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Preface

There are many fluids in nature those exhibit non-Newtonian behavior. In such fluids

the shear stress is not directly proportional to deformation rate. Non-Newtonian

fluids are classified into three types namely differential, rate and integral type fluids.

Maxwell fluid is the simplest model of the rate type fluids. This fluid model has

become the most popular as it can predict stress relaxation and also excludes the

complicating effects of shear-dependent viscosity. The flow between two parallel

plates is a classical problem that has many applications in accelerators, aerodynamic

heating, electrostatic precipitation, polymer technology, purification of crude oil,

fluid droplets and sprays. Such flow models are of great interest not only for its

theoretical significance, but also for its wide application to geophysics and

engineering. Heat and mass transfer with chemical reaction has immense important

in chemical and hydrometallurgical industries. Many researcher [-10] have

investigated the heat and mass transfer flow of viscous fluid with flow geometry.

Many researchers t1l-20] have discussed the Maxwell fluid flow in different

regimes. Recently Joseph [21] have discussed the heat and mass transfer of Couette

flow with viscous dissipation and slip condition. Garg l22lhave studied oscillatory

convective flow of second grade fluid in a vertical rotating channel with heat

radiation and slip condition. MHD Couette flow of a non-Newtonian fluid in a

rotating system with heat and mass transfer have studied by Manjusa [23].

No study have been reported with heat source and chemical reaction of Maxwell

fluid flow in a rotating channel with slip effect.

Keeping in view all above applications this dissertation comprises on following

chapters. Chapter one consists of preliminaries of the proposed work.
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ln chapter two we have reviewed the work of Bhattacharya [6] he considered the

free convicted MHD Couette flow of a viscous fluid with heat source and chemical

reaction.

Chapter three is extended for the Maxwell fluid model in rotatirig frame with heat

source and chemical reaction and results are dedu0e for the Newtonian fluid.
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Chapter 1

Preliminaries

'f.i

This chapter comprises the basic definitions of fluid mechanics'

1.1 Fluid Mechanics

Fluid mechanics is the branch of engineering tliat examines the properties and nature of the

fluid at rest or in motion.

t.2 Classification of the fluids

L.2.1 Inviscid fluid

Fluids with negligible viscosity is known as the inviscid or ideal fluid e'g' water'

L.2.2 Real fluid

Fluids which possesses non-zero viscosity is known as real fluid e'g' petrol and castor oil'

1.2.3 Ne#onian fluid

Fluids in which shear stress is directly proportional to the deformation rate 'are Newtonian

fluids. Mathematically defined as 
_ _ ,,y,y, - * da'
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1.2.4 Non-Newtonian fluid

A non-Newtonian fluid is a fluid whose viscosity is va.riable based on applied stress or force.

The most oorrrmon everyday example of a non-Newtonian fluid is cornstarch dissolved in water.

Mathematically defined as

rs,: rlyly,

q is called the apparent viscosity and given by the following expression

u r rn-l

,:ul#)

1.3 Tlpes of flows

1.3.1 Steady vs unsteady flow

Steady flow referr to the flow where the fluid properties at a point in the system do not change

with time, otherwise flow is called unsteady.

L.3.2 Rotational vs irrotational flow

Rotational flow in which the fluid particles also rotate about their own a>ris while flowing,

otherwise flow is irrotational.

1.3.3 Incompressible vs compressible flow

If density of a fluid is constant with respect to space and time then flow is incompressible

otherwise it is compressible.

1.3.4 Couette flow vs Poiseuille flon'

When two parallel plane walls are in relative motion a simple shearing motion with linear profile

is obtained and this flow is termed as Couette flow. Whereas Poiseuille flow is defined as the

flow between two parallel stationary walls and the flow between these two plates is due to

pressure.

r-!
\i

u
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L.4 Heat Tlansfer

Heat is a form of energy which flows from a body of higher temperature to another body at a

Iower temperature by virtue of the temperature difference between the bodies. There are three

different ways of heat transfer, conduction, convection and radiation.

1.4.1 Conduction

Conduction is transfer of heat through molecules of medium example of conduction is the heat

through a stationary wall or pipe.

L.4.2 Convection

Convected heat transfer can be defined as transport ofheat from one point to another in a fluid

as a result of macroscopic motions of the fluid. Convective heat transfer may be categorized

into two forms according to the nature of flow.

o Ftee Convection

o Forced Convection

flee Convection

If fluid motion is caused by buoyancy forces that are induced by density differences due to

variation in fluid temperature or due to variation in densities of two different fluids adjacent to

each other or solid fluid interfaces are at different temperatures.

Forced Convection

Fluid is forced over the surface by external means such as a fan, pump, mixer or wind.

L.4.3 R^adiation

Energy is emitted by matter in the form of electromagnetic waves as a result of changes in

electronic configurations of atoms or molecules.

h
I

I

I
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1.5 Mass Transfer

Movement of components from one phase to another due to concentration difference between

the phases is called mass transfer.

Mass is certainly transferred whenever there is a bulk fluid motion, this is not what we

have in mind. For example, we do not use the term mass transfer to describe the motion of

air that is induced by a fan or the motion of water being forced through a pipe. In both cases,

there is gross or bulk fluid motion due to mechanical work. We do, however, use the term

to describe the relative motion of species in a mixture due to the presence of concentration

gradients. One example is the dispersion of oxides of sulfur released from a power plant smoke

stack into the environment. Another example is the transfer of water vapor into dry air, as in

a home humidifier.

1.6 Chemical Reaction

A chemical reaction is the change of a substance into a new one that has a different chemical

identity. A chemical reaction is usually accompanied by easily observed physical effects, such

as the emission of heat and light, the formation of a precipitate, the evolution of gas or a color

change.

t.7 Dimensionless Number

L.7.L Reynold Number

The Reynold numbers Re is a dimensionless number that gives a measure of the ratio of inertial

forces to the viscous forces. Mathematically defined as

where Y is the velocity of the fluid, , is the length, p is the density and p is the dynamic

viscosity.

I

I

I

F.s:YlP ,
l.t
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L.7.2 Prandtl Number

Prandtl number Pr is a dimensionless number, defines ", ,n" ratio'of mornentum diffusivity to

thermal difiusivity. Mathematically defined as

Pr:

where v is kinematic viscosity and a is the thermal diffusivity'

L.7.3 Eckert Number

The Eckert number is a dimensionless number which express the relationship between flow's

kinetic energy and enthalpy. Math'ematically defined as

Ec: 
yz

%(T" -'1';i'
!

where V is the velocity of the fluid and c, is the specific heat'

L.7.4 Schmidt Number

Schmidt number is a dimensionless number, defined as a ratio of momentum diffusivity to mass

diffusivity. Mathematically defined as

Sc:

L.8 Conservation Laws

L.8.L Law of corservation of rhass

The mass conservation equation is also called the equation of continuity. It is derived from the

law of conservation of mass. The law of conservation of mass assumes that mass can neither be

created nor destroyed and that on a steady flow process, the stored mass in a control volume

does not change. A steady flow process is one where the flow rate does not change over time'

This implies that inflow into the control volume equals ou!flow. For steady Incompressible flow

u
ta

u
j

D.



the continuity equation is
,l\
r\-

0u 0a 0w
o"+ aa* ar:u'

o'r#:r'L+kY2T+Pr'

r is the radial heatil;, Cp is the specific heat and k is the

r\
\c

1.8.2 Law of conservation of momentum

The law of the conservation of momentum states that the rate of change of momentum in the

control volume is eqiral to the sum of the net momentum flux into the control volumd ahd any

external forces acting on the control volume, This implies that the total momentum of a closed

system is constant. The general momentum equation is

e# :v.T + F,

where T is the Cauchy stress tensor, p is the density and F is a body'force.

1.8.3 Law of conservaiion of energy

To obtain the energy equation, we have to apply the law of conservation of energy which states

that energy cannot.be created or destroyed, but only changed from one form to another'

For incompressible flow the energy equation is

o9or:r'L-V'q+Pr' (1.i)

in which e is the intdrnal endrgy per unit mass, q is heat flux vector and r is the Cauchy

stress tensor.

By using the following Fourier law of heat conduction

q: -kYT,

Eq. (1.1) becomes

rf,-'
N.\

where ? is the temPerature,

thermal conductivity.
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L.8.4 Law of Concentration fleld

The mass conservation or concentration equation in the presences of a chemical reaction has

the following form in three dimensions

ff * fu.r) c : DY2c - R(c- coo),

where D is mass diffusivity, R is the chemical reaction parameter'

1.9 Method of Solution

In the field of physical science there are both linear and non-linear problems, according to the

phenomena. Sp'ecially most of the problem encountered in fluid mechanics are nbn-linear. To

find the solution for the non-linedr.problem is often hard. Thus many analytic techniques are

developed to solve these type of problems. Perturbation method and Homotopy perturbation

method are among these analytic techniques. we have used these techniques in the subsequent

chapters to get the analytic solution.

,1.9.1 Perturbation method

A set of mathematical methods often used to obtain.approximate solution to the equations for

which no exact solution is posbible, or known. According to this technique, the solution is given

by few.term of expansion. This methods rely on,there being a dimensionless parameter in the

problem that may be small or large. The solution is given by few terms of expansion

A: Ao*eAr*r2Az+...

There are two types of perturbation

o Regular Perturbetion

o Singular Perturbation

r\\\Iil-\v

s}\E
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A(") /(r) :0, r e K,

with the boundary cohdition as

which satisfy

H(u,p)

p

:

€
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Regular Pbrturbation

In regular perturbation the power series in e having non-zero radius of 
"olr*rg"rce 

and exact

solution for e --+ 0 approaches to zerbtL order solution.

Singular perturbation

In singular perturbation power series may has a vanishing radius of convergence also exact

solution for e --, 0 may not approath to the zeroth order solution'

1.9.2 Homotopy Perturbation Method

Consider the non-linear differential equation

( 1.2)

(1.3)

where A is general differential operator which can be divided into two parts linear ,L and

non-linear N, and B is the boundary operator and /(r) is the source term, K is the domain

and I is its boundary. Now Eq.(1.2) can be rewrite as

r€K, (1.4)

As Liao propose the homotopy technique, we first construct the homotopy of the Eq.(1.2)

i

H(r,p): u x [0,1] -+ 1R.,

Q - fllr,@) - r("0)l + plA(u) - .f(")l : 0,

[0,1] ;reK.

(1.5)

B (",X) :0,, r € r,

L(u)+N(")-/(r) :0,



w
where u0 is the initial approximation which satisfies the boundary conditions and p € [0,1]

is the embedding parameter. From Eq.(1.5) it is observed. that as p varies from 0 to 1 the

solution varies from initial value to the final value.

The linear term can be replaced by infinite series

ld
n! dp"

6

u : lim )- p"r,.
D+l t-t -
' n=O

p'

oo

,:Drnpn,
n=0

and for non-linear terms ile's polynomial is defined as

N(u): DA^p*,
n:o

An: [.,(r'"')
The solution of Eq.(1.2) can easily be obtained as

(1.6)

(1.7)

.ei
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Chapter 2

Couette flow with heat source and

chemical reaction

In this chapter we review the work of Bhatticharyya [6]. He discussed the free convected MHD

couette flow of a viscous fluid in the presence of heat source and chemical reaction'

2.t Formulatiori of Problem

Cbnsider the flow of an incompressible viscous electrically conducting flirid through porous

medium bounded by two infinite verticdl polous plates separated' by a distance h in presence of

transverse magnetic'fi.eld, chemical reaction and heat source by making the following assump-

tions:

o AII fluid properties except the density in the buoyancy force are constant'

o The Eckert number Ec is small i.e. Ec<< L'

o The magndtic Rdynolds number is so small that the induced magnetic fi'eld is negligible'

X-axis is taken along the wall of channel and Y-axis is normal to it. A uniform magnetic field

of strength Bg has been applied perpendicular to the wall of the channel' On the Boussinesq's

approximation the steady flow, is governed by the following equations

implies u: -1)o: constant.r ,'. I'
'(,." fi:0,

12
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,r#,ffi * s,l(r' - r") + sp.(c' - c'") -';, *,',

-.,#: h#. aW)' -e'(,' -r:),

-,0#: rffi - R'(c' - c"1.

The corresponding boundary conditions are

(2.1)

(2.2)

(2.3)

u':0; T' :T[; C'=CLatyt:Q,
1r' :(J'i T' :Tl; C' :Clatyt:11.

Let us introduce the following non-dimensional quantities

(2.4)

o:r*,e:#,0:#, sc: g, Pr:*,.Ru:9,
g, : nsPt!*-iil 

,'Grn : A41, n": - ,#a; ,K : #, (2.5)
u6 t6 CpQ;-T)

14 :'BA,* :H,n : *4, n : *, Q : *,u : *pv'
,ffi,n:ffi,

ftto- C-o-6i, _'"- oo'
_d

uo' uo

The equations (2.1) - (2.4) in non dimensional form are

du ldzu u Mu
-fr : *ro' * Gro * GmQ- R"r( - Ru'

d0 1d:2.ye\'_rr,
- da: Prrt"@- R" \dY/ w'

_do: t &o_Rd,.
dy ScRe dYz

Subject to the boundarY condition

u:0;0:7;0:latY:0,
u:IJ;0:rni $:natU:1.

(2.6)

(2.7)

(2.8)

(2.e)

13
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2.2 Method of Solution:

The solution of the equation (2.8) subject to the conditions (2.g) is

Q : AteALY + AseA2a, (2.10)

L- . . -^9cRe+l@F+ann"S" . -ScR"-\/SAW+4RR"S";.-E;a nr:7, iZ: Z ,

er: ffi, A4:L- As-

In order to solve the equations (2.6) a,nd (2.7) subject to the boundary condition (2.9), we

use perturbation method with perturbation parnmeter Ec << 1.

The solution of Eq. (2.6) and F,q. (2.7) can be written in the form of series.

u: uo(y) + (Ec),rr(y) + (Ec)z u2@)+ ......, 'l

e :00(y) + (Ec)tr(il + @c)2 02(y). , I 
(2'11)

Usrng Eq. (2.11) into equation (2.6) - (2.7) we get the following system of equation

Zeroth order system

t

uo - lru| * Aztn : Aaflo f- Arcf,

e'i +ernsei, - erR"qgo : o.

us (0) :0; 0s (0) : 1, \
tro (l) : U; 0o(1) : *' J

"i - e6"i, * A7u1: Aa?t'

gi + rrReai - erneq tu -- -r'(4)'

ur (0) :0; gr (0) :0' \
u1 (1) :0; 01 (1) :0' 

J

(2.12)

(2.13)

(2.14)

First order system
(2.15)

(2.16)

(2.17)

e

14
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2.3 Result and discrission

In order to get clear ini;ight of the physical problem, nurherical computations for the represen-

tative velcicity fi"1d, tbmperatur"e field and concentration field at the plate have been carried

out for different values of the parameters.

Figs.(2.1) - (2.2) exhibit the behavior of the velocity field u versus 3t due to the variations of

reaction parameter.R and heat sink parameter Q for Sc:.6,Pr - .71,M :2,Gr:2,Gm:

2,Re : 2,K : l,(J :1,.R : 2,m: l,n: l,Ec: '001,8 : 1. From these figures we have

observed. that the velocity of the fluid is retarded due to imposition of chemical rrjaction and

heat sink. The efiect of the parameter Q bn the temperature field for ,9c : .6, Re : l,M :

l, K : l,.Gr : l,Gm : \r(J': l,rn : 1,]? : 1,Pr : .71,n : 2rEc :'001 is depicted in the

figure (2.3), it is observed that the temperature profiIe decreases with the.increase of heat sink

parameter. The variation of the concentration distribution C versus g under the influ'ence of

Schmidt number ,Sc and chemical reaction parameter .R for ,9c : 0.66, Re : 1, n : 2 R : l,is

presented in the figure (2.4) and (2.5). The concentratiorf decreases as increasing the chemical

"reaction and Schmidt parameter.

1.00.80.60.4$.20.0

I

Fig. 2.1: Efiect of R on u(Y).

J

Fig. 2.2: Effect of Q on u(g).
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Fig. 2.3: Effect of Q on 
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Fig. 2.4: Effect of .9c on C(Y).

0.0 0.2 0.4' 0.6 0.8 1.0
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Fig. 2.5: Effect"of R ot C(Y).
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Chapter 3

Rotating floW of Newtonian and

Maxwell fluid with heat source and

chemical reaction

In this chapter we have discussed the rotating flow of Newtonian and Maxwell fluid with

heat source or sink and chemical reaction in the presence of viscous dissipation. The coupled

non-linear system of equations are solved by the analytical technique Homotopy Perturbation

Method (HPM). The comparison of viscous and Ma>cwell fluid have been made by the help of

graphs.

3.1 Problem 1

We consider the steady flow of an incompressible viscous electrically condrcting fluid through

a porous medium between two porous platds separated by a distance h in presence of magnetic

field, heat source or sink and chemical reaction. The plates are rotating alon! z-axis, with

uniform angular velocity O'..Both the plates and fluid are rotating along z-axis. The magnetic

field Bo is applied perpendicular to the plates. The induced'magnetic field due to the small

20
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magnetic Reynolds number is negligible and Eckert number is small.

Figure 3.1.: Geometery of problem I

\r
The governing equations for the rotating viscous fluid flow under the Boussinesq's approxi-

mation are

-.r# - 2dt'u' : ,# -';, - 4-r' + sP(T' - r') + sl"(c' - C"7. (3.1)

-.r# +2a' u' : r# - ";- - ]; . (3.2)

-,,# : h# . 

"lW)' 
. (#)') - o',,' - r)

The enerry and concentration equation in the presence of viscous dissipation, heat source

or sink and chemical reaction are in the following form

-,r#:D#- R'(c -c"1.

(3.3)

(3.4)

i,
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The corresponding bounda,ry conditions are

a' :O; T' :Ti; C : Co at z' :0,
u':Vi; T' :ft; C' :Clat z':h.

# . R"#* 2Reou - Asu * Grkeo * GmRe S : o,

# .R"#- 2 Re dtu - Asu :0,

_do_ L &o-gcl1au12,
Prke-ctz2 

* R" Ll\a/ 
+

u':oi
u' :(J6;

(3.5)

(3.7)

(3.8)

(3.e)

(3.10)

k

T'lo non-dimensionalize the problem u,e use the following pa,rameters.

,: T, u: *,, : * e :#, O:ffi, sc: fi, Pr: P*, o": 9, I
Gr-b!!*b,Gm:W,n": 

"fu,,K:$, 
ru:#, I tt.ol

o: %e, *:#,n:ffi, a:*,e:*,uo:*,uo:# )

where u' and u'are the velocity components in the c' and y'direction respectively, p and B"

are the thermal and concentration volume expa,nsion coefficient respectively, k is the thermal

conductivity C' is the species concentration, ?' is the fluid temperature, Cl and ( are the

concentration and temperature in static condition respectively, C, is the specific heat at consta,nt

pressrue, C[ and Cl are the species concentration at the lower plate and upper plate respectively,

D is the chemical molecular diffusiviff, g is the acceleration due to gravitS h is the distance

between two plates, E' is the rate of chemical reaction, Q' is the constant heat sink / source

(It may be noted that Q' ( 0 for heat source and 8' ) 0 for heat sink), p is the fluid density,

y is the kinematic viscosity.

Eqs. (3.1) - (3.5) in non dimensional form are

(#)'l-o',
d0

t
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v
subject to the boundary condition

u:0; u:0; 0:l; Q:Lat z:0, I
u:(Ji., a:VOi 0:rni 0:nat r:r. I 

(3'11)

3.2 Method of Solution

The solution of equation (3.10) subject to the boundary conditions (3.11) is

Q: AteA,' + A3eA2', (3.12)

-ScRe +t@ +4RPqS" . -ScRe-lEArt' +4RF'eSi

er: #,A4:l- As.

Solving equations (3.7)-(3.9) by homotopy perturbation method, the following homotopies

are defined as

H, (d,p): (1 -, (# - #) .,1* ..XX;:Tli* 
ro,' ] 

:,, (s 1s)

Hz(i,p): (r - 
^ Gry, 

- #) . rl*fr, **#- 2 Re oil - e,st): o, (3.14)

u,F,o):(1- ,(# #).,IY;l:ir$;1efi ]:,, (B1b)

where p e 10,1] is the embedding parameter.

Assume the solution in the following form

a: i d,f ,6:finpn,i:L6*o', (s.10)

r=0 n=0 n=0

u

F
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where

t
til
adr

get

n6k): u!dQ),

tdQ) : r8@),

di1r1: u61,1,

(3.18)

(3.le)

(3.20)

E
t!!(z) + Re a[(z) + 2 Re ofr ( z) - AsraQ)

+R€ (crAo @) + GmQ(r)) : o,

. 6'!(r) + Re d(z) - 2 Re oil6( z) - A5ds(z) = Q,

Jr4
0o@) + Pr Re 0s(z) - Q Pr Re 0o (z) + EcPt 81 : 0,

Ar(0):0, ilr(1):0'
d1(0):0' d1(1): Q'

7t1O; : t' 7'1t; : g'

i,iQ) +Reil1(z) * 2Reofi(z) - Asdl(z) + Grne71( z):0,
ni@) +Ret (z) - 2ReOd1( z) - Asi{z) : r,

Jr4
02@) + Pr Re 01(z) - Q Pr Re 0r (z) + EcPr 82 : g,

tn(O):0' A2(1):0'

i'z@):0, fr2(1) : Q,

A2(o) : l, 621t1 : s.

p2:

t\f

Bn= (3.17)

using equations (3.16) in (3.13) - (3.15), a,nd equating the coefficient of like povvers of p we

po:

N (d, v) : l(#)' 
. (#)'l : 

Lu*o*,

[, (E'",I*,,)]=,,

dg(o) :0, [o(1) : Uo,

6(0) :0, ds(1) : I/s,

7s1o; : t,6o1t1: *.

pt:
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Solving equations (3.18) - (3.20), we obtain the series'solution for velocity profile and

temperature distribution as follows

u : lin] (do + pa, + p2dz + ....) ,
P+l

u : Iinl (io + ph + p2iz + ....) ,
P-] '

g : lim (eo * W, + p26z+ ....) ,

i

where

Uoz,

Voz,

t+(m-r)r.

at * azz I ay2 * aaz3 - a5eArz - a6eA",

a7z-agz2*agzs,

anz*a122 *atzz3.

d,s :
a0:

0o:

i1

61

6,

d,2 :

6z:
ar,.l auz I a1522 * a6zg * a1724 * alc25 -

azt * azzz - azsz2 * a2423 * a2524 I a26zs -

algeAr' - ezoeA'",

(2A2a5 Pr Re 0) ^a,,
h

0z:

1o2: 
6ER,

(2A1a5PrReO) -a,,
A,

(Z(Azas * Ap.a)EcPtuo) * a27z * a2sz2 * a2szs + asoz4
AtAz

- arz Pr Q R.e ,s * (2as0cPr Uo) 
eAr, + (2aaEc.Pr (Io) 

"ar, 
.- 20 :- A, u I A,

,,: (ff+ fi,)c*x",

-A?AZ(As - 3Re)ue +rte(6AZAr(-1+ "Ar)Gm
+A?(6fu(-, * "A\Gm ): 

AZGI(2 + rn)) + 2A?A\ovo )



f

Re(Gr+Uo) AsUo+Re(Gr-Grm-zAVd AtGmRe
ag : -----T,on : T,a6 : --q-,

AzGm&e (2ReOUs + (.A5 - 3Re)Vs) - Re Vo
,u : --T,ot : -T,uB : ---f ,

(2ReOUo * AsVi Pr((3+rn(-3+8) +2Q)Re -3EcVl)o9: ---Ii--,*10: - '

Pr((-l *rn- Q)R" +Ec(Vl +U8)) ^ - 
(-1*rn)PrQRe

Orr:- ;wl2: 6 
.

(asAi (45 Re) , ao(As - .42 Re)orr:@--T--B-

( ao$"ueu(-l+ 
"Ar) - 60A1Afas(-1+ eA')Re+.4?(60Arao(-1 + uAz)

1 | -roa2Al(As - 3Re) - 60Azad-t + eA')ne+.A!(-aaa(As - 5Re)
au: @ I -sos(au - 4Re) * (10a1s *5011 *3arz)GrRe) + (10a6Re+60eRe)O

I

\ -llafilAlAs.
(arAs- azRe) (ozAs- (2os+2a7Q* olsGr)Re)ot': 
---l-, 

o16 : '

atAs - Re(3aa * qnGr - 2ae0) aaAs - Re(a12Gr *2as0)otz: r *18:7,

, ozo:9t/tir/:&J , az\:r(frr+ ft) n"o,

( -DlAlas(-r + eAt)Reo * el(::zow(-, * ,Az) Re o
rlazz: - aQiI_A^l +ez@s(Lla7 - 5aa + 3as) + Re (-30a2 *20ae - 15ag * 60aro

\ *2}azdl * lOas0 + 6a4O)

os(-As + Ar Re)
o1g = A,,

o.25:

Pr(aro8e * 2azE cUo * 2a7 EcVs)

Re(o7 - 2alQ) A5a7 * 2Re(os + a2Q)
aZl:----T-,&24: T,

(.45o8 * 3oe Re -2a3 Re O) Asag * 2oa ReO
, o26: 12'

( Yr6r,nr13o12(-5 + Q) + 5a11(-4 + Q) + 10aro(-3 + O)) n" \
azz : 

6LgAtAr l -ro,- t2A2as(l + 
"A,) 

* At (6azAz * 4A2as * 3A2aa 
I 

,

\ *12a6 - l2a6eA2) EcUs )
F

a2E: ,429:

26

Pr(2at Re - anQ Re +4atE cUo - 4aaE cVo)
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3.3 Problem 2

We consider the steady MHD Maxwell incompressible electrically conducting fluid between two

porous plates separated by a distance h in presence of magnetic field and chemical reaction.

The plates are rotating along z-a>ris, with uniform angular velocity O'. Both the plates and

fluid are rotating along z-axis. The magnetic field Bs is applied perpendicular to the plates.

The induced magnetic field due to the small magnetic Reynolds number is negligible and Eckert

number is small.

I*"r
,-,1r,-.

\
;t&l--l*

#.#*#:o
,l#+2o' x v+sl' x (o' x 

")] 
:airt*J x B * psa(T'

where Cauchy stress T is defined as

Figure 3.2 : Geometery of problem 2.

The continuity a^nd momentum equation for the maxwell fluid a^re as follows

t-r

(3.21)

- r',) + pg\.(C' - C"1. 1l.zz1

(3.23)T--pI*S,
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.2e)

(3.30)

(3.31)

(3.32)

(3.33)

and extra stress tensor for the maxwell fluid is defined by the following expression

(1+ A#)s : ttlr,

Ar:Vv*(Vv)?,

';: (v.V)s - (vv)s - s(Vv)".

Stress tensor and velocity componeilts in 3-dimension are defined as

':(r!,", ?;i,',,) ":( 
";-^)

Using Eqs. (3.24) - (3.26), we obtain the following equations

(t - x.6{r) rr, - 2u',s'",: s,

(, - ^-t{,) 
t, - (,',s'"i + u',s'"*) : 0,

(, - ^*'rfi) 
tr, - u'"s',": 1tu',,

(, - x*,fi) tt, - 2u'|,st"o: s,

(, - ^*,ff) 
tL" - u',s',,: 1tu'",

(,- ^.6fi) 
tr.:o.

From Eq. (3.32) S',,': 0 us6 rni, i, Eqs. (3.29) and (3.31) we get

S'r, - \w'gfu: pr'r' \
S;" - \w'sd* : ru',' I

s
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so equation (3.22) in component form is given by the following expressions

d,u' 
2dt,u, :!ol:,, - 

or.l 
u, + sg(T, - dl + sp.(c' - C),-woT- pdz' p

-ro4 + 2{t'u' : !&- - oBB 
,' .

dz paz P

Flom Eqs. (3.34) - (3.35) we find the values "f * *d * and use this in Eq (3.33) we

get the value of t , $d !s,

g!,, : p)!wol-*# - 2{t'a' *ffr' - sg(T' -f,y - sl"(c' - c)] * u#,

!u,: p\'wl*r# +za'u' .*r)* u#-

\

The energy and concentration equation with heat source and dremical reactions are arr

follons

(3.38)

(3.3e)

u' :0; u' :0i T' :4; d : Co at zt :0,
u' :Ut; a' :Vi; / :fr; C : C, at / : h.

(3.40)

-*,#: h#.hl#'r*#q.f -e'(r' -r:),

-^#:D#-d@ -c"'1.

The corresponding boundary conditions are

(3.34)

(3.35)

(3.36)

(3.37)

(3.41)

Cf-
o
$o
-o

t

-l-

l*__

We introduce the following non-dinensional quantities

, : *, u: *, o : *, s,, : *, su,:ffi, e :#, o : ffi,
Sc: fi,Pr: *, R : #, er:W, Grn:W,

n": 
"fu,M 

:#, rn:#, n:ffi' n: *' Q : *'
.t: #, o: *,uo:*,vo:*.

Where u' and u' a,re the velocity components in the c' and y' direction respectively, p

and A. are the thermal and concentration volume orpansion coefficient respectivelS /c is the



{e
thermal conductivity, C'is the species concentration, ?v is the fluid temperature, Cl and { are

the concentration and temperatrue in static condition respectively, C, is the specific heat at

consta,nt pressure, C[ a,nd Cl are the specim concentration at the lower plate and upper plate

respectively D is the chemical molecular diffusivity, g is the acceleration due to gravity, h is

the distance between two plates, R' is the rate of dremical reaction, Q' is the constant heat

sink / source (It may be noted that Qt < 0 for heat source and Q' ) 0 for heat sink), p is the

fluid density, v is the kinematic viscosity.

3.4 Method of Solution

The non dimensional form of Eqs. (3.34) - (3.40) is given by the following equations

:*#-Ro,

$: !4sAtz + AgeAz'.

-,ScRe +t/EN+a,nXuS" -,ScRe -r@ffiqnReSc, A2:

d0
dz

(3.42)

(3.43)

(3.45)

(3.46)

(3.47)

where

s
Ar:

er:fi$, Aq:L-As'

&u d,u

rt - ^uE* 
Azu- Agu* on#: Av,| - o.#* Arz6- trr#, @'44)

# - Au** A7u * Aeu- An#:0,

# : #uyo .'#1ff ., + ffso,) - oe,

Subject to the boundary condition

U:0rU:0, 0 :1, Q:1 at z :0,
u : UO,u : VO, 0 : rTt, 6 : n at z : l.
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where

where

: H#, Ar=#ut -r, AB:#-,'Ag:\As' Ato:#1{1'

: \As, A12: #=, Ar-: \An.

5," : (l- .\ Re) !, * ^*"- 
2 Re )Oo - \GrRe0 - \GmReS,

Sy" : (t - ^O.)# 
*'AMu* 2 Re )Oz.

Solvin-g equations (3.43) to(3.45) by Hoinotopy Perturbation Method' the following homo-

topies are defined as

A6

At

H,(il,p): (1 - ,'(# -#).rl?^,;i";:,;: 
^,:r:::;#)

u - : * 
",*n i, (f 

r*n,irr,2u 
"')),=,

- 0, (3.48)

Hz(6,p): (1 - ,) (#, -#).rl#'- e,f,+ Azd -.taa+,tsff

H, (a,p): (, _ , (# _ #) .,ff ::::,"&rr,lo)1", ]
where

]:0,

-0.

(3.4e)

(3.50)

(3.51)

N(d,6,6) : (r - ^-", ((#)' . (#)') * ^, (r#.r#)
*2Re 

^" (aff -r#) - )cr*"6# - \Gmo"o#

where p . [0, ]] is the embedding parameter.

Assume the solution in the form of

d : Ld,npn,i : \i*p",6 : l6,n?, N (d,6,4) : D Bnpn,

n:0 n:0 n:0
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using equation (3.51) in (3.48) - (3.50), and equating the coefficient of like powers of p we

get:

p0:
illdQ) -- utd|),

i'l(z) : r'dQl,

d[p1: e61,1,

Z6(0) : g,

d6(0) : Q,

Ds(o) : 1,

i.s(r) : Us,

de(1) : /s,

6s1ty: *. I
(3.52)

(3.53)

(3.54)

:-L
as

pr:

p2:

Solving equation (3.52) - (3.53)

tli@) - Au* + Azio - Aeio + Ag*

-Aro7o 1 ,trr* - An6-t Alff :0,
iiQ) - Au* + Azio - Aado +- As* :0,

Jt -,dolry + erne7i(z) - eprn"is1r; * EcPr Br :0,
A1(0):0' fr1(l): Q'

dr(0):0' d1(1):0'

7,10;: t, 7r1t;: g.

iliQ)-Au#*A7i'1

-Aait -Y As* - Aro6, + As$ : g,

i'i@) - Au* + Azh - Aailr * As* : o,

dre) +erneTl(r) - e PrReD {r) + EcPr 82 : Q,

d2(0):0, d2(1):0,

i2(0):0, A2(1) :0,
61101 : t,621t1: g.

we obtain the series solution'for velocity profiIe and tem-

;

lir

I

32



$
perature distribution as follows

where

u : Iin] (ts + ph + p2dz + ....) ,
p+l'

u : Iinl (is + pi1+ pziz + ....) ,
P+l

o : liln (eo * W, + p'6r+ ....) ,

Uoz,

viz,

l+(rn-l)r.

]

(3.55)

is:
is:
60:

- - AnAs ,1,n41 
- 

AnAq - AnAq - (ArzAn - 
ArrAn\ 

")r,ut : A, --T--Tt k -\-Z?-- h )..(ff #)eA'" +(-+ -+.ff -ry.#
ABAt ArrA4:A" - AnAqeAl AnAseA2 ArrAt4 

- A,.m * JArtm-t--n,i - n ---4-=-Az
*c+ + ffvo-"E-#de 1, +f,@n * Ar - Anr,;* Aauo - Asvs)22

|(a,o(-r,+ m) - ATus * Asvs)2s.

a : |{{eruo - SAsuo - SAavo * Azvo) z * (3As(}6 + 3A6vs) z2 -,(Asus * A7v6) z3)'

( aele+?l + eAl)EcGrnReUo) + A?(61ry,e1+ eA2)EccrnReuo)

-furr, | .", Z@et(s + 2e + 2EcGr(Jg + JEcufi), + 3Ecvo2 \
\ +m(-3 + Q + EcGrUo))) - Ec(Ul,+Vo2)(3 + 

^M))
* (f,r,eOcpfr + v&) +Re(l - m * Q + EcGr(to\ + Ecufi). + n"u] t)) 12

/ Pr((-t + m)Q Re *Bc)(Gr(-l + rn) Re Uo + (Ufi - v,'z))) \ -3

\/

)
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3.5 Result and discussioil

In order to get the physical meanin[ of the problems, the effect of various parameters on velocity

field, temperdture field and concentration field are discussed.

The figures (3.3)-(3.12) describes the behavior ofvelocity field versus z due to the variation

of Reaction parameter ft, heat sink and source parameter Q, rotating parameter O, Magnetic

parameter M andMaxwell parameter,\ for Sc : .6, Pr - .71,RL : 2, M : Gr : GTn : 2,

(Jo : Vo : R : Q : *.: TL : l, Ec : .0d1, O : 1, ) : 0.1. FYom figures (3'3) - (3.4) and

(3.11) - (3.12) we observe that velocity u in r-direction decreases and. velocity u in y-d.irection

increases as increasing reaction parameter E and magnetic parameter M. The effect of heat

sink and source Q is shown in Figs. (3.5) - (3.6). It.is observed that velocity u in r-direction

ddcreases and,velocity u in 3r-direction increases as increasing heat sink/source parameter. The

effect of rotating parameter C) on the,velocity component u and u is depicted in Figs. (3.7)-(3.8).

It is observed that the velocity u in r-direction increases dnd velocity u ii y-direction decreases

by increasing O. The effect of Maxwell parameter A is shown in Figs (3.9) - (3.10) in which

velocity u in c-direction increases and velocity u in g-direction decreases by increasing Maxwell

parameter.

The effect of heat sink and source parameter Q and prandtl number Pr for Sc : '6, Pr - .71,

fre: M:2,Gr: Gn-t,:fJO:VO: Q: R:'m:rt: O:1, Ec:.001, ):'0'1 on

the temperature field depicted in the Figs. (3.13) and (3.1a). Fig. (3.13) show that the fluid

temperature decrease with the increase of heat sink parameter and increases by increasing heat

sink. The effect of prandtl number is shown in Fig. (3.14), it is observed that as we increase

the prandtl number the temperature of the fluid decreases.

The variation of the concentration field C versus z under the influence of Schmidt number

,sc and chernical reaction parameter .R for .R: 1, ,9c: 0.66, Re : 1, n:2 is presented in the

figures (3.15) and (3.16). The concentration decreases by increasing the chemical reaction and

Schmidt parameter.

In all figures it is observed that the magnitude of velocity and temperature is lesser than in

the case of Newtonian fluid as compared by the Maxwell fluid.

I
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Fig. 3.3: Eflect of R on u(z).

z

i'ig. S.S, Effect of heat Q oru(z)

,

Fig. 3.4: Effect of R on u (z) .

I

Fig. 3.6: Effect of Q on u(z)
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Fig. 3.7: Effect of Q or u(z).

Fig. 3.9: Effect of ), on u(z)

Lf G2 0.t 0.6 0I
,

Fig. 3.8: Effect of 0 on t, (z).

z

Fig. 3.10: Effect of ) on u (z)
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Fig. 3.11: Effect of M on u(z).

I

Fig. 3.13: Effect of Q onT(z).
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Fig. 3.12: Effect of M on u (z) .

0.0 0.2 0.4 0.6 0.E

z

Fig. 3.14: Effect of Pr orT(z).
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Fig. 3.15: Effect of. Sc ot C(z).
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Fig. 3.16: Effect of. R on C(z).
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