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Chapter-1

1.6.4 Kinematic Viscosity

Kinematic viscosity (v) is defined as the ratio of dynamic viscosity to mass density.
Mathematically, it can be expressed by

v=".

p
The unit of v is square meters per second (m’s™) and dimension is I*/T .

1.7 Types of Fluid Flow
There are many types to classify flow of fluid and describe the state of fluid flow under
different circumstances. Some types of fluid flow are as under
L. Uniform Flow
2 Non-Uniform Flow
3 Steady Flow
4. Unsteady Flow
5 Laminar Flow
6. Turbulent Flow

Explanation of each is given below.

1.7.1 Uniform Flow

If the fluid velocity remains same at every point in the flow, then it is said to be uniform

flow.

1.7.2 Non-Uniform Flow
If at a given instant, the velocity is not the same at every point, the flow is known as

non-uniform.

1.7.3 Steady Flow
A steady flow is one in which the fluid characteristics (velocity, pressure and cross-section)

do not change with time.

1.7.4 Unsteady Flow

If at any point in the fluid, the fluid behaviors change with time, the flow is described as

unsteady.
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1.7.5 Laminar Flow

The flow of a fluid in which particles of the fluid move in parallel layers, each of

which has a constant velocity is known as laminar flow.

1.7.6 Turbulent Flow
A fluid flow in which the velocity at a given point varies erratically in magnitude and

direction is known as turbulent flow.

1.8 Compressible Fluids
If the density of a fluid varies significantly due to moderate changes in pressure or
temperature, such fluid is referred as compressible fluid. Generally, gases and vapours under

normal conditions can be classified as compressible fluids.

1.9 Incompressible Fluids
If the variation in temperature or pressure causes a small change in density of a fluid, then the

fluid is known as incompressible fluid.

1.10 Streamlines
In analyzing fluid flow, it is useful to visualize the flow pattern by drawing lines joining
points of equal velocity i.e. velocity contours. These lines are known as streamlines. Here is a

simple example of the streamlines around a cross-section of an aircraft wing shaped body:

Figure 1.1: Streamlines around a wing shaped body

1.11 Buoyancy Force
The upward force that a fluid exerts on an object which is completely or partly submerged in
it is called buoyancy force. This force causes the objects to float. Moreover, buoyancy allows

boat to float on water and provides lift for balloons.
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where D is linear/non-linear differential operator acting on dependent variable u, g is a given
function and Q is a two dimensional domain.
In this method, the solution of equation (2.1) can be approximated by linear combination of

basis/shape functions taken from linearly independent set as follows

=Y b. (2.2)
i=1
In which, b's are unknown constants required to determine and ¢, are linearly independent

basis functions. Substitution of the approximate solution # into the left hand side of

Eq. (2.1), the result D(#), in general, is not equal to specified function g due to the fact that

solution (2.2) is not the exact solution of the problem (2.1). The difference D(#1)-g#0, is

known as the residual of the approximation, and is

R=D(ﬁ)—g=D(Z":b,.;4j—g¢o (2.3)

To evaluate unknown constants b,, choose \:vc]aight functions W; , set the weighted average of
the residual over the problem domain to zero, i.e.

[P (x)R(x,b)dxdly =0, (i=1,23,...,n). (2.4)
In general, the cho?ce of the weight functions #; are not the same as the basis function ¢,, but
they (W;) are exactly equal the number of unknown constants b,. Following methods of
weighted residual are classified in terms of the choice of weight function W;:
1. Collocation Method,
2. Least Squares Method,
3. Galerkin Method and

4, Method of moments

Each of these has been explained below.

2.2.1 Collocation Method
In this method, the Dirac Delta function &(x—x;) is used as weight function, defined as
follow

5(x—x,.)={1 X @.5)

0, otherwise
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2.7 Local and Global Nodes of Element

Consider the following geometry containing four triangular elements represented by the
number 1, 2, 3 and 4, each one is defined by three nodes. Red colored numeric numbers
and  located on the boundary, represent the global nodes. The alphabets

anC  represented counter-clockwise at inner corner of each triangular element are local

node labels for respective element. as shown in Figure 2.7.

4

N

Figure 2.7: Local & Global Nodes in triangular geometry

2.8 Local and Global Stiffness Matrices

The coefficient matrix obtained from the weak form of given differential equation
corresponding to an element is referred as local stiffness matrix/element matrix. The
assembly of all local stiffness matrices using the equivalence between local and global nodes,

is termed as Global stiffness matrix. They both are square symmetric matrices.

\:

Global Nodes

Local Nodes

2 4
Figure 2.8: Triangular geometry allocated into two elements, symbolize with local & global nodes

Consider the geometry consisting of two triangular elements as shown in Figure 2.8. To get
philosophy of subject topic, consider assumed values of local stiffness matrices

corresponding to each element as under:

16
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Element 1 Element 2
2 3 1 4 1 3
2(2 5 1 4 (2 5 1
3 0 4 5 10 4 5
11 1 0 31 1 0O

Assembly of above element matrices generates a global stiffness matrix as follow:

1 2 3 4

1 (+4 1| 1+5 O
2| 1! 2 5

3 .5+1 0 4+0

4 \5 1 2

Italic numbers represent the entries of first element matrix and bold entries inside the above

matrix belong to second element matrix. Blank locations corresponds to where no entry is

allocated from both (elements) matrices, zero entry will be allotted there. Finally, the required

global matrix is obtained, which is

416 0
1 250
6 0 4 1}
501 2

2.9  Solution procedure using FEM

To compute the solution of the problem by using finite element method, we undergo the

following steps:

Discretization of the domain into a set of finite elements.

Define an approximate solution of given differential equation over an element, such
defined solution must satisfy the given boundary conditions.

Define shape functions as per type of element per number of nodes.

Choose weight function through using methods of weighted residual. ~

Set up a weak formulation of given differential equation.

Evaluate the weak form of given differential equation for each element using given

boundary conditions, and obtain value of local stiffness matrix corresponding to each

element.

17
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e Assemble ?ll elementwise local stiffness matrices to generate global stiffness matrix.

* Solve the' algebraic system of equations to get desired solution by using any
direct/indirect/iterative method.

s and post-p}ocessing (This final operation displays the solution to system equations in
tabular, graphical or-pictorial form. Other meaningful quantities may be derived from the
solution and also displayed).

|
2.10 Exam%ples

Examples with the implementation of FEM are given below for explanation of the method.

3

2.10.1 Problelfn. Solve the boundary value problem using Finite Element Method

Viu=-1, |q<1,

| y}Sl

s
H

2.11
w=0, =1, |y|=1 1D

with s = % bly using three nodes 32 triangular elements as shown in Figure 2.9.

|

!

Solution. The solution of the boundary value problem satisfies the symmetry conditions,
u(-x,y)=u(x,y), u(x,~y)=u(x,y), u(y,x)=u(x,y)
Therefore, we shall consider only one eighth of the square as shown in bold black patch of

the Figure 2.9.

£

- -

Ay

R |

R ket o

[FEypepnpp——

Figure 2.9: Representation of elements with nodal points
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After discretizing, the length of each triangular element is % (e h= % ). There are four

elements which are numbered 1, 2, 3 and 4. For given problem, the element functional is

e

where superscript e denotes an element with nodes /, j and k£ marked in counterclockwise as

represented in Figure 2.10.

1 Us

Figure 2.10: Three Noded Triangular Element

e
~=0,ie

e 1 oM\ oH (aH \ oH.
(e e e

We have value of u in terms of nodal variables (¢, ¢,, ¢; and c,),

The element equation is

u=cH(x,y)+c,H,(x,y)+c,H5(x, ), (2.14)

where H,(x,y); i=1, 2,3 are shape functions for linear triangular element, which are given

below
1
H, :ﬁ[(xzys_xayz) ( y3 x+ xz)y] (2.15)
1
H, =ﬂ[(x3yl —x )+ (= p)x +(x —x3)y:|, (2.16)
1 :
H3=:-2—;1{(x1y2—x2y1)+(yl—y2)x+(x2—x,)y]. 2.17)
The shape functions satisfy the following conditions
1 ifi=j 3
H(x.,y)=0, = d ;=
(x,y,)=6, {0 i an ZH 1, (2.18)
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We obtained element matrix for 2™ element is
4 5 2
4 (05 05 0
KP= g l05 1 -05
20 -05 05

For 3" Element

We obtained local stiffness matrix for 3™ element is
5 6 2
5 1 -0.5 -0.5
K= ¢ 05 05 0
2 0.5 0 0.5

For 4" Element

: 1
k,=2{|=-1 +02}=—,
2

22
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(2.22)
(x3,53)
(54
3
(5.31) ki
ool 2N\00
6
Figure 2.13: 3" element with allocated
Local & Global Nodes
(2.23)
2 . 3
(x3.3,) 3 2 (=172
G54 w0
1
(58
i O

Figure 2.14: 4™ element with allocated

Local & Global Nodes
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k;3 =2 (1—-12-](1—1){-2--0)[0—%]}=—%=k3z ,

b

™ 2
1 1
ki, =20+ 0-—| |=—.
33 ( 2}} 5

Thus, we obtained the following local stiffness matrix for 4™ element is

[

6 3 2
6 (05 -05 O
K®= 3105 1 -05]. (2.24)

2.0 -05 05

Now, the assembly of all local stiffness matrices using Egs. (2.21 to 2.24) by connecting the

elements corresponding to global nodes generate a global stiffness matrix as under:

1 2 3 ) 5 6
1 (0.5 0 -0.5 0 0 0 N
2 0 0.5+0.5+0.5+0.5 -0.5-0.5 0 -0.5-0.5 0+0
3| 05 -0.5-0.5 1+1 0 0 -0.5
) 0 0 0 0.5 -0.5 0
5 - -0.5-0.5 0 -0.5 1+1 -0.5
6 \_ 0 0+0 -0.5 0 -0.5 O.5+O.-5/

After simplifying, we get the value of Eq. (2.19) as

0.5 0 -05 0 0 0 )
0 2 -1 0 -1 0

L (aH,.)TaH,.+aH,.TaH,.u po| 051200 05
2eaxaxayay"oooo.5-0.5o“)

o -1 0 -05 2 -05
0O 0 05 0 -05 1

Now, consider the third term on right side of Eq. (2.13)

A

%J;IZH,dxajz=J;IHidxajz=b‘e)£—3— , (2.26)

—

where, A4 = Areaof Element = % .

Steps of simplification for result obtained in above Eq. (2.26) are explained in Appendix A.
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The piecewise approximate solution over the element (¢} may be assumed as
U= Nu + Nu, + Nu,+Nu +Nu, +Nuy, = NG (2.44)

where
NO=[N,N,N,N,N,N,]" and ¢ =[w,4,u,u,u,4,] .
The shape functions N,, N,, N,, N,, N, and N, are defined as

N =2[-L, N, =4LL,

=i
N, =20-L, N,=4LL,,
N, =2L-L, N =4LL,, (2.45)

where L, L , and L, are called Area Coordinates satisfy the following two properties

@ L+L,+L =1 and A (2.46)
. 1 1
(11)~L,. =30 ——(a,+bx+cy), L= G (aj +bjx+cjy), L= G ——(a, +bhx+c¢,y)
in which
4 =Xy~ X); h=y,-y, G = X3~ Xy
G =EHY N0, by=y,~y, C; =X Xy,
a =%y, - Xy, b=y-y, &=x-Xx, (2.47)
I x
and A® = 5 1 x, y,|=Areaof each triangular element . (2.48)
1 x, ¥

" The differentiation of N*(L,,L,,L,) w.r.t xand y may be written as

oN®© oN"® oL | oN® oL, | oN®© ag
ox  alL " L, o oL, ox’
N _aN“ oL | aN“ L,  oN“ ag

AT A @9
where
oL, b a, _ ¢ =
a—-:m and gwm s l~1,2,3. (2.50)

For integration of polynomial terms in natural coordinates over the element (€), we use the

following relation

[ (Bas iy =7

Aled

r‘ s1t12A®

(r+s+r+2)1 @31

27
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Now, consider further evaluation of Eq. (2.42),

o, N,
rY oy
oN, N,
£l
v, o,
£=(p & (% N, N, N, N, ai) & [% N, N, aN, N, QN_H_JM,
o ||V, \ex & & & & o) N, ¥ & & & & ¥
ox %
A, N,
Ox oy
ON, oN,
N E2 J
(2.52)

Performing integration on first part of integral (2.52) by substituting the shape functions, we
get

oN,
o
aN,
aN,
el e (v, an, aN, aN, aN, oN,
A‘([[‘ oN, (6x x o o ox axJ’dXdy (@3)
o
oN,
x
N,
\\ Ox )
or
Al 1 A12 Al3 Al4 Al 5 Al 6
4, Ay Ay Ay Ay Ay
A — A3l A32 A33 A34 A35 A36 (2 54)
* A41 A42 A43 A44 A45 A46 ’ .
Ay Ay Ay Ay Ay A
A61 A62 A63 A64 A65 A66
In which, .
4, = g(%%}dxdy- | 2.55)
Consider

ON, _dN, oL,  aN, 0L, N, oL, _
ox oL ox oL o O &

(4L, - 1)(%) +0+0 (using Eqgs. 2.45 and 2.46)
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aN, oN 1 ;
4= (W m)dxdy:A%:._. 2bb, +b,b, + bb, + 5],
o\ ax ax 3A[ I J

- | ;[ {%(Lkbi +Lb, )} x {i— (Lb, + Lb, )Hﬁ"dy

=2 [[(88 + 8223 +2bbLL, sty

2

A (A g 2] 2ms, A)
AT " \6 6 12
2 2
=i{£‘¥~+£‘—+@i}-—2—(b}+b§+b‘.bk).
A

6 6 6

Substituting all values in Eq. (2.54), we get
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3.1 Problem Description

Let us consider the laminar, steady flow of viscous fluid caused by the heated lower wall and
adiabatic upper wall inside the square cavity. It is assumed that the lower/bottom wall of cavity
is heated either uniformly or non-uniformly, while two vertical right and left walls are
maintained at cool constant temperature. The physical domain in which the fluid is flowing is
shown in Figure 3.1. It is further assumed that all the fluid properties are constant except the
density of the fluid.

3.2 Mathematical Formulation

The flow model is based on the assumptions that the fluid is Newtonian and the body force
term in the momentum equation is temperature dependent. The Boussinesq approximation is
invoked for the fluid properties to relate density changes to temperature changes, and to couple
in this way, the temperature field to the flow field. The goveming equations for natural

convection flow using conservation of mass, momentum and energy can be written as:

—+-——=O’ .
x @G.n
1 a 2 2
B L (P O) 62
ox Oy p Ox ox* oy’
ov oOv 1 op o'v &%
— V=t V| —+— |+ T-T), 3.3
%" oh (axz asz gB(T-T,) (3.3)
and
2T 2
PLLINCCI L (3.4)
Ox Oy 0 oy
The assumed boundary conditions are
u(x,0) =u(x,L)=u(0,y)=u(L,y)=0,
v(x,0) =v(x,L) =v(0,y) =v(L,y) =0,
T(x,0)=T, or T(x,0)=(7;,—7;)sin(%)+7‘c,
?I(xL)—O TO,y)=T(L,y)=T.
ay 3 > !y ’y c? (35)

where x and y are the distances measured along the horizontal and vertical directions
respectively, » and v are thé velocity components in the x- and y-directions respectively,
T denotes the temperature, v and & are the kinematic viscosity and the thermal diffusivity of
the fluid respectively, p is the pressure and p is the density, 7, and T, are the temperatures at
hot bottom wall and cold vertical walls respectively and L is the side of the square cavity.

40
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Upon using the following change of variables: .

X:%, Y:%, v="£, y2 9:?'7;:,
a a Pt
: T,-T.)C'P
PPl pol g 8PL-T)LPr
pa a v (3.6)

the governing equations (3.1 — 3.4) reduce to non-dimensional form as follow:

v o o e
oxX oY
2 2
vy Y P p0U TU) (3.8)
oX oY oxX oX° oY
2 2
UQK+V-(3—I{-=—6—P+Pr 6V2+§—K2 + RaPré, (3.9
ax oY or (X' oY
2 2
y9 ,y29 _086 00 (3.10)

= +—,
oX oY ox* oy’
with boundary conditions
UX,0=UX,)=U@0,Y)=U(Q,Y)=0,
V(X,0)=V(X,)=V(0,)=V(1,Y)=0,
6(X,0)=1 or 6(X,0)=sin(zX),

g-(x,l):o, 6(0,Y)=00,Y)=0. G.11)

Here X and Y are dimensionless coordinates along horizontal and vertical directions
respectively, U and V are dimensionless velocity components in the X- and Y-directions
respectively, @ is the dimensionless temperature, P is the dimensionless pressure, Ra and Pr

are Rayleigh and Prandtl numbers respectively.

3.3 Numerical Computations

To investigate the problem, it is required to solve the partial differential equations (3.7 - 3.10)
subject to the boundary conditions (3.11). For this, the physical domain is discretize into finite
number of triangular elements by using computation software MATLAB with built-in
commands. Shape functions over triangular elements are generated by using 6-nodes, and they
are quadratic for every elements. The meshing of given geomeétry yields 1312 six noded
triangular elements with 2705 number of nodes.

The momentum and energy equations (3.8 — 3.10) are solved using the Galerkin finite element
method. The continuity equation (3.7) is used as a constraint due to mass conservation and we

obtained the pressure distribution as given by Basak and Ayappa [6]. In other words, to solve
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equations (3.8 — 3.10), we use the penalty finite element method, where the pressure P is
eliminated by a penalty parameter y and the incompressibility criteria given by Eq. (3.7)
(see Reddy [3]) which results in:

oU oV
P=—| . 3.12
7(5,\’ ayj 3.12)

The continuity equations (3.7) is automatically satisfied for large values of y . Typical values

of ¥ yield consistent solutions are 10’.

After using Eq. (3.12), the momentum equations (3.8) and (3.9) reduce to:

ou ou o(oU oV o'U U
U—+V—=y—| —+—|+Pr T+ = (3.13)
oxX oY oX\aoxX oY ox*: oY
2 2
U—a—V— Vél—/-zy—a- 6_U_+6_V + Pr 6I;+_6_ + RaPr6 . (3.19)
oxX oY oY\ex oY ox* or?

We solve Egs. (3.10), (3.13) and (3.14) to get solution of given physical problem. These three
equations consist of highest order derivative terms, and the Eqgs. (3.13) and (3.14) include the
non-linear terms. The non-linearity in these equations make the problem difficult to solve. To
deal with this difficulty, the iterative method such as Newton Raphson has been used. Whereas
to remove the highest order derivative terms, the weak form of Eqgs. (3.10), (3.13) and (3.14) is
developed by using weak formulation.

We assume the approximated solution of velocity components U & V and temperature 8, as

given below

N N N :

U=YU(X.Y), V=) V4(X,Y) and 6= 6,4,(X,Y) for 0SX,¥Y<1,  (3.15)
k=1 k=1 k=1

where N is the total number of nodes, ¢, is the vector of shape functions, U, and ¥, are the

vectors of nodal values of velocity components, and 6, is the vector of nodal values of

temperature. Using Galerkin’s Method, the weight functions for all approximated functions
(3.15) is same as follow

do du o dar
W =—= ) W,=—= and W,=—-= .
Al 9, é U du, é v av, ¢, (3.16)
For the evaluation of unknown nodal variablesU, , ¥, and 6,, the integral of weighted residual
over the problem domain is set to zero. Thus, in the light of approximated functions (3.15) and

weight function (3.16), the weak form of Eqs-(3.10), (3.13) and (3.14) are expressed as

50 86
j¢,,( ]dXd I¢"(6X2 aYZ]dXdY 0,
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T T T
I(%(W’Uk)a‘é" a¢k }9 Ixay (am op” 04, 99, JB* XAV -
) oxX X 80X 8X oX
960 86
?(",\' Py -3;)¢de =0, (3.17)

;U oU v FU U
M( 5 JdY - yI¢k[ (8X aYHdXd - M( e aYz]dXdY:O,
re VOO (08 o, o9, a4, o,
£ [¢k(¢k U ) aANA }DdXd [ { s }IkdXdY+£(aX = }dexdy}

PrJ‘ og, og, a¢k og, dXdY — pr ”X aU ?—U—)@ds =0, (3.18)
lax ax Ty v ax "oy

oU oV v 3
M( V-— -yM[ (8X+8YJ}dXdY PM[ + 5 pXdY -

RaPrI¢k9cLYdY =0,
i o]

7 a¢kT T 0 kr a¢k a¢kT a¢k a¢k7.
:[ {@ (¢, U,()—8—X-+¢k (¢, Vk) ¢ ]dean y[j (-a———a}—)deXdY+ [ (——-—-—}/kdXdYJ

o0, 0" 09, o8/ O \gds =
Pr;[[—a—f e )VdXdY RaPrM (4,6, JaXdY — PrgS(n\——My )mds—o-

(3.19)

Reduced forin of integrals obtained in Eqs. (3.17 — 3.19) are appended in Appendix A with
brief steps of simplification. To avoid the complication of solving non-linear terms in
Egs. (3.18) and (3.19), Newton-Raphson method is used to compute non-linear coefficient
matrices, which are function of unknown velocity components (Reddy [3]). Using Galerkin
finite element method, the following nonlinear residual equations for Egs. (3.17), (3.18) and

(3.19) respectively, are being made over domain Q,

Ri(l)=iUI KZU ¢k)a¢" [in@J%’;{ idXdY+y[iUkJ‘ —a—ﬁ%dXdY+

o TRo0X 0X
N

¢, d o4, 04, 09 84,
kz Inaﬁ a¢k dXdY}+P ZIU [ [£E%+5%£/—]dXdY, (3.20)

43
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-

R“’-ZVJ KZU@,‘}M" (ZV@ a¢“}adXdY+ ZU [ %%%ﬁ%dXdY+

L k=1

poy naYa ‘ aan BY@Y

RaPr j (29 ¢, }ﬁ,dXdY, (3.21)

k=l

0, (< o4, 9¢, 3¢, . 08, 09,
J (EV*@) Xy + ZBJ [aX aAﬁ oY ay} axar,
(3.22)

N N
- [§ue
=]

| 211

In order to solve above residual equations, quadratic triangular elements with six nodes are
used as interpolation functions. Thus, the approximate functions for velocity components U
and ¥, and temperature & corresponding to six noded triangular element (¢) may be expressed

as

6 6 ¢
U= U (XY) =000, V=3V (X1)=V"" ad 0= 04,(X.1)=096",

=] k=t k=}
(3.23)
The interpolations or shape functions (¢, ) as already defined in Chapter-2 are
4] [L@L-D] -
¢ | | L@L - 1)
|| L@L-D _
4, = a7l ez | fork=1,2,...,6, (3.24)
4| | 4LL
(&) L 4LL
Consider,
L@L-1)=2L} -1,
=L+ L} -1
=L} +L (L -1)
=L'+L(-L,-L)  usingEq. (2.46)
L@2L -1) 3[12 -LL, - LI, (3.25)
Similarly, we may write
LQL,-1) =L - LI~ LL, (3.26)
Ly(2Ly ==L} ~ LI~ LL,, (3.27)

44




Using above results (3.25) - (3.27), the matrix (3.24) implies,

(4] [L'-LL-LL] [1 0 0 -1 0 -1 L}
¢ |LP-LL-LL| |0 1 0 -1 -1 0} L}
4 = ¢|_|L'-LL-LL | |0 0 1 0 -1 -I L} _[AIIR].,
@, 4LL, 0 0 0 4 0 0|LL,
@ 4L,L, 0 0 0 0 4 0|LL
4] | 4LL ][0 0 0 0 0 4]LL
where,
(1 0 0 -1 0 -] [ L |
0 1 0 -1 -1 0 L}
A= 0 0 1 0 -1 -1f (A= L} '
0 0 0 4 0 0 LL,
0 0 0 0 4 0 L,L,
0 0 0 0 0 4] LL
Differentiate Eq. (3.28) w.r.t X, we get
o 2L (57)
2
o 24 5 2rn
2 b\ 272
% g2 5 |- 24 55) Ny )
ox 5‘xk LL, 11(2_37).,,[,2(2:-?) 2A@ | Lb, + L,b,
Lzl': by by Lyb, + L;b,
| |" (350) + Lo (53) b+ Lb, |
| L(5) +4(5w)
ie.
(26, 0 O]
0 26 0 L
L/ N e P W7 92
x 209 b, b 0 L
0 b b |-°
b 0 b |
where,
(26, 0 0]
0 26 0 L
[B]-_-L 0 0 2 and [L]=|L,]|.
209 b, b 0 2
0 b b L
b 0 b
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(3.28)

(3.29)
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Similarly, differentiating Eq. (3.28) w.r.t y, we get

2, 0 0]
0 2, 0
L
i e PRt 1 (3.30)
& 209 ¢ ¢ O ’ '
; L
o G
e, 0 ¢ |
where,
[2¢, 0 0]
0 2, 0

[C]=

209 ¢, ¢ O

Consider the product of [L] with [L] as

L L* LL LL
[LILY =|L, \[L, L, L]=|LL L} LL|. (3.31)

l‘! LJLI I‘JLZ L32
Using formula (2.51), the integration of Eq. (3.31) over the element (¢) generates result as
follow

L* LL LL, § 5 B
H= [[LILYda= [|LL L} LLdA=4 & &)
o “NLL LL LY |4 & 2
Ie.
2 1 1
; A
H= [[LILTdA=—1 2 1|, (3.32)
A 12 112

The product of [R] and [R]" yields result

[ L]

L}

T 1'32 2 2 2
(RURF =| ° [ L L' L7 LL Ll LL]
12
L,L,
| Lyl |
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ie.

L leLzz leLaz L’L, LLL, LI
LiL} L L} LL  BL  LBL
RIRT <| W WL L LLE LD LG |
L'IJLZ Llea L1L2L§ Lfﬁz L’ll‘i[ﬂ L?Lzl'_\
CLL, LI, LE LEL LL LLE
L, LEL LD [LL LLL LD |
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(3.33)

With the help of formula (2.51), following result may be obtained in response of integrating

matrix (3.33) over the element () as follows

Lo LKL LL o LLL L
'L’ L L'L' LL  LL  LLL
2 ir2 4 2 kl 3
0= [ RIRT da= | lqaLf Lsta ng quzfq szq fqlq A
a0 o LWl LL LLL, LL  LLL LLlL
LLL DL LE LEL BL LLL
| LL, LEL, LB LLL LLE LL |
B oW ® @ w m 122 2 3 1
L 0z o2 0 2 12 2 3 3
Q=j[R][7R]TdA=§ %;,ia ? 32?‘% I}—E ;j% _2xA|2 2 12 1 3
ket BB BB L 0|3 3 2 1

3
1
3
1
1
2

(3.39)

Let us consider the integral F_ (used in succeeding phases of computation) comprising

combination of identified matrices over the element (e), which results a matrix of order 6 x 3.

Since its calculations are too lengthy and complicated, such steps are given in.

Appendix A with brief detail. Simplified form is written in the following form

F,= [ (4RR™ATUL")dns

60u,-8u,-8u,+24u,-8u,+24u,

-8u,+12u,+2u,-16u,-8u,-24u,

2x Al -8u,+2u,+12u,-24u,-8u,-16u;,
5040 | 24u,-16u,-24u,+192u,+64u,+96u,

-8u, -8u, -8u, +64u . +04u,+64u,

| 24u,-24u,-16u;+96u,+64u,+192u,

12u,-8u,+2y,-16u,-24u-8u,
-8u,+60u,-8u,+24u,+24u,-Bu,
2u,-8u,+12u;-24u,-16u;,-8u,
-16u,+24u,-24u,+192u, +96u,+64u,

-8u,-8u,-8u,+64u ,+64u, +64u,

47

12u,+2u,-8u,-8u,-24u,-16u,
2u,+12u,-Bu,-8u,-16u,-24u,

-8u,-8u,+60u,-8u,+24u,+24u,
-8u,-8u,-8u,+64u, +64u+64du,
-24u,+24u,-16u,+9%u,+192u,+64u, -24u,-16u,+24u,+64u,+192u,+96u,
-16u;-24u,+24u, +64u,+96u,+192u, |

(3.35)
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Similarly, consider the integral F, = | ( ARR" A"VI" )dA, generates the matrix of order 6x3.
¥y

Ale

Its steps of simplification are described in Appendix A. Final step after integrating and
simplifying F, , is given below

F,= [ (4RR ATV )da

Al

t
60v,-8v,-8v,+24v,-8v +24v, 12v,-8v,+2v,-16v,-24v,-8v, 12v,+2v,-8v,-8v,-24v.-16v,
-8v,+12v,+2v,-16v,-8v,-24v, -8v,+60v,-8v,+24v,+24v -Bv, 2v;+12v,-8v,-8v,-16v,-24v,

2xA@| -8v,+2v,+12v,-24v,-Bv,-16v, 2v,-8v,+12v,-24v,-16v,-8v, -8v,-8v,+60v;-8v,+24v,+24v,

~ 75040 24v,-16v,-24v,+192v,+64v,+96v,  -16v,+24v,-24v,+192v,+96v +64v, -8v,-8v,-8v, +64v, +64v,+64v,
-8v,-8v,-8v, +64v,+64v,+64v,  24v,+24v,-16v,+96v,+192v,+64v, -24v,-16v,+24v,+64v, +192v,+96v,

(3.36)
where U=[u, u, u, u, us u] , V=[w v v, v, v v]| are the vectors of
nodal values of velocity components associated with six noded triangular element (e). Using
approximate functions (3.23), the integrals (3.20 - 3.22) over the element domain Q® may be

written as

RO = J‘ [(ﬁ(e) ((¢(e)) U(e))(w U(e)}ﬁd}’ + I[w)( (e) V(e))[agy } U(E)}jxdy +
o o 5 25 v
¢ (94 a¢(e) 8¢ T " ‘
‘!,{ ( ox } )4 [ oY ) )U axar, (3.37)
© _ (e) (e) @\[ 98 ' (@ @ {0\ o) 987 o
R (;ﬁ (¢ U)(aX v dY+j¢(¢)V)aY "y baxar +

7| W[ W) ]U(e’dXdY+ [ [ W[ WJ JV(e’dXdY +
2oy Lax aY

@) @\ @ @Y
Pr | o0 [a¢ ]+a¢ o J VdXdY ~ RaPr | (¢(’)((¢(”))TH(E))}«D(L1Y.
alax Lax ) oy oy

. (3.38)
an .
( o\
R = | ¢‘”((¢‘”’)T U“’)(%}:J 0(“)}XdY+J'{¢(E) ((¢(e)) m)(fw J (e)]ade +
a¢(9) a¢(8) T a¢(2) b¢(e) T ’ .
J, ax ( ax ] "oy ( oy ) }0( Y. (3.39)
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The matrix form of above integrals (3.37 — 3.39) may be obtained by using Egs. (3.28 — 3.36).
First consider Eq. (3.37) as follows

R® ={ [(arR™AUCL )dXdY}BTATU(") +{ [(4RR™ ATV LT )dXdY}CTATU("’ +
o

0°

y[AB{ [ (LLT)dXdY}BTATU‘”’ +AB{ [ (LLT)dXdY}CTATV@}
o

0*°

Pr(AB{ [ (LLT)dXdY}BTAT +AC{ | (LLT)dXdY}CTAT)U(")

[+) o)
or
RO =FEB AU + F,CT AU + y[ ABHB" AU + ABHC" ATV |+
Pr(ABHB" A" + ACHC™ 4" \U* (3.40)
Now Eq. (3.38) implies

RO = { [(4rRT 4TUL )iXdY}BT}ITU"’ +{ [(4rR™ 4TV OLT )iXdY}CTATU“” +
a

o
7[,4 c{ j (LLT)an’Y}BTATU“’ + AC{ j (LLT)dXdY}CTATV"’} +
o o
Pr(AB{J (LLT)dXdY}BTAT + AC{ j (LLT)dXdY} CTATJV“) - RaPr[A{ j (RRT}iXdY} ATH(‘{’
o n foid
or
RO =FB ATU® + F,C"A'UY + y[ ACHB"A'U' + ACHC" 4TV | +
Pr(ABHB™ A" + ACHC™ A" \V'” — RaPr(A0476") (3.41)

Similarly, Eq. (3.39) in matrix form may be written as

R = { [(4rRR"AUCL )dXdY}BTATQ(‘” +{ [(4RR ATVOL )dXdY} CTAT6 +

o o

(AB{ | (LLT)dXdY}BTAT +AC{ | (LLT)dXdY}cTAT]ew

o o
or
RO =FB A0 + F,C"A"0" +(ABHB" A" + ACHC" 4" )6 (3.42)

Let’s start with the differentiation of Eq. (3.40) w.r.t u, ;i=12,...,6, we get a square matrix

of order 6.
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or
[AB {f (LL" ey }BTA’ +AC{ ) (LLT}iXdY}CTAT:[w"} z—A{ | (RLT)dXdY}CTATU"’ +A{ [(rC )dXdY}BTATV‘”’,
or "’ ! i «
[ ABHB™ A" + ACHC™ 4" |y =~ AGCT A"U + AGE™ 4TV,
[M]y® =[N], (3.57)

where ' =[y® ¥ W Y Y YO is column vector of order 6x1 of ‘nodal

values of stream function associated with six noded triangular element (e).

[M]= ABHB™ A" + ACHC™ A" and [N]=-AGC AU + AGB" AV are matrices of order
6x6 and 6x1 respectively.

The values of velocity components U and ¥ obtained from Eq. (3.50) are used in Eq. (3.57)
for estimation of stream function. Stream functions (l//:'} ;i=12,...,6 ) comresponding to

element (e) is evaluated by solving system of Eqs. (3.57). Same procedure for the evaluation of
stream functions is adopted for 1312 elements. At the end, assembly of all those elements is
made to get system of equations, and their solution give the stream functions at each node.
Graphs of stream function are represented in sections (3.5 and 3.6) for different cases of

uniform and non-uniform heating.

3.3.2 Evaluation of Nusselt Number

Nusselt number is a dimensionless parameter used in calculations of heat transfer between a
moving fluid and a solid body. Here, local Nusselt number is evaluated at the bottom wall

denoted by My, , and Nu, is a local Nusselt number estimated at the side wall. Formulation for
both are presented below

——Ze a¢k and Nu, =-Ze Zﬁﬁ (3.58)

Consider the evaluation of Nusselt number Nu, at each node of a six noded triangular

element (e) by using Eq. (3.58) and transforming such expression in matrix form, we have

© 0 -
Nu,) —Ze ¢’* (3.59)
Matrix form of above expression becomes
(e) o\ O ¢ .
(M, ) =—(6°) _a%=_(9( Y ACLy,  i=12,...6. (3.60)
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where L, (i=1,2,..,6) is a vector of area coordinates (LI,L2,L3) as defined earlier, and

gives distinct value for each node (f) at point (x,,y,) of an element (¢), as follows

L g +bx +cy, i ) )
L, = =—|a, +bx +c,y Note. (x,,y,) is a point corresponding
e e YN e to node ‘1",
L |, a, + bx, + ¢,y
L a+bx,+ay, < ) . )
L,=|L| =—|a+bx,+cy, |. Note. (x,,y,) is a.point corresponding
® 24 to node ‘2’.
L3 (2) a3 + b3x2 + C3y2

Thus Eq. (3.60) may be written as

(6) 4cr, |

T

ACL,,

T

()= 2

(6°)

(97 acty |
(6°) 4ct,
(67)

ACL,

Same procedure is followed for other elements for calculation of Nusselt number at their
nodes. Our interest is to acquire values of Nusselt number only at those nodes which lie at the
bottom wall. In current investigation, there aré 41 nodes which lie at the bottom wall. Thus, an
assembled matrix of local Nusselt number at bottom wall is obtained of order 41x1.

- On the similar line, the computation of local Nusselt number -Nu, at the side wall may be made.

Using Eq. (3.58), value of Nu, corresponding to six noded triangular element (¢) may be

written as
6
(Nus)(”) :_kz:ﬁk%:—(H(e))Tg%z_(g(e))TABLm , i=12,..,6. (3.61)
k=]
[ g(e))r ABL(]} ]
6°Y ABL
@
6“Y 4BL,
or (Nus )(“) =
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Figure 3.5: Contour plots for uniform bottom heating, @(x,0) =1, with Pr= 10 and Ra =10°. Clockwise
and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

convection is also presented in other temperature contour lines which start getting deformed
and pushed towards the top plate.

As Rayleigh number increases to 10°, the buoyancy driven circulation inside the cavity also
increases as seen from the greater magnitudes of the stream functions as shown in Figure 3.4.
The circulations are greater near the center and least at the wall due to no slip boundary
conditions. Consequently, at Ra =10°, the temperature gradients near both the bottom and side
walls tend to be significant leading to the development of a thermal boundary layer. Figure 3.2
shows that the thermal boundary layer develops in approximately 80% of the cavity for

Ra =10whereas for Ra =10°, the isotherms presentéd in Figure 3.4 indicate that, the thermal

boundary layer develops almost throughout the entire cavity.

The values of stream function and isotherms in the cavity increases with the increasing of Pr
from 0.7 to 10, comparison is illustrated in Figures 3.4 and 3.5. The greater circulation near the
central regime of each half distributes greater heat, resulting in greater temperature near the
central symmetric vertical plane as shown in Figure 3.5. It may be noted that the temperature
varies within 0.4-0.5 for Pr = 0.7 (Figure 3.4) near the central core regime at the top half of the
enclosure whereas the temperature varies within 0.5-0.6 for Pr = 10 as seen in Figure 3.5. Due

to greater circulation at Pr =10, the zone of stratification of temperature at the central

symmetric line is reduced.
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3.6 Effects of Rayleigh number when the bottom wall is under the
influence of non-uniform heating
Stream function contours and isotherms are shown in Figures 3.6 — 3.8 for Ra =10’ -10’and

Pr=0.7-10 when the bottom wall is non-uniformly heated. As seen earlier, uniform heating
of the bottom wall causes a finite discontinuity in Dirichlet type boundary conditions for the
temperature distribution at the edges of the bottom wall. In contrast, the non-uniform heating
removes the singularities at the edges of the bottom wall and provides a smooth temperature
distribution in the entire cavity. Due to the non-uniform heating of the bottom wall for
Ra=10° and Pr=0.7, thermal boundary layer develops only over 60% of the cavity as
shown in Figure 3.6, which is small in magnitude as compared to that of the

uniform heating case. The conduction dominant heat transfer mode is observed up to

Stream Function,

0.01 .01
0.05 005\ 08r
0.4 0.1
R P 0’6. A
0.15 0.15 .
4 04+ e
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02t
0.6 0.7
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0.2 04 0.6 08

b Y
1 0 02 04 08 08 1

Figure 3.6: Contour plots for non-uniform bottom heating, g(.x,0) = sin(z.X), with Pr = 0.7 and Ra=10.

Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Figure 3.7: Contour plots for non-uniform bottom heating, g(x,0) =sin(z.X), with Pr = 0.7 and Ra=10".
Clockwise and anti-clockwise flows are shown Via negative and positive signs of stream functions, respectively.
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Figure 3.8: Contour plots for non-uniform bottom heating, #(.x",0) = sin(z.X), with Pr = 10 and Ra=10°.
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Ra=2x10* which is consistent with that of uniform heating case, where the critical Rayleigh
number is around 5000. It may be noted that the temperature at the bottom wall is non-uniform
and a maximum temperature difference occurs at the center.

At Ra=10’, the circulation pattern is qualitatively similar to that of the uniform heating case
as shown in Figure 3.7. Due to non-uniform heated bottom wall, the heating rate near the wall
is generally minimum which induces less buoyancy resulting in lower thermal gradient
throughout the domain. The uniformity in temperature distribution and least temperature
gradient are still observed at the central core regime within the top half of the domain. The
lower buoyancy effect also leads to a large zone of stratification of temperature at the vertical
line of symmetry as shown in Figure 3.7. The effect of Prandtl number is also pronounced for
Ra =10’ as seen in Figure 3.8, where the greater circulation causes more heat to be distributed
in the central regime. However, as compared to that of uniform heating cases, the values of
temperature contours are lower near the central and top portion of the enclosure for non-
uniform heating. The temperature contours are highly dense near the bottom wall which may

indicate a lower heating rate at the top as well as central regions of the enclosure.

3.7 Heat Transfer Rates — Local and Average Nusselt Numbers
Figure 3.9 shows the effects of Ra and Pr on the local Nusselt numbers at the bottom Ny,
and side wall Nu, . For uniform heating of the bottom wall, the heat transfer rate Nu, is very

high at the edges of the bottom wall due to the discontinuities present in the temperature
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boundary conditions at the edges. It reduces towards the center of the bottom wall with the
minimum value at the center as shown in Figure 3.9(a). On the contrary, for Ra =10’ with
non-uniformly heated bottom wall, Nu, increases from zero at both the edges of the bottom

wall towards the center with its maximum value their. Further at Ra =10’, non-uniform

heating produces a sinusoidal type of local heat transfer rate with minimum values at the edges

as well as at the center of the bottom wall, The physical reason for this type of behavior is due

to the higher values of the stream function (i.e. high flow rate) for Ra =10’ in the middle of

Side Wall

@

Uniform Heating
------- Non-Uniform Heating

Pr=0.7, Ra=1e5

Pr=10,
Ra=1eS

Local Nussel} Number, Nuy
-9

02 04 08 08
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Bottom Wall
15 : .

e niiform Heating
------- Non-Uniform Heating

Pr=10, Ra=1e5

Pr=0.7, Ra=1e%

-
=)
Y

Local Nusselt Number, Nu;

02 04 06 08
(b) Distance, Y

Figure 3.9: Variation of local Nusselt number with distance (a) at the bottom wall (b) at the side wall for uniform
heating (—) and non-uniform heating (- - -).

the first and second half of the cavity. As Pr increases from 0.7 to 10, the local Nusselt number

at the bottom wall N, increases slightly as seen in Figure 3.9(a). It may be noted that for all
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values of Prandtl Pr and Rayleigh number Ra, non-uniform heating enhances the heat transfer
at'the central regime only. The temperature contours diverge from the comer points toward the
central vertical line for uniform heating, and therefore local Nusselt number is a monotonically
decreasing function with distance. In contrast, for non-uniform heating, the temperature
contours are compressed around the intermediate zones between corners and the vertical line of
symmetry, and local Nusselt number is maximum at around X = 0.3 and 0.7. Figure 3.9(b)

illustrates the heat transfer rate at the side wall. The local Nusselt number at side wall Ny,
decreases with distance at the cold side wall for Ra =10°, Pr=0.7 for both uniform and non-
uniform heating. It may be noted that the heat transfer rate initially decreases and later

increases with distance for Ra =10° with Pr=0.7 and 10. At higher Rayleigh numbers, the

significant circulation has been observed which can be seen in Figures 3.4, 3.5, 3.7 and 3.8

Bottom Wall Side Wall

H Ty s 101 H

-QQ) .g 3| .
: :

e S

3 3

Z Z

9] ]
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Figure 3.10: Variation of average Nusselt number with Rayleigh number for uniform heating [(a) and (b)] and
non-uniform heating [(c) and (d)] with Pr = 0.7; (—) and Pr = 10; (- - -). The insets show the log-log plot of
average Nusselt number versus Rayleigh number for convection dominant regimes.
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results in highly dense contours at the top portion of the side walls and these dense temperature
contours are in contrast with the. conduction dominant cases as seen in Figures 3.2 and 3.6.
Further, it is observed that the temperature contours are compressed towards the side walls
away from the corner points at the bottom. Therefore, the heat fluxes are enhanced at the
regions away from the bottom corner points. The heat transfer rates are qualitatively similar,
but reduced for non-uniform heating of bottom wall as compared to uniform heating.
The overall effect on the heat transfer rates are shown in Figure 3.10(a)—(d), where the
distributions of the average Nusselt number of bottom and side walls respectively, are plotted
versus the logarithmic Rayleigh number. Figures 10(a) and (b) (cases a and b) illustrate
uniform heating and Figures 10(c) and (d) (cases c and d) illustrate non-uniform heating. For
all these cases, it is observed that average Nusselt numbers for both the bottom and side walls
remain constant up to Ra =5000 for uniform heating and up to Ra=2x10* for non-uniform
heating. Hence, dominant heat conduction mode corresponding to larger range of Rayleigh
numbers produces overall lower heat transfer rates against non-uniform heating. The insets
show the log—log plot for average Nusselt number versus Rayleigh number for convection
dominant regimes. The log-log linear plot is obtained with more than 20 data set. A least
square curve is fitted arid the overall error is within 1%. The following correlations are
obtained for cases a, b, ¢ and d as follows:
Casesaand b: Uniform heating ( Ra > 5000)
Nu, =2Nu,

=1.6219Ra"'®, Pr=0.7

=1.2238Ra"""", Pr=10

Cases candd: Non-Uniform heating (Ra >2x10*)
N, = 2N

=0.2939Ra"**, Pr=0.7

=1.2238Ra"®, Pr=10

3.8 Conclusions

The prime objective of this chapter is to reinvestigate the effect of Dirichlet boundary
conditions on the flow and heat transfer characteristics due to natural convection within a
square enclosure studied by T. Basak et al [S]. The penalty finite element method helps to
obtain smooth solutions in terms of stream functions and isotherm contours for wide ranges of

parameters Pr and Ra with uniform and non-uniform heating of the bottom wall. It has been
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demonstrated that the formation of boundary layers for both the heating cases occurs. It is also
observed that thermal boundary layer develops over approximately 80% of the cavity for

uniform heating, whereas the boundary layer is approximately 60% for non-uniform heating

when Ra=10’. The heat transfer rate is very high at the edges of the bottom wall and

decreases to a minimum value at the center due to uniform heating which is consistent with the
lower heat transfer rate at the edges due to non-uniform heating for Ra =10. The conduction
dominant heat transfer modes occurs at Ra <5x10’ during uniform heating of bottom wall

whereas it occurs at Ra <2x10* for non-uniform heating.
At the onset of convection dominant mode, the temperature contour lines get compressed

toward the side walls and they tend to get deformed towards the upward direction. During

Ra =10’ the thermal boundary layer develops near the bottom and side walls, and the central
regime near the top surface has least temperature gradient for both uniform and non-uniform
heating. The local Nusselt numbers at the bottom and side walls represent various interesting
heating features. The local Nusselt number at the bottom wall is least at the center for uniform
heating and there are two minimum heat transfer zones at the center and corner points for non-
uniform heating. The non-uniform heating exhibits greater heat transfer rates at the center of
the bottom wall than that with uniform heating for all Rayleigh numbers. The local Nusselt
number at the side wall is found to decrease with distance for conduction dominant heat
transfer whereas due to highly dense contour lines near the top portion of the side wall, the
local Nusselt number is found to increase for both uniform and non-uniform heating cases. The
average Nusselt number indicates overall lower heat transfer rates for non-uniform heating.
The average Nusselt number is found to follow a power law variation with Rayleigh number

for convection dominant regimes.
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A.1 Calculation of integral 5 = ”Hidxdy ;o i=1273
@
According to problem (2.10.1), the shape functions for linear triangular element (e) are
defined as
1
H, =ﬂ[(x2y3 —x3y2)+(y2 —y3)x+(x3 _xz‘)y:l )

1
H, =ﬁ[(x3y1 —x )+ (- ) x+(x —x3)y] ,

1
H, =ﬁ[(x1y2 _x2y1)+(y1 _yz)x+(x2 _xl)y:l

Without generality, above shape functions may simply be written as (as illustrated in Eq. 2.46)
H=L, H,=L ad H,=I,

Therefore, given integral becomes

b = [[[H, H, H,] dvdy (A1)
@

Consider the first term of above integral

[ H,dvdy= [[ Lxdy = A (usingEq. 2.51)

(e (e 3

Similarly, values for other two terms of integral (A.1) are

j j H,dxdy = j j L,dxdy= % (usingEq. 2.51)
(e) (e)
J’ J’ Hdxdy= J’ J’ Lydxdy = % (using Bq. 2.51)

(e) (O]

Using above values in integral (A.1), we get

%l n
b =84 =% i L

%

In problem (2.10.1), Ais represented by A4.
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A2 Evaluation of integral F,= [ (4RR"4"UL")dA

A(f)
F.= [ (ARRT A7UL")dA
Al9)
1 0 0 -1 0o -17[L} 1 0 0 0 0 0]fy
01 0 -1 -1 0f|L? 01 0 0 0 0fln
00 1 0 -1 -1{|L*|c., .2 .. . 00 1 0 0 0y
= L LL L
A«-)°°°400£1L2[lq > b 12L’L’L’[“J—l—104oou,,[l“LZ3]
0 0 0 0 0 ||LL, 0 -1 -1 0 4 0|y
0 0 0 0 4]|LL | -1 0 -1 0" 0 4|y

With the help of computational software program Mathematica 8, the product of matrices

written above gives a single matrix of order 6x3, that is

Fl,l F1,2 F1,3
F2,1 F2,2 F2.3
F,, F, FE
F; — F3,1 F3,2 F3,3 dA , (A2)

a@| Ta1 Taz T4
F5,1 F5,2 F5,3
F6,] F6,2 F6,3

where,

F1,1 = L1 ((L21 (L21 - Lle - LlLs) - L1L2 (L21 - Lle - L1L3) - L1L3(L21 - L1L2 - L1L3))ul
+(-LL,2-LL,-LL)+I31-LL,-LL,)-L,L,(L’-LL,-LL)u,
+(LL,(’-LL,-LL)-L,L,(l’-LL,-LL)+LA1:-LL,-LL,)u,
+4LL,(L*-LL,-LL)u, +4L,L,(3-L,L,-LL)u,+4LL,(L*-L,L,-LL)u,),

F1,2 = Lz ((L21 (L21 - L1L2 - L1L3) - L1L2 (L21 - L1L2 - L1L3) - L|L3 (L21 - Lle - L1L3))u1
+(-LL,*-LL,-LL)+I21*-LL,-LL,)-L,L,(L"-LL,-LL)u,
+(LL,(*-LL,-LL)-L,L,(-LL,-LL)+13(-LL,-LL)u,
+4L,L, (Lzz -L.L,-LL;)u, +4L,L, (L21 -LL,-LL;u, + 4L1L3(L21 -L\L,-L L),

Fx,s = L3 ((L21 (L21 - Lle - L1L3) - L1L2 (L21 - Lle “LlLs) - L1L3 (L21 - LILZ - L1L3))ul
+ ('Lle (L21 - Lle B L1L3) + Lzz (L21 -LL,- L1L3) -L,L, (L21 -LL,- L1L3))u2
+(-LL,2-LL,-LL,)-LL,(2-LL,-LL)+L3L3-L.L,-LL,)u,
+4LL,(:-L,L,-L,L)u, +4L,L,(L:-L,L,-L,L,)u,+4LL,(L:-L,L,-L,L,)u,),.

E,=L/(@(LL,+L%-L,L,)-LL,(-LL,+L%-L,L,)-L,L,(-L,.L,+ L% -L,L))y,
+(-LL,(-LL,+1%-L,L)+ L22(-L:L2 +L)-L,L,)-L,L,(-LL,+L%-L,L))u,
+(-LL,(-LL, +12-L,L,)-L,L,(-L,L, +1%-L,L)+13(-LL, +12-L,L,))u,
+4LL,(-LL,+L%-L,L)u, +4L,L,(-LL, + 1} -L,L)u, +4L L,(-L,L, + L% -L,L,)u,),
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E.=L, (C-LL,+1%-LL)-LL,(-LL,+L%-L,L,)-LL,(-L.L,+L3-L,L,)u,
+(-LL,(-LL,+1-LL)+I2(-LL,+L%-L,L)-LL,(-LL,+L%-L,L)u,
+(-LL,(-LL,+L%-L,L)-LL(-LL,+L%-L,L)+L3(-LL,+L%-L,L))u, '
+4LL,(-LL,+L%-L,L)u, +4L,L (-LL,+1%-L,L)u, +4L,L,(-L.L, +L3 -L,L;)u,),

F2,3 = L3((L21 (‘Lle + L22 - L2L3) - L1L2 ('Lle + LZ2 - L2L3) - L1L3('L1L2 + LZ2 - L2L3 ))ul
+ ('Lle ('Lle + L22 - L2L3) + L22 ('Lle + L22 - Lz'L3) - L2L3 ('Lle + L22 - L2L3))u2
+(-LLy(-LL, +L;-L,L))-LL,(-LL, + L, -L,L)+Li(-LL, +L% -L,L)u,
+4L,L,(-LL, +13 -L,Lu, +4L,L,(-L,L, +12 -L,L)u, +4L,L,(-L,L, + L -L,L,)u,),

F3,1 = Ll((L21 ('L1L3 - L2L3 + L23) - Lle('L1L3 - L2L3 + Lé) - L1L3 ('L1L3 - L2L3 + L23 ))ul
+ ('Lle ('L1L3 - L2L3 + Lé) + L22 (‘L1L3 - L2L3 + Lé) - L2L3 (‘L1L3 - L2L3 + Lz_v,))ui
+ ('L1L3 ('L1L3 - L2L3 + Lz_v,) - L2L3 ('L1L3 - L2L3 + Lz_v,) + Lé ('L1L3 - L2L3 + Lzs))u3
+4L,L,(-LL,-L,L,+L%u, +4L,L,(-LL,-L,L,+Lu, +4L L,(-LL,-L,L, +L3)uy),

F3,2 = Lz ((L21 ('L1L3 - L2L3 + Lé) - L1L2 ('L1L3 - L2L3 + L23) - L1L3 ('L1L3 - L2L3 + Lé ))ul
+(-LL,(-LL,-L,L,+12)+1%(-LL,-L,L,+12)-L,L,(-L,L,-L,L,+L3))u,

+ ('L1L3 ('L1L3 - L2L3 + Lz_v,) - L2L3('L1L3 - L2L3 + Lz_v,) + LZ_,,(-L1L3 - L2L3 + L23 ))u3
+4L,L,(-L,L, -L,L, + LY)u, +4L,L,(-L,L;-L,L, + LY)u, +4L, L, (-L L, -L,L; + L)),

F3,3 = L3 ((L21 ('L1L3 - L2L3 + Li) - L1L2 (’L1L3 - L2L3 + L23) - L1L3 (‘L1L3 - L2L3 + Lé ))ux
+ ('Lle (-LiL;-L,L; + Li) + L22(-L1L3 -LL; + Li) - L2L3('L1L3 -L,L;+ LZ_’,))uz
+ ('L1L3 ('L1L3 - L2L3 + L23) - L2L3 ('L1L3 - L2L3 + L23) + L23('L1L3 - L2L3 + L23 ))u3
+4LL,(-LL,-L,L, +L%)u, +4L,L,(-LL,-L,L, + L})u, +4L L,(-L.L, -L,L, +L%)u,),

F,, =L (4LL, -4L% -4LL,L,)u, + (4L, +4L L, -4L 2L, )u,
+(412L,L, - 4L 1AL, +4LL,I2)u, +16 213 u, + 16 L 12 L,u, +16L7L,L,u,),

F,, =L,((4LL, -4LL, - 4ALJL,L;)u, + (4LIL +4L,L, -4L L)L, )u,

+(4I2L,L, - 4L 1AL, + 4L, L,12)u, + 16 (I3 u, + 16L 12 L,u, +16L2L,L,u,),
F,=L, (4LL, -4LL - 4L2L,L,)u, + (4L, +4L L) -4L L’L,)u,
+(4I2L,L, -4L 1AL, + 4L, L I2)u, +16 2[3 u, + 16 L, I2L,u, +161’L,L,u,),

E,=L, (4LL,L,-4L 2L, -4L L I2)u, +(4L L, +4LL, -4L21%)u,

+(4L,L, 12 - 41212 +4L,13 )u, +16 L L2L,u, + 16 L3L2u, +16L,L,L2u,),

E,= L,((4LL,L, -4L 2L, -4L,L,L:)u, + (4L, L’L, + 4L’ L, -41212)u,

+ (AL L, 12 - 41212 +4L,12)u, + 16 L L2 L,u, + 16 121 2u, +16L,L,I3u,),

E,= L,(4LL,L, -4L, 2L, - 4L L, I2)u, + (4L LL, + 4L, - 4L L%)u,

+ (AL, L, L2 - 41212 +4L,12)u, + 16 L I L,u, + 16 121 2u, +16L,L,2u,),
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F,, =L,(4LL,-4LL,L, - 4L )u, +(4ALL,L, +4L L, - 4L L,1%)u,

+ (412 -4LL, 12 + 4L, )u, + 16 2L, L,u, +16 LL,L2u, +16L°L3u,),
F,,=L,((4UL,-4LL,L, -4L3L%)u, +(4LL,L; +4L L)L, - AL L1,

+(4LL% - 4L L,1% +4L, 1’ )u, +16LIL, L u, +16LL,L2u, +16LL%u,),
and
F,,=L,(4UL, -4L]L,L, - 4L’L%)u, + (4LL,L, +4L L, - 4L L, L% )u,

+(4LL -4L L, 12 +4L 12)u, +16 2L, L,u, +16 L L,L2u, +16L3L%u,)
Substitute above values in Eq. (A.2) and then integrate using formula (2.51), resulting the
Eq. (3.35).

Following mathematical code of Marthematica 8 has been used for execution of above
results,

al=(x2 y3-x3 y2); a2=(x3 yl-x1 y3); a3=(xl y2-x2 yl);

bl=(y2-y3); b2=(y3-yl); b3=(yl-y2);

cl=(x3-x2): c2=(x1-x3); c3=(x2-x1);
a={{1,0,0,-1,0,-1},{0,1,0,-1;-1,0},{0,0,1,0,-1,-1},{0,0,0,4,0,0}%,
{0,0,0,0,4,0},{0,0,0,0,0,4}};

at=Transpose([a];

r={{L1"2},{L2"2}, {L3"2},{L1 L2}, {L3 L2}, {Ll L3}}; rt=Transpose[r];
u={{ul}, {u2}, {u3}, {ud}, {us}, {uet}; h={{L1l},{L2},{L3}}; ht=Transposelh];
Fl=(a.r.rt.at.u.ht};

F1((2,1]1); (*this command is used to get result of an element located at
second row and first column of matrix F1*)

Dimensions [Fl); (*gives dimension of matrix Fl i.e 6x3%*)

MatrixForm[F1] )

A3  Evaluation of integral F, = J' (ARR™ATVL)dA

A
F,= [{ARR A7V )dA

Al®) Y

(1 0 0 -1 0 -1][L*] (1 0 0 0o 0o 07v]

0 1 0 -1 -1 0ffL? 01 0 0 0 0ifjy

0 0 1 0 -1 -1f|L? s 1 . 0 0 1 0 0 0w
= dA
Bll0 0 0 4 0 oL [ &7 L7 4L Lh LL] -1 -1 0 4 0 0}y, [ L L]

0 0 0 0 4 0}|LL 0 -1 <1 0 4 0}y

[0 0 0 0 0 4]|LL| -1 0 =1 0 0 4]]|v]

For evaluation and simplification of above integral, similar procedure as described in A.2
may be followed, just replace velocity component # by v whereas remaining terms will be

unchanged.
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06 0’6 0%
A.4 Simplification of integral J'¢,, (Ume VW— J%( EYE aYJdX d¥ =0

Solution.

, 08 59, &'
j¢k[ug)?+p }a M[a T+ o XY =0 (A3)

o6 82
ox’? aYI

. o6 0g, 06 5’6
Since, (¢k ]——m*-»m+¢,‘5(—2-

Consider ‘[(éh [ )dXd

ax ax
y 92_9 ( 529 00 ¢, 6
L ox? ¢ ax ox

Taking area integral on both sides, we get

M X’ dY“igt}(@g ] "I%——dXdY (A4)

06
oX

0 Il . 06
ig}"(ﬁh a)dXdY = (ﬁ(@ é}?”-")dg

r

Converting area integral J.——(gé,, )dXdY into line integral, implies that

Using above relation, Eq. (A.4) implies

20 EY. a¢,
dXdY = —n, |ds—|—% ——dX dY A5
fJ;¢x ax? ?(% X "x] IaX X (A.5)
Similarly,
8% a0 04, 06
Ma - dXdY = 4{@57;%] s ja}; ade Y (A.6)

Addition of Egs. (A.5) and (A.6) generates the following result

o8 0% o0¢, 06 6¢ 69) ( 00 )

2+ 27 \dxdy =- k Tk dXdyY + 4 )
!f‘(ax’ BYZ) J (BX ox " or oy 9:" ax Ty SR (A7)

Using integral (A.7), Eq. (A.3) reduces to following form

00 06 og, 88 ¢ ae) [
U—+V— dXdY + || == — + =& — |dXdY - e ds=0
!f*( ax ' or i(ax ax o ar )24 ¢ "’ ¢*

Using approximated functions (3.15), above integral becomes
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T ak ak akakr kakr
£(¢ (470) %+ 4, (077) 2 }MX (;{ 2 %j‘iy—a‘f‘,}ekdm

o6 o6
- —_— ds =
(i{”x PY% ny )¢k S =

A.5 Evaluate the following integral

oU 6 (6U oV U U _
j¢k(U—»- v dY-y;[;ﬁ{-éf[—aT(-+—é?HdXdY Pr M(axz aYz}dXdY-O (A.8)

Solution.

. aU 8V 6¢k 8U 8 V 8U 8 V
Consider ¢k ¢k
aX 8Y 1524 8X 8Y aX 8Y

p (6U+8VJ ¢(8U gy_] 8¢k(8U glf_)
Yox\ax oy “lax or)| axl\lax oy

Taking area integral on both sides, we get

f"’ o (oU 8V}1X I (8U aV) 8¢,((8U o ov
P ax\ax "oy ox oy ax oy

‘M‘ o (8U aV}dXd ‘[ 6U GVJ _[a¢k 6U I%QKdXdY

:oX\eX oy aX oY X aX 20X Y (A.9)
U ov

Converting area 1ntegral'[ [ (ZX 6Y]:’dXdY into line integral, we get

9 8U aV aU ov
ia[ ax 6Y}IX (M ] (A.10)

Using integral (A.10) in Eq. (A.9), implies that

[42 d (gy_ av}w wk(aU 8V) e ds— [ 289U iy Iam G
I ax\ax oy J ax ox J ax oy

By Eq. (3.7), au + o =0, therefore above integral becomes
oX oY

o (oU oV 04, U o¢, OV
dy = ~—dXdy ,
i‘b" ax(ax Y I@X aX IaX oY (A1)

Using Eq. (A.8), we may write

o’U oU 04, 0U , 04, 8U) ou ou
axdy =—(| 299 06 OV iy v 0, OY o O N5 4
J ¢"(6X2 6Y2J J (aX ox ' or oy 3{)( Yox 8Y}¢" ’ (A.12)

69




Appendix A

Using Eqs. (A.11) & (A.12), Eq. (A.8) becomes

j¢k(U-(2-q+V—(9—lj- dY+yJ[%(—3—g+%§K)dXdY+PrI(%§—q+%§—[i)dXdY
oY Nax ax “ax or Naxax oror)

U  8U
~Pr<ﬁ(an/—Y-—+ )¢,,ds 0

r

Approximated functions (3.15) reduces to above integral in following form

ry og,’ 6¢k og, 04" o4, og,"
ﬂfh (¢/U ) +4.(8,'7, }UdXdY { ( X x }JdXdY+ rjl(g).(-—a—f)mdmy}

T
[ L LU R A
Nax ax " ar or X

A.6 Compute the integral

oV aV ou aov oV o
U=+ dY - + FJ(dY Pr + ’d)(dY—RaPr 9dxdy =0
Jf’*( ax ' ar I‘ﬁ‘[ay[ax ay) I¢'(6X’ ar* £¢*

(A.13)
Solution.
In the light of Egs. (A.11) & (A.12), we have
ou ov o 3U og, oV
Y= —dXdY
j 2 ay(ax E% j oY aX ,[ay oY (A.14)
oV oW o, oV 0¢, aV) ( )

+— |dXdY 2t I\ aXdY + — d. .
M[a,\(2 J J.(a)( ox oy oY ¢ "oy )0 (A.13)
Using Egs. (A.14) & (A.15), Eq. (A.13) reduces to following form
M( ay + j 969U axay + j a¢* dXdY I(%2K+?-¢—"?—V-)d/\’d}’

a Y oX ax X aY oY

| o oV
'—Prcﬁ(nx > +ny 3};)¢de - RaPr£¢k9 dXdY =0

r

Using of approximated functions (3.15), above integral gives

)08, ry\ 94, . 09, 0, 04,
£[¢k(¢k U,) aijv +4,(¢, Vk)_f__}/kdXdY+ M ¢ a{f\/ )yazxdn j(_@’. ;’Y }I/kdXdY}

([ 2298 | 24, 94
+Pr i(g)-(- AT J}/dXdY RaPr M 4,6, Jixdy - Pr<}5( Z—+n, )¢,,ds
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B.1 Finite Element Solution of the Laplace Equation with 4-Node
Rectangular Element

Consider a simple form of the steady state heat conduction problem in a rectangular
domain (shown in Figure B.1) with Dirichlet boundary conditions defined by Laplace

Equation (all material properties are set to unity).

u, S _

e e 0 : (B.1)

forx=[0,a],y=[0,6], with a=4, b=2

Viu=

where,-u(x, y) is the steady state temperature distribution in the domain:

The boundary conditions are

0,y)=100 . .
u(0,) Imposed temperatures on the left & right boundaries
u(4,y) =250
,0) =50 .
u(%,0) Imposed temperatures on the top & bottom boundaries
u(x,2) =200
v
— d=4 >
11 12 13 14 15
8 7 6 5 I
10 5 I8 7 6 b2
1 2 3 4 l
1 2 3 4 5 > X

Figure B.1: Discretization of given geometry into 8 elements (each one is 4-node rectangular element)
by signifying global nodes at vertex of each elemént

For weak formulation of governing Eq. (B.1), multiply Eq. (B.1) by an arbitrary weight
functionw(x, y), and integrate over an arbitrary domain Q°, whose boundary is I'*. The

arbitrary domain could represent an.n-node element within the solution domain Q with

boundary I', as shown in Figure B.2.
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Figure B.2

The equation obtained is
2 2
jqu{§§+§§}m@=o
o ox~ oy

Using eq. (A.7), above integral may be written as

_I[@@+@—@—dedy+(ﬁ(¢§g+ nv@-)wds:O
dx oy

I(%.a_ll_+§w_é‘_]dxdym¢(n g—lf-f-n,?—lﬁ]wtfs
“ox T oy

In view of above result, Eq. (B.2) becomes

ow ou  ow ou
———+ ——— dxdy = { q,wds
(5555 =g

el

Appendix B

(B.2)

(B.3)

The approximate solution of equation (B.3) for an arbitrary, n-node element is defined by

u'(x,y) =Y ulyi(x,)
i=1

+ where, /] is nodal value for u(x, y) at node j corresponding to element e

¥} (x,y) is interpolation function for u(x, y) at node j within the element e

¢ Moreover, the weight function w(x, y) represents a variation of primary variable u(x,y), and

thus takes on the nodal values w, :y/j, i=1,2,..,n. Thus, Eq. (B.3) yields the following

form

il . awa[//e a;va(l//e ¢
Zu}_["‘ “’+—-- L dxaj)mgs%q”ds
IR !
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In matrix form, it becomes

e, e e s
ZK!J .I_ i ; i=L2,....... n

oy’ oy’
Where, K; = I[@L.}.@l’.)d;«b;

J\Ox ox oy Oy
O =Pyiq,ds

re
u=[uf e ]

Since there is no flux (g,) given at all nodes of the problem domain, therefore value of

column vector OF will be assumed as zero vector. Thus, the weak form for an n-node

element in condensed form may be written as

ZK;;—F: s i=12,.m (B.4)
Jj=1
where,
¢ Jy* ¢ Jy*
K;=I(6W' v, ov W’deajz . (BS)

which is element coefficient matrix, also called the element stiffness matrix.

-
|

Linear shape functions in x - direction

a-x x-0
= = x=0 < hi=a »> x=a
a a ® ®
Xi Xi+1
;l(y)_yiﬂh—y {z(y)zy;yr
5 ! ’0 Linear shape functions in y - direction
=— = =0 «— = > =b
b b 3/e h=b yQ
Yi Yist

The product of two sets of above mentioned shape functions results an interpolation functions

in terms of local coordinates (x, y), which are as under
L H-203)
b a b
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Vi(xy) = ¢2<x):2<y)——§[—y)=§( _1)

w;(x,y)=¢3(x)43(y)=[§j(

w:(x,y)=¢4(x):4<y)=(“;"

Using eq. (B.5), local stiffness matrix corresponding to 4-node rectangular element may be

evaluated as

_a%_ _.aﬂ
= o
e & [¢} a a a IZ] 8 o lZ]
ge[llm® 2 2 2a|2 % 3 e
Q° B —5;-
'?Zi Byq
- % )

Performing integral after substituting the above interpolation functions, the computed
element stiffness matrix is
All_ A‘lZ A13 Al4

K= A21 Azz A23 A24
’ A3 1 A32 A33 A34
A41 A42 A43 A44

(B.6)

Where,
"0y, Oy, | By, Oy
4. = 4 1LV |
! yIOxIO[ ax ax * ay ay ab)
y=bx=a
1T y](-—b"y)+(—“'x)(-““"J}dxdy
20520 ab ab ab
y=bx=a
zbz _[ _[{ b y ) }dx‘b’
y=0x=0
17 2 a (a—x)'”
zbz_[ (b—y) x0+——3—0 dy
17 : a
= b- —d
JEre) y=o{a( y) + 3} y
3
_ 1 _(b—y)l +£3_| |b =az+b2
2B 3 lo 3 Yo —3ab >

74




T 5 )
- a21b2 T bxr{"(b-y)z + (a"""z)}dw

A =yJ=.bx].a oy, Oy, a% Az dxdy
13 ox ox o oy

y=0x=0

TR
L I (5 =y} (4 - ax) iy

et

-

Y
[P 8 ] aep
6ab ~

(v, v 0v )y
Ox oOx ay ay

T2

a
r-.
i
'—.
, -.—.u

k >
n '_.II:I‘

il
l_
TI ‘ﬁ'—.\ﬁ -

ey
p——
=l
=

|
~

N
S——
.
[}

f

o~
p—
‘é.‘—r

> &
(=4

#

y
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ab® !, 3
[P o] o2
ab* |2 3 3 6ab

Since element coefficient matrix is symmetric, then we have

a® -2b*
Ay =4,= 6ab
oy, By, | B, 5%) )
= + dxdy
SNIC e =
y=bx=a (b-y)2 e
=y.[0;=[0{ JETS) +a2b2 dxdy
1 y=bx=a 5 ,
T ,[ {(b“y) +x }dxdy
y=0 x=0
1 2
o {6 @ Ly
yail)

y=0x=0 ax ax ay ay
y=bx=q
N O B
seomo (A Gb J\ab ab )\ ab
1 )'=bx=a
== | [{y-y' -2}y
a y=0x=0
1 ¢ . a’
= by — gyt — =
azbz,.'[u{ay Y 3}‘1}1
[P B _ab)_po2
ab®> |2 3 3 6ab
y=bx=a
oy, vy, Oy, dy,
A, = ( 274 dxdy
) H & & &y W
yﬁbxsa
N R
yooso L\ ab ab ab )\ ab
177
= sz.[ I{y‘—bywax+xz}dxdy
a y=01_;=0
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l y=b a3 a3
A’z4 = a*b? }J- {ay —aby~—7+?}dy

l y=b a2
=7 Y “by——}dy
1
ab

—_—

0 6
b b abh|  a+d
3 ~ 6ab

Y
2{
a+ b

A3l = A13 = 6ab

2

2 6

b? 24
6ab

y ‘yj-_bxj_“(al//3 al’(/3 +al//3 al/ﬁ}dxdy
3 = -
’ oo\ Ox Ox oy Oy

:jj{sz = }dxdy

y=0x=0

E

y=bx=g

[T

_0 x=0

1’7 a
. 2
I e + ——
a’b’ y'[o{ay 3 }dy
1 y=b 2
ki Ll
1 b +il}_ _ a’+ b’
ab2 3 3ab

) =yJ=_b,.=|_a(ay/3 oy, N oy, al’”"]dxdy
oL\ x o ox &y ¥y

T

272 2
seosmo L G0 ab
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4 =TT(6% oy, . ov, 5W4deaﬁv
44
y=0x=0 ax ax ay ay

_ yjbxja{ % +@}dxdy

Substitution of above all values in Eq. (B.6) yields

[ a?+8? a®2p? __a+b? b2 242 |
3ab 6ab 6ab 6ab
a?-2p’ a?+b* b2 -242 _ d+b?
Ke - 6ab 3ab 6ab 6ab
Y _d+h? B -2d’ a?+b? 222"
6ab 6ab 3ab 6ab
b1-24’ _a*+b? a2 -2p* at+b?
L 6ab 6ab 6ab 3ab |

—2(a2 +b2) a’ - 2b —(a2 +b2) b -2a" |
Ke=—L a-2pt 2a'+b) b-2a (a4 B.7)
6ab —( 2+ bz) b -24a° 2(a2 +b2) a*-2b°

b*-24* —(a2+b2) a* -2b* 2(a2+b2)

Now consider a value of above matrix for a given domain which is discretized into eight
equal segments (as demonstrated in Figure B.1), each one is four noded rectangular element.
Each element has length a=1 and width b=1. 6" element is illustrated in Figure B.3 with

1-4 local nodes whereas 8, 7, 14 and 13 represent the global nodes.
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Figure B.3: Dimensions of 6" Element with Symbolization of Local and Global Nodes

By putting a=1 and »=1 in local stiffness matrix (B.7), the value of 6™ rectangular element

is obtained as under

2 L _i _1
k] 6 k] 6

-1 2 _1 _1

6 3 13 k]

K= L o1 2 1
k] 5 k] 6

L 1 _1 2

[ k) 6 3

Since all the elements are equal in length and width. Therefore, value of local stiffness matrix
corresponding to each element will be same as mentioned above (for 6™ element).
Local stiffness matrices of each rectangular element by allocating global nodes

(corresponding to their local nodes) in anti-clockwise direction are given below

K K K;

1 2 9 10 2 3 8§ 9 3 4 7 8

2 1 1y _1 2 _1 .1 _1 2 _ 1 L _1

1 3 6 3 61 2 3 3 3 6 3 3 6 3 6
-1 2 1 1 1 2 1 i 1 2 L .1

2 6 3 6 3 3 3 3 T8 T3 4 % 3 6 3
—d L 2 L 1 1 2 1 1 1 2 1

5 s 3 7% 8- v 3 % T|1=5 —¢ 3 7%
0|-+ -1 -1 2 1l 1 _1 2 L 1 _1 2
1 6 3 6 3 9 3 3 6 3 8 6 3 6 3

Ky Ks Ks

4 5 6 7 7 6 15 14 8 7 14 13

2 1 1 1 2 1 1 _1 2 _1r 1 1

4 3 6 3 6 7 3 6 3 6 8 3 6 3 6
1 2 _1r 1 —d 2 1 .1 L 2 _L 1
S|-% 3 6 3 6 6 3 6 3 7 6 3 6 3
L A 2 1 U A § 2 L IS T § 2 1
6 3 6 3 3 15 3 6 3 6 14 3 6 3 6
[ Y S 2 S0 FR W 2 L 1 _1 3
7\ -% 3 6 3 14 6 3 6 3_ 13 5 3 6 3
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Assembling all of above element matrices generates an assembled global stiffness matrix[K ]

of order 15x15 as given below
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% -% 0 0 0 0 0 0 -4% -% 0 0 0 0 0][y] [0
-% % -% 0 0 0 0 -% -4 -% 0 0 0 0 0 (|lu]| |0
0 % % -¥% 0 0 -4 -% -4 0 0 0 0 0 0 |lu] |0
0 0 -Y% % ~% -% -¥ -4 0 0 0 0 0 0 0/|lullo
0 0 0 -% % -% -% 0 0 0 0 0 0 0 0 /||lu] |0
0 0 0 -¥% -% % -% 0 0 0 0 0 0 -Y% -¥llul |0
0 0 -4 -K =K -K % -4 0 0 0 0 -4 -¥ -4Kllu4 0
0 -% -% -% 0 0 -4 % -% O 0 -%X -% -K 0 ug |=|0
-A =K -K 0 0 0 0 -4 ¥ =% A -K -A 0 0 Uy 0
% =% 0 0 0 0 0 0 -Y% % - =¥ 0 0 0 ||lu,] |0
0 0 0 0 0 0 0 0 -4 -% % =% 0 0 0 ||u]]o0
0 0 0 0 0 0 0 -} -Y% -% -% % =¥ 0 0 [lu,]| |0
0 0 0 0 0 0 -% -% -4 0 0 =% % =% 0 [lu,| |0
0 0 0 0 0 -¥% -% =¥ 0 0 0 0 -% % -Yllu.l |0
[0 0 0 0 0 -% -4 0 0 0 0 0 0 -% % |lu] [0]

(B.8)

where, [U]is a vector of nodal values of temperature.

At the singular points (i.e global nodes 1, 5, 15 and 11), the specified nodal values are
handled either by average of the two specified values or the higher of the two specified values
of u. (Note that the points occur at corners of problém domain are referred as singular points).

Therefore, values of boundary conditions at nodes on the boundary of the domain are

u1:100;50=75 u,=u, =u, =50
g =20%30 155 u, =250
2
u,, =100 y, = 1001200 ;5
2
2 0
U, =uy =u, =200 Uy = —00;—25—= 225

The nodal solution vector [U]becomes
[U]=[75 50 50 50 150 250 wu, u, wu, 100 150 200 200 200 225]
Above vector shows that the unknown values of [U]occur at global nodes 7, 8 and.9.

For evaluation of unknown parameters (u,, %, and #,), eliminate rows 1-6 and 10-15 of

global stiffness matrix K. All known quantities are moved from left side of the matrix

equation to the right side to obtain the condensed equations. Thus, Eq. (B.8) implies
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0 0 -4 -4 -4
0 -5 -4 -4 0
A =K =% 0 0

-A K -4
0 -4 %
0 0 -%

0 0 0 0 -¥% -%
-5 0 0 -¥ -4 -X4
i -hK K -K -4 0

Necessary simplification generates result as follow

2.6667 —0.3333

0

u] [375

—0.3333  2.6667 —0.3333 || u, [=]|250
0 —0.3333  2.6667 || u, 275

Above system of equations gives the following solution at unknown nodes,

u,] [156.6532
u, | =|128.2258
u,| |119.1532

Graphical illustration of nodal solution has been shown in contour plot as under

‘
1.7¢
1.5(

1.2¢

0.7¢
0.5(
0.2¢

0

05
X

40
120

1 1.5

Appendix B

~]
W
J
=
(=]

[ = e R I — =~ I i i B B - B — I — N =]

Figure B.4: Contour Plot executed using Finite Element Solution of Laplace Equation
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