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Preface

Boundary layer flows induced by stretching sheet has gained significant importance for the
last three decades. All of it is due to prominent applications of such flows in manufacturing
processes, in industry such as the acrodynamic extrusion of the plastic plate, cooling of an
infinite metallic plate in a cooling bath, boundary layer along a liquid thin film and
condensation process and many more. Large number of mathematicians, physicists,
modeler, and engineers are attracted by theses applications and are investigating such flows
in many different ways for the last so many years. The primeval researches on boundary
layer flow by a continuously moving solid surface with constant velocity have been done by
Sakiadis [1, 2]. After this Crane [3] investigated the continuously moving solid surface with
linear velocity. Later, C. Y. Wang discussed the steady three dimensional flows due to
stretching of the sheet [4] and then liquid film on an unsteady stretching sheet [5]. Till
know, extensive literature is available on the linear stretching flow disused by different
authors [6-14]. But unfortunately, a very little attention has been given to the nonlinear
stretching flows. Vajravelu [15] discussed the fluid flow over a non-linear stretching sheet
first time and then Vajravelu and Cannon [16] studied the existence and behavior of
solutions of different equations arising in viscous flow over a nonlinear stretching sheet. In
addition to the stretching surfaces, the heat and mass flow has driven many industrial
applications due to thermal diffusion, concentration difference and due to chemical reaction.
Thereafter, the viscous flow and heat transfer characteristics over a nonlinear stretching
sheet have been discussed by Cortell [17]. In recent, analytic solution has been obtained for
flow and diffusion of chemically reactive species over a nonlinear stretching sheet immersed
in a porous medium by Ziabakhsh [18}. Motivated by the above facts, the aim of this
dissertation is to investigate the effects of porous medium on the fluid flow over a nonlinear
rotating stretching sheet. The dissertation is arranged as follows:

Chapter 1 includes some basic definitions, concept of boundary layer and its
equations [19], equation of motion of fluid in rotating frame [20] for the convenience and
better understanding of the reader. The contents of chapter 2 are based on the work of
Ziabakhsh et al {18]. All the results are reproduced by shooting method [21] and by famous
implicit finite difference scheme, Keller-Box Scheme [22]. In chapter 3 the work of
reference [18] is generalized by taking the whole in rigid body rotation immersed in a
porous medium. The similarity transformations for the rotating frame are introduced to the
partial differential equations. As a result governing nonlinear ordinary differential equations
are then solved by two well known methods namely shooting method [21] and by Keller-
Box method [22]. Results obtained by both the methods are compared for different values of
emerging parameters and found in excellent agreement. The influence of rotation and porous
medium parameter are analyzed through graphs.
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Chapter 1

Preliminaries

1.0.1 Introduction

In this chapter we present some definitions and basic concepts relating the problem. Further

the shooting method is explained with a simple example.

1.1 Definitions

1.1.1 Flow

A material goes under deformation when different forces act on it. If this deformation increases

contimiously without limit then the phenomenon is known as flow.

1.1.2 Fluid

It is a substance that deforms continuously under the influence of shear stress.

1.2 Types of fluid

1.2.1 Ideal fluid

A fluid that has no viscosity, it can support no shearing stress, and flows without energy

dissipation is called ideal fluid or nonviscous fluid or perfect fluid.



1.2.2 Real fluid

The flow in which the effects of tangential or shearing forces are taken into account ; these
forces give rise to fluid friction because they oppose the sliding of one particle upon another is
called a real flow and a fluid exhibiting this flow pattern is called real fluid.

1.2.3 Newtonian fluids

The Newtonian or viscous fluid is a fluid for which the shear stress is directly and linearly

proportional to the rate of deformation i.e.

du
Tyx = P"d_y: (1.1)

where 7y is the shear stress acting on the plane normal to y-axis and p is the constant of propor-
tionality, called absolute or dynamic viscosity. Water and gasoline are examples of Newtonian

fluids under normal conditions.

1.2.4 Non-Newtonian fluids

The fluids in which the relation between shear stress and the strain rate is non-linear and can

even be time dependent. Therefore a constant coefficient of viscosity cannot be defined i.e.

rye = (j—;) (n£1), (1.2)

where n and p; denote the flow behavior index and consistency index, respectively. Paints

blood, shampoo etc. are the common examples of non-Newtonian fluids.

1.2.5 Compressible fluids

If the density of a fluid varies with space coordinates or time or both then it is called compressible

fluid. All gases are examples of compressible fluid.



1.2.6 Incompressible fluids

If density of a Auid changes so that we can ignore the change then it known as incompressible

Auid. All liquids are assumed as incompressible fluids.

1.3 Types of flow

1.3.1 Uniform flow

A flow in which fluid particles possess same velocities at each section of a channel or a pipe is

called uniform flow

1.3.2 Non-uniform flow

A flow in which velocities of fluid particles are different at each section of a channel or a pipe

is called non-uniform flow.

1.3.3 Laminar flow

A flow in which each fluid particle has a definite path and the paths of individual particles do

not cross each other is called laminar flow.

1.3.4 Turbulent flow

A flow in which each fluid particle does not have a definite path and the paths of individual

particles also cross each other is called a turbulent flow.

1.3.5 Steady flow

A flow in which properties associated with the motion of fluid are independent of time or flow
pattern remains unchanged with the time is called a steady flow. Mathematically it can be

written as
on

il (1.3)

where 7 represents any fluid property that may be velocity, density, pressure ete. Flow through

a gently flowing stream is an example of steady flow.



1.3.6 Unsteady flow

All those flows in which properties associated with the motion of fluid depend on time so that
flow pattern varies with the time are called unsteady flows. Mathematically it can be expressed

as

ki

on

Flow in ocean tides is an example of unsteady flow.

1.4 Heat

The total molecular kinetic energy in a system is called the heat of system. In thermodynamics,
heat is the process of energy transfer from one body or system to another due to the thermal

contact.

1.4.1 Terhperat ure

The average kinetic energy of the particles in a substance is called the temperature of the

substance.

1.4.2 Specific heat

It is amount of heat required to raise the temperature of one gram of a substance to 1°C. The
relationship between amount of heat transferred, specific heat and change in temperature is

defined as
heat transferred Q

mass x change in temperature  m x AT’

Specific heat = (1.5)

1.4.3 Heat tra_nsfer mechanism
Conduction

The way in which the heat is transferred from one part of the system to another part or from one
system to an adjacent system by inter collisions of interconnected molecules is called conduction.

This phenomenon occurs usually in solids.



Convection

Convection is the way in which the heat is transferred by the motion of heated molecules of the
system. Convection usually occurs in liquids and gases.

Radiation

The way in which the heat is transferred by the electromagnetic waves and it does not require
any medium to access the target is known as radiation.

1.4.4 Types of convection

Free or natural convection

Natural convection is a type of heat transport in which fluild motion does not require any
external agent or source, it occurs only due to the difference in temperature from place to
place.

Forced convection

If the heat transfer occurs only due to an external agent or source then this type of heat
transport is called force convection.

Mixed convection

If heat transfer is due to both forced and natural convection then it is called mixed convection.

1.5 Dimensionless numbers

A dimensionless number is the number without any unit associated with it. It is the ratio of the
quantities having same unit. It is usually used to simplify our procedure and various quantities
are replaced by a single number saving a lot of time and work. There is a lot of dimensionless

numbers but here we mention only those being used in this work.



1.5.1 Reynold number

It is the ratio of force of inertia to the viscous force. Mathematically it can be written as,
Re=—, (1.6)
where L is the characteristic length and U is the typical velocity.

1.5.2 Prandt]l number

The Prandtl number is the ratio of kinematic viscosity and thermal diffusivity. It is denoted

by Pr.

1.6 Miscellaneous

1.6.1 Density

Density of a fluid is defined as mass per unit volume. Mathematically the density p at a point

P may be defined as
dm
= lim — 1.7
p= im, 5y (L.7)
where 8V is total volume element around the point P and ém is the mass of the fluid within

V. The dimension of density is {M/L3]

1.6.2 Viscosity

1t is the measure of internal resistance of a fluid to flow or it may be thought of a measure of
fluid friction and it is denoted by p.In other wards it is defined as the ratic of shear stress to

the rate of shear strain, i.e.
shear stress

" rate of shear strain’

Iz (1.8}

where p is the coefficient of viscosity or dynamic viscosity or simply viscosity. The dimension

of viscosity is [M/LT.



Kinematic viscosity

It is defined as the ratio of dynamic viscosity to density of a fluid. Mathematically it is expressed
as

m
v==, {1.9)
P
where g is the dynamic viscosity and p is the fluid density. The dimension of kinematic viscosity
is [L?/T)
1.6.3 Skin friction
When a fluid moves across a surface, a certain amount of friction called skin friction occurs
between the fluid and the surface which tends to slow down the motion of fluid.
1.6.4 Thermal conductivity

It is measure of the ability of any substance to conduct heat and it is denoted by k.

1.6.5 Thermal diffusivity

Thermal diffusibility « is the rate at which temperature at one point in a body travels to

another point. It is expressed as
k

oGy’

o =

(1.10)

1.6.6 Thermal radiation

Electromagnetic radiation emitted from a heated material is known as thermal radiation. The
radiation emitted by an electric heater or household radiator are common examples of thermal
radiation.

1.7 The continuity equation

Let us consider a differential control volume AzAyAz in a cube. We take the density and the

velocity as function of time and space. The mass flow rates through each face of the cube in

10



three directions, that is along x, y and z — axes respectively are

_ (agp:) A:r) Az, — (agp;) Ay) AzAz, - (a(a";”)az) AzAy, (L.11)

then net mass flow rate through the control volume is given by sum of flow rates along the three

directions

- (65;7:) + Bg;v) + 6%:“)) AxAyAz. (1.12)

Since the instantaneous rate of change of mass within the control volume is equal to net mass

flow rate through the control volume i.e.

% (pAzAyAz) = — (659}3:) + 6(;;) + 6(5:0)) AzAyAz, (1.13)

As the fixed control volume AzAyAz is independent of time, therefore, Eq. (1.13) takes the

following form
Op  O(pu)  O(pv) Olpw) _
o oz "oy T 6 O

(1.14)

which is called equation of continuity.For an incompressible fluid, we have p = Constant, there-

fore Eq. ( 1.14) gets the shape as

ou Jv  Ow
pur i T T 1.1
E + By + 52 0, (1.15)
or
V.V =0 or divV =0, (1.16)
where
8 8 o
===, =1. 1
1.8 The momentum equation
The equation of motion in vector form is
dv
p"'tE' = div T+pb, (118)

11



where b is the body force per unit mass and T is the Cauchy stress tensor given by

Tzzx Trxy Txz
T=\7y Ty Tyz|> (1.19)

Tzx Tzy Tzz

where 7z, Tyy and T, are the normal stresses and Ty, T4z, Tyz, T2z and 7., are shear stresses.

1.9 Runge-Kutta method

There are many different schemes for solving initial value problems relating to ordinary differ-
ential equations numerically, but due to the highest order of accuracy i.e. of O(4) we prefer to
use the Runge-Kutta method.

The general equation of second order initial value problem can be written as

d’y dy
subject to initial conditions
d.
y(zo) = o, %(za) =a. (1.21)

In order to solve above problem, we need to convert second order initial value problem to the

system of first order initial value problems by defining

dy
o = 2= 9y, 2), (1.22)
so we will have
de _ £ ) (1.23)
d:]: - :J:,y,z ] .
with initial conditions
y(zo) =yo, z(zo) =a. (1.24)

Now the Runge-Kutta method of order 4 for above system of first order differential Eqs.

12



(1.22) and (1.23) is defined as
1
yn+1 = yﬂ. + E(kl -+ 2k2 + 2k3 + k4), (125)

and

1
Zn4l = Zn + E(ll + 212 + 213 + 14), (126)

where

k1 = hg(Tn, Yn, 2n), = hf(Zn, yn, 20),

h k l h k {
k2.;_—h‘g ($n+'2";yn+'}"azn+'l)’ l2=h’f (mn+-,yn+'_1azn+_l)a

2 2 2 2 2
. h ko l2 _ h ko la
ks = hg (xn+-2—,yn+-§,zn+§) , la=nhf (mn+§,yn+.3,zn+ 5 )
ky = hg(xn + R, yn + k3, 20 + 13), s =hf(Tn + h,yn + ks, 20 +13). (1.27)
where h is uniform step size defined as
P .'.Ug’
n

n is number of steps.

1.10 Shooting method

Shooting method is an iterative technique which is very popular for the two points boundary
value problems[21]. In this technique boundary value problem of higher order is first reduced
to the system of first order initial value problems by letting the missing initial condition. Then
our goal is to find the solution of initial value problem instead of the given boundary value
problem directly. For this purpose, any scheme for the solution of initial value problem can be
used. Runge-Kutta method of order 4 is used for this purpose in this thesis. For illustration,

let us consider a second order boundary value problem

d%y dy
E&E = f (may, E:E) 1 (128)

13



with boundary conditions
y(0)=0, y(L)=A4, (1.29)

where f is an arbitrary function and data is prescribed at x = 0 and z = L. The same

differential equation describes an initial value problem if data is prescribed as
y(0) =0, ¥(0)=s. (1.30)

To solve the boundary value problem we reduce it into a system of two first order differential

equations as

dy du
E = U, EE- - f(.’E, Y, u): (131)
with initial conditions
y(0)=0, ¥'(0)=u(0)=s, (1.32)

where s denotes the missing initial conditions which will be assigned an initial value. Next
we will find the actual value of 8 such that the sclution of equations (1.31) subject to initial
conditions (17.32) satisfies the boundary conditions (1.29). In other words, if the solutions of the
initial value problems are denoted by y(z, s} and u(z, s}, one searches for the value of s such

that
y(L,s) — A=0=¢(s) (let). (1.33)

Here Newton'’s formula [21] can be used to find the value of s as we are to choose a root of
linear algebraic Eq. (1.33) as

)
J1) g _ 9 () (1.34)
2 (s™)

which implies that
D) _ g _ YLy s™) -4
(L, st™)

To find the derivative of y with respect to s Egs. {1.31) and (1.32} are differentiated with

(1.35)

I‘espect tO 8 and we get

i ,E—a +6’u (1.36)

14



where
By U— du

Y=Eg'a _gr

and 1initial conditions take the following form
Y({0y=0,U{0)=1. (1.37)

The solution of equation (1.28) subject to the boundary conditions {1.29) can therefore be
obtained by the following steps:

(i) We choose the initial guess for the missing initial condition (1.32) and denote it by s{1).

{é2) Solve the system of equations (1.31) subject to initial conditions (1.32} from z = 0 to
x = L.

(#62) Integrate the system of equations (1.36) subject to initial conditions {1.37) from = = 0 to
z=L.

() Substituting the value of y(L,s1)) obtained by step (i) and Y (L, sV)) obtained by
step (4#) into equation (1.35) as

@ _ o _ YL -4

: Y (L, s0)

(1.38)

So the next approximation of missing initial condition s() is obtained.
(v) We repeat the steps (1) to (iv) until the value of s is within the specified degree of

accuracy or the solution y(L, s™) satisfies the prescribed boundary condition (1.29).

15



Chapter 2

Heat and mass transfer in the
boundary layers on an exponentially

stretching continuous surface

2.1 Introduction

In this chapter, we have discussed the similarity solution describing flow and heat transfer in the
boundary layers on an exponentially stretching continuous surface. The governing boundary
value problem has been reduced to a system of five simultaneous equations of first order. Then
this system is solved by employing a well-known shooting technique ( for two unknown initial
conditions) with fourth order Runge - Kutta integration scheme. The dimensionless velocity
and temperature fields are computed for different values of the Prandtl number Pr and wall
temperature-distribution parameter a. The computed values of stream function and tempera-
ture field are discussed through graphs. This chapter is a review of the paper by Magyary and

Keller [17 ]. Some missing details are also incorporated.

2.2 Mathematical formulation

We consider a laminar thermal boundary layer flow on an impermeable plane wall. The wall

is stretching continuously with velocity Uy=U(z) and at a given temperature distribution

16



gquw=4¢w(z) and in moving through quiescent incompressible fluid of constant temperature guo.

The governing equations for such flow and heat transfer are

V.V =0, (2.1)

dVv

niM v 28 2.2
de

where V is the fluid velocity, T the Cauchy stress tensor, e = Cjpq is the energy in which g is
temperature and V - o = —kd%q/8y*.

For viscous fluids T is given by

T = —pl+ pA;, (2.4)

in which p is pressure, I is a unit tensor, p is viscosity and A; is first Rivlin Ericksen tensor

which is defined as

A =L+LT, (2.5)
and
du du Hu
dx By bz
L=gradV =& % Qi. (2.6)
Jw dw dw
3 By Tz

For steady two dimensional flow we define velocity and temperature fields as

V = [u(z,y), v(z,¥),0], 2.7)

g = q(z,y)- (2.8)

17



Using Egs. (2.7) and (2.8), Eqgs. (2.1) - (2.3) become

du  Bv
B + % =0, (2.9)
du du 92y B*u
'u.'a—w + 1!5’!; =V (@ + @5) , (210)
dq  Bq (8% qu)
Ua + Uay = (—3352 + 2 ) (2.11)

where v and « are kinematic viscosity and thermal diffusivity of the fluid respectively. With
the usual boundary layer approximations, the governing Eqgs. (2.9) - (2.11) for the velocity and
temperature fields reduce to

du  Ou  u

UE; + ’Ua—y = Va—yz', (212)

dqg = 8q B
u—a; + ’b‘% = a%é-.

Here we assume that pressure gradient is absent because the flow is driven by the stretching

(2.13)

sheet. The boundary conditions are

w(z,0) = Un(2), v(z,0) =0, ¢(2,0) = qu(), (2.14)

u{z, 00} =0, g(z,00) = guo. (2.15)

The direction of motion is along z—axis due to the reason that the surface is stretching continu-
ously along this direction and « and v are x and y components of the velocity respectively. The
flow of fluid is independent of temperature so the Equations (2.12}, (2.14} and (2.15) consti-
tute an independent flow boundary value problem and the Equations (2.13), (2.14) and (2.15)

a forced thermal convection problem.

2.3 Similarity solution for the exponential stretching

Introducing the similarity transformation corresponding to an exponential stretching and expo-

nential temperature distribution of the continuous surface as suggested by Magyary and Keller

18



[17]
u(z,y) = Uoe™ " (),

2

1/2
) =2 () /@) + o),

4(2,3) = oo + G0e®/ (1),

R\ "2 ¥ aasory
- (3)"gem

This solution corresponds to stretching and heating prescriptions

Uw(z) = Uue‘”/L,

qw(gr;) = Qoo + qoea:c/@L),

(2.16)
(2.17)
(2.18)

(2.19)

(2.20)

(2.21)

of the continuous surface respectively. The Eqs. (2.12) and (2.13) takes the following form in

terms of dimensionless functions f{xn) and 8(n)

frll+ffff_2ff2=0,
8" + Pr(f ¢ —af '8) = 0,

subject to the following boundary conditions

f(O) =0, f ,(0) =1, f !(OO) =0,

(2.22)

(2.23)

(2.24)

(2.25)

where primes denote the differentiation with respect to 5, Pr = v/ denotes the Prandtl

number aﬁd Re = LUy/v the Reynold number with L > 0 as reference length, Uy > 0 as

velocity parameter of stretching. Also gg and a are parameters of the temperature distribution

in the stretching surface. It is noted that, in terms of the dimensionless function f(n), the

boundary value problems Eqgs. (2.22) and (2.25) is independent of all those parameters. However

19



dimensionless temperature field 8 is dependent on ¢ and Pr i.e.
6 = 6(n; a, Pr).

The following flow and heat transfer characteristic will be of interest. The skin friction

acting on the stretching surface in contact with the ambient incompressible fluid is

_ Ou(z,0) _ pvlp (Re 12 3 /(2L) ¢
r= 220 2 (2) 531 () (2.26)

The local surface - heat flux through the wall is

3 1/2
Tw(z) = —k?% = %)- (%) exp((a + 1)z/(2L))#'(0; a, P1). (2.27)

The local Reynolds and Nusselt numbers are

_ Uw(x)zx

Re, ” (2.28)
Tw(z)z
Nug= ————"——— 2.29
>~ Haule) — 020 (229
respectively. In the present case
Nu x \1/2
z == #(0; 2.
= (QL) (0; a, Pr) (2.30)

holds.

2.4 Numerical solution of the boundary value problem

Since the boundary value problem Egs. (2.22- 2.25) is non-linear, so it is impossible to find its
analytical exact solution. In this situation, usual practice is to convert boundary value problem

to the system of first order initial value problem as
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w' = (agh — fw),

and solve them subject to the initial condition

F(0)=0, g(0)=1, hR(0)=s=(f"(0),

8(0) =1, w(0)=s2=(¢(0)),

(2.32)
(2.33)
(2.34)

(2.35)

(2.36)

(2.37)

where s; and s9 are missing condition, which will be measured in such a way that solution satisfy

boundary conditions (2.24) and {2.25). Furthermore, these two missing conditions are associated

with the skin friction (2.26) and to the heat flux (2.27). Differentiating Eqs. (2.31) — {2.33)

and (2.36) with respect to s; and Eqgs. (2.34),(2.35) and (2.37) with respect to sy respectively,

we get

where

F =G,
G'=H,

H'’=2¢G — Fh— fH,

F(0)=0, G(0)=0, H(0)=1,

v =W,

W' =Pr(agl — fW),

poOf G % g o
as’ 051’ 8s,’
af Sw
q’—a—sz,andW—'aTz.
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(2.41)
(2.42)
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As the problem Eq. (2.22) does not involve any parameter so the value of s; = f ¥(0) is same
for each value of the parameter Pr and a i.e. 53 = —1.2818085. But on the other hand problem
Eq. (2.23) involves parameters Pr and a, so the wall temperature field 8 and s; depends on the
values of Pr and a. So different values of s and temperature field 8 are obtained for different

values of Pr and a .

2.5 Analytical solution

To find analytical solution of BVP’s Eqs. (2.22) and (2.23) subject to the boundary con-
ditions Eqs. (2.24) and (2.25) we first find approximate analytical solution of the problem
Eq. (2.22) then by using this approximate solution in problem Eq. (2.23) we solve it exactly.
Integrating Eq. (2.22}, we get

i 2
e ff =3 /0 ££(n,)dn, + €1, (2.45)

where C is a constant of integration. By using boundary conditions Eq. (2.24a) we can find
value of C} as

C1=f"(0) = s, (2.46)

and then Eq. (2.45) can be written as

P air=3 fo " ,)dn, + s1. (2.47)

After using the boundary condition Eq. (2.24c), we get

5 =-3 fo ” £ (my)dn. (2.48)

Again integrating Eq. (2.47), we get

0, 1 2 __ " "o
fag =3 [ ([ a)m,) oo (2.49)
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where Cj is constant of integration which is obtained as

Cy=1, (2.50)
by using the boundary conditicn (2.24b).
Hence Eq. (2.49) becomes
, 1 9 n .2
£ 2 =1+sm+3/0 fo £ (n, ey, dny. (2.51)

The analytical approximate solution can he obtained by setting iteration on the integral equa-
tion (2.51) as
; 1 g n P ; 9
fn -+ §fﬂ =1 + 811 + 3./0 L f -1 dnldnz. (2.52)
On right hand side of Eq. (2.52) we take the suitable zeroth order approximation f3(n) for f'(n).
The boundary conditions Eq. (2.24) and the shape of graph of f/(n) in Fig. (2.1) suggest the
initial guess as

foln) = &7, (2.53)

after integration and using boundary condition (2.25a), we get

1M —1

fo(n) =

(2.54)
51

By substituting this into the right hand side of Eq. (2.52) and bounding the first iterate fi

on left hand side to satisfy the boundary conditions Eq. (2.24), we obtain the zeroth order

approximation
3
81 =810 =— 3 ~ —1.22, (2.55)
f5(0) = s, (2.56)
and Eq. (2.54) gives the value
1
fo{oo) = —— ~0.82. (2.57)
810
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The equation of first order iterate f; becomes
FERTXI. (1 + e—\/‘_""?) . (2.58)
12 2

By putting here n = oo in Eq. (2.58) and after using the boundary condition (2.24c), one

immediately obtains as

filoo) = 1. (2.59)

Now the arithmetic mean of fp{oo) and fi{o0) is given by
A.M = 0.908248. (2.60)

Thus arithmetic mean coincides with the exact value f(co) = 0.905639 to within an inaccuracy
of 0.003.

Now by using for f and f’ the zeroth order approximations given by Eqgs. (2.54) and (2.53)
respectively with s; = syg = —1.22, we now turn to solve the Eq. (2.23). After integrating with

respect to 7,

n
¢ +Prfod=(a+1) Prf f'odn, + Cs, (2.61)
0

where ('3 is constant of integration which is obtained by using the boundary condition (2.25a)
Cs = &'(0) = s3. (2.62)
The Eq. (2.61) will take the form as
v
¢ +Prfd=ss+{a+1) Prf f'odn,. (2.63)
0
At 7 — oo the boundary condition (2.25) further augmented as

8/ (c0) = 0. (2.64)
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By using Egs. (2.255) and (2.64) in Eq. {2.63) we get
[e.=]
sao=—(a+1) Prf f'édn,. (2.65)
Q
For a = —1, the Eq. (2.65) shows that
32 (= 8(0)) =0, (2.66)

that is there is no flow of heat between stretching surface and the ambient for all values of Pr.

So in this adiabatic flow, the temperature field is given by the Eq. (2.63) as
¢ +Pr f6¢ =0, (2.67)
The solution of Eq. (2.67) is of the simple form

8(m; —1,Pr) = exp (— Pr foﬂ f(m)dm) ; (2.68)

which reduces to

2P
#{n; —1,Pr) = exp (2—-1-:2 + gn - ——re"’“”?) . (2.69)
3 815 3
Now introducing new parameter and variable z here
P 2P
b= =2, (2.70)
80 3
— (2.71)

By applying zeroth order approximation for f given by the Eq. (2.54), the temperature field in

the adiabatic case reduces to

@(r; —1,Pr) = exp(b + bsyon — #). (2.72)

Again solving Eq. (2.23) for a # 1, explicitly by using for f and f' the zeroth order

approximation with
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3
81 =810 = - 5 (273)

After some standard mathematical manipulation the solution can be expressed in terms of

Kummer’s function M(a, 8, 2) and 8(n; —1,Pr) as

M{a+1,b+1,2)

00m P = e r Lo+ 1b)

8(n; —1,Pr). (2.74)

The approximation formula for wall-temperature gradient '(0) = sa(a, Pr) is

b Ma+2,b+2,b)

sz(a,Pr):—(a+1) |810| b+1M(a+1 ] b).

(2.75)

2.6 Results and discussion

The features of heat and mass transfer in boundary layers on an exponentially stretching con-
tinuous surface have been observed and the effects of Prandtl Number Pr and temperature
parameter a have been examined. Fig. 2.1-2.7 are drawn to analyze the behavior of prescribed
parameters on the obtained solution. Fig. 2.1 is displayed to show the graphical results of
dimensionless functions f, f’, 8, f + nf’ against 5. All the solutions are drawn corresponding
to those missing values of s; and sy for which an accuracy upto 1079 is achieved. In Fig. 2.2,
the curvature of f at n = Q fora = 0, & < 0 and a > 0. In other words, it can be described
as the value of #/(0) or the heat flux at the wall for a = 0 changes its sign from negative to
positive opposite to sign of a. At the same time thermal boundary layer thickness is decreasing
with the increase in the values of a. Fig. 2.3 is drawn to observe the effect of Prandtl number
Pr on dimensionless temperature field. It is observed that with the increase in Pr, boundary
layer thickness decreases. However the temperature hills increases with the increase in Pr. It
is further observed that the solution of temperature field obtained by the shooting method for
large value of Pr i.e. Pr = 3,8 coincides with the analytical solution given in Eq. (2.74) .
However for the small Pr number, Pr = 0.5, a small but alternating deviation between the two
solutions is observed. It can be stated that for larger Pr number, the accuracy of the formula
Eq. (2.74) and Eq. (2.75) is better. The effect of temperature field 6 is shown against 5 for

¢ = —3 and b = 9. It is observed that when @ = —3, for b < 2, both 8 and sy are positive,
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however for b > 2, both ¢ and 33 changes from positive to negative. Thus the solution is phys-
ically consistent only for 0 < b < 2. In this range s9{—3,Pr) > 0, thus the surface heat flow is
reversed as shown in Fig. 2.5. Moreover it seen that when a = —3, on passing over the border
b= 2 of the physical range, all profiles in Fig. 2.5 started at §(0) = 1 is in agreement with the
boundary condition Eq. (2.25 a). The physical ones (b < 2) remain positive for any 5 > 0, but
the nonphysical ones (b > 2) changes it signs from positive to negative immediately after n = 0
and thus they are not physical. Figure 2.6 illustrates the comparison of the approximation
formula Eq. (2.75) by comparing its plot against Pr number for various values of ¢ with the
corresponding missing condition &(0) of the shooting method. For @ = —1, sa(a,Pr) = 0 for
any Pr and the plot coincides with the Pr-axis. The formula (2.75) becomes exact in this case
for any Pr, but for ¢ # —1, the formula (2.75) agreed very well with the numerical results.
Table 1 is constructed to compare the values of the formula (2.75) with the numerical results
for various values of Pr and a. It is concluded that the accuracy of the formula for larger values

of Pr number and a is comparatively better then for smaller values.

afPr 0.5 1.0 3.0 5.0 8.0 10.0

-1.5 | 0.204050 | 0.377427 | 0.923886 | 1.359274 | 1.888544 | 2.200127
0.189479 | 0.356496 | 0.898542 | 1.330560 | 1.870950 | 2.185672
-0.5 {-0.175817 | -0.299871 | -0.634096 | -0.870400 | -1.150290 | -1.308575
-0.167073 | -0.290743 | -0.628598 | -0.867346 | -1.149380 | -1.308612
0 -0.330493 | -0.549641 | -1.122065 | -1.521216 | -1.991817 | -2257402
-0.316573 | -0.536774 | -1.116180 | -1.518833 | -1.992238 | -2.258994
1.0 | -0.594345 | -0.954784 | -1.869071 | -2.500126 | -3.242110 | -3.660355
-0.375950 | -0.940890 | -1.865517 | -2.500451 | -3.245271 | -3.664652
3.0 |-1.008417 | -1.560310 | -2.938540 | -3.886555 | -5.000459 | -5.628188
-0.990315 | -1.550413 | -2.939387 | -3.890628 | -5.006768 | -5.635369

Table 1. The wall-temperature gradient sa(a, Pr) calculated by shooting method (upper numbers) and

by the approximation formula (2.75) [lower numbers].
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Pr=1.0,a=-0.5

o

1f — f+nt

o.sl /—"i

£
0.6}
0.4}

(5]
0.2} .\: Er

2 4 6

0

Fig. 2.1: The functions f, f ', # and f + nf 'are plotted against n obtained by numerical
solution of the boundary value problems (2.22) and (2.24).

b=0.1

a=30,10,5,1,0,-1,-2,-4,-6

Fig. 2.2: The temperature profiles 8{n; a, Pr) given by (2.74) for 5= 0.1and a = —6,—-4,-2,-1,0,1,5,10
and 30.
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1.2
1
G.8 Pr=0.5
e(n) \ \ Pr=3
0.6 Pr=8
0.4
0.2
0 5 10 15 20

Fig. 2.3: The dimensionless wall temperature 6 plotted against n for ¢ = —1.5 and Pr =

0.5,3,and 8 The curves have been obtained bot by numerical solution of boundary value

0
é problem (2.23) and (2.25) and according to approximation formula (2.74).
[T~
I B
= y
0.5
£ 0
®
—o.51
al

Fig. 2.4: The unphysical solution #{z, —3, Pr) of the boundary value problem (2.23) and
{2.25) plotted against n for b = 9 according to Eq.(2.74).
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20 |

10 |

e(m O

Fig. 2.5: Temperature profiles 8(n; —3, Pr) given by (2.77) for b= 1.9,1.8,2.2 and 2.1.

Pr

Fig. 2.6: The dimensionless wall temperature gradient sg(a,Pr) plotted according to (2.75)
against the Prandt]l number Pr for a = —1.5,-1,-0.5,0,1 and 3 (listed from top down) and
compared with results of the numerical calculations(dots corresponding to Pr = 0.5,1,3,5,8

and 10 respectively), s2{—1;Pr) coincides with Pr —axis.
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2.7 Conclusions

The heat and mass transfer characteristics have been examined and the main results of this

chapter are arranged as follows

» Since the dimensionless stream function f(n) does not contain any parameter, so mass

transfer remains unaffected by Prandtl number Pr and temperature parameter a.

e The variation of Prandtl number Pr and parameter of temperature distribution e effect
the dimensionless temperature field 4 (n) and dimensionless surface temperature gradient
32 =.8'(0) Le.

6 = 8(n,a,Pr) and sz = #'(0) = s2(a, Pr). (2.76)

o The physical variation ranges of Pr is as a result of the requirement that dimensionless

temperature field 8(n, e, Pr) remains positive in the region 0 < 5 < .

e If a > —1 then &(0,a,Pr) = sp < 0 for all values of Pr and the heat flows from stretching

surface to the surroundings.

e If a = —1 then ¢'(0,a,Pr) = s3 = 0 for all values of Pr > 0 i.e. the stretching surface is

"adiabatic".

o If -2 < a < —1, then #(0,a,Pr) = s2 > 0 for all values of Pr > 0 and the surface
heat flow becomes reversed and Sparrow Gregg type hills appear in the 6(y) profile as is

observed from Fig. 2.2.

s For a < —2, the physical situation changes dramatically. In this case for certain values of b,
in the approximate solution #(n; ¢, Pr), zeros of Kummer’s function occurs that it becomes
unphysical. In addition at zeros of denominator, both 8(n;e,Pr) and sq(e, Pr) become
singular which means that infinite sources of energy have been generated spontaneously

in the finid. To illustrate this we have

b2e2910% — 2b(b + 2)e*197 + (b + 1)(b + 2)

9(779 —3) PI') = 2_b

8(n, -1, P1), (2.77)
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and
_ 4b[s10|

52(=3,Pr) = 52, (2.78)

which are obtained by taking ¢ = —3 in approximation formulae (2.74} and (2.75). The
singularity mentioned above, in this case, is located at b = 2. For b < 2 both 8(n; —3. Pr)
and s(—3, Pr) are positive, whereas for b > 2 the solution 8(n; —3. Pr) changes sign from

positive to negative at

; %

1= () (Brzseent),
as shown in Fig.2.4. Therefore, the solution #(r; —3. Pr) is physically consistent only for
0<b<2 in [Fig.2.5] we see that what happens for ¢ = —3 on passing over the border
b = 2 of the physical range. All profiles in [Fig.2.5] start at #(n; —3. Pr) = 1.The physical
ones (b < 0) are positive for any 1 > 0. For b > 2 the profiles change signs at the value of
1 given by Eq. (2.76) and thus they are unphysical. As b approaches the limiting value
b = 2 the denominator in Eqs.(2.77) and (2.78) for & = —3 vanishes and maximum and

minimum value of 8(n; —3. Pr) approaches +co respectively. Similar results are obtained

for the case a < —3.

In both the regions i.e. @ > —1 and a < —1 the magnitude of #'(0) = s2 increases with

the increase in |e| and with increasing in Pr.

The boundary layer thickness decreases with the increase in value of a for all Pr. It also

decreases with the increasing Pr for all a.
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Chapter 3

Heat and mass transfer analysis in
the boundary layers on an
exponentially stretching continuous

surface with thermal radiations

3.1 Introduction

In this chapter we have examined the heat and mass transfer in the boundary layers on an
exponentially stretching continuous surface with thermal radiations. The resulting boundary
value problem has been converted into system of five simultaneous first order initial value
problems for five unknowns. The system is then solved numerically by well known shooting
method for two unknown initial conditions with Runge Kutta of order 4. The dimensionless
stream function f (n) and temperature field #(n) are computed for different values of Prandtl
Number Pr and Radiation Number K. At the end this numerical solution is discussed through

graphs for the variation of Pr and K.
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3.2 Mathematical formulation

The basic problem is same as we have discussed in chapter two, however, in this case we have
added thermal radiations. Under usual boundary layer approximations, the flow and heat

transfer in the presence of radiation effects are governed by the Equations (2.9}, (2.12) and

%  0q) _, 0% O |
pCp (uax + U(’iy) = kayz oy (3.1)

2
Here viscous dissipation term g (a—u is neglected and ¢, is radioactive heat flux. The
boundary conditions are given by Eqgs. (2.14),(2.15), (2.20) and (2.21). Employing Rossiland
approximation of radiation for an optically thick layer, one has

e
ar = 3% Oy’

(3.2)

where k' is the mean absorption coefficient and ¢* is the Stefan Boltzmann constant. g *can
be expressed as

q*=4q,% - 3¢.% (3.3)

Using Equations (3.2) and (3.3) in Equation (3.1) then we have

&g 8g 160*q. 3%\ &%
PCP (ua_.’ﬂ + 'U%) = (k + -*aT) —3-? (34)

Now using the following smilarity transformations given in Eqgs. {2.16),(2.17),and

9(z,y) = oo + g0 ¥P8(n), (3.5)
Re\ 12
_ (Re Y z/(2L)
7 ( 5 ) 7<% (3.6)

the Eq. (2.9) is identically satisfied and Egs. (2.10) and (3.4) are reduced to Egs. (2.22) and

(1 + %K) ¢ +Pr(f8 — £'8) =0, (3.7)

where Pr = -“—gﬂ is the Prandtl Number, K = 4—",5;%;1' is the Radiation Number and prime denotes
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differentiation with respect to 5. The boundary conditions are given by Egs. (2.24) and (2.25).

3.3 Numerical solution of the problem:

We have solved the above mentioned problem by the same technique as in the Chapter Two.

S0 we transform the given problem to a system of first order initial value problem.

Let

o= 3Pr

subject to the initial conditions:
fO)=0, p0)=1, 2(0)=m,

6(0)y=1, r(0)=n.

After differentiating Eq. (3.8) to Eq. (3.10) and Eq. (3.13) with respect to

(3.8)
(3.9)
(3.10)
(3.11)

(3.12)

(3.13)

(3.14)

m and

Equations (3.11), (3.12).and (3.14) with respect to n respectively we get the following system

of Equations.

subject to
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and

W'=R, {3.19)
3Pr
!
— _ 2
Tl - R (3.20)
subject to initial conditions:
wW({0)=0, R@0)=1. (3.21)

where F , P and Z denote derivative of f, p and 2z with respect to m and W and R denote
derivative of # and r with respect to n.
3.4 Solution by the homotopy analysis method

In order to provide a HAM solution we assume the following initial guess and auxiliary initial

guess and auxiliary linear operator

folm)=(1-e)/2 (3.22)
() =e" (3.23)
Ly(f) =" —4f, (3.24)
L2(6) =9¢" -9, (3.25)
with the property
L1 (C1%1 + Cae™ 4+ C3) =0, L3 (D1€" + Dae™) =0, (3.26)

where Cj (i =1 —3) and D; (j = 1,2) are arbitrary constants be determined. If p; € [0,1] the
embedding parameter and #; (i = 1,2) the nonzero auxiliary parameters then the zeroth order

problem is

(1 —p) L1 [F (n,p1) — fo )] = prla N1 [F (11, 1)) (3.27)

(1—p1) L2[0(n,p1) — O (n)] = pA2N2 [F (11, m),© (n,p1)) (3.28)
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F(O,PI) = 03 F' (0,}91) = lsF’ (00,191) = 0} (3'29)
o (prl) =10 (Oo’pl) =0, (330)
M [F(n,p)]=F" (np) + F (n,p1) F” (0,p1) — 2F"2 (m, ;1) , (3.31)

N2 [F (,21),8 (m,p1)) = (1 + 4K/3) ©" (n,p1) + Pr (F (n,p1) ©' (n,01) — F' (n,21) © (n,71}} »
(3.32)

For py = 0 and 1, the above expressions becomes

F(m,0)=fo(n), O (n,0) =46 (n) and F(n,1)= f(n), ©(n,1)=6(n) (3.33)

and as p; increases from 0 to 1, F (n,p1), © (9, p1) change an initial guesses fo (), 6o (n) ,to the
solution f () and 6 (n) respectively. Expanding F and © with the help of Maclaurin’s series,

we obtain
oQ o0
F(mp)=fom)+ ) fm(n) p7 and © (n,p1) = b0 (n) + ) _ um (1) 97", (3.34)
m=1 m=1
where
1 8F (n, 1 8™0 (n,
fm () = —,'—% y Om () = ﬁ“‘a(—?nm :
m: /21 m=0 m I 51 p1=0
Assuming that the above series is convergent for p; = 1, we can write
FN=Fom+ D fm(n) and 0(n)=00(n)+ D _ Om(n). (3.35)
m=1 m=1
The mth order deformation problems are
Ly [ (1) = Xom o1 ()] = MRE, (), (3.36)
L2 8 (1) = XmBrm—1 ()] = B2 R, () (3.37)
fm(0)=0, fr(0)=0, fr,(c0) 0,
B (0) = 0 and §,, (c0) — 0, (3.38)
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m-—1

RL M) = froi+ Y, (fmakfi = 2fmmc1okfi) (3.39)
k=0
m—1
RE () = (1 +4K/3) Oy +Pr > (fmo1-48% — fra—1-4k) (3.40)
k=0
where
0, m<1,
Xm = " . (3.41)
1, m>1.

Now the nonlinear boundary value problem Eqs. (2.22) and (3.7) subject to the boundary
conditions Egs. (2.24) and (2.25) is reduced to the system of linear nonhomogeneous problem
Egs. (3.36) and (3.37) with the boundary conditions Eq. (3.38). The reduced system is solved
with the symbolic computation software MATHEMATICA.

3.5 Results and discussion

The Equations (2.22) and (3.7) with the given boundary conditions (2.24) and (2.25) are
solved numerically by using shooting method and analytically by using Homotopy analysis
method [22]. The convergence of the series sclution obtained by homotopy analysis method
is ensured through A—curve drawn in Fig. 3.1. As h; and 72 are the auxiliary parameters
corresponding to f and @ respectively. As pointed by Liao [22], if the series solution obtained
by the homotopy analysis method is convergent then it must be one of the sclution to the given
boundary value problem. The valid region of k; and A is that for which the curve in Fig. 3.1
become parallel to the h-axis, as pointed out by Liao. It is observed from the Fig. 3.1, that the
valid region for A; is —0.75 < hy < —0.25. Since there is no parameter involve in the boundary
value problem Eq. (2.22), so one can choose any value of ; belongs to the interval. However,

the valid region of hig is —1.0< iy < 01 for Pr=1,K =1/2.
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K/Pr|1 15 |2 3 5

0 0.9548 | 1.2348 | 1.4715 | 1.8691 | 2.5001

0.9548 1.4714 | 1.8691

0.1 0.8795 | 1.1421 | 1.3642 | 1.7376 | 2.3302

0.2 0.8166 | 1.0645 | 1.2745 | 1.6275 | 2.1879

0.3 0.7631 | 0.9984 | 1.1979 | 1.5335 | 2.0665

0.5 0.6765 | 0.8912 | 1.0735 | 1.3807 | 1.8691

0.6765 1.0735 | 1.3807

0.7 0.6092 | 0.8071 | 0.9760 | 1.2609 | 1.7140

1.0 0.5316 | 0.7099 | 0.8628 | 1.1214 | 1.5335

0.5315 0.8627 | 1.1214

Table 2 : The values of heat transfer coefficient, —&'(0) calculated by shooting method

(upper numbers) and by Keller box method (lower numbers)

# ———— - — § ——— — —

Dy 0

Fig. 3.1: The 20th order approximate solution f”(0) and #'(0) against the auxiliary

parameters f, fig for Pr = 1.0 and K = 0.5. Dots denote the corresponding values

obtained by shooting method.
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I(m+nf'(n)

Fig. 3.2: The plot of f and f +#f ' against the dimensionless variable 7, dotted curves
represent 30th order HAM solution and solid line is obtained by shooting method.

Fig. 3.3: The plot of f’ and # against the dimensionless variable n,dotted curves represent
30th order HAM solution and solid line is obtained by shooting method for Pr = 1.0 and
K =0.5.
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Pr = 5.0,4.0,3.06,2.0,1.0

Fig. 3.4: The variations of Prandtl number on temperature profile 8(7n) plotted against # for
K = 0. Dotted curves represent 30th order HAM solution and solid line is obtained by

shooting method.

Pr = 5.0,4.0,3.0,2.0,1.0

0.4

Fig. 3.5: The effect of Prandtl number Pr on temperature profile #(s) plotted against n for
K = 0.5. Dotted curves represent 30th order HAM solution and solid line is obtained by
shooting method.
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K =10.0,0.5,1.0,1.5,2.0

Fig. 3.6: The effect of Radiation number K on temperature profile 6{r) plotted against n for
Pr = 1. Dotted curves represent 30th order HAM solution and solid line is obtained by

shooting method.

K =0,0.5,1,1.5,2

Fig. 3.7: The effect of Radiation number K on temperature profile 6(n) plotted against 7 for
Pr = 2. Dotted curves represent 30th order HAM solution and solid line is obtained by

shooting method,
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Fig. 3.8: The comparison of the 15th order approximate solution —6'(0) against Pr number
for K = 1, Case [ is for o = —3/4, Case II is for iy = —1/2 and Case 111 is for
ha = —1/(2 + Pr /2). Dotted curve represents the solution —6(0) obtained by shooting

method.

Fr

Fig. 3.9: The variation of —#(0) against Prandt! number Pr for different values of radiation

number K.
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Since the dimensionless temperature field comprising the parameters Pr and X, so the profile
of # and & will be changed by the variation in the values of these parameters. In the same way,
proper value of Ay may be chosen according to the values of all Pr and K. In figure 3.1, dots
represent the corresponding values obtained by the shooting method. It is worthmentioning
here that the missing conditions in shooting method is iterated until the accuracy of 1078 is
achieved. The profile of f 4 nf' and f are shown in the Fig. 3.2. Solid curves represent the
solution obtained by shooting method and dotted curve is for 30th order approximate solution
obtained by homotopy analysis method through the Fig. 3.2 to 3.9. Fig. 3.3 depicts the effects
of the temperature profile § and stream function f' against n, when K = 0. To analyze the
effect of the Pr number on the temperature field 8, Fig. 3.4 is prepared. It is observed that by
increasing the prandtl number Pr, temperature profile and thermal boundary layer thickness
are decreasing. Same effects are observed qualitatively by taking radiation parameter K to
be equal to 0.5 as shown in Fig. 3.5 but with larger magnitude. To show the effects of the
radiation parameter on temperature filed #, Fig. 3.6 and 3.7 are drawn. It is quite interesting
to see that the temperature field and the thermal boundary layer thickness is increasing with
the increase in radiation parameter K as shown in Fig. 3.6 for Pr = 1, Same profile of 9 is
observed with Pr = 2 qualitatively, but with larger in quantitatively. Table 2 is constructed to
show the effect of the temperature gradient measured by shooting method with the variation
of radiation parameter K and Prandtl number Pr. Furthermore, few values are compared with
the solution obtained by implicit finite difference scheme. It is seen from table 2 that values

obtained by both the techniques are within good agreement.

3.6 Conclusions

In this chapter we study the heat and mass transfer analysis in the boundary layers on an
exponentially stretching continuous surface with thermal radiations. The governing ordinary
differential equation are solved using both shooting method and approximately by homotopy
analysis method. It is observed that the solution obtained by both the techniques are in
excellent égreement with each other. Since there is no parameter in the dimensionless stream

function f, so the behavior of mass transfer is universal. Dimensionless temperature field and its
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gradient are both changed with the change in the radiation parameter K and Prandtl number
Pr. Increase in the radiation parameter tends to increase the thermal boundary layer thickness,

however, Pr helps us to decrease the thermal boundary layer thickness.
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