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Preface

Most of the problems encountered in the field of science and engineering are

developed in terms of non-linear differential equations [1, 2]. It is a well-known fact

that these differential equations cannot be integrated analyically in most cases. It is
necessary to apply some method of approximation numerically for most reliable
solution. A large number of different approximation methods for solving differential
equations exist, the most important and famous method is the finite element method

[3,4].

The effects of thermal boundary conditions on natural convection flow of fluid within
an enclosure were investigated by different authors so far by using different numerical

schemes. The natural convection flow in a square cavity under the influence of
uniformly and non-uniformly heated boffom wall and keeping top wall as well
insulated while two vertical walls are cooled by means of two constant temperature

baths is examined by Basak et al. [5] and yields consistent performance over a wide
range of parameters Rayleigh number (.Ra) and Prandtl number (Pr) with respect to

Dirichlet boundary conditions. Various aspects of the subject problem have been

investigated by Basak and Ayappa [6], Ostrach [7-9], Gebhart [0], Hoogendoorn

[11] and Imberger U2l. A comprehensive numerical study of natural convection flows
and heat transfer characteristics in an enclosure with different sidewalls temperatures
(i.e. one vertical wall of enclosure is heated and another one is cooled waIl, whereas

top and bottom of the cavity are insulated) has been made previously by Nicolette et

al. [13], Hall et al. [14], Hyun and Lee [15], Fusegi et al. [16], Lage and Bejan

[17, 18] and Xia and Murthy [9]. November and Nansteel [20] and Valencia and

Frederick [21] have examined the natural convection within square cavity, heated

from below and/or the top was cooled. Steady natural convection in fluid-filled
rectangular enclosure heated from below and symmetrically cooled from the two
vertical side walls is studied numerically by Ganzarolli and Milanez 122).

Subsequently, Aydin et al. 123) has inspected the same flow of fluid to acquire the

effect of aspect ratio and Rayleigh number on flow pattem and heat transfer in air-

filled rectangular enclosure. Experimentally investigation of high Rayleigh number

natural convection in a water-filled cubical enclosure heated simultaneously from
below and from the side has been made by Kirkpatrick and Bohn p\ and obtained

the experimental measurements and observations of the heat transfer, the flow
patterns and the mean and fluctuating temperature distribution. Steady laminar natural

convection in air-filled rectangular enclosure heated from below and cooled from
above is studied numerically by Corcione [25], for a wide variety of thermal boundary

conditions at the side walls, and such numerically study was conducted for different
values of both width+o-height aspect ratio of the enclosure and Rayleigh number. The

numerical and theoretical study of natural convection in square cavity with heated

bottom wall, insulated top wall and cooled vertical walls has been examined, which



results the discontinuities in temperature distribution occur at bottom wall in response

of uniformly heated bottom wall. The discontinuities may be removed by heating the

bottom wall non-uniformly, as investigated by Minkowycz et al. 126) for mixed

convection flow on a vertical plate (either heated or cooled). ln order to assess the

accuracy of the numerical procedure, the algorithm based on the grid size (lx al)
for a square enclosure with a side wall heated were investigated and are in agreement

with the work of Mallinson and Vahl Davis l27l for Ra : 103-106.

The finite element method (FEM) is one of the major numerical solution technique

which has major advantage that a general purpose computer program can be

developed easily to analyze various kinds of problems. In particular, any complex

shape of problem domain with prescribed conditions can be handled with ease. This

thesis is useful as a reference tool for researchers using FEM. Also the thesis is

intended to serve as a text for students of mathematics, science and engineering who

have acquired some knowledge of elementary numerical analysis. The chapter-wise

details of the thesis is as follows:

Chapter 1 provides the basic definitions and law regarding fluid mechanics and

phenomenon of heat transfer. Chapter 2 has brief explanation and procedure to

implement finite element method in partial differential equations for different

geometries. Two examples with the application of FEM using triangular elements are

solved with brief steps of numerical computations. Laplace equation is also given as

additional example in Appendix-B for better and practical understanding of FEM by
presenting FEM solution with 4-node rectangular elements. In Chapter 3, the effects

of thermal boundary conditions on natural convection flows within a square cavity [5]
are reinvestigated. The modelling of the problem is made subject to the boundary

conditions due to different temperature situations at different walls of the enclosure.

The solution of the developed problem is computed by using Galerkin finite element

method by developing code in MATLAB. The results are presented in term of
temperature profiles and Nusselt numbers, and discussed in detail.

nl
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Chapter - I

Preliminaries

In this chapter, some basic definitions and fundamental laws related to next chapters are

introduced for better understanding of the readers ll,2).

1.1 Fluids Mechanics

Fluid mechanics is the subject in which we study the applications of the laws of force and

motion to fluids including liquids and gases. In other words, it concerned with the statics and

dynamics of fluids (both liquids and gases).

L.2 Fluids

A fluid is a substance which deforms continuously, or flows under the action of shearing

forces which act tangentially to a surface of fluid. [n other words, there is no action of

shearing force when fluid is at rest.

Liquid

It is the state of matter in which the molecules are relatively free to change their positions

with respect to each other, but restricted by cohesive forces so as to maintain a relatively

fixed volume.

Gas

It is the state of matter in which the molecules are practically unrestricted by cohesive forces.

Therefore, gases has neither definite shape nor volume.

1.3 Stress

A stress is defined as a force acting per unit area of an infinitesimal surface element.

1.4 Types of Stress

There are two types of shess. These are normal stresses and tangential stresses which are

defined as follows:
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1,.4.1 Normal Stress

The stress which acts perpendicularly to the plane to which a force has been applied.

1.4.2 Tangential Stress

A stress which acts along the surface or parallel to the surface.

1.5 Types of Fluids

Fluids can be classified into four basic types, which are as under:-

l. Ideal Fluid

2. Real Fluid

3. Newtonian Fluid

4. Non-Newtonian Fluid

Details of above each has been given as under:

1.5.1 Ideal Fluids

The fluids which has no resistance in between their molecules are known as ideal fluids. In

other words, fluids having zero viscosity are known as ideal fluids. Practically, no ideal fluid 
,

exists. i

1.5.2 Real Fluids

The Fluids which have some resistance in between their molecules, particles or layers are

known as real fluids. They are compressible in nature, and have some viscosity.

Kerosene, Petol and Castor oil are coilrmon examples of real fluids.

1.5.3 Newtonian Fluids

Newtonian fluid is a fluid in which the viscous stresses arising from its flow at every point

are linearly proportional to the local strain rate (the rate of change of its deformation over

time). In other words, fluids which obey the Newton's law of viscosity are called as

Newtonian fluids. Newton's law of viscosity is given by

dvt = p--.
dy

where r is shear stress, p is viscosity of the fluid and { ,, .o--only known by shear rate,
dy

rate of strain or velocity gradient. The water, benzene and ethyl alcohol are commonly known

as Newtonian fluids.



Chapter-1.

1.5.4 Non-NewtonianFluids

A non-Newtonian fluid is a fluid whose viscosity is variable based on applied stress, and such

fluids do not obey the Newton's law of viscosity. Common examples of non-Newtonian

fluids are ketchup, starch suspensions, paint, blood and shampoo etc.

1.6 Properties of Fluids

Any fluid is characterizedby the following properties:

1. Density

2. Viscosity

3. Coefficient of Dynamic Viscosity

4. Kinematic Viscosity

1.6.1 Density

The density (p) of a substance is the quantity of matter (mass) contained in a unit volume of

the substance. Mathematically, it can be expressed by

m
,_ V,

where p is the density, z is the amount of mass in unit volume V. The unit of density is

kg*-' and dimensionis Mf E .

1.6.2 Viscosify

Viscosity (p) is the property of a fluid, due to cohesion and interaction between the

molecules which offers resistance to sheer deformation. Fluid with a high viscosity such as

honey or symp deforms more slowly than that of fluid with a low viscosity such as water.

1.6.3 Coefficient of Dynamic Viscosity

The coefficient of dynamic viscosity (p) is defined as the shear force per unit area, (or shear

stress r ) required to drag one layer of fluid with unit velocity past another layer a unit

distance away. Mathematically

lau Force /Velocity ForcexTime Mass

=I ay Area I Distance Area LengthxArea

Units of p are Newton seconds per square meter (Nsm-2) or Kilograms per meter per

second (kg*"').
3



1.6.4 KinematicViscosity

Kinematic viscosity (u) is defined as the ratio of dynamic

Mathematically, it can be expressed by

u
p

The unit of u is square meters per second (*"-') and dimensionis I) fT .

1.7 Types of Fluid Flow

There are many types to classifu flow of fluid and describe the state of fluid flow under

different circumstances. Some tyies of fluid flow are as under

1. Uniform Flow

2. Non-Uniform Flow

3. Steady Flow

4. Unsteady Flow

5. Laminar Flow

6. Turbulent Flow

Explanation of each is given below.

1.7.1 Uniform Flow

If the fluid velocity remains same at every point in tlie flow, then it is said to be uniform

flow.

1.7.2 Non-Uniform Flow

If at a given instant, the velocity is not the same at every point, the flow is known as

non-uniform.

1.7.3 Steady Flow

A steady flow is one in which the fluid characteristics (velocity, pressure and cross-section)

do not change with time.

1.7.4 Unsteadj'Flow

If at any point in the fluid, the fluid behaviors change with time, the flow is described as

unsteady.

viscosity

Chapter-L

to mass density.



1.7,5 Laminar Flow

The flow of a fluid in which particles of the fluid

which has a constant velocity is known as laminar flow.

Chapter-1.

move in parallel layers, each of

1.7.6 Turbulent Flow

A fluid flow in which the velocity at a given point varies erratically in magnitude and

direction is known as turbulent flow.

1.8 Compressible Fluids

If the density of a fluid varies significantly due to moderate changes in pressure or

temperature, such fluid is referred as compressible fluid. Generally, gases and vapours under

normal conditions can be classified as compressible fluids.

1.9 lncompressibleFluids

If the variation in temperature or pressure causes a small change in density of a fluid, then the

fluid is known as incompressible fluid.

1.10 Streamlines

In analyzing fluid flow, it is useful to visualize the flow pattem by drawing lines joining

points of equal velocity i.e. velocity contours. These lines are known as streamlines. Here is a

simple example of the streamlines around a cross-section of an aircraft wing shaped body:

Figure 1.1: Streamlines around a wing shaped body

1.11 Buoyancy Force

The upward force that a fluid exerts on an object which is completely or partly submerged in

it is called buoyancy force. This force causes the objects to float. Moreover, buoyancy allows

boat to float on water and provides lift for balloons.
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l.l2 Convection

Convection is the process in which heat moves through a gas or a liquid. In other words, the

mode of heat transfer in liquids and gases is known as convection. Transfer of heat through

convection is categorized in three different types, each one is explained below.

l.l2.l Natural Convection

Natural convection or free convection is a mechanism

motion is generated due to density difference in the

gradients.

of heat transfer in which the fluid

fluid occurring due to temperature

hL

1.12.2 ForcedConvection

Forced convection is a mechanism in which the fluid motion results from extemal surface

forces such as fan or pumps. Forced convection may happen by natural means. For example,

fluid radiator, heating and cooling of parts of the body by blood circulation are familiar

examples of forced convection.

1.12.3 Mixed Convection

Mixed convection occurs when natural convection and forced convection mechanisms act

together to transfer heat. This is also defined as situations where both pressure forces and

buoyant forces interact.

1.13 Non-dimensionalQuantities

The following numbers are the common non-dimensional numbers used in fluid mechanics.

1.13.1 Nusselt Number (Nz)

A dimensionless parameter defined as the ratio of convection heat transfer to fluid conduction

heat transfer under the same conditions. Mathematically

Convective heat tansfer
Nu,

Conductiveheattransfer k'

where & is the convective heat transfer coefficient of the flow, Z is the characteristic length

and k is the thermal conductivity of the fluid.
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ln contrast to the definition given above, average Nusselt number and local Nusselt number

are defined by taking the length to be the distance from the surface boundary to the local

point of interest. i.e.

Nu- =h'l .,k

The mean or average Nusselt number is obtained by integrating the expression over the range

ofinterest, such as

Nu=

1.13.2 Rayleigh Number (Ra)

The Rayleigh number for a fluid is a dimensionless number associated with buoyancy driven

flow. When the Rayleigh number is below the critical value for that fluid, heat transfer is

primarily in the form ofconduction; when it exceeds the critical value, heat transfer is

primarily in the form of convection. The magnitude of the Rayleigh number is a good

indicator as to whether the natural convection boundary layer is laminar or turbulent.

Mathematically, it is the product of Grashof number Gr and the Prandtl number Pr,

i.e. Ra:GrPr.

1.13.3 Prandtl Number (Pr)

The Prandtl number is another dimensionless number defined as the ratio of momentum

diffusivity (kinematic viscosity) to thermal diffusivity. Mathematically, it can be defined as:

viscousdiftrsionrate _ c oF

*i*''*

Pr=
d thermaldiffusionrate k '

where u be the kinematic viscosity, a be the thermal diffirsivity, p be the dynamic

viscosity, t be the thermal conductivity and c, be the specific heat.

l.l4 Momentum Equation

Linear momentum equation for fluids are developed due to Newton's

second law which states that sum of all forces must equal the time rate

of change of the momentum,\f =d(mv)f dt. This is easy to apply

in particle mechanics but for fluids, it gets more complex due to the Arbitary Volume
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control volume (and not individual particles). The change of momentum will have two parts,

momentum inside the control volume, and momentum passing through the surface. This

concept can be written as

)i' : 
*[,,0, ov * [,,v pv .ndA,

where Z is the velocity vector, n is the outward unit normal vector, and f .f' represents the

sum of all forces (body and surface forces) applied to the control volume.

1.15 Thermal Conductivity

Thermal conductivity is a material property which describes the ability to conduct heat. More

appropriately, it is defined as the quantity of heat hansmitted through a unit thickness of a

material in a direction normal to a surface of unit area due to a unit temperature gradient

under steady state conditions. Its unit is Wl@K) in the SI system.

1.16 Thermal Diffusivity

In heat transfer analysis, thermal diffrrsivity is the thermal conductivity divided by the

product of density and specific heat capacity at constant pressure. Mathematically, it is I

denoted by a anddefined as

k
d=-;

Pco

where ft be thermal conductivity, p be density and co be the specific heat capacity.

1.17 No SIip Condition

The fluid has.zero velocity at the boundary of solid with witch it is in contact. It occurs due to

the strong folce of attraction between the fluid particles and solid particles (Adhesive Forces),

such condition of viscous fluids is known as no slip condition.
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Fundamental of the Finite Element Method

The aim of this chapter is to discuss the procedure involved in using the finite element

method to solve any partial differential equation subject to the boundary conditions in two

dimensional space 13,41. The two and three dimensional finite elements used in discretization

process of the geometry, shape functions w.r.t different number of nodes, calculation of

element stiffrress and global stiffiress matrices, implementation of boundary conditions and

post-processing are discussed in reasonable detail. Moreover, two examples solved with

detail calculations are provided in this chapter for better understanding the implementation of

finite element method [4].

2.1 Introduction

Many physical phenomena occurring in engineering and daily life can be modeled in terms of

partial differential equations subject to some boundary conditions. It is observed that solution

of these equations for arbitrary domain is impossible by using classical analytical methods. In

this situation, the finite element method (FEM) is an exfremely reliable computation

technique used to obtain approximate solution of these partial differential equations. For this

purpose, converting the given domain into a number of non-overlapping small pieces

connected by nodes is required. These small pieces are called frnite elements. Then the

goveming equations for every element are solved to get numerical solution within each

element. At last, combining the solutions at all such elements gives the approximate solution

for entire domain of given problem. The accuracy of the computed solution may be achieved

by increasing the number of elements as well as number of nodes.

In order to obtain the solution over the domain, methods of residuals are used, which are

explained as follows.

2.2 Methods of Weighted Residual

The method of weighted residual can be described in its generality by assuming the partial

differential equation in operator form as,

o("): g in o, (2.1)
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where D is linear/non-linear differential operator acting on dependent variable u, g is a given

function and O is a two dimensional domain.

In this method, the solution of equation (2.1) can be approximated by linear combination of

basis/shape functions taken from linearly independent set as follows

t =Zb,c'
i=l

In which, d's are unknown constants required to determine and $, are linearly independent

basis functions. Substitution of the approximate solution fr into the left hand side of

Eq. (2.1), the result D(fr), in general, is not equal to specified function g due to the fact that

solution (2.2) is not the exact solution of the problem (2.1). The difference D(fr) - g + 0 , is

known as the residual of the approximation, and is

R=D(il)-n=o(Zut,)-s+o (2.3)

To evaluate unknown constants 0,, choose weight functions Wi , sat the weighted average of

the residual over the problem domain to zero, i.e.

lw,61n1*,b,)dxdy =g, (i =1,2,3,...,n).
c)

In general, the choice of the weight functions Wi dra not the same as the basis function S, , but

they (Wi) are exactly equal the number of unknown constants 0,. Following methods of

weighted residual are classified in terms of the choice of weight function Wi:

1. Collocation Method,

2. Least Squares Method,

3. Galerkin Method and

4. Method of moments

Each of these has been explained below.

2.2.1 CollocationMethod

In this method, the Dirac Delta function d(x-x,) is used as weight function, defined as

follow

(2.2)

(2.4)

5(*-r)={; , LiJ*,*

t0

(2.s)
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where the point x, must be within domain O, the unknown constants b, can be evaluated by

setting the weighted average of the residual in Eq. (2.4) equal to zero at specific points in the

domain. That is

Iu(.- r,)R1r,b,1dx =o or
o

2.2.2 Least Squares Method

In this method, the integral of square of residual is minimized by setting its derivative with

respect to parameters D, equal to zero. That is

R(x,,4)= o. (2.6)

(2.7)

(2.8)

a =) l n9La* :0 .frL*'r,,b,)dx:o * ob,

Comparison of above integral with Eq. (2.4) imply

W.=AR. 
0b,

Therefore, the weight functions are just the derivatives of the residual with respect to the

unknown constants 6,.

2.2.3 Galerkin Method

In Galerkin Method, the weight functions W, are chosen equal to basis functions Q,,i.e.

w,=!=6,. (z.g)
oDt

2.2.4 Method of Moments

In the method of moments, weight functions are selected from the family of polynomials,

4=x', i=0r1,2,...,n-1. (2.10)

In order to find the unknown constants b, through weighted average residual equations (2.4)

by choosing suitable weighted functions given in above method, it is required to integrate

Eq. (2.q once analytically is called weak formulation, which is explained as below.

2.3 Weak Formulation

The differential equation along with boundary conditions of the given problem is referred as

strong form. These differential equations are difficult to solve due to presence of higher order

derivatives, and basis functions in this situation are required to be high order differentiable

lt
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and smooth. To avoid this exertion, there is a need to remove or decrease the order of

differential equations by one through integration is known as weak formulations. It is further

noted that the manipulation of the problem in weak form is comparatively easy as that of

strong form. In Finite Element Method, the weighted average residual are required to

integrate over the finite elements obtained through discretization process in the domain.

2.4 Discretization and Element Mesh of the Domain

The process to divide the geometry or physical domain of the problem into finite number of

non-overlapping elements of any shape is known as discretization. The collection of finite

elements in a domain is called the finite element mesh of the domain.

The simple meshing of square geometry divided into triangular elements is shown in

Figure 2.1. k is important that the solution of the desired problem by using finite element

method tends to highly accurate by increasing the number of finite elements.

00.5 l

Figure 2.1: Meshing of square geometry in triangular elements

2.5 Types of Elements

Generally, straight-line segments are used as elements in one dimensional case, triangles,

rectangles or elements with algebraic curves are used in two dimensional case, and

tehahedron or hexahedron shape of elements are used in three dimensions space. They are

explained in detail as follows

2.5.1 Line Segment Element

We divide the interval fa,b) in one dimensional

4 =[r,,x,*,], 0<i<N, with xo= d and xr*, =b.

we represent it by (e) as shown inFigwe2.2,

space into non-overlapping subintervals

Each interval [x,,4*,] is an element and

t2
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C=Xo

tr'igure 2.2: Division of an interval into line segment elements

2.5.2 TriangularElement

The region fr. in two dimensional space can be divided into triangular elements as shown in

Figure 2.3(a). Here each element is a triangle with nodes i, j, k numbered anticlockwise as

signified in Figure 2.3(b). We assume that the nodes of the region ?" are consecutively

numbered from I to N. Further, we denote the value of the function u(x,y) at the node i

by u,.

(a) (b)

Figure 2.3: (a) Division of two-dimensional region into triangular elements and (b) Triangular

element with allocated nodes at its vertices

Moreover, each triangular element may be categoize by four noded, six noded and ten noded

triangular element.

2.5.3 Rectangular Element

The simplest rectangular element has 4 nodes at the vertices with I degree of freedom per

node, as shown in Figure 2.4. The figure also shows the local node numbering system

(1,2,3,4), the nodal coordinates (xi,yi) and the nodal degrees offreedom (dof) {" oflocal

node l. The local numbering system usually starts from bottom left comer and is

counterclockwise. This is called as local notation. A physical problem is solved by using

4-node rectangular element and is explained in Appendix B for better and practical

understanding of finite element method.

l3
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(xi,ai),7 (4,ai ),Ti

(xi,ai L7 (4'vi)'Ti

Figure 2.4: Four Noded Rectangular Element

Rectangular element may further be categoized by eight noded,

and sixteen noded rectangular elements.

noded, twelve noded

2.5.4 Quadrilateral Element

A general quadrilateral element (e) with four nodes, one at each corner is shown in

Figure 2.5. The coordinates of the vertices at the node i of element e is represented by

@i,vi).
(xi 

'a",
(xl 'ai )

nlne

3

(xi,ai ).

1

Figure 2.5: Quadrilateral Element

Likewise triangular and rectangular elements, quadrilateral element may also be occurred in

eight and twelve noded quadrilateral elements.

2.5.5 Curved Boundary Element

Any physical domain ?. in two dimensional space with curved boundaries as shown in Figure

2.6(a) is discretized by triangular elements as shown in Figure 2.6(b). If some of the

boundary dR of the domain fr. is curved, then we may either approximate it by a polygon and

use the triangle and quadrilaterals for discretization as shown in Figure 2.6(b) and 2.6(c) or

we use triangular elements with at least one curved side as shown in Figure 2.6(d).

l4



Flgure 2.6 (d): Triangular
Element with one curved side

['igure 2.6(t): Division of domainR
with curved-sided elements

Chapter-2

Flgure 2.6 (c): Division of domain R with polygon
boundary dR

Figure 2.6 (b): Division of domain n with
one curved side boundary dR

2.6 Shape f,'unctions

In finite element analysis, the model of continuous body is divided in finite elements

containing a many number of nodes, the shape of the body between these nodes is estimated

by firnctions, these functions are called shape functions. Moreover, shape fimction

interpolates the solution between the discrete values obtained at mesh nodes.

The characteristics of shape functions are

l. The shape firnctionatanynodehas avalueof I at thatnode andavalue of
zero at all other nodes, i.e.

--t '' [1 i=i
4(rr,/r)=to i* j

2. The sum of all the shape functions, evaluated at any point must be unity, i.e.

I4(r,v) = t
i

t5
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2.7 Local and Global Nodes of Element

Consider the following geometry containing four triangular elements represented by the

number 1,2,3 and 4, each one is defined by three nodes. Red colored numeric numbers

(1, 2, 3, 4, 5 and 6) located on the boundary, represent the global nodes. The alphabets

p, q and i' represented counter-clockwise at inner corner of each triangular element are local

node labels for respective element. as shown in Fisure 2.7.

124

Figure 2.7: Local & Global Nodes in triangular geometry

2.8 Local and Global Stiffness Matrices

The coefficient matrix obtained from the weak form of given differential equation

corresponding to an element is referred as local stiffness matrix/element matrix. The

assembly of all local stiffness matrices using the equivalence between local and global nodes,

is termed as Global stiffness matrix. They both are square symmetric matrices.

Figure 2.8: Triangular geometry allocated into two elements, symbolize with local & global nodes

consider the geometry consisting of two triangular elements as shown in

philosophy of subject topic, consider assumed values of local

corresponding to each element as under:

Figure 2.8. To get

stiffness matrices

l6
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Assembly of above element matrices generates a global stiffriess matrix as follow:

413
4(z s I
r lo 4 'l3t, , d

2 31
z(z s il
s lo 4 tl
{[ , r)

1

, (no
2l I

s ls*r

.G

2

I
)

0

3

1+5

5

4+o

I

Italic numbers represent the entries of first element matrix and bold entries inside the above

matrix belong to second element matrix. Blank locations corresponds to where no entry is

allocated from both (elements) matrices, zero entry will be allotted there. Finally, the required

global matrix is obtained, which is

(q l 6

l, 2 s

lu o 4

[ro1

o)

ol
1l
,)

2.9 Solution procedure using FEM

To compute the solution of the problem by using finite el'ement method, we undergo the

following steps:

o Discretization of the domain into a set of finite elements.

o Define an approximate solution of given differential equation over an element, such

defined solution must satisff the given boundary conditions.

Define shape functions as pil type of element per number of nodes.

Choose weight function through using methods of weighted residual.

Set up a weak formulation of given differential equation.

Evaluate the weak form of given differential equation for each elemenf using given

boundary conditions, and obtain value of local stiffness matrix corresponding to each

element.

a

a

a

a



o

a

Chapter-2

Assemble all elementwise local stifftess matrices to generate global stiffrress maffix.
1

Solve the, algebraic system of equations to get desired solution by using any

direcUindirect/iterative method.

and posfptrocessing (This frnal operation displays the solution to system equations in

tabular, graphical or,pictorial form. Other meaningful quantities may be derived from the

solution arid also displayed).

2.10 Exaniples

Examples with the implementation of FEM are given below for explanation of the method.

2.l0.l Problein. Solve the boundary value problem usirig Finite Element Method

I V2u=-1, lrl<t, lyl<t
t il =0, lrl= t, lyl= t

with h = /rl,tusing three nodes 32 triangular elements as shown in Figure 2.9.

I

I

Solution. Thetsolution of the boundary value problem satisfies the symmetry conditions,

u(-x,Y) =u(x,f) , u(x,-Y)=u(x,!), u(y,x) =u(x,y)

Therefore, we shall consider only one eighth of the square as shown in bold black patch of

the Figure 2.9.

Figure 2.9: Representation of elements with nodal points

(2.r 1)

t8
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After discretizing,the length of each triangular element it % Q.e. h= %). There are four

elements which are numbered 1,2,3 and 4. For given problem, the element functional is

where superscript e denotes an element with nodes i, i and t marked in counterclockwise as

represented in Figure 2.10.

Figure 2.10: Three Noded Triangular Element

The element equation k y1=0, i.e.
ou

(2.r3)

We have value of z in terms of nodal variables (c, c, c, and co),

u = crH r(x, y) + crH r(x, y) + crH r(x, y), (2.14)

where H,(*,y); i=I,2,3 are shape functions for linear triangular element, which are given

below

tt,, : )l@,/t - xztz) + (t, - tr) x* (r, - *,) yf ,

H,: *l(\rr - xtz) + (t, - t,), * (r, - *r)yf ,

,r= *l(*,!z- xzlr)+'(t,- t,)x*(n- *,)yf-

The shape functions satisff the following conditions

It Y t=iH,(x,,!)=5,i=1',' ' and LH,=1,''r'r |.Orfi*i i=r

# =;[l{(*)' * .(T)' TL, - 2H,]fdv =

(2,.r2)

(2.rs)

(2.t6)

(2.t7)

,,J
j

l9

(2.18)



where,

, =!l :, i,l
'1, ; ';,1

Magnitude of l is equal to the area of the linear triangular element. However, its value is

positive if the element node numbering is in counter-clockwise direction and negative

otherwise. For the finite element computation, the element nodal sequence must be in the

same direction for every element in the domain.

First two terms on right side of integnl(2.13) implies

;l,[{(#)'#.(rrr},+4,,f 
ffi ),r*rrl+),rr+LhLLt") lar) 

Q.D)

Chapter-2

Performing integration after substituting the shape functions, we obtained the following

mafix

Q.20)

I tt , l\, l\r1

["'] =lku k,, t,,1.

Lrr, 4, k,,)

In which,

r,, = fil*,- - *,)' *(r, - t,)'),

k,, = flft, - *,)(q - *,)+(t, - v,)(v, - t,)7= k,,,

h, = fiL{*, - n)(*, - q)+ (v, - v,)(v, - v,)f = ku,

o. = *l@ - *,)' *e, - t,)'),

k,, = *ll,,., - +)@-', )+(/, - v,)(v, - v,))= k,,,

u, = L*l{., - *,)' +(t, - ,,)').

The element-wise local stifAress mafiices are computed as follows:

20



For l't Element

,=;li:,,',),1=*,

0,, = r[{,-r)' *(;-,1] = ;,

0,, =,1{,-,)(i-r.[;-'X, ;)] = -f, = u,,,

0,, =rl{r-,,(, -;).(;-,X; r] = o = &,,

0,, = rl(i-,)' * (, - i)' ] 
=,,

,, =,1(i-')(, -;).(, j)(; ;)] = -*= u,,,

*,, =,[(, _:)' .G)')=i
Using matix Eq. (2.20), *" sftained local stiftess matrix

231
z (o.s -o.s o)

K(,): al-0., r _o.sl .

1 [o -o.s o.s)

For 2od Element

Chapter-2

Figure 2.11: ld element with allocated
Local & GlobalNodes

for 1$ element is

Q.2t)

Figure 2.12:2d element with allocated
Local & Global Nodes

4

,, =,1(i- ;)' . (, - ;)'7= :,

u,, =,10. (, - +)(i - o)] = -*= uu,

ht=210+0]= 0=k3y,

u,, =,1(o - +)' 
.(;- o)' 

] 
=,

o, =,[(o j)(;-,).(; -o)ro-or] = j = tq,,

,,=rl(i-o)'.0]=;

/z)

2t



We obtained element matrix for

452
t (o.s -0.5 o)

Y(z)- s l-o.s I -o's 
I

2 Lo -o.s o.s)

For 3'd Element

0,, = rl(;-,)' * (, - i)' ] 
=,,

0,, =,1(;-,)[i - ;). (, j)(; -,)] = -f, = 0,,

0,, =,1(r-')[' -;). [,- i),,-,)] -l = 0,,,

0,,=rlo.(;-o)']=;,

kr, =210+ 0] = 0 = k32 ,

., =,[[, _:)' .,]=;

We obtained local stiffrress matrix for 3'd element is

562
5 (r -o.s -o.i

K(3): 6 l-o.t 0.5 o I

z [ro.s o o.s)

For 4th Element

0,,=,1(l-,)'* o,)=;,

^, 
=,1(;-,)(, - ;) . o)= -f, = 0,,

h, = rl(;-')t, -'l. ol = o = k31,

0,, = rl(, - ;)' .[i - r)' 
] 
=',

2nd element is

Chapter-2

(2.22)

(4'n)
(y,0)

5

Figure 2.13:3'd element with allocated

Local & Global Nodes

(2.23)

Figure 2.14: 46 element with allocated
Local & Global Nodes

22



0,, = rl(,- ;) t, -,1 . [] - 
rX

0.. =rl o*( o-1)'l= 1n"="lu-[."-r) l,
Thus, we obtained the following

632
6 ft.s -o.s o)

v(d\- 3l-0, r -o.sl

2 f0 -0.5 0.s)

,-;)l = -;

local stiffrress

=kr,

matrix for 4ft element is

0.5 0

02
-0.s -l
00
0-1
00

-0.5 0

-l 0

20
0 0.5

0 -0.5

-0.s 0

-0.5 0.5+0.5

00
-l 0

0 -0.s

-0.5 0

2 -0.5

-0.5 I

Chapter-2

(2.24)

(2.2s)

Now, the assembly of all local stiffrress matrices using Eqs. (2.21 to 2.2$ by connecting the

elements corresponding to global nodes generate a global stiffrress matrix as under:

1

000
0 -0.5-0.5 0+0

0 0 -0.5

0.5 -0.5 0

-0.5 1+1 -0.5

1

2

3

4

5

6

0.s

0

-0.5

0 -0.5

0.5+0.5+0.5+0.5 -0.5-0.5

-0.5-0.5 1+1

000

0

;{l[{(#)'*.(T)'T}",

Now, consider the third term on right side of

(r)

)ryrr,&dv = [!r,*a - 6@ ' 

i[l],

-0.5-0.5

0+0

0

-0.5

After simplifinng, we get the value of Eq. (2'19) as

Eq. (2.13)

(2.26)

where, A= Areao,fElement = yf .

Steps of simplification for result obtained in above Eq. (2.26) are explained in Appendix A.
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Using Wt Q.26),the values correspondingto all four elements are

h\z (r\ I /r\ s 1r\ e
a, ={l , ls, u,=+1, lt , u,=+1, l. , u,=+lr ls . e.27)'olr), '*lr)" '*lr), 'olr),

Using F.q.Q.27), the asse,mbly of element matrices generates the global assembled matrix, as

given below

I +0+0+0
l+l+1+1

1+1

I
l+l
1+1

Upon using Eqs. (2.25,2.28) into Eq. (2.13), we may write in compact form as

]l{l
I

24

000
0-l 0

00{.s
0.5 -0.5 0

-o.5 2 -0.5
0 -0.5 1

0.5

0

-0.5
0

0

0

Q.28)

Q.2e)

0 -0.s
2-l
-l 2

00
-l 0

0 -0.5

I
=-

24

ur

u2

u!

u4

u5

u6

ti {: +lffil *[iJ

The givenboundaryconditions give z, =0, tt=0, u6=0.

We incorporate these nodal values in matrix F-q. Q.29) by deleting the rows & columns

corresponding to u, , u, nd uu , and obtain the following system of equations,

(2.30)

Thesolutionof abovesystem (z.30)yields uz=0.1875, u4=0.29167 and ur=0.20833,

whicharetherequiredvalues of u atglobalnodes2, 4 and 5.

2.10.2 Problem. Compute the element equation for six noded riangular element for

Boundary Value Problem represent by Partial Differential Equation gtven in (2.31) using

Finite Element Method-

24



Solution: Consider the partial differential equation

Chapter-2

(2.31)

(2.32)

!( ,Y\* u ( ,*)*r =o in?v
dx\' & ) ay( ay )

with Dirichlet condition

u = g(x,y) on 0R" ,

where p and r may be constants or functions of .x and y only. The variational formulation of

differential equation (2.31) in term of the functional is reduced to simple minimizing problem

by assuming an approximate function (or approximate solution),

' = ;$1,(*)' .,(X)' - z*)a,+,= minimum, (2.33)

where the boundary condition (2.32) is to be satisfied. We divide the domain ?. in six noded

triangular elements. The approximate solution u(x,y) for the whole domain ?. is

K

u(x,y) =\N<"tpr"' =Z*,0, = NQ,
e=l i=l

where Mrepresents the number ofthe elements withKnodes in fr, and N & Q are

N = [ar, N, ...N*f , d =[d, O, ...0*7' .

The shape functions Nr satisfy the following conditions

N ( x.r) = I'1" (*,Y), if (x,Y) e(e)'
t.r / 

10, otherwise Q'35)

and Q@ are the nodal values associated with the element(e). Substituting the approximate

solution from Eq. (2.34) into Eq. (2.33),we get

,=;${,(z#r'') * ,(f"To"') z,fNu'6'"}** (236)

Using Eq. (2.35),assume that Eq' (2'36) can be written in the form

1=lJ@) ,
(2.37)

(2.34)

r(')=r[{r[# 6u')' *'(T^"t)' -z'Nu'o'\a.o (238)

where



The piecewise approximate solution over the element (e) may be assumed as

uG) = Niui+ N,u, + Nru, + N^u, + Nrur+ Nnu, - trJG)PG) ,

where

N(") =[r, ,, N, N^N* N,]t ura 0'"' =lr, ut ttj umro u,)' .

The shape functions Ni, Nt, N j, N^, N* -d N, are defined as

Chapter-2

(2.44)

N, =21], - L,,

Ni=21-Li,
Nr, =2llr - Lt ,

N, = 4L,L1,

N^ = 4L,L1,,

N,=4L,L,,

where Li, Lj and Lo are called Area Coordinates satisfy the following twb properties

(i) L, + L, + Lo =l and

(ii) r, = fi{r,+b,x+c,y),

in which

(2.4s)

(2.46)

(2.47)

ar = xzlt

az = xtlt
c\='xlz

,, = #(a, + b,x + cp), tr = *o(ao 
+ box + crt)

bt= lz
bz=lt
bt= lt

cr=x3-x2>

c2=xt-x3,
ca = x2- xl,

It xt yrl

and ou' = 1lr ;, 
'y,l:Ar"uof 

each triangular element .

'l', ;, 
";,1

The differentiation of N(") (t,,t,,tu) w.r.t .r andy may be written as

(2.48)

(2.4e)
aNG\ aL . aNG) aL2 , aN@) aL3

=--
AI1 Ay 0L, fu AL fu

o!'= b',.. and a! =;*, i=t,2,3.ax z|k) ay 2L(,)

For integration of polynomial terms in natural coordinates over the element

following relation

ANk) ANk) AL' ANk) AL" ANG) Al"
= 

---l 

r 

-- 

L---

Ax AI1 0x 0L, Ax AIj Ax

ANG)

rl sl tt 2L@)

tu

(2.s0)

(e), we use the

!!(I;aI"Ydv (r+s+ t+2)t
(2.sr)



Now, consider further evaluation of Eq. (2.42),

Chapter-2

(2.52)

substituting the shape functions, we

(2.53)

(2.s4)

(2.ss)

oN, oN, y! aN, oNr ari,)
Ay ay q ay fu ay.)

0u,

Ay

ON,

Ay

9!!
tu
..N.
0y

oNr
q

AN,

Ay

ON, ON, 0N, aN, 1Nr

0x Ax Ax Ax Ax

q&)*
ax)

ON,

Ax

ON,

Ax

Y!
Ax

aN.
Ax

oNr

Ax

AN,

Ax

ON,

ai
ON,

Ax

9!r
Ax

aN.

Ax

oNo

Ax

AN,

Ax

n,=!!
(e\

nu'=llo

( alt, oN, oN, aN. oNr aN, )
t^^l
\o[ dx ox ox ox ox )

oN, 
= 

aN i aLi * W9L * 9L9L = ( 41,- r)f4) + 0 + 0
0x ALt Ax ALj Ax ALk Ax \ I '\2L)

Performing integration on first part of integral (2.52) by
get

ln which,

(A,, A, A, Aro A* A.,u

I ,r,, 4, 4, 4o 4, Aru

. I o, A, A, Aro A, Aru
A =l' I A^ Ao, A$ A44 4' A46

l+, 4, 4, 4o 4, 4u

[a, 4, 4, A* Au, A66

^,=[[(##Y*

(using Eqs. 2.45 and 2.46)
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qo
o
N
:a

It

By substituting above result, the integral Q.55) implies

^,=[[l*Qefi+'-u)W
= *{"$L? edv + [[ P7 aav - alp,a'ar]

=#{"[ ffi).^-'[ffi)i (usingEq (2 sl))

_ o! (tt , ^ aa)_ al-a^r[T-^-T )- 4^,
with the same contrast, tle evaluation for other temrs of matix Ararc as follow,

= #ffF',L,b, 
+ +tz,b, - t,b, -tP,fuav

= *l*,(i)* *,(*) -' (+), (*)]

= 
b,l b, *2b, _b, _!,1=b,b,lzlr'3 3 il ra'

^,=$(**Y.
= d{,,r -,) *}' { 

@, -r)fi}b.

= # ffluLl.r - 4Lt - 41, + rWav

= *1,,(#) - .H - .(*) . o7= -*,

u'=[!(**w
= 
[[{,-o 

-,)*} " { lt ro, . r,ory}fu*

^,=$(**w
= fl{,., -,)*}, { 1@,u,.'u)}

= *[!tor,Lrb, 
+  L,L,bk - Lkbr - tprfuav
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1,,

l+

bi
r2L'
bi
t2A

4q= #). *.(i)-0,(*)-'(+)]

lr-L--hl=0.3 3 3.1

,(

+

= fl{,,, -,r*}' {n, -,)hlb.
Wdv

=*1"(#) -(+)--(+)*o]= -*,

^,={!(**Y*

"=$(**Y.
= 
fl ii tr, b, + r.,b,)\, 

{1@,0, 
. ru )}fu

n =#[l(qt" *flti *zt,r,1r-,p4,

= #[,r (*) .,; [t) 
. *,',(i))= *l.r + b,? + b,b,),

u'=[!(**w

=tff1ut,L*-4L,-4Lo+t

= 
IJ[{,., 

-,)*}, 
{ l{,ru,.,l)}bo

= bffL,t,Lrb, 
+ 4ftbr - L,b, - L,brW,,

= bl*,(i)+ u-(*) -, (+)' (*)]
_b,l b, , 2br bi brf _b,br- 
^Lr- 

3 -r-tl- 3^'

",=$(*xw=4,=ff,

30
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l='24
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= bffUu,1 - 
b,L, + 4b,L,L, - b,L,Wb

= diitr, 
b, + r,o,)\*{*t r, - rl}

L,b, + L,b,)), 
{fr t*- -,1}

t{x*

'(1.*,(#) 
r(l]

bi b,f _b,b,t-tl- 3^'

bl*,(*)
o,l zt, bt 

,

oLT

#)l
+2b,br + b,br),

(#).*(*) .qe)*upr(

*b,br *L*!,ur1=Ll t.n. *nl
6 L2 12) 3LLrr 1

aNrLau
ax)

= 
fl {i tr, t, + u )}, {*@-u, 

. r,o r1}pa,

=#1Xu,o,L,Lr + b,b*L', + bll,Lr -b,brrP,Pdr

=*lu,u,

=llb,b,n'ln

"'=$(*
=fl{it

= kffFu,L,Lr - 
b,L, + 4bil{k - o,t,fuav

= *l*,(i)' (t). *, (#), (l]
=!tlL-b, *L-L1=0.AL3 3 3 3l

"=$(**Y.
= 
fl {i tr, t, + r,o,)}, 

{|uro, 
. r,ur)}W
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n , = #{l(tlr,rr + b,brl,L, + b,b,L,L* + b,brr}

= #l', (i). un(#) .'u,(i) + b,b r( *)]

= *l#. * . * . +)= *lo,ur 
+ b! + 2b,br + ot,)'

o,=g(*XW=4,=-*,

u,={!(*XW=4,=ff,

u,=[!(**W

,+2,-r))"{*trr,-*W

atl, +t-s4fuay

:*).^-'(*)] 
=*,,

W
cdy

tl

i(
(,,

'(

bt

.2L

ff(,
(e)

[,u
L

LtF

-r- (

b 1[tou,r,Lr 
+ 4brl2, - b ilk - bk

3l*,(#).*(:)-r(l
b,l b, , zbr bj orf _o,br
oLT- 3 -r-r.l- 3o'

t{

$l{*v,'-,1} 
. 
{i t 40, + r,b r)}

= 
IJ[{*t+2, 

- r;i' { fio,r -,\

fft l
(r)L (

L
4L'

L
t 124L

^,=[!(**W

u,=[[(*ty.
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4, = * $(ra4rr 
- 41, - 4Lr + t

= #1"'(#) - -(l -'(+) * o]= -b,,

o'={!(**w
= fl{#t-,, -,)}, {|uru, 

. r,nt}W

= b fiFu,L,r* + 4b*L[i - bilk - bkli Wav

= fll*,(i)* *r(#) - * (i) -' (+)]

=LlL*!r-L-hl=0.AL3 3 3 3.1

Chapter-2

o,=[[(**w=40=0,

" 
= $(**W =,424 = *lu,ur 

* 4 * 2b,b* + b,b,),

"=$(**W=n*=*'

"=$(**Y.
,Lrb.

?L'*

l)
e)

,jr

,^

6

ir
i(q
)

r(

{,

IJ
(e)

[,
bi

=fl
4

=-a'i
ql

I- 
^tl

+40-)\,{l@ru,.r,n)}

Oi *ri +b,b*),

ol1*zo,trt,4fuay

4(*) +Zb/r(#)l=*r

"={!(**Y.
= 
fl {i t,- b, + r,br)}' {*nrr - \}b.

= b ff Fu,Ilr - b,Lr + 4brl,Lr - brliWav
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n, = blou,(2)- u,(+) . *-(i)- r (l]
_orlzt, b, , br or)_b,br
- 
^LT T-Tl- 3^'

"=$(**
= fl {i tr 

b, + t,o r)}, {|u-u, 
. r,o)}W

= i 1[ 
tu,u,I]r + b,brl,L* + b,brL,L* + bl t,t,Wav

= #lu,u,(*).'r- (#) . 
"- 

(#). n (#)]

= ;lro,o, 
+ b,b* + b,br + blf,

^,=$(**w=4s=-*,,
*,=[!(**w=a'x=0,

*,=$(**w=4s=-*,,

*,={l(**b-=4,=ff,

o'={!(t*Y.
= 
fl{fuoa 

-,)}' 
{ *rr, -\}W

Wd,

a)l_ ai
1))-4/,

=*$r,ullr+t-8Lr

=*1"(*).^-'(

^'=[!(**Y.
= 
[!{*trr., 

-,y},. l{iur', 
.',E)}bo



*' = [!(**b- = 4a = *lu'ur 
* t * 2b,bo + b'b,)'

o,=[!(**Y-=4u=0,

" 
= {!(**Y* = Aoa = }l'ul, + b,bo + b'bu + blf'

u,=[!(**Y*=4u=ft,

u'=$(**Y*
= il{i,t u, + r,tr)} 

" {luru, 
.',u )\bo

= # ytt n * 44 + 2b,boL,LoPxdv

= #ln(+) . n (*) + 2,b.t#)]

= *l+ . + 
. +)= *tn + tr + b'bu)

Substituting all values in Eq. (2.54), we get

Chapter-2

u,= *[!(+b,fi + 4bkLkli - b,Lo - boL,wdv

= bl*(*). *r(i)-'(+)'[+)]
_bolzb, , bo bi bol_b,bo
- 
^LT ,-rl- 3^'

dy= 4u=*,o'=[!(*#
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4=

_lL
t2L

0

-btb,t2L
bP,

3A

bl
4A
bl,
3A

_bbt
t2A

b,bt

3A

4_
4
b&_

3A

-b,b,t2L

0

6i
4A
blt
3A

-!!Lt2L

0

_4b,
t2A

b,b,

3A

( ax, oN, oN, oN- oNr aN")
(.a1, ay ay ay ay a, )

ON,

Ay

ON,

Ay

ON,

Ay

aN^

Ay

oN*

Ay

AN,

Ay

4, 4, 4' 4n 4' 4u

4, ,4" A, ,4r, 4, ,4r,

4, 4, 4, 4o 4' 4u

4, ,4r, A* A4 Ao, A*

4, 4, 4, A" 4' A*

4, A* A" A* 4, A*

4bt
3A

frUt *ti *t,t,)

blt
3A

*loP,+$ +2b,br+bp,)

0

*lo,or+g 
+2b,br+b,b,)

0

|lu,u, 
+ bl + Zb,b, + b,b,)

bF

3A

filoi *ol *tP,)

bP,

3A

|lrob, + b,b, + b,b, + bll

lP,-
3L

*l*,+bl +zb,br+bP,)

0

*l*0,+b,b,+b,b,+b!)
W
3A

|@i +ti *otr)

nr=l[
(e)

Using the same procedure as described above for the evaluation of A,, value of second part in

integnl (2.52) maybe computed as shown in succeeding steps

8.s7)

Le.

Ar= (2.58)
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t_ cft 
-cfi o -cF, 

cFr

4L 3A tz& tzl 3A

Ar=

* $1": 
*"i *",",) * |1",",+c] 

+2cp,+cp,f 0 *k", +c! +?*,c,+cp,f

-c|t 
cf! t clct -ctct 0tzA 3A 4L 3A l2A

o *1",",+cl+2cp,+cp,) * fil,,i*"i*",",) * };l*n,+c,c,+c,c,+c!)
cqt n cJct cf* c?, cqr

tz& tz[ 3A 4A 3A

3AL -l[r", 
+cl+2c,c,+c,c,) o ]l*0,+c,c,+c,c,+cl) * frGi*"i*","r)

Now, considerthe evaluation of Eq. Q.43),

bG, = ![r(I{a\'*b= IIr[r, N, Ni Nn N* N,f'*ay . e.6o)(e) (el

Consider the first term of above integral Q.60),we get

[!r*,*ar=rff(rri -I,)edy (usine(2.ail)
(el (c)

= ,[r[9)- 4.l = o. (usine(2.5 r))
L \6/ 3l

Similarly, evaluation for othert€nns of integral Q.60) are as follow,

$*, 
* =, ![(+r,r,)ao= "[#) =,],

!!,*, &dy =,[!(z+ - L,)*ay=,[r(*)- i] = o,

I! * ̂  
&dy =, !!(u,r.r)&dy ="[#] =, L,

II * _ &dy =, !!(zr,r - rr) *ay= "[r(*) - t] = o,

and

lJ"N. &dy =,[!(+r-r,)*o= *[#] =, + 
.

Using above all values in Eq. Q.60),we get

Q.se)
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bG) - (2.6r)

After substituting the values from Eqs. (2.56,2.59) :mBq. Q.52),we get the value o7 a(e),tse

this value along with the vahrc of b@ from Eq. (2.61) in Eq. Q.4l),we may be able to obtain

the solution of element equations.

A

3

0

Ar-
3

0

Ar-
3

0

Ar-
3
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Chapter - 3

Effects of Thermal Boundary Conditions on Natural
Convection Flow within a Square Cavity

In this chapter, we revised the study of the effects of thermal boundary conditions on natural

convection inside a square cavity [5]. The modelling of the governing equation and boundary

conditions is presented. The governing equations are reduced to the non-dimensional form by

using dimensionless variables. The Galerkin finite element method is used to obtain the

solution of the goveming equations. For this purpose, the domain is discretized by using

triangular element and the shape functions are computed using quadratic triangular elements.

The complete procedure for non-linear partial differential equations is described in detail.

Results are computed for the wide range of parameters Ra=103-l05and Pr=0.7 -10, and

presented graphically in terms of stream functions, temperature profile, local and average

nusselt numbers. The analysis is also made to discuss the effects of thermal boundary

conditions on natural convection flow.

\ or (\ -r)sin(tr/r)+r,

Figure 3.1: Schematic diagram of the physical system
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3.1 Problem Description

Let us consider the laminar, steady flow of viscous fluid caused by the heated lower wall and

adiabatic upper wall inside the square cavity. It is assumed that the lower/bottom wall of cavity

is heated either uniformly or non-uniformly, while two vertical right and left walls are

maintained at cool constant temperature. Th.e nhVsical domain in which the fluid is flowing is

shown in Figure 3.1. It is further assumed that all the fluid properties are constant except the

density of the fluid.

3.2 MathematicalFormulation

The flow model is based on the assumptions that tlie fluid is Newtonian and the body force

term in the momentum equation is temperature dependent. The Boussinesq approximation is

invoked for the fluid properties to relate density changes to temperature changes, and to couple

in this way, the temperature field to the flow field. The goveming equations for natural

convection flow using conservation of mass, momenfum and energy can be written as:

I

(

I
I

I
/

Au Av

-+--0.,'0xfu
Au Au I Op ( A'u O'u\

' a**u ar=-i a-*"[ur' 
* 

ur.-)'

Av Av I Op ( A', 6'v). u::-+v+ = -:Y + ul -+i1 l* sf(r -r"),Ax A pq \ax' Ay')
and

ar ar ( a'r a'r)u_+v_=d,l_*-- ^ l.0x Ay [0r' Ay" )

The assumed boundary conditions are

u(x,O) = u(x, L) = u(0, Y) = u(L, Y) = 0,
v(x,O) =v(x,L) = v(Q,.Y) =v(L,Y) =0 ,

(3. 1)

(3.2)

(3.3)

(3.4)

(3.s)

T(x,0)=7, or 7(x, o) = (ro - r"> rin(ff)* r",

ff{*,r) = r, T(o,y) =T(L,y) =7",

where x and y are the distances measured along the horizontal and vertical directions

respectively, u and , are thb velocity components in the x- and y-directions respectively,

7 denotes the temperature, D and a are the kinematic viscosity and the thermal diffrrsivity of

the fluid respectively, p is the pressure aad p is the density, T, and. T" are the temperatures at

hot bottom wall and cold vertical walls respectively and Z is the side of the square cavity.
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Upon using the following change of variables:

X =!.L'

o- Pt
- a)pd-

6 =T -7"
Tr-7,'

y =1, (J =4, v =L,
Ldd

Pr=9, no-g9(T'-!")EP',
aD'

the goveming equations (3.1 - 3.4) reduce to non-dimensional form as follow:

AU AV

-+--0.AX AY

uau +vU=-aP *p,(ry.ry).ax aY ax lax' aY')'

rya! +vL = -a:- * P,( *.*\+ RaPro,ax aY aY \ax" aY')

uao *r9=e1*4.AX AY AX' AY''

with boundary conditions

u(x,0) =u(x,l) =u(0,Y) =u(I,Y) =0,
v(x,0) =v(x,l) =v(Q,Y) =v(l,D =0,
0(X,0) =l or 0(X,0) = sin(rX),

ff{r,r)=0, oe,n= o(r,D=0.

(3.6)

(3.t)

(3.8)

(3.e)

(3.10)

(3.1 1)

Here X and Y are dimensionless coordinates along horizontal and vertical directions

respectively, (J and V are dimensionless velocity components in the X- and l-directions

respectively, d is the dimensionless temperature, P is the dimensionless pressure, Ra and Pr

are Rayleigh and Piandtl numbers respectively.

3.3 Numerical Computations

To investigate the problem, it is required to solve the partial differential equations (3.7 - 3.10)

subject to the boundary conditions (3.11). For this, the physical domain is discretize into finite

number of triangular elements by using computation software MATLAB with builrin

commands. Shape functions over triangular elements are generated by using 6-nodes, and they

are quadratic for every elements. The meshing of given geometry yields 1312 six noded

triangular elements with 2705 number of nodes.

The momentum and energy equations (3.8 - 3.10) are solved using the Galerkin finite element

method. The continuity equation (3.7) is used as a constraint due to mass conservation and we

obtained the pressure distribution as given by Basak and Ayappa [6]. In other words, to solve

4l
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equations (3.8 - 3.10), we use the penalty finite element method, where the pressure P is

eliminated by a penalty parameter y and the incompressibility criteria given by Eq. (3.7)

The continuity equations (3.7) is automatically satisfied for large values of 7. Typical values

of 7 yield consistent solutions are 107

After using Eq. (3.I2), the momentum equations (3.8) and (3.9) reduce to:

(see Reddy [3]) which results in:

p =-r({* a').
'\ax aY)

uau +vL = r-9-( 9.1!-* U) * p,( 9'u a'u)
- ax ' ' aY ' ax\ax aY ) \.ax, " aY., )'
u 

av *v L =, L( A. qI) * p,( qL.tL\+ 
Rapro .ax aY ' aY\ax aY ) lax' aY')

(3.13)

(3.14)

(3.t2)

(3.16)

We solve Eqs. (3.10), (3.13) and (3.la) to get solution of given physical problem. These three

equations consist of highest order derivative terms, and the Eqs. (3.13) and (3.1a) include the

non-linear terms. The non-linearity in these equations make the problem difficult to solve. To

deal with this difficulty, the iterative method such as Newton Raphson has been used. Whereas

to remove the highest order derivative terms, the weak form of Eqs. (3.10), (3.13) and (3.14) is

developed by using weak formulation.

We assume the approximated solution of velociry components U & V and temperature d, as

given below

N/frV
U =Zur4r(x,y), V =LVofio(x,y) and 0 =Z1ofioV,v) for 0 < X,Y <l , (3.15)

k=l k=l

where N is the total number of nodes, /* is the vector of shape functions, Uo andVo are the

vectors of nodal values of velocity components, and d* is the vector of nodal values of

temperature. Using Galerkin's Method, the weight functions for all approximated functions

(3.15) is same as follow

,r=#=00, Wr=ff=Or and *n=#=Oo

For the evaluation of unknown nodal variables U k, fk and 00, the integral of weighted residual

over the problem domain is set to zero. Thus, in the tight of approximated functions (3.15) and

weight function (3.16), the weak form of Eqs."(3.10), (3.13) and (3.1a) are expressed as

[^(, #., #w, - [,r(x. #Y,Y = o,
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!(o r p r,, r) # * 0 r (0 i, v o) ffl r *r, . {* # . * Y)0 kdxdy -

f(,. #*,,#)rro,=0,

Chapter-3

(3.t7)

[, 
r(, # ., #W,r - r ! o rl*W . #)Vrr - v, ! 0,(,*n . #

[rr(, # ., #Vr, - r!,rrl*W . #)
aaYr 

IOoo 
dxdY = o ,

'r}

l*0, =0,

(3. l 8)

llorgr'rr)#*00(00'vo)SI'r*or.rlt(*Wrrlr*or.yWYY**)

." [(*# . *%-Y rdxdY- ..f (,, #.,, ff)orr, = o,

W,-v,for(*.#V,,_

llortor'rr)#*00(0r'vr)ffI'r*or.rl1(t#lr*rr.{*YYr**l
." [(* Y . *'#-yrdxdY - na v r ! 0o (o : e rWar- r, 

f (,. # *,, #), r* = o

(3.1e)

Reduced forin of integrals obtained in Eqs. (3.17 - 3.19) are appended in Appendix A with

brief steps of simplification. To avoid the complication of solving non-linear terms in

Eqs. (3.18) and (3.19), Newton-Raphson method is used to compute non-linear coefficient

matrices, which are function of unknown velocity components (Reddy [3]). Using Galerkin

finite element method,.the following nonlinear residual equations for Eqs. (3.17), (3.18) and

(3.19) respectively, are being made over domain O ,

RI" = I u- !,1(7.' r'r)* .(P,'rr)*y *" . rl1.' r 1,ff ff *o' .

Z'r,,#***)*"tq[l#*.#*f*o', (320)
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(3.2r)

R"'=;-t[(;rrrr)*.(P,rrr)*!**.2'4,1*%#.#*)**,
(3.22)

In order to solve above residual equations, quadratic triangular elements with six nodes are

used as interpolation functions. Thus, the approximate functions for velocity components U

and V, and temperatrre 0 corresponding to six noded triangular element (e) may be expressed

AS

6

v =Llroqo(x,y) =y(e)p@ ^6k=t

The interpolations or shape functions (0u) as already defined in Chapter-2 are

I"(21" -t)
Lr(2L2 -t)
IaQL -t)

41.L,

4L2L3

4LrI.

, for k =1,2,...,6, (3.24)

R:"=;rt[[;,ror)*.(Z,rr)*1,**.,I7^,r[,ff ff a*a,.

>n L# * *or)* Y, 
f,v r [,[# * . # *)** -

^,.'[[* 
,o6o\,*rr,

6

o =ZorOrV,y)= 6@6@ .

,t=l

(3.23)

6, rJ =Zu odo\ ,y) - ry@ 6@) ,

k=l

ld
la

,r=lr;_

ld
lo'

Consider,

I.(21. -l) =2It' - It
=1"'*L,'-\
= I"' * Lr(I. -l)
= I"' + Ir(-L, - 4)

I.(21.-l) =Lr' - LrLr- \L,

Similarly, we may write

I"(212 -l) = 4' - LJ" - LJr,

Ij(2Ij -l):I"' - I"Ij - LJ. ,

using Eq. (2.46)

(3.2s)

(3.26)

(3.27)
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Using above results (3.25) - (3.27), the matrix (3.24) implies,

do=

h' - I.Lr- LrIt

Lr'-LrLr-\L,
Lr' - LI"- LrL,

41.L,

4L2L3

41"1"

where,

L,
L,,

L,
\1,
L,L

LI.
Differentiate Eq. (3.28) w.r.t .r, we get

2r"(#)
,r,(#)
2r"(#)

,"(#)*1,(#)
,,(#).,"(#)
,,(#).4(#)

-1 0

-1 -l
0-l
40
04
00

o,

d,

At

0,

0'

0,

-l 0

-l -l
0-1
40
04
00

2br00
02br0
002b,
b2bto
oUb2
40bl

t-q.l
and 

"r=lr;,)

2br00
02b20
002b,
b2bto
0brb2
4 0 4

100
010
001
000
000
000

-1
0

-1
0

0

4

L,,

L,,

L,
\1,
L,L,

LI"

Chapter-3

= [l][R] , (3.28)

(3.2e)

lA)=

00
10
01
00
00
00

and [R] =

-1
0

-1
0

0

4

, o0o =l,ql!0x ' tAx

Le-

\,
L,,

\,
\1,
L,L

LI"

,r,l =LA)*n

2lrb,

2Lrb;

2\b3

Irb, + Lrb,

Lrb, + Lrb,

Lrbr+ Lrb,

*=vt#
l-q I

l?,)=v)tBttL)'

where,

w=#
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(3.30)

(3.31)

result as

(3.32)

Similarly, differentiating Eq. (3.28) w.r.t y, we get

l2r, 0 0l
I o 2c, o l.,-,

* =,n#l!, :,'.rlil =,,,,,',,',,

l, c1 c, l'"
Lct O ,,-l

where,

f2r, 0 0l
lo 2c, ol

, lo o zcrl.
1cl= 

^al 
c, ct o 

I

I o ca crl
L* d ;')

Consider the product of [Z] with [Z]r as

I r,1 I t',' \L, \1,1
lL)lL)' =l t,l[t, L2 r]=l r;, L,' L,L,l.

LqJ 1r,,. L,L, L,' )

Using formula (2.51), the integration of Eq. (3.31) over the element (e) generates

follow

I r"' L,L \r-,1 l-* # #l
H = [ [L]lllr dL= Il t,E L,' r,r,pt=li + # l,ak) o,,,lL\ LrL, Lr, )' L+ # +l
i.e.

H = !.tLrur d^=il" : ll
a(e) ^"[t I z)

The product of [R] and p?lr yields result

I t' Lr' Lr' 4L, LrL, Lr\7,

\,
L,,
L,,

L,L,

Lrlt
L'L
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Le.

[R][ft]r = (3.33)

With the help of formula (2.51), following result may be obtained in response of integrating

matrix (3.33) over the element (e) as follows

4 \'Lr' L'Lr' Lr'L, fiLrL,
Lr'Lr' 4 Lr'L' LLr' t:rt"

\'Lr' Lr'l"' 4 \LrQ LrQ

I"'L, \Lrt qLrE 4t, \tL
fltrt" frt" Lr4 LLi\ L'r4

Ir'L, \4L, LrE, fltrL \LrQ

4 L,'L,'

\'Lr' ti
\,L,, L,,L,

\,L, \L,,
Qtrt" frt"
\'L 1,,4L,

\,L,, \,L,
L,,\, \L,,
4 LL4

LLrL', 44
1,4 \4L
L,E, 4L,L,

4LrL, \'L,
t:rt" \tI"
1,4 L4
\4L, 4L,L,
tU \L,4
LL,4 44

L,L1
t"t:rUl

;::,V^
LL,4I
44)

e= [ 1n11n1'aa= J
A(e) A(.)

2L 2L 2L 2A 26 2L
30 180 180 t20 360 120

2L 2L 26 2L 2L 2A
180 30 180 120 120 360

2L 26 2L 2L 2L 2L
180 180 30 360 120 r20

2A 2L 2L 2L 2L 2L
120 r20 360 180 360 360

2L 2L 2A 2L 2L 2A
360 120 120 360 180 360

2L 2L 2A 2L 2L 2A
120 360 r20 160 360 180

2x A,

t2

2

)
3

1

3

2

t2

2

J

3

1

2313
2331
t2 13 3

r211
3121
3112

. (3.34)Q= ![n][R]'Aa=
A(.)

- 2x LG)=-
5040

Let us consider the integral { (used in succeeding phases of computation) comprising

combination of identified matrices over the element (a), which results a matrix of order 6 x 3.

Since its caiculations are too lengthy and complicated, such steps are given in

Appendix A with brief detail. Simpliflred form is written in the following form

r,= t (tnn';fut)at
A(.)

60u, -8u, -8u, +24u0 -8u, + 24u.

-8u, * I 2u, +2u, - I 6uo -8u, -24uu

-8u,+2ur+l2ur-24u0 -8ur-l 6u,

24u r-l6tt r-241. * I 92uo +64u, +96uu

-8u, -8u, -8ur+64u0 *64u, *64u,

24l r-241 r-l 6ttr +96ur +64us + I 92ue

l2u,-8ur*2ur-16u0-24ur-8uu 12u,+2ur-8ur-8un-24ur-16uu

-8u,+60nr-3rr+24u0*241r-8lu 2u,*l2ur-8ur-8uo-l6ur-24uu

2u,-8ur+l2ur-24u0-l6ur-8uu -8u,-8ur+6Qur-Suo+24ur*24u,

-l6ur+24ur-24ur+l92un+96us*64uu -8u,-8ur-Sur+64u0+64ur+64uu

-241 r+24u r-l 6u, *96u. + I 92u, *64u, -24n, -l 6u r+24u, *64u0 + I 92us *96u 
u

-8u,-8ur-8ur+64u0*64u, +64u u -l6rtr-24ur*24ur*64u0 +96us+l 92ue
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Similarly, consider the integral

lts steps of simplification are

simpliffing Fr,is given below

r,= I (mn't'vt|)at
A(.)

Chapter-3

Fr= [ (lnn',{frtl)dA,, g"n"rutes the matrix of order 6x3.
A(e)

described in Appendix A. Final step after integrating and

60v, -8vr -8v, *24v o-9v r+ 24v,

-8v r*l2v r+2vr - I 6vo -8v, -24v,

-8v ,+2v ,rl2v, -24v0 -8vr. I 6v,

24v,-l6vr-24vr+192v o+64v r+)$v u

-8v, -8v, -8v, + 64v 4+64v 5+64Y 6

24v,-24v.r-l 6v z*96v q+64v s+192v t

l2v r-8v r*Zv r-l6vo-24v,-8vu
-8v,+60v,-8v, *24v ol24v r-8v,
2v r-8v r* l2v r-24v. - I 6v, -8vu

-l6v r+24v ,-24v ,+192v o+96v s*64v e

-24v r+24y ,-16v r*96v o+l)2v ,*${v u

-8v, -8v, :$vra64v o+64v r+$4v,

l2v r+2v r-8v r -8vo -24v, - I 6vu

2v r+l2v r-8v..-8v o-l6v,-24v ,
-8v, -8v, +6Qv, -8v o+24v r+24v,
-8v,-Svr-8v,*64v o+64v r+$!Y u

-24v r-l 6v r+24v i 64v c+ | 92vs *96ve

-l6v ,-24v ,+24v, *64v, *96v, +192v 
u

where U =fu, ttz u3 u4 u5 uu)' , V =fu, vz v3 v4 v5

(3.36)

uu)' are the vectors of

nodal values of velocity components associated with six noded triangular element (e). Using

approximate functions (3.23), the integrals (3.20 - 3.22) over the element domain O(') may be

written as

^r, 
=J[i,",(1oro)' ,,)(#) u-,\t'xdy.J[r",({0,,)' ,,)(#) u,",)xav *

,ltW(#)'),'"'>dxdv.l(#w)'),.'*0,).

,, Il#(#)' . #-(#)' ), 
- *0,,

,lll*(#)'),@,dxdY.t(#(#)')^"'dxdYf+

tww)' .w-(#y)^"*,,

(3.37)

Rr", = 
[1r,", 

(to*,)' r,)(#)' r.,yr*. 
J [r,, 

({0,, )' r,)(#)' r.,)** .

- tl#(#)' . #(#)' )n' 
*oy - Rapr [ (ou' ((on' )"')w

^i, 
= 

J [i,., 
(10u,)' r,)(#)' 

^,)*or. J [r, 
({0,, )' r.)(#-) e,",)xar *

(3.38)

(3.3e)
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The matrix form of above integrals (3.37 - 3.39) may be obtained by using Eqs. (3.28 - 3.36).

First consider Eq. (3.37) as follows

RI, = 
{! ?u' n'uk) rtYxar}u' n'uu'. 

{ 
I {r^' t'rr@) rI Yxav}c' e'u<"t +

,l* 
{lQt: ) 

axar} r' n', u' . * 
{!"@ 

r 
) 
axar}c' e' r *').

-l*{t@\ axar}u' n' . *{l@r 
) 
axar}r' r')r "

or

RI' = F,Br Ar(Jt@ + Frcr A,IJ@ + yl,lnuar A,IJ@ + ABHC, A'n<"tf+

er(laua' Ar + ACHG',1')ut"t

Now Eq. (3.38) implies

O, = 
{ 

I {, RR' A' u@' rt yrar}o'' o'r"' * 
{J 

(tnn' I r t"' r: pxar]ct,4r s(e) I

,l* 
{!,u, 1 

arar} u' nr s @) a * 
{t o, I 

*or}r' n',.')*

(3.40)

,,(* 
{t o r y arar} u' n' . n r 

Up 
r yxar}r' r')r n' - * *l^{l( u' Wr} n' r'"')

or

Rl"' = F,Br A,LI@ + Frcr Aru@ + yl.ecunr Ar(J@ + ACHC, A'r<"t)+

rr(,eann'Ar + ACHC'A')r<"t -narr(, 9,{e@)

Similarly, Eq. (3.39) in matrix form may be written as

Ri', = 
{l Uu' n'u@) rtYxar}a' ,a' eu' . 

{J 
(tnn' .a'v' rwor}c' A' 0(") +

[-{l @t)axar}r'n' . nr{! @rlarar}c'n')rn'

(3.41)

or

firt" = F,Br Are@ + Frcr Ar0'"t *(,qaHB'A' + rl.cuc'l')o<"t.

Let's Start with the differentiation of Eq. (3.40) w.r.t ui ;i=\2,...,6, we get a square matrix

oforder 6.

(3.42)
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(3.43)

(3.44)

anl') (r,r)

a01

, aRl")

'|r 00,
(3.45)

In a similar manner, derivative of 4") urrd4') w.r.t nodal variables (u,,v,,0, for i : 1,2,...,6)

may be obtained, thus we have

, Jz3=
aR:n, a4"'

r2l- 
^ ,
tu,

, _ )R!u
't31 --l-til,

, oRt"'

@,

, _oR!"t , _aR:n
"rr_ ar, 

, r33_ 
ao,

(3.46)

element (e) may be obtained asThus by using Eqs. (3.43 - 3.46), the jacobian -/ of the

formulated below, which is a square matrix of order l8
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lt" J" t"1
Jk) =l J, J, Jrr l.

L+, J, J'r)

Moreover, the residue R associated with

which is a column vector of residuah (R(")

[nl'l
R(")=14, l.

L*j"-l

Pn+t= p,-Y'(p,)z(p,).

To proceed further, first assume the initial guess

| "il fo.zsl
p,=lu! l=lo.zsl ; i=1,2,...,2705.

Lrll [o or ]

Chapter-3

(3.47)

element (e) is evaluated using Eqs. (3.40 - 3.42),

, 4', Rt' ) generates a matrix of order 18 xl , i.e.

Since there are total 1312 elements, similar procedure will be followed for each element to get

theirrespectivejacobianandresidue.Alsotherearel8nodalvariables (u,,v,,0,;i=1,2,...,6)

in all, corresponding to each element. tn other words, tlree nodal variables u, v and 0 are

associated with each node. Thus, the assembly ofjacobian matrices correspond to each element

generate a global stiffrress matrix W (sag of order 8115 x 8115. Whereas, combining residue

matrices related to each element, an assembled matrix N (say) of order 8115 x 1 is obtained.

Incorporate the given boundary conditions in above mentioned global stiffness mafices W and

N, we get a matrices Y and Z (say) respectively, using these two matrices, approximated

solution may be obtained by Newton Raphson method. In this context, Newton Raphson

method defines as,

P,+1 = P, - J-' (p,)R(p,),

where -I is the jacobian matrix, l? shows the residual matrix, p denotes the unknown vectors,

n is the iterative index at previous step and n + I is index for unknown variable.

In present case, we have J(p,) =Y(p,) & R(p,): Z(p,).Thus Eq. (3.49) may be written as

(3.48)

(3.4e)

(3.50)

Substituting initial guess in Eq. (3.50), the iteration generates the p, then use this value in

Eq. (3.50), p, wlll be obtained after the execution of second iteration. The process of

successive iteration is continued until the maximum difference of the variables u,v,0

between two consecutive terms became less than 10{ is achieved.
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3.3.1 Evaluation of Stream Function

The stream function V can be defined in term of the velocity vectors U and Z as follows

u =0v and v =-0v .AY AX'
Using Eq. (3.51), following result may be obtained

O2ty , O2ry _OU AV

oyz-- af - N- N'
Define approximate function for stream function ty ,wehave

6

w =lvrLr(x,v)- r(e)6@) .

t=l

differential Eq. (3.52) is

tWW)'.u#-(#)'),'"'*o'=[l-,"'(w-)'

Using approximate functions for U,Y and y from Eqs. (3.23 and 3.53), weak form of

(3.51)

(3.s2)

(3.53)

(3.ss)

u("t +a*,(atu'\' ,u,fo, .'(ax) 
)

product of R and ,' ,[1ri?.Before fransforming the above integral in matrix form, the

evaluated as follows

[R][Z]r =

L, 1

Lr' 
I

,Z I

tr,lt' Lz I''l=

LrLl
LJ.)

Using formula (2.5I), the integral

4
\4

G= [tn]tzlrd^= I | *
!,"1 rit,

\1,1,
4r,,

Now, transform the integral (3.54)

[ (eat[ n'A' + tcttlc'e')vl
o"

I 4 41, L?r-,1

IE, E, r:,r"I
Ir"4 1,4 4l
I ,;r, Ui L,LJ.I

l r,,t,r, EL, LrE 
I

I ti," \1,1, \ri )

. of matrix (3.55) over the element

41, 4L I [oE, rlL^ I lz
1,4 4 loo=r.11l,
LL; LtLzLl l 120 12

t:rt" LrLl I l,
LLJ. 1,4 ) IZ

in matrix form, we get

")dxdy = [ (-n*r:c, Aru@ +
(f
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l*{lOrVr*}r'n' 
. rr{y'ry**lc'e')wn' =-n{!{*rY**}r'n'rn' . 

^{lWWr}n'.{rtGt 
,

or

l,larua',n' + ACHCT A'fru' = -AGCT Arryk) q AGBT Arv@) ,

lufw'"'= [N], (3.s7)

where ,@ =1r@ ,/r(') ,/r:") vr@ ,/r(n) ,/rt")l' is column vector of order 6x1 of "nodal

values of stream function associated with six noded triangular element (e).

lUl= ABHB\ Ar + ACHC| At and [,af] = -AGC\ Arry@) I AGB\ ArV(') are matrices of order

6x6 and 6x1 respectively.

The values of velocity components U and Z obtained from Eq. (3.50) are used in Eq. (3.57)

for estimation of stream function. Stream functions (Vi"';i=1,2,...,6) corresponding to

element (e) is evaluated by solving system of Eqs. (3.57). Same procedure for the evaluation of

stream functions is adopted for l3I2 elements. At the end, assembly of all those elements is

made to get system of equations, and their solution give the stream functions at each node.

Graphs of stream function are represented in sections (3.5 and 3.6) for different cases of

uniform and non-uniform heating.

3.3.2 Evaluation of Nusselt Number

Nusselt number is a dimensionless parameter used in calculations of heat transfer between a

moving fluid and a solid body. Here, local Nusselt number is evaluated at the bottom wall

denoted by Nuo, and Ner" is a local Nusselt number estimated at the side wall. Formulation for

both are presented below

Consider the evaluation of Nusselt number Nuu at each node of a six noded triangular

element (e) by using Eq. (3.58) and hansforming such expression in matrix form, we have

Nuu = -Ztr* and Nu" = -ttr*

(tt u)'"'=-|tr*
Matrix form of above expression becomes

(wuo)'"' :-(eurl' *=-(en 1' ACL(,, i:r,2,...,6.
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gives distinct value for each node (i) at pciint

I t"1 | a, + b,x, + c,!,1

,,,, =l r, | =#l i,*i,*,.;;,1,
LZr.l,,, la, + brx, + cilr )

l-z,l f o,+b,xr+c,yrf
,, =lr,l = #l a,+ b,x,*,,r,1.

V" )rr, la, + b,x, + cJz )
Thus Eq. (3.60) may be written as

Chapter-3

where Lo Q=I,2,...,6) is a vector of area coordinates (I.,t,Zr) ur defined eariier, and

(x,,y,) of an element(e), as follows

Note. (x,,/,) is a point corresponding

to node'1'.

Note. (xr,.yr) is a,point corresponding

to node '2'.

(Nuo)@) = -

(eu'r' ACL,)

(eu'1' ACLlzy

(e'"')'",tctu,

(eu'\' ACL(4\

(eu,r' ACL(')

(en'1' ACL(6)

Same procedure is followed for other elements for calculation of Nusselt number at their

nodes. Our interest is to acquire values of Nusselt number only at those nodes which lie at the

bottom walI. In current investigation, there ar1 4I nodes which lie at the bottom wall. Thus, an

assembled mahix of local Nusselt number at bottom wall is obtained of order 41 x 1 .

On the similar line, the computation of local Nusselt number "Nu,atthe side wall may be made.

Using Eq. (3.58), value of Nz, corresponding to six noded triangular element (e) may be

written as

(Nu,)'"' =-f,er* = -(eu,1' * =-(eu'1' ABL(I), i =1,2,...,6.

(en 7' BLu,

(eu'1' nL,,,

(eu'r' nLu,

(eu,1' frLn,

(en'1' ABL(')

(eu'r' ABL(6)

(3.61)

or (Nz,)(') = -
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In present analysis, there are 41 number of nodes at side wall of square cavity on which local

Nusselt number is being evaluated. Therefore, an assemble matrix of local Nusselt number at

side wall is obtained of order 2lxL.

3.4 Results and Discussion

The geometry of given problem consists of 1312 quadratic triangular elements with 2705

number of nodes. Numerical investigation for wide range of parameters Ra=L03 -105 and

Pr =0.7 - 10 have been made with uniform and non-uniform heated bottom wall, keeping cool

the vertical walls and insulated top wall. In such numerical computation, a problem occurs to

evaluate the temperature at the corner nodes of the domain due to two different temperatures

on the adjacent walls. The suitable technique to overcome such difficulty is that average value

of temperatures on two adjacent walls is assumed at corner nodes whereas the values of other

nodes lie on the walls are taken equal to respective wall temperature.

The special benefit on calculation of local Nusselt number at vertical and bottom walls is made

by using finite element method due to the basis function used to calculate the heat flux.

3.5 Effects of Rayleigh number when the bottom wall is under the

influence of uniform heating

The stream function and isotherm contours have been illustrated for different values of

Ra =lO3 - 105 and Pr :0.7 - 10 when the boffom wall is uniformly heated. Since the vertical

walls are cooled, which results the fluids rise up from middle portion of bottom wall and flow

down along the two vertical walls making two symmetric rolls with clockwise and anti-

clockwise circulation in the cavity. The stream function has very low magnitude at Ra = 103

and initially the heat transfer is due to conduction. During conduction dominant heat transfer,

the temperature contours for 0=0.1 occur symmetrically near the side walls of the square

cavity. The other temperature contours with d ) 0.2 being as a smooth curves span the whole

enclosure and are generally observed symmetric to the vertical center line. The temperature

contours shown in Figure 3.2 remains invariant up to Ra < 5 x 103 .

For Rayleigh number Ra=Sx 103, the durable circulation occurs near the central regimes and

subsequently, the temperature contour with d = 0.2 starts getting shift towards the side wall

and break into two symmetric contour lines as shown in Figure 3.3. Existence of significant
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Temperature, I

heating, e(X,O) -1, with Pr : 0.7 and Ra=5x103.
negative and positive signs of sheam functions, respectively.

Stream Function, 1r

Figure 3.2: Contour plots for uniform bottom heating, e(X,O):1, with Pr = 0.7 and Ra: 103. Clockwise

and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Stream Function, y Temperature, d

0L
0

Figure 3.3: Contour plots for uniform bottom

Clockwise and anti-clockwise flows are shown via

SteamFunction, y Temperature, d

r)

0.2 0.4 0.6

Figure 3.4: Contour plots for uniform bottom heating, O (X ,O): 1 , with Pr = 0.7 and Ra: 105 . Clockwise

and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Stream Function, r7 Temperature, d

Figure 3.5: Contour plots for uniform bottom heating, 0 (X ,O): 1 , with Pr = lO and Ra = 105 . Clockwise

and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

convection is also presented in other temperature contour lines which start getting deformed

and pushed towards the top plate.

As Rayleigh number increases to 105, the buoyancy driven circulation inside the cavity also

increases as seen from the greater magnitudes of the stream functions as shown in Figure 3.4.

The circulations are greater near the center and least at the wall'due to no, slip boundary

conditions. Consequently, at Ra = 10', the temperature gradients near both the bottom and side

walls tend to be significant leading to the development of a thermal boundary layer. Figdre 3.2

shows that the thermal boundary layer develops in approximately 80% of the cavity for

Rc = l03whereas for Ra = 105, the isotherms presentdd in Figure 3.4 indicate that, the thermal

boundary layer develops almost throughout the entire cavity.

The values of stream function and isotherms in the cavity increases with the increasing of Pr

from 0.7 to 10, comparison is illustrated in Figures 3.4 and 3.5. The greater circulation near the

cenhal regime of each half distributes greater heat, resulting in greater temperahrre near the

central symmetric vertical pld.ne as shown in Figure 3.5. It may be noted that the temperature

varies within 0.,+-0.5 for Pr: 0.7 (Figurc 3.4) near the central core regime at the top half of the

enclosure whereas the temperature varies within 0.5-0.6 for Pr: 10 as seen in Figure 3.5. Due

to greater circulation at Pr = 10, the zone of stratification of temperature at the central

symmetric line is reduced.
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3.6 Effects of Rayleigh number when the bottom wall is under the

influence of non-uniform heating

Stream function contours and isotherms are shown in Figures 3.6 - 3.8 for Ra = 103 - 105 and

Pr =0.7 -10 when the bottom wall is non-uniformly heated. As seen earlier, uniform heating

of the bottom wall causes a finite discontinuity in Dirichlet type boundary conditions for the

temperature distribution at the edges of the bottom wall. In contrast, the non-uniform heating

removes the singularities at the edges of the bottom wall and provides a smooth temperature

distribution in the entire cavity. Due to the non-uniform heating of the bottom wall for

Ra=103 and Pr=0.7, thermal boundary layer develops only over 60% of the cavity as

shown in Figure 3.6, which is small in magnitude as compared to that of the

uniform heating case. The conduction dominant heat transfer mode is observed up to

Stream Function, y Temperature, I

0.0 0.8

Figure 3.6: Contour plots for non-uniform bottom heating, e(X,O):srnQtX), with Pr:0.7 and.Ra=103'

Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions, respectively.

Stream Function, y Temperature, d

Figure 3.7: Contour plots for non-uniform bottom heating, O(X,O)=snt(trX), with Pr:0.7 and Ra=10s.

Clockwise and anti-clockwise flows are shown Via negative and positive signs of stream functions, respectively.
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StreamFunction, y Temperature, d

0.S

tri,

Figure 3.8: Contour plots for non-uniform bottom heating, 0(X,O)=sir.r(zrX), with Pr: l0 and Ra=lOs.

Clockwise and anti-clockwise flows are shown via negative and positive sigls of stream functions, respectively.

Ra=2x10a which is consistent with that of uniform heating case, where the critical Rayleigh

number is around 500b. It may be noted that the temperature at the bottom wall is non-uniform

and a maximum temperature difference occurs at the center.

At Ra = 105, the circulation pattern is qualitatively similar tb that of the uniform heating case

as shown in Figure 3.7. Due to non-uniform heated bottom wall, the heating rate near the wall

is generally minimum which induces less buoyancy resulting in lower thermal gradient

throughout the'domain. The uniformity in temperature distribution and least temperature

gradient are still observed at the central core regime within the top half of the domain. The

lower buoyancy effect also leads to a large zone of stratification of temperature at the vertical

line of symmetry as shown in Figure 3.7 . The effect of Prandtl number is also pronounced for

Ra = 105 as seen in Figure 3.8, where the gteater circulation causes more heat to be distributed

in the central regime. However, as compared to that of uniform heating cases, the values of

temperature contours are lower near the central and top portion of the enclosure for nbn-

uniform heating. The temperature contours are highly dense near the bottom wall which may

indicate a lower heating rate atthe top as well as central regions of the enclosure.

3.7 Heat Transfer Rates - Local and Average Nusselt Numbers

Figure 3.9 shows the effects of Ra and Pr on the local Nusselt numbers at the bottom Nz,

and side wall Nz, . For uniform heating of the bottom wall, the heat hansfer rate Nuu is very

high at the edges of the bottom wall due to the discontinuities present in the temperature
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boundary conditions at the edges. It reduces towards the center of the bottom wall with the

minimum value at the center as shown in Figure 3.9(a). On the contrary, for Ra = 103 with

non-uniformly heated bottom wall, Nuu increases from zero at both the edges of the bottom

wall towards the center with its maximum value their. Further at Ro=105, non-uniform

heating produces a sinusoidal type of local heat hansfer rate with minimum values at the edges

as well as at the center of the bottom wall. The physical reason for this type of behavior is due

to the higher values of the stream function (i.e.high flow rate) for Ra=105 in the middle of
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Figure 3.9: Variation of local Nusselt number with distance (a) at the bottom wall (b) at the side wall for uniform

heating (-) and non-uniform heating (- - ).

the first and second half of the cavity. As Pr increases from 0.7 to 10, the local Nusselt number

at the bottom wall Nuo increases slightly as seen in Figure 3.9(a). It may be noted that for all

Side Wall

Bottom Wall
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values of Prandtl Pr and Rayleigh number Ra, non-uniform heating enhances the heat transfer

atthe central regime only. The temperafure contours diverge from the comer points toward the

central vertical line for uniform heating, and therefore local Nusselt number is a monotonically

decreasing function with distance. In contrast, for non-uniform heating, the temperature

contours are compressed around the intermediate zones befween comers and the vertical line of

symmetry, and local Nusselt number is maximum at around X : 0.3 and 0.7. Figure 3.9(b)

illustrates the heat transfer rate at the side wall. The local Nusselt number at side wall Nu,

decreases with distance at the cold side wall for Ra =103 , Pr =0.7 for both uniform and non-

uniform heating. It may be noted that the heat transfer rate initially decreases and later

increases with distance for Ra=10s with Pr =0.7 and 10. At higher Rayleigh numbers, the

significant circulation has been observed which can be seen in Figufes 3.4, 3.5,3.7 and 3.8
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results in highly dense contours at the top portion of the side walls and these dense temperature

contours are in contrast with the conduction dominant cases as seen in Figures 3.2 and 3.6.

Further, it is observed that the temperature contours are compressed towards the side walls

away from the corner points at the bottom. Therefore, the heat fluxes are enhanced at the

regions away from the bottom comer points. The heat transfer rates are qualitatively similar,

but reduced for non-uniform heating of bottom wall as compared to uniform heating.

The overall effect on the heat transfer rates are shown in Figure 3.10(a)-(d), where the

distributions of the average Nusselt number of bottom and side walls respectively, are plotted

versus the logarithmic Rayleigh number. Figures 10(a) and (b) (cases a and b) illustrate

uniform heating and Figures 10(c) and (d) (cases c and d) illustrate non-uniform heating. For

all these cases, it is observed that average Nusselt numbers for both the bottom and side walls

remain constant up to Ra=5000 for uniform heating and up to Ra=2xl}a for non-uniform

heating. Hence, dominant heat conduction mode corresponding to larger range of Rayleigh

numbers produces overall lower heat fransfer rates against non-uniform heating. The insets

show the log-log plot for average Nusselt number versus Rayleigh number for convection

dominant regimes. The log-log linear plot is obtained with more than 20 data set. A least

' square curve is fitted and the overall error is within l%o. The following correlations are

obtained for cases a, b, c and d as follows:

Cases a and b: Uniform heating (Ra>5000)

N", =ZN\
=I.62l9Rao'tas , Pr =0.7

=1.2238Ra0't77 , Pr =10

Cases c and d: Non-Uniform heating (Ro> 2xI04 )

tt", =ZNr\

= 0.2939Ra0'24e, Pr = 0.7

=1.2238Ra0'28e , Pr =1.0

3.8 Conclusions

The prime objective of this chapter is to reinvestigate the effect of Dirichlet boundary

conditions o.n the flow and heat tansfer characteristics due to natural convection within a

square enclosure studied by T. Basak et al [5]. The penalty finite element method helps to

obtain smooth solutions in terms of sheam functions and isotherm contours for wide ranges of

parameters Pr and Ra with uniform and non-uniform heating of the bottom wall. It has been
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demonstrated thalthe formation of boundary layers for both the heating cases occurs. It is also

observed that thermal boundary layer develops over approximately 80% of the cavity for

uniform heating, whereas the boundary layer is approximately 60% for non-uniform heating

when Ra = 103. The heat tansfe, .ate is very high at the edges of the bottom wall and

decreases to a minimum value at the center due to uniform heating which is consistent with the

lower heat transfer rate at the edges due to non-uniform heating for Ra = 103.'The conduction

dominant heat transfer modes occurs at Ra<5x103during uniform heating of bottom wall

whereas it occurs at Ra <2xl0a for non-uniform heating.

At the onset of convection dominant mode, the temperature contour lines get compressed

toward the side walls and they tend to get deformed towards the upward direction. During

Ra = 105, the thermal boundary layer develops near the bottom and side walls, and the central

regime near the top surface has least temperature gradient for both uniform and non-uniform

heating. The local Nusselt numbers at the bottom and side walls represent various interesting

heating features. The local Nusselt number at the bottom wall is least at the center for uniform

heating and there are two minimum heat transfer zones at tle center and corner points for non-

uniform heating. The non-uniform heating exhibits greater heat hansfer rates at the center of

the bottom wall than that with uniform heating for all Rayleigh numbers. The local Nusselt

number at the side wall is found to decrease with distance for conduction dominant heat

transfer whereas due to highly dense contour lines near the top portion of the side wall, the

local Nusselt number is found to increase for both uniform and non-uniform heating cases. The

average Nusselt number indicates overall lower heat fiansfer rates for non-uniform heating.

The average Nusselt number is found to follow a power law variation with Rayleigh number

for convection dominant regimes.
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A.1 Calculation of integral U@ =[[ru,a*ay;

According to problem (2.10.1), the shape functions

defined as

tt,=)l@,!t- xz!,)+(tr- yr)*+(xr- x,)tf ,

n,= )l!,h- \!z)+(t,- y,)*+(x,- x,)tf ,

u, = )lt*,!z - xzlr) * (y, - yr)* * (*, - -r) y)

i =1,2,3

for linear triangular element (e) are

Without generality, above shape functions may simply be written as (as illustrated in Eq.2.a6)

Hr=It, Hr=L, and Hr=L,

Therefore, given integral becomes

t<"> = tl\ru, H2 H3)r dxdy
(e)

Consider the first term of above integral

(A.1)

Similarly, values for other two terms of integral (A.1) are

![u,a*ar= [p,,a.ar 
= !(e) (e't

![.r,*0, = 
$1,a,ar= !(e't k)

[[r,*or= !!.t,*r, = t(e) (e)

(usingEq.2.51)

(usingEq.2.51)

(usingEq.2.51)

Using above values in integral (A.1), we get

l%1 rrr
o'"'=l%l=+l ,1,

I%) LU

In problem (2.10.1), A is representedby A.
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Appendix A

4.2 Evaluation of integral F, = I (nu',a'utl)at
A(")

I t,' L,' \' L'L, LrIt Ir. 4

With the help of computational software program Mathematica 8, the product of matrices

written above gives a single matrix of order 6x3, that is

4., 4: 4.,

R., Fr., 4.,

E., 4., ( .2)
4,, 4,, 4,,

E,, 4,, 4,,

4,, Fu,, 4,,

where,

4,, = L, ((L1 G,', - L,L, - L,L, ) - L,L r(t, - L,L, - L,L, ) - L,L r(4 - L,L r- L,L, ))u,

+ (-L,Lr (L] - L rL, - L,Lr ) + L"G, - L,L r- L,Lr) - L rL r(4 - L,L r- L,Lr ))u,
+ (-LrL3 (L1 - L rL r- L,L, ) - L rL r(4 - L,L r- L,L, ) + t $; - L,L r- L,Lr))u,

+ 4LLr(tt -L,Lr- L,Lr)uo + 4Lr\(at -L,Lr- L,Lr)u, + 4LL3(at -LrLr- L,Lr)uu),

F,., =L,((4$}, -L,L,- L,L,) -L,L,(4 -L,L,- L,L,) -L,L,(4-L,L,- L,L,))U,

+ (-LrL, (Ll - L rL, - L, L, ) + L"(U - L,L, - L,L, ) - L r\(L1 - L,L, - L,L, ))u,
+ (-LrL3 (L1 - L,L r- L,L, ) - L rL r(t, - L,L, - L,L, ) + ar$:, - L rL, - L,L, ))u,
+ 4LLr$:t -L,L, - L,Lr)uo + 4Lr\(at -L,Lr- L,Lr)u, + 4LL3(at -L,Lr- L,Lr)uu),

4,, = L,((L1 (I, -L,L, - L,L,) -L,L,(I, -L,L,- L,L,) - LIL3(L1 -L'L'- L'L'))U'

+ (-L,Lr(Ll -L,Lr- L,Lr) +L"(Ii -L,Lr- L,Lr) -LrLrG -L,Lr- L,Lr))u,

+ (-LrL3 G1 - L,L r - L,Lr ) - L rL r(A, - L,L r - L,Lr ) + L"(I:, - L,L r - L,Lr ))u,
+ 4L L r[:t - L,L, - L,Lr)uo + 4L 2\(at - L rL r- L,L, )u, + 4L L 3(aL - L,L r- L,Lr)uu ), .

4,, = L, ((L1 GL,L, + L" - L,L,) - L IL 2(L IL' + T' - L'L') - L IL 3 CL IL 2 + T}' . L'L' ))U'

+ (-LrL2(-L ,L, +t, -LrLr) +arlrit, +t, -LrLr) -L2L3GL|L, +t, -LrLr))u,

+ (-L, L, (-L rL, + t, - L rL r) - L 2L 3GL tL, + t, - L rL r) + t 1-l- rr, + t, - L, L, ))u,
+ 4L tL 2GL tL r + tr - L rL r)\ o + 4L zL 3GL tL r + t - L rlr )u, + 4L tL 3(L tL r + tr - Lr Lr )uu ),

,,= I
A(e)

3, lro ,
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F,., = L, ((4 GL,L, + A, - L,L,) - L L 2 
(L IL., + T' . L'L') - L IL 3(L IL 2 + T:' - L'L' ))U'

+(-LLz(LrLr+tr-LrLr)+L"CLL|+L"-LrLr)-LIL3GL1Lr+tr-LrLr))t,
+ (-Lr L3 (-Lr L, + t, - L rL r) - L 2L 3GL .L, + t, - L rL r) + L1(L L 2 + I:, - L, L, ))u,
+ 4LtL2CLtLr+tr- LrLr)uo + 4L2L3GL1Lr+tr- LrLr)u, + 4LrL3(-LrLr+tr- LrLr)uu),

4,, = L,((L1 GLrL, +L" -LrLr) -L.L2GL.L, +t, -LrLr) -LtL3(LtL2+L" - LrL,))u,

+ (-L 
r 
L2 (-L rL, + t, - L rL r) + L" GL L, + a, - L rL r) - L 2L 3 GL tL, + t, - L, L, ) )u,

+ (-LrL3 (-Lr L, + t, - L rL r) - L 2L 3GL L, + t, - L rL r) + T:)GL L, + L" - L rL, ))u,
+ 4L tL 2GL tL r + t - LrLr )uo + 4L 2L 3GL rL r + t - LrLr )u, + 4L tL 3GL tL r + tr - LrLr )uu ),

E,, = L, ((L1 (-L, L, - L,L, + 4) - L IL 2CL IL 3 - L.,L, + L") - L IL 3GL IL 3 - L.,L' + L" ))"'
+ (-LrL2(-L tL3 -L2L3 + L1) + t (LrL' -LrLr+ L") - L2L3GL1L3 -LrLr + L'?3))u,

+ (-LrL3(-L tL3 -L2L3 +L") -LiL3GL]L3 -LrL' + L1) + L"(-L1L' -LrLr+ ti))u,
+ 4LtLz(-LtL3 -L2L3 + L'z3)u4 + 4L2L3GL1L3 -L2L3+ L'z3)u5 + 4L1L3GL1L3 -L2L3 + L1)u6),

Fr., =Lr((t (-L,L, -LrL, *L'r) -LtLzGLtL3 -LrLr+c) -LrL3(-LrL3 -LrL, + Ll))ur

+ (-LrLr(-L tL3 -L2L3+ L'?3) + L"(-L1L, -LrLr+ L") - L2L3(L1L1-LrLr+ L'z3))u,

+ (-LrL3(-L tL3 -L2L3 +L"1 -L2L3CL1L3 -LrL'+ t1) + t GLIL' -LrL'+ L1))u3

+ 4L1L2GLIL3 -LzL3+ 4)ro + 4L\L3GL.L3 -LzL3 + L'?3)u5 + 4L.L3GL.L3 -LzL3 + L'?r)uu),

8,, = L,((L1(-L,L, -L,L,+ L") - LIL|GL1L3 -L'L'+ L") - LIL3(-LIL3 -L.,L'+ L1))UI

+ (-LrL2(-L 1L3 -L2L3+ L1) + L"(-L1L' -LrLr+t1-LiL3GL1L3 -LrLr+ L'?3))u'

+ (-LrL3 (-L tL3 -L2L3 + L" ) - L2L3(L1L3 -LrL'* t ) * t GL]L' -LrLr+ L1))u3

+ 4LtLzGLtL3 -L2L3+ L1)u4 + 4L2L3CL1L3 -LzL3+ L'z3)u5 + 4L1L3GL1L3 -LzL3 + L2r)uu),

4,, = L, ((4t', Lz - 4L2tL2z - +fitrt)u, + (4L2,L2, + 4LtAz - 4LL22\)uz

+ 14trrr, - 4LtA2\ + 4LtLzLl)ur+l6IjL'zruo+l6Lrt Lru, + l6\LrLrn),

Fo,, =Lr((4rjrL, -4Ul:r- +ll,rrtr)u, + (4L'rL'r+ 4LtC2 - 4LrT)rLr)t,

+(l\rrrr-4LtAz\+4LL2L1Nr+l6ttuo+l6L,L2rL.ur+16(Lrlruu),

4,, = Lr((4CrL, - 4Ur:, - 4L2,LrLr)u, * garL', +.4LJ:z - 4L,,L2rLr)u,

+ (4L1Lr\ - 4L[2r\ + +L,r]])ur+t6tr-'zruo+l6LrL2rlru, + l6Lz,LrLruu),

Fr,, = L, ((4L]LrL, - 4L{'z2\ - 4L,Lrt )u, + (4L,L,rL, + 4CrL, - qL'rL'r)",

+(4LrLrLzr-41-'rL'r+4LrIJ)ur+l6LrfiLruo+l6L'zrlirur+16L,LrL1ru),

Fr,, =Lr((44LrL, - 4LJ:z\ - 4LrLrfi)u, + (4L,L'zrL, + 4un L, - aL'rL'r)",

+ (4LrLrt, - 4I:rA, + 4L2Il)\+t6L,L2rLruo+16L2rL2ru, + l6l.,Lrtu),

Fr; =Lr((4rJrLrL, - 4LtLz?\ - 4L,Lrt)u, +(AL,L'zrL,+ 4r)rL, - 4tt)",
+ (4LrLrL2, - 4L'Ji+ 4Lzll)\+l6LrI)rLruo+l6L'?rlJt, + 16L,LrL1ru),
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Fu,, = L, ((4L]\ - 4qL2L, - 4fiL'r1u, + (44Lr\ + 4Ltaz\ - 4L,LrLzr)u,

+ eUI:, - 4LL.L1+ 4t,L3r)u, +l6ULz\uo+I6L,LrL2ru, +l6I-ltu),
Fu,, =Lr((4L]rL, - 4qLr\ - 4tL'r)", + (4fitrr, + 4L,L,rL, - 4L,Lrt)u,

+ (4UL', - 4LL.L1+ 4L,L1)u3 +l6fiLrLruo+l6L,Lrtp, +l6l),L1ru),

and

Fu,, = L, ((4trL, - 4r-2tLr\ - qarL'r)", + (4\l'rr, + 4L,L'rL, - 4LrLrt)u,

+ gUT:, - 4LL2L1+ 4LrL1)u3 +16r-trL2\to+l6L,Lrl2ru, + 16L]L]uu)

Substitute above values in Eq. (A.2) and then integrate using formula (2.5I), resulting the

Eq. (3.3s).

Following mathematical code of Mathematica 8 has been used for execution of above

results,

^1=(x2 
y3-x3 y2); a2= (x3 y1-x1 y3); a3= (xl y2-x2 y]-);

51= 1y2-y3) ; b2: (y3-y1) ; b3: lyt-y2) ;
cl=(x3-x2) ; q2=(x1-x3) ; c3: (x2-xLl ;
a:{ { 1, 0, 0, -L, 0, -7}, { 0, 1, 0, -1 ; -L, 0}, { 0, 0, 1-, 0, -)., -llr, {0, 0, 0, 4, 0, 0},
{0,0,0, 0, 4,0}, {0, 0, 0,0,0, 41 l ;
at=Transpose Ia] ;
r--{{Ll^2} | {L2^21 , {L3^2}, {L1 L2l , {L3 L2i, {L1 L3}}; rt=Transposelrl ;

u:{{u11,{u2},{u3},{u4},{u5},{u6}}; h:itL1lr,{L2},iL3}}; ht=TransPoselhl;
F1= (a. r. rt. at.u.ht),'
EL[12,7)); (*this command is used to get result of an e]-ement located at
second row and first column of matrix FL*)
DimensionsIF1]; (*gives dimension of matrix F1 i.e 6x3*)
MatrixForm I F]- l

A.3 Evaluation of integralFy= !(no',1'r[)at
a(')

r,= I (enn'e'vt)at
ak) r

-l 0

-l -l
0-t
40
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00

,I

r 00
010
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000
000
000
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0

4

\,
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It' Lr' Lr' LI. I.\ LI.)

100000
010000
001000
-l-l 0 4 0 0

0-t-1040
-10-10 0 4

tEr"']^

yl
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v4

v5

v6

For evaluation and simplification of above integral, similar procedure as described in A.2

may be followed, just replace velocity component u by v whereas remaining terms will be

unchanged.
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A.4 simprincation or integra t 
[or(u ff .r #Vrr - [h(#. #V* --,

Solution.

[,r(, # ., #V* - [,r(X 
* ff1,0, = o (A.3)

consider t"rr(#.#)**

Since, *(rr#)=*#*rr#
= orffi=*(,r#) tY*

Taking area integral on both sides, we get

[or ffi ara, = g*(or ff)*,, - [* # **
Converting area integra, 

[*(rr#)** 
into line integral, impties that

[*(, r ff)*a, = o,(, r # ".)*
Using above relation, Eq. (A.a) implies

for *t! 
ara, = 

{(rr # ".)* - lt # **
Similarly,

(A.4)

[o 
r ff *a, = {,(, r #,,)- - t* # **

Addition of Eqs. (A.5) and (4.6) generates the following result

IJr(# . #)*0, = -{* # . * #)*0,. f [,. *e 
* n, #),0,

Using integral (A.7), Eq. (A.3) reduces to following form

[, r(, # ., #W,, . [(* # . * #) *,, - O,(, r # *,, #), r * = o

(A.5)

(A.6)

(A.7)

Using approximated functions (3.15), above integral becomes
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I(n p r, u r) # + d o (0 o, v o) 
r#l 

r *0, . [(* # . * Y)e k 
dxd y

-f(". #*,,#)rr*=o

A.5 Evaluate the following integral

[,r(, #., #V* -, [orl*W. #)y*, - vr !dr(X. #p,, = o (A 8)

(A.10)

Solution.

consider *l,r(# . #))= *(#. #).,r *(# . #)

=,r *(#. #)=*l,r(#.#)) *(#.#)
Taking area integral on both sides, we get

yr *(# . #V* = [*l,r(# . nW- #W . #W,
!;^r *( *Y 

. #V* = [*l,r( *o 
. #)W,, tt # dxdy - [*# *0,,o,

converting area integra, [*lrr(#.nW- into rine integrar, we get

[*1, r(# . nW- = 0 o r( *o 
. #), r *

Using integral (A.10) in Eq. (A.9), implies that

I"rr *(# . #W* = 0 or(# . #)". " - [*# dxdy - [*# **
By Eq' (3'7)' #.ff =0, therefore above integral becomes

I"rr *(# . #V,, = - lt # dxd Y - [* # *r,
Using Eq. (A.8), we may write

l",r(#. #)** = -t(t#. *#)*,, . q(, r # *,, #),n, (A tz)

(A.r l)
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Using Eqs. (A.l l) & (A.12),Eq. (A.8) becomes

[,r('#.'#V*.,[(t#.*# \*or*p,l(%9u *%!v\*0,) L\AX AX AY AY )

-"f(". #.,,ff)o-k,=o
Approximated functions (3.15) reduces to above integral in following form

llorpr'rr)Y*or(do'vr)Ypr**.rLt(*Y\,r*or.t(*#Yr**)

.r, [(t# . *Yy rdxdy- ..f (," # * n, fr)or* = o

A.6 Compute the integral

[r,('#.'#V'v-rlorl*,W.#)Wr,-y,!,or(u*u.#Vrr-navrllr,dxdy=0
(A.13)

Solution.

In the light of Eqs. (A.l l) &. (A.12),we have

IJ^r*(#.#V"=-[*#*o'-[*ffa*a' (A,4)

1",r(*Y,.#)*r, =-[(* *v.*#)r*rr.f[," *L*n,#)^r, (A rs)

Using Eqs. (A.14) & (A.l 5), Eq. (A.13) reduces to following form

[^ (, # ., #V* .,1[* ff a*a, * [* # *,,).,, [(* # . # #) *0,

. r,f (,^ # * ,, #)ro' - nayr ! oro dxdy = o

Using of approximated functions (3.15), above integral gives

!lorpr'u|#.or(a'r,Sffj,r*or*rllJ*#lr*or*tJ*YYr**)

'" {* # . * YyrdxdY - na Yr [ 0o (o o' e rpxar- .. 
f (,, # *,, #)rr* = o
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B.1 Finite Element Solution of the Laplace Equation with 4-Node
Rectangular Element

Consider a simple fogm of the steady state heat conduction problem in a rectangular

domain (shown in Figure B.1) with Dirichlet boundary conditions defined by Laplace

Equation (all material properties are set to unity).

y2r =4*4=o0x' Ay'

forx = l},af ,y = [0,b], with a = 4, b =2

where,.z(r,y) is the steady state temperature distribution in the domain.

The boundary conditions are

rz(0,y)=169 I -I Imposed temperatures on the left & right boundaries
u(4,y) =250 ) '

a(.r,0)=56 I -
u(x,2) =200 ) '

(B.1)

Y

<r-- ti=4 ----------------

712131415

E 7 6 5
1

aG2

II 2 3 4

t2345

Figure 8.1: Discretization of given geometry into 8 elements (each one is 4-node rectangular element)
by signifying global nodes at vertex of each elemEnt

For weak formulation of governing Eq. (8.1), multiply Eq. (8.1) by an arbitrary weight

functionw(x,y), and integrate over an arbitrary domain Q', whose boundary is f'. The

arbitrary domain could represent an n-node element within the solution domain Q with

boundary f , as shown in Figure B.2.

7t
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Figure B.2

The equation obtained is

I,@,D(#.ff)*a,=o
Usihg eq. (A.7), above integral may be written as

il *'*. # #)**. f [,. * * n. 
ff), ^ 

= o

= ilxx-. #*)-* = 
!(, 

r%* * n,#),0,

Define the flux term (q, ) as

0u 0u
Qn=fr*-1-^tnu-;-ox 'oy

In view of above result, Eq. (8.2) becomes

ilxx.#*)**={Q,,'d'

Appendix B

(8.2)

(B.3)

The approximate solution of equation (B.3) for an arbitrary, n-node element is defined by

u" (x,y) =iulw",(x,l)
j=t

r where, ul is nodal value for u(x,y) at nodeT corresponding to element'e

W",@,D is interpolation function for u(x,y) at nodeT within the element e

Moreover, the weight function w(x,y) represents a variation of primary variable u(x,y) , and

thus takes on the nodal values w,=vj, i=1,2,...,n. Thus, Eq. (B.3) yields the following

form

7."; IeY . *X)&tu = o vi q, a,
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In matrix form, it becomes

Zx;ri =Qi ; i=1,2,......n
j=r

where. K: = f(* ur; *fu9yi)**'u j"[arax ayfu)
Qi =$v,?,a'

r

"", 
=l"i "i..... "',7'

Since there is no flux (q,) given at all nodes of the problem domain, therefore value of

column vector Qi will be assumed as zero vector. Thus, the weak form for an n-node

element in condensed forrn may be written as

Zr;ui = Ff ; i=1,2,.......n
j=r

where,

Ki,=l(yy.9{Y\** (Bs)
'j.[a, Ax Ay Ay)

which is element coefficient matrix, also called the element stiffrress matrix.

uj = lut u, u r........u,]r

F: =lo 0 0.........01r

Now consider a 4-node rectangular element and interpolation functions for this element are

o,G\=xi*rr- 
x

hi

a-x

(B.4)

a

1' _ 1,

(( v\_ /i+r /
Jl\! / 

h.
I

=b-Y
b

x-xi
hi

x-0
a

h(,)=

(,(v)=7

=y -0
b

Xi+7

Linear shape functions in x - direction

n0 <_ l1i=4 1
Xi

Linear shape functions in y - direction

Y=0 + hi=b1

The product of two sets of above mentioned shape functions results an interpolation functions

in terms of local coordinates (x,y) , which are as under

vi @, v) = A@)(,(v, =(T)(+)= (, - ;)(' ;)
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vi@, v) -- h@) (,(y, = :(+) = ; (t - #)

v i @, y) = o,@) (,(y, = (:)(I) = #
wi@, y) = ;,;*)c ou, = (?)(#) = (, - :);
Using eq. (8.5), local stifftess matrix corresponding to 4-node rectangular element may be

evaluated as

^aotlz ot{t ova l,: : ....-l-l-
ox dx d)

I

*']-*K;= I
0rl\ }Vz }Vt
Ay Ay Al

above interpolation functions,

a%l
atl

av, IrI
A, I

Ur, 
Iay)

the

*1
oVz IT ll av,

av, ll a
arl

+)
Performing integral after substituting

element stiffrress matrix is

' I A,, 4, A,, '4'-1

,e I +,, 4, 4, ,4r 
lni =l n, A., A^, A^^l

la, Ao, Ao, A*)

the computed

(B.6)

Where,

u, =' 
)'=,', !=,(* * . T *)* *

= j, i, {t H( *).(-;)(- ;)}*,
=;+' 

)'=,'*i,{{t 
- t)' * (o - *)'\a*aY

= #' )',{(b 
- v)'ld . [qd[ ],,

=#')',{'@-r'.+}*

=#{'l-q'l..rr,r:}= #,
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4,, =')"'*!*(**.T#)-*

= j,i, {( +)(*)'(-+)( :,)}*
= ;b' )'*'*i,{-t'- v)' *(* - r)\*o'

= #' !_{-@ 
- v)' (o).'(+) +}.

=#')'=,{ @-v)'.t}*

u,:!=,'*;(**.*T)**
= j, i, {( *)(*).(-;)(*)} *
= #' )'*'*1,{o' 

- bv)+(x' - *)\*o'

= #' )'-{Q' 
- tt)(ov ! - +}.

_ t lt__b' _o't\__a'+b'- ob'13 2 e J- 6ab )

u,:!=,',,L(**.T+)**

= j, i, {( *)( *).(-=)(*)}*
= #' )='=,'i,{(u' 

- 
" 

) - (o -')'\ **

= #' )='=,{@' 
- 

") 
\'' - t} "

=#{ lqq.(vr:,\=+#,

=#')',{" -bv-*}-
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t ft' b' o'b) b'-2a'
ab'lz 3 3 ) aoo )

Since element coefficient matrix is symmetric, then we have

4r= 4z=
a'-2b'

6ab '

,,, = 
)o=,'*!-,(X X . + *)* *

='1""T,{w.*}**
| '7bI

- zrz- |OD
Y=u

| '7u
-_ I

o'b' J 
^Y=v

, I fu'
- _) 

-
_ 

au,lz

')"'!l**.+#)*
' 

i'i,{(*) ( * ) 
. (- *)(*)} * *

= #' )'=,',\{t' 
- 

" 
- 
"\ 

a'av

=#')='=,{oby-oy'-+}.

_ | Ib' _b' _q'b\_b'-za'- ob'lz 3 t J- .6ab 
)

'):i,(**.*t)*
' 
!,'i,{(*) ( ;) 

. (- *)(;)} **

#' )','i,{v' 
- bv - ax + 

"\ 
*o'
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'r- 
= # )'=,{*' 

- *, - t. t}*
=#')',{" -bY-+l-

_ | Ib' _b' _"'tl__az +b2
- ob'13 z a J- 6ab 2

a2 +bzI -//L3l-rLl3- )
6ah

4z= 4t=
b'-2a2

6ab '

4,= !|u1'ow*.Tf)**
t)','J{*.*}**

= #')'=,'*1,{t' 
+ *'}a*aY

=#')'=,{*'.+}*

=#')'=,{".t}*

_ | Ib' -o'b\_a'+b'- at'lz t J- 3ab '

v=b x=a / \

A-. - I I I gbYt*o% oVq 
14*6,r+ 

lo,lo[ 0, Ax A Ay )

:)'=,'-i,{h.ff}**

= #' )'=,'i,{-" 
* m - *'l axaY

I '=!l " "t-_ot\*=db,),1-"'*, 3)"

=#')='=,{ 
".+}*

_ | I_b' _r'b\_a'-2b'- ob,l 3' a J- 6ab )
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(8.7)

= fi' 1'=,'*i ,{t' 
* (o - |'la*av

= ol-'!,{t.+}*

, = #'!{o.I}*

a'-2b'A 
- 

,l "-,-41 ,-14 )
bab

v=b x=a /, _'i"-T( )Vo )Vo , )Vo 0Voo* - ,!^J.[ a, a, - ay ay
-Y=u r=u \

=')','-i,{*.k;{}*'

t I t' o'b) a' +b'
) t t--;F\T- 3 J- 3,b

Substitution of above all values in Eq. (8.6) yields

4t= 4o=

4z= 4+=

Ki=

6ab )

oz +b2

6ab '

az +b2 o2 -2bz
3ab 6ob

a2 -2b2 a2 +b2 ,

6ab 3ab

_ az +b2 i2 -zo2
6ab 6ab

bz -zo2 _ o2 +b2
6ab 6ab

dxdy

b2 -zo2
6ab

_ a2 +b2

6ab

o2 -zb2
6ab

a2 +b2

3ab

a2 +b2

6ab

b2 -zo2
6ab

a2 +b2

3ab

izz -2b2
6ab

K:= I
'r 6ab

2(a'+b') a'-2b' -(a'+b') bz -2az

a'-2b' z(a'+b') b2 -2a2 -(a'+b')
-(a'+b') b2 -2a2 2(a'+b') a'-2b'

bz -za' -(a' +b') .a' -2b' 2(a' +b')

Now consider a value of above matrix for a given domain which is discretized into eight

equal segments (as demonstrated in Figure B.1), each one is four noded rectangular element.

Each element has length a =l and width b =l . 6th element is illustrated in Figure B.3 with

1-4 local nodes whereas 8,7, 14 and 13 represent the global nodes.
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Figure 8.3: Dimensions of 6m Element with Symbolizationof Local and Global Nodes

By putting a =I and b:l tn local stiffrress matrix (B.7), the value of 6ft rectangular element

is obtained as under

Since all the elements are equal in length and widtli. Therefore, value of local stiffrress matrix

corresponding to each element will be same as mentioned above (for 6ft element).

Local stiffrress matrices of each rectangular element by allocating global nodes

(corresponding to their local nodes) in anti-clockwise direction are given below

I
2

9

10

7

6

15

l4

8

7

l4
13

1
I

it

2

3

8

9

f z -r -l -rll_i i _:, _i I

K,=l f i I il
, I i 6 3 6l

L-* -+ -+ il

Kt
12910
2 | t tl
3 6 r e I

I 2 
' 'l(\ 1 f f l

r l z rl
3 6 : Ol,tr l 1 2l
6 3 o rl

K:
3478

3[ i -+ -+ -+l4l-* i -+ -+l

;L-i -i i il
Ka

8 7 14 13

f z l l tl
I 3 6 3 6t

l-r -i 
-, 

-tl
l-i i i ll

Kz

2389
2 | t tl
3 6 3 6l
t 2 r rl
6 3 e rl
I I Z 

'l3 6 3 6l
r l r zl-6 -t -6 l-l

Ks

761514
2 t r tl
3 6 r ol
t 2 , rl
6 3 6 3l
r l z rl
3 5 : Ol
r l r zl
6 3 o :j

Kt
4567

4l i -+ -+ -+l
sl-+ i -+ -+l
6l-+ -+ i -+l
z L-* -+ -* il
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Assembling all of above element matrices generates an assembled global stiffrress mahix[K]

oforder 15x15'as given below

KaKz

9813121091211
sl i -* -+ -*l 10[ i -* -+ -*lrl-+ i -*-+l el-+ + -*-+lrl-+-* i -*l .,l-+ -* i -*l
rz L-+ -+ -* i) rr L-* -+ -* il

I
2

3

4

5

6

7

K= 8

9

10

11

t2
13

l4
15

I 2 3 4 5 6 7 8 9 10 1112 13'14 15

%*% 0 0 0 0 0 0 -%-% 0 0 0 0 0

-% %-% 0 0 0 0 -%-%-% 0 0 0 0 0

0 -% %-y,0 0 -%-%-% 0 0 0 0 0 0

0 0 -% %-%-%-%-% 0 0 0 0 0 0 0

0 0 o -% %-%-% 0 0 0 0 0 0 0 0

0 0 0 -%-% %-% 0 0 0 0 0 0 -%-%
0 o -%-y,-%-% %-% 0 o 0 0 -%-%-%
0 -%-%-% 0 0 *% %-% 0 0 -%-%-% 0

-%-%-% 0 0 0 0 -% %-%-%-%-% 0 0

-%-% 0 0 0 0 0 0 -% %-%-% 0 0 0

0 0 0 0 0 0 0 0 -%-y, %-% 0 0 0

0 0 0 0 0 0 0 -%-%-%-% % -% 0 0

0 0 0 0 0 0 -%-%-% 0 0 -y, % -% 0

0 0 0 0 0 -%-%-% 0 0 0 0 -y, % -y,
0 0 0 0 0 -%-% 0 0 0 o 0 o -% %

Also the value of column matrix [4'] on the right side of Eq. (B.a) for the whole domain

gives matrix I'of order 15 x I as under

r=[o o o o o o o o o o o o o o o]'

The assembled equation is of the form

[r][u]= [r]
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ul

u2

.ut

u4

us

u6

u1

u8

us

uto

utt

utz

iltt

ut+

uts

(B.8)

where, [U]is a vector of nodal values of temperature.

At the singular points (i.e global nodes 1, 5, 15 and 1l), the specified nodal values are

handled either by average of the two specified values or the higher of the two specified values

of zr. (Note that the points occur at corners of problem domain are refelred as singular points).

Therefore, values of boundary conditions at nodes on the boundary of the domain are

% -% 0 0 0 0 0 0 -% -% 0 0 0 0 0l
-% %-y,0 0 0 0 -%-%-% 0 0 0 0 ,l
0 -% %-% 0 0 -%-%-% 0 0 0 0 0 0l
0 0 -% %-%-%-%-% 0 0 0 0 0 0 0l
0 0 0 -% %-%-% 0 0 0 0 0 0 0 0l
o o 0 -%-% %-% o o 0 o o o -%-y,l
o o -%-%-%-% %-% o o o o -%-%-%l
o -%-%-% o o -% %-% o o -%-%-% 0l
-%-%-% 0 0 0 o -% %-%-%-%-% o ol
-%-% 0 0 0 0 0 0 -% %-%-% 0 0 0l
0 0 0 0 0 0 0 0 -%-y, %-% 0 0 0l
0 0 0 0 0 0 o -%-%-%-y, % -% 0 0l
o o o o o o -%-%-% 0 o -% % -% ol
0 0 0 0 0 -%-%'-/,0 0 0 0 -% % -y,l
0 0 0 0 0 -% -% 0 0 0 0 0 0 -% %)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100 + 50ur=-= r,

250 + 50
^u5 = = 150

z,o = 100

urz=utz=uu=200

Uz=u3=ilc=50

ua = 250

100 + 200
utt = = 150

,,r=u#=225

The nodal solution vector [U]becomes

lu)=lts 50 50 50 150 250 Lt. tt8 us 100 150 2oo 2OO 2OO 2251r

Above vector shows that the unknown values of [U]occur at global nodes 7, 8 and 9.

For evaluation of unknown parameters (u,urandun), eliminate rows 1-6 and 10-15 of

global stiffness matrix K. All known quantities are moved from left side of the matrix

equation to the right side to obtain the condensed equations. Thus, Eq. (B.8) implies
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Figure B.4: Contour Plot executed using Finite Element Solution of Laplace Equation
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Necessary simplification generates result as follow
I z.eao {.3333 o 1lu-1 fttsl
L.rrr, 2.6667 -0.3333 ll ,: l= Lro I

I o -0.3333 2.6667lL,;J lrrtl
Above system of equations gives the following solution at unknown nodes,

1",1 [tso.oslzl

Lll=lili;?1li1
Graphical illustration of nodal solution has been shown in contour plot as under
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