, 2,
p=(q—1jn+1

and f,; = max(by,. ) such that p=mn{y — 1)+ k&
Now
[ae] v ([bak] V [e5]) = (@] V ([91g])

[al,‘.'l v ([blk] v [C‘IJ]) = [h"Q‘1

T

n

n
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qn
Where h,q = ( /\ (t.p)) forallz =1, 2, mandg=1 2, ,n
p={g—1jn+l

and t,, = max(a,;, gix) such that p=n(j — 1)+ k
(lai;) V [bue]} v [e] = [ay;] v ([bi] V [ey]) ®

3.1.16 Theorem

The associative law holds with respect to And-Not-B-Product

(lais) & Bu]) A [eig] = (2] A ((buk] A fesg])
Proof. Strightforword =

3.1.17 Theorem

The associative law holds with respect to Or-Not-B-Product

([as,] ¥ b)) ¥ (] = [any] ¥ {[Bui] ¥ [5])
Proof. Stnightlorword m

3.1.18 Example
(Associative law with respect to And-B-Product)

Let U = {u), ug, ug} be the universal set, £ = {e1, €2, €3, eq} be the sct of parameters
and A = {e;, 2}, B = {e3, ea} , C = {e2, e3} be the subsets of E

Let f4 E — P(U) be such that

Saler) = {u1, u2}

falez) = {ug, ug}

fales) = faled) = ¢

Ra = {(u1, e1). (u2. €2), (2. e2). {u3, €2)}

Ralel|ea|es|ea
u |1 |10 [0 |0

up |1 |1 [0
ug (0 [1 |0 |O

1000
A=lay]=|1 10 0
0100

and fg E — P{U) be such that
foles)=U
foles) = {u1, us}
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fele)) = folea) = ¢

Ry = {(u1, e3), (uz, €3). (u3, e3), (u1, 4), (u3, €d)}

Ryl|e |e2]|ea|es
u |0 0 |1
u (0 [0 |1 |0
uz (0 [0 |1

00
B=[bu]: 0
00

o
—_
[l == N ]

and fe¢ E — P(U) be such that
folez) = {uz}
foles) = {ug, ua}
feler) = felea) =9
Re = {(u2, e2), {u2, €3), (us, e3)}

Ro|en|ex|ea|ea
u; (0|0 [0 |0

ug [0 |1 |1
u3 |0 |0 |1 |0

0000
0010

Now to prove ([a,;] A [bik]) A ;] = [as] A ([bue] A fer;])
Firstly we Find that ({a,;] A [bi]) A [&)]

1 000 0011
[a)ABk]l=]1 10 0|A[0 0 1 O
0100 0011
001100000000O0O0O0O0D0D
d,) = [001 0001000000000 0D
00000O011000000O00D0U

and d,, = min(a,, b} such that p=n(y—1)+k

- — - - — a . _ .
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gd
Where y,0 = ( v (dip) forallz=1 2 3andg=1,2 3 4
p=(g—1)4+1
S0

(Y] = [taglga = l@a;] A [Bik]

1 000
[Vglywa = loy] AfBR]=1]1 1 0 0
0100
Now
(fag] A b)) Alley] = Tyl A e
1 000 000
yylAleal=]1 1 0 0[A}0 11
01060 0 01
0 000O0O0OO0OODOO 0O 0 00
e = |01 100110000 0 00O
0000001 0O0O0CO00O0 0 0 ¢
and e, = mun{y,. &) such that p=n(3 - 1)+ k
q4
Where ung = V (esp) foralli=1,2 3andg=1, 2, 3, 4
p={(g—1}4+1
50
0 000
(W] = ltgly,, = [ 1 1 0 0
0100
[wlq] = [yl_‘,l] A [c'lk]
[wig] = ([@y] A [Bar]) A [e4y]
0 00O
([ﬂu]/\[b-kl)/\[cul: 1100
0100

Now we find [a,;] A ([bi] A [c;])
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0010 0000
bukjAley]=10 0 1 0 | A 11
0011 0010
Let
0 00O0DOCO0COCDO0DO0OOO 0 00
fel = |00 00O0O0O0CGO0O01 000
0 000O0D0O0CO0TCO0CO0OI] 010
and f,, = mn(b,, ;) such that p=n()—1)+ k%
ol
Where v,; = v (fip) forall: =1, 2 3andg=1.2 3, 1
p=(g—1}1+1
S0
[V} = [viglyq = [brk] A L]
0000
[tg] = bl Aley] = | 0 0 1 0
0011
(@3] A ([bur] A less]) = [Bg] A [vsg]
1000 0 00O
;] Alvel=(1 1 0 0| A0 D
0100 0 1
0 00DO0OO0ODOCOCOTDOQO 0 00
gl = {0 01 0001000 0 00
00 00O0OO0OC1 1000 000
and g, = mn{b,, ci)such thatp=n(3—1)+4&
qd
Where s, = V (Gp) forall: =1, 2, 3andg=1 2, 3. 4
p=(g—1)4+1
50
0 000
[S]:[squ:,“: 1 1 00
0100
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[3:4] = [as] A [1]
[siq] = [“u] A ([buk] A leyy])

50
00000
[a'l_','] A ([blk] A [01,?]) = 1100
01 0O
there fore

(] A Touk]) A laa] = [ag] A {fbuk] A [e5])
now 1t can satisfy the associative property

3.1.19 Example
(Associative law over Or-B-Product)

Let U = {u1. ug, u3} be the uruversal set, E = {e], 3. €3, ¢4} be the set of parameters
and A = {e1, e2}, B = {e;. &4} , C = {2, e3} be the subsets of £

Let f4 E — P(U)} be such that

fa(er) = {u1. uz}

fa{e2) = {uz, us}

fales) = faled) =@

Ra = {(u1, e1). {u2, €2), (u2, €2), (u3, e2)}

Rale|ea|eyjea
uy (1 |0 |0
ug (1 |1 | O
ug3 [0 |1 |0
1 000
A=fey)=|1 100
g1 00

and fg E — P{l') be such that
fales)=U

fBleq) = {ur. us}

fole)) = fole) =&

Ry = {{u1, €3), (uz. e3). (uz e3), (u1, eq), (u3, €4)}

Rp e | eg | ez | eq
U] g |0 |1
up |00 |1 |0
ug |0 10 |1
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B = [bu] =

= R R
o o o
—_— = e
=

and fc E — P(U) be such that
Jeleg) = {uz}
foles) = {ug, us}
foley) = felea} =0
Re = {(u2, €2), (uz, e3), (3, e3)}

Roe1|e2|ea|e4
uy |00 [0 |0
ug 1 (0
ug |0 [0 |1 {0
0o 00O
C=lcyl=]0 110
0 010

Now to prove ([a,;] V [bu]) V le;] = @] V ([Buk] V )
Firstly we Find that ([a,,] V [bu]} V [ees]

1 000 0 01
(a,)VIbkl=|1 1 00[Vv]0D010
0100 0 0O1 1
111100110 11 ¢0 11
dip] = 11111111001 00010
00111111001 0 011
and dp = max(a1_,,b.k)suchthatp-——n(_}—l)+k
qd
Where y,q = /\ (dup) foraliz=1 2 3andg=1
p=(g—1)4+1

[V] = (tg)ang = lan] V [Ba]

"J
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1 000
[Y]=[nel=lay,)Vlel=11 1 0 0
0100
Now
([GIJ] v [blkn v [C'IJ] = [qu] v [Cu]
1 000 0 00
[y Vieel= |1 1 0 0|V 11
0100 0 010
11110000000 00 0O
) = |1 111 111101100110
00101111001 0 010
and e, = max(y,, cr)suchthat p=n(y — 1)+ 4
q
Where w,q = /\ (€ewp) forall:=1,2 3andg=1, 2,3 4
p={g—111+1
S0
1 000
(W] =[wglsg={1 1 00
0100
[wig] = [yul V [
[tig] = ([34;] V [Buk]} V len)]
1 0 00
(lag) Vi) Vey=11 1 0 0
100
Now we find [a,,] V ([bi] V [cip])
0 01 0 0000
0011 U o010
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Let
0000C0OCGCO0DO011110000
fl = 01100110111 10110
001 0001011111111
aund f,, = max{b,, &) suchthat p=n(y - 1)+ &
a4
Where v,g = A ) foralli=1 2 Jandg=1 2. 3.4
p=(g-11+1
50
010 '
gl =10 0 1
01
V] = [thlau = [bu] V {cak] |
0010
byl Viek]=10 0 1 0
0 01
now
fay;] v ([byy] v [ey]) = [ay] Vv [vg]
1000 0010
lay)Vivh] = [ 1 1 0 0V 0 1
0100 0 01
11110011001 10011
[9p] 111111110010 010
00111111001 10011
and g, = max(by,, ei)such that p=mn() — 1) + &

qd
Where 3,4 = [ /\ {g.p)} foralli=1 2 3andg=1 2 3 4

p=(g-1}1+1

50
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1 000
[S)=[9qlsxg=11 1 0 0
01 00

as [s,q] = la,;] V [vy]
["lql = [a,] Vv ([b;] Vv =)

lay;) v ([by;] Vv le]) =

[ B e P
—

—
fose T S
— o
o o O

there fore

(lay,] v b} v [eyg] = lay] v ([bek] V [eg])
Sitularly we can prove

([ay] A b)) A leyg] = [aiy] A ([buk] 7 [es])
(la;] ¥ [Bee]) ¥ [e)] = (o] ¥ ((bu) ¥ [en,])

3.1.20 Theorem

Or-B-Product 1s distributive over And-B-Product
Proof. Let [a,,]. [b;], [6;] € SMmxn
Then
(e ) A k] = dug)

p=lg-1in+1

qn
Where d,q = ( V (c,p)) forallz=1. 2 mand g=1 2

and e,p = min(ay;. bi) such that p=n{3 -1} + &
now
[a,J] v ([bu] A [Cu]) = [a,,] v [d-kl

[ai,] V k] = [gua]

m
Hgg = ( /\ U’rp)) forall:=1,2. ,mandg=1,2

p=(g—1in+1

Where f,, = max(a,;, bix) such that p= np-1)+k
(@] V ([by] A fey]) = (2] V [die) = (94!

1]

H
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Now RHS
{ay,] A [bu] = [hug]
m
Where h,, = /\ (tip) forallz=1,2 ,mandg=1, 2,
p=(g~1)n+1
and t,, = max(a,,, bk} such that p=n(y -1} + k
Now
[a3;) V [eak] = [s:q]
qn
Where s, = /\ {vip) foralt1=1,2 | mandg=1 2,
p=(9-1)n+1

And v,p = max(a,;, ¢;x) such that p=n(3—1) + &

[Beg] A [31p] = [234]

qn
Where r,, = [ V (y.P)] forallz =1, 2, mandg=1, 2, ,
p=(g—1)n+1
And y,p = mun{h,,, s,4) such that p=n{y — 1} + &
§0
(23] v ([Bi;] Al ]} = ({agg) A [y ]) A (2] V [e5]) m

3.1.21 Example
{Or-B-product is distributive over And-B-Product)

Let 7 = {uj. ug. u3} be the umversal set, E = {e, €2, €3, e4} be the set of parameters
and A = {e1, e3}. B = {e3. e4} , C = {2, e3} be the subsets of £

Let f4 E — P({U) be such that

faler) = {u1, w2}

falez) = {u2, ua}

fales) = fales) = o

R4 = {(u1, €1). {(u2. e2), (2. €2). {u3, e2)}

L

7t
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31 1 0 0 0

ug |1
ug (0 |1 0
1 000
A=fe,]=111 0 0
01 00

and fg E — P(U) be such that

folea)=U

fo(ed) = {ur, ug}

faler) = fplex) = ¢

Rp = {(u1. e3). (uz, €3), (u3, €3). (w1 es}. (u3. e4)}

Rp |e1|exjes|eq
up |0 [0 |1 1
up |0 JO |1 |0
uy [0 |0 |1

1
B={,)=|001 0
1

and fr E — P(U} be such that
folez2) = {u2}
folea) = {us, ua)
feler) = feles) =0
Re = {(u2. e2) (uz, e3). (u3. ea)}

Ro el |ea|es|eq
w |0 |0 [0
u; (0 1
g (0 [0 |1
00 0O
C=leyl=[01 10
D010

To prove [a,,] V ([b,,] A [ei;]) = ([a,] V [Bi; ]} A ([a0,]) V e,
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LHS
firstly we find

0 011 0 0O
[by]Aleyj=]0 0 1 0| A 1 1
0011 0 01
00 000O0O0OOGCO0CO0OQTCO
0000O0CO0O0CODDO0DO0CGCT1OD
and g,, = mn(b,. ) suchthat p=n(z - 1)+ %
qd
Where 8,4 = V (9p) foralli=1, 2
p=(g-1)n+1
then
0000
[-’:qlz 0010
0 011
S0
0 000
[84] = [by] Aleyl= | 0 0 1 O
0011
Now
[a;] V ([biy] A [e]) = [a3,] V [3eg]
1 000 ¢ 00
la,]Viswl=[1 1 0 0|V 0
0100 0 01
111100000 00
(fep] 111111110010
001111110011

and f,, = max{a,, s&) such that p=n(y - 1)+ k&

0
0
0
0 000
60 000
0 010

3andg=1 2 J 4

0
0
1
¢ 000
0 010
o011
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q4
Wheree.qz( /\ (f,p)) forallz=1 2 3andg=1 2 3 |
p=(g-—1)4+1
100
[ﬂ:J]V[-‘iw]=IC.q]= 1 10
010
Now RHS
1 000 0011
(la,JViby)=|11 0 0|Vv| 0 010
¢ 100 0011
11110011001 10011
dp] = 11111111001 00O0T1F@0
00111111001 1001]1
and 4, = max(a,,, bi) such that p=n(y - 1)+ &
q4
where z,4 = /\ {dip) forall:=1 2 3andg=1 2 3 4
p=(g-1)4+1
1 000
(ley] VI, ) = [mg)=| 1 1 0 O
0100
Now
1 000 0 0 00
(le,)Vie,)=|1 1 0 0|v| 0110
0100 001 0
1111000000000O0CO0TOC
[hp] = 11111111011 0011¢0
0010111100100010

and y,, = max{a,;, c;x) such that p=mn(y3 - 1) +%
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¢
Where 2,4 = A ) forall1=1,2 3andg=12 3 4
p=(g-1)4+1
1 000
[zg] = (lay] Vey)) =] 1 1 0 0
010
now
1 000 1 000
(el Al=])=]1 1 0 0|A|1 100
0100 0100
1 000000OQ0O0OO0O0OCGCOCOO0
gp] = |1 1 001 1000000O0C0CO0D0
000001 O00O0O0OOCO0DOOOCD
and g, = mn{xr, =) such that p=mn(z - 1)+ k
qd
Where by = V (up) foralt=1 2 3andg=1 2.3 4
p=(g-1)n+1
then
1 000
[hgl=]11 1 0 0
0100

([z,) A [z]) = [fug]

so {[a,,] V o]} A ([au] Vieyl) =

[ B
_— O
o T T |
o o o

las] V ({by;] Ales ) = (layy) v b)) A (law;) ¥ fey])

3.1.22 Theorem

And-B-Product 1s distnnbutive over Or-B-Product

(@] A (o] V [ey1) = (asy] A [biy]) ¥ (lagy] A o]}
Proof Strightforword =
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3.1.23 Remark

And-Not-B-Product 1s not distributive over Or-Not-B-Product
(@] A ([bey] ¥ [eyy]) # (lay) A (b)) Y ([‘1-3] A e

3.1.24 Example

Let U = {uy, ug, uz} be the universal set, £ = {e1, 2. €3, e4} be the set of paramneters
and A = {e), e2}, B = {e3, ea} , C = {eg, €3} be the subsets of £

Let f4 E — P(U) be such that

faler) = {u1, w2}

fale2) = {u2, ua}

fales) = faled) =0

Ry = {(u1, e1}, (u2. e2), (uz, e2), (u3, e2}}

Rayer|e2|ea|ea
up |1 |0 [0 |0

uy |1 |1 |0
us [0 |1 |0 O
1 000
A=ley,J=]1 10 0
01 00

and fg FE — P(U) be such that
felea) =U

fuled) = {u1, uz}

fele1) = fplez) = ¢

Rp = {(u1, e3), (ua, €3), (u3 e3), (u1. e4}, (u3, e4)}

RB e | €2 | €3 | €4
u; |0 |0 (1
us [0 (O |1 |O
uy (0 [0 |Y |1
0 011
B=D;]=]10010
0011

and fo FE — P(U) be such that
folez) = {uz}
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fclea) = {ug uy}
folen) = fclea) = 0
Re = {{(ua, €2). (u2, €3}, (u3 e3}}

Roler|e2|es|ea
yy (0|0 [0 10

7 0
w3y [0 [0 |1 |0
0 00
010
0 011 000
[bu]![cﬂc]z 0o010|Y¥ 1
0011 010
111111111 1 1 111
fpl = [t 001001000101 111
11011101001 1 1 11
and f,, = max(bh,. 1 —ca)suchthat p=mn(y—1)+%
4
Where e,q = A ) forallz=1.2 3andg=1 2 3,4
p={q—1M+1
1 111
[clq]=[bu]![0|k]= 0001
0 001
Now
(@] A ([by;] ¥ [e:;]) = lawy] A erq]
1 000 1 111
[aIJ]R[clkl= 1 1 00 A 0 0 01
0100 00 01



3. Soft Matrix Theory and its Decision Making: A New Approach 47

0 0000O0O0OO0O0OCO0OOODODU0UO00U
lgp] = 11101110000600G0O00O00
00001 11000O0O0O0O0CO0C0
and g, = mun{a,, 1 - eyx)such that p=mn{7 - 1)+ k&
Y
Where 3,4 = V (e forall1=1 2 3andg=1 2 3,4
p=(g-1)n+l
then
0 00O
[8g)=1]1 10
0100
S0
0000
[mjl?\[clklzlslq]= 0 01 0
0011
0 00
[ﬂlJIR([le]![ciJ]):["lqlz 0 01
011
Now RHS
([ayy] A [bi;]) ¥ {[ay;] Ayl
1 000 0011
lay] Albe] =1 1 0 0|A[0 0 1 0
1 00 0 011
110000000000O0O0CO00
[fip] 11011101000000O0CO0
0 0oo00110000O0O0C0CO0O00Q0
and fp = min(a,,, 1 - bu) such that p=n(y - 1} + &

qd
Where z,, = ( V (f,p)) forall1=1,2 3andg—=1 2 3.1

p=(g-1jn+1
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then
1 00
[zTg=]11 10 0
0100
80
1 0 0
[ﬂ'J]R[blk]I[th]z 1100
01 0
1 000 0 00O
(ley]Alea)=]1 1 0 0|A|0 1 10
0100 0010
111100000000O00O0O0O0
lgp]l = 1 001100100000000
00001101 00000O0¢00O0
and g, = mn{a,. 1 - ) such that p=n(y - 1+ k
qi
Where y,q = V (Gsp) foralli=1 2 3andg=1 2.3 4
p={g-1)n+1
then
1 000
['qu]: 1100
0 100
80
1 000
([aU]R[C'kD-_—[qu]: 110 0
0100
1000 1000
[z, ¥wa)=|1 1 0 0Of¥Y}I1 1 00
0100 0100
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11110111 0111¢01T11
2 = 1 1111111001100 11
10111111101 11011
where 2,, = max(z,;, 1 — k) suchthat p=n{3-1)+4&
q4
if hyg = A Go) foralli=1,2 3andg=1, 2, 3 4
p={g—1}4+1
1 000
(gl = (@) Y[w)) = [ 1 1 0 O
010
1000
(o] AB) ¥ ([an] Aley) = (2] Yl = [hgl = | 1 1 0 0
0100

50[“-:] A ([by;) ¥ [es]) # (@] A (B, ) ¥ (la;] A e ])

3.1.25 Remark

Or-Not-B-Product 1s not distributive over And-Not-B-Product
(@) ¥ ([Big] A [eey])} # ([ag] ¥ [B5]) A ([a5) ¥ Hews))

3.1.26 Remark

Let [ay]. [by]. € SMmxn and % € (A, V, A, ¥Y) be the binary operation Then @,y %

[by,] # [byy] % (@]

3.1.27 Example

Let U = {uy, uy, u3} be the umiversal set, E = {e;. €2, €3, e4} be the set of parameters

and A = {e;. e2}, B = {e3, e4} be the subsets of £
Let f1 E — P(U) be such that
faler) = {u1, uz}
falez) = {ug, ua}
Fales) = faled) = @

Ry = {(u, e1). (ug. e2), (u2, €3). (ua, €2}}
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Rq|er|ez|ea|ea

u (1 {0 |0

Un 1 (0

uz (0 |1 |0
1 000
A=fayl=111 0 0
0100

and fg E — P(U) be such that
fales) =U

faled) = {u1, u3}

fole1) = fplea) = &

Rp = {{u1. e3). {u2, e3}, (ua. e3) (w1, ed), (us ed}}

Rp |e1|€e2{ea| e
uy |0 |0 |1
u; [0 |0 |1 |0

o
Il
=
=i
It
[ T e T
o o o
— e
— D

[ag)Albal=|1 1 0 0 [A

- B e [ e
o o O
e e
=

{dw] =

o o o
o o O
=
= O O
o o O
o o o
- B T ]
o o o
o o o
= o 2o
o o o
o o o

00001

where d,;, = mun(a,;. by) such that p = n(g—1)+k

q4
if g = V (dip) foralli=1,2 3andg=1, 2 3 4
p=(g—1yd+1

Then
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[Y] = [qul:].x4 = [a‘!.?] A [blk]

1 000
le,]Abi]=1]1 1 0 O
01 0O
Now
0 011 1 000
byl Alak)=]0 0 1 0 }A[11 0 0
0011 0100
D00 OO0OODO0O010O0Q01000D
(fip)) = |0 00000 0611000000
0O000C000O0CO0O0CT1O0O0CCGC1IO0O0
where f,, = mn(a,;, by} such that p=mn{3 - 1)+ k
q4d
if eyg = V () forallz=1 2 3andg=1 2, 3. 4
p=(q—1)4+1
Then
[E] = lewlaxs = [bay] A [auk]
0 011
bylAlex]=10 0 1 0
0011

hence

o] A by # beg] A [0]

Therefore commutative law does not hold with respect to And-B-Product
similarly

la] V [by;) # &) v [a.x]

[a:x] A [bu] # [bij] A [ay]

[ﬂﬂ.l v [bu] # [bu] Y [ﬂlk]

3.1.28 Theorem

Let SM,uxn be the collection of all the soft matrices and % € {A V A ¥} be the
binary operations, then (SMpxn, %) 15 a semigroup
Proof. Straightiorward =
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3.1.29 Theorem

Let SM,,xn be the collection of all the soft matrices and %, v € {A, ¥V} be the binarv
operations, Then (SMpy «n, %, 0) 15 2 seminng
Proof Straightforward =

3.2 Soft Matrix Decision Making

In this section we construct a soft matrix decision making with the help of soft matnx

decision function and then select an optimum solution from the decision soft matrix

3.2.1 Definition

let [a,;} . ]bi;] € SMman. and let [c,;] be the product of |a,,) and {b;] Then the soft

matrix decision function, denoted SMDF 1s define as follows

SMDF SMmxn — SMpna

n
E{CIJ}
SMDF [c,) = "‘n wheret=1,2, ., m

the one column soft matrix SM DF [e,] 1s called decision soft matrix

3.2.2 Definition

let U = {u;,us, un} be imtial umverse and SMDF [¢,)] = [di1] Then a subset of
U can be obtained by using [d,1] as in he followmg way
optmyg,) (U) = {w. €l max (d;1)}}

3.2.3 Applications

Assume that a person wants to seek admssion in Ph D program and the unnver-al set
contain different umversities I/ = {uy, ug, ua, ua, ug}, which may be characterized by
a set of parameters E = {e, eq. €3. eq} For j =1, 2,3, 4 the parameters €; stand
for “Part time studies”, “less Fee ™, “Full time studies” and “Located near Islamabad”

respectively Then we can give the [ollowing examples
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3.2.4 Example

Suppose that two Students, Mr A and Mr B, come to the contact with cach other
and want to get admussion 1f each of them has to consider their own set of parameters
then we select a Uruversity on the basis of the sets of partners’ parameters by using
the Soft Matnx Decision as follows

Assume that U = {u), up u3. uq ushs a unnersal set and E ={e] cy. ey cat s
a set of all parameters

Mr A and Mr B have to choose the sets of thewr parameters, A = {e2 e3, eq}
and B = {ey, €3, e4} respectavely

Then we can write the following soft matrices which are constructed according to

their parameters

001 1] 101 1]
0111 1 001
leyj=]10 11 0 ba]=|0 0 1t 1
0100 0011
01 01 0001

Now, we can find a ;;roduct of the soft mat-nces fay,] and [bik] by using And-B-
product as follows
Now we apply And-B-product since both Mr A and Mr B choices have to be

considered
'0000000010111011]
000010011001 100°1
[dip] = 0o 0000011001 100¢0090
00000011001 00000
| 000000010010000 1]
and d,p = mn(a,;, b} such that p=n(y - 1)+ k
94
Where y,q = Vo dy) forale=1, 2.3 4 Sandg=1 2 3.4
p=(g—-1}1+1
Then

Y] = [alswq = las,] A Bu]
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0011
01 11
lay)Abk)j=10 1 1 0
0100

| 001 0 1

We can find a decision soft matrix as
05
075
MDF ([a,]Anbk]) =] 05
025
L 0 5 o
we can find an optimum set of U according to MDF ([ay,] A [bi])

OPtMALDF (lav, JAbu]) (U) = {uz}. where uy is an optimum University for Mr A and
Mr B
Note that the optimal set of U may contain more than one clement
Siumlarly, we can also use the other products {[a,,] v {bye]) - {any] A but)and ({ag] Y b))

for the other convenient problems
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Conclusion

The soft set theory has been used in different fields The results of this thes:s
show that the B-products are binary Further 1t 1s shown that associative laws as well
ay distributive laws holds At the end of this thesis we highlighted that soft matnx
decision making on the basis of soft set theory 1s useful The cxample of a student
who 15 looking for some umversity for Ph D 15 also given in this thesis These type of
products can also be defined 1n fuzzy soft matrices and we can also take the products
of the soft sets and then convert 1t into soft matrices and can compair the result in
both the cases This Converse can be appled in both soft matrices and [uzzy soft

matrices
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