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Preface

Most of the problems encountered in the field of science and engineering are

developed in terms of non-linear differential equations [1,2]. It is a well-known fact

that these differential equations cannot be integrated analyically in most cases. It is
necessary to apply some method of approximation numerically for most reliable

solution. A large number of different approximation methods for solving differential

equations exist, the most important and famous method is the finite element method

13,41.

The effects of thermal boundary conditions on natural convection flow of fluid within

an enclosure were investigated by different authors so far by using different numerical

schemes. The natural convection flow in a square cavity under the influence of
uniformly and non-uniformly heated bottom wall and keeping top wall as well

insulated while two vertical walls are cooled by means of two constant temperature

baths is examined by Basak et al. [5] and yields consistent performance over a wide

range of parameters Rayleigh number (Ra) and Prandtl number (Pr) with respect to

Dirichlet boundary conditions. Various aspects of the subject problem have been

investigated by Basak and Ayappa [6], Ostrach [7-9], Gebhart [10], Hoogendoorn

[11] and Imberger [12]. A comprehensive numerical study of natural convection flows

and heat transfer characteristics in an enclosure with different sidewalls temperatures

(i.e. one vertical wall of enclosure is heated and another one is cooled wall, whereas

top and bottom of the cavity are insulated) has been made previously by Nicolette et

al. [13], Hall et al. [14], Hyun and Lee [15], Fusegi et al. [16], Lage and Bejan

[17, 18] and Xia and Murthy [9]. November and Nansteel [20] and Valencia and

Frederick [21] have examined the natural convection within square cavity, heated

from below and./or the top was cooled. Steady natural convection in fluid-filled
rectangular enclosure heated from below and symmetrically cooled from the two

vertical side walls is studied numerically by Ganzarolli and Milanez 122).

Subsequently, Aydin et al. l23l has inspected the same flow of fluid to acquire the

effect of aspect ratio and Rayleigh number on flow pattern and heat transfer in air-

filled rectangular enclosure. Experimentally investigation of high Rayleigh number

natural convection in a watei-filled cubical enclosure heated simultaneously from

below and from the side has been made by Kirkpatrick and Bohn l24l and obtained

the experimental measurements and observations of the heat hansfer, the flow
patterns and the mean and fluctuating temperature distribution. Steady laminar natural

convection in air-filled rectangular enclosure heated from below and cooled from

above is studied numerically by Corcionel25l, for a wide variety of thermal boundary

conditions at the side walls, and such numerically study was conducted for different

values of both width-to-height aspect ratio of the enclosure and Rayleigh number. The

numerical and theoretical study of natural convection in square cavity with heated

bottom wall, insulated top wall and cooled vertical walls has been examined, which



results the discontinuities in temperature distribution occur at bottom wall in response

of uniformly heated bottom wall. The discontinuities may be removed by heating the

bottom wall non-uniformly, as investigated by Minkowycz et al. 126) for mixed

convection flow on a vertical plate (either heated or cooled). ln order to assess the

accnracy of the numerical procedure, the algorithm based on the grid size $lx 4l)
for a square enclosure with a side wall heated were investigated and are in agreement

with the work of Mallinson and Vahl Davis l27l for ^Ra 
: 103-106.

The finite element method (FEM) is one of the major numerical solution technique

which has major advantage that a general purpose computer program can be

developed easily to analyze various kinds of problems. In particular, any complex

shape of problem domain with prescribed conditions can be handled with ease. This

thesis is useful as a reference tool for researchers using FEM. Also the thesis is

intended to serve as a text for students of mathematics, science and engineering who

have acquired some knowledge of elementary numerical analysis. The chapter-wise

details of the thesis is as follows:

Chapter I provides the basic definitions and law regarding fluid mechanics and

phenomenon of heat transfer. Chapter 2 has brief explanation and procedure to

implement finite element method in partial differential equations for different

geometries. Two examples with the application of FEM using triangular elements are

solved with brief steps of numerical computations. Laplace equation is also given as

additional example in Appendix-B for better and practical understanding of FEM by

presenting FEM solution with 4-node rectangular elements. In Chapter 3, the effects

of thermal boundary conditions on natural convection flows within a square cavity [5]
are reinvestigated. The modelling of the problem is made subject to the boundary

conditions due to different temperature situations at different walls of the enclosure.

The solution of the developed problem is computed by using Galerkin finite element

method by developing code in MATLAB. The results are presented in term of
temperature profiles and Nusselt numbers, and discussed in detail.

111
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Chanter - 1

Preliminaries

In this chapter, some basic definitions and fundamental laws related to next chapters are

introduced for better understanding of the readers ll, 2].

1.1 Fluids Mechanics

Fluid mechanics is the subject in which we study the applications of the laws of force and

motion to fluids including liquids and gases. ln other words, it concerned with the statics and

dynamics of fluids (both liquids and gases).

1.2 Fluids

A fluid is a substance which deforms continuously, or flows under the action of shearing

forces which act tangentially to a surface of fluid. ln other words, there is no action of

shearing force when fluid is at rest.

Liquid

It is the state of matter in which the molecules are relatively free to change their positions

with respect to each other, but restricted by cohesive forces so as to maintain a relatively

fixed volume.

Gas

It is the state of matter in which the molecules are practically unrestricted by cohesive forces.

Therefore, gases has neither definite shape nor volume'

1.3 Stress

A stress is defined as a force acting per unit area of an infinitesimal surface element.

1.4 Types of Stress

There are two types of stress. These are normal stresses and tangential stresses which are

defined as follows:
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1.4.1 Normal Stress

The stress which acts perpendicutarly to the plane to which a force has been applied.

1.4.2 Tangential Stress

A stress which acts along the surface or parallel to the surface.

1.5 Types of Fluids

Fluids can be classified into four basic types, which are as under:-

1. Ideal Fluid

2. Real Fluid

3. Newtonian Fluid

4. Non-Newtonian Fluid

Details of above each has been given as under:

1.5.1 Ideal Fluids

The fluids which has no resistance in between their molecules are known as ideal fluids. In

other words, fluids having zero viscosity are known as ideal fluids. Practically, no ideal fluid

exists.

1.5.2 Real Fluids

The Fluids which have some resistance in between their molecules, particles or layers are

known as real fluids. They are compressible in nature, and have some viscosity.

Kerosene, Petrol and Castor oil are common examples of real fluids.

1.5.3 Newtonian Fluids

Newtonian fluid is a fluid in which the viscous sffesses arising from its flow at every point

are linearly proportional to the local strain rate (the rate of change of its deformation over

time). [n other words, fluids which obey the Newton's law of viscosity are called as

Newtonian fluids. Newton's law of viscosity is given by

dvT=U-.'dy

where r is shear stress, p is viscosity of the fluid and { ,, 
"o--only 

known by shear rate,
dy

rate of strain or velocity gradient. The water, benzene and ethyl alcohol are commonly known

as Newtonian fluids.
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1.5.4 Non-Newtonian Fluids

A non-Newtonian fluid is a fluid whose viscosity is variable based on applied stress, and such

fluids do not obey the Newton's law of viscosity. Common examples of non-Newtonian

fluids are ketchup, starch suspensions, paint, blood and shampoo etc.

1.6 Properties of Fluids

Any fluid is characterizedby the following properties:

1. Density

2. Viscosity

3. Coefficient of Dynamic Viscosity

4. Kinematic Viscosiry

1.6.1 Density

The density (p) of a substance is the quantity of matter (mass) contained in a unit volume of

the substance. Mathematically, it can be expressed by

mp=v'

where p is the density, m is the amount of mass in unit volume V. The unit of density is

kg*-t and dimensionis Mf E .

1.6.2 Viscosity

Viscosity (p) is the property of a fluid, due to cohesion and interaction between the

molecules which offers resistance to sheer deformation. Fluid with a high viscosity such as

honey or syrup deforms more slowly than that of fluid with a low viscosity such as water.

1.6.3 Coefficient of Dynamic Viscosity

The coefficient of dynamic viscosity (p) is defined as the shear force per unit area, (or shear

stress r ) required to drag one layer of fluid with unit velocity past another layer a unit

distance away. Mathematically

ldv Force /Velocity ForcexTime Mass
=' I dy Area I Distance Area LengthxArea

Units of p are Newton seconds per square meter (Nsm-2) or Kilograms per meter per

second (kg-"').
3
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1.6.4 KinematicViscosity

Kinematic viscosity (u) is defined as the ratio of dynamic viscosity to mass density.

Mathematically, it can be expressed by

.,_pu --.p

The unit of o is square meters per second (*"-') and dimensionis t f T -

1.7 Types of Fluid Flow

There are many types to classify flow of fluid and describe the state of fluid flow under

different circumstances. Some types of fluid flow are as under

1. Uniform Flow

2. Non-Uniform Flow

3. Steady Flow

4. Unsteady Flow

5. Laminar Flow

6. Turbulent Flow

Explanation of each is given below.

1.7.1 Uniform Flow

If the fluid velocity remains same at every point in the flow, then it is said to be uniform

flow.

1.7.2 Non-Uniform Flow

If at a given instant, the velocity is not the same at every point, the flow is known as

non-uniform.

1.7.3 Steady Flow

A steady flow is one in which the fluid characteristics (velocity, pressure and cross-section)

do not change with time.

1.7.4 Unsteady Flow

If at any point in the fluid, the fluid behaviors change with time, the flow is described as

unsteady.



1.7.5 Laminar Flow

The flow of a fluid in which particles of the fluid

which has a constant velocity is known as laminar flow.

Chapter-1

move in parallel layers, each of

1.7.6 Turbulent Flow

A fluid flow in which the velocity at a given

direction is known as turbulent flow.

varies erratically in magnitude and

1.8 Compressible Fluids

If the density of a fluid varies significantly due to moderate changes in pressure or

temperature, such fluid is referred as compressible fluid. Generally, gases and vapours under

normal conditions can be classified as compressible fluids.

1.9 Incompressible Fluids

If the variation in temperature or pressure causes a small change in density of a fluid, then the

fluid is known as incompressible fluid.

1.10 Streamlines

In analyzing fluid flow, it is useful to visualize the flow pattem by drawing lines joining

points of equal velocity l.e. velocity contours. These lines are known as streamlines. Here is a

simple example of the streamlines around a cross-section of an aircraft wing shaped body:

Figure 1.1: Sheamlines around a wing shaped body

1.11 Buoyancy Force

The upward force that a fluid exerts on an object which is completely or partly submerged in

it is called buoyancy force. This force causes the objects to float. Moreover, buoyancy allows

boat to float on water and provides lift for balloons.

point
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l.l2 Convection

Convection is the process in which heat moves through a gas or a liquid. In other words, the

mode of heat transfer in liquids and gases is known as convection. Transfer of heat through

convection is categorized in three different types, each one is explained below.

l.l2.l Natural Convection

Natural convection or free convection is a mechanism

motion is generated due to density difference in the

gradients.

of heat transfer in which the fluid

fluid occurring due to temperature

1.12.2 Forced Convection

Forced convection is a mechanism in which the fluid motion results from extemal surface

forces such as fan or pumps. Forced convection may happen by natural means. For example,

fluid radiator, heating and cooling of parts of the body by blood circulation are familiar

examples of forced convection.

1.12.3 Mixed Convection

Mixed convection occurs when natural convection and forced convection mechanisms act

together to transfer heat. This is also defined as situations where both pressure forces and

buoyant forces interact.

1.13 Non-dimensionalQuantities

The following numbers are the corrmon non-dimensional numbers used in fluid mechanics.

1.13.1 Nusselt Number (Nz)

A dimensionless parameter defined as the ratio of convection heat transfer to fluid conduction

heat transfer under the same conditions. Mathematically

- Convectiveheattansfer hLi-uL=M=T'

where ft is the convective heat transfer coefficient of the flow, Z is the characteristic length

and k is the thermal conductivity of the fluid.
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In contrast to the definition given above, average Nusselt number and local Nusselt number

are defined by taking the length to be the distance from the surface boundary to the local

point of interest. i.e.

Nu- =!{-.-k

The mean or average Nusselt number is obtained by integrating the expression over the range

of interest, such as

1.13.2 Rayleigh Number (Ra)

The Rayleigh number for a fluid is a dimensionless number associated with buoyancy driven

flow. When the Rayleigh number is below the critical value for that fluid, heat transfer is

primarily in the form ofconduction; when it exceeds the critical value, heat transfer is

primarily in the form of convection. The magnitude of the Rayleigh number is a good

indicator as to whether the natural convection boundary layer is laminar or turbulent.

Mathematically, it is the product of Grashof number Gr and the Prandtl number Pr,

i.e. Ra=GrPr.

1.13.3 Prandtl Number (Pr)

The Prandtl number is another dimensionless number defined as the ratio of momentum

diffusivity (kinematic viscosity) to thermal diffusivity. Mathematically, it can be defined as:

u viscousdiffirsionrate _coFLrf 
- d thermaldiffusionrate k '

where u be the kinematic viscosity, a be the thermal diffusivity, p be the dynamic

viscosity, t be the thermal conductivity and c o be the specific heat.

l.l4 Momentum Equation

Linear momentum equation for fluids are developed due to Newton's

second law which states that sum of all forces must equal the time rate

of change of the momentum,lf =d(*u)ldt. This is easy to apply

in particle mechanics but for fluids, it gets more complex due to the

r4
N, = *l Nu(y)ay.

f,'o

Arbitrary Volunle
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control volume (and not individual particles). The change of momentum will have two parts,

momentum inside the control volume, and momentum passing through the surface. This

concept can be written as

Lr = *1,,0, orr + !,,r err .ndA ,

where Zis the velocity vector, n is the outward unit normal vector, and lF represents the

sum of all forces (body and surface forces) applied to the control volume.

1.15 Thermal Conductivity

Thermal conductivity is a material property which describes the ability to conduct heat. More

appropriately, it is defined as the quantity of heat hansmitted through a unit thickness of a

material in a direction normal to a surface of unit area due to a unit temperature gradient

under steady state conditions. Its unit is Wl@K) in the SI system.

1.16 Thermal Diffusivity

In heat transfer analysis, thermal diffrrsivity is the thermal conductivity divided by the

product of density and specific heat capacity at constant pressure. Mathematically, it is

denoted by a and defined as

k
d=->

Pco

where fr be thermal conductivity, p be density and co be the specific heat capacity.

L.l1 No Slip Condition

The fluid has zero velocity at the boundary of solid with witch it is in contact. It occurs due to

the strong force of attraction between the fluid particles and solid particles (Adhesive Forces),

such condition of viscous fluids is known as no slip condition.



Chapter - 2

Fundamental of the Finite Element Method

The aim of this chapter is to discuss the procedure involved in using the finite element

method to solve any partial differential equation subject to the boundary conditions in two

dimensional space 13,41. The two and three dimensional finite elements used in discretization

process of the geometry, shape functions w.r.t different number of nodes, calculation of

element stiffrress and global stiffness matrices, implementation of boundary conditions and

post-processing are discussed in reasonable detail. Moreover, two examples solved with

detail calculations are provided in this chapter for better understanding the implementation of

finite element method [4].

2.1 Introduction

Many physical phenomena occurring in engineering and daily life can be modeled in terms of

partial differential equations subject to some boundary conditions. It is observed that solution

of these equations for arbitrary domain is impossible by using classical analytical methods. ln

this situation, the finite element method (FEM) is an extremely reliable computation

technique used to obtain approximate solution of these partial differential equations. For this

purpose, converting the given domain into a number of non-overlapping small pieces

connected by nodes is required. These small pieces are called finite elements. Then the

governing equations for every element are solved to get numerical solution within each

element. At last, combining the solutions at all such elements gives the approximate solution

for entire domain of given problem. The accuracy of the computed solution may be achieved

by increasing the number of elements as well as number of nodes.

In order to obtain the solution over the domain, methods of residuals are used, which are

explained as follows.

2.2 Methods of Weighted Residual

The method of weighted residual can be described in its generality by assuming the partial

differential equation in operator form as,

D("): g in c), (2.r)
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where D is linear/non-linear differential operator acting on dependent variable u, g is a given

function and O is a two dimensional domain.

In this method, the solution of equation (2.1) can be approximated by linear combination of

basis/shape functions taken from linearly independent set as follows

a =ib,o,.

In which, b,'s are unknown constants required to determine and Q, are linearly independent

basis functions. Substitution of the approximate solution fr into the left hand side of

Eq. (2.1), the result D(m), in general, is not equal to specified function g due to the fact that

solution (2.2) is not the exact solution of the problem (2.1). The difference D(") - g + O , is

known as the residual of the approximation, and is

(n \R=D(fr)-s=DlLb,0,l-s*o (2.3)
\r=l )

To evaluate unknown constants b,, choose weight functions Wi , set the weighted average of

the residual over the problem domain to zero, i.e.

!w,61n1*,b,)dxdy = 0, (i =1,2,3,. . .,n).
c)

ln general, the choice of the weight functions Wi are not the same as the basis function Q,,but

they (Wi) are exactly equal the number of unknown constants b,. Following methods of

weighted residual are classified in terms of the choice of weight function IZi:

1. Collocation Method,

2. Least Squares Method,

3. Galerkin Method and

4. Method of moments

Each of these has been explained below.

2.2.1 Collocation Method

In this method, the Dirac Delta function d(x-x,) is used as weight function, defined as

follow

(2.2)

(2.4)

, 11 , x=x,,(r-r,)={0, 
otherwise

IO

(2.s)
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where the point r, must be within domain f), the unknown constants b, can be evaluated by

setting the weighted average of the residual in Eq. (2.4) equal to zero at specific points in the

domain. That is

or R(x,,b,)=O. (2.6)

2.2.2 Least Squares Method

In this method, the integral of square of residual is minimized by setting its derivative with

respect to parameters b, equal to zero. That is

Ir(r- xt)R(x,b)dx=o
o

a + ln9lar:0.frL*',*,b,)dx:o * ob,

Comparison of above integral with Eq. (2.a) imply

w, = *. (2.8)
ab,

Therefore, the weight functions are just the derivatives of the residual with respect to the

unknown constants b,.

(2.7)

(2.10)

2.2.3 Galerkin Method

ln Galerkin Method, the weight functions W, are chosen equal to basis functions Q,,i.e.

w,=*=Q,. Q.g)' ab, '|t

2.2.4 Method of Moments

In the method of moments, weight functions are selected from the family of polynomials,

W, = x' , i = 0, 1, 2r...,n-l .

ln order to find the unknown constants b, through weighted average residual equations (2.4)

by choosing suitable weighted functions given in above method, it is required to integrate

Eq. Q.\ once analytically is called weak formulation, which is explained as below.

2.3 Weak Formulation

The differential equation along with boundary conditions of the given problem is referred as

strong form. These differential equations are difficult to solve due to presence of higher order

derivatives, and basis functions in this situation are required to be high order differentiable

t1
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and smooth. To avoid this exertion, there is a need to remove or decrease the order of

differential equations by one through integration is known as weak formulations. It is further

noted that the manipulation of the problem in weak form is comparatively easy as that of

strong form. In Finite Element Method, the weighted average residual are required to

integrate over the finite elements obtained through discretization process in the domain.

2.4 Discretization and Element Mesh of the Domain

The process to divide the geometry or physical domain of the problem into finite number of

non-overlapping elements of any shape is known as discretization. The collection of finite

elements in a domain is called the finite element mesh of the domain.

The simple meshing of square geometry divided into triangular elements is shown in

Figure 2.L.It is important that the solution of the desired problem by using finite element

method tends to highly accurate by increasing the number of finite elements.

00.5 I

Figure 2.1: Meshing of square geometry in riangular elements

2.5 Types of Elements

Generally, straight-line segments are used as elements in one dimensional case, triangles,

rectangles or elements with algebraic curves are used in two dimensional case, and

tetrahedron or hexahedron shape of elements are used in three dimensions space. They are

explained in detail as follows

2.5.1 Line Segment Element

We divide the interval la,b) in one dimensional

4 =[4,x,*,], 0 <i < N, with xo = o and xr*, =b .

we represent it by (e) as shown inFigxe2.2,

space into non-overlapping subintervals

Each interval fx,,x,*rl is an element and

t2
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a :xo i, xl-r xt trr+r D=xr*r

Figure 2.2: Division of an interval into line segment elements

2.5.2 TriangularElement

The region 3. in two dimensional space can be divided into triangular elements as shown in

Figure 2.3(a). Here each element is a triangle with nodes i, i, k numbered anticlockwise as

signified in Figure 2.3(b). We assume that the nodes of the region B. are consecutively

numbered from 1 to N. Further, we denote the value of the function u(x,y) at the node i

by u,.

(a) (b)

Figure 2.3: (a) Division of two-dimensional region into triangular elements and (b) Triangular

element with allocated nodes at its vertices

Moreover, each triangular element may be categorize by four noded, six noded and ten noded

triangular element.

2.5.3 Rectangular Element

The simplest rectangular element has 4 nodes at the vertices with I degree of freedom per

node, as shown in Figure 2.4. The figure also shows the local node numbering system

(I,2,3,4), the nodal coordinates (*i,yi) and the nodal degrees offreedom (dof) {' oflocal

node i. The local numbering system usually starts from bottom left corner and is

counterclockwise. This is called as local notation. A physical problem is solved by using

4-node rectangular element and is explained in Appendix B for better and practical

understanding of finite element method.

(e)

l3
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(xi,at),7 (4,9i),Ti

(xi,ai ),7 (xi,ai ),Ti

Figure 2.4: Four Noded Rectangular Element

Rectangular element may further be categoized by eight noded, nine noded, twelve noded

and sixteen noded rectangular elements.

2.5.4 Quadrilateral Element

A general quadrilateral element (e) with four nodes, one at each comer is shown

Figure 2.5. The coordinates of the vertices at the node I of element e is represented

@i,vi)-

(xl 
'ai )
3

(xi,ai )
1

Figure 2.5: Quadrilateral Element

Likewise triangular and rectangular elements, quadrilateral element may also be occurred in

eight and twelve noded quadrilateral elements.

2.5.5 Curved Boundary Element

Any physical domain ?. in two dimensional space with curved boundaries as shown in Figure

2.6(a) is discretized by triangular elements as shown in Figure 2.6(b). If some of the

boundary dR of the domain ?, is curved, then we may either approximate it by a polygon and

use the triangle and quadrilaterals for discretization as shown in Figure 2.6(b) and 2.6(c) or

we use triangular elements with at least one curved side as shown in Figure 2.6(d).

ln

by

3

2

4

(e)

(e)

(x3,ai)



(xr,y.)

Figure 2.6 (d): Triangular
Element with one curved side

Figure 2.6 (a\: Division of domain R

with curved-sided elements
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Figure 2.6 (c): Division of domain R with polygon

boundary dR

Figure 2.6 (b): Division of domain R with
one curved side boundary dR

2.6 Shape Functions

In finite element analysis, the model of continuous body is divided in finite elements

containing a many number of nodes, the shape of the body between these nodes is estimated

by functions, these functions are called shape functions. Moreover, shape function

interpolates the solution between the discrete values obtained at mesh nodes.

The characteristics of shape functions are

1. The shape function at any node has a value of 1 at that node and a value of

zero at all other nodes, i.e.

--/ ' [1 i=iN,\',,y,)=to i+j
2. The sum of all the shape functions, evaluated at any point must be unity, i.e.

I{ (r,v): t

15



Chapter-2

2.7 Local and Global Nodes of Element

Consider the following geometry containing four triangular elements represented by the

number 1, 2, 3 and 4, each one is defined by three nodes. Red colored numeric numbers

(1,2, 3,4, 5 and 6) located on the boundary, represent the global nodes. The alphabets

p, q and r represented counter-clockwise at inner corner of each triangular element are local

node labels for respective element. as shown in Fisure 2.7.

124

Figure 2.7: Local & Global Nodes in triangular geometry

2.8 Local and Global Stiffness Matrices

The coefficient matrix obtained from the weak form of given differential equation

corresponding to an element is referred as local stiffness matrix/element matrix. The

assembly of all local stiffness matrices using the equivalence between localand global nodes,

Figure 2.8: Triangular geometry allocated into two elements, symbolize with local & global nodes

Consider the geometry consisting of two triangular elements as shown in Figure 2.8. To get

philosophy of subject topic. consider assumed values of local stiffness matrices

corresponding to each element as under:

is termed as Global stiffness matrix. They both are square symmetric matrices.

r","";-l r\

/
4

l6
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413
46 s il
r lo 4 'l3t , d

2 31
z(z s il
,lo 4 tl
,[ , r)

Assembly of above element matrices generates a global stiffness matrix as follow:

1

t (o++

,l I

s ls*r

.G

2

I
2

0

3

1+5

5

4+o

1

Italic numbers represent the entries of first element matrix and bold entries inside the above

matrix belong to second element matrix. Blank locations corresponds to where no entry is

allocated from both (elements) matrices, zero entry will be allotted there. Finally, the required

global matrix is obtained, which is

2.9 Solution procedure using FEM

To compute the solution of the problem by using finite element method, we undergo the

following steps:

o Discretization of the domain into a set of finite elements.

o Define an approximate solution of given differential equation over an element, such

defined solution must satisfy the given boundary conditions.

o Define shape functions as per type of element per number of nodes.

. Choose weight function through using methods of weighted residual.

o Set up a weak formulation of given differential equation.

o Evaluate the weak form of given differential equation for each element using given

boundary conditions, and obtain value of local stiffrress matrix corresponding to each

element.

(q | 6 o)

l, z s rl
l6 o 411
[sorz)

t7
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Assemble all elementwise local stiffrress matrices to generate global stiffrress matrix.

Solve the algebraic system of equations to get desired solution by using any

direct/indirect/iterative method.

and post-processing (This final operation displays the solution to system equations in

tabular, graphical or pictorial form. Other meaningful quantities may be derived from the

solution and also displayed).

2.10 Examples

Examples with the implementation of FEM are given below for explanation of the method.

2.10.1Problem. Solve the boundary value problem using Finite Element Method

v2u = -1, lrl < t, lyl < t

u =0, lrl = L lyl= r

by using three nodes 32 tianglar elements as shown in Figure 2.9.

(2.rr)

with h=%

Solution. The solution of the boundary value problem satisfies the symmetry conditions,

u(-x,y)=u(x,y), lt(x,-y)=u(x,y), tt(y,*)=u(x,y)

Therefore, we shall consider only one eighth of the square as shown in bold black patch of

the Figure 2.9.

Figure 2.9: Representation of elements with nodal points

l8
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After discre tizing,the length of each triangular element k % Q.e. h = fl There are four

elements which are numbered 1,2,3 and 4. For given problem, the element functional is

(2.t2)

where superscript e denotes an element with nodes i, j and ft marked in counterclockwise as

represented in Figure 2.10.

,' =;{t[[ %\ .(T\ -,.F*,

th ut

Figure 2.10: Three Noded Triangular Element

The element equation k {, =0, i.e.
ou

# =;ryli(*)' * .(T)' T\., -,,,1* = (2.13)

We have value of z in terms of nodal variables (c, c, c, and co),

u = crH r(x, y) + crH r(x, y) + crH r(x, y), (2.14)

where H,(x,y); i=1,2,3 are shape functions for linear triangular element, which are given

below

ru, = )l@,!t - xtlz) + (t, - t,)** (r, - *r) yf ,

H, = *l(\!r - xJt) * (t, - t,)*+ (r, - r, )r],

u, = )l1,r, - xzlt) + (t, - t,)* * (*, -r, )y] .

The shape functions satisff the following conditions

It Yi=iH,(x,,!,)=di=loiy,*'1 and 
Zr,=r,

(2.rs)

(2.16)

(2.t7)

l9

'-)

(2.18)
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where,

ll ,, yrl

a =Li ,^ ;.121. '"1
ll '' hl

Magnitude of ,4 is equal to the area of the linear triangular element. However, its value is

positive if the element node numbering is in counter-clockwise direction and negative

otherwise. For the finite element computation, the element nodal sequence must be in the

same direction for every element in the domain.

First two terms on right side of integral (2.13) implies

[rqqt (u\

;d{(#)' *.(*l T}.P.,,I 
] | 

x,lrx**l 
I 

yf
I l( a, I la, )

au, au, arur\
dy dy oy)

performing integration after substituting the shape functions, we obtained the following

matrix

(2.20)
f k,, kt, k,r l

["'] =l ou k,, k*|.

lk, krr. krr)

In which,

t,, = L*16 - *,)' * (y, - y,)'f,

0,,=*lG,-r,)(r, - x,)+(t,- yr)(y,- y,))=k,,,

t ,, = L*lQ, - n)(*, - *,)+(t, - yr)(v, - vr))= kr,,

k,, = f-4AlG, - *r)' +(r, - y)'f,

4, = fil-, - *,)(*,- a )+(.r, - v,)(v, - v,))= k,,,

0,, = hl1, - *,)' +(t, - ,)').
The element-wise local stiffrress matrices are computed as follows:

(2.te)

20



For L't Element

^=;li 
:, i,l=*,

ll ', Y'l

0,, = ,[{,- t)' * [; -,)'] = ;,

0,, =,lt'-,)[; -,). (; -,)[' ;)] = -l = 0,,,

,.,, = ,[{,-,1[, -;). (; ,)(; ;)] = o = k31 ,

0,, = rl(;-,)' * (, - l)' ] 
=,,

o,=,I(:-')('-i).(, ;)(; ;)] = -I= 0,,,

.,=,[(, -:)' .G)']=;
Using matrix Eq. (2.20), we obtained local stiffrress matrix

231
z Co.s -o.s o)

5rr)- sl-0., r -o.sl .

r l-o -o.s o.s)

For 2nd Element

Chapter-2

(x,yr)
(t.y)

23
Figure 2.11: I't element with allocated

Local & Global Nodes

for I't element is

(2.2r)

(x,,v,)

(0,

Figure 2.12:2d element with allocated

Local & Global Nodes

0,, = rl(:- ;)' .[, - ;)' ] 
= l,

0,, =,10. 
[o 

- )(r-,)] = -1,= ou,

kn=2lO+0]=0=k31,

0,, = rl(, _ 
;)' .(i _,)' 

] 
=,

0,, =,[[o )(:-o).(i-,),,-,)] -I=ou,

0,,=rl(;-o)'*r]=;

4

(r,.1, )

21
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(2.22)

Figure 2.13: 3d element with allocated

Local & Global Nodes

(2.23)

(,,,-,,)
(t,y\

Figure 2.14'.4'h element with allocated
Local & Global Nodes

2nd element isWe obtained element matrix for

452
a (o.s -o.s o)

Ytz)- sl-o.s I -o.sl

2 [o -o.s os)

For 3'd Element

For 4th Element

k,,

k,,

k,,

k,,

0,, = rl(r-,)' * (, - l)' ] 
=,,

0,, =,1(:-,x;-;).[, ;)(;-,)] = -l = 0,,,

0,, =,1(r-')(, -:).(, - i),, -,)] -I= 0,,,

b,=zlo.(;-o)']=;,
krr=210+o]=O=k32,

0,, = r[(, -i)' .r]=;

We obtained local stiffrress matrix for 3'd element is

562
s (t -o.s -o.i

K(3)-6lrr o.s ol.
2 [o.s o o.s)

=,lG-,)'*,,1=1,

=,[(i-,)[,-i).,] = j = k,,,

= rl(;-')r, -,). o] = o = k31,

=,[(' -:)' .(i-,)']=',

22



r,, = z[[r -;),,-'). (i -,)(, -;)] =

0,,=rlo.[o-;l]=;

Thus, we obtained the following local stiffness matrix for 4th element is

I__ = k," ,2"

Chapter-2

(2.24)KG) :
6
3
2

632
ft.s -o.s o)
I -r.r , -o.t I

[o -o s o.l

Now, the assembly of all local stiffrress matrices using Eqs. (2.21 to 2.2\ by connecting the

elements corresponding to global nodes generate a global stiffrress matrix as under:

1

0.5 0 -0.5 00
-0.5-0.5 0+0

0 -0.s

-0.5 0

1+l -0.5

-0.5 0.5+0

4

0

0

-0.5

0

1

2

3

4

5

6

-0.5-0.5 1+1

00
0.5-0.s 0

0 0+0 -0.5

0

0.5

-0.5

0

After simpliffing, we get the value of Eq. (2.19) as

t''J i
; {r [{( # )' T .(T)' T}.v.= 

| 

-t' 
J

l.: ;
Now, consider the third term on right side of Eq' (2.13)

/r\

)ryrr, 
&dv = !! r, *a - bG\ -+[l,J

-0.s000
-10-10
200-0.5
0 0.s -0.5 0

0 -0.5 2 -0.5

-0.5 0 -0.5 I

. (2.2s)

(2.26)

where, -,4 = AreaofElement = y,

Steps of simplification for result obtained in above Eq. (2.26) are explained in Appendix A.
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Using Eq. (2.26), the values corresponding to all four elements are

(r\z /t\ e (t) s (t) e

o=;[lh' 
"=;li)x' "=;li)z' "=*ll: e27)

Using Eq. (2.27), the assembly of element matrices generates the global assembled matrix, as

given below

1

24
(2.28)

(2.2e)

0.5 0-0.5 0 0 0

02-10-10
-0.5-1 2 0 0 -0.5
0 0 0 0.5-0.5 0

0 -1 0 -0.5 2 -0.5
0 0 -0.5 0 -0.s 1

Eq. (2.13), we may write in compact form as

ul

u2

u3

u4

u5

u.o

1

24

ti * .l[)"[iJ

The givenboundary conditions give et, = 0, ut=0 , uo=O.

We incorporate these nodal values in matrix Eq. (2.29) by deleting the rows & columns

correspondingto u, u, arrduu,andobtain the following system of equations,

(2.30)

The solutionof above system (2.30) yields uz=0.1875, u4=0.29167 and u, =0.20833,

which are the required values of u at global nodes2, 4 and 5 .

2.10.2 Problem. Compute the element equation for six noded triangular element for

Boundary Value Problem represent by Partial Differential Equation given in (2.31) using

Finite Element Method.

24



Solution: Consider the partial differential equation
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(2.3t)

(2.32)

!( ,Y\* u ( ,uu)+r=o inR"
0x\' 6x ) Ay( Ay )

with Dirichlet condition

u = g(x,y) on 0R,
where p and r may be constants or functions of x and y only. The variational formulation of

differential equation (2.31) in term of the functional is reduced to simple minimizing problem

by assuming an approximate function (or approximate solution),

' = ;l)1,(*)' .,(X)' - z*)a.at= minimum, (2.33)

where the boundary condition (2.32) is to be satisfied. We divide the domain Rin six noded

triangular elements. The approximate solution u(x,y) for the whole domain fl. is

MK
u(x,y) =ZNn'/.u' =Z*,0, = NO, Q.34)

e=l r=l

where Mrepresents the number of the elements with Knodes in ?, and N & Q arc

N=[lr, Nr...N*1, 0:10,dr...0*]'

The shape functions M satisff the following conditions

N (x.v)=l'l'' (*,Y), if (x,Y)e(e)' 
e.35)t.t' 

L0, otherwise

arrd O@ are the nodal values associated with the element(e). Substituting the approximate

solution from Eq. (2.34) into Eq. (2.33), we get

' =:!){,(f"Tt"')' *,(f"To.') z,f^'"'6"'}** (236)

Using Eq. (2.35), assume that Eq. (2.36) can be written in the form

J:LJ'"' ,
e=l

(2.37)

1@) -itl{r(+ru')' * r(T^"t)' -z,wt"tr"'}** (2 38)

where
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is the contribution of the element (e) to the functional -/. The conditions for minimization of

the functional J in Eq. (2.37) with respect to nodal values 0,,i=1,2,3.'.K give the

following system of equations

aJ !- alt")"" = )'-" - 0, i =1,2,3 ... K
AO, u"=, 00,

or

AJ {AJG)"" =) -- -0.a0 u"=,)Qn'
(2.3e)

(2.4r)

Since -I(') depends on the nodal values associated with the element (e) only. The equation

U.!',:-, 
=0 is called the element equation. Usually, it turns out that one term of the summation

06r"t

gives the form for the other terms. Therefore, it is sufficient to explicitly consider the

contribution of a tl,pical finite element (e) only. After differentiating Eq. (2.38) with respect

to 0@), we get the following element equation

(2.40)# =r!1,{[*)' t#). [#)' [#)]," -,(1," )'V* = o

Thus, the element equation becomes

trG)6{e) -bG\ =0,

where

u@ = llrQ,tu')'*or,

and (M',f =[ry ,, N, N^ No N,)' .

(2.42)

(2.43)

Assume that the functions p and r are constants over each element and are represented by pk)

and/4 respectively.

ttl

Figure 2.15: Six Noded Triangular Element

,,, = 

IJ[, {[#)' t#) . [#)' W]V.
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The piecewise approximate solution over the element (e) may be assumed as

uG) =N,tt,+N,u,+Nrur+N^u-+Nrur+N,tt,- trJ{e)Pt'e), Q.44)

where

N(") =[ry ,, N., N.N* at]' *a 0'"' =lu, ut tti ttn uo u,)' '

The shape functions N,, Nt, Nj, N., No and N, are definedas

N, = 2I), - L,, N, = 4L,L, ,

Ni=21-Li, N^=4L,L1,

Nr=2llo-Lil N.=4L,L,, (2'45)

where L,, Lj and Lo are called Area Coordinates satisfy the following two properties

(i) Z, + L, + Lo =l and Q'46)

1l/-\-1,
(ti) L, = fia, + b,x + c,r), Li = fu@, +b,x + c,!), tr = *o(ar 

+ brx + c*t)

in which

4=xzlz-xtlz, 4=lz-lt, ct=x3-x2)

az=xtlt-xrlz, br.=lt-lt' c2=xr-x3)

at=xt!z-xz/r, br=!r-!2, cr=xr-x: t (2'47)

It xt yrl

and o,,, = llt ;, ,rl:x*of each triangular element . (2.48)

'l' x3 Y'l

The differentiation of ,^y'(") (t,,L,,Ln) w.r.t r andy may be written as

aN@ aN@ aI1 , aN{") aL2 , aNG) aL3

a. = aI, a*- aI-rE- aL, a*'
aN@ aN*) aln aNk) aL, . aNG) aI'3

; = ur. d. ut, ur 
* aq ar ' Q'4e)

where

(2.s0)

For integration of polynomial terms in natural coordinates over the element (e) , we use the

following relation

AL b, AL. c."", = "i. .. and "-t = -t..:.. , i=lr2r3.
Ax z|t") Ay 2L\")

27
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Now, consider further evaluation of Eq. (2.42),
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aN, )-:- 
|dyl

AN, I

A, I

aN, 
Iq l(aw, oN, aN, aN^ oNr aN,)

aN- l[ a/ a, ay ay a, a, )
A, I

aN, I

^tdvl
aN, 

I

Ar)

aN, oN, 0N, aN- )Nr

Ax Ax Ax Ax Ax

AN,

Ax

ON,

Ax

6N,

Ax

aN.
Ax

oNr

Ax

aN"

Ax

AN,

Ax

ON,

Ax

oNt

Ax

AN,

Ax

oNo

Ax

AN,

Ax

gN,.).
ax)0,", = l!,

(")

o,=ll
(e)

(2.s2)

Performing integration on first part of integral (2.52) by substituting the shape functions, we

get

(au,

Ia,
aN, )E) (2.s3)0N, 9!, aN^ oNo

Ax Ax 0x Ax

aN, - aN, alt * 
q.9L 

*9L9!, = ( 41,- r)f4) + 0 + 0
Ax 0L, 0x ALj Ax ALh Ax \ I '\2L)

(2.s4)

(2.ss)

AB Aro Ar, 4u
A* Aro 4t Aru

4t Aro 4t Aru

Ao, A44 A4s Aou

4, 4o 4' 4u
Ak 4 A6s Auu

A|
4,,

Att

A4l

4,
4,

4,,

Aa,

4,,

Ao,

4,
Au,

A,=

In which,

u,=[[(TTY*
Consider

(using Eqs 2.45 and 2.46)
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By substituting above result, the integral (2.55) implies

u,=[ll#(teff +t-u)l.at

= *{rr,,fua,av 
. ![(,)a.0, -a11L,a.ar]

= #{"(ffi).^ -'[ffi)i (usingEq ( z srl)

=Le!*o-E)=4,4A'\3 3) 4L

with the Same contrast, the evaluation for other terms of matrix A, are as follow,

u,=[!(**Y*
=fl{,-' -,)*\"{it'
= bff2.,t,L,b, 

+ atb, - Lib, 
-Libl Y-aY

= bl*,(#). 
-r(*)-' 

[+) r (+)]

b,l b, ,2b, b, b,l_b,b,
= r L, ,-Tl- 3^ '

,t,+ t,U,)\

\..-
oa
-O:9

\

tr

o,,=ff(%%Vr,
i"'r \ ox ox )

=il{,,r -\*}"i{0, -,)*}

=*fflul,L, - 4L, - 4Li +tpxat

:*1,,(#) ,[+)-,(+).^]

=fli,-r-')*) "{lt'ru,*

= bffFr,Lob, 
+ 4L,Lrbk - Lob,

dy

-b,b,tz!'

u^=[!(#*Y.

',u)\

- L,boWdy

29
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.*r(i) r(+) 
'(+)l

L -!rf = o.3 3_l

*l*,(i)
b,lb, , bo

otLt

Aro =

Ar, = il#*

#y,tu+ * qI: +zb,b,L,L,

#ln(:).4[*) *,ut,(

dy

= fli,-r - \*\. {toa 
-\*}b.
+lpxdt= *ff,lul,Lo - 4Li - 4Lk

=*1"(#) .(+)--(A)*a-l= -b,bo .3) ) rzt'

^"=[!,(**Y*

= # ffFr,Lob, + atbo - Lkbi - L,bk Yrav

= #l*(#)..,.[*)-'(+)'(+)]
b,l b, , zbr b, bof _b,br

= 

^Lr- 
3 -r- Tl- 3^'

n'=[!,(** b,b,
dY= Arr.= 

^J,

dy^"=[!(*x
= il{it, t, + r,t,)},{l@u,. 

'u,)\1.0,

Y,av4z=

#)]= *w +g +b'b')'

30

= il{,.r -,) *} " {|u ru, + rt )}



Chapter-2

^"=[!(**Y.
).i
r 4b,

:).
b'1-
Tl-

))

+

A'
;J

dy

L,b,

b,L,

o(.

bJ-
3

,tb, +

t,Il -

a)
6)-
b,-,+
3

AN,

0x

\1,b,

4b,1

,(*)

,- _b,
3

'1, AN

[it
[(o
e)

4b,

2b,

3

AN",,1
ox

Ii;

'll(e)

,[,

lz

r[:

IJL
bj

L'
bj

L'

?l

II
(e)

Azo =

= #1lulllr + b,bofi + 4L,to - o,bo4r,P*dt

= #lu,u,(#) 
. on (+) .,:(i)+ bp.(#)]

= *l+ . + . I.'+l= *lu,u r 
+ fi + 2b'b o

=t!(**)",
= [[{ito 

b, + L,b,r}, 
{*r- 

rr -\W*

= *ff?u,L,Lr - b,L, + 4brl,Lk - t,r,P*at

=bl*,(#) 
'(+) 

.*,(i) r(+)l

=!rlL-b, *L-L1=0,
^13 

3 3 3l

={!(**)",

0,,-,1\1.0,

-b,L,

l\_t_
tz)

,

br

2L

L,L-

+r,l4b l:,\.l

-b,b,
3A

;(

t
bj

Y-aY

o (+)l+4

l=

= fliitr, 
b, + L,b,r), 

{f lr,r, 
+ L,bol\b*

+ b,b,f,

4'

4u

= 
lJ[{itr, 

b, + L,b,)}, 
{f rr-r, 

.',u)\Po,

3l
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o, = # [!(t 
t, t o + b,b oL,L, + b,b, L,L o + b,b o!,prdv

= #ln(#) .' u r(i). u e,(i). 4, ( *)]

= *lf. + .+ . +)= *lu'u - * 4 * Zb'bo + b'b')'

o,=[!(**Y-=A,3= k
u,=[!(**Y.=A,,=*,

At, =

u,=[!(T*Y.

= il{frt.r, -,)}, {|@ru, 
+ L,bo)}V.

=ili*(.r-,)) "{*?',-'

= *ff0u1*1-tr,P*av

=*1"(*).^ 
'(+)] 

=*'

o^=[!(**Y.

b|[tou,t,Lo 
+ 4bo\ -b,Lo -oor,P'at

?l*,(#).,n (+), (t)' (+)l

b,l b, . 2bo bt brl_b,br

oLT* 3 -T- tl- *'
t!,(**1.*
gl{*r^'. -,)} . {*n'r - r}V.
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,,, =*[!(te4ro - 41, - 4Lo +tPxdv

= *1,,(#) -[+) - -[+) * o]= -*,

= 
?fi,(ou,L,Lo 

+ 4bkL,Lt - b,Lk - bkli

*4 *Zb,bo+b,b,f,

Chapter-2

u,=g(**Y.
= fJ[{*t-' -')} "{|uru, + L,o)}

l.rr=Abq=|l4ur

).rr= 
A,o=ff,

(aLr
bk

2L

LI

A'

,Lr

Y.av

= ?l*[#) . *r(i)-' (+)' (+)]

=LlL*bo -L-!"1=0,AL3 3 3 3l

n^,=ll(++
i,'l\ ox ox

o'=[!(**

n^,=ff(+ry
iJ'r t ox ox

P" = A"=o'

"=$(**Y.
= il{i tt r, 

+ r pr)}" 
{l@ru, 

+ L,b rl}b-

=#ltttn*tir, +2b,boL,Lopxdy

= #ln(*). n (*) + zb,b.(#)]= *rq * t * b,bo),

-,))

-tot,p*al

JJ



Chapter-2

"=$(**Y*
= il{i tt r, 

+ L,o r)}' {|u ru, . t u )}bo,

n^, = *lo, (*) o (+) . *r(i)' (+)]

tolzt, b, , br bo1_b,bo
= oLT :-T]- 3^'

= # [!,tu,u 
,Ilo + b ,b*L,Lo + b,boL ,Lo + t'r t,t,p*dt

= #lu,u,(*) 
.' n r(i). u ur(i).,, (#)]

= ||ru,u, 
+ b,bo + b,br + b!),

Ab., =0,

/ - 
btbo

t2L'

u,=[!(*TY*=A,s=-*,

u'=[!,(**

4,=[[(**

^,=[!(**Y*=A.,=*,
o'=[!(**Y*

= IJ [{t,.,- -' )} " {*n' r - t}b*
=*ff,,llo+t-BLo

=*1,,(*).^-'(i)l=*,

= 
$,{*r^r-. 

-,)} "l{|uru, .'p ;Wo,

Y,av
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Y-aYur= b$(4b,Il 
+ 4bkLkl, - b,Lk - bkL,

=*l*,(*). *.(i)'(+)-
bof 2b, , bo b, bol_b,bo

= 

^ 
LT ,-Tl- 3^ '

'(+)l

o, = [!(**Y- = Aha = *lu'ur 
* t * 2b,bo + b'b'f'

#)l

ft + b,bo).

o'=[!,(**Y*=A,u= 
^W'

+,=ff(T.%Vrr= Ato=0,
i;\ cr ox )

o,=[!(**Y*=4u=ff,

n=[!,(**Y*
= il{i,t b, + L,bol}' 

{ftaa 
. t,ur)\b*

Y.av=#yWn*ni? +Zb'brL'Lr

=*ln(*).n(*) +n,tr(

=rlt*L*l,br)=L(t *AL6 6 6I U''
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Substituting all values in Eq. (2.54), we get



A,=
-b,brt2L
b,br

3A

4
4L
b,br

3A

t
4L
b,b,

3A

_b,b,
t2L

0

_b,br
12L

b,br

3A

b,b,

3A

|lt *4 *t,0,1

b,b,

3A

*lu,ur 
+ bi + Zb,br + b,b,f

0

*lu,u r 
+ bl + 2b,br + b,b,)

,-*

*lu,ur+fi 
+2b,br +b,b,) o

b,br

3A

jl4 *il *t,ur1

b,br

3A

j]rui, +b,b, + b,b, + bl)

Chapter-2

b,br

3A

*lu,ur 
+ bl + 2b,br + b,b,)

0

];lru!, + b,br + b,br + b!)

b,br

3A

j(t *4*0,0,7

(2.s8)

_b,b,
12L

b,b,

3A

4_
4L
b,br

3A

-b,brt2L

0

(2.s6)

Using the same procedure as described above for the evaluation of A", value of second part in

integral (2.52) may be computed as shown in succeeding steps

ON,

Ay

ON,

Ay

ON,

^,=$.11 x;
aN" )
Ar)

(2.s7)
(e) ll 2-z

Ay

oNo

Ay

AN,

Ay

(alt, oN, oN, e,N^ oNr
t^[a/ A A il q

t.e.

Ar=

4,,

A,,

Ay

A4l

4,
4'

An AB Aro A$ Aru

A, Aq, Abo 4t Aru

An An Aro A$ Aru

Ao, Ao, A44 Ao' Aou

4, 4, 4o 4' 4u

4r4'44'A6
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4 c,ct _c,c, O _","r c,c*

4L 3A 12L - l2L 3A

* |14*1*",",1 * *1","r+ci+2c,cr+c,c,) 
o f[e+ +d+2c,cr+c,c,)

_c,c, c,ct 1 c,cr _c,cr 0
t2L 3A 4L 3A lz|
o jlr,"r+{+zc,cr+c,c,f * }lr',*4*",rr1 * }l'",",+","r*","r+"?rf
c,c* n -","r 

c,cr 4 c,cr

- t2L " tzt 3A 4L 3A

* *lror+d +2c,cr+c,c,) o 
,],ilz",,,+c,c,+c,cr+ilf * |k: *4*","r)

Now, consider the evaluation of Eq. (2.43),

t@, = !!r(t't<'t)'*dt= flr[ry N, N, N, No *,f'*0, . (2.60)
(e) (e)

Consider the first term of above integral (2.60), we get

llrv, axat = rllQr: - L,)a*a, (using(2.45))
(e) (e)

=,[r[,A)-Al=o. (using(2.5r))
L-\o ) 3)

Similarly, evaluation for other terms of integral (2.60) are as follow,

;!.,*, 
a.a, =,!!.(+r,r,)*ar= "[#) =,:,

(e) (e)

IIrr, d*dy = r[!,(zr" - t,)axaY=r[r(?)- t] =',
(e) (e)

!! * ̂  
&dy =, !!.(+ 

r,rr) *0, = *li)=, !,
(e) (e)

IJ,r- dxdy = ,ff,(rU, - Lr)*ay= ,[r(*)- t] = o ,

(e) (e)

and

!!.*,dxb =,!!(+rrL,)a*o = *li)=,: .

(e) (e)

Using above all values in Eq. (2.60), we get

(2.se)
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3
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(2.6r)bG) -

After substituting the values from Eqs. (2.56,2.59) inBq. (2.52),we get the value o1 tr@,:use

this value along with the value of b@ from Eq. (2.6I) in Eq. (2.41), we may be able to obtain

the solution of element equations.

Ar-
3
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Chapter - 3

Effects of Thermal Boundary Conditions on Natural
Convection Flow within a Square Cavity

In this chapter, we revised the study of the effects of thermal boundary conditions on natural

convection inside a square cavity [5]. The modelling of the governing equation and boundary

conditions is presented. The governing equations are reduced to the non-dimensional form by

using dimensionless variables. The Galerkin finite element method is used to obtain the

solution of the governing equations. For this purpose, the domain is discretized by using

triangular element and the shape functions are computed using quadratic triangular elements'

The complete procedure for non-linear partial differential equations is described in detail.

Results are computed for the wide range of parameters Ra=103 -105and Pr=0-7 -10, and

presented graphically in terms of sffeam functions, temperature profile, local and average

nusselt numbers. The analysis is also made to discuss the effects of thermal boundary

conditions on natural convection flow.

\ or (rn -t;sn(tr/r)+r,

Figure 3.1: Schematic diagram of the physical system
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3.1 Problem Description

Let us consider the laminar, steady flow of viscous fluid caused by the heated lower wall and

adiabatic upper wall inside the square cavity. It is assumed that the lower/bottom wall of cavity

is heated either uniformly or non-uniformly, while two vertical right and left walls are

maintained at cool constant temperature. The physical domain in which the fluid is flowing is

shown in Figure 3.1. It is further assumed that all the fluid properties are constant except the

density of the fluid.

3.2 MathematicalFormulation

The flow model is based on the assumptions that the fluid is Newtonian and the body force

term in the momentum equation is temperature dependent. The Boussinesq approximation is

invoked for the fluid properties to relate density changes to temperature changes, and to couple

in this way, the temperature field to the flow field. The governing equations for natural

convection flow using conservation of mass, momentum and energy can be written as:

Au Av

-+--U.0x Ay

Ou Au I Op ( A'u O'u\
' ar*' ar=-i a.*'[*' * ur.-)'

Av Av l Op ( A'u 6'r) 
.';*";=-;;.'[# .#)+ sB(r -r,) '

and

ar ar (a'r a'r)u-+v-=Al -----= *----= l.Ax A [0r' A')
The assumed boundary conditions are

u(x,0) = u(x,L) = u(0, !) = u(L, Y) = 0,

v(x,0) = v(x,L)= v(0,-/) = v(L, Y) = 0,

(3.1)

(3.2)

(3.3)

(3.4)

(3.s)

T(x,0) =To or r(x,o) = (rn - r,>ri^(ff)*r, ,

ff{*,t)=0, 
T(o,y) =T(L,y) =7,,

where x and y arc the distances measured along the horizontal and vertical directions

respectively, u and v are the velocity components in the ,r- and y-directions respectively,

I denotes the temperature, u and a are the kinematic viscosity and the thermal diffusivity of

the fluid respectively, p is the pressure and p is the density, T, and T, are the temperatures at

hot bottom wall and cold vertical walls respectively and Z is the side of the square cavity.



Upon using the following change of variables:

Chapter-3

(3.6)

(3.1)

(3.8)

(3.e)

(3.10)

(3. 1 1)

vertical directions

X- and l-directions

pressure, Ra and Pr

x=

P_ s0(r,

x u-Y
L' '-i'
Pt, , P, ='pd- a

LI =q,
d

V =L,
a

-7,)I) Yr

e =T -T'
Tr-7"'

, Ra=

with boundary conditions

u(x,0) = u(x,l) =U(o,Y) = u(l,Y) = 0,

v (x,0) = v (x,l) = v (0,D = v (l,D = 0,

e(X,O) =l or 0(X,O) = sin(nX),
AA
Z(X,l)=o, e(o,n= o(l,Y)=0 .

OI

Here X and Y are dimensionless coordinates along horizontal and

respectively, (J and V arc dimensionless velocity components in the

respectively, d is the dimensionless temperature, P is the dimensionless

are Rayleigh and Prandtl numbers respectively.

U,

the governing equations (3.1 - 3.4) reduce to non-dimensional form as follow:

AU AV

-+-=U,AX AY

uau +vU=-Y*p,(4*49)," ax'' aY ax' -'[ax'' 
aY' )'

uav *vL=-aP *pr( 4.4) +Rapro,- ax aY aY lax' aY')

--ae --ae aze a20U-+y-=-*-----.
AX AY AX' AY'

3.3 Numerical Computations

To investigate the problem, it is required to solve the partial differential equations (3.7 - 3.10)

subject to the boundary conditions (3.11). For this, the physical domain is discretize into finite

number of triangular elements by using computation software MATLAB with built-in

commands. Shape functions over triangular elements are generated by using 6-nodes, and they

are quadratic for every elements. The meshing of given geometry yields 1312 six noded

triangular elements with 2705 number of nodes.

The momentum and energy equations (3.8 - 3.10) are solved using the Galerkin finite element

method. The continuity equation (3.7) is used as a constraint due to mass conservation and we

obtained the pressure distribution as given by Basak and Ayappa [6]. In other words, to solve

4l
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equations (3.8 - 3.10), we use the penalty finite element method, where the pressure Pis

eliminated by a penalty parameter y ard the incompressibility criteria given by Eq. (3.7)

The continuity equations (3.7) is automatically satisfied for large values of 7. Typical values

(see Reddy [3]) which results in:

p=-,(9.{).'[ax aY)

of 7 yield consistent solutions are 107.

After using Eq. (3.12), the momentum equations (3.8) and (3.9) reduce to:

uau +rrY = r3-(9* u') * p,(ry. ry]." ax" aY 'aV\N'N)'"la*'' aY')'

uav *vL = rL( U. qr) * p,( 4L.4) + Rapro .- ax aY ' aY\ax aY ) \ax' aY' )

*r=#=00, ,u=#=Or and *,=#=Oo.

(3.12)

(3.1 3)

(3.14)

We solve Eqs. (3.10), (3.13) and (3.14) to get solution of given physical problem. These three

equations consist of highest order derivative terms, and the Eqs. (3.13) and (3.Ia) include the

non-linear terms. The non-linearity in these equations make the problem difficult to solve. To

deal with this difficulty, the iterative method such as Newton Raphson has been used. Whereas

to remove the highest order derivative terms, the weak form of Eqs. (3.10), (3.13) and (3.14) is

developed by using weak formulation.

We assume the approximated solution of velocity components U &V and temperature d, as

given below

rVNil
u =Luo4o(x,y),v =LVoOo@,y) and 0=L?ofio(x,y) for 0( x,Y <1, (3.15)

k=l t=l

where N is the total number of nodes, /o is the vector of shape functions, U r and Vr are the

vectors of nodal values of velocity components, and 9o is the vector of nodal values of

temperature. Using Galerkin's Method, the weight functions for all approximated functions

(3.15) is same as follow

(3.r6)

For the evaluation of unknown nodal variables U* , Vr and 0r, the integral of weighted residual

over the problem domain is set to zero. Thus, in the light of approximated functions (3.15) and

weight function (3.16), the weak form of Eqs. (3.10), (3.13) and (3.14) are expressed as

[^(, #., #w, - [h(x. #Y* = o,
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!(o r {o r, )Y * o r (o 1, SYY rdxdy . t(* Y . * #)0 kdxd 
y -

!(',#*',Tr),rds=o' (3 17)

Chapter-3

[,r(, # ., #Yov - r ! orl*W . #)Y,r - y, 
! o,(X . #V* = 0,

llrrtrr)%.*00(00',)%yrdxdy.,lt(*Ylr*o,.tW%'Yr**]

.r,[(*%.*%'YkdxdY-"f(', #.n,fr)o^"=o ' (3 18)

/ ^t-. ^),

Y -Prla,[ {-*a'v.
J,r lAX. Oy.y,(, # . n #y,or 

_ y ! orl*W . #)
naYr 

lOoo 
dxdY = o ,

nr " = I u, f [[ ; *ot )* . (2, r r)*y *r, .,li-u r I.* * dXdy +

Z, r 1,** **). .. ; * [ l** . * *)**,

!lorp.'rr)#*or(otr)%-yrdxdy.,lt(*#\,r*rr.t(*#Yr**)

*r, ( 9L9!- * 9!'WV, *0, - navr ! 0o (O;' e rW*ar- t. f (,, # * n, fr)Or* =,'*[.ax ax ay ay )r n ivax c 
(3.re)

Reduced form of integrals obtained in Eqs. (3.17 - 3.19) are appended in Appendix A with

brief steps of simplification. To avoid the complication of solving non-linear terms in

Eqs. (3.18) and (3.19), Newton-Raphson method is used to compute non-linear coefficient

matrices. which are function of unknown velocity components (Reddy [3]). Using Galerkin

finite element method, the following nonlinear residual equations for Eqs. (3.17), (3.18) and

(3.19) respectively, are being made over domain O,
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Rr,, = ; r r [[;, rrr)* .(p^, rr)*!,** .,|2., r !,ffi ff a*" .

Z,r !,#* **). " I, I l#* . #*)** -

^,r'[[E 
,r,'o\,*or,

Chapter-3

(3.2r)

(3.24)

R,,,=Z-r[[;rrrr)*.(Zrrr)*!**.p,'r!,1**.#*)*,',,rr,

ln order to solve above residual equations, quadratic triangular elements with six nodes are

used as interpolation functions. Thus, the approximate functions for velocity components U I

and v,and temper artne 0 corresponding to six noded triangular element (e) may be expressed

.

AS

6 6 6 
^,", ,,", 

I

u =Lu rqo\ ,y) - g(e) 
6@) , y =Lvrqo\ ,y) - y<et {a un6 0 =LLrOnV ,y) - g@ 6ta '

k=t k=l k =l

(3.23)

The interpolations or shape functions (0) as already defined in Chapter-2 are

0r=

I"(21. -l)
L2(2L2 -l)
I"(21"-l)

41.L,

4L2L3

4LrI"

, for k =1,2,...,6,

h
h
0,

0o

0'

0u

Consider,

I"(21" -l) =ZIt' - It
=1,'+L"-L
= I"' * Lr(l1-l)
= I"' * I"(-L, - Ii using Eq' (2'46)

I.(21" -!) =L.,' - LrL, - LL,

Similarly, we may write

4eLr-t)=L'-LI"-L,L,
I-r(21-, -l) =\' - LI" - LrL,

(3.2s)

(3.26)

(3.27)



0o=

Using above results (3.25) - (3.27)

l,t' - LLr- LrL,

L22 -L2L3-IrL'
Lr'-\Lr-LrL,

41"L,

4L2L3

4LrI,

where,

10 0-1
010-1
0010
0004
0000
0000

-l
0

-l
0

0

4

and [R] =

2r"(#)

"r(#)
'L'(#)

4(#) *1,(#)
t,(#).r,(#)
,,(#).4(#)

Chapter-3

=lA)lR), (3.28)

plies,

-t-l[ q'

:,ll i:,
o ll L,'r,

o ll L,L,

o )1r,,"

, the matrix Q.2$im
0

-1

-l
0

4

0

A

0,

0,

0o

0t

0u

Differentiate Eq. (3.28) w'r.t r, we get

0

-t
-1
0

4

0

1

0

0

0

0

0

L,
L,,

L,,

\1,
L,\
Lr\

o0o =lA!0x ' 'Ax

lAl=

where,

0 0-l
10-1
010
004
000
000

=lAl

\,
L,,

L,
\1,
L,L
IjI.

=A*u

2LPl

2L2b2

2Lb3

Lrb, + Lrb,

Lrb, + Lrb,

Lrb, + Lrb,

i.e.

*=vt#Tilr]n ,A,,B,,L.

2b,00
02b20
002b:'
b2bto
0brb2
Uobl

(3.2e)

w=#
trl

and 
",=lr;,)
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(3.30)

(3.31)

over the element (e) generates result as

(3.32)

Similarly, differentiating Eq' (3.28) w.r't y, we get

12", o 0l
lo 2c, 01...

*=',,#l I ; '?liil=,,,,,',,','

L: : :i l'"'
where,

fzc. o ol
lo' zc, ol

,lo o 2r,1.
lc)= 

^al 
c, ct o 

I

L: "; ':)
Consider the product of [Z] with [I]r as

tz,l I t"' L,L, L,L,I

lL)lL)' =l t,llt, L2 L,)=l L,\ L,' L,L,l.

Lr,_l lt,t, L,L, L" )

Using formula (2.51), the integration of Eq. (3'31)

follow

I r"' I"L, \1"1 t+ i #l
a=!1L1yq'at=Ilr,E L,' L,t"ln=l+t + #l,

6icr o,,'ll"\ LrL, Lr, ) L# # +l
i'e' 

rz r r-r

n=!1L1yrfat=*l , 2 rl
6i"r ,rL, | 2)

The product of [R] and [R]r yields result

I L,'1
lr:l

lRltnl' =l :i i r,' L,' L,' L,L, L,L, L,L,f,

li:;l
lt,t,)
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(3.33)

Li \'Lr' L,'Lr' L'L, flLrl, Lrt L,

I.'Lr' ti Lr'Lr' I"Lr' frU LUl"
I"'Lr' Lr'L' L\ LL.E Lr\ Lr|
LrtL, LLr' L,Lrt, 4t, L,I]rL, QL.L,
titrt-, E L, LrLt, Lt L, L'r| LLr4

\'L, \41" L,L\, |Lr\ L,Lr4 44

Q= Itnllnlrd^= I
A(.) 6(c)

With the help of formula (2.5I), following result may be obtained in response of integrating

matrix (3.33) over the element (e) as follows

4 Lr'Lr' \'Lr' Lr'L, flLrL,

\'Lr' L4, Lr'Lr' LLr' E t"
I"'Lr' Lr'Lr' 4 \Lrt, Lr[
Lr'L, LLr.' LrLr( 44 LQL
|LrL, L'rL, Lr4 LUI" 44
\'4 t,4L, L,L1 4LrL, \Lru

lRllfilr =

2x LG\

t"'t, f
+t t"l
L,ri lo,

4LrI" I

LL,4I
4L', )

Q= l[R][R]rdA =
A(.)

60u, -8u, -8ur+24u0-8u, + 24u,

-8u, + I 2u, +2ur- I 6u.. -8u, -24u,

-8u, +2u, +12u, -24u0 -8u, -1 6uu

24u,- l 6u r-241 r + I 92u1 +64us +96u6

-8u, -8u, -8u, *64u. *64u, *64uu

24ur-24n r-l 6rt, *96u. +64u, + Mu,

I 2u, -8ur+2ur- I 6uo-24ur-8uu

-8u, +69gr-3rr*24u0 *24u, -Suu

2u, -8u, + I 2u,-24u.- I 6ur-8uu

-l 6u r+24v r-24ur* I 92uo +96u, +S4u,

-24u r+24n r-16u, +96u. * I 92u, +64uu

-8u, -8u, -8u, +64u0 *64u, *64uu

zL 2L 2L 2L 2L zal
30 l8o t8o l2o lo6- tro 

I

2L 2L 2L 2A 2L 2Al
r80 30 r80 t20 l2o 360 

|2L 2L 2L 2L 2L 2Ll
180 180 30 360 120 120 

|2A 2L 2L 2L 2L 2Al
r20 120 360 180 360 360 

|2A 2L 2L 2L 2L 2Al
350 120 120 360 180 360 

|26 2L 2L 2L 2L 2Ll
l2o J6o no 360 roo t8o I

2x A,=-
360

t22
212
22
33
13
31

2313
2331
t2 13 3

1211
3121
3112

. (3.34)

I 2u, +2u, -3g, -8uo -24ur-l 6uu

2u, *l2ur-8ur -8uo -l 6ur-24uu

-8u, -8u, +60u, -8uo +24u, +24uu

-8u, -8u, -8u, +64un +64u, +[{u,

-24u r-l 6u r+24ur+64u0 + I 92us +96u 
u

-l 6l r-24t r+24u, *64u0 *QSu, +192u 
u

Let us consider the integral { (used in succeeding phases of computation) comprising

combination of identified matrices over the element (e), which results a matrix of order 6x3.

Since its calculations are too lengthy and complicated, such steps are given in

Appendix A with brief detail. Simplified form is written in the following form

r.= I Qnn'trul)at
ar")
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Similarly, consider the integral

Its steps of simPlification are

simpliffing 4,,i, given below

r,= t ltnn't'v()at
A{')

60v, -8vr-8vr+ 24v n-8v r+24v u l2v,-8vr*2vr-16v.-24vr-8vu 12v, *2vr-Svr-8vo-24vr-16vu

-8v, +12vr+2vr-l6vo-8vr-24vu -8v,+60vr-8v, +24v n+24v s-8vc 2vr*l2vr-8vr-8v n-l6v r-24v u

-8v,+2vr+f lyr-24v0-8vr-16v, 2v,-8vr+l2v r-24v n-l6v r-8v u -8v,-8vr*60v, -8v n+24v ra24u u

24v,-l6v r-24vr+192v++64vs+96v0 -l6v r+24v r-24v i192v q+96v s+64v s -8v,-8vr -8vr+64v o+64v r+64v,

-8v,-8vr-Svr+64v0+64vr+64v, -24vr+24vr-l6vr+96v.+792vr+64v, -24v,-l6vr+24vr+64v.+192vr+96v,

24v,-24v r-16v.,+96v.+64vs+192vc -8v,-8vr-8vr+ 64v n+64v r+64v u -l6vr-24vr+24vr+64v0+p[v, +192v t

(3.36)

where U =lr, uz u3 tt4 tts uu)' , V =lu, v2 v3 v4 vs ,u)' a'e the vectors of

nodal values of velocity components associated with six noded triangular element (e). Using

approximate functions (3.23),the integrals (3.20 - 3.22) over the element domain C)(') may be

written as

ChaPter-3

pr= ! (lnn',{vt)d\,, g"n"rutes the matrix of order 6x3'
A(')

described in Appendix A' Final step after integrating and

(3.37)

(3.38)

^1", 
= 

J [i,,, 
(1r,n )' r\(#) u.,)xar. 

J [r,', 
({0," )' r\(#-) u'"'\xn *

Ri", = 
J fr, @.,)' 

r,",)(#)' r.,W. 
J [r"' 

(10"' ;' r')(#-)' r.'lo, .

,ll%(#)'),.,dxdY.l(#e#-)')'.'*o').

,, !l#(#\ . #(Y-; )u, 
"' *0,

,lll*(#)'),G'>dxdy.ll#(T)')''",axay)+

- il#(T)' . #(#)' ),' *oy - Rapr !,(ou' ((o'"' 1' e*')pxar

^i', 
= 

J [ 
/,", ( 1 

0,, )' 
" 
g(#)' 

^,1*rr. J I 
r,, (t0", )' r')(T) e,',lxar *

tww)' .'#.(Y)')'.'*" (3.3e)



Chapter-3

The matrix form of above integrals (3.37 - 3.39) may be obtained by using Eqs' (3'28 - 3'36)'

First consider Eq. (3.37) as follows

R,', = 
{!,tnu'n'ue)rIYxar}o'e'uu' 

. 
{J 

(ann'.{rr'"rpxar}c'A'u(") +

,l*{tQl axar}a' e' u n' . *{[@r 
) 
axar]" n".').

-l*{t@\ axar} r' o' . 
^r{[@r ) 

axav]r' o')r'"

or

RI"' = F,B'A'[J@ + Frc'Aru@ + ylAaHar tr'rry@) + ABHC. Ar'etf+

rr(.lnrua'Ar + ACHC',1')ut"t (3.40)

Now Eq. (3.38) implies

ol', = 
{ 

1 1 
r^',q' rL@) rl Yxdr}a' e' uu' . 

{[ Uu' n' v'4 r] Yxav]c' e' u u' *

,l* 
{gt 

r 
1 
a*ar:; u' nr s (c) v * 

{lg- 
r l 

axar}c' e' r n')*

,,(* 
{[g. 

r 
1 
axa r] B' A' + 

^, {l o, I 
*o r}r' n')r' -** 

[, { 1 
t 
u' W'} n".')

or

Rl"' = F,B'A'u@ + Frcr Aru@ + yl,lcaar trrgG) + ACHC, A'nr"t)+

er(,taua'Ar +ACHC'A')vut -narr(,e9.{e@) (3.41)

Similarly, Eq. (3.39) in matrix form may be written as

Ri" = 
{!,tnu' 

n'u@\ rtYxar}n' t e*' . 
{J 

(t'nn' e'v'" rY4or}e A'0(") +

( t. I t r ) ,

lrrtJ @r)axar]u'n'. r.tJ @r)axarlc' ,{ 
)e"'j

or

Rt" = F,Br Argt"t + Frcr Ar0@ +(laun'A' + ,lcnc',e')e@. Q.42)

Let's start with the differentiation of Eq. (3.a0) w.r.t u, ;i=1,2,...,6, we get a square matrix

oforder 6.
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anl')(r,r) arl')(t,t)
A\ Auz

anl') (o,r)

6u1

an[")(z,r) anf') (z,t)

aut Au2

anl')(l,r) anl')(r,t)
Aut 0u2

anl') (l,r) anf') (+,t)

Au1 Au2
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A\ 0u2

anl') (o,r)
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avl
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A\ Av2
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00, 002

anl') (z,r) arl') (z,r)
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avs

anl') (o,r)

avs

anl')(z,r) anl')(z,t) anl')(z,t)
aq d0, aqt
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av5
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(3.43)

(3.44)

(3.45)

(3.46)

be obtained as

anl')(r,r) aRl')(r.l) anj')tt.t) aRl')(l.l)

Art A\ Au5 au6

aRl.)rz,r) axl.)(2,1) aRf.)tz.r) aRi')(2,1)

T au. aus au6

anl')tr,r) anl')(3.r) anf')tl.t) anl')tl.t)
Ar, aq A\ Au6

anl.,(+,r) anf')1+.ry anj')t+.t) anf')t+.t)

Ar, Au. Aus Au6

anl')(s,r) arl")(s,r) anl')(s,t)
Aur A\ Au5

arl')(o,r) anl')(o,t) anf')to.t) anf')10.t)

Aut a\ Aus Au6

anl') (s,r)

au6

Similarly, derivative of RI") (using Eq. (3.a0)) w.r.t vr and e, ; i =1,2, ... ,6 is as under,

anl') (r,r)

ovl

anl') (r,r)

av6

anl') (z,r)

av6

anf")(r,r)
av5

arl') (r,r)
av.

anf') (z,r)

avl

anl') (r,r)

av1

anl")(l,r)
av1

anl') (r,r)

avz

anl') (z,r)

av7

a,tl")(l,r)
avz

anl') (l,r)
ar2

anl') (r,r)

oos

anl')(o,r) anl')(o,t)
A\ Av1

anl')(r,r) anl')(r,r)
00t 40,

anl') (r,r)

av3

anl') (z,r)
av1

anl') (:,r)
av1

anl') (+,r)

at1

anl') (:.r)
avl

anf') (+,r)

evl

anl') (s,r) a,rl")(s,r) a,rl') (s,t) anl') (s,t)

Avt Av2 Avt Av1

anf")(r,r)
dot

anl') (z,r)

ooo

anl') (r,r)
eol

anl') (+,r)

aq

anf') (r,r)
aoz

arl') (+,r)

doz

arl') (l,r)
aq

anl')(+,r) anl')(q,r) anl')(a,t)

a4 a0, aqo

anl')(s,r) anl')(s,r) anl')(s,r) anl")(s,t) anl')Js,t) anl:'}J5'l)

aq a0, aq dil aqs aqu

anl')(o,r) anl')(o,r) anl')(o,t) anl')(o,t) anl')(o,r) aRI:)J6,1)

ae, o0z aq ail 00s ago

In a similar manner, derivative of 4") andRG) w.r.t nodal variables (u,,v,,0, for i =1,2,...,6)

may be obtained, thus we have

J",=aR:") . J..=u!t"' , J,,=u!::' ,-zt au, 
1 -zz avi 

) z) 
00,

, aR:u , _aR:"), J32= 
au, 

, J33: 
W

, aR:"'
r3l -

ou,

Thus by using Eqs. (3.43 - 3.46), the jacobian -I of the element (e) may

formulated below, which is a square matrix of order 18
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(3.47)

with element (e) is evaluated using Eqs. (3.40 - 3'42),

(Rl",Rl", Rj")) generates amatrix of order 18x1, i.e'

(3.48)

Moreover, the residue R associated

which is a column vector of residuals

Iq"']
R,", =l Rj', I.

L*l'l
Since there are total 1312 elements, similar procedure will be followed for each element to get

their respective jacobian and residue. Also there are 18 nodal variables (u, ,v,,0, ; i =1,2,...,6)

in all, corresponding to each element. ln other words, three nodal variables tl, v and? are

associated with each node. Thus, the assembly ofjacobian matrices conespond to each element

generate a global stiffrress matrix lY (say) of order 8115x8115. Whereas, combining residue

matrices related to each element, an assembled matrix N (saD of order 8115 x 1 is obtained.

Incorporate the given boundary conditions in above mentioned global stiffrress matrices W and

N, we get a matrices Y and Z (say) respectively, using these two matrices, approximated

solution may be obtained by Newton Raphson method. ln this context, Newton Raphson

method defines as,

p,*t= p,-Jt(p,)R(p,), (3.49)

where -I is the jacobian matrix, R shows the residual matrix, p denotes the unknown vectors,

n is the iterative index at previous step and n + 1 is index for unknown variable.

Inpresentcase,wehaveJ(p,)=Y(p,)&R(p,)=Z(p,).ThusEq.(3.49)maybewrittenas

p,*t = p, - Y-' (p,)Z(p,) .

To proceed further, first assume the initial guess

I "'1 lo.zsl

o,=l;il=lo.r, I ' i=1,2,...,270s.

La:l [o.ot ]

Substituting initial guess in Eq. (3.50), the iteration generates the p,, then use this value in

Eq. (3.50), p, will be obtained after the execution of second iteration. The process of

successive iteration is continued until the maximum difference of the variables u,v,0

between two consecutive terms became less than 10{ is achieved.

(3.s0)
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3.3.1 Evaluation of Stream Function

The stream function v catbe defined in term of the velocity vectors u and z as follows

u =oV and v = -a:Y: ,AY AX.

Using Eq. (3.51), following result may be obtained

O'w O'V AU AV

-=AX2 
' AYz AY AX

Define approximate function for stream function t4, we have

6

v =Zvrhr(x,Y) - r(e)6{e) .

k=l

Using approximate functions for (I,V and ty from Eqs' (3'23

differential Eq. (3.52) is

(3.s1)

(3.s2)

(3.53)

and 3.53), weak form of

tl#W)'.#(#-)')t'*o'=[l-''"'(#')'(r'("'+''(#)'v"'lxar

Before transforming the above integral in matrix form, the product of R and ,t ,fi?.
evaluated as follows

I r' I I t, 41, 441
I L,' I I r.,ti t, L',L, 

II ' ' I L^ z.l=l I"r, LJi I:, I (3.ss)tRllrl'=ltr,1rt z ,, I 41, ,"r, r"t,L,l

l r,r"l l,-.,r,t, r:,r" L,t, 
I

lt,r") 1,1,. L,L,L, Lt, )
Using formula (2.51),the integral of matrix (3.55) over the element (e) gives result as under

I ii ";' tr?,1 l:',:1
o=J,r^rrrr"o=1,1 1':, ?,8 ,,!),r,1^='#l: : 

tl 
(3 s6)

l';;' ';l;, ?,fr) Ll 

" 
I

Now, transform the integral (3.54) in matrix form, we get

!(eaul a'A' + .nculc'e')ry@\dxdr = [ (-nrf c'A'(J@ + ARI] Br Arv<4pxdY,
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l*{l OrWr}r' n' . ec{! lLrYxn}r' n')r"' = -^[t t*V-"]" n''n' . 
^{! @Wov}a' e'vn' '

or

llarua' .n' + ACHC| A')ru' = -AGCT A'uG) + AGBT A'V@) ,

It tfv'"' = [N],

Nuu- -Ztr* and Nu, =-Ztr*

where ,/r(") =lV[4 Vrn Vr" V@ Vr" Wtn]' is column vector of order 6 x 1 of nodal

values of sffeam function associated with six noded triangUlar element (e)'

lM)-- ABHB\ Ar + ACHC| At and [N] = -AGCr ArgG) I AGBr ArVG) are matrices of order

6x6 and 6x 1 respectively.

The values of velocity components U and Z obtained from Eq. (3.50) are used in Eq. (3.57)

for estimation of stream function. Sffeam functions (Wl";i=1,2,...,6) corresponding to

element (e) is evaluated by solving system of Eqs. (3.57). Same procedure for the evaluation of

stream functions is adopted for I3l2 elements. At the end, assembly of all those elements is

made to get system of equations, and their solution give the stream functions at each node.

Graphs of stream function are represented in sections (3.5 and 3.6) for different cases of

uniform and non-uniform heating.

3.3.2 Evaluation of Nusselt Number

Nusselt number is a dimensionless parameter used in calculations of heat transfer between a

moving fluid and a solid body. Here, local Nusselt number is evaluated at the bottom wall

denoted by Nuo, and Na, is a local Nusselt number estimated at the side wall. Formulation for

both are presented below

(3.s7)

(3.se)

(3.58)

Consider the evaluation of Nusselt number Nuu at each node of a six noded triangular

element (e) by using Eq. (3.58) and transforming such expression in matrix form, we have

(Nru)'"'=-Ztr*
Matrix form of above expression becomes

(Nuu)'"' = -(dn)' * = -(dn)' ACL(,), i =r, 2, . . .,6 .
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where Lu) O=1,2,...,6) is a vector of area coordinates (L,,L*Zr) as defined earlier' and

gives distinct value for each node (i) at point (x, ,f ,) of an element (e), as follows

l-f l I o,+b,x,+c,y,f

t,,, =lr,l = #l a, + b,x, *,,r,1,

Lzr.l,,, 
LD 

lar+ brx,+ cJt )

[r,l l r,+b,xr+c,yrl

tu, =lt,l = #l a,+b,x,* r,t,l.
L4l,r, la, + brx, + cJz )

Thus Eq. (3.60) may be written as

$[9. (r,,-y,) is a Point conesPonding

to node '1'.

(3.61)

Note. (.rr,.yr) is a point corresponding

to node '2'.

(Nnr )(") = -

(eu'r' Aclsl

(4"';' AcL121

(eu'r' ACLa)

(eu'r' ACL(4)

(en'r' ACL1s1

(eu'1' ACL(6)

Same procedure is followed for other elements for calculation of Nusselt number at their

nodes. Our interest is to acquire values of Nusselt number only at those nodes which lie at the

bottom wall. tn current investigation, there are 4l nodes which lie at the bottom wall. Thus, an

assembled matrix of local Nusselt number at bottom wall is obtained of order 41 x 1 .

On the similar line, the computation of local Nusselt number Nu,atthe side wall may be made.

Using Eq. (3.58), value of Nat, corresponding to six noded triangular element (e) may be

written as

(Nr,),"' = -ftr*=-(eu,1' * = -(eu'\' ABL(,, i =t,2,...,6.

(4"';' ABL,,)

(eut1' ABL(,)

(en'r' ABL1,

(e"'r' ABL1t1

(eu'r' ABL(')

(en')' ABL(6)

or (Nar" 1(') = -
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In present analysis, there are 41 number of nodes at side wall of square cavity on which local

Nusselt number is being evaluated. Therefore, an assemble matrix of local Nusselt number at

side wall is obtained of order Zlxl.

3.4 Results and Discussion

The geometry of given problem consists of 1312 quadratic triangular elements with 2705

number of nodes. Numerical investigation for wide range of parametels Ra=103 -10s and

pr = 0.7 - 10 have been made with uniform and non-uniform heated bottom wall, keeping cool

the vertical walls and insulated top wall. ln such numerical computation, a problem occurs to

evaluate the temperature at the corner nodes of the domain due to two different temperatures

on the adjacent wa11s. The suitable technique to overcome such difficulty is that average value

of temperatures on two adjacent walls is assumed at corner nodes whereas the values of other

nodes lie on the walls are taken equal to respective wall temperature.

The special benefit on calculation of local Nusselt number at vertical and bottom walls is made

by using finite element method due to the basis function used to calculate the heat flux.

3.5 Effects of Rayteigh number when the bottom wall is under the

influence of uniform heating

The stream function and isotherm contours have been illustrated for different values of

Ra = 103 -10s and pr =0.7 -10 when the bottom wall is uniformly heated. Since the vertical

walls are cooled, which results the fluids rise up from middle portion of bottom wall and flow

down along the two vertical walls making two symmetric rolls with clockwise and anti-

clockwise circulation in the cavity. The stream function has very low magnitude at Ra=103

and initially the heat ffansfer is due to conduction. During conduction dominant heat transfer,

the temperature contours for 0=0.1occur symmetrically near the side walls of the square

cavity. The other temperature contours with d 2 0.2 being as a smooth curves span the whole

enclosure and are generally observed symmetric to the vertical center line. The temperature

contours shown in Figure 3.2 remains invariant up to Ra < 5 x 103 '

For Rayleigh number Ra=5x103, the durable circulation occurs near the central regimes and

subsequently, the temperature contour with d = 0.2 starts getting shift towards the side wall

and break into two symmetric contour lines as shown in Figure 3.3. Existence of significant
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Stream Function, 7 Temperature, d

Figure 3.2: Contour plots for uniform bottom heating, 0(x,o): 1 , with Pr : 0.7 and Ra : 103' clockwise

and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively'

Stream Function, t4 Temperature, d

0.E

0

Figure 3.3: Contour plots for uniform bottom heating, e(x,o)-l, with Pr -- 0.7 and Ra=5x103 '

Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions' respectively'

Stream Function, 7 Temperature, d

080.60.40.200804
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04

0
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Figure 3.4: Contour plots for uniform bottom heating, e(X,O): 1 , with Pr : 0.7 and Ra = 105 ' Clockwise

and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

o
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Stream Function, 14 Temperature, d

0.2

0.80.6
0r
0080802

Figure 3.5: Contour plots for uniform bottom heating, e(X,O):1, with Pr : l0 arrd Ra: 105. Clockwise

and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

convection is also presented in other temperatue contour lines which start getting deformed

and pushed towards the top Plate.

As Rayleigh number increases to 10s, the buoyancy driven circulation inside the cavity also

increases as seen from the greater magnitudes of the stream functions as shown in Figure 3.4.

The circulations are greater near the center and least at the wall due to no slip boundary

conditions. Consequently, at Ra = 10t, the temperature gradients near both the bottom and side

walls tend to be significant leading to the development of a thermal boundary layer. Figure 3.2

shows that the thermal boundary layer develops in approximately 80% of the cavity for

Ra = lO3whereas for Ra = 105, the isotherms presented in Figure 3.4 indicate that, the thermal

boundary layer develops almost throughout the entire cavity'

The values of stream function and isotherms in the cavity increases with the increasing of Pr

from 0.7 to 10, comparison is illustrated in Figures 3.4 and 3.5. The gleater circulation near the

central regime of each half distributes gleater heat, resulting in greater temperature near the

cenhal symmetric vertical plane as shown in Figure 3.5. It may be noted that the temperature

varies within 0.4-0.5 for Pr: 0.7 (Figure 3.4) near the central core regime at the top half of the

enclosure whereas the temperature varies within 0.5-0.6 for Pr: 10 as seen in Figure 3.5. Due

to greater circulation at Pr=10, the zone of stratification of temperature at the central

symmetric line is reduced.

'. 

),

4,N
03

'o.z
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3.6 Effects of Rayleigh number when the bottom wall is under the

influence of non-uniform heating

Stream function contours and isotherms are shown in Figures 3.6 - 3.8 for Ra = 103 - 105 and

pr =0.7 -10 when the bottom wall is non-uniformly heated. As seen earlier, uniform heating

of the bottom wall causes a finite discontinuity in Dirichlet type boundary conditions for the

temperature distribution at the edges of the bottom wall. ln contrast, the non-uniform heating

removes the singularities at the edges of the bottom wall and provides a smooth temperature

distribution in the entire cavity. Due to the non-uniform heating of the bottom wall for

Ra=103 and Pr=0.7, thermal boundary layer develops only over 600/o of the cavity as

shown in Figwe 3.6, which is small in magnitude as compared to that of the

uniform heating case. The conduction dominant heat transfer mode is observed up to

Stream Function, 14 Temperature, d

0.4

Figure 3.6: Contour plots for non-uniform bottom heating, 0(X,O)=sin(trX), with Pr :0.7 and Ra:103.

Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively'

StreamFunction, y Temperature, d

0.4

0.2

0L
0

Figure 3.7: Contour plots for non-uniform bottom heating, e(X,O):sin(zX), with Pr: 0.7 and Ra:105.

Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Stream Function, 14 Temperature, d

0.4

0.80.60.4

Figure 3.8: Contour plots for non-uniform bottom heating, e(X,O)=sin(aX), with Pr = l0 and Ra=105.

Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Ra =2x 104 which is consistent with that of uniform heating case, where the critical Rayleigh

number is around 5000. It may be noted that the temperature at the bottom wall is non-uniform

and a maximum temperature difference occurs at the center.

At Ra - l0', the circulation pattern is qualitatively similar to that of the uniform heating case

as shown in Figure 3.7. Due to non-uniform heated bottom wall, the heating rate near the wall

is generally minimum which induces less buoyancy resulting in lower thermal gradient

throughout the domain. The uniformity in temperature distribution and least temperature

gradient are still observed at the central core regime within the top half of the domain. The

lower buoyancy effect also leads to a large zone of stratification of temperature at the vertical

line of symmetry as shown in Figure 3.7. The effect of Prandtl number is also pronounced for

Ra = 10s as seen in Figure 3.8, where the greater circulation causes more heat to be distributed

in the central regime. However, as compared to that of uniform heating cases, the values of

temperature contours are lower near the central and top portion of the enclosure for non-

uniform heating. The temperature contours are highly dense near the bottom wall which may

indicate a lower heating rate atthe top as well as central regions of the enclosure.

3.7 Heat Transfer Rates - Local and Average Nusselt Numbers

Figure 3.9 shows the effects of Ra and Pr on the local Nusselt numbers at the bottom Nz,

and side wall Nu". For uniform heating of the bottom wall, the heat transfer rate Nuu is very

high at the edges of the bottom wall due to the discontinuities present in the temperature
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boundary conditions at the edges. It reduces towards the center of the bottom wall with the

minimum value at the center as shown in Figure 3.9(a). On the contrary, for Ra = 103 with

non-uniformly heated bottom wall, Nuo increases from zero at both the edges of the bottom

wall towards the center with its maximum value their. Further at Ra = 10t, non-uniform

heating produces a sinusoidal type of local heat ffansfer rate with minimum values at the edges

as well as at the center of the bottom wall. The physical reason for this type of behavior is due

to the higher values of the stream function (i.e. high flow rate) for Ra = 105 in the middle of

E
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-otr

z
C)aa

z
63ooJ

E
k
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-ot
z
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z
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oo
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(b)
0.4 0.6

Distance, Y

Figure 3.9: Variation of local Nusselt number with distance (a) at the bottom wall (b) at the side wall for uniform

heating (-) and non-uniform heating (- - -).

the first and second half of the cavity. As Pr increases from 0.7 to 10, the local Nusselt number

at the bottom wall Nar, increases slightly as seen in Figure 3.9(a). It may be noted that for all

Side Wall

Distance, X

Bottom Wall
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values of Prandtl Pr and Rayleigh number Ra, non-uniform heating enhances the heat transfer

at the central regime only. The temperature contours diverge from the corner points toward the

central vertical line for uniform heating, and therefore local Nusselt number is a monotonically

decreasing function with distance. ln contrast, for non-uniform heating, the temperature

contours are compressed around the intermediate zones between comers and the vertical line of

symmetry, and local Nusselt number is maximum at around X : 0.3 and 0.7. Figure 3.9(b)

illustrates the heat ffansfer rate at the side wall. The local Nusselt number at side wall Nr.r,

decreases with distance at the cold side wall for Ra =lO3 , Pr :0.7 for both uniform and non-

uniform heating. It may be noted that the heat transfer rate initially decreases and later

increases with distance for Ra=105 with Pr =0.7 and 10. At higher Rayleigh numbers, the

significant circulation has been observed which can be seen in Figures 3.4, 3.5,3.7 and 3.8
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Figure 3.10: Variation of average Nusselt number with Rayleigh number for uniform heating [(a) and (b)] and

non-uniform heating [(c) and (d)] with Pr : 0.7; (-) and Pr : 10; (- - -). The insets show the log-log plot of
average Nusselt number versus Rayleigh number for convection dominant regimes.
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results in highly dense contours at the top portion of the side walls and these dense temperature

contours are in confrast with the conduction dominant cases as seen in Figures 3-2 and3.6.

Further, it is observed that the temperature contours are compressed towards the side walls

away from the corner points at the bottom. Therefore, the heat fluxes are enhanced at the

regions away from the bottom comer points. The heat transfer rates are qualitatively similar,

but reduced for non-uniform heating of bottom wall as compared to uniform heating'

The overall effect on the heat transfer rates are shown in Figure 3.10(a)-(d), where the

distributions of the average Nusselt number of bottom and side walls respectively, are plotted

versus the logarithmic Rayleigh number. Figures lO(a) and (b) (cases a and b) illustrate

uniform heating and Figures 10(c) and (d) (cases c and d) illustrate non-uniform heating. For

all these cases, it is observed that average Nusselt numbers for both the bottom and side walls

remain constant up to Ra = 5000 for uniform heating and up to Ra=Zxl}a for non-uniform

heating. Hence, dominant heat conduction mode corresponding to larger range of Rayleigh

numbers produces overall lower heat ffansfer rates against non-uniform heating. The insets

show the log-log plot for average Nusselt number versus Rayleigh number for convection

dominant regimes. The log-1og linear plot is obtained with more than 20 data set. A least

square curve is fitted and the overall error is within lo/o. The following correlations are

obtained for cases a,b, c and d as follows:

Cases a and b: Uniform heating (Ra>5000)

Na =2Nta

=l.6219Rao'tos , Pr =0.7

=1.2238Ra0177 , Pr =I0

Cases c and d: Non-Uniform heating (Ro>-2x104 )

t'ta=ZNra

=0.2939Ra,'oe, Pr=0.7

=1.2238Ra028e , Pr =10

3.8 Conclusions

The prime objective of this chapter is to reinvestigate the effect of Dirichlet boundary

conditions on the flow and heat transfer characteristics due to natural convection within a

square enclosure studied by T. Basak et al [5]. The penalty finite element method helps to

obtain smooth solutions in terms of stream functions and isotherm contours for wide ranges of

parameters Pr and Ra with uniform and non-uniform heating of the bottom wall. It has been
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demonstrated that the formation of boundary layers for both the heating cases occurs. It is also

observed that thermal boundary layer develops over approximately 80Yo of the cavity for

uniform heating, whereas the boundary layer is approximately 60% for non-uniform heating

when Ra=103. The heat ffansfer rate is very high at the edges of the bottom wall and

decreases to a minimum value at the center due to uniform heating which is consistent with the

lower heat transfer rate atthe edges due to non-uniform heating for Ra = 103. The conduction

dominant heat transfer modes occurs at Ra<5x103during uniform heating of bottom wall

whereas it occurs at Ra <2xl0a for non-uniform heating.

At the onset of convection dominant mode, the temperature contour lines get compressed

toward the side walls and they tend to get deformed towards the upward direction. During

Ra:IOs , the thermal boundary layer develops near the bottom and side walls, and the central

regime near the top surface has least temperature gradient for both uniform and non-uniform

heating. The local Nusselt numbers at the bottom and side walls represent various interesting

heating features. The local Nusselt number at the bottom wall is least at the center for uniform

heating and there are two minimum heat transfer zones at the center and corner points for non-

uniform heating. The non-uniform heating exhibits greater heat transfer rates at the center of

the bottom wall than that with uniform heating for all Rayleigh numbers. The local Nusselt

number at the side wall is found to decrease with distance for conduction dominant heat

transfer whereas due to highly dense contour lines near the top portion of the side wall, the

local Nusselt number is found to increase for both uniform and non-uniform heating cases. The

average Nusselt number indicates overall lower heat transfer rates for hon-uniform heating.

The average Nusselt number is found to follow a powff law variation with Rayleigh number

for convection dominant regimes.
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A.1 Calculation of integral Ut"t = ![u,*av ; i =1,2,3
(e)

According to problem (2.10.1), the shape functions for linear triangular element (e) arc

defined as

tt, = )lQ,!, - x,!,) + (t, - v,) * + (*, - *,) t),

n, = )l!,!r - \!t) + (t, - y,) * +(r, - r,)v],

u, = )lQ,!, - x,!,)+ (;,, - v,)* + (*, - r,) t)

Without generality, above shape functions may simply be written as (as illustrated in Eq.2.a6)

Hr=It, Hr=L, and Ht=It

Therefore, given integral becomes

bk, = l[lH, H, H,f'dxdy
(e)

Consider the first term of above integral

(A 1)

Similarly, values for other two terms of integral (A.1) are

!! r,*or= !! t,*0, = 
oi

(e) (e)

![r,*r, = !!r,a*ar ^,
(e) (e)

!! r,*or= !!t,*r, = I(e\ (e)

(usingEq.2.51)

(usingEq.2.51)

(usingEq.2.51)

Using above values in integral (A.1), we get

I t/1

u,",=l ';l:+l il,
l%) Lll

In problem (2.10.1), A is representedby A-
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A.2 Evaluation of integral ,,= I (ena',{utl)at
A(')

I t r' Lr' Lr' L,L, LrL, \ L, Lrl

With the help of computational software program Mathematica 8, the product of matrices

written above gives a single matrix of order 6x3, that is

dL..,li l: l ,ll;:l
lo -l -l o 4 oll,,l
L-, o -r o o o.]1,..]

L,,

L,,

L,,

Lr4

L,\
LJ.

n' t'u [)atn,= I Qn

,fi
0 0-lo-,.l
I 0 -l -l 0l
0 I o -, -rl
o o 4 o ol
o o o 4 ol
o o o o o)

,,= !
6(c)

4,, E:
R,' Fr.,

4,, F,,,

4., Fo,,

4., 4,,

4., Fu.,

dL,

8,,
F,,,

E.

&,,

4,,

4,,

(A.2)

where,

8,, = L,((L1 $}, -L,L,- L,L,) -LL](TI-L'L'- L'L,) -L,,L'(q-L,L,- L,L,))U,

+ (-LrLrQJ, -LrLr- L,Lr) +t"(Li -L,Lr- L,Lr) -LrLr(q'L,Lr- L,Lr))u,

+ (-LrL3 G1 - L,L r- L,L, ) - L rL r(t, - L,L r- L,L,) + L"$:, - L,L,- L,L,))u,

+ 4LL2(L2. -LrLr- L,Lr)uo + 4Lr\(L'zt-LrLr- L,Lr)u, + 4LL](at-LrLr- L,Lr)uu),

F,,, =L,((I,$}, -L,L,- L'L,) -L,L,(q -L,L,- L,L,) -L,L,(c, -L,L,- L,L,))U,

+ (-L,L,(L] -LrLr- L,L,) +t Q:, -LrLr- L,Lr) -LrLr(4 -L,L, - L,L,))u,

+ (-Lr L3 (L1 - L rL r- L,L, ) - L rL r(t, - L,L r- L,L, ) + L"$:,' L,L, - L,L, ))u,

+ 4LL2$:t -LrLr- L,Lr)uo + 4Lr\(L'zt -L,Lr- L,Lr)u, + 4LL3$:t -L',Lr - L,Lr)uu),

4,, : L,((L1 (L".L,L,- L,L,) -L,L,(q.L,L,- L,L,) -L,L,(\-L,L,'L,L,))U,

+ (-L,Lr$J, -L,Lr- L,Lr) +ar(u -L,Lr- L,Lr) -LrLr(4 -L,Lr- L'L,))u,

+ (-LrL3 G1 - L rL r- L,L, ) - L rL r(t, - L rL r- L,L,) + t (I:, - L,L,- L,L,))u,

+ 4LL2(L2. -LrLr- L,Lr)uo + 4Lr\(at -LrLr- L,Lr)u, + 4LL3(at -LrL, - L,Lr)uu),

R., = L, ((L1 GL,L, +L" -L,L,) -LIL)GLIL' +T, -L,L,) -LIL3GLIL2 + A' -L'L'11'1,

+ (-LrL, (-L ,L, + t, -LrLr) + L2rltrr, + L" -LrLr) -L1L3GL1L' + t, - Lrlr))u,

+ (-L 
r 
L3 (-Lr L, + t, - L rL r) - L 2L 3GL tL' + t, - L rL r) + t;rl-t rr, + a, - L, L, ))u,

+ 4L tL zGL lL r + tr - L rL r)l o + 4L 2L 3tL tL r + t - LrLr )u, + 4L lL 3GL tL r + tr - LrLr )u. ),
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F,., =L,((I](-L,L,+A, -L,L,) -L1L2GL1L2+A'-L'L') -LIL3TLIL2+L,'-L'L'))U,

+ (-L 
1 
L 2 

(-L'L' + t' - L rL r) + L', 
2, 

GL L 2 + L" - L rL r) - L 2L 3GL tL, + t' - L, L, ) )u,

+ (-LrL3(-LrL, +t, -LrLr) -L2L3GLL'+t, -LrLr) +a3GLL2 +L" -L'L'))u,

+4L1L2GL|L.+tr-LrLr)tto+4L2L3GL1L|+t -Lrlr)u, +4LlL3GLtLr+tr-LrLr)uu),

4,, = L, ((L1 GL,L, + T, - L,L,) - L lL 2GL IL' + T' - L,L,) . L IL 3 GL IL 2 + L22 - L 2L ))II I

+ (-LlL2 (-L,L r + t, - L rL r) + L"(L p r + l:, - L rL r) - L 2L 3GL lL r + t - LrLr ))u,

+ (-L1L3 (-L1 L' + t' - L rL r) - L 2L 3GL tL' + t, - L rL r) + t3CL L 2 + l:' - L rL, ))u,

+  LtLzGLtL, + t, -LrLr)tro + 4L2L3GL.L, + t - LrL, )u, + 4LtL3(LtLl + t, - LrL, )uu ) ,

4,, = L, ((L1 (-L,L, - L rL, + t ) - L tL )GL:L 3 - L rL' + t ) -L1L3 (-LrL3 - L rL r+ L1 ))ur

+ (-LlL2(-L 1L3 -L2L3+ L1) + t (L'L, -LrL, +t) -L2L3(L1L3 -LrL, + L1))u,

+ (-LrL3(-L 1L3 -L2L3 +L") -L2L3(LtLl -LrLr+ L'?3) + r]r(LrL, -LrL, + L"))u,

+ 4LtLz|,-L1L3 -L2L3+ L'zr)uo + 4L1L3GL1L3 -L2L3+ L1)us + 4LtL3GLtLi -LzL3 + L1)u6),

Fr., =Lr((\ (-L,L, -LrLr+t)'L1L]GL1L3 -LrL, +t) -LrL3(-LrL3 -LrL, + L1))ur

+ (-LlL, (-L tL 3 - L 2L 3+ Ll ) + t GL'L, - L rL, + a) - L 2L 3GL tL 3 - L rL, + L'?3 ))u,

+ (-LrL3(-L tL3 -L2L3+L") -L2L3GL.L3 -LrLr+ L1) + ArGL,Lr -LrLr+ r3))u,

+ 4L1L2GL1L3 -L2L3+ L1)u4 + 4L2L3GL1L3 -LzL3+ L1)us + 4L1LJ-L1L3 -LzL3 + L1)u6),

4,, = Lr ((L1 (-L, L, - L rL r + L") - L tL 2(L lL 3 - L rL r + L") -LlL3 (-LrL3 - L rL r + L1 ))u1

+ (-LrL2(-L tL3 -L2L3+ L1) + T]]GL.,L, -LrLr* 11) - L.I3GLIL3 -LrL, + L'z3))u,

+ (-L1L3(-Lr L3 -L2L3 +L") -L2L3GL.L3 -LrLt+ L'?3) + L'.(-LrL, -LrLr+ L1))u3

+ 4LtLzGLtL3 -LzL3+ Ll)u4 + 4L2L3(L|L3 -L2L3+ L'?3)u5 + 4L|L3CL.L3 -LzL3+ t'zr)uu),

Fo,, = L, ((4L] L, - 4r:l:, - +fitrr;t, + gr:,r:, + 4LJ:2 - 4L,L2rLr)n,

+(AL'zPr\-4L.L22L3+4LLzL1)nr+l6Llliru4+I6Ltl/zl,rur+!61-lLrLru),

Fo., =Lr((4C,L, - 4L',a, - +t;-rr)t, + gr:rL', + 4L,r), - 4LJ:2L)i2

+ (+Arr rr r - 4L Lzz\ + 4L L 2L2)v r + r 6 C,t u 4 + l 6L t4l-ru r + l 6r-lL rL p ),
Fo,, = L, ((4L] L, - 4rie, - +\rrr)t, + (4r:,L', + 4L'r), - 4L,L2rLr)n,

+(4VLr\-4LJ:2\+4LLrL1)ur+l6L2,l-?ruo+l6L,L2rlrur+!61-lLrLru),

4,, = L, ((4( LrL, - 4LJ:2\ ' 4LrLrL2r)u, + (4L,L2rL, + 4IJrL, - q]rG)",

+(4LrLrt,-4L'J:,+4LrIJr\tr+l6L,tL;uo+16I-?.L'zrt,+l6L'Lrllru),

Fr,, =Lr((4fiLrL, - 4L[2r\ - 4L,Lrfi)u, + (4L;]rL, + 4r]rL, - qGrL'r)",

+(AL,LlJr-4L'rL'r+4Lzl:)\+I6LrL}rLruo+l6L'zrrirur+16L,LrL1ru),

4,r=Lr((4\LrLr-4LtLzz\-4LrLrLzr)tt,+(4L,ArLr+4lrrLr-q:rA)",
+(4LrLrtr-4r:rL'r+4Lrfr)tr+l6LrL2rLruo+I6L'zrllur+16L,LrL1ru),
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4,, = L, ((4t', \ - 44LzL, - 4fit )u, + lltprt, + 4Lta2L3 - 4L,Lrt )u,

+ gI:J:, - 4L L zL'z3+ 4L 
r 
L1 )u 3 + I 6fiL rr ru o + I 6 L,L rt u, + | 6tll' 

u ),

Fu., =Lr((4L1L, - 44L2\ - qAJ:)", + llfitrrr+  L,CL, - 4Lpra)t,

+ gI:rL', - 4L L zt3+ 4L 
r 
L1 )u 3 + rcqL 2\l o + I 6 L rL rl'?ru, + 1 6 L] L1u 

u ),

and

4,, = L, ( (4 t rL, - 4I:,L z\ - 4t lct)", + (l\r rL, + 4L J:z\ - 4L rL rrl)t,
+gI:rL'r-4LL2A3+4I-rI-3)q+l6tLrLruo+l6LrLrl2rur+l6[-'1rttuu)

Substitute above values in Eq. (A.2) and then integrate using formula (2.51), resulting the

Eq. (3.3s).

Following mathematical code of Mathematica I has been used for execution of above

results,

^1=(x2 
y3-x3 y2); a2:(x3 y1-x1 y3); .3=(x1 y2-x2 yl);

51=1y2-y3); ]oZ= (y3-y1); b3= (y1-y2);
c7-- (x3-x2) ; 62= (x1-x3) ; c3: (x2-x7) ;

a={ {1 ,0,0,-L,0,-1 }, {0,1 ,0,-7,-1 ,O}, {0r0,L,0,-!,-1} ' {0'0'0 '4'0'0J '
{0,0r 0 ,0,4,0 }, {0,0,0r 0r 0,4} l;
at=Transpose Ial ;

r=l {L1,^2}, {L2^2}, lL3^2}, {L1 L2', {L3 L2}, {L1 l'3} }; rt:Transposelrl ;

u={{u11,{u2},{u3},{u4},{u5},{u5}}; h={{LI t,{L2},{L3}}; ht:Transposelhl;
E1= ( a . r . rt . at . u . ht ) ;
F1tt2,1ll; (*this command is used to get result of an eLement l-ocated at

second row and first col-umn of matrix F1*)

Dlmensions[F1]; (*gives dimension of matrix F1 j'e 6x3*)

MatrixEorm I F1 ]

A.3 Evaluation of integrulFy = I (nu' 'l'vt)an
tr(e)

r,= I (.ann' e'v [)at
A(')

00
10
01
-t0
-1 -1
0-1

trl
;,1
;,1
L'l"l
a-,1
LrI")

-1 0

-1 -1
0-1
40
04
00

=j
A(.)

100
010
001
000
000
000

000
000
000
400
040
004

It L2

-1
0

-1
0

0

4

lE' Lr' Lr' I.I1 I.l" \1")

I

0

0

-1

0

-1

yl

v2

y3

v1

y5

v6

',f^

For evaluation and simplification of above integral,

may be followed, just replace velocity component t,l

unchanged.

similar procedure as described in A.2

by v whereas remaining terms will be
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A.4 Simplification of integra r 
[Or(u ff., ,*r\r, -!,rr(#.#pro, =,

Solution.

[rr(, # ., #W, - !,rr(nu . #)*, = o (A.3)

consider !r^ r(n* . *&)**

Since, *(rrfl)=*#*rr#
+ orffi=*(,r#) *#

Taking area integral on both sides, we get

[o 
r ffi *a, = ! *(, r #)** - 

[ u*% # *0,

converting area integra, 
1*?19*)*0, 

into line integral, implies that

[*(rrff)*o' =!(rr#',)*
Using above relation, Eq. (A.a) implies

[o 
r ffi ** = 

!(, r #,,)- - t* 
e* **

Similarly,

[or ffi *0, = 
f(, r #,,)- - t"* ff a*ar

Addition of Eqs. (A.5) and (4,.6) generates the following result

(A.4) 
:

(A.s)

(A.6)

!",r(#. #)*" = -[(*#. *#)*o'. f (", # *', #),0' @ 7)

Using integral (A.7), Eq. (A.3) reduces to following form

[rr(, # ., #Wr, . {* # . * #)**- f [", 
e* *,, 

ff)oro, = o

Using approximated functions (3.1 5), above integral becomes
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!(o r {o r,, r) # + d o (0 o' v 
^) ffl r*0, . [(* # . * %-)e kdxd y

-f("'#*"ff)or*=o

A.5 Evaluate the following integral

[,r(, # . n #Vor - r ! orl*W . #)W,r - v, ! or(* . #p,, -- o (A 8)

Solution.

cons der *l,r(#. #))= *(#. f).,r *(#. #)

=,r*(#.#)=*l,r(#.#)) *(#. #)
Taking area integral on both sides, we get

IJr *(# . #V,, = [*l,r(# . nW- ffiW . #V"
tJr *(# . KV* = [*l,r(# . nW" [* *o 

dxdY - [*# *" (o,)

converting area integra , 
[*lrr(#.#)Wm 

into rine integral, we set

[*1, r(# . nW- = 0 o,(# . K)', o'

Using integral (A.10) in Eq. (A.9), implies that

I;^r *(# . #V" = 0 or(# . #)"' . - [*# dxdY - [* # *"
Bv Eq. (3.7), 0u *0V =g, therefore above integral becomes.AXAY

t;^ r *L(# . #V* = - [* # dxdY - [* # *o'

Using Eq. (A.8). we may write

l"rr(#. #)*,, = -[(*#. t#)*". f (', # * n, #)ro' (A I 2)

(A.r0)

(A.l r)



)*o'

)rr**f

Using Eqs. (A.11) & (A.12), Eq. (A.8) becomes

I a,( uL *rLfuay *,1( %?' *aok 
av h*r, *p,l( 9L9u *aok 

au

*'^\ ax aY ) ' ra\ax ax ax aY ) t"\ax ax aY aY

-'.f(,, #.,,ff)oro,:o
Approximated functions (3.15) reduces to above integral in following form

llorgr'ur)Y*do(do'vo)ffI'r*or.rli;*#lr*or.[(*'#

. 
" {*Y. *%y rdxdy- ..f (,' 

u*L 
* n, fr)or* = o

Appendix A

(A.14)

A.6 Compute the integral

[r 
r(, # ., #V, r - v I o rl*W . #)W* - y, 

!,o r(# . #l*, - na v r ! h,0 dxd y =0

(A.13)

Solution.

In the light of Eqs. (A.11) & (A.12), we have

I a !( L * {Vo, : -l 9!"Y dxdy - I 9LL axay
ra'^ aY\ax aY ) roaY ax LaY aY

I"rr(#. #)*,, : -[(*#. *#)o*r,. f (". # * n, #)ro' (A r s)

Using Eqs. (A.14) & (A.15), Eq. (A.13) reduces to following form

I a ( u L * v L\xay *,1 f 
gL\!- 

dxdy * I 9LL axar I * p,. f( 
gLy * 9LL\a*a,

*'-\- ax av I-'--' ' lt"av ax---- - raaY dY I r"\ax ax aY aY )

-..f (", # * ,, #)rr* - navr ! o^o dXdY = o

Using of approximated functions (3.15), above integral gives

llorpr'uS#.or(or'r,r1ffl,r*or*,lt@YYr**.tW'#Yr**)

.r,[(*Y.*Yy^dxdY - naYr!do(or'eryar-..f (,, ff. *fr)or* =o
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B.1 Finite Element solution of the Laplace Equation with 4-Node

Rectangular Element

Consider a simple form of the steady state heat conduction problem in a rectangular

domain (shown in Figure B.l) with Dirichlet boundary conditions defined by Laplace

Equation (all material properties are set to unity).

yzr=*.*=g (B.l)
dx' OY-

forx = [O,o],, =1o,Ol, with a = 4, b =2

where, u(x,y)is the steady state temperature distribution in the domain.

The boundary conditions are

u (0' y!= 
1o-o^ ) mpor.a temperatures on the left & right boundaries

u(4,y) =250 )

"(.*'?).= ::^ ] mpos"atemperaturesonthetop&bottomboundaries
u(x,Z)=200 )

Y

a=4+
12 13 L4 15

E 7 6 5
1

eF2

II 2 3 4

7234s

Figure B.l: Discretization of given geometry into 8 elements (each one is 4-node rectangular element)

by signifying global nodes at vertex of each element

For weak formulation of goveming Eq. (B.1), multiply Eq. (B'1) by an arbitrary weight

function w(x,y), and integtate over an arbitrary domain C)', whose boundary is f'' The

arbitrary domain could represent an n-node element within the solution domain O with

boundary f , as shown in Figure B.2.
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o

The equation obtained is

, ( A'u o'r)a*a, =,J.'/(r,/)[al * ur, I
Using eq. (A.7), above integral may be written as

ilx x . # K)*0, 
. 
!(,.* 

* n 
" 
L)* a, = o

3 il,**. #*)** = !(,,* 
* n, 

#)-o'
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f

Figure 8.2

(8.2)

Define the flux term (q, ) as

0u 0u
Q,=h,:*n,'-Ox Oy

In view of above result, Eq. (8.2) becomes

il**.**)*dy=d.q,,wds (B.3)
;.\ ox ox oy oy ) r,

The approximate solution of equation (B.3) for an arbitrary, n-node element is defined by

u" (x, y) = ir",,/r', (*, !)
l=l

where, ai is nodal value for u(x,y) at nodeT corresponding to element e

V",(x,l) is interpolation function for u(x,y) at nodeT within the element e

Moreover, the weight function *(x,y) represents a variation of primary variable u(x,y) , and

thus takes on the nodal values w,=V",, i=1,2,...,n. Thus, Eq. (8.3) yields the following

form

z-, !(xY . NY)*+ = 
!,',,,,,1.
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ln matrix form, it becomes

Zx;rl =Qi ; i =r,2,.......n
j=l

Appendix B

(8.4)

(B.s)

where, .t= l(*Y.#-#)*
Qi = $v',a^dtr

"", 
=lui ,i..... ,",)'

Since there is no flux ( q, ) given at all nodes of the problem domain, therefore value of

column vector Qi will be assumed as zero vector. Thus, the weak form for an n-node

element in condensed form may be written as

Lx;u"i = F," ; i =1,2,"""'n
j=l

where,

r<" - t(ur: ur; *y;9y1)**'-u 
d.[ a, Ax ay ay )

which is element coefficient matrix, also called the element stiffrress matrix'

u", = lutu, ur........u,f7

F," =10 0 0.........01r

Now consider a 4-node rectangular element and interpolation functions for this element are

hG)=L+r- 0,(*)==: Ih, nt I Lin.* shape functions in x - direction

-o-* ='-0 I ,= o <- lri=s 4 x=a

oa)

C,0\ - !i-t-- | (rU) 
Ihi ni I Lir.- shape functions in y - direction

=b-y =Y-o I v=, hi=b4
b b ) 

-

The product of two sets of above mentioned shape functions results an interpolation functions

in terms of local coordinates (x,y),which are as under

wi @, y) = A@)e,o, = [?) (+)= (, - ;)[, - ;)

y=b
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wi@, v) = h@)c,(v, = :(+) = ;[t - ;)

vi G, i = o,@) (,(v, = (:)(I) = X

v i @, y) = ,'o',) ( 0.',, = (T)(#) = (t - :)f
Using eq. (8.5), local stiffrress matrix corresponding to 4-node rectangular element may be

interpolation functions, the computed

(B.6)

+ *,\-.

evaluated as

ll,*,1 t*l
ll#. I li'l

K; = Ill a lt* + * +).1 Lll+ +'lla[ lfl[L?r L#]
Performing integral after substituting the above

element stifftress matrix is

I 
n" A" A" '4\^1

*;=,.2:,, 2', 2', 2^,1

ln^ Ao, Ao, n*)

Where,

, =j,j:( **.**)**
= j, i, {t Hft).(- 

=)(- 
;)} *

= ;b' )'=,'*i,{lu 
- 
')' 

* (o - ')'\a'a'

= #' )',1(b 
- v)'l{ . 

l- 
q{1. 

},
=#')='=,{o(b- n' .*}*

a2 +b2

3ab '=#{"]-q'[.rr'r:}=
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u, =' 
1'=,', .il,l* * . * T)* *

= j,i,{( *)(*).(-+)( :,)}*
= ;+' )'.'*l,t-t' - t)' 

* (* - r)\ **

= #' !,{-@ 
- v)' (o). "(+) +}.

- , I -l-@ 
- r)'lu , o',.,,.|- a' -2b'

= rFI-l-:|, + ?l/lol= 6'b

^, 
=' 

)'=,'.!',(* * . * T)* *
=j,i.{t A6.?;)(*)\*
= #')'=,'i,{('' - bv)+(x' - *)\*o'

= #' )1,{(r 
- tt')(ov ! - +}.

=#')',{" -bY-+}-

: , [u' -t--4!\=-a'+b' .

ab'13 2 6) 6ab

u, =' 
)'=,r, J_,(* * . T T)* *

= j,i, i( H( *).(-+)(;)\-.
= ;+' )'=,' .f ,\(u' 

- 
") 

- (o - *)'\ *o'

= #' )'=,{(bv 
- Y'X') - +}.

=#'!-{ @-v)'.t}*
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A..=) 'i'{ur-r'-4\0,
'-14 ob"t='l-'' 3)"

t lil F o',b) b2-2a2
=-ab'lz 3 3 ) 6ab

Since element coefficient maffix is symmetric, then we have

Abr= Atz=
a'-2b'

6ab '

o, =' 
)u," .i_1,(* x . * ff)**

=')"",r,1%#.*\**

= #' )'=,'*i,\tt 
- t)' + *'\a*aY

=h')='=,{(b-v)'a>!}*

t I tt o'b) a' +b'
=--;r\T - t J- 3ab '

n,='!,'*1,(**.TT)**

= )"'i,{(*) t * ) 
. (- *)(*)\ * *

= #' )'=,'*i,{u' 
- 

" 
- *'\ *aY

=#',['*{obY-oY'-+}.

t I ut b' a'b) b' -2a'=- ,=-
ao'lz 3 3) 6ab

n o =' 
!=,'*[=off * . * +)* *

=)?-i,{(+)i*).(-*)(+)}**

= #' )'=,',,f ,{f 
- ut - ca + *'\ *av
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n,=# )'=,{*'-*,-*.t}*
=#')',{" -bY-+l-

_ | Ib' _b' _q'b\=_a2 +b2
-ob'13 2 e ) 6ab '

=')'=,'*i,{*.*}**

= h')'=,',!=,{t' 
+ *'}a*aY

| '=rol . o'l=;r ),I*'.;l*
t'l7ol , o')=# I ^1r'.;lo,)=v\ )

az +b2
Av= 4t= 6ab '

b'-2a'
Atz= 4t=--:-- )

ooD

u, =' 
)'=,)-,(* * . T +)* *

t I nt o'b) a'+b'
=-t- L- \;-- an'lt t ) 3ab 2

n o =',!l 
o',,i=oT* 

. T+)**
:)',',,r,{ #.ff}**
= #' )'=,'*[,{-" 

* ax - x'\a'aY

=#'!',{-oY'*+-+}.

=#')',{ r'.-+}*

_ | !_L*o'b\_a'-2b'-rb'l 3 e) 6ab '
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b'-za'
Ao, = Aro = ---;--;- ,

oaD

a2 +b'
dd2 = n24 = ----;:-;- ,

oaD

o'-2b'
n43 = n34 = ----;--;- 'oaD

Appendix B

(B.7)

t)"'-[{*.s}**
= #' )'=,.*f ,{t' 

*(o - *)'\*a'

=#')',{"'.+l*

=#')'.{".t}*

: | [b' *o'b\_a'+b'
ab'lt t ) 3ob

Substitution of above all values in Eq. (8.6) yields

n*='lu'((+9+.+\w)**
,'-0"=o\ dx ox oY oY )

a2 +b2 o2 -2b2 
- 

a2 +b2 b2 -2o2
3ob 6ob 6ob 6ab

o2 -zbz a2 +bz b2 -zaz 
-a2 

+b2

f, _l 6ab 3ab 6ab 6ab

" y I o2 *b2 bz -2o, a2 +b2 o2 -zb2
6ab 6ab 3ab 6ob

b'-2o2 
- 

a2 +b2 o2 -2b' a2 +b2

6ab 6ob 6qb )ab

K"u =
1

6ab

2(a' +b') a' -2b' -(a' +b') b2 -2a2

a'-2b' 2(a'+b') bz -za' -(a'+b')

-(a' +b') bz -2az 2(a' +b') a' -2b'

bz -zaz -(a'+b') a'-zb' 2(a'+b')

Now consider a value of above matrix for a given domain which is discretized into eight

equal segments (as demonstrated in Figure B.1), each one is four noded rectangular element.

Each element has length a =I and width b =l . 6th element is illustrated in Figure B.3 with

1-4 local nodes whereas 8,7, 14 and 13 represent the global nodes.
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Figure 83: Dimensions of 66 Element with Symbolization of Local and Global Nodes

Byputting a=l and b:l inlocal stiffrress matrix (B.7), the value of 6th rectangular element

is obtained as under

Since all the elements are equal in length and width. Therefore, value of local stiffiress matrix

corresponding to each element will be same as mentioned above (for 6th element)'

Local stiffrress matrices of each rectangular element by allocating global nodes

(corresponding to their local nodes) in anti-clockwise direction are given below

8

7

t4

13

1

i
I

Kz Ks

23893478
2l i -+ -i -*l 3[ i -+ -+ -+-l

rl-+ ? -*-+l rl-+ i -+-+l
8l-+-+ i -+l zl-+-* i -+l
q L-* -+ -+ +l t L-+ -i -* 3l

Ko

8 7 14 13

2 | r tl
T -6 -l -el
t 2 r rl
6 3 6 3l
r l z rl
'r 6 3 6l
r l r zl
6 3 6 3l

Ks

7 6 ls 14

7l i -+ -+ -+l
6 l-* i -* -+l
lsl-+ -+ 3 -*l
u L-* -+ -* +l
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f z I -l -rl

o =l-i i -:; -l I

I r 6 3 6l

L-+ -+ -* 3l

Kt
12910

rIi-}-+-*l
zl-* i -i -il
sl-+ -* 3 -*l
ro L-* -+ -* i)

Kt
4567

4l i -+ -+ -+l
sl-* + -* -+l
el-+ -+ i -*l
, L-+ -+ -* +l
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Assembling all of above element matrices generates an assembled global stiffness matrix[K]

oforder 15 x 15 as given below

Kz Ka

9813121091211
i -+ -+ -+l 10[ i -+ -] -+l_* i-i -+l ,l-* i-* -'l

-+ -+ i -*l rzl-+ -+ + -+l
-+ -+ -+ il 11 L-+ -+ -* 3l

9

8

13

t2

I
2

3

4

5

6

7

K= 8

9

10

11

12

13

t4
15

t2
%-%

-%%
o -Y6

00
00
00
00
o -Y3

_t/ _t//3 /3

_r/ -t//6 /3

00
00
00
00
00

3 4 5 6 7 8 9 10 1112
0 o o 0 0 0 -%-% 0 0

-y, o o o o -%-%-% 0 o

%-y,00-%-%-y,oo0
-% %-%-%-%-% 0 0 0 0

0 -y6 %-%-% 0 0 0 0 0

0 -%-% %-% 0 o o o 0

-%-%-%-% %-% 0 0 0 0

-%-% 0 0 -% %-% 0 0 -%

-% o 0 o o -% %-%-%-%
o o 0 o o o -% %-y,-%
0 0 0 0 0 0 -%-% %-y,
o o 0 o o -%-%-%-y, %

0000-%-%-y,00-%
0 0 0 -%-%-% 0 0 0 0

o o 0 -%-% o o 0 o o

13 14 ls
000
000
000
000
000
0 -%-%
-% -Y' -%
-% -% 0

-% 0 0

000
000
-% 0 0

%-%0
-% % -v,
0 -%%

Also the value of column matrix [4'] on the right side of Eq. @.a) for the whole domain

gives matrix F of order 15 x 1 as under

F=[o o o o o o o o o o o o o o o]'

The assembled equation is of the form

[r][u]= [r]
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% -y, 0 0 0 0 0 0 -% -% 0 0 0 0 0l
-y, %-% o o o o -%-%-% o o o o ol
o -y6 %-% 0 0 -%-%-% 0 o 0 0 0 0l
0 0 -y, %-%-%-%-% 0 0 0 0 o 0 0l
0 0 o -% %-yr-% 0 0 0 0 0 0 0 0l
o o o -%-% %-% o o o o o o -%-%l
o o -%-%-%-% %-% o o o o -%-%-%l
o -%-%-% 0 0 -% %-% 0 0 -%-%-% ol
-%-%-% o o o o -% %-%-%-%-% o ol
-%-% 0 0 0 o 0 0 -% %-%-% 0 o ol
o 0 o 0 0 0 0 0 -%-% %-y,0 0 0l
0 0 o 0 0 o 0 -%-%-%-% % -y,0 0l
0 0 o 0 0 0 -%-%-% 0 0 -% % -% 0l
0 0 0 0 o -%-%-% 0 0 0 0 -% % -y,l
o 0 0 0 o -% -% o 0 0 0 o o -% %)
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ul

u2

u.
J

u,

u5

u6

u.l

uE

us

ilto

ult

utz

iltt

iltc

uts

(8.8)

where, [U]is a vector of nodal values of temperature.

At the singular points (i.e global nodes 1, 5, 15 and 11), the specified nodal values are

handled either by average of the two specified values or the higher of the two specified values

of z. (Note that the points occur at corners of problem domain are referred as singular points).

Therefore, values of boundary conditions at nodes on the boundary of the domain are

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100 + 50ur=-=,t
250 + 50u.---l5u'2

z,o = 100

urz = u13 =\+ =200

Uz=U\=Uq=50

ua =250

100 + 200Urr=-=l5U
200+250

urs = =225

The nodal solution vector [U]Uecomes

lUl=ltS 50 50 50 150 250 tt.t tt. tte 100 150 2OO 2OO 2OO 225fr

Above vector shows that the unknown values of [U]occur at global nodes 7, 8 and 9.

For evaluation of unknown parameters (ut,usandur), eliminate rows 1-6 and 10-15 of

global stiffrress matrix rK. All known quantities are moved from left side of the matrix

equation to the right side to obtain the condensed equations. Thus, Eq. (8.8) implies
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

75

50

50

50

150

250

u.l

u8

ue

r00

150

200

200

200

225

o -% -% -%1

-X -Y, -Y, 0 
|

-Y, -Y, 0 0]

Io o -N -/,
lo -% -/, -y,
L-x -/, -v, o

Necessary simplification generates result as follow
I z.oeo -0.3333 o lla,l [:zsl
| -r.rrr, 2.6667 -0.3333 

ll 
,; 

l= | 
,tn I

L ; -orrr, 2.666711,,1 LzTs)

Above system of equations gives the following solution at unknown nodes,

f u-1 ltse .eszz1

L;,^l=lr^.rr*l
L,;l [, ,, , 

',,]
Graphical illustration of nodal solution has been shown in contour plot as under
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Figure 8.4: Contour Plot executed using Finite Element Solution
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