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Preface

Most of the problems encountered in the field of science and engineering are
developed in terms of non-linear differential equations [1, 2]. It is a well-known fact
that these differential equations cannot be integrated analytically in most cases, It is
necessary to apply some method of approximation numerically for most reliable
solution. A large number of different approximation methods for solving differential
equations exist, the most important and famous method is the finite element method
[3. 4].

The effects of thermal boundary conditions on natural convection flow of fluid within
an enclosure were investigated by different authors so far by using different numerical
schemes. The natural convection flow in a square cavity under the influence of
uniformly and non-uniformly heated bottom wall and keeping top wall as well
insulated while two vertical walls are cooled by means of two constant temperature
baths is examined by Basak et al. [5] and yields consistent performance over a wide
range of parameters Rayleigh number (Ra) and Prandtl number (Pr) with respect to
Dirichlet boundary conditions. Various aspects of the subject problem have been
investigated by Basak and Ayappa [6], Ostrach [7-9], Gebhart [10}, Hoogendoom
[11] and Imberger [12]. A comprehensive numerical study of natural convection flows
and heat transfer characteristics in an enclosure with different sidewalls temperatures
(i.e. one vertical wall of enclosure is heated and another one is cooled wall, whereas
top and bottom of the cavity are insulated) has been made previously by Nicolette et
al. [13], Hall et al. [14], Hyun and Lee [15], Fusegi et al. [16], Lage and Bejan
{17, 18] and Xia and Murthy [19]. November and Nansteel [20] and Valencia and
Frederick [21] have examined the natural convection within square cavity, heated
from below and/or the top was cooled. Steady natural convection in fluid-filled
rectangular enclosure heated from below and symmetrically cooled from the two
vertical side walls is studied numerically by Ganzarolli and Milanez [22].
Subsequently, Aydin et al. [23] has inspected the same flow of fluid to acquire the
effect of aspect ratio and Rayleigh number on flow pattern and heat transfer in air-
filled rectangular enclosure. Expcrimentally investigation of high Rayleigh number
natural convection in a water-filled cubical enclosure heated simultanecusly from
below and from the side has been made by Kirkpatrick and Bohn [24] and obtamed
the experimental measurements and observations of the heat transfer, the flow
patterns and the mean and fluctuating temperature distribution. Steady laminar natural
convection in air-filled rectangular enclosure heated from below and cooled from
above is studied numerically by Corcione [25], for a wide variety of thermal boundary
conditions at the side walls, and such numerically study was conducted for different
values of both width-to-height aspect ratio of the enclosure and Rayleigh number. The
numerical and theoretical study of natural convection m square cavity with heated
bottom wall, insulated top wall and cooled vertical walls has been examined, which
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results the discontinuities in temperature distribution occur at bottom wall in response
of uniformly heated bottom wall. The discontinuities may be removed by heating the
bottom wall non-uniformly, as investigated by Minkowycz et al. [26] for mixed
convection flow on a vertical plate (either heated or cooled). In order to assess the
accuracy of the numerical procedure, the algorithm based on the grid size (41x41}
for a square enclosure with a side wall heated were investigated and are in agreement
with the work of Mallinson and Vahl Davis [27] for Ra = 103-105.

The finite element method (FEM) is one of the major numerical solution technigue
which has major advantage that a general purpose computer program can be
developed easily to analyze various kinds of problems. In particular, any complex
shape of problem domain with prescribed conditions can be handled with ease. This
thesis is useful as a reference tool for researchers using FEM. Also the thesis is
intended to serve as a text for students of mathematics, science and engineering who
have acquired some knowledge of elementary numerical analysis. The chapter-wise
details of the thesis is as follows:

Chapter 1 provides the basic definitions and law regarding fluid mechanics and
phenomenon of heat transfer. Chapter 2 has brief explanation and procedure to
implement finite element method in partial differential equations for different
geometries. Two examples with the application of FEM using triangular elements are
solved with brief steps of numerical computations. Laplace equation is also given as
additional example in Appendix-B for better and practical understanding of FEM by
presenting FEM solution with 4-node rectangular elements. In Chapter 3, the effects
of thermal boundary conditions on natural convection flows within a square cavity [5]
are reinvestigated. The modelling of the problem is made subject to the boundary
conditions due to different temperature situations at different walls of the enclosure.
The solution of the developed problem is computed by using Galerkin finite element
method by developing code in MATLAB. The results are presented in term of
temperature profiles and Nusselt numbers, and discussed in detail.

it
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Chapter - 1

Preliminaries

In this chapter, some basic definitions and fundamental laws related to next chapters are

introduced for better understanding of the readers {1, 2].

1.1 Fluids Mechanics
Fluid mechanics is the subject in which we study the applications of the laws of force and
motion to fluids including liguids and gases. In other words, it concerned with the statics and

dynamics of fluids (both liquids and gases).

1.2 Fluids

A fluid is a substance which deforms continuously, or flows under the action of shearing
forces which act tangentially to a surface of fluid. In other words, there is no action of

shearing force when fluid is at rest.

Liquid
It is the state of matter in which the molecules are relatively free to change their positions
with respect to each other, but restricted by cohesive forces so as to maintain a relatively

fixed volume.

Gas
It is the state of matter in which the molecules are practically unrestricted by cohesive forces.

Therefore, gases has neither definite shape nor volume.

1.3  Stress

A stress is defined as a force acting per unit area of an infinitesimal surface element.

1.4 Types of Stress
There are two types of stress. These are normal stresses and tangential siresses which are

defined as follows:
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1.4.1 Normal Stress

The stress which acts perpendicularly to the plane to which a force has been applied.

1.4.2 Tangential Stress

A stress which acts along the surface or parallel to the surface.

1.5 Types of Fluids
Fluids can be classified into four basic types, which are as under:-
1. Ideal Fluid
2. Real Fluid
3. Newtonian Fluid
4, Non-Newtonian Fluid

Details of above each has been given as under:

1.5.1 Ideal Fluids
The fluids which has no resistance in between their molecules are known as ideal fluids. In

other words, fluids having zero viscosity are known as ideal fluids. Practically, no ideal fluid

exists.

1.5.2 Real Fluids
The Fluids which have some resistance in between their molecules, particles or layers are
known as real fluids. They are compressible in nature, and have some viscosity.

Kerosene, Petrol and Castor oil are common examples of real fluids.

1.5.3 Newtonian Fluids
Newtonian fluid is a fluid in which the viscous stresses arising from its flow at every point
are linearly proportional to the local strain rate (the rate of change of its deformation over
time). In other words, fluids which obey the Newton's law of viscosity are called as
Newtonian fluids. Newton's law of viscosity is given by

dv

r=,u5.

o . av .
where 7 is shear stress, g 1s viscosity of the fluid and -a; is commonly known by shear rate,

rate of strain or velocity gradient. The water, benzene and ethyl alcohol are commonly known
as Newtonian fluids.
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1.54 Non-Newtonian Fluids
A non-Newtonian fluid is a fluid whose viscosity is vanable based on applied stress, and such
fluids do not obey the Newton's law of viscosity. Common examples of non-Newtonian

fluids are ketchup, starch suspensions, paint, blood and shampoo etc.

1.6 Properties of Fluids

Any fluid is characterized by the following properties:
1. Density
2 Viscosity
3 Coefficient of Dynamic Viscosity
4

Kinematic Viscosity

1.6.1 Density

The density (p) of a substance is the quantity of matter (mass) contained in a unit volume of

the substance. Mathematically, it can be expressed by

p=?s

where p is the density, » is the amount of mass in unit volume V. The unit of denstty is

kgm™ and dimension is M/L.

1.6.2 Viscosity
Viscosity (u) is the property of a fluid, due to cohesion and interaction between the

molecules which offers resistance to sheer deformation. Fluid with a high viscosity such as

honey or syrup deforms more slowly than that of fluid with a low viscosity such as water.

1.6.3 Coefficient of Dynamic Viscosity
The coefficient of dynamic viscosity (u) is defined as the shear force per unit area, (or shear
stress 7 ) required to drag one layer of fluid with unit velocity past another layer a unit

distance away. Mathematically

. & Force [Velocity ForcexTime ~ Mass
dy  Area/ Distance Area LengthxArea

)ﬂ=

Units of x4 are Newton seconds per square meter (Nsm™) or Kilograms per meter per

second (kgm's™).
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1.64 Kinematic Viscosity

Kinematic viscosity (v) is defined as the ratio of dynamic viscosity to mass density.
Mathematically, it can be expressed by

The unit of v is square meters per second {n’s™') and dimension is L*/T .

1.7 Types of Fluid Flow
There are many types to classify flow of fluid and describe the state of fluid flow under

different circumstances. Some types of fluid flow are as under

1. Uniform Flow

2. Non-Uniform Flow
3 Steady Flow

4, Unsteady Flow

5. Laminar Flow

6. Turbulent Flow

Explanation of each is given below.

1.7.1 Uniform Flow
If the fluid velocity remains same at every point in the flow, then it is said to be uniform

flow.

1.7.2 Non-Uniform Flow

If at a given instant, the velocity is not the same at every point, the flow is known as

non-uniform.

1.7.3 Steady Flow
A steady flow is one in which the fluid characteristics (velocity, pressure and cross-section}

do not change with time.

1.7.4 Unsteady Flow

If at any point in the fluid, the fluid behaviors change with time, the flow is described as

unsteady.
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1,75 Laminar Flow
The flow of a fluid in which particles of the fluid move in parallel layers, each of

which has a constant velocity is known as laminar flow.

1.7.6 Turbulent Flow
A fluid flow in which the velocity at a given point varies erratically in magnitude and

direction is known as turbulent flow.

1.8 Compressible Fluids
If the density of a fluid varies significantly due to moderate changes in pressure or
temperature, such fluid is referred as compressible fluid. Generally, gases and vapours under

normal conditions can be classified as compressible fluids.

1.9 Incompressible Fluids
If the variation in temperature or pressure causes a small change in density of a fluid, then the

fluid is known as incompressible fluid.

1.10 Streamlines
In analyzing fluid flow, it is useful to visualize the flow pattern by drawing lines joining
points of equal velocity i.e. velocity contours. These lines are known as streamlines. Here is a

simple example of the streamlines around a cross-section of an aircraft wing shaped body:

Figure 1.1: Streamlines around a wing shaped body

1.11 Buoyancy Force
The upward force that a fluid exerts on an object which is completely or partly submerged in
it is called buoyancy force. This force causes the objects to float. Moreover, buoyancy allows

boat to float on water and provides lift for balloons.
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1.12  Convection
Convection is the process in which heat moves through a gas or a liquid. In other words, the
mode of heat transfer in liquids and gases is known as convection. Transfer of heat through

convection is categorized in three different types, each one is explained below.

1.12.1 Natural Convection
Natural convection or free convection is a mechanism of heat transfer in which the fluid
motion is generated due to density difference in the fluid occurring due to temperature

gradients.

1.12.2 Forced Convection

Forced convection is a mechanism in which the fluid motion results from external surface
forces such as fan or pumps. Forced convection may happen by natural means. For example,
fluid radiator, heating and cooling of parts of the body by blood circulation are famihar

examples of forced convection.

1.12.3 Mixed Convection
Mixed convection occurs when natural convection and forced convection mechanisms act
together to transfer heat. This is also defined as situations where both pressure forces and

buoyant forces interact.

1.13  Non-dimensional Quantities

The following numbers are the commen non-dimensional numbers used in fluid mechanics.

1.13.1 Nusselt Number (Nu)
A dimensionless parameter defined as the ratio of convection heat transfer to fluid conduction

heat transfer under the same conditions. Mathematically

_ Convectiveheat transfer _ AL
Y Conductiveheattransfer &

Nu

where A is the convective heat transfer coefficient of the flow, L is the characteristic length

and k is the thermal conductivity of the fluid.
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In contrast to the definition given above, average Nusselt number and local Nusselt number

are defined by taking the length to be the distance from the surface boundary to the local
point of interest. i.e.

Nu;=-’3ﬁ.
k

The mean or average Nusselt number is obtained by integrating the expression over the range

of interest, such as

— 14
Nu =E£Nu(y)@.

1.13.2 Rayleigh Number (Ra)

The Rayleigh number for a fluid is a dimensionless number associated with buoyancy driven
flow. When the Rayleigh number is below the critical value for that fiuid, heat transfer is
primarily in the form of conduction; when it exceeds the critical value, heat transfer is
primarily in the form of convection. The magnitude of the Rayleigh number is a good
indicator as to whether the natural convection boundary layer is laminar or turbulent.

Mathematically, it is the product of Grashof number Gr and the Prandil number Pr,
je. Ra=GrPr.

1.13.3 Prandtl Number (Pr)

The Prandtl number is another dimensionless number defined as the ratio of momentum

diffusivity (kinematic viscosity) to thermal diffusivity. Mathematically, it can be defined as:

viscousdiffusionrate ¢, K
thermal diffusionrate & ~

pr=Y-
[7)

where v be the kinematic viscosity, @ be the thermal diffusivity, x be the dynamic

viscosity, k be the thermal conductivity and ¢, be the specific heat.

1.14 Momentum Equation

Linear momentum equation for fluids are developed due to Newton's

second law which states that sum of all forces must equal the time rate

of change of the momentum, Y F =d(mv)/d:. This is easy to apply

in particle mechanics but for fluids, it gets more complex due to the Arbitrary Volume

7



Chapter-1
control volume (and not individual particles). The change of momentum will have two parts,
momentum inside the control volume, and momentum passing through the surface. This

concept can be written as
0
Y F= 5J'w,oVafV +| Vov.ndd,

where V is the velocity vector, » is the outward unit normal vector, and ZF represents the

sum of all forces (body and surface forces) applied to the control volume.

1.15 Thermal Conductivity

Thermal conductivity is a material property which describes the ability to conduct heat. More
appropriately, it is defined as the quantity of heat transmitted through 2 unit thickness of a
material in a direction normal to a surface of unit area due to a unit temperature gradient

under steady state conditions. Its unit is #/(mK) in the SI system.

1.16 Thermal Diffusivity
In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by the
product of density and specific heat capacity at constant pressure. Mathematically, it is
denoted by a and defined as

k
a=—,

Pe,
where & be thermal conductivity, p be density and ¢, be the specific heat capacity.

1.17 No Slip Condition

The fluid has zero velocity at the boundary of solid with witch it is in contact. It occurs due to
the strong force of attraction between the fluid particles and solid particles (Adhesive Forces),

such condition of viscous fluids is known as no slip condition.
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Fundamental of the Finite Element Method

The aim of this chapter is to discuss the procedure involved in using the finite element
method to solve any partial differential equation subject to the boundary conditions in two
dimensional space [3, 4]. The two and three dimensional finite elements used in discretization
process of the geometry, shape functions w.r.t different number of nodes, calculation of
element stiffness and global stiffness matrices, implementation of boundary conditions and
post-processing are discussed in reasonable detail. Moreover, two examples solved with
detail calculations are provided in this chapter for better understanding the implementation of

finite element method [4].

2.1 Intreduction

Many physical phenomena occurring in cngineering and daily life can be modeled in terms of
partial differential equations subject to some boundary conditions. It is observed that solution
of these equations for arbitrary domain is impossible by using classical analytical methods. In
this situation, the finite element method (FEM) is an extremely rehable computation
technique used to obtain approximate solution of these partial differential equations. For this
purpose, converting the given domain into a number of non-overlapping small pieces
connected by nodes is required. These small pieces are called finite elements. Then the
governing equations for every element are solved to get numerical solution within each
clement. At last, combining the solutions at all such clements gives the approximate solution
for entire domain of given problem. The accuracy of the computed solution may be achieved
by increasing the number of elements as well as number of nodes.

In order to obtain the solution over the domain, methods of residuals are used, which are

explained as follows.

2.2 Methods of Weighted Residual
The method of weighted residual can be described in its generality by assuming the partial

differential equation in operator form as,

D(u)=g in Q, 2.1)
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where D is linear/non-lincar differential operator acting on dependent variable », g is a given
function and Q is a two dimensional domain.
In this method, the solution of equation (2.1} can be approximated by linear combination of

basis/shape functions taken from linearly independent sct as follows

i=Yb4. 22)

o
In which, 's are unknown constants required to determine and 8, are linearly independent
basis functions. Substitution of the approximate solution # into the left hand side of
Eq. (2.1), the result D(#), in general, is not equal to specified function g due to the fact that
solution (2.2) is not the exact solution of the problem (2.1). The difference D(#)-g=0, is

known as the residual of the approximation, and is

R=D(d#)-g= D[ibiﬂ] -g=#0 (2.3)

To evaluate unknown constants b,, choose w;ight functions W; , set the weighted average of
the residual over the problem domain to zero, i.e.

[F @RIy =0, (=L23,....m). o4
In general, the cho?ce of the weight functions I; are not the same as the basis function ¢, but
they (W;) are exactly equal the number of unknown constants 5. Following methods of
weighted residual are classified in terms of the choice of weight function Wi
1. Collocation Method,
2. Least Squares Method,
3. Galerkin Method and

4. Method of moments
Each of these has been explained below.

2.2.1 Collocation Method
In this method, the Dirac Delta function §(x—x,) is used as weight function, defined as
follow

4:'5(J.c-x,)={1 > FEA 2.5)

0, otherwise

10
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where the point x, must be within domain €, the unknown constants b, can be evaluated by

setting the weighted average of the residual in Eq. (2.4) equal to zero at specific points in the

domain. That is

[8(x-x)R(x.B)dx=0  or R(x,5)=0. (2.6)

[43

2.2.2 Least Squares Method
In this method, the integral of square of residual is minimized by setting its derivative with

respect to parameters b, equal to zero. That is

o OR
— | R¥(%,6)dx=0 = |R—dx=0,
% ;[ (x.5) i % @.7)
Comparison of above integral with Eq. (2.4) imply
aR
W =—-.
=% (2.8)

Therefore, the weight functions are just the derivatives of the residual with respect to the

unknown constants b, .

1.2.3 Galerkin Method
In Galerkin Method, the weight functions W, are chosen equal to basis functions ¢, i.e.
ot

FK:a_Q:é' (2.9)

2.24 Method of Moments

In the method of moments, weight functions are selected from the family of polynomials,
W=x, i=012..,n-1. (2.10)
In order to find the unknown constants b, through weighted average residual equations (2.4)

by choosing suitable weighted functions given in above method, it is required to integrate

Eq. (2.4) once analytically is called weak formulation, which is explained as below.

2.3  Weak Formulation

The differential equation along with boundary conditions of the given problem is referred as
strong form. These differential equations are difficult to solve due to presence of higher order

derivatives, and basis functions in this situation are required to be high order diffcrentiable

11
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and smooth. To avoid this cxertion, there is a need to remove or decrease the order of
differential equations by one through integration is known as weak formulations. It is further
noted that the manipulation of the problem in weak form is comparatively easy as that of
strong form. In Finite Element Method, the weighted average residual are required to

integrate over the finite elements obtained through discretization process in the domain.

2.4 Discretization and Element Mesh of the Domain

The process to divide the geometry or physical domain of the problem into finite number of
non-overlapping elements of any shape is known as discretization. The collection of finite
¢lements in a domain is called the finite element mesh of the domain.

The simple meshing of square geometry divided into triangular elements is shown in
Figure 2.1. 1t is important that the solution of the desired problem by using finite element

method tends to highly accurate by increasing the number of finite elements.

0.5

0 0.5 1

Figure 2.1: Meshing of square geometry in triangular elements

2.5 Types of Elements

Generally, straight-line segments are used as elements in one dimensional case, triangles,
rectangles or elements with algebraic curves are used in two dimensional case, and
tetrahedron or hexahedron shape of elements are used in three dimensions space. They are

explained in detail as follows

2,51 Line Segment Element

We divide the interval [a,8] in one dimensional space into non-overlapping subintervals
R =[x,x,],08i< N, with x,=a and x,,, =b. Bach interval [x,,x,,] is an element and

we represent it by (e¢) as shown in Figure 2.2,
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_.
a=Xo X o x Xia =Xy

Figure 2.2: Division of an interval inte line segment elements

2.5.2 Triangular Element

The region R in two dimensional space can be divided into triangular elements as shown in
Figure 2.3(a). Here each element is a triangle with nodes i, j, k numbered anticlockwise as
signified in Figure 2.3(b). We assume that the nodes of the region R are consecutively

numbered from 1 to N, Further, we denote the value of the function u(x,y) at the node i

(a) (b)
Figure 2.3: (a) Division of two-dimensional region into triangular elements and (b) Triangular

element with allocated nodes at its vertices

Moreover, each triangular element may be categorize by four noded, six noded and ten noded

tnangular element.

2.5.3 Rectangular Element
The simplest rectangular element has 4 nodes at the vertices with 1 degree of freedom per

node, as shown in Figure 2.4. The figure also shows the local node numbering system
(1, 2, 3, 4), the nodal coordinates {x°, ¥’} and the nodal degrees of freedom (dof) T° of local
node i. The local mumbering system usually starts from bottom left comer and is
counterclockwise. This is called as local notation. A physical problem is solved by using

4-node rectangular element and is explained in Appendix B for better and practical

understanding of finite element method.

13
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(xj,yf),T; 4 3 (x:’y;)’ :q

(¢)

0 ,y0), 1o UL 2] )T

Figure 2.4: Four Noded Rectangular Element

Rectangular element may further be categorized by eight noded, nine noded, twelve noded

and sixteen noded rectangular elements.

2.5.4 Quadrilateral Element
A general quadrilateral element (¢) with four nodes, one at each comner is shown in

Figure 2.5. The coordinates of the vertices at the node i of element ¢ 1s represented by

(xfsyr}‘ 4
Y )

<,y )

Figure 2.5: Quadrilateral Element

Likewise triangular and rectangular elements, quadrilateral element may also be occurred in

eight and twelve noded quadrilateral clements.

2.5.,5 <Curved Boundary Element

Any physical domain R in two dimensional space with curved boundaries as shown in Figure
2.6(a) is discretized by triangular elements as shown in Figure 2.6(b). If some of the
boundary dR of the domain R is curved, then we may either approximate it by a polygon and
use the triangle and quadrilaterals for discretization as shown in Figure 2.6(b) and 2.6(c) or

we use triangular elements with at least one curved side as shown in Figure 2.6(d).
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(x+.¥9 ey
4
3 aRr
x1y) y.4
1
[z ,72) 2

Figure 2.6 (d): Triangular Figure 2.6 {c): Division of domain & with polygon

Element with one curved side boundary dR
R
R
Figure 2.6 (a): Division of domain R Figure 2.6 (b): Division of domain R with
with curved-sided elements one curved side boundary 8R

2.6 Shape Functions

In finite element analysis, the model of continuous body is divided in finite elements
containing a many number of nodes, the shape of the body between these nodes is estimated
by functions, these functions are called shape functions. Moreover, shape function
interpolates the solution between the discrete values obtained at mesh nodes.

The characteristics of shape functions are

1. The shape function at any node has a value of 1 at that node and a value of

zexo at all other nodes, i.e.

ICRAE Y

2. The sum of all the shape functions, evaluated at any point must be unity, i.e.

ZN, (x,y)=1

15
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2.7 Local and Global Nodes of Element
Consider the following geometry containing four triangular elements represented by the
number 1, 2, 3 and 4, each one is defined by three nodes. Red colored numeric numbers
(1, 2. 3, 4, 5 and 6) located on the boundary, represent the global nodes. The alphabets
D, g and ¥ represented counter-clockwise at inner corner of each triangular element are local

node labels for respective element. as shown in Figure 2.7.

6
4
3.7 ]
5
r .'"r 4 '
N 3
1 2 \
Y
AN
i gl ’
1 2 4

Figure 2.7: Local & Global Nodes in triangular geometry

2.8 Local and Global Stiffness Matrices

The coefficient matrix obtasined from the weak form of given differential equation
corresponding to an element is referred as local stiffness matrix/element matrix. The
assembly of all local stiffness matrices using the equivalence between local and global nodes,

is termed as Global stiffness matrix. They both are square symmetric matrices.

Elerments 1 \

Global Nodes

Local Nodes

2 4
Figure 2.8: Triangular geometry allocated into twe elements, symbolize with local & global nodes

Consider the geometry consisting of two triangular elements as shown in Figure 2.8. To get
philosophy of subject topic. consider assumed values of local stiffness matrices

corresponding to each element as under:
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Element 1 Element 2
2 3 1 4 1 3
2(2 51 4 (2 5 1
3|0 4 5 1 lo 2 s
11 1 0 3l1 1 0

Assembly of above element matrices generates a global stiffness matrix as follow:

1 2 3 4

1 (04 ! +5 0
2| 1 2 5

3|51 0 40 1
4 \5 1 2

Italic numbers represent the entries of first element matrix and bold entries inside the above

matrix belong to second element matrix. Blank locations corresponds to where no entry is

allocated from both (elements) matrices, zero entry will be allotted there. Finally, the required

global matrix is obtained, which is

4160
1 250
6 0 4 1|
501 2

2.9 Solution procedure using FEM

To compute the solution of the problem by using finite element method, we undergo the

following steps:

-

Discretization of the domain into a set of finite elements,

Define an approximate solution of given differential equation over an element, such
defined solution must satisfy the given boundary conditions,

Define shape functions as per type of element per number of nodes.

Choose weight function through using methods of weighted residual.

Set up a weak formulation of given differential equation.

Evaluate the weak form of given differential equation for each element using given
boundary conditions, and obtain value of local stiffness matrix corresponding to cach

element.

17
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o Assemble all elementwise local stiffness matrices to generate global stiffness matrix.

e Solve the algebraic system of equations to get desired solution by using any
direct/indirect/iterative method.

s and post-processing (This final operation displays the solution to system equations in
tabular, graphical or pictorial form. Other meaningful quantities may be derived from the

solution and also displayed).

2.10 Examples

Examples with the implementation of FEM are given below for explanation of the method.

2.10.1 Problem. Solve the boundary value problem using Finite Element Method
Viu=-1, [|x|<]1, [y|<1
<t |y 1)
u=0, |x|=l, |y|=l

with 7= % by using three nodes 32 triangular elements as shown in Figure 2.9.

Solution. The solution of the boundary value problem satisfies the symmetry conditions,
u(=x,y)=u(x,y}, u(x,—y)=u(x,y), u(y,x) =u(x, y)

Therefore, we shall consider only one eighth of the square as shown in bold black patch of

M
R pemmm———- sfommmm e 1
[ 1 4 S ¥
1 ' - -
by F '
[ 1 - .
| ~ 1 . N H
“ . ~ '
1 ~ 1 - * ¥
i ~ 1 ’ b ¥
i ~ ' - »
H ~ P ~ '
! e oy
1 ~ et 2(
L A eonennnn = PERRR 3
1 I B
1 P
| e 1 ~
! + 1 A
1 - 1 -
i ,’ 1 hd
1 # 1 M
[ 1 .
Iy 1 ~
o s kY — > X
- T ] -
0 : ©,0 4 5. 3
[ s ] "
L 1 . N v S
1 ~ ! s ~ 1 + ]
| ~ 1 ¥ ~ 1 ’ 1
~ 1 - bl r ’ []
! b ~ -
i - L ~ v + ]
1 e L 1
1 S '," AN P ]
. i " T . M s - :
\ Ao e HAr-mmmre- =
\ e . FAE N ]
1 - 1 . LA “ ]
1 ¢ ! e , ] * L]
H ~ ' N - H ~ H
, A
' . 1 -~ + i N '
”
1 - ! ‘\ Fl t b )
* 1 b3
I [ - § . 1
1 s ' ~ 7 i v e
‘r ] |- ] A
________ i A iy Ry ——. ¥
W

Figure 2.9: Representation of elements with nodal points
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After discretizing, the length of each triangular element is }é (le h= % ). There are four

elements which are numbered 1, 2, 3 and 4. For given problem, the element functional is

=_H{[a“’] ( } Zu}ﬁaﬁf @12)

where superscript ¢ denotes an element with nodes i, 7 and £ marked in counterclockwise as

represented in Figure 2.10.

i s
Figure 2.10: Three Noded Triangular Element

[:2

aJ_ =0, i.e
aul

The element equation is

RN N W

We have value of u in terms of nodal variables (¢, c,, ¢; and c,),

u=cH{x,y)+c,Hy(x,p)+e;Hy(x,p), (2.14)

where H (x,); i=1,2,3 are shape functions for linear triangular element, which are given

below
H, =2LA[(,:c2y3 —x3,) (3~ » )5+ - %)y ], (2.15)
H = 2{4 [(x = 20) + (3 = )%+ (2 — %3 y]s (2.16)
Hy == (x50 )+ (= 3)x+ (5, =x)y]. @17)
The shape functions satisfy the following conditions
H;(xj.,yj)=5,.j={:] i:j and gH,—.l, (2.18)



where,
11 X W
A=§1 X5 yz.
1 x »

Chapter-2

Magnitude of A is equal to the area of the linear triangular element. However, its value is

positive if the element node numbering is in counter-clockwise direction and negative

otherwise. For the finite element computation, the element nodal sequence must be in the

same direction for every element in the domain.

First two terms on right side of integral (2.13) implies

oH,
3x
o, (@) o ||
(2 2 -

oH,
o

& &

xdy .

2.19)

Performing integration after substituting the shape functions, we obtained the following

matrix
kll klz kl3
[Ke]z ky kn ky
ks ksz ks
In which,
1
ky 21'2[(3‘3 ‘x:'.)2 +(; J’z)z]’
1
ky = a[(xs _xz)(xl _xs)"'(yz 'ys)(ys N )] =k,
1
ky=— (x; _xz)(xz —X )"'(J’z _J’a)()’1 ")’z)] =k,

44

ky = _1'[(x1
L=

(% -

ks, = 4A[

The element-wise local stiffness matrices are computed as follows:

_xa)z +()’3_}’1)2],
xa) ) (
l) +(.V1 ".Vz) ]

y])(y] =W )J =Ky s

20

(2.20)
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For 1% Element

{n.5)
A--‘l x2 yz ==,
I x »
[ 1 Y] 1
k. =2 1—12-1-(-—1 =—, 500 x
" _( ) 2 ] 2 :x.in 1 2((1’_';;}
- 2 3
k]2=2 (l—l)[l-l]‘l' l-]](l—lJ =_l=k2]1
i 2 \ 2 2 2 Figure 2.11: 1* element with allocated
- 1 ] {1 Local & Global Nodes
ko=2l(1-D1-=|+|=-1]| = -2 ||=0=K,,
5= )( 2J 2 )[2 2H !
'(l 2 1 2
kE,=2l|=-1| +|1-=| [=],
n 2 ( 2}
(1 1 11 1 1
k,=2||=-1]1-=|+[1-= [ === ||=-==k;,
"2 ( 2)[ 2][2 2)] 2
[ 2 b]
fo=of(1-) +(2-1) |-
2 2 2 2
Using matrix Eq. (2.20), we obtained local stiffness matrix for 1% element is
2 3 1
2 (05 -05 0
Kvh= 3|05 1 -05]. (2.21)

10 -05 05

For 2™ Element

2 2 {5.3)
a2 o2 - 253
2 2 2 2 3

1 2 1 2 (x. ) (. 3,)
ky=2[{0-= +[——0] =1 ®.0/1 2| .0
Co2) N2 4 5
(1)L 1 1 ; .
k=2l 0-=| =- 0) +| ==-0 (0 - 0) =——=k,, Figure 2,12: 2™ element with allocated
. 22 2 2 Local & Global Nodes
’ 1
k,=2l|==0]| +0|=—
=2 (3-0) o3
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We obtained element matrix for 2™ element is

4 5 2

4 (05 05 0

K%= g l05 1 -05
20 .05 05

For 3" Element

2

Ao ]t
k, =21%4)[1-%){0—%)(0-0)}=—%=k3,,
ks, =2-0+[%-0)2]=%,

k,=2[0+0]=0=k,,

(1Y 1
k33=2 [l"-z-] +0]=—2'.

We obtained local stiffness matrix for 3™ element is

5§ 6 2

5 1 05 -05
K= @6 |05 05 0
2 los 0 05

For 4™ Element
[ 2

k=2 (l—] +0 =l,
L 2 2

l—l [1—1]+0]=—1=k2, ,
2 2 2

L

2

-1 (l-—1)+0}=0=k3, ,

22
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(2.22)
(T h)
TR
3
LEA%N)
.00 e
o U] 2 2”’

Figure 2.13; 3" element with allocated

Local & Global Nodes
(2.23)
2 3
EN N pRITS |
LR Y [1%:4]
l
(5.n¥ 6

[(RV]

Figure 2.14: 4" element with allocated
Local & Global Nodes
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Thus, we obtained the following local stiffness matrix for 4" element is

6 3 2
6 (05 05 0
ko= 3|05 1 -05. (2.24)

2\0 -05 05

Now, the assembly of all local stiffness matrices using Egs. (2.21 to 2.24) by connecting the

elements corresponding to global nodes generate a global stiffness matrix as under:

1 2 3 4 5 6
1 /_0.5 0 0.5 0 0 0 )
2 0 0.5+0.5+0.5+0.5 -0.5-0.5 0 -0.5-0.5 0+0
3 -05 -0.5-0.5 1+1 0 0 -0.5
4 0 0 0 0.5 -0.5 0
5 - -0.5-0.5 0 0.5 1+1 -0.5
6 \_ 0 0+0 -0.5 0 -0.5 0.5+0.§/

After simplifying, we get the value of Eq. (2.19) as

05 0 05 0 0 0

o 2 -1 0 -1 0
r
oH, (oH,) o, 05 -1 2 0 0 -05
-H ( ] | Sty dody = . @29)
& | o 0 0 0 05 —05 0
0 -1 0 -05 2 -05
L0 0 05 0 05 1
Now, consider the third term on right side of Eq. (2.13)
1
—J]'szxay HH ddy = b = ? 11, (2.26)
1

where, A= Areaof Element = % .

Steps of simplification for result obtained in above Eq. (2.26) are explained in Appendix A.

23



Chapter-2

Using Eq. (2.26), the values corresponding to all four elements are

V2 14 s | 116
b}=21—41 3, b2=%15, b,=2i416, b= 1[3. 227)
1/1 1/2 12 1)2
Using Eq. (2.27), the assembly of element matrices generates the global assembled matrix, as
given below
140+0+031 1
1+1+1+41 t2 4
1 1+1 3 _ 1 2 (2.28)
24 1 4 24|1
1+1 5 2
L 1+l 6 2
Upon using Eqgs. (2.25, 2.28) into Eq. (2.13), we may write in compact form as
(05 0 05 0 0 0 Y %) 1
o 2 -l 0 -1 0 ||u, 4
-05 -1 2 0 0 05 u 1 2 ' (2.29)
0O 0 0 05 05 0 |lu | 241
0 -1 0 -05 2 —05/(|u 2
0O 0 05 ¢ =05 1 Ju) 2
The given boundary conditions give #, =0, =0, #,=0.

We incorporate these nodal values in matrix Eq. (2.29) by deleting the rows & columns

corresponding to u,, %, and «,, and obiain the following system of equations,

20 1\ : 4
0 05 05|, Y 1| (2.30)
-1 05 2 ){u 2

The solution of above system (2.30) yields w, =0.1875, u, =0.29167 and u, =0.20833,

which are the required values of # at globalnodes2, 4 and 5.

2.10.2 Problem. Compute the element equation for six noded triangular element for
Boundary Value Problem represent by Partial Differential Equation given in (2.31) using
Finite Element Method.
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Solution: Consider the partial differential equation

d( Ou o Ou

—p—|+—|p—|+r=0inR 2.3
ax[pax]_l_ay{pay] 2 n ( 1)
with Dirichlet condition

u=g(x,y) ondR, (2.32)

where p and » may be constants or functions of x and y only. The variational formulation of
differential equation (2.31) in term of the functional is reduced to simple minimizing problem

by assuming an approximate function (or approximate solution),

1 oY (ouY "
TR

where the boundary condition (2.32) is to be satisfied. We divide the domain R in six noded

triangular elements. The approximate solution %(x,y) for the whole domain R is

u(x,y) =fN“"¢‘” =fM =Ng, (2.34)

i=1

where M represents the number of the elements with K nodes in R, and N & ¢ are

N=[NN,..N].  d=[d ... 8]
The shape functions N; satisfy the following conditions

N (x,y), if(x,y)e(e),
N =< ! .
(%) {0 , otherwise (2.33)

and ¢ are the nodal values associated with the element(€). Substituting the approximate

solution from Eq. (2.34) into Eq. (2.33), we get

e=1 em]

1 M N . z MaN(e] . 2 M 9 e
A AT oo

Using Eq. (2.35), assume that Eq. (2.36) can be written in the form

J= ZJM , (2.37)
e=l
where
o Leel (AN OV (N9 Y L e
s ’=5H{p[ﬂ“] oo G| -aves ’}d"“ﬁ’ -
()
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is the contribution of the element (€) to the functional J. The conditions for minimization of
the functional J in Eq. (2.37) with respect to nodal values ¢,i=12,3..K give the

following system of equations

M {e)
g=Z§“-’r—_0 i=1,2,3..K
aqﬁr e=1 a¢
or
a  ¥asv
2 Zog >

Since J' depends on the nodal values associated with the element (¢} only. The equation
®
ag}(e)

gives the form for the other terms. Therefore, it is sufficient to explicitly consider the

=0 is called the element equation. Usuaily, it turns out that one term of the summation

contribution of a typical finite element (e) only. After differentiating Eq. (2.38) with respect

to ¢, we get the following element equation

0 © (@) @\ { sy .
;ce) -If {( = ] ( gx }+(ag; J [a;ry ]}&”—r(f\f‘e’) ]@MO. (2.40)

Thus, the element equation becomes

AC'gP —p* =0, (2.41)
where
aveY [ ane BN TNt
A(é‘)_ .
2 2 (2 e 2o
b =[] (v ey, (243)

and (N(” [NNNN NN]

Assume that the functions p and  are constants over each clement and are represented by p®

and ¥ respectively. K

U

i

&
-

i
Figure 2.15: Six Noded Triangular Element
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The piecewise approximate solution over the element {¢) may be assumed as
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=N, + Ny, + Nu, +Nu, + N, + Ny = NG, (2.44)
where
N{‘":[N‘. N,N, N, N, Nﬂ] and ¢ = [u ty U U, Uy u,,]r.
The shape functions N,, N,, N,, N,, N, and N, are defincd as
N.=2L-1, N,=4LL,
2 —
N,=2L-L, N,=4L1L,,
N, =20L-L, N, =4LL , (2.45)
where L, L; and L, ar¢ called Area Coordinates satisfy the following two properties
() L+L +L =1 and (2.46)
.. |
Gi) L, = G {g,+bx+cy), L, = G (a +thx+c y) L = 2&‘ — (@ +bx+oy)
in which
Q=X =X, b=y,~», ) =Xy~ X,
@ =X —X);5, by=y,-¥, C =X =X,
G =XY, =X ) by=y-» G =X =X, (2.47)
, 1 x
and A® =—[l x, y,j=Areaofeach triangular element . {2.48)
I x
The differentiation of N'® (L,,L ,»L,} wr.t xand y may be written as
oN‘© _oN“ oL , aN'® oL, | AN oL,
&x al, ax oL, ax 6L3 '
N« &N‘“ aL, N BLZ ON™ @ oL, 249
oy 6Ll 3y JL, By 6L3 oy’ (2.49)
where
a b oL, ¢ )
3x 2A(9) and E = 2A(e] 4 ! =1’ 2’3' (2.50)

For integration of polynomial terms in natural coordinates over the element (e}, we use the

following relation

H L,L‘L;)dmfv riste! 24

b r+s+r+2)'

27
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Now, consider further evaluation of Eq. (2.42),

aN, N,
e dy
oN, N,
FEY oy
oN, oN,
AM:J‘IW 3 [ﬂ N % ON., ONp %}. % [@ N, _3_3\; W, N, %]m@ .
Pl oo &« & o« & «l|a\y @ & & & o
3 ¥
/Y N,
ox 1,4
N, aN,

\ ox

4

(2.52)

Performing integration on first part of integral (2.52) by substituting the shape functions, we
get

(f N 3
ox
o,
&
N,
“ox |[ON., &N, ON, ON_ ON, ON
4, = ' o 2 |t 2.53
I{[<%[6x6x6x6x8xé‘x@ @53
A
o,
dx
aN,
N ox
or
( A, A, A, A4 h
All 12 13 14 15 A’]ﬁ
AZI A'ZZ AZJ A24 A?.S Azs
A = AI!-I A}Z Aﬁ A34 A’JS A3l5 (2 S 4)
Ay A Ay Au As Ag|
Ajl A52 A53 A54 ASS ASG
A\Sl A62 A63 A64 Aes A&G
In which,
AN, &N,
m[ o ax}brdy (2.55)
Consider

6N, _oN, oL, &N, 8L, aN, oL,
ox oL ox oL & ol &

=(4L, - 1)[ )-1—0-1—0 (using Eqgs. 2.45 and 2.46)
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By substituting above result, the integral (2.55) implies

4, =ﬂ[zb§;(16[,f +1—8L,.)]¢@

, {16][L2dmy+jj 1) huddy — sjj de@}

(e} (e} (&)

B {16( 2124 }m_g{(l!i)} (using Eq.(2.51))

Can?| T (2+2)! 1+2)!

b} 8AY_ B
"re) +A-
4A 3 3 4A
with the same contrast, the evaluation for other terms of matrix 4, are as follow,

4, = H[SN éN, }k &

(e)

oo

Le}

- % [[(4LLp +aLb, - L5, _Lb, Yixdy

()

Holg)oo5 0]
b, bb,
v oHE i
L L
E =ﬂ)[ (41,-1)— {(4,5}-1)%}}1:@
=#H (16L.L, —4L, - AL, +)dxdy
s COR ORI
{e}[a;: N, }u &
- HH(M -1)—} {%(L,,bj +Lb, )}]dxafy

(e)

= a—;ﬂ (4LLb, +ALLb, —Lb, —Lp, Jdxdy

29



Chapter-2

(jej}[{(zw —1) (4L - ]dxdy

i’b [f6LL, - 4L, AL, +1)dsdy

4o
(aN aN, }t "
=([}]H(4L,-—l)—‘}x E(LkbﬁL,.bk ) ]aﬁmj; :

=_ﬂ (4LL,b, +4Lb, - L,b, - L, )abxdly

(¢)

ool 5)-4(5)(5)

—5[5+&_£_b_&]_%_
Al3 3 3 3| 3a°
8N, N,

( }i"dy A’i? ]

An=ﬂ aNaN)dxdy

{2}

,.(J[H (Lb+Lb,) } {i(ijﬁL,b!)dedy

== j‘j (6212 + BIL: + 2bb L L, Yxdy
(e}

PRI~
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3 ox
e o
=l

(4B,2 = bL, +4b LL, b L, Yxdy

Hfa(2)4(2)- (2]

bb[lﬂz}“bb(é}” )" “’(%]]

|
b
=)
| ne— |
T,

bb b bb
Bl L/ S/ RN TS T
Al12 6 12 12 | 3aY” ! g

AN
Aﬁ'm( o o ]MV
- I[{-i—[l,b+Lb) 2 (az, - }ax@
i)
b,

Aﬂ(%LL ~bL,+4b L1, —b L Yxdy

Afu()(2)-(2)4L2]
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=0 jj (82L,L, +bbLL, +bb,LL, +bbL by
{e)

[52[3] "o [lzj“’b [lz) bf"’*[%ﬂ

_3[g b b b
All 12 12 6

2
(9N, oV,
4=l 5 }ﬁdy_ i

o)

ON. 6N bb
[ === — 4. =1
ﬂ\ax ax}“@ n=h

{2}

&N, &N,
=H O Ox ]dxaj)

(£}

ffate e o

=—ﬂ (1622 +1-8L, Jdxdy

(€

gl (o))
(6}\’ N, }i‘ "
_(ﬂ;[{ (4L, -1} {2(le;+LJb,,)}}ﬁaﬁz

= —-]‘J' (4b,L L, +4b,L; - b L, - b1 Yxcy
(<)

%[45[ ]+4b[ ) "(%J'b@‘ﬂ

1 2
= 3_‘5[@,,!:Ir +b2 +2bb, +bb ],
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Ay = %j} (16L,L, —AL, 4L, +1)dxdy

(e}

b bb,
:42[16(&)-4[5]_4@}&}
4A 12 3 3 124’

4, H(a , ON,

(&)

=Jf{{z—;—<%—1)}x B

=_H (4BL,L, +4b,LL, ~bl, ~b,L My
{e}

-2 (5)- (54 (5)()

=b,[b b b b] 0,
A

3 3
A“:E['[ N aN}id' Ay =

te=ff( S (N aN)dxcfy A= b + 20045

8N, ON, _bb
Ao= [l G5 ==

A44=H aN,, oN, }My

-} j} H%(L*bj + ijk)} x {%(Lkbj L, )}]dldy

_ % !]: (B2 + L +2b,b,L L, Yixdy

4 A A A 2
= E[bf(g}i‘bf [EJ‘szjb&(E)]: éz[b‘? +b§ +b_;bk:|’

{%(u; +Lb L% (4L, -1) ]dxa)»
=)

(46,2, -b,L, +4b,L L, ~b,L, Yy
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RANRARE,

= i[zb,b_: +b;bl + b|bk + b*z:l’

G AT
(5 & pt i
- (ST fetr= 0.
(22 Vi 4, -2
%= "Ajs__ﬁ’

(2)

A54=ﬂ &N, ON,, }jxdy_ -

{e)

-G B e

(¢)

gy} {henofes

:__J’J' (16Z; +1-8L, Jxdy

(e)

g [16(6]”_8[%}]:%’
[e)(aN &N, }My
oo
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A= z—* (4bL; +4b,L,L ~bL, ~b, L, Jxdy
(e)
SRORENORE
A 6 12 3 3
=b_k[zz+b_k_z_b_+g@,
A3 3 3 3 3A
ON_ON, bb
= —=— =A, =i
4, m[ax 2 i = 4= 22
N, N, 2
= L =A,=—I{bb +b'+2bb +bb
Aﬁ? (e][ax ax}i‘dy [ ' ]

ON, ON,
= ||| =—=—" = Ay = 2bb +bp, +bb, +b}
= [ G et = =55 200, + 0 b 2]
(22 gy -, e
A65_ (ax &}Ka‘—v Aiﬁ 3A,

=[] G ot

(e

s

=—j'J‘ (b2L: + b1 + 2bp, L L, Yixdy
(e)

- (552 3]

4[5 B bh,
=—| =+ 2+ =
Al6 6 6

Substituting all values in Eq. (2.54), we get

3%(55 +B +bb,).
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bz

45
bb

tid}
3A
bb

.

12A
0

1Y

122
b,

3A

bb

rs

34
2
E[bf +5 +bb |
b,
3A
1
E[bjb* + b7+ 25k, +5b, |

0

1 2
E[b,b‘ +b1+2bb, +bb, |

bb,

T12A

bb,
34
b

s
25,
3A
b b,

T12a
0

0

bb,
124

1
E[b;;i +b742bb +bp ] O

34 128

2r: . bb,
ﬂ[b’ +5] +b}b*] 3:_5
b &

34 4A

1 bh
-3—5[2b,b', +bb, +bb, + 5] ] E:f

Chapter-2
bb
3
!
E[b'b' +82+2bb, +bb,]

0
(2.56)

1
E[Zb.bj +b b, + b, + b} |

LS
3A

%{bﬁ +¥ +b,b,)

Using the same procedure as described above for the evaluation of A, value of second part in

integral (2.52) may be computed as shown in succeeding steps

(N,
Qy
N,
dy
aN,
4= E;"[aN av, oN, aN, 8N, oN,
ulloN Ny & & &y &y W
%
oN,
&
aN,
N\ ¥
ie
Ail AIZ AI3 AN- AIS Alﬁ‘\
Ay An Ay Ay Ay Ay
A — A3] A32 A33 A3-1- A35 A3-6
g A-u Au Ads A44 A«ts A46
Ay Ay Ay Ay A A
A Ay Ay A A A
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o & _E 0
4A 3A 12A
<<, 2ra2, 2 &g, L L
o SE[C' ey +e, ] 3 34 [c;c,( +e, + 200, + c_cj]
cc, ce, Cf €6
4 = 124 3A 4A 3A
¥ Fadtod 2
Ml il P b
1] —[c ¢+, +2cck+cc] 3 M[C,H} +C;Ck]
_Ea 0 5% &
12A 124 A
1
&b _Jg[qc* +c 2, "'C,C,J 0 E[QCICJ e+ +cf]

3A

Now, consider the evaluation of Eq. (2.43),

5 = ([r (N‘e} ) dedy = jj ![N, N, N, N, N, N]dm):

{e)

Consider the first term of above integral (2.60), we get

j‘j‘ PN, dedy = r[[(2L; - L) dedy (using(2.45))
(£) 1€}
- r[Z(%]— %] -0, (using(2.51))

_ 65
124

0

CJCl

€5

3a
o

14
&g,
34

Similarly, evaluation for other terms of integral (2.60) are as follow,

[fr™, dedy = r{[(4L L, )xdy = 41{"3]*;-5,

() ie) 3

([, sy = rf[ (222 - L, )atcdy=7 [(‘2}%]:0,

{e) {e

ng didy = Jj} (4L, L, ey = 4r [%] r%,
=t~ ) -
and

([, dicty = [ (4L, L) ey = 4,.[13}_,%_

() (&)

Using above all values in Eq. (2.60), we get
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5%
A

I ;
—az[c,q +¢ +, +c,cj:|

0
(2.59)

|
3_A[2C’C’ +e,0 T 06+ cf] .

ca
3A

%(cf e+, ]
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0
A
ey 0)
0 1
AlO
B = —r2 2.61
r3 | {2.61)
¥—
3 0
0 |1
A
r_
3

After substituting the values from Egs. (2.56, 2.59) in Eq. (2.52), we get the value of A® use
this value along with the value of #® from Eq. (2.61) in Eq. (2.41), we may be able to obtain

the solution of element equations.
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Effects of Thermal Boundary Conditions on Natural
Convection Flow within a Square Cavity

In this chapter, we revised the study of the effects of thermal boundary conditions on natural
convection inside a square cavity [5]. The modelling of the governing equation and boundary
conditions is presented. The governing equations are reduced to the non-dimensiona! form by
using dimensionless variables. The Galerkin finite element method is used to obtain the
solution of the goveming equations. For this purpose, the domain is discretized by using
triangular element and the shape functions are computed using quadratic triangular elements.
The complete procedure for non-lincar partial differential equations is described in detail
Results are computed for the wide range of parameters Ra = 10> -10°and Pr=0.7-10, and
presented graphically in terms of stream functions, temperature profile, local and average
nusselt numbers. The analysis is also made to discuss the effects of thermal boundary

conditions on natural convection flow.

y’v

Adiabatic Wall

xX,u

T, or (T, ~T)sin(® )+ T

Figure 3.1: Schematic diagram of the physical system
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3.1 Problem Description

Let us consider the laminar, steady flow of viscous fluid caused by the heated lower wall and
adiabatic upper wall inside the square cavity. It is assumed that the lower/bottom wall of cavity
is heated cither uniformly or non-uniformly, while two vertical right and left walls are
maintained at cool constant temperature. The physical domain in which the fluid is flowing is
shown in Figure 3.1. It is further assumed that all the fluid properties are constant except the

density of the fluid.

3.2 Mathematical Formulation

The flow model is based on the assumptions that the fluid is Newtonian and the body force
term in the momentum equation is temperature dependent. The Boussinesq approximation is
invoked for the fluid properties to relate density changes to temperature changes, and to couple
in this way, the temperature field to the flow ficld. The governing equations for natural

convection flow using conservation of mass, momentum and energy can be written as:

.y 3.1
ox Oy ’ G-
2 2z
LN 7 A R BN R (3.2)
ox Oy pox ot Oy
ov v 1 &p ov &
ua—x+\«’5=";5+[)[g+a-{}+gﬁ(r—1)g (33)
and
2 2
LA e e (3:4)
x oy ol &t

The assumed boundary conditions are
u(x,0)=u(x,L)=u(0,y)=u(l,y}=0,
v(x,00=v(x,L}y=v(0,y) =w(L,y)=0,

T(x,0)=T, or T(I,0)=(T},—I;)sin(-fifj+rc,

or, .. _ -
5(x,L) =0, T0,»)=TLy)=T, (3.5)

where x and y are the distances measured along the horizontal and vertical directions
respectively, » and v are the velocity components in the x- and y-directions respectively,
T denotes the temperature, v and a are the kinematic viscosity and the thermal diffusivity of
the fluid respectively, p is the pressure and p is the density, 7, and T, are the temperatures at
hot bottom wall and cold vertical walls respectively and L is the side of the square cavity.
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Upon using the following change of variables:

=£, Y“—'l, =£’ V;ﬁ’ 9=T_T;’
L L a a T.-T
2 T,-T.)DP
p:p_‘z,pr=£, Ra___gﬂ(,, 2") iy
pa «Q v (3.6)
the governing equations (3.1 — 3.4) reduce to non-dimensional form as follow:
@_‘_a_V: 0, 3.7
oX oY
2 2
vy P p| 2T, (3.8)
ax oY ox ox° oy
2 2
U%+V6+V=—€‘E+Pr 81»;+6_F: + RaPré, (3.9
X 9y oY ox* oy
2 2
U-QE+V@-=69+89 (3.10)

ax oYy ax? ar’
with boundary conditions
UX,00=UX,)=U(0,Y)=U{LT)=0,
VX,00=V{X,)}=V(0,N=V{,1)=0,
&X,00=1 or &(X,0)=sin(zX),

g—g(k’,l)ﬂ, 6(0,Y)=6(1,Y)=0. 3.11)

Here X and Y are dimensionless coordinates along horizontal and vertical directions
respectively, U and ¥ are dimensionless velocity components in the X- and Y-directions
respectively, @ is the dimensionless temperature, P is the dimensionless pressure, Ra and Pr

are Rayleigh and Prandtl numbers respectively.

3.3 Numerical Computations

To investigate the problem, it is required to solve the partial differential equations (3.7 - 3.10)
subject to the boundary conditions (3.11). For this, the physical domain is discretize into finite
number of triangular elements by using computation software MATLAB with built-in
commands. Shape functions over triangular elements are generated by using 6-nodes, and they
are quadratic for every elements. The meshing of given geometry yiclds 1312 six noded
triangular elements with 2705 number of nodes.

The momentum and energy equations (3.8 — 3.10) are solved using the Galerkin finite element
method. The continuity equation (3.7) is used as a constraint due to mass conservation and we

obtained the pressure distribution as given by Basak and Ayappa [6]. In other words, to solve
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equations (3.8 — 3.10), we use the penalty finite ¢lement method, where the pressure P is
eliminated by a penalty parameter ¥ and the incompressibility criteria given by Eq. (3.7)
(see Reddy [3]) which results in:

ou aVJ
P=—y| —4-—
X oY

(3.12)
The continuity equations (3.7) is automatically satisfied for large values of y . Typical values

of v vyield consistent solutions are 107.

After using Eq. (3.12), the momentum equations (3.8) and (3.9) reduce to:

au aU o (ol ov U AU
UtV —Z=p—| —+— |+ Pr| 5+ | (3.13)
ax 6}’ aX oxX oY ax? oy

2 2
v, Va_y=?zi[a—U+a—V]+Pr 0V o9V 1+ RaPro. (3.14)
ax 9y ‘aY\8x ov ) Gl &

We solve Eqgs. (3.10), (3.13) and (3.14) to get solution of given physical problem. These three
equations consist of highest order derivative terms, and the Eqs. (3.13) and (3.14) include the
non-linear terms. The non-linearity in these equations make the problem difficult to solve. To
deal with this difficulty, the iterative method such as Newton Raphson has been used. Whereas
to remove the highest order derivative terms, the weak form of Eqs. (3.10), (3.13) and (3.14) is
developed by using weak formulation.

We assume the approximated solution of velocity components U & V" and temperature 6, as

given below
N N N

U=YUg(X.Y), V=) V4(X.Y) and =3 64, (X,Y) for 0sX,¥Y<1, (315
k=1 k=l k=]

where N is the total number of nodes, ¢, is the vector of shape functions, U, and V, are the

vectors of nodal values of wvelocity components, and 6, is the vector of nodal values of

temperature. Using Galerkin’s Method, the weight functions for all approximated functions

(3.15) is same as follow

de dau
WE}:E:@, W, =

For the evaluation of unknown nodal variables U/, , ¥, and 6,, the integral of weighted residual

av
W ="""=
= é . (3.16)

over the problem domain is set to zero. Thus, in the light of approximated functions (3.15) and

weight function (3.16), the weak form of Egs. (3.10), (3.13) and (3.14) are expressed as

a8, o6 &8
i‘é*[ X )dm J¢'(6‘X2 aYZJdXdY o
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- e—

1y ¢, 5@ 34, 24" + 9% 28 _
(@(qﬁ; i) +6,(8.V. }9dXdY (ax e ]9,,4Xd}f

08, 00
—— ds
(ﬁ[”a = "oy J@ =0, (3.17)

r

o , oV U v 2U |, 8U
v, \dXdY—P a4y =0,
Jf‘( ax o ’VM‘[ (8X+6Y) r{]ﬁ(a "t ar }X

1y ¢, % 38, 94, g, 99,
a2 e 35}

g, 84, 09, 04, aUu aU)
+P £ 0k Tk Tk Y] dXdY - P e S g ds =0 '
rs{[ax ox or or ) * ”f m oyt | (3.18)

av U ov &V v
J¢.¢( __"'V_ I¢tl: [aX 3YJ]M Pr[ﬂ’k(a}(: a_-?}MdY-

RaPr [g,0dXdY =0,
Q

am am 34, 04, 24, 94,
ﬂm 8,'U +¢,(8.V, }bdXdY Ha aX}/dXd [ o }VdX Y}

o4, 04, | 04 24 Y% i
+Pr£[é_xt ax a; oy saxdy - R"P"H’* (46, Jaxay - P”Jr’ T ax "v'é? $,ds=0.

(3.19)

Reduced form of integrals obtained in Eqs. (3.17 — 3.19) are appended in Appendix A with
brief steps of simplification. To avoid the complication of solving non-linear terms in
Eqgs. (3.18) and (3.19), Newton-Raphson method is used to compute non-linear coefficient
matrices. which are function of unknown velocity components (Reddy [3]). Using Galerkin
finite element method, the following nonlinear residual equations for Egs. (3.17), (3.18) and

(3.19) respectively, are being made over domain €,

RY=3U,[ l[ZU ﬂ] Z'f}ﬁ a"’*}mxan YU, | 22 gxay

= roX oX

24, 24, 24, 94, 39, 98,
Z Llax YdX'dY} Pr;U,,jﬂ[aX 3y ay] dXdy, (3.20)
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R® = iv[ [[ZU @J ZV@ a¢*}¢dXdY ZU jﬁ%%%ﬂdh

k=1

L1 04 04, 04, 54, , 8¢ aﬂ
9, 9% y [ | 2850 0000 | gy
;V"In oY oY dXdY}rPr,‘Z,.: *Iu{ax 2 v oY

RaPr jﬂ[im dXdY,
k=1

R(a} Zajl:[zukﬂ]aﬂ ZV@";& a@:\@dXdY ZQJ a¢,%+%%

ax ax oY oY
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(3.21)

[,

(3.22)

In order to solve above residual cquations, quadratic triangular elements with six nodes are

used as interpolation functions. Thus, the approximate functions for velocity components U

and ¥, and temperature 8 cotresponding to six noded triangular element (¢) may be expressed

as

6 P ¢
U=YUA(X.1)=UYG", V=3Ha(XT)=V"¢" md 6=2.64(X.1)=67¢".
=t k=t k=1

The interpolations or shape functions (4, ) as already defined in Chapter-2 are

(4] [LEL-D]

P, L,(2L,-1)
2L, -1

¢& = ¢3 = Lg( Lj ) N for k =1,2,---,6:

6| | 4LL
2 AL, L,
_¢6_ L 4L,L J
Consider,
LCL -=2L% -1,
=L+ L' -1
= L2+ L, -D)

=L+ L(-L,~L)  usingEq. (2.46)
L2L -1 =L’ -LL,- L1,
Similarly, we may write
1,2L, ~1) =L’ ~ L, ~ LL,,
L(2L-D=L'-LL,-LL,

(3.23)

(3.24)

(3.25)

(3.26)
(3.27)



Using above results (3.25) - (3.27), the matrix (3.24) implies,

(¢ [L2-LL,-LL, | [1 0 0 -1 0
¢ | |L2-LL,-LL| |0 1 0 -1 -l
¢=¢5=132-AL3-L2L3= o 0 1 0 -l
“ e aLL, 0 0 ¢ 4 0
3 4L,L, 0 0 0 0 4
L4 aL, | lo o0 0 0 O
where,
1 0 0 -1 0 -1] [ 12 ]
0 1 0 -1 -1 0 L}
1 -1 -1 2
2 A awd (RI=|
o 0 0 4 0 O LL,
0 0 0 0 4 0 LL,
(0 0 0 0 0 4] | L,L, |
Differentiate Eq. (3.28) w.r.t X, we get
L
- 21 (5
L’ by
i 2L,( )
2
b
%_—.[A]f. L =[A] ﬂg(“"') (A ——
(e)
x &x IL;L[: 11(2_33)”2(230) 2A
b by
|_L3Ll, Q(F)‘{-L}(Mm)
4 by
L"s(m)”«(:ﬁ)_
ie.
(25, 0 0]
0 25 0
b [0 B s
x 29| b, b O 2_ ’
0 b B
-
where,
(25, 0 0]
0 2b 0 L
1|0 0 25
Bl=— d = .
Bl=sa@ls, 5 o) ™ L£] i‘j
0 b b
L5 O L

45

a1 L} ]
0 le
-1 Lf
0| LL,
0| Lt
4 |LLL,

2L 4,

2L.b,

2L.b,
Lb,+ L,
Lb +Lb,

=[4][R],

| L+ Lb, |
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(3.28)

(3.29)



Similarly, differentiating Eq. (3.28) wr.t p, we get

[2¢, 0 O
0 2¢ 0
B¢, 1|0 0 2¢ L
oA L, |=1ACIL).
dy 2A9 ¢, ¢ 0
0 ¢ o L
la 0 ¢
where,
[2¢, 0 O]
0 2 O

1 |0 0 Z2¢

Cl=—=

(€] 2090 ¢, ¢ O
0 ¢ o
o O ¢

Consider the product of [L] with [L] as

Chapter-3

(3.30)

(3.31)

Using formula (2.51), the integration of Eq. (3.31) over the clement () generates result as

Sle S ol

L L} Li, LL,
LILY =\ L L, L, L]={LL L' LL|
L, LL LL, L’
follow
L} LL LL
H=[(LNLYdA= ||LL LB Ll A=
“\LL LL L
- A‘z 1 1
H:L[L][L]TdA=I-2-l 2 1)
. 112

The product of [R] and [R]" yields result

le

Lzz
L}
LL,
LL,
|_L3L1

[RI(RY = (£ 4} L} LL Ll

A A
12 12
& A
T 12
A 4
17 &
L],

-

(3.32)
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ie.
oL} L LL LLL LML
Lt Lo L'L LL Liy LLL
A 2r 2 4 2 3 L

pL LL LLE DL LBL BLL
gL, LI, LL LLL LI LLL
1L, LOL LI ELL LLLE L5 |

With the help of formula (2.51), following result may be obtained in response of integrating

matrix (3.33) over the element (¢) as follows

LoopL L pL LLl L
WL L4 LM} LL LL LGL
0= [[RIRT dA= | oL 4 LLb LL LB |
o BL L LLL LL LEL LLL
PLi, DL LL LRL EE  LLLE
| 1L LGL LL LBLL LLL L5

J

2 2 22 o o (12 2 2 3 1 3

1% .23% n 1?_2% %% 2 2 12 2 3 3 1

24 2A 24 28 24 248

28 28 28 z2a . f S Al 2 12 1 3 3
= [[RURT dA=|1® 1# 30 & 120 103 34
0= JIRNRTAS=\ 5 o 2 2 2 m|"3e0]3 3 1 2 1 1| O

AR B 1 3 3 1 2 1

&R B W W el 31 b2

Let us consider the integral F, (used in succeeding phases of computation) comprising
combination of identified matrices over the element (¢), which results a matrix of order 6x3.
Since its calculations are too lengthy and complicated, such steps are given in
Appendix A with brief detail. Simplified form is written in the following form

F,= L[ARR’A’UU)da

-}

60u,-8u,-8u,+24u,-8u, +24u, 12u,-8u,+2u,-16u,-24u,-Bu, 12u,+2u,-8u,-8a, -24u,-16u,
-Bu, +120,+2u,-16u, -8u,-24u, -8u,+60u,-8u, +24u,+24u-8u, 2u,+12u, -Bu,-Bu, -16u,-24y,
_2x A -Bu+2u,+12u,-24u, -Bu,-16u, 2u,-8u,+12u,-24u,-16u,-8u, -Bu,-8u,+60u,-8u, +24u,+24u,

T 5040 | 24u,-16u,-24u,+192u, +64u+96u,  -16u,+24u,-24u,+1920,+96u,+64u, -Bu,-8u,-8u, +64u, +64u +64u,

-8u,-8u,-8u, +64u, +64u +64u,  -24u,+24u,-16u,+96u,+192u,+64u, -24u,-16u,+240,+64u,+192u,+96u,

| 24u,-24u,-16u,+96u, +64u, +192u, -8u,-8u,-8u, +64u, +64u,+64u,  -16m,-24u,+24u, +64u,+96u,+192u, |
(3.35)
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Similarly, consider the integral F, = I (ARRTATVLT)dA, generates the matrix of order 6x3.

alfl

Its steps of simplification are described in Appendix A. Final step after integrating and
simplifying F,, is given below

F,= [ (ARRTATVL)dA
k2

60v,-8v,-Bv,+24v -8v + 24v, 12v,-8v,+2v,-16v,-24v -8y, 12v,+2v,-Bv;-Bv -24v -16v,
8v, +12v,+2v,-16v -Bv, - 24v, v, +60v,-8v, +24v +24v,-8v, 2v,+12v,-8v,-8v,-16v, - 24v,
2x A By, ¥2v,+12v,-24v,-Bv,-16v 2y, -8v,+12v,-24v,-16v,-8v, -8v,-8v, +60v,-8v +24v +24v,

5040 | 24v,-16v,-24v,+192v +64v +906v, -16v,+24v,-24v,+192v, +96v, +64v, -8v,-8v, -8v, H64v +Hodv +odv

Bv,-8v,-8v,+64v, +6dv +64v, 24V, +24v,-16v 406V, +102v +6dv, 24V -16v,+24v +64v F192v,+96v,

| 24v,-24v,-16v,196v,+64v, +192v, -8v,-8v,-8v, H04v, +64v, +64v, -16v,-24v, +24v +64v +06v +192v, |
(3.36)

T T
where U=[u, u, u, u, us 4] . V=[w v » v % v] are the vectors of

nodal values of velocity components associated with six noded triangular element (). Using

approximate functions (3.23), the integrals (3.20 - 3.22) over the element domain Q' may be

written as

et oo e oo
[6{2&‘” 5¢[e1 ]U‘“‘dXdY ]_ [64&‘” [3;5;; ]I'J {c)drd}r] .

te) tcl T (¢) ()
8¢ (84 , 20 [a¢ UUMMY’

GX aY (3.37)

[ ¢[e] ¢( ]} JU(e]dXdY‘l‘ J‘[ ¢(e) [ag; J JV(e)d‘](d}'
o9 (04 04”04 |« o {40V ge
Pré[[ aX [ = } r ( = ) ]V‘ ’dX’dY—RaPré[[é( ’((¢‘ ) 6 ’]}iXdY.

il
RY = [@e: 4 U(e})(aﬁf’ V“’]dXdY+ j[¢{e}( ¢te) V(e)){%:]]r V“’}i)(dY-q-

(3.38)
and
, NZRCEINTE: LA of{ o\ o\ 98"
R3“= ¢{) ¢() U{) [_] gll}ixdy [{ﬁ“ (&) V{e} [ ] e{e) dY
Jr[ (( ) ) ax +i (('3* ) ) ¥
a¢(e1(6¢(e} T a;é“’ aé(e} 7 .
J[ A\ X ] tor [ % J }9( dy. (3.39)
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The matrix form of above integrals (3.37 — 3.39) may be obtained by using Egs. (3.28 — 3.36).
First consider Eg. (3.37) as follows

R® = { J(arR" ATUL ):iXa’Y}BTATU“” + { r{ (ARRT 4V }an’Y} CTATUC +

[v4

;{AB{I (LLT)dXd}’}B’A’U‘” + AB{ ) (LLT]dXdY} CTATV("} +

o 0

Pr[AB{I (LLT)dXdY} BTA" + AC{ { (LLT)deY}CTA’}U“’

93 g
or
R = EB AU + F,C" AU +y[ ABHB" AU + ABHCT AV |+
Pr(ABHB" A" + ACHC" A" }U'"” (3.40)
Now Eq. (3.38) implies

Ry = { [(4rRT 4TI )dXdY}BrATU“’ + {J‘ (ARRZ ATVOLT )dXdY} CTATU +
o

e

r[AC{ i (Lf)dmf} BTAUY +AC{£(LL’]¢£¥0’Y}C7A’V"’]+

1
Pr[AB{ f(er )an’Y} BTA + AC{ [ (LLT)dXdY}CTATJV“’ - RaPr[A { f (RRT)dXdY}A’E?“’}
af a "
or
RO =FB AU +F,CTATU + y[ ACHB" AU + ACHCT AV |+
Pr(ABHB" A + ACHCT A7)V - RaPr(40476) (3.41)

Similarly, Eq. (3.39) in matrix form may be written as

RO = { f (ARR"ATU(f’LT)dXdY} B'ATG + {j (ARRTAVOL }inY}CTATS‘” +

o oy

[AB{ f (LLT)dXdY}B‘"AT + AC{ f(er )dXdY}CTAT Jam

o o
oF
RO =FB AT + F,CT 470" +(ABHB™ A" + ACHC" 47 )6, (3.42)
Let’s start with the differentiation of Eq. (3.40) w.r.t 4, ;i=1,2,...,6, we get a square matrix
of order 6.
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[axP0n R0 a®an R’y AT R |
oy Buy £ u, Bug Bu,
R R v KTl R ariY 2y
By Py duny Buy Bu B
© RN RGN RGN HAOGH aReEn RN
Jo= OR™ T e ETS £ Pug Brg (3.43)
" oy ROMAH RO ROE)  RIWD  RIAD  RVMUD '
6::, &-’: ﬁ.‘; aul 6"5 a“b
KOG RNy RO RNSD R®IGL UGN
By Buy B, B, B &g
RGO R BTG R SR8,
| duy duy = ey g
Similarly, derivative of R (using Eq. (3.40)) w.rt v, and 4, ;i=12,....6 isas under,
[ R ePan R eRV0h AT ROy ]
& &, E% &, B P,
wOH RO RV Ran  aETan  RrUeN
i ) & B &y &g
o | FIBD ROeD WOBN RGN RUAL  RON
Jo= OR, _| T ™ By EY v . (3.44)
12 o, RO ROW) WD) ROWD I ROGD '
&y (5 Y &y Oy g
sy RUEGH  RIGN T RUEG) SRS
L Dy & v, ovg o,
P CR I (R ol RV R LT CRV I o G I A CRY
L é"l B vy dvy g v _
Cax0n) ROan  RALh  RPun  sYan 0 |
38, 28, 30, a6, 8, 78,
®Oh  aen TR RN ROeD  RTeD
) B 26, 26, 26, 28,
- | HGD  #OeD OGN TN G eRTen
JR B, o0 28, T za. 28,
Jyy == ‘ ’ ' (3.45)
13 66', R4y ROW M@ AR T B (4.1) ’
&6, ] a6, &6, &0 26
RO ROGD  ROEH AN RIGD  ROBD
a8 28, a6, 28, a4, &8,
RGN eRe R e R ARG R (6,1)
26, 28, 28, &6, 38, 26, |

In a similar manner, derivative of R and R{” w.r.t nodal variables (x ,,,8, for i=12,...,6)

may be obtained, thus we have

a R;e) a R2(e) a Rée)
J =—, = ’ J = ’
n auf b a'Vf 23 a 6'
3R SR R
g =R, K _on 3.46
n au' 2 av* 3 6 6, ( )

Thus by using Egs. (3.43 — 3.46), the jacobian J of the element {¢) may be obtained as
formulated below, which is a square matrix of order 18
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Jll ‘fIZ JI3
JO=|J, Jp Tl (3.47)
J3l J32 J33

Moreover, the residue R associated with element (e) is evaluated using Eqs. (3.40 - 3.42),
which is a column vector of residuals (R,“", R, R,”) generates a matrix of order 18x1, i.e
R®
R =R (3.48)

R
Since there are total 1312 elements, similar procedure will be followed for each element to get

their respective jacobian and residuve. Also there are 18 nodal variables (u,,v,.0, ;i=12,..,6)

in all, corresponding to cach element. In other words, three nodal variables u, v and & are
associated with each node. Thus, the assembly of jacobian matrices correspond to each element
generate a global stiffness matrix W (say) of order 8115x<8115. Whereas, combining residue
matrices related to each element, an assembled matrix N (say) of order 81151 is obtained.

Incorporate the given boundary conditions in above mentioned global stiffness matrices W and
N, we get a matrices ¥ and Z (say) respectively, using these two matrices, approximated
solution may be obtained by Newton Raphson method. In this context, Newton Raphson

method defines as,

P = 2.~ (RIR(P,), (3.49)
where J is the jacobian matrix, R shows the residual matrix, p denotes the unknown vectors,
» is the iterative index at previous step and n+1 is index for unknown variable.

In present case, we have J(p,)=Y(p,) & R(p,) = Z(p,)- Thus Eq. (3.49) may be written as

P =P, - Y (PIZ(D,)- (3.50)

To proceed further, first assume the initial guess

u’ 0.25
Dy = v:] =i 0.25 s i=12,...,2705.
&° 0.01

t

Substituting initial guess in Eq. (3.50), the iteration generates the p,, then use this value in
Eq. (3.50), p, will be obtained after the execution of second iteration. The process of
successive iteration is comtinued until the maximum difference of the varables «,v, &

between two consecutive terms became less than 107 is achieved.
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3.3.1 Evaluation of Stream Function

The stream function  can be defined in term of the velocity vectors U/and V' as follows

v  awma v=- (3.51)
oY oX
Using Eq. (3.51), following result may be obtained

2
dy Sy _ou_ov (52

ax? &y’ 8y oxX

Define approximate function for stream function y , we have

w = Zm (X,Y) =999 (3.53)

Using approximate functions for U,V and w from Egs. (3.23 and 3.53), weak form of
differential Eq. (3.52) is

@ a4\ @ [ As0Y o\ Y
J’ 0p” [ O¢ +6¢ o¢ W(e}dXdY=J' —g o¢ U 4 ¢ o¢ e Uxdy .
LA SRR § oY \ oY o oY oxX
(3.54)
Before transforming the above integral in matrix form, the product of R and L shall be

evaluated as follows

[ L] [ LI 4L |
L} oL Lo L
P4 o LL L
RILY =1 (L L L] oLoLn L (3.55)
LL, LLL, LL LL
L Ll L LfLs LL,L, L}‘Lg i

Using formula (2.51), the integral of matrix (3.55) over the element (¢) gives result as under

Li Lsz LfLa ] 6 2 2

L, L Ll 2 6 2

r L LI L 2xAl2 2 6
G=A:[J[R][L] dé.:‘l[l Af ulg S .56

LLL, LiLs LzLi 1 2 2

| LL LLL, L | 21 2,

Now, transform the integral (3.54) in matrix form, we get

[(ABLIB™ A7 + ACLL'CT A )y dXdY = [(-4RICTATU® + ARU BT ATV Jaxay,
0o

0
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or
["‘B{I (e }""“'Y}Buf +AC{I (LLpxay }CTA’}J"" =-4 {f (RL’")iXdr}c’ATU“’ +A{I(RL’}1XdY}BrATV“',
or i ! i g
[ABHB A" + ACHC™ A" ly'? = ~AGCT A'U'” + AGB' ATV,
[M]y* =[N], (3.57)

(<} (e} {e)
" Wy Wy

values of stream function associated with six noded triangular element (e).

[M]= ABHB™ AT + ACHC™ 4" and [N]=-4GC T ATU® + 4GBT ATV are matrices of order

where y' =[p” w!® w7 is column vector of order 6x1 of nodal

6x6 and 6x1 respectively.
The values of velocity components {/ and ¥ obtained from Eq. (3.50) are used in Eq. (3.57)

for estimation of strcam function. Stream functions (;y:” 1i=1,2,..,6 ) coresponding to

element (¢) is evaluated by solving system of Egs. (3.57). Same procedure for the evaluation of
stream functions is adopted for 1312 elements. At the end, assembly of all those elements is
made to get system of equations, and their solution give the stream functions at cach node.
Graphs of stream function are represented in sections (3.5 and 3.6) for different cases of

uniform and non-uniform heating.

3.3.2 Evaluation of Nusselt Number

Nusselt number is a dimensionless parameter used in calculations of heat transfer between a

moving fluid and a solid body. Here, local Nusselt number is evaluated at the bottom wall

denoted by Nu,, and Nu, is a local Nusselt number estimated at the side wall. Formulation for
both are presented below

6¢;, - _%g %
29 and Nu, Ze - (3.58)

Consider the evaluation of Nusselt number Nu, at each node of a six noded triangular

element (¢) by using Eq. (3.58) and transforming such expression in matrix form, we have

¢ ¢, 0
(Ne,) " ==Y, -{%. (3.59)
k=i
Matrix form of above expression becomes
¢ 0
(Nub)ﬂz_(gfe,)ra%: (9@1) ACL,,, i=1,2,...6. (3.60)
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where [ (i=12,..,6) is a vector of area coordinates (L,,Lz,L,] as defined earlier, and

gives distinct value for each node (i) at point (x,,y,) of an element (), as follows

L a +bx +¢y, ’ . ‘
_ 1 Note. (x,,7,) is a point corresponding
L(l)_ L| = © a+bx +oy |, —
i to node ‘1°.

L! k1) a + blxl + =4

L a,+bx, +¢y, ' _ '
Ly=|L| = a, + by, + 6,3, Note. (x,,y,) is a point corresponding

} 271 '

to node ‘2°.
2 a,+bx, + ¢y,

Thus Eq. (3.60) may be written as

(

e _ _ (
(Neg) (
(

Same procedure is followed for other elements for calculation of Nusselt number at their
nodes. Our interest is to acquire values of Nusselt number only at those nodes which lie at the
bottom wall. In current investigation, there are 41 nodes which lie at the bottom wall. Thus, an
assembled matrix of local Nusselt number at bottom wall is obtained of order 41x1.

On the similar line, the computation of local Nusselt number Nu, at the side wall may be made.

Using Eq. (3.58), value of Nu, corresponding to six noded triangular element (€) may be

written as

(V)" = —gﬂ % = -(@M)T% = _(9"’)T ABL,, i=12,...6. (3.61)

or (Nu,)" =-
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In present analysis, there are 41 number of nodes at side wall of square cavity on which local
Nusselt number is being evaluated. Therefore, an assemble matrix of local Nusselt number at

side wall is obtained of order 21x1.

3.4 Results and Discussion

The geometry of given problem consists of 1312 quadratic triangular elements with 2705
number of nodes. Numerical investigation for wide range of parameters Ra =10’ - 10° and
Py =0.7—10 have been made with uniform and non-uniform heated bottom wall, keeping cool
the vertical walls and insulated top wall. In such numerical computation, a problem occurs to
evaluate the temperature at the comer nodes of the domain due to two different ternperatures
on the adjacent walls. The suitable technique to overcome such difficulty is that average value
of temperatures on two adjacent walls is assumed at comer nodes whereas the values of other
nodes lie on the walls are taken equal to respective wall temperature.

The special benefit on calculation of local Nusselt number at vertical and bottom walls is made

by using finite element method due to the basis function used to calculate the heat flux.

3.5 Effects of Rayleigh number when the bottom wall is under the

influence of uniform heating

The stream function and isotherm contours have been illustrated for different values of
Ra=10°-10° and Pr=0.7—10 when the bottom wall is uniformly heated. Since the vertical
walls are cooled, which results the fluids rise up from middle portion of botiom wall and flow
down along the two vertical walls making two symmetric rolls with clockwise and anti-
clockwise circulation in the cavity. The stream function has very low magnitude at Ra =10’
and initially the heat transfer is due to conduction. During conduction dominant heat transfer,
the temperature contours for & =0.1 occur symmetrically near the side walls of the square
cavity. The other temperature contours with 82 0.2 being as a smooth curves span the whole
enclosure and are generally observed symmetric to the vertical center line. The temperature
contours shown in Figure 3.2 Temains invariant up to Ra <5x10°.

For Rayleigh number Ra=5x 10%, the durable circulation occurs near the central regimes and
subsequently, the temperature contour with &=0.2 starts getting shift towards the side wall

and break into two symmetric contour lines as shown in Figure 3.3. Existence of significant
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Figure 3.2: Contour plots for uniform bottom heating, &(.X,0) =1, with Pr = 0.7 and Ra = 10°. Clockwise
and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Figure 3.3: Contour plots for uniform bottom heating, &(X,0)=1, with Pr = 0.7 and Ra=5x10".
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Figure 3.4: Contour plots for uniform bottom heating, 9(X,0y=1, with Pr=0.7 and Ra =10". Clockwise
and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Stream Function, Temperature, &
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Figure 3.5: Contour plots for uniform bottom heating, @(X,0) =1, with £ = 10 and Ra = 10°, Clockwise
and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

10

convection is also presented in other temperature contour lines which start geiting deformed
and pushed towards the top plate.

As Rayleigh number increases to 10°, the buoyancy driven circulation inside the cavity also
increases as seen from the greater magnitudes of the stream functions as shown in Figure 3.4.

The circulations are greater near the center and least at the wall due to no slip boundary

conditions. Consequently, at Ra =10°, the temperature gradients near both the bottom and side
walls tend to be significant leading to the development of a thermal boundary layer. Figure 3.2
shows that the thermal boundary layer develops in approximately 80% of the cavity for

Ra = 10° whereas for Ra =10, the isotherms presented in Figure 3.4 indicate that, the thermal

boundary layer develops almost throughout the entire cavity.

The values of stream function and isotherms in the cavity increases with the increasing of Pr
from 0.7 to 10, comparison is illustrated in Figures 3.4 and 3.5. The greater circulation near the
central regime of each half distributes greater heat, resulting in greater temperature near the
central symmetric vertical plane as shown in Figure 3.5. It may be noted that the temperature
varies within 0.4-0.5 for Pr = 0.7 (Figure 3.4) near the central core regime at the top half of the
enclosure whereas the temperature varies within 0.5-0.6 for Pr = 10 as seen in Figure 3.3. Due

to greater circulation at Pr=10, the zone of stratification of temperature at the central

symmetric line is reduced.
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3.6 Effects of Rayleigh number when the bottom wall is under the
influence of non-uniform heating
Stream function contours and isotherms are shown in Figures 3.6 — 3.8 for Ra =10 —10° and

Pr=0.7—10 when the bottom wall is non-uniformly heated. As seen carlier, uniform heating
of the bottom wall causes a finite discontinuity in Dirichlet type boundary conditions for the
temperature distribution at the edges of the bottom wall. In contrast, the non-uniform heating
removes the singularities at the edges of the bottom wall and provides a smooth temperature

distribution in the entire cavity. Due to the non-uniform heating of the bottom wall for
Ra=10° and Pr=07, thermal boundary layer develops only over 60% of the cavity as
shown in Figure 3.6, which is small in magnitude as compared to that of the

uniform heating case. The conduction dominant heat transfer mode is observed up to

Stream Function, Temperature, &
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Figure 3.6: Contour plots for non-uniform bottom heating, &(.x,0} =sin(#.X), with Pr= 0.7 and Ra=10".
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Figure 3.7: Contour plots for non-uniform bottom heating, §(.X,0) =sin{r.X), with Pr = 0.7 and Ro =10".
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Figure 3.8: Contour plots for non-uniform bottom heating, 9(X,0) =sin{z.X), With Pr = 10 and Ra=10".
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Ra=2x10* which is consistent with that of uniform heating case, where the critical Rayleigh
number is around 5000. It may be noted that the temperature at the bottom wall is non-uniform
and a2 maximum temperature difference occurs at the center.

At Ra =10°, the circulation pattern is qualitatively similar to that of the uniform heating case
as shown in Figure 3.7. Due to non-uniform heated bottom wall, the heating rate near the wall
is generally minimum which induces less buoyancy resulting in lower thermal gradient
throughout the domain. The uniformity in temperature distribution and least temperature
gradient are still observed at the central core regime within the top half of the domain. The
lower buoyancy effect also leads to a large zone of stratification of temperature at the vertical
line of symmetry as shown in Figure 3.7. The effect of Prandtl number is also pronounced for
Ra =10 as seen in Figure 3.8, where the greater circulation causes more heat to be distributed
in the central regime. However, as compared to that of uniform heating cases, the values of
temperature contours are lower near the central and top portion of the enclosure for non-
uniform heating. The temperature contours are highly dense near the bottom wall which may

indicate a lower heating rate at the top as well as central regions of the enclosure.

3.7 Heat Transfer Rates — Local and Average Nusselt Numbers

Figure 3.9 shows the effects of Ra and Pr on the local Nusselt numbers at the bottom MNu,
and side wall Nu_ . For uniform heating of the bottom wall, the heat transfer rate Nu, is very

high at the edges of the bottom wall due to the discontinuities present in the temperature
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boundary conditions at the edges. Tt reduces towards the center of the bottom wall with the
minimum vahie at the center as shown in Figure 3.9(a). On the contrary, for Ra = 10° with
non-uniformly heated bottom wall, Nu, increases from zero at both the edges of the bottom
wall towards the center with its maximum value their. Further at Ra =10°, non-uniform

heating produces a sinusoidal type of local heat transfer rate with minimum values at the edges

as well as at the center of the bottom wall. The physical reason for this type of behavior is due

to the higher values of the stream function (i.e. high flow rate) for Ra =10° in the middle of

Side Wall
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Pr=(,7, Ra=1e5
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Figure 3.9: Varation of local Nusselt number with distance (2) at the bottom wall (b) at the side wall for uniform
heating (—) and non-uniform heating (- - -).

the first and second half of the cavity. As Pr increases from 0.7 to 10, the local Nusselt number

at the bottom wall Nu, increases slightly as seen in Figure 3.9(a). It may be noted that for all
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values of Prandtl Pr and Rayleigh number Ra, non-uniform heating enhances the heat transfer
at the central regime only. The temperature contours diverge from the comer points toward the
central vertical line for uniform heating, and therefore local Nusselt number is a monotonically
decreasing function with distance. In contrast, for non-uniform heating, the temperature
contours are compressed around the intermediate zones between corners and the vertical line of
symmetry, and local Nusselt number is maximum at around X = 0.3 and 0.7. Figurc 3.9(b)

iltustrates the heat transfer rate at the side wall. The local Nusselt number at side wall Nu,

decreases with distance at the cold side wall for Ra=10’, Pr=0.7 for both uniform and non-
uniform heating. It may be noted that the heat transfer rate initially decreases and later

increases with distance for Ra=10° with Pr=0.7 and 10. At higher Rayleigh numbers, the

significant circulation has been observed which can be seen in Figures 3.4, 3.5, 3.7 and 3.8
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Figure 3.10: Variation of average Nusselt number with Rayleigh number for uniform heating [(a) and ()] and
non-uniform heating {(¢) and (d)] with Pr = 0.7, (—} and Pr = 10; (- - -). The insets show the log—log plot of
average Nusselt number versus Rayleigh number for convection dominant regimes.
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results in highly dense contours at the top portion of the side walls and these dense temperature
contours are in contrast with the conduction dominant cases as seen in Figures 3.2 and 3.6.
Further, it is observed that the temperature contours are compressed towards the side walls
away from the corner points at the bottom. Therefore, the heat fluxes are enhanced at the
regions away from the bottom corner points. The heat transfer rates are qualitatively similar,
but reduced for non-uniform heating of bottom wall as compared to uniform heating.
The overall effect on the heat transfer rates are shown in Figure 3.10(a)-(d), wherc the
distributions of the average Nusselt number of bottom and side walls respectively, are plotted
versus the logarithmic Rayleigh number. Figures 10(2) and (b) (cases a and b) illustrate
uniform heating and Figures 10(c) and (d) {cases ¢ and d) illustrate non-uniform heating. For
all these cases, it is observed that average Nusselt numbers for both the bottom and side walls
remain constant up to Ra= 5000 for uniform heating and up to Ra=2x 10" for non-uniform
heating. Hence, dominant heat conduction mode corresponding to larger range of Rayleigh
numbers produces overall lower heat transfer rates against non-uniform heating. The insets
show the log—log plot for average Nusselt number versus Rayleigh number for convection
dominant regimes. The log-log linear plot is obtained with more than 20 data sct. A least
square curve is fitted and the overall error is within 1%. The following correlations are
obtained for cases a, b, ¢ and d as follows:
Cases aand b: Uniform heating ( Ra = 5000)
Nu, = 2Nu,

=1.6219Ra*"*, Pr=07

=1.2238Ra""", Pr=10

Cases cand d:  Non-Uniform heating (Ra >2x10")
Nu, =2Nu,

=0.2939Ra>, Pr=07

=1.2238Ra**, Pr=10

3.8 Conclusions

The prime objective of this chapter is to reinvestigate the effect of Dirichlet boundary
conditions on the flow and heat transfer characteristics due to natural convection within a
square enclosure studied by T. Basak et al [5]. The penalty finite element method helps to
obtain smooth solutions in terms of stream functions and isotherm contours for wide ranges of

parameters Pr and Ra with uniform and non-uniform heating of the bottom wall. It has been
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demonstrated that the formation of boundary layers for both the heating cases occurs. It is also
observed that thermal boundary layer develops over approximately 80% of the cavity for
uniform heating, whereas the boundary layer is approximately 60% for non-uniform heating
when Ra=10". The heat transfer rate is very high at the edges of the bottom wall and

decreases to a minimum value at the center due to uniform heating which is consistent with the
lower heat transfer rate at the edges due to non-uniform heating for Re = 10°. The conduction
dominant heat transfer modes occurs at Ra < 5x10° during uniform heating of bottom wall

whereas it occurs at Ra <2x10* for non-uniform heating.

At the onset of convection dominant mode, the temperature contour lines get compressed
toward the side walls and they tend to get deformed towards the upward direction. During
Ra =10°, the thermal boundary layer develops near the bottom and side walls, and the central
regime near the top surface has least temperature gradient for both uniform and non-uniform
heating. The local Nusselt numbers at the bottom and side walls represent various interesting
heating features. The local Nusselt number at the bottom wall is least at the center for uniform
heating and there are two minimum heat transfer zones at the center and comer points for non-
uniform heating. The non-uniform heating exhibits greater heat transfer rates at the center of
the bottom wall than that with uniform heating for all Rayleigh numbers, The local Nusselt
number at the side wall is found to decrease with distance for conduction dominant heat
transfer whereas due to highly dense contour lines near the top portion of the side wall, the
local Nusselt number is found to increase for both uniform and non-uniform heating cases. The
average Nusselt number indicates overall lower heat transfer rates for mon-uniform heating.
The average Nusselt number is found to follow a power law variation with Rayleigh number

for convection dominant regimes.
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A1 Calculation of integral ° =[[Hady; =123
(e)
According to problem (2.10.1), the shape functions for linear triangular element {e) arc

defined as

1
H = ﬂ[(xzys _xayz)"'(yz _ya)x"'(x} _xz))’] s

1
H, =7 (3 - x) + (¥, -y)x+(x, —xa)y] ,

1
A= ﬂ[(xa}’z -50) "‘(}’1 —yz)x+ (x, -2, )}’1
Without generality, above shape functions may simply be written as (as illustrated in Eq. 2.46)
H=L, H=L and H,=1L,
Therefore, given integral becomes
() _ T
v =|{[H, H, H,] dxdy (A1)
(e}
Consider the first term of above integral
A .
[ axdy= [ Lidsdy = 3 (usingEq. 2.51)
(&) (e)
Similarly, values for other two terms of integral (A.1) are
A :
[jH.dxdy = [ Losay=~ (using Eq. 2.51)

(e} (e} 3

jj Hdxdy= [ Liddy = (using Eq. 2.51)
()

(e}

U | >

Using above values in integral (A.1), we get

%)
b*“)=%=31,
% 1

In problem (2.10.1), Ais represented by 4.
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A.2 Evaluation of integral F, = I (ARRTATULT)dA
alel

F= [(4RR" A UL }ds

alnt

1 0 0 -1 0 -§[EL 1 00 0 0 0]y
0 1 6 -1 -1 of|z? o L 0 0 0 Ofw
0 0 t 0 -1 Az, 001 0 0 0f
= L} L L : L]|da
3'.[1 o ¢ 0 4 0 0]|LL [L' b L bk L*L‘] -1 -1 ¢ a4 0 0|4, (& L y|
o 0 0 0 4 oflre 0 -1 -1 0 4 0lua
0o 0 0 0 0 4)LL] 10 -0 0 4

With the help of computational software program Mathematica 8, the product of matrices

written above gives a single matrix of order 6x3, that is

F, E, E,
Fl,l F2.2 FI.!
E., E, E
F={le 5 F |94 (A2)
Al 4.1 4.2 43
Fﬁ.l F5,2 FS.B-
Fé,l Fs.z Fﬁj
where,

F,=L(@i@;-LL,-LL)- LL,L}-LL,-LL)-LL(Li-LL,-LLm,
+(-LL,(2-LL,-L,L)+I3(L -LL,-LL,)-L,Ly(Li - L,L, -LLy ),
+(-LL,(L}-LL,-L.L,)-L,.L(L{-LL,-LL)+ (L} -LL,-LL)u,
+4L,Ly(I} -L,L, -L,Lju, +4L,L, (L] -L L, -LL)u, + 4L L, (L -LL,-LLu,),

F,=L (L -LL,-LLy)- LL,{2-LL,-LLy)-LL,(L-LL;-LL ),
+ (‘Lle(Lzl - Lle - LILS) + Lzz(Lzl - Lle - LIL3) - Lst(Lﬁ - Lle - LlLs))uz
+(LL,(@*-LL,-LL,)-L,L(L}-LL,-LL,)+L{L]-LL,-LL)u,
+4L L (2 -LL,-LL)u, +4L,L (L7 -L L, -LLu, + 4LL (L -LL,-LLu,),

F,=L,((Lj(L}-LL,-LLy)-LLy(Li-LL,-LLy)- LL,3-LL,-LL)n,
+ ('Lle(Lz; - Lle - L1L3) + Lzz(sz = Lle - L1L3) - Lst(L% - L1L2 - L1L3))u2
+(LL,(-LL,-LL,)-LLy(L}-LL,-LL)+ LX2-LL,-L.L)u,
+4L,L,(L%-LL,-LLu, +4L,L (L7 -L L, -L,L)u,+ 4L L(L:-LL,-LLuy),

E,= LI((L:; (-LL,+ Lzz -LLs)- LL,(-LL, + Lzz -L,L;)- LL,(LL, + Lzz - LoLs ),
+(-L,L,(-LL, +I3-L, L) + L(LL, + L3 -L,L) - LL,(-L,L, + L; - L,Ly ),
+(L,L,(-LL, +13-L,L,)-LLy(-L,L, + L5 - LL) + L5 (-LL, + L -L,L,)u,
+4LL,(-LL, +1% -L,Lu, +4L,L,(-LL, + L} -LLyJug + 4L L, (-L.L, + L% -L,L)uy),
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F:,z = Lz ((L2I ('Lle + LZ: - LzLa) - LlLl('L1L2 + L22 - L2L3) - LlL:l.('LlL: + Lzz = LzLa))ul
+ ('Lle(‘Lle + Lzz = LzLa) + Lzz ('LIL: + Lzz - L:Ls) - LzLa('Lle + Lzz - LzLa))uz
+ ('L1L3 (‘Lle + Lzz ‘Lst) - LzLa('Lle + L22 - Lst) + Li('Lle + Lzz - L2L3))“3
+4LL,(-LL, +1%-L,L)u, +4L,L,(-LL, + 12 -L,L)us +4LL,(-L L, +L; -L,L,)u,),
Fz,a = Ls((L:; (“Lle + Lzz - Lst) - Lle(‘Lle + Lzz - Lst) - L1L3('L1L2 + Lzz - Lst ))ul
+ (‘Lle('Lle + Lz;» -L,Ly)+ Lzz (LL, +Ll;. - Lst) - LzLa('Lle + Lzz -L,Ly)u,
+(LL,(LL,+13-L,L)-LL(LL,+L}-LL)+L5(-LL, +L] -L,L)u,
+4LL,(-LL,+L;-L,L)u, +4L,L,(-L L, + L:-LLu,+4LL,(-LL,+ L2 -L,L)u),
E,=L(L(LL,-L,L, +I12)-L,L,(-LL, -L,L, +15)-L,L,(-L,L,-L,L, + L)y,
+(-L,L,(-LL, -L,L, + L)) + Ly(-L,L, - L,L, + L})-L,Ly(-L,L,-L,L,+ L)),
+(-L,Ly(-L,L; - L,L, + 13} -L,Ly(-L,L, -L,L, + L}) + Ly(L,L,-L,L, + L),
+4LL,(-L.L, - L,L, +L2)u, +4L,Ly(-L,L; - LL, + Lyjus +4L,Ly(-L L, -L,L, + LX),
Fa,z = Lz((LZ;('LILa - L:Ls + Lza) - Lle('L1L3 - LaLs + Lzs) - L1L3('L1L3 - LzLa + Li))u]
+(-LL,(L,L,-L,L,+12)+L5(-L,L, -L,L, +L3)-L,Lo(-L,L; -L,L, + L),
+(-LL,(-LL,-L,.L,+L%)-L,L,(-LL,-L,L,+ L2y +LA(-LL, -L,L, + L3 ),
+4LL,(-L.L, -L,L, + 2, +4L,L,(-L,L,-L,L, + Lu, +4LL,(LL,-L,L, + L3)u,),
Fs,a = Ls((Lzl('LlLs - Lst + Lzs) - L1Lz('L1L3 = LzLa + Lzs) - LILI! ('LlLa - Lst + Lza ))u]
+(L,L,(LL,-LL, +L3)+L5(-L,L,-L,L;+ })-L,L,(LL,-LL,+ L2)u,
+ ('L1L3('L1L3 - LzLa + Lz;) - LzLa('LlLa, ’LzLa + Ll;) + L.‘;(-LIL3 - LzLa + Lza))ua
+ 4L1L2 ('Ll L; - LzLa + Li;)u-t + 4]-'21'3(‘]-‘1]-'3 - L2L3 + Lz;)us + 4L1L3(‘L1L3 - LzLa + Lza)ua) s
F,, =L ((4LL,- 4212 -4DL,L, )y, +(4ALL, +4L, L - ALILZL
+(4ALLL, -4LIAL, +4L L, +16 1LY u, + 16 L L3 L,u, +16LiL, Lo,
E,, =L,((4UL, - 412 - 4LL,Lu, +(4LL; +4L.L, -4L L,
+(AL2L,L, - 4L 1AL, + 4L, L, 12 u, +16 L% u, + 16 L L u, +16L1L,L,u,),
F,=L, ({(4CL, - 4UL% - 4UL,L ), +(4L2[2 +4L L, - 4L L L,
+(4L2L,L, -4LI2L, +4L,L, 13 u, + 16 i u, + 16 L i L u, + 16L°L L),
E, =L,(4UL,L, ~4LI2L, -4L,L,I2 ), + (4L, +415L, - 7 4 B
+ (AL L,I2 - 41213 +4L,)u, +16LL2L,u, +16 L3L3u, +16L,L,L3u,),
E,,=L,(4LL,L, - 4LI2L,-4LL, L2, +(4L L, + 4L, 421 ),
+(ALL,I2 - 41312 + 41,15 )u, + 16 L I2Lu, +16 L3150, +16L L, Louy),
E, =L,(@4LiL,L; -4L,L’L, - AL L2, + (4L, +4lL, - 41112,
+(-4L,L,12 - 41312 + 41,13 u, + 16 L L3 L u, +16 L3 5u, +16L L. Luy),
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F,, =L,((4LL, -4LL,L, - L3, +(ALL,L, + 4LL2L,-4LL,L5)u,
+(ALL2 - 4L L,12 + 4L 3, +16 3L, Ly, +16L,L, Ui, +16L7L%u,),
F,, = L((4L, - 4L L, -415L3 ju, + (-4LIL,L, + 4L 2L, -4L LI,
£ (A2 - 4LL,I2 +4L,13 ), +163L,Lyu, +16L,L,Lug +16LiL%u,),
and
F,, =L (4L, - 4LIL,L, - 4L ), + (4L2L,L, +4L, 5L, - 4L L, L2,
4 (ALL2 - 4L L +4L L, + 16 2L, Lou, + 16 L1, 3, +16L,L3u,)
Substitute above values in Eq. (A.2) and then integrate using formula (2.51), resulting the
Eq. (3.35).

Following mathematical code of Matheratica § has been used for execution of above
results,

al={x2 y3-x3 y2); a2=(x3 yl-x1 y3); al3=(xl y2-x2 yl¥;

bl={y2-y3}; b2=(y3-y1); b3=(yl-v2};

cl=(x3-x2); c2={x1-x3); c3=(x2-x}1);
a={{1,0,0,-1,0,—1},{0,1,0,-1,-1,0},{0.0,1,0,—1,-1},{0,0,0,4,0,0},
{0,0,0,0,4,0},(0,0,0,0,0,4}}:

at=Transposelal;

r={{L1"Z2},{L2*2),{L3"2},{Ll 12}, 403 L2}, (L1 L3}, rt=Transpose[r];
u={{ul}, {u2}, (u3}, (us}, {usl, {uél}; h={{L1},{L2},{L3}}; ht=Transpose(h]:
Fl=(a.r.rt.at.u.ht);

F1[[2,1)}: {(*this command 1is used to get result of an element located at
second row and first column of matrix F1*)

Dimensions(Fl]; (*gives dimension of matrix Fl i.e 6x3¥)

MatrixForm[F1]

A3 Evaluation of integral 7, = [ (4RR A7V )dA

ntel
F,= [{ARR' ATV )db
aln
10 0 -1 0 -1[Lr] (1 0 0 0 0 0]fv]
0 1 0 -1 1 0L 01 0 0 0 0ffwn
0 0 1 0 -1 -Lf|L|r,s ,2 ;2 0 0 1L ¢ 0 0]y
= L) dA
N_,ooo-taouq[[’ ? I“L‘l’ll’l’u"]—i-lod,oov,[gl"l’]
90 0 0 0 4 O0[ILL 0 -1 -1 0 4 0ffwn
(0 0 0 0 0 4] LL] -1 0 -1 ¢ 0 4[lv]

For evaluation and simplification of above integral, similar procedure as described n A.2
may be followed, just replace velocity component u by v whereas remaining terms will be

unchanged.
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A4  Simplification of integral | ¢k( gﬁ +V_
4]

Solution.

08 o8 a?e]!
U— dY =0
k*( ax+ M(az ar’?

3’6 32
ax:’ 31’2

| 20\ o4 20 . 6
Since. k
inee (¢* 6X) ax ox P ax

2 (4,20 2.2
Yax ) ax ax

Consider J‘;é,‘( ]dXdY

¢* 3X2 Tax

Taking area integral on both sides, we get

8 (, a6 ¢, 96
—| ¢ — |aXdY - { 2= —dxa¥
I e aX2 £ax[¢* 8X) )

Appendix A

Converting area integral I ( ae]dX'dY into line integral, implies that

0 7l7} 20
—| ¢, — |aXxd¥ = —n, |ds
iaX(‘ﬁ* aX) ?(‘ﬁ* ax ™ }
Using above relation, Eq. (A.4) implies
N 06 o¢, 06
M 5 d}’—t’)rf)(cﬁka—an)ds IaX aXdXdY

Similarly,

24, 00
fe& ayzd’de gﬁ[qm )ds Jay iy

Addition of Eqs. (A.5) and (A.6) generates the following result

Using integral (A.?) Eq. (A.3) reduces to following form

6:9 ég, 06 09, 06
O e |

Using approximated functions (3.15), above integral becomes

68

2 2
J.ﬁii 3_92_'_3_62 dXdY=—J‘(a¢* i 6¢* 69]dXd (ﬁ(nt o8 —+ ggjﬁds
5 \oX* ar ax ax 8y oy ax

oY

— +y g )¢de =0

29 az
j é, [axz o }mr 0

(A3)

(Ad)

(A.5)

(A.6)

(A7)
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r Vo8 ; a-;é;}g ( ot 24" 9%, a¢;]
g (9 U, +é. (8. Y, AXdY + +—= 6,dxdY
i(( ) ( )Y £8X6X ax ax
- (J:)(nr jji +n, ]gﬁ,(a!s 0

A.5 Evaluate the following integral

jm (
Solution.

Consider

55

am[au 3V] Ny (aU
axlax ar) ™ ax

oA Gl
‘ax\ax oy “lax or)| oxl\ax

Taking area integral on both sides, we get

dY - }/J.é,([ {2§+Z:J}ﬂdlf PM[

U 2U
d dY=0 (A
ox? aY}“ (A.8)

6VJ
oY

aV]
+_
5) 4

Mi[@Jrg_'Jdm:j [aU av} a@(av L
1" ax\ax oy Jax|™\ex oy ox  ov

a@ 8U

o¢, OV

oUu oV ol aU oV
dYy=\\— dy ——dXdY —dXdY
I h aX(aX aY}"X aX aX ayﬂdx Jox ax !ax 8Y (A.9)
eu oV
C i i —+— | HXdY into line i I
onverting area integral I [‘é*[ax po ﬂdX into line integral, we get
6U ﬁV au 8V
—_ Y _
[@ % a}, }ix gﬁﬂ ) (A.10)
Using integral (A.10) in Eq. (A.9), implies that
4 6(60’ aV}dX cﬁﬁ(a{; aV] " ds— 2, 8U oy Iaég ¥ xar
5 6X\oX oY X 40X X oX oY
By Eq. (3.7), v ﬁ_ﬂ therefore above integral becomes
ax a4y
ou oV o¢, oU o¢, OV
dY = —| =+ —dXdY — | > —dXdY
M [ax % ;[EBX ax Jax oY (A1
Using Eq. (A.8), we may write
oUu ol o¢, oU a¢,( aU) [ al J
| — +— = dXd .
£¢ [a,&” " a)”] I( ax ax Tar oy ST (f ax T oy s (A.12)
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Using Eqs. (A.11) & (A.12), Eq. (A.8) becomes

M( Y, aU dY+yj(%a—U+%§K)dXdY+Prj(a¢*aU a"*aU)dXdY
lax ax " ax oy ax ax | oY oY

oU
—Pr(]?(n‘\, Fval Ejﬁds =0
Approximated functions (3.15) reduces to above integral in following form
2 Of, O 0@, o¢,’ o¢, o¢,’
U )=+ Y, —" dXdY + —LL k¥ dXdY + || =22 . dXaY
£[¢k(¢i .k) ax ¢k(¢k k) ¢ ?’;[ ax ox It i ax oy 1*

)
opr[[ P20 O8O ey p@(n\a%,, o a0
MWAX X 8y oY oX

A.6 Compute the integral

ov eV U ev &y
—tV— - -Pr P Y =
£¢* [U X ar I¢*[ar(ax +ar)]dx I‘j‘(ax * 5T frar - Ra rj¢*9dXd 0
(A.13)
Solution.
In the light of Egs. (A.11) & (A.12), we have
U v o4, U . a4, OV
— =— axdy ,
M 6Y(6X a}'}w Jay 8X Iay oY A9
v oV 8g, OV 04 BVJ [ J
axdy S IO axdy + ,_+ = \|ga _
£¢*(6X3 ayz] j( X oX T oY or -4 Ky (A.13)

Using Egs. (A.14) & (A.15), Eq. (A.13) reduces to following form

I?& (U— v Vxar + I%@zﬂ{w’ j'a"é* P axay |+ J’(%ﬁ +%3—VJdXdY
axX oy 2 0¥ aX 5 oY oY 3X aX Y oY

oV oV
—Pr(_f)(nl.—+ny(-3~};J¢,ds—RaPrigﬂié’dXdY:O
Using of approximated functions (3.15), above integral gives
A rp 98 24, o¢,” @¢ g,
i[ﬁ(qm U)o+ (80) Gy Dt 7| [| Sp0 Pl + ]| Zo i paakdy

a4, 3¢ 04, 047 av
+Pr;[[a—)(", a;r +a—)j a; Jmm’ RaPrjgék 3,6, )dxdY - Prq’{m — oy ]@dg 0
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B.1 Finite Element Solution of the Laplace Equation with 4-Node
Rectangular Element

Consider a simple form of the steady state heat conduction problem in a rectangular
domain (shown in Figure B.1) with Dirichlet boundary conditions defined by Laplace

Equation (all material properties are set to unity).

&u  Au
Vzu:§+§=0 (B.1)
forx=[0,a],y=[0,6], with a=4, b=2

where, #(x, ) is the steady state temperature distribution in the domain.

The boundary conditions are
0,y)=100 : .
u(0.) Imposed temperatures on theleft & right boundaries
u(4,y) =250
#(x,0) =50 ]
Imposed temperatures on the top & bottom boundaries
u(x,2) =200
Y
+ a=4 >
11 12 13 14 15
8 7 6 5 I
10 5 e 7 g D=2
N I I
1 2 3 3 5 > X

Figure B.1: Discretization of given geometry into 8 elements (each one is 4-node rectangular element)
by signifying global nodes at vertex of each element

For weak formulation of governing Eq. (B.1), multiply Eq. (B.1) by an arbitrary weight
function w(x, y), and integrate over an arbitrary domain °, whose boundary is I'°. The

arbitrary domain could represent an n-node element within the solution domain  with

boundary T, as shown in Figure B.2.
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1_ ‘
0
r
Figure B.2
The equation obtained is
2 2

j w.*(x,y)(6—-"'2i + a—i:]dmy =0
o ax”

Using eq. (A.7), above integral may be writien as

X ox oy
I[awau+@a—u)dfrd = [M‘@-+n‘a—u]wds
o ox ox Oy oy T

Appendix B

(B.2)

(B.3)

The approximate solution of equation (B.3) for an arbitrary, n-node element is defined by

W (x,y) =D upi(x.y)

1=l

where,  u; is nodal value for u(x, y) at node / corresponding to element

w' (x,y) is interpolation function for u(x,y) at node j within the ¢lement ¢

Moreover, the weight function w(x,)) represents a variation of primary variable #(x, ), and

thus takes on the nodal values w, =y, i=12,..,n. Thus, Eq. (B.3) yields the following

form

L (owoyt awaw:’] |
N ==L+ ——L |dxdy = Pyig, ds
z”i(@x TRl e L
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In matrix form, it becomes

L)

S K =0 i i=L2..n

i=

Where, K; = I[a—wa—%— +a—w-%}dxabz
NEECREE
O =dyiq,ds
r

[4 € & 3 T
= i ]
Since there is no flux (g,) given at all nodes of the problem domain, therefore value of

column vector (° will be assumed as zero vector, Thus, the weak form for an n-node

element in condensed form may be written as

Z] K: j=Ff€ ; izlizsﬂtuun
Jj=

(B.4)
where,

Kez‘l' oy, a*”;Jran awf dbedy
ol & oy &y

(B.5)

which is element coefficient matrix, also called the element stiffness matrix.

T
l = [y uy Uyt ]

Now consider a 4-node rectangular element and interpolation functions for this element are
X

xr+ - X xf
¢| (x) = _1h— ¢2 (x) = h
' ' Linear shape functions in x - direction
a-—-x x=0
= = =0 e+ hma —> x=a
a a . )
Xi Xyl
yid- - y y - yl'
§|(y):"1_' ‘:z(y)z
h, h, . o .
b ' JO Linear shape functions in y - direction
==X =2 y=0 +— h=b —> y=b
b b -
LD Yier

The product of two sets of above mentioned shape functions results an interpolation functions
in terms of local coordinates (x,y), which are as under

Vi ey = 4G =[""‘][5"—3’]=(1-£][1_Z}
a b a b
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Vi) =4 60) = [f’—bﬁ]h[ _3]

Vi) =4 E60) =[i]{z] Ly
a/\b) ab

EOaG

Using eq. (B.5), local stiffness matrix corresponding to 4-node rectangular element may be

w0 p) = (X)) = [

evaluated as

[ 2] ] ]

ax &

22 A
o [ F fon 2w 2w 2w ) o T dn B
Ka}'—h%[m x> & ar:|+§ﬂ W B S | oy

o @; =
L1273 20e
- 3

Performing integral after substituting the above interpolation functions, the computed
element stiffness matrix is
All AI2 Al.‘) ‘4'14

K: = A?.l 147.2 A23 AZ‘! (B.6)
A3] A32 A33 A34
A41 A42 A43 A-M

‘Where,

y=bx=a av, By, a% oy
yjof[o( & o Oy oy }dxa}'

II{ ) yJ+(—‘;;"J(-‘:;J}M
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A =TT(6% Ve, a%]m
8 20 = o Ox oy Oy

T
T Tio1-o-of

] {(by-y‘)(a)— -‘;—B}ab»

y=t

a'h’

a—x
ab
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1 vF , o
-4 -éi—b—a—@ _b2—2a2
a’2 3 3] 6ab

Since element coefficient matrix is symmetric, then we have

a* - 25
S
y=h r=
¥=bre=a Oy, Oy, oy, aWIJ
A, = . oy
? ylox!o[ ox & o &
Ty 2
:I Iﬂ{ pere "‘ﬁ dxdy
y=0x
yatbx=a
262 I I {{b ‘y) +x }
y=0i=0
R T
b _[0 ( —y) (a)+_3. dy

1 b3 alb az + bz
it "’ = ;
ab 3 3ab

m””[@% oy, , v, v, ) iy

5= |

y=0x=0 ox ox 6y ay
T b-y x 3\ x
Tl
p=0x=0 ab ab ab )\ ab
y=bx=a
le I J by J) —x }‘ﬁﬂiy
y=0x=0
}TJ{ 3
3 aby —ay - _}aj)
b y=o 3
_L E_E__zfl b -2a°
ab®l2 3 3 6ab

y=bx=a
A,N:}'I[Wz Vs, OV %]dx@

y=0 520 & x &y oy
_th by Y. x| e=*
_IUIO{( ab J( ab]+( ab}[ ab }}dxdy
=#};oz{”2"’y“‘“f}a&dy
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o —

b —24*
6ab

y=bxr=a

oy, dw, Ow, dy.

A3 = [ 3 3 4 k| k] dxﬂf})
: ” x & W

y=bx=g 2 2
= | j{a_J;?J,:Tb;}dxay

p=01=0

Ay =4y =

b

1 yeba=a

=y I I[y2+x2}dxdy

y=0x=0

1 yi {‘{VQ +-fzi}qiy

T, 3

RN AR X2
w1 oo

y=0r=0

=fj{ Y, x(‘z;f)}dmb)

a’b’ a

y=0x=0
v=by=g
=a_21b31 § {-»* +ax - x*}ddy

y=0x=0
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b -24°
A, =4, = ,
=y 6ab
a*+ b
Ap=A4,=— ,
iy = Ay Py
at -2
A = —] ,
3 = Ay 6ab
y=b1=g
4= [6% oV, , OV, 6%%@
om0\ 0% Ox & o

ale a2b2

=yibx.=[a{£-+(a—x)z}m

p=0x=0
_ 1 y=bx=a ) 5
== J I{y +(a—x) }dxafV
y=0x=0
1 P, &
= 4 —
azbzy'[t){ay 3 Y
177, &
= — o —
abz y=0{y 3 }@
_L[F ] o
ab® |3 3 3ab

Substitution of above all values in Eq. (B.6) yields

[ giahl gP-28 _gtab? BP-280 ]
dab bab bab bab
at—2b ot bt bi_24% at e bt
Ke _ Gabr dab Gab Hab
¥ _ o+t b -24 ot +b? at—2b?
&ab 6ok lab 6ab
B-1a® _dwt  at-2 atxb?
| " éab 6ab 6ab tab

1 | a¥ 28 2(a2+bz) bt -24°

e

v~ 6ab _(aubz) b —24° 2(a2+bz) at - 2p*

by -2 —-(a’+ b’) at -2b°

[2(a’+8?) o-28" —(a*+¥) B 24" |

Appendix B

(B.7)

Now consider a value of above matrix for a given domain which is discretized into eight

equal segments (as demonstrated in Figure B.1), each one is four noded rectangular element.
Each clement has length ¢ =1 and width &=1. 6* element is illustrated in Figure B.3 with

1-4 local nodes whereas 8, 7, 14 and 13 represent the global nodes.
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12 14

T

£ 6

L, :
8 7

— uw] ———

Figure B.3: Dimensions of 6 Element with Symbolization of Local and Global Nodes

By putting a=1 and b =1 in local stiffness matrix (B.7), the value of 6™ rectangular element

is obtained as under

|
|
|

| |
]
L . Y L
|
[ N B A= N e B
| |

wik = wi— o]

cc\::‘§
1l
=N E ey = Y ER ) 6)

Since all the elements are equal in length and width. Therefore, value of local stiffness matrix
corresponding to each element will be same as mentioned above (for 6™ element).
Local stiffness matrices of each rectangular element by allocating global nodes

(corresponding to their local nodes) in anti-clockwise direction are given below

K K; K;

1 2 9 10 2 3 8 9 3 4 7 8
I
T I B B e e A e
T I B A I
I I E R

Ke K K¢

4 5 6 7 7 6 15 14 8 7 14 13
T A R L I I
e IR e I A

3
I T A T B
| ) s T T 1 A A
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Ks

1c 9

K;
8

12 11

13 12

9

- 1
—a e = e
LI |
—len = = =|e
| | |
- Gl —|e —1m
| 11
ol = = =
| | |
I —
=] oy -

S

i ] |G ]

e L - T L R T

PN T ] IV ]

1 [

oo~ = -]

e —

o o 29

Assembling all of above element matrices generates an assembled global stiffness matrix[K ]

of order 15x15 as given below

11 12 13 14 15

10

0
0

0
0

-
-/

0
0

~%
-k

0
~A
-4
-4

0

0
-4

0
0
-5
-5
-5
-4

0
0
0

0

-A

_% 0

7
-
0
0
-4
-4

-%

0
0

0
0
0

0
-A

% ~h
A

—¥%

-5

%
-
-4
-5

0

-%

0
0

0
—%

p
-A

-
0
0
0
0
0

0
~%

-%
-5

-A
-%
-5 K0

0

0
0
-4
—J

%
-5
0
0

0
-5
-5

-/

%
-}
0

0
-5

0
0
0

_}g 0

0
—A

7
-h
-5
-4

0
0

_% 0O

0
0

0
- %

%

0

0
-%

-5
-

%
- %

0

v
—%
-%

0

0

0

0

-A

%
-¥%

0
-A
-5
-5

-

4

0
0

-% =%

0
-5
—%

0
0
0

0
0

-}
0

0
0

K=8

9

10 -%

11
12
13
14
15

Also the value of column matrix [E"] on the right side of Eq. (B.4) for the whole domain

gives matrix F of order 15x1 as under

[o0oo0000000000000f

F=

The assembled equation is of the form

[K][V]=[F]
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Appendix B
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- (B.8)

where, [U]is a vector of nodal values of temperature.

At the singular points (i.e global nodes 1, 5, 15 and 11), the specified nodal values are
handied either by average of the two specified values or the higher of the two specified values
of u. (Note that the points occur at comers of problem domain are referred as singular points).

Therefore, values of boundary conditions at nodes on the boundary of the domain are

ul=100;50=75 w,=t,=u, =50

u =200 5 u, =250

g = 100 u, =1 0*+200 45
u, =y, =u, =200 Uy = 2004250 225

The nodal solution vector [U ] becomes
[U]=[75 50 50 50 150 250 w, u w100 150 200 200 200 225]
Above vector shows that the unknown values of [U] occur at global nodes 7, 8 and 9.

For evaluation of unknown parameters (u,,#%, and u,), eliminate rows 1-6 and 10-15 of

global stiffness matrix X. All known quantities are moved from left side of the matrix

equation to the right side to obtain the condensed equations. Thus, Eq. (B.8) implies
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Necessary simplification generates result as follow

[ 2.6667 —0.3333 0 u,| [375
—0.3333 26667 —0.3333 | u, |=|250
0 -0.3333 26667 |u, | |275

] [156.6532
u, [=[128.2258
L, | [119.1532

0 0
0 -X
_|3 _}é

3

0

Above system of equations gives the following solution at unknown nodes,

A X

0
0

Graphical illustration of nodal solution has been shown in contour plot as under
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Figure B.4: Contour Plot executed using Finite Element Solution of Laplace Equation
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