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Abstract

The Jast twentv-five years huve wituessed the growth of one ot the most ele-
gant and esote11¢ branches of apphed mathematics  Algebraic coding theory

Claude Shannon s 1948 paper A Mathematial Theors Of Communication

gave the idea of coding theory, A Survey of Enror-control Codes, bv PG Far-
rell { the Universitv of Kent Gieat Britam) 1s an excellent compilation and
condersation of numeious results on error-correcting codes

In algebraic coding theory we are mamly concerned with deseloping methods
for detecting and correcting errors that tvpicallh occur during transimssion
of wformation uver a wowy channel The maun amm of tlus dissertation 1 to
study the algebiaic codes over Max-Plus algebra commonly known as tropical
linear algebra The study of this dissertation exarnnes the differences hetween
approaches adopted by algebraic codes over finite field and Max-Plus algebra
In Max-Plus algebra we work with the Max-Plus sermmug together with two
binary operations maxamum and plus

This dissertation consists of the thiee Chapters

Chapter 01 1s introductory which contans some basic defimtions and related
1esnlts of imear algebra and Max-Plus algebra which we will use m later Chap-
ters

Chapter 02 15 literature review, wlich gives briefly coneepts of algebratc codes
over fimute field  Timite fields are used 1n construction of codes and then the
studs of theu properties In this Chapter we review the hnear codes «ual

todes and then gencratur matiices vver iimte held We wall also revien the



ABSTRACT 1

concept of Reed-Muller codes over algebraic codes by using the examples

Chapter 03 provides an itroduction to the Max-Plus algebra and explan
how 1t can be used 1o analyze the behavior of the algeliraic codes and Reed-
Muller codes over Max-Plus algebia Finally we will analvze (hat how we can

relate 1deals with codes in Max-Plus algebra
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CHAPTER 1 PRELIMINARIES 2

Definition 1 12 4 group {G =) s said to be abelian group faxb=1bxa
foralla, b €G

Example 1 1.3 1 The Integers form a group under the operation of ad-
ditton  The Real Numbers and the Complea Numbers are groups under

addition and their non-zero elements form a group under mulfiplication

2 The set of non-zero Ratwonal Numbers form a group under the operalion

of multiplication

3 The set of n-by-n non-singulur metrz form a group under mufric multr-

plicetion
Definition 1.1 4. A non-empty subset H of a qroup G 1> a subgroup if
I ec H,
2 Ifa, be H, thenaxbe H,
3 Ifae H thenate H

Definition 1 1.5. 4 ring 1s a sel R logether uith two binary operutors — and

* satisfying the follounng conditions

I Additrve associatirly For allabr € R (a+b)+ c=a+{b+rc)

o

Additeve commutabinty Forallabe R . a+bh=b+a,

3 Addwwe wdentity There exists an element 0 € R such that for alla € R,

O+a=u+0=uq
4 Additrve inverse For everya € R there ersts -u € R such that

a+{—a)={—-a)+ov=1

5 Multiphicative associetity For all a,b ¢ € R,

(axb)xc=ax*(bxc)
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6 Lefl and right dstrnbutunty For alla,b,c € R

ax{b+c)=(a*xb)+{a*c)and (b+V*xa={bxa})+ {c*a)

[ng may also satisfy various properties

1 Multiphecative commutativity For all u b € B au*b = bxa (a nng

satisfying this property 1s termed « commutative ring)

2 Multiplicative identity  There exists an clement 1 € R such that for all
a#0€ R 1»a=ax1=a (arng satisfving this property 15 termed a

ring with identity)

Definition 1 1.6. A semaring is a sel together unth fwo binary operators

(8, +, ) sutusfying the follourng conditions
{ Addiwe associetily Foralla,b ce S, {a+b)+c=a+ (b+ ¢l

2 Additive commutatunty Foralla,be S,a+b=10+a,

r

Multiplicative associatity For alla, b c€ S, ([as W xc=ux (b* ()

4 Left and nght distrbulwnty For alla b c € S

ax{b+cl=(axb)r(a*xc)and (b+c)xa=(bxa)+(cxa)

Example 1.1.7. { Z C R Q are commutative rings under the appropri-

ate addifion and multiplicalion

2 The set of all 2 x 2 real matrices forins a ring under the usual matriz

addition and multiplication

7 {a+bv/2 ab € Z} 15 a commutative 1ing under usual addition and

scalar multiplication

Definition 1 1.8. Let (R, +, %) be a ring and P b a subset of R which s atself

¢ ring under + and *, then we call P o subring of R
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Definition 1 1.9 A subset [ of a ring R 15 called a left 1deal 1f 1t 15 an
additive subgroup of R and for elir € R and a € I we havera € [ Sunilarly,
an additwe subgroup I of R, Iis called a mght wdeal 1f for alla € [ and 1 € R,
ar € I An additive subgroup I of R 1s called an wdeal if it 15 o left and 11ght
ideal

Example 1.1.10. The zero wdeal {0} and the whole ring R are ezamples of

two-sided deals in any ring R

Definition 1 1.11. A ning (F + %) 1s called a field f (F\{0} %) s « cornmu-

tatrve group

Example 1 1.12. ! The rational numbers Q the real numbers R und the

compler numbers C are examples of fields

2 Finate fields fulso culled Galows fields) are fields wath foutely many

elements

9 Zy = 0,1, ,p—1, where p 15 a prime, 15 o frield under addition and

mulliplication modulo p

Definition 1.1.13. Let F be « field A sel V of element called vectois 1> a
Vector space o for any u, v, we V and for anyu I3 € F and define ¢ scalar

muttiplication  F x V — V7 then the following arioms are satisfied
! V15 an additwe abelhan group,
2 av eV
3 a{u+v) = cu+ av,

4 la+ Hu=cau+ ju,

n

a(3u) = (a3)u,

6 1 u=u.
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Example 1.1 14 1V =AM, W (F) = all m-by-n malrices urth entries in

F. where the operation of additzon and scalur mulliphication are defined
by

lan,] + [By] = |ay; + by
nla,;] = [oa,,]

2 V=F"={{z1,2;, z.} all n-tuples unth entrres in & where the oper-

ation of addition and scelar multiplication are defined by

(I],IJ.IJ, ‘In)‘f‘(Ul Yz Ya ‘yn) :{-r] +yl Ly Y2 J-Tl+yn;’

alTy T3, Iy Ta)=(a1, 001, o1y, (x1g)

Definition 1.1.15. Let V be a vector space 4 non empty subset U of Voo
called o subspace of V 1f U 1s ttself o vector spuce over F under the same

operaizons of V

Theorem 1.1.16 Let V' be a vector space and F be a field A subset U of V

s u subspace if and only if
! Forany two vectorsu v e U, u—» s alsom U
2 ForanyaelF uel cuwsaliomlU

Combrming these two conditrons we have U s a subspace 1f and only 1f
Gty + agup € 7

Example 1.1 17. Grven the vector space V, the subspuces Voand {0} arc each

called o triveal subspace

Definition 1.1 18. The vectors m a subsel T = {wg.11,  1,.-1} of @ vector
space V are said to be hinearly dependent, if there ¢ risis scalars not all zero
such thal

a1y + Ay + agint-, uty =10

Whete zerv denote the zoru vector
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Definition 1 1.19 The vectors mm set W = {vy. 1y 1n-1} are sad {o be

linearly independent if the equalion
a1ty + azg + aztet+ caxty =10

con only be salisfied by a, =0 for 1 =0,1 2. n This nuplies that no vector
in the set can be represenled as a binear combimation of the remamming veclors

in the sef

Definition 1.1.20. Let V denotc a vector space und U = {uy w, i, a
subsct of 17 We say the! U 15 a spanning set of 1" or that U spans 17 of for
every veclor vin 17 v can be uritten as a hinewr combinabion of the vectors
U

span(U) = {7 qu ] € Randu, € {}
Definition 1 1.21 Let V be a vector space A hinearly immdependent spanning

set for V 15 called a basis

Defimition 1.1.22. The dimension of a veclor space | s the cardinality that

18, the number of vectors of a basis of 1V over us base field

1.1.1 Polynomial ring

Let £ be a field the polynomial p(x) o + over a field F 1~ defined as an

expressions of the form
pry=p+mr+pri+  +pa’

where the coefhictents p, € F We will denote the set of all such expressions
Flz] I p(z) = potpiztpori+  +paz™and g1) = o+ r+@e’+ g™
with 7 > n are any two polvnomtals vver F and we define their sum as

1

pr)+qlt)=pot+g+p+alr+ +Pat @I + g™+ g2™

Then this add:tion turns Flz] inte an abehan group

Now if we define the multiphication of p{r) and ¢(r} as

plrlg(z) =+t + + ™
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where ¢, = 37, . p,on  Then under this multiphcation Flz] 15 a commutative
semigroup

It 15 not hard to venify that

p(x}a(z) + r(x)} = plr)g(z) + plr)rix)
and

{p(z) + qlz}}r{z) = plx)r{z) + gtz {1}

also

plI)g{T) = qixip(z)

for all p{z).qte).r{c) € Fla] Thus, we get that Fls] 1s a commuratinve nng
called the polynomial ring over £

If we define scale nultiphcation F x F[2] — F(r] as
ap(1) = apo + aprr + appa® +  +ap2”

for @ € F and p(1) € F[e] Then Flx] becomes a vector space over F

1.2 Max-plus Algebra

In tlus section we will mtroduce the basic defimtions of Max-Plus algebia
which 15 commonly known as tropical Iinear algebra semi vector spaccs and
sermt stibspaces which we will use in Chapter 03 First of all we will discuss

about partially ordered sets

Definition 1 21 Let S be g sct A partial ordering of S 1s o binary relation

< satisfyung the follounng aroms

! Forallre § r <r (reflcunty),

Lo

f1<yandy <z then o=y {antisymmdiry),

T fr<yoendy<:z then r <z (transitudy)
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The set (5, <) s called partwlly ordered sel

Definition 1 2 2. Le! R be the set of real numbers Fora b€ R* = RU{—x}
then

a&b=mar{a b}
aRb=a+1b
The triple ordered parred (R™, D 3) s callcd Maz-Plus algebra

As R s a partially ordered set so if S 15 anv partially ordered set then we
can define the operation of maximum and plus o § as well Now 1f 5 satisfy

the following axioms

1 Addition 1s commurative

2 Addition and multiplication 1s asscciative
3 Multiplheation distnibutes under addition
1 There exists an additive identaty,

5 No additive inverses
Then (S5, & ®) 15 a serunng (we may call 1t semi held)
Example 1.23 Let Z, = {0 1} Then the relation Z; on S s
0<0,1<1 0<1

15 the partially ordered set, and under addition and multiplication s defined by

g0 ! & 0 1
oto 1 0 v 0
HIR I B f\u;

it can be easily see that Z; 1s semaring

Now S, we mean semunng having both additive and multiplicatine wdlentities
Just like vector space over F' First \We will define the setn vector space oves

tropical linear algebra S
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1.2.1 Semi Vector spaces

Definition 1.2 4. Let (V" ®) be a semmi group and (S &, 2} be a scnmn field and
define a scalar mulliplication S5 x V o V7

as foralls € § ©v € Vsv € V7 Then 175 called a sen vector space 1f

I a(u+v)=o0u+aov

[

(a®F)u=au+gu
3 (a® Nu=a(8u)

Example 1 2.5 Let § be ¢ semufield Consider 5" = {{z) 12 ,2a.)2L, € S}
Let u = (21,12, 1z,) and = (2,2, .x) be two vectors .lddiion end

scalur multiphcation are defined a»

u+r={(r 7, I+ h Iy=1n 311,51, 1,.%T1)
f'?lzf(.rl.l'g, ,rﬂjz(t®r1 f@lg, f“:«'l.n)

Now for semut veclor spaces we higve

1. a{u-+1)=cflx; r; In) +{T) ah )]
_ - ¢ -
—alI; ¢ I, I; S I), Ip Dx,)
=aR{nd&rNha@(r;<r), alr, i)
=¥ ndFali,a@ 5 FaB i, aRinta Sl
=(a®T a®@ry ,aZr)t{ad3t,asey, ,asTy)
=a(r, 1, L)t altd T, 140)

=ay + av
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2. (a1 P ar)u
={o; I a;)(z) xa Ip)
=B R7T (B} OT, o Sazlr,)
=01 R4y 07 D 13, o VL) H{a&ay ay %, Un % ty),
=ai(r), xq, In) + ag(r) r; r")
= U+ Qi

3. (o) & az)u

=(a; © az){x1, 12, In)

=lla) Za;} T o lag Ry R, {ay £ a3} 1,
=l @ (e ® 11) o1 V{az S L3}, a1 D (a9 1y,)]
=lai(0xr ¥ 11,09 2 Iy Qs o« Ip)]

=a,[a:(z; 79, To)]

=ajlau)

So. il 15 a sema-vector space

1.2.2 Semisubspace

Definition 1 2.6. Let V be a semi vector space A subset U of V 15 called
a Semz subspace of V if U 15 itself a sems vector spoce under the samie

operations as \

Theorem 1.2.7 Let \' be a semi vector space and S be u semi freld 4 subset

U of V s « semi subspace if
1 For uny two vectorsu v € U u+ v s alsoin U
2 Foranyae S ucl auisnotin U

Definition 1.2.8. A4 monic polynomaal 15 a univariate polynomal in which

the leading coefficient (the nonzero coefficrent of highest degree) 15 equal to I
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1.2.3 Ideals of a Max-Plus algebra

In thus sectivn we will discuss a speclal tvpe of subsets of S called 1deals of S

Definition 1 2.9, Let S be @ Maa-Plus algebra, thai 1s a semung A left
wdeal I of S 15 a non-empty subset of § such that

I (I.@&) 5 a subsemugroup (S. &), that 1s, a=be ] forallabel,
2 s@acT forallse Sandac]

Svmalarly, a right wdeal I of S s a non-emply subset of S such that
1 (I @) 5 a subsermigroup (S ), that s abe ] foralla bel
2 aQsclforaliseSundacl

If I 15 both lcft and mght wdeal of S, then I s callcd o two sided or simply un
wdeal of S Here multiplication s commutalive so every left wdeal 1 also o right

wdeal

Proposition 1 2 10 Interection of any collection of ideals of S 1~ an deal

of 8
Proof Let {I, 1€ A} be collection of ideals n § AsU- €/, forallze A=
0z € NMerl, Letzyene [, =z yel foralli €A ascach £, 35 an 1deal

=srayel foralli e n

=Gy € Mend,

Simularly,

=s¢recl forallsesandforalli e A
= s X TE N1,

Thus., we get that M,c.J, 15 an wleal However, union ot two deals need not to

be an 1deal C
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Proposition 1 2.11 If [, and I, be any two ideals of a semuring S Then
L+L={n31n 1 el e} salsoandeal of S

Proof AsOgz el I; So.
Uy $05 =0, € ) + I
Leta=1 S b=1 &5 € [+ I3 then
asb={n sl
since addition s commutative <o we have
a®b=(, D)D)+ 1
Let seSanda=1¢ a1, € i+ Then

s®a=s@(M T ) =scuGsuvn €+ 1,

Proposition 1 2 12 [f [ and J are ideals of S then

1J={@ a2b acl and b€}

Suoate

1s an tdeal of S

Proof As0, €/l J So
0_;80.;=0:.EIJ

Let a = @y & D0 b= Dy Db € 1J, then

anb= Pa stz Pacbiel)

Jaimge finate

Let s€ Sand a= €D, 4. 8 b €1J Then

saa:aa(@a.sb,)z @(530,};—,!:,6!}

Sinate Jinute

Clearly

IERB IV



Chapter 2

Algebraic Codes Over Finite
Field

In tlhus chapter, we will explaun basic detimitron and 1esults mostlv taken from
(1) [2] and [10] In the first section of this chapter we will discuss hnear code
and generator matrix of linear codes In the next sectron we will disctiss dnal
codes and the panty check matrix of linear code In later sections we will

discuss Reed Muller codes and Tropical algebra

2.1 Linear Code

In this section we will study hinear codes and 1elated results

Definition 2 1.1 A «ubsel C of F 15 called ¢ hinear code, if C s the sub-
space of B™ (that s, C 15 cosed under addiiton and scalar multiphcation) A
linear code of dimension h contamns precisely 2 codewords  Ruther than wrat-
ing o codeword i the form of n-tuple we will use the notation ayay  a, for
¢ codeword Thus a code C s linear if for all ayuy,  a,, biba by € C and

adelF
alaa,  ap)+ 3y by) = (aa; + I (naz + b)) {aa, + 3,)
belongs to C

13
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Definition 2.1 2. A binary linear code C of length n s a <et of binary
n-tuples such that the componentwise modulo 2 sum of any two codewords b

contained in C

Example 2 1.3 The set C = {000,011} i a binary lincar code, sinec the sum

of any lwo codewords hes wn this sel
000 + 000 = 00U € C
000+ 011 =011 € C
0114011 =000 € C

Example 2 1 4. Consider Zy then the sef
¢ = {0000 0111 1011 1110 0222 2022, 2220}
13 notl a hnear code since ny lwo codewords hies in thrs set
0111 42022 = 2100 ¢ C

Definition 2.1.5. The Hammang distance belween two codewords df o, y)

15 the number of places i which the codewords 1 and y diffcr

Dcfimtion 2 1 6. The mumamum Hammang distance of a code (s the

rancnum distance between any fwo codewords in the code

dC) = mm{disy) |2 #y + y €}

A linear code can be represented by (n.k,d) where 1 s the length of the
code, that 1s, the number of the bits 1n any codeword k 1~ the dimension uf

the code C and d 1s the muumum distance of the code C

Example 2.1.7. The set {000 111} s a binary hnear code, since the sum of
any two codewords lies wn this set Note that this s a (3 1 3)-code hecause the
codewords have length 3, dimension of code o 1 and the mawmum dwstance

between codewords s 3
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Example 2.1 8 The set {000 111} s a bmary hnear code since the sum of
any two codewords hes i this el Note thatl thisis a {31 3)-code becnine the
codewords have length 3, dimension of code 1 1 and the rninimum distance

between codewords s 3

Example 219 The set C = {00 11 22 33 44} w5 a lmear codc smee the
sum of any two codewords lies w this set Note that s s a12] 2)-code vt
7, because the codewords have length 2, dimension of code 15 1 fas the codeword

i C s a multaple of 11) and the mummum distance between codewords 1v 2

Theorem 2.1.10 Let € be u linear code  Then the hincar combunation of any

set of codewords m C 15 a codeword in C

Proof Smce C 15 & subspace of F* so by defimtion of subspace we llave

u4v €Cloralu vmCandau € Cforallu € Cand a € F" [

2.1.1 Generator matrix

Linear codes are used m practice largely due to the simple encocdhing procedures
[acilitated by ther hncanty A k x nmatnx G 1s a generator matrnx for somc
linear code € A hincar code 1s generated by a A x n generator matnx G s called
a{n k}code Anu(n k)code with distance d 1s said 1o be an (n b odYoode lhe
generalor matrix Gy = [/ B]1s said to be i Standurd forr Where [j 15 the
i x & identity matrnx and B s a k x (n — &) matrin and the code C generated
by G 1s called a systematic code Not all lincar codes have a genciator mattis
i standard fonin For example the hnear code C = {000 100 001 101} has

S1X generator matrices

100 001 1 00
Gl = Gg = G;] =

001 100 1 01

c 01 1 0 1 1 01
Gy = G5 = 15 =

1 o1 1 00 001

None of these matiices are i standard forin
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Definition 2.1.11. 1 generating matriz G for a hncar code C of block

length n 15 an m-by-n matrir G (for some m) whose row space s C

Theorem 2.1 12. Let (" be an (n.k)-code over F Let G be a generaior matrr

of C Then
C = {uG u e F')

Proof Let G be the generator matnx ol an (n k}-code over F then the 1oms
ol G forms basis for C so everv r € 15 a hnecar combination of the rows of G
that 1s

1 =Gy + Gy + + u Gy

Where u) uq 1, € F and Gy, G, G, arc the rows of G Consider the

vector u = [uy, up w) e F*

r=u,G+u, G+ +u Gy

_ c. -
G,
=lu; u;, |
Gy
=ul;
Thus C = {uG u € F¥} O

Example 2 1.13 Let G be the generator matrur of code € Then it generales
the codewords of a linear code C by encoding the message of length & s
generalor matrr ©» of 2 x 3 then we need lo generale the (3 2) code  Here

k =2 so the possible pairs of length 2 are 10 0/ [1 0, [0 1" [t 1] Let us take

G =
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at u=1[00]
10
uG =[0 0]
1 01
=00 (]
atu=1[10]
1 0
uG =[1 0]
01
=[110]
al u=1[01]
10
uG =[0 1)
1 0 1
=[101]
oty =[11] i
10
uG =[11]
1 01
=01 1]

Code generaled from this generator matra with four codewords ts
¢ = {000 110 101 011}

Example 2 1 14. Let G be the generator matru of code C Fhen o generates
the codewords of a limear code C by encoding the message of longih kA~ {he
Jolloumny generator matriz 1s of 2 X 3 (hen we need to generale the (3 20 code
Here k = 2 so the possible parrs of length 2 over Z3 are {0 0}, {1 0}, [0 1] [1
1 200, {0 2 [22) [12) [21] Let us take

1 20
001

G =
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Then
[00]G = {000] [10)C = [120} [01]C = [001]

111G =N121] 102]G = [002] [20]G = [210]
[22]G = [212] [121G = [122] |211G = [211]
Thus, the corresponding code 15

{ . V210 212 122 2
000 001 120 121 Q02,210 212 122 211

Remark 2115 If Cis an (n,k} hnear code then generator matnx G 1s of order

k x n and C the hinear (n k)-code 15 the row space of its generator matrin G

2.2 Dual code

In this section we will deal with duality  The notion of dual codes 15 one of the
most 1mteresting topics 1n coding thecory  However it 1s also ollen contusing
at first read The concept of dual codes has been widely studied and (he best

codes are, mndecd, self dual codes

Definition 2.2.1 The dual code C* of an (n k) Cas the (n.nk) code berng
the orthogonal space of C unth respect to a specified imner product

Ct={rePF" Ty =0 forall ye C}
Example 2 2 2. Let C = {000,011} s (3, 1)-code and
(Z,)* = {000, 100 010,001 110,101 011 111}
AsCrt={reF* |1t y=0vye(C}
[000] [000]=[0 O+1 0+0 0] =0

[011) [000] =10 O+1 041 0]=0

[000] [W0]=[0 1+1 040 0]=0
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[011]
[000]
[011]
[000]
fo11]
[000]
[011]
[000}
[011]
[000]
[011]
[000]

011]

dual code 15 (3 2)-code

Proposition 2.2 3. For any code C, the dual code - 15 a linear code

Proof As

We get that

[100] = [0 1+1
[010] =[0 0+1
[010]=1[0 0+1
[001]=[0 0+1
(001 =1[0 0+1
[110] =10 1+

[110) =0 1+1

[101)=[0 1+1
101]=[0 141
011]=1[0 0+1
0l11]=[0 0+1
[111]={0 1+0
[111j=10 1+1

0+1 0]=0
140 0]=0
141 0]=1
0+0 1]=0
0+1 1] =1
140 0]=0
1+1 0] =1
0+0 1]=0
0+1 1]=1
1+0 1j=0
1+1 1]=0
1+0 1]=0
141 1]=0

C* = {000,100 011,111}

ul=0feralluel

oeC-

2

o

19

Sn fhe
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Let u © € C- then by definition of dual code v c=0and t « =0 o1 every

ce(C fa 3¢ F Then
(au+ I} c=alu o)+ 3 ¢
=a(0) + 3(0)
=0
for everv ¢ € C this imphes that au + gv € C* Thus, C* 15 hinear O
Proposition 2.2.4 IfC s an (n k) lnear code then C* s an {n n—kY code

Proof Suppose dimension of C1s & If u = (u; u. ) € COCY then
wu = uu +uur+ 4+ uyu, = 0 mply that each u, = 0 Thus we have
cNet = {0}

Since ¢ and C+ are lhinear so we have
n=dm{F") =dmC +dmC* —dm:lCr]CJ =hA+dmC-~0

> dmCt=n—% |

O

Remark 225 U G s a generator matrix of C then the null space of G 15 C+
thatis V r€ (-, Gr =0orcqunalently xG =0

Example 2 2 6. let C = {000 011} be {4,1)-code Then C= = {600 100 U11 111}
be dual (1,2}-code and G s the generator matrix of the code C that i

G = [011]
then ¥ r e C+
at z = [000]
0
Gr' =[011] | ¢
0
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at x = [100]
1
GrT =[011] | ¢
0
=()
at r = [011]
0
Gr' =[011] | 1
1
=0
at r = [11]]
1
Gi' =[011] | 1
1
=0

Thus exrample proves the ubove 1emark
Corollary 2.2 7. Let C be a linear codc Then (C*+)-=C

Proof The relation between C and €+ 15 symmetric that 1s the dual code of

CrisC Let reCthusry =0V y € C* that 15,1f
I = [Il I; Il’l] and ¥ = [yl Y2 Y¥n!
Then

TYy=nth+Iz2l2+ +In¥n
=Y L1 + Y2 Ly Yo 0, [ multiplicatine 15 comnutative |
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f ry=0thenyr=0¥z€C and y € C*+that1s,1f y € C*+then 72 € C s0
C C(CH)* As C* 15 a subspace of F* with dimension n — & 1if dun C 15 k

Hence (C+)* has dimension n — (n — k) = &k Thus dim (C') = k = dun(CH+
Thus C' = (C+}4 O

Remark 228 s A hnear code C 1s self orthogonal 1[ every vector in (' 1s

orthogonal to 1itself and to every other vector m C that s ¢ C C+

e A hnear code C s self dual if C = C*

2.2.1 Parity check matrix

In this section we will discuss panty check matrx, a code can not ounly be
defined by the generator matnx G but also by the panty clhieck matiix H
Howover, the two matiices can be derived from each uther A generator matrix
for C*+ 1s called a panty check matnx for C If C1s an (n k)-code then a parity
check matnx for C will be an n — &k x n matrix If H 1s a parity check matns
lor C we can recover the vectors of C from H because they must be orthogonal
to every row of H (basis vectors of C1)  The panty chech matos wm Stundard

Jorms H=[P I,.4]

Definition 2 2 9. Let C be (n,k) code and let H be the generator matriy of the

dual code C+ Then H is called parity check matriz of the code C
Example 2.2 10. Let C = {000 011} 25 {J4.2)-code und
(Zy)* = {000 100 010,001 110 101 011 111}
then ats dual code becomnes
C- = {000 100,011 111}

Any two vectors on C* form basis Hence we can lake

1 00
O 11

H:
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1 00 011
also we could take H = or H =

1 11 1 11
Note that the parity check matrix of a code C 18 nol unique

Remark 2211 o If G s the generator matiix of the code € then G 1s the

parity check matnx of the dual code C* because (CH)t =

e The dual of an (n &) code v an (rn 7 — &) code so the panty cheek matnx
of an (n k) code 1s an {n — k) x n Matrix H whose rows form a basis

for ¢4

e A pantv check atrix completely determunes the code

Theorem 2.2.12. Let C be un (n h} code over £ and let H be a purity chedk
matrir of C Then

C={reC HT =0=H1"}

Proof As we have seen that if G 18 a generator matrix of C then the null space
of G1s C*+ Now H 15 a generator matnx of C and hence the null space of H

15 ({CHL = Hencez € C1iff Hz' =0 a1 equivalently 1 H' =0 O
Example 2.2 13. Let C = {000 011} be a Linear code and
{Zg)"' = {000, 100 010,001, 110 101 011 111}

Then its dual code 1» C*+ = {000,100 011 111}

00
Let us tahe I =
011
at r = [000]
- 0
rH' =[000]
011

=[00]
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at = 1011]

0
1HT =[011]

=00

Theorem 2.2.14 Let C be an (n,k) code Let G and H be generator matrn

and parity check matrz of C respectively Then
GH' =0=HG’

Conversely, suppose G s a kX n malnz of rank A and Hws a (n — k) x n
matrir of rank (n-h), such that GH™ =0 Then I w a parity chech motrr of

the code C if and only of G 15 the generalor malre of C
Proof As by previous theorem ¢z €
tH =0

Here m particular, G,H™ =0 V ¢ = 1,2, ,k Where each G, 15 a 1on of
genetatol matiix and hence GH' = 0 Taking transpose. we get HG =0
To prove second part of the theorem, let G be kxn matixof 1ank k, and H1s an
(n— k) x n matrnx of tank n —& with GH' = U Suppose H 1~ a panity check
matnix of C Then GH =0v:=1,2 }  HeneeG, G5 G, £ C
Since rank of G 1s k, G|, G3, G5, arc hmearly independent and hence form
abasisof C{ dim C =4) This proves that G 1s a generator matin of ¢
Now suppose that G 1s a4 generator matrix of C Then G 1s the panty check
matrix of the dual code C* and by preceding theorem v y € Ot yGT =
Gy" = 0 Suppuse GIIT = 0 then by taking transpose HG' = 0. H,G =
0v:=1.2 n—+k llence I I, Hiy € Ct Since rank of 18 2 — &,
H H, H, are hineatly independent and foim bass for C=(  dum (' =

n— k) This proves that H 1s the gencrator matnix for the dual code ¢4 and

hence H 1s the panty check matrix for C O
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Example 2.2.15 In premious example C' = {000,011} s (3 1)-code then the
dual of C s
€+ = {000,100,011, 111}

let G = [011] s the generator mairz of the code C

1 00
011

H =

is the partly check mairir of code C Then

00
011

GH™ =[011]

=[0 0]

Definition 2 2.16. Let C be an (n k)-code if C has a canonical generator
matrz G = (I, A, then H = [-AT  [._4] 1s the canonical panily heck
matru of C Conversely, of H=[B I,_,] 15 a purity check matrr of C, then

G =[lx —B"] s a generator matrz of C
Example 2.2 17. Let

¢ ={0000, 1000} be {4,1) code
(Z,)' ={0000, 1000,0100 0010 0001 1100 1010 1001
0101,0011,0110,1110 1101,1011,0111, 1111}
" ={0000,0100 0010,0001 0101.0011 0110 0111}

be (1,3) code

¢ 1 11
H=10 110

be the parly check matmz By performing elementary row operations we cun
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find cunonical generator malrz

01 0 0]
H=710 11 0| by Ri— A3
0011
0100
H=|10010¢t by Ro— R
0011
0 100
H =10 01 0| by fh— 1R,
0 00 1
H*=[B I
G =[I, —-B'"]
=1 000

Where G* 1s the generator matrix of code C

2.2.2 Cyclic and Constacyclic codes

Let F be & fimite filed A code € of length n over F is called Constacvelic iof for
each a € F and codeword {ey, ¢y, cn_1) € C. the vector {ae,,_1.04. €

15 agan a codeword 1n C A constacyelic code 1s called cvehic 1if e =1

Example 2.2 18. Consider the code C = {00.11, 22,33, 44} over Zs Then C

s cychic buf not constacyclic as fora=2, (21) ¢ C
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2.3 Reed-Muller Codes

Reed-Muller codes are among the oldest known codes and have [ound widespread
apphications Reed-Muller codes were formulated by IS Reed and D E Muller
mm 1934 These codes were mmtally given as binary codes, but modern gener-
alizations o g-ary codes exast  We will restrict our mvestigation to the binary
case One ol the interesting things about thesc codes 15 that there are several

ways to describe thein and we shall look at one of these

For each positine mnteger m and cach mteget 1 with 0 < » < m there 1s an "

order Reed-Muller Code R(r m) We start gur defimtion by considering the

1% order case (r = 1)

Definition 2.3.1. The (first order} reed muller codes R{1 m) are binary codes

defined for all mntegers m > 1 recursively by
1 R(11)={00,01 10,11} = Z¢ .

2 Form>1R(lom) = {u,u),{u.u+l) a€ Rl m=~1}andl = uaill

vector
Example 2 3 2. 7o find R(1 2) code we have by dcfinition

R(L2) ={(u,u), {r,u+1}} whereue Rl 1) here 1 =1,m =2
as R(1,1) ={00.01 10 11}
then R(1 2) ={0000,0101.1010 1111 0011 0110 1001 1140}

Example 2.3.3 1o find R(1 3) cade, we hare by definiiion

R(1,3) ={{u.u), (u,u+ 1)} where u€ R(12) here r=1,m=23
es R(1 1) ={00,01 10 11},
F(1,2) ={0000.0101 1010 1111,0011,0111 1011}
then R(1,3) ={00000000, 01010101,10101010, 11111111, 001106011, 10011001 11001100,
00001111,01011010, 10100101, 11110000, 60111100, 01101001 10010110,

11000011}
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2.3.1 rth order Reed Muller code

The zeroth order Reed Muller code R(0 m) 15 defined to be the repetition code
{0,1} of length 2™ For any 7 > 2, the rth order Reed Aluller code R{r m) 15

defined recursively by

Z3r Um=r
R{r.m) =
{uu+v) ueRlrm—-1)veRr—1m-1) Um>7

2.3.2 Example

To find R{2,3) code we need R{2 2) and R{1.2)

R{23) ={{xu+1r) neR(22) re R 2)}

R(1.2) ={0000,0101, 1010 1111,0011,0110 1011}

R(2,2) ={Z3}

R{2 2) ={0000.0001 0010,0011 D100 0101 0110 D111
1000, 1001,1010 1011 1100,1101 1110,1111}
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v=0000
00000000
00010001
00100010
00110011
01000100
01010101
01100110
01110111
10001000
10011001
10101010
10111011
11001100
| 11011101
11101110
11111111

v=0101
00000101
(0010100
00100111
00110110
01000001
010106000
01100011
01110010
10001101
10011100
10101111
10111110
11001001
11011000
11101011
11111010

v=1010
000010106
00011011
00101000
00111001
01001110
01011111
01101100
01111101
10000010
10010011
10100000
10110001
11000110
11010111
11100100
11110101

v=1111 |
00001111‘
00011110‘
00101101

001111001
01001011 |
01011010 |
01101001
01111000
10000111
10010110
10100101
10110100
11000011
1101001[1|
11100001 |

11110000J




CHAPTER 2 ALGEBRAIC CODES OVER FINITE FIELD

v=0011
00000011
00010010
00100001
(0110000
01000111
01010110
01100101
01110100
10001011
10011010
10011010
10111000
11001111
11011110
11101101
11111100

v=0110
00000110
00010111
00100100
00110101
01000010
01010011
01100000
01110001
10001110
10011111
10011111
10111101
11001010
11011011
11101000
11111001

v=1001
00601001
00011000
00101011
00111010
01001101
01011100
01101111
01111110
10000001
10010000
10010000
10110001
11000101
11010100
11100111
11110110

v=1100
00001100
uoo11101
00101111
(Jo110011
01000111
01010111
01100111

01110111
10001011
10011011
10011011 |
10111011}

|

|

11001111
11011111
11101111
11111111!

30



Chapter 3

Algebraic Codes Over Max Plus
Algebra

In this chapter we will discuss some algebraic codes over Max-Plus algebra
In the first section we will deal with hnear codes and generator matiix  In
next scction we will check dual codes and panty check matrix Further niore
ne will discuss Reed Muller codes over Max-Plus In the last section, we will

related 1deals and polynomals over Max-Plus algebra with algebraic codes

Recall that a Max-Plus algebra 1s a senu ring cquipped with muaximum
and plus as the two binarv operations Let a and b be any two clements
operation maxinum(iumplied by the max operator = )and plus (1mplied by the

plus operator ) [or these scalers are defined as
a &b =rmar{a b}

a®b=a+h

Now we will define algebraic codes for these two Max-Plus algebras

31
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3.1 Linear Code

In this section we will define some basic defimtions and examples of lincar

codes over Max-Plus algebra

Definition 3.1 1. A code C of length n s hinear of for each u v € C and

a 3e8
au+ dv el

That s, € 1s a hinear semi subspace of § If code U 15 a subspace of dumension

b then C w called an (v, k)-code

Example 3.1.2. Consider Z; witha®b =a b Then the s¢t L = {000, 100,110}

1y a linear code As the tropical sum of any two codeword in

100+100=1&1 050 030=maz{l,1} mat{0 0} mazx{0 0} =100
100+110=1&1 031 0b0=mae{l,1} mac{0 1} mar{0.0} — 110
110+110=121 1gl 030=mar{l,1} mar{l,1} mae{0 0} =110

Example 3 1.3. Consider R® = R|J{—x} end the set L = {(\ 2+ 3+
) v\ € R} Then for any (3,2 + x.3+ x) (w2 +w3+w) el and
w3 € R

a{y. 2+ x, 3+ )+ 8w 24w 3+w)
=Ry TFI e, aS(2+\)E3@M12+x) al{3+ )2 IR 3+ 20

={mar{a+y J+w} mar{a+2+ x. 3+ 2+w} mar{o+3+y T+3+w})

Now if
mar{a +x.3 +w} =a+1y
then
mar{a +2+ .0 +2+wl=0+2+1
and

mar{o +34+\ F+3+ul=u+3+y
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Thus, we get that a{x 2+ v 3+ V) + 8w 2+w3+w) €l Henee L 1y a

hnear code over R~

3.1.1 Generator Matrix

In this section we will discuss generator matrix of a binary hinear code C over

Max-Plus algebra

Definition 3.1 4. A generating matrz G for a linear code G of block length

n 15 an m-by-n matmz G (for some m) whose rouw space 15 (

Theorern 3 1 5. Let C be an (r k)-code over § Let G be a generator matru
of C Then

C={ug|u€Sk}

Proof Let G be the generator matrix of an (r, A )-code over S, whose 1ows of §
form basis for 0 So everv z € € 15 a linear combination of the rows of G that

Is

r=u1G +u;G; + + 14, Gy,

where u; u; u, €8 and G; G; (7, are the rows of G

Conmder the vector u = [uy uy ] € SF

1 =u G+ uGy+ + u Gy

G
G,
= [uy, uz, i )
G\
-
Thus
C={uG | ue St}
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Example 3.1.6 Consider Zy unth « b = ab  Lel G be the malrmx that
generate code G Then, u generates the codewords of a near code G by encoding
the message of length b 4s generalor matrir 1s of 1 X3 then we need to generalc

the (3.1) code Here h =1 s0 the possible pairs of length 2 are [0, [1] Lel

Q=[101}
At u = [0]
ugzmﬂl Ul]
=081 0%x0 0w1]
=000
At u=[1]

uZGzM@[lu ﬂ
=181 150 121]
={101] .

The code generated from this gemerator matrr 1> C = {000 . 101}

Example 3.1.7. The hnear code 0 = {{(g.2+¢.3+¢g) g€ R} w gencrated
by (0,2.3) as for any g € R*

9(0,2.3) = (¢ 20.9®2,9@3) = (g y+ 2.9+ 3)
Thus, the malrex for this cede s
[0 2 3]
Example 3 1 8. If we consider a matna

0 - —-x 2
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For the code ygeneraled by this matrz consider

0 - —x 2
[Hvw] | —ec 0 - -0
-3¢ = 0 —-o0

=ES0Prd-—-ocPwR-00 p@-ocbrS0EWE -x
U —X DU 2 -0 pR2Purd—d . K —]

= v w p+2

Thus,
{lg v w u+2) o, €RTY

15 (4. 3) tinear code generaled by the grven matrz

Remark 319 As basis for a subspace 1s not umique so we have mote than one

matrices for a code

3.2 Dual Code

In this section, we will define dual code of C over max plus and gives some

examples of dual codes over Max-Plus algebra

Definition 3.2 1. Let C be an (r,k)-code over S Then the dual code of L 1s
defined to be

Ct = {ye § suchthatr Sy =0q forallr ¢ [)

Remarh 322 e A hnear code C 1s self orthogonal over Max-Phis that 1s

CcC*

s A linear code C 15 self dual over Max-Plus 1f § = 0+
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Example 3.2 3 Let( = {100 110} be a code over Z, By cheching the tropual
product in

Z3 = {000 100,010, 001,110 101,011,111} As,
C* = {y € Z3such that 1 Dy =0 for ull r € C}

Nouw,
1000 [000] = [1202020c1 -0/ =0
[110) > [000] = 1% 0518 CE0& 0l — 0
[100} O [100] =192 1& 02050 0] =1
[110] = [100] =11 812130F0:0] =1
(100} @ [010) = {12002 14000 =0
110010 ={l® 03112000/ =1
[100] 001 =120 :02020%1] =0
[1200 0001 =1®0F1H0E0C 1] =0
[100) & [110) =1 2120x12050] =1
L@l =101a1210090] =1
[100] D[10}=12120%0=0581" =1
[110] 2 [101] =191 ®190%0e 1] =1
[100) o 01 =1%052021407 1 =0
[110] [011]] =1 502112051 =1
Mool =12120R1%1c 1l =1
>l =1elelelsocl]=1

Then G+ = {000 001}
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Example 3.2 4. Let 0 = {000 110.101.011,111} 15 a {3 2)-codc over Zy By
Checking the tropical product n

(Z,)* = {000, 100,010, 001,110,101, 011 111}

C! = {y € (2,)? suchthat v ~ y =0 for all r € 0}

Nou,

[110] 2000 =1 »0&120 02 =0
[011] 2 [000)=[0202180&1@0] =0
[101] »{000) = [1®08080%150] =0
1110000 =190¢1®051& 0] =U
1100100 =121314040C 0] =1
1) w100 = 021 $#1Q0BI® 1 =0
[10]) 2 [100]=(121080F120]=1
[111] 2 [100)=[1®1321901& 0] =1
[110] > [010] =103 1®1+0&0] =1
p11jo010) =0 2018141 0] =1
(101) 2[010) =100+ 0Q 1 F1®0] =0
[111] 2 [010)=120%191=150, =1
[110] D001 =10 =1R050%0 =0
[011) >0l = 1904104080 =0
[101] 0001 =1305080%x1.1 =1
] 2N =12031%0= 111 =1
110] 2 {110] =103 1®0H0 0] =0

011} [110]=0®1 31815150 =1
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0 o110 =1al1a0a1F1le0 =1
M1 21l =1®1¢dl1e1&:1%0 =1
110 [0 ={1®1d1 3058001 =1
[011] 5101 =[0® 19180815 0] =0
101 e1]=18130%0x1c1]=1
11 o101 =181&180&1g1=1
110 o1 =18031%x14 06 1] =1
01Dl =0R0P1IR1P1IR]] =1
[101] 2[011] =N®Ww0H0R1 1wl =1
11opl=[180s13151al=1
11001 =191$1x130Q1 =1
OIo]=0®1lzlglsls]lj=1
[Ijelll]=191a02121lcl]=1
1) LA =12151x21321:1) =1
Then 0+ = {000} 15 a (3 0}-code

Example 3.2.5. Consider the ({. 2] code

{{w.z,w+2 —x) w,z € R}
If(a b c,d)€lt, then

(abeced) 2(ww 242 —x)=—

S aPudd P eRWwH+2)PdR —o¢c =~

That 1s

mar{e® w b¥ z, (¥ (w+2), -x}=~x
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Thus,

aSw=hPz=c&(w+2)=-x

We gef that

g=b=c=—-x
Hence G+ = {{—oc, —00, ~c, d) d € R*} which 15 a (4. 1) hinear code
Proposition 3.2.6. For « code C the dual code G+ o lnear

Proof As Og C¢ = 0p we get that (4 1s non-empty  If w.: € (-, then
wC ¢ =0g and z 7 ¢ = 0g lor every ¢ € 0 Thus

faw+ 3z) _ ¢

=auw&c+dz e

= GU@ + ﬁ’”e = O:J

Remark 327 If w ¢ CNC*, then
y _uw =1 =u=A{

that 15
e = (0c)

Howevet, fromn pervious cxamples 1t 15 clear that
C+Ctzsm

Lemma 3.2 8. Let C be an (r.k)-code uath generator watrc and G be the
matrie which s generator of © Then for cvery T € 8 ot holds that T € U7 of
and only if 267 =0 =Gx7

Proof Let G be anv genctator matnx Tlen here m particular (G4 = 0
where G 15 10w of gencrator matnx and hence +G7 = 0 By taking transpose

grl =0 O
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Example 3.2.9. Let C = {000 001} be an (3 1)-code and [+ = {000 100 010,110}
be a dual code Let G = [{) 0 1] be a generator matrir of (3 1)-code

At r = [100]
1

QH:[U 0 1} 0
0
— 02180808180

=maz{0,0,0} =0
Af 1 = [010]
0
G2l = [U 0 1] 1
0
=0®0poglelal
= maz{0,0 0} =0
At r = [110]

1
gﬂ:[o 0 1] 1

0
=[02120%161R0]

=mas{0.00} =0
Example 3 2 10. For the code generated by matrr

1 0040
noaol
0100

The dual code 15 {0000, 0010}
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3.2.1 The Partty-Check Matrix

In this section we will define panity check matix over Max-Plus  Further we

will give some examples of parity check matnix over Max-Plus

Defimtion 3 2.11. A parity check matrir for b s an k x n malrnz H such
that « € C* of and only of cHT =0

Example 3.2.12. Let 0 = {000,001} is (3.1)-code Then the dual of C 1
C- = {000,100, 010,110}

Party chech matrx s of an k X n matma that s 2 x 3 Hence we can lahe

1 0O 010
H= or H=
01 0 1 0 0

Example 3 2 13. Consider the {4, 2} code
{{z yo+2 —oc) ,ye R}

The dual code 1> [+ = {{—oc¢ —o0, —0c d) d € R} Thus the partty

check malrices ure of the form
H = [ - —x —x¢

Theorem 3 2.14 Lel C be a binear (r. k)-code over § and let H be a parity
chech matnz of 0 Then

={tc8 HT =0=H7'}

Proof We have seen that if G 15 matnx that generate [ then the null space ot
G 15 07 Now H 15 a generator matrix of 07 and hence the null space of H

Hence 7 € 0 1f and only 1if H ® 77 = 0 or equivalently £ R HT =0 0

Example 3.2 15 Let 0 = {000 001} be a hnear (3 1j-code whose dual code

1y



CHAPTER 3 ALGEBRAIC CODES OVER MAX PLUS 42

C+ = {000 100,010 110}

Let
1 00

010

be the generator matrir of dual code and 1s parity chech matiu of hineur code

C
4t r = [001]
1 0
H' =[001] | 0 1
00
—091300T100 0®VE0R 14180

=0 0 0

Theorem 3 2 16. Let C be an (r, k)-codc Let G be the matrz that gencrate
code C and H 15 the parity check matrir of C Then

GHT =0 =HG’
Proof Let -
G\
G
G =
&P
be the k& x r matux for b and
Hy
n= |
Hy

he the I x 7 partty check matnx for G Then the terms tn GHT are of the forn

G.C H, AsG, el and H, € [+ we get that

G‘@H} :U"B
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for all z and 7 Thus GHT 1s a zero matnx Hence HGT = (GHT)T =0 O

Example 3 2 17. Let C = {0000,0010 0001,0011} be an (4,2)-code whose

grnerator matrir

0010
06 01

and dual code of C 1s 0~ = {000, 1000 0100, 1100} whose yenerator malrir i<

|1 o0 O-
- 010 O_
o
CHT - -0 01 0101
0 001,00
_ 0 0]
oo
N 0 0
Remark 3218 o I G1s a k xr matrix of the code G then H 15 a generator

matrix of 01 whose rows form a basis of [+

o Let C be an (r k)-code. 1f C has a canonical gencrator matix G = [f;
A] then H = [AT I.—i] 15 the canonical panty check matrin of C
Conversely if H = [B 1,4 1s a panity check marry of C then G = 7,

BT7] 1s a matrix which 15 generator of {

Example 3.2.19 Let [ = {0000 0010 0001 0011} be u (4. 2/ hineur code and
L= {000, 1000, 0100, 1100} be its dual code Then

1 000
0100
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is the parily check malnz, that w precwsely a canonical generator matru

H*=[l, B

G =[BT I
B 0 01¢0
0001

Where G~ s the generator matmg of code §

3.2.2 Ith Order Reed Muller Code

The zeroth order Reed Muller code R(0,t) 1s defined to be the repetition code
{0.1} of length 2¢ For any ! > 2, the Ith order Reed Muller code R{{ () 15

dehned recuirsively by
1 R t)={Zir At =!

2 and R ={(r.2@y) TER{It-1) yeRI-11-1) it

-

Example 3.2 20 To find R(2,3) code we need R{2,2)and R(1,2)

R2I)={lrz®y) €R(22),yeR(2

R(1,2) ={0000,0101,1010, 1111,0011.0110, 1011}

R(2,2) ={Z3}

R(2,2) ={0000,0001 0010,0011,0100 0101,0110 0111 1000
1001,1010 1011 1100 1101 1110,1111)
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00000000
00010001
00100010
00110011
01000100
01010101
01100110
01110111
10001000
10011001
10101010
P ro111011
11001100

11011101
11101110
H11rin

y=0000

15

y=0101
00000101
00610101
00100111
00110111
01000101
01010101
0110111
1116111
10001161
10011101
10101111
10111111
11001101
11011101
1101111
11111111

y=1010
00001010
00011011
00101010
00111011
01001110
01011111 |
01101110
01111111
10001010
10011011
10101010
10111011
11001110
11011111
11101110
11111111

y=1111
00001111
00011111
00101111
00111111
01001111
01011111
01101111
01111111
10001111
10011111
10101111
10111111
11001111
11011111
11101111
11111111

y=0011 ‘
00000011
Jo01o0rt
00100011
00110011
01000111 |
01010111

01100111
01110111
10001011
10011011

10101011
10111011 |

y=0110 |
00000110
V0010111
0010011y
00110111 |
01000110
01010111
11001110

01110111
10001;10]
10011111i
10101:10‘
1011;111]

y:10;|
00001011 |
0uoT1II1
00101010

00111011!
010011111
01011111

UIIOIIII'
01!11!11‘
10001011
0011011
gtoiorr .

iruil

11001111 ‘ 11001110 | 11001111

11011111!
|
l
1111171 |

11101111

1101111
11161110
11111111

|
|
frotr111 ]
11191111!

11111111[

3.3 Ideals in Max-Plus algebra and related codes

Let § be a Max-Plus algebra, that 1s precisely o semning Then we have two

tvpes of substructures in S, the subseminng and 1dcals A non-clupts subsct

Aof Sis subsermunng if a; P as; and a; wa> € A for all ¢y.ax € A A becomes

an 1deal 1f the second condition 1s true for all ¢; € § and a5 € 4

If A 15 a subsemiring and C( 4) 1s the set of all codes of length 7 cver 4 Then

C(.4) being a subset of 5™ 15 a code over § If r = aya;

iy and y= b]bg

by,
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arc codewords mm [{4) Then

T+y=aay a,+bb b,
={ay U hiHa; 2 b)) (2. Bby)

= mar{a, b;}mai{ay. b} mar{a, b,} € C{A)

because mar{ae, b} € A

Nowif, a € S and 1 = a;a, a, € C{A} Then

ar = aldyug  a,)
={e@a){aSa) (aGa, el
because a & a, ¢ A n general

However 1f A 1s an 1dcal then a ® @, € 4 and we get that ar € C(A)

From the above discussion we have the following result
Proposition 3 3.1. /f .1 15 andeal in § Then C{A) s a hmear code over S

Now we will on backward direction that 1s 15 1t possible that the set of
codewords bits 1n a code provide us an 1deal in § For that we have the

following result

Proposition 3.3 2. If( s a cychic inear code over S then the set Iy of code-

words bits 15 an 1deal in S

Proof Let us assume that [ 15 a ovelic inear wode as
0.0; 0-¢€¢C

——‘.-0661![:

That 15 ¢ 15 non-empty Let r,y € Ip that n 1 and y are bits in sotne
codeword ¢« = myuy 1t a,andb=bb, y b, Now il rand y are at
the same place 1n these codeword then by adding them we get that &« ~y a bt

ma+b
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Il r and y arc not at the same place, then to bring them at the samce place we
can apply cyche shuft on b Thus by adding @ and &' we get r@yabit ma+d'
Thus we get that Py € Ip

Nowfora€ Sanda=ayas ¢ a,€(
alwg, 1 an)={aQa)lo®a) (a®1) (ama,)el

We get that a @ 715 a bit in ea Thus, a ® r € It Hence /g 13 an 1deal n
S C

I{f A and B be any two 1deals n § Then we know that then suin
A+B={aDbb a€ Abe B}

15 also an ideal

Proposition 3.3 3. If 7 and T be any two wdeals in 5§ Then
C7+7T) =07+ LT
Proof 1f2 €07+ 7) Then

(L) &l) (e D)

= (31]2 Jn) + (tltl in) € C(j) + C(T)
We get that
G +7)cbg+Cm)

Sinnlarly,

C+Cmyclig+T1)

O

If 7 and 7 Le any two wleals m § Then we know that theu intersection

and product are also an ideals with 77 C T (T
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Proposition 3.3.4. [f J and T be any two wdeals n S [hen
Ca (7 =8 (U7
ClaT cCa (7T =S8 UT)
Proposition 3 3.5 IfC and U be any two cyclic inear codes over S Then
o=l + Iy

Iene < f[;m i

Proof If r € Ip o then risaitin some codeword in C+C thatis 1 =a ba’
where @ 15 a bit in some codeword mn C and @’ 15 a bit 1n some codeword m
In other words @ € fpand @’ € fp, Thus r € Ip+fg Swilarly fo+ 1o © fg

If r € Ignyer, that 1s £1s a bit in some codeword

aEEmC’
sag€landuel

Thus = € I {¢
However, if z € Jp({p then r € Ip and r € I that 15 715 a bit m some

codeword a € C and codeword b € £ It not necessars that a b € L0’ Hence
Iene € IV e
O

Example 3.3 6. Let [ = {000 100} and 0’ = {000 010} be any two cyclic

Iinear codes over § If

C{C = {ouo}
Then Igqe = {0} Nowf Ip = {0,1} and I, = {0 1} then
I ={0.1}

Hence

Ine € e[ fe
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