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In chapter two we have reviewed the work of Bhattacharya [6] he considered the
free convicted MHD Couette flow of a viscous fluid with heat source and chemical

reaction.

Chapter three is extended for the Maxwell fluid model in rotating frame with heat

source and chemical reaction and results are deduce for the Newtonian fluid.
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Chapter 1
Preliminaries

This chapter comprises the basic definitions of fluid mechanics.

1.1 Fluid Mechanics

Fluid mechanics is the branch of engineering that examines the properties and nature of the

fluid at rest or in motion.

1.2 Classification of the fluids

1.2.1 Inviscid fluid

Fluids with negligible viscosity is known as the inviscid or ideal fluid e.g. water.

1.2.2 Real fluid

Fluids which possesses non-zero viscosity is known as real fluid e.g. petrol and castor oil.

1.2.3 New%onian fluid

Fluids in which shear stress is directly proportional to the deformation rate .are Newtonian

fluids. Mathematically defined as
du

TyI = 'U.-d—y
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1.7.2 Prandtl Number

Prandtl number Pr is a dimensionless number, defines as the ratio of momentum diffusivity to

thermal diffusivity. Mathematically defined as
v
Pr=—,
beY
where v is kinematic viscosity and « is the thermal diffusivity.

1.7.3 Eckert Number

The Eckert number is a dimensionless number which express the relationship between flow’s
kinetic energy and enthalpy. Mathematically defined as

V2

EFc=—u-—,
ep(Ts — Too)

where V is the velocity of the fluid and ¢, is the specific heat.

1.7.4 Schmidt Number

Schmidt number is a dimensionless number, defined as a ratio of momentum diffusivity to mass
diffusivity. Mathematically defined as
v
Sc=—=.
D

1.8 Conservation Laws

1.8.1 Law of conservation of mass

The mass conservation equation is also called the equation of continuity. It is derived from the
law of conse'rvation of mass. The law of conservation of mass assumes that mass can neither be
created nor destroyed and that on a steady flow process, the stored mass in a control volume
does not change. A steady flow process is one where the flow rate does not change over time.

This implies that inflow into the control volume equals outflow. For steady Incompressible flow
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the continuity equation is
) ou 4 ov 4 ow 0
oz  dy Oz

1.8.2 Law of conservation of momentum

The law of the conservation of momentum states that the rate of change of momentum in the
control volume is equal to the sum of the net momentum flux into the control volume and any
external forces acting on the control volume. This implies that the total momentum of a closed
system is constant. The general momentum equation is

= dV

— =V.
pdt T+ F,

where T is the Cauchy stress tensor, p is the density and F is a body force.

1.8.3 Law of conservation of energy

To obtain the energy equation, we have to apply the law of conservation of energy which states
that energy cannot_be created or destroyed, but only changed from one form to another.
For incompressible flow the energy equation is

d .
p—e =7.L - V.q+pr, (1.1)

dt
in which e is the internal energy per unit mass, q is heat flux vector and 7 is the Cauchy

stress tensor.

By using the following Fourier law of heat conduction
q=—kVT,

Eq. (1.1) becomes

dT
pCpEi- = 7.L + kV2T+pr.

where T is the temperature, r is the radial heating, C'p is the specific heat and k is the

thermal conductivity.
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1.8.4 Law of Concentration field

The mass conservation or concentration equation in the presences of a chemical reaction has
the following form in three dimensions

- oC

E+(V.V)C=DV20—R(C—CM),

where D is mass diffusivity, R is the chemical reaction parameter.

1.9 Method of Solution

In the field of physical science there are both linear and non-linear problems, according to the
phenomena. Specially most of the problem encountered in fluid mechanics a:re non-linear. To
find the solution for the non-linear.problem is-often hard. Thus many analytic techniques are
developed to solve these type of problems. Perturbation method and Homotopy perturbation
method are among these analy;ic techniques. we have used these techniques in the subsequent

\E chapters to get the analytic solution.

1.9.1 Perturbation method

A set of mathematical methods often used to obtain.approximate solution to the equations for
which no exact solution is possible, or known. According to this technique, the solution is given
by few term of expansion. This methods rely on there being a dimensionless parameter in the

problem that may be small or large. The solution is given by few terms of expansion
A=Ag+eA +eAp+ ...

There are two types of perturbation
e Regular Perturbation

¢ Singular Perturbation

i R - _——— e = -




Regular Perturbation

]
In regular perturbation thé power series in € having non-zero radius of convergence and exact

solution for € — 0 approaches to zeroth order solution.

Singular perturbation

In singular perturbation power series may has a vanishing radius of convergence also exact

solution for € — 0 may not approach to the zeroth order solution.

1.9.2 Homotopy Perturbation Method

-

Consider the non-linear differential equation
Alu) - f(r)=0, reK, (1.2)

with the boundary condition as

Y
i \@ B (u, g%) =0, reT, (1.3)
where A is general differential operator which can be divided into two parts linear L and
non-linear N , and B is the boundary operator and f(r) is the source term, K is the domain
and T is its boundary. Now Eq.(1.2) can be rewrite as
| Lu)+ N(u)— f(r)=0, T€ K, (1.4)
| . ,
‘ As Liao propose the homotopy technique, we first construct the homotopy of the Eq.(1.2)
| as
H(r,p):vx[0,1] =R,
which satisfy
: | H(v,p) = (1-p)L() - L(w)] +plA®) - f()] =0, (1.5)

p € [0,1];rekK.

10
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where ug is the initial approximation which satisfies the boundary conditions and p € [0,1]

& ;
& is the embedding parameter. From Eq.(1.5) it is observed that as p varies from 0 to 1 the

solution varies from initial value to the final value.

The linear term can be replaced by infinite series
[ o]
v="2 vp"
n=0
and for non-linear terms He’s polynomial is defined as

N()=Y_ Anp",
n=0

1 d» 2
A":H%’; l:N (Z'U-,p):l .
1=0 p=0

The solution of Eq.(1.2) can easily be obtained as

ey 00
v u = lim E " Uy, '
¥ p_,]
n=0
i
%

P
-

11
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Chapter 2

Couette flow with heat source and

chemical reaction

In this chapter we review the work of Bhattacharyya [6]. He discussed the free convected MHD

couette flow of a viscous fluid in the présence of heat source and chemical reaction.

2.1 Formulation of problem

Consider the flow of an incompressible viscous electrically conducting fluid through porous
medium bounded by two infinite vertical porous plates separated by a distance A in presence of
transverse magnetic'field, chemical reaction and heat source by making' the following assump-
tions:

e All fluid properties except the density-in the buoyancy force are constant.

e The Eckert number Ec is small i.e. Ec<< 1.

¢ The magnétic Réynolds number is so small that the induced magnetic field is negligible.

X -axis is taken along the wall of channel and Y -axis is normal to it. A uniform magnetic field
of strength By has beeri applied perpendicular to the wall of the channel. On the Boussinesq’s

approximation the steady flow, is governed by the.following equations

v’ Y
—517 = 0, implies v = —vg = constant.

12
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du’ d2u’ / , ; v O’BO /
d—y' “VW'FQIB(T —Ts)+glgc(c —"Cs) - K - TU

’ ' N 2
ar k d2T v du ' ’ ’
- T = 7 7 - T -T, ’

Up dy PCp dyz + Cp (d’y ) Q ( s)

__'UO

dc' dic’
— =D
W o ~R(C -C).

—w
The corresponding boundary conditions are

W=0,T =Ty C'=Chaty =0,
W=U,T =T; C=Claty =h.

Let us introduce the followifng non-dimensional quantities

uC. _ - vgh
Pr= =%, Re= 1’%—,

!

y—%,B—ﬁ-J b=crgh Sc=+%,

hgﬁ(Tg T hgﬁc(C —C}) Ec= 9 K = _2_’
CP(To -Ty) ’

oB2h? hR rQ' v’
M= 4~ -geg, = 0= -t

The equations (2.1) — (2.4) in non dimensional form are

du 1 d?u u Mu
- 0 _
dy Red2+Gr +Gmé - K T Re”

do 1 d%0 Ec (du\?
e —————2_+‘— e _Q07
dy PrRedy Re \ dy

dp 1 d%
“dy ~ ScRedy? - B

Subject to the boundary condition

u=0;0=1 ¢=1aty=0,
u=U,0=m; p=naty=1

13
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. —PrA%a —Pr AZa?

,: % = AT+ 2PrReA, — QPrRe’ °  4A3+2PrRed; — QPrRe’
o = ~—PrBiad? e = ~PrB2al
" T 4BZ+ 2PrReB; - QPrRe’ ° 4BZ+2PrReB; - QPrRe’
. —-PrBZB? -PrBiB |
= —— , a e 5
® T 4BZ+2PrReB; — QPrRe’ " 4B+ 2PrReBs- QPrRe
a = _2 PT_A1A2a3a4 C gae = ) —2Pr A1B1aya3
U (A1 + Ay)? +PrRe(A1  Ap) —QPrRe’ > (A1 4 B1)? + PrRe(A; + By) - QPrRe’
G = -—=2Pr A{Blala4  as = - —2Pr A, Bazag
¥ (A3 +B1)’ +PrRe(A; + B1) — QPrRe’ © (A1 + Ba)? + PrRe (A, +By) - QPrRe’
—2Pr AyBoagdy® a —2PrB1Bay
a5 = - ; = ' :
= Ay + Bs): + PrRe(As + B2) — QPrRe’ ° (By+ By)® + PrRe(B; + Bz) — QPrRe
—2Pr AIB5B7CL3 a . —-2Pr B5B7a2a4
ar = ; 18 = )
= (A +Bs)? +PrRe(A, + Bs) - QPrRe’ ©  (Ag+ Bs)® + PrRe(Az + Bs) — QPrRe
—é Pr BlB5B7a1 a ——72 Pr BQB5B7C£2 ]
a9 = - ;a2 = ~ )
7 (B; + Bs)® + PrRe (B; + Bs) — QPrRe (Bz + Bs)? + PrRe (Bs + Bs) — QPrRe
o~
2 —2Pr A1 BgBsas . —92Pr Ay BgBgay
e as = = ) 22 — ; ’
2 (A4 +Bs)2 + PrRe(A4; + Bg) — QPrRe (A2 +Bs)2 + PrRe (A2 + Bg) — Q PrRe
—-2Pr BlBﬁBgal A a A —2Pr B2BﬁBg(12 = )
a3 = i G4 = - ”
B (Br+ Bs)’ + PrRe(By + Bg) — QPrRe (Bz + Be)2 + PrRe(Bs + Bs) — @PrRe
—2Pr BsBsB7Bs R Agas
ass = . ; = : s
%~ (Bs + Bs)® + PrRe(Bs + Bg) ~ QPrRe 447 - 245 A1 + Ay
o = Asag o — = Asan
VT YAZ 2AgAz + A7 20T (A1t A2)? — Ag(Ar + Ao)+ A7
_ AsBy g = Agaz
929 = B% — AgB1 + A7’ 30 = 43% — 2A¢B; + A7,
_ Agaqo 7 g = . Agaiz
B A+ B2 — Ag(AL+ B+ A7 27 (Ag + B1)? — Ag(Az+ B1) + A7’
_ AsBio gy = | Asas
987 BT By + A7 ' 4BI - 2A¢By+ A7’
_ Asais g = , Agais
Es 435 = (A1 + 32)2 — Ag(A1 + By) + Az’ 36 (A2 + 32)2 — Ag(Az + By) + A7’
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Qar = . Agays )  gae = Agag
T (Bi+B)2—Ag(B1+By) + A7 % 4BT—2A¢Bs + Ay’

e — Asar7 e = — Asais
3 T (A1 + Bs)2 — As(A; + Bs) + A7, *°7 (A + Bs)?2 — Ag(Ag + Bs) + A7’

dan — Asaig g = Asazo
0T By + Bs)2 — Ag(B1 + Bs) + A7’ 27 (By + Bs)? — Ag(Bz + Bs) + A7’

P Agalo . Gan = A8a21
3= 4B§ — 2AGBG + A7, 44 (A] + 36)2 - AG(AI + BG) + A7’

_ Agazo e = Agaas
M5 = Ay + Be)2 — Ao(Az+ Bs) + A7 *° 7 (Bi+ Bs)? — Ae(By + Bs) + Ar’

_ Asay ¢ = Asgazs
%7 = (B, 1 Bo)? — As(Ba+ Bo) + A7’ 87 (Bs + Be)2 ~ Ag(Bs + Bs) + Ar’

25 48
Gr=3 ai Gs=) ap
=5

=26

’ B 2B Ai1+B
— a5e2A1 + a662A2 + alle(A1+A2) + a7e2Bl + a12e(Al+Bl) + alae(A2+ 1) 4 age?P? + a14e( 1+Bz2)
B1+B B2+B,
tayselA2tB2) 4 giee(BrtB2) 4 q4e2Bs 4 g relAr+Bs) 4 a15e42B5) 4 g1ge(B1+B5) | goge(BatBs)

B Bs+B.
+a10€?B8 + agyelA1+B6) 4 gypelA2+Be) + agzeBrFBe) 4 gg,e(B2tBe) 4 gy e(Bs 6).

B A2+B B
— a26€2A1 + 0,2762A2 + a2se(Al+A2) + a2g€Bl + 0.306231 + a3le(Al+ 1) + (1326( 2+B1) + agze 2 4 asse

B B1+B
+a35e(A1+BZ) +a366(A2+32)+a37e(31+32)+a386235 +a396(A1+B5)+a4oe(A2+ 5)+a418( 1+Bs)

+a426(32+35) + a436236 + a44e(A1+Be) + a456(A2+36) + a466(31+Bs) + a47e(B2+BG) + a486(Bs+Be)_

4,
B7 = —Bg - Zai,
’ i=1

B
(aleBl + ¢12eB2 “+ agedt + a4eA2) — (a1 + az + a3 + agye s-U
8= eBs —eBe ’

_ B, G — Gse™
GG, By = (6o + B, B = SO

6

, B11 = — [B12 +Gs).
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2.3 Result and discussion

In order to get clear inSight of the physical problem, nurherical computations for the represen-
tative veldcity field, témﬁeratur‘e field and copcentration field at the plate have been carried
out for different values of the parameters.

Figs.(2.1) — (2.2) exhibit the behavior of the velocity field u versus y due to the variations of
reaction parameter R and heat sink parameter @ for Sc = .6,Pr = .71,M = 2,Gr =2,Gm =
22Re=2,K=1U=1R=2m=1n=1,Ec=.001,Q = 1. From these figures we have
observed that the velocity of the fluid is retarded due to imposition of chemical reaction and
heat sink. The effect of the parameter Q on the temperature field for Sc = .6,Re = 1,M =
ILK=1Gr=1,Gm=1,U=1,m=1,R=1,Pr=.71,n = 2,Ec = .001 is depicted in the
figure (2.3), it is observed that the temperature profile decreases with the .increase of heat sink
parameter. The variation of the concentration distribution C versus y under the influence of
Schmidt number Sc and chemical reaction parameter R for Sc = 0.66,Re =1,n =2 R = l,is
presented in the figure (2.4) and (2.5). The concentration’ decreases as increasing the chemical

reaction and Schmidt parameter.

L2 — S — 1.2p
10 1.0
0.8} 0.8
1 0.6} 1 0.6f
0.4 " 04
0.2} 0.2}
0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
y ¥

Fig. 2.1: Effect of R on u(y) Fig. 2.2: Effect of Q on u(y).
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Fig. 2.3: Effect of Q on T(u)l

0.0 0.2 0.4 0.6 0.8 1.0

¥

]}ig. 2.4: Effect of Sc on C(y).

Fig. 2.5: Effect-of R on C(y). .
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Chapter 3

Rotating flow of Newtonian and
Maxwell fluid with heat source and

chemical reaction

" In this chapter we have discussed the rotating flow of Newtonian and Maxwell fluid with

heat source or sink and cherical reaction in the presence of viscous dissipation. The coupled
non-linear system of equations are solved by the analytical technique Homotopy-Perturbation

Method (HPM). The comparison of viscous and Maxwell fluid have been made by the help of

graphs.

3.1 Probléem 1

We consider the steady flow of an incompressible viscous electrically conducting fluid through
a porous medium between two porous platés separated by a distance h in presence of magnetic

field, heat source or sink and chemical reaction. The plates are rotating along z-axis, with

uniform angular velocity . Both the plates and fluid are rotating along z-axis. The magnetic

field By is applied perpendicular to the plates. The induced magnetic field due to the small

20
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Solving equations (3.18) — (3.20), we obtain the series-solution for velocity profile and

temperature distribution as follows

where

where

u= lin’i (170 + ply + pPup + ) ,
p—"

V= lirq (50 + pv1 +p27f2 + ) ,
p—.

— lim (8 v 29
0 = lim (90 +‘p91 + %0, + ) ,

ug = U()Z,

v = Wz,

Gy = 1+(m—1)z
U = a1+ agz +agz® + a2 — ase® — gge?*,
v = arz — agz?® + ag2?,
51 = apz+ans?+ a2,

Az Agz

a1zt apz+ a15z2 + a16z3 + a17z4 + a13z5 — aige — agpe 47,
¢ (24205PrReQ) 4,
_._.—._———e

A

ag) + a9z — a23z2 + a24z3 + a25z4 + agez” —

_ (2A1a5 PrRe Q) eAzz
Ay ’
2(A A EcP
_( ( 205 + 1a6)_ ¢ on) + ag72z + a28z2 + a29z3 + a30z4
A1A)
a12 Pr@ Re i (2a5EcPr Up) GAre (2ag EcPr Up) A2z
20 . Aq Ay

Az Aa

A_g + Z%—)Gm Re,

a; = (

1 —A3A}(As - 3Re)Up + Re(64344(~1 + eM1)Gm
64343 | 4 42(645(~1+ e2)Gm + AZGr(2 + m)) + 242430V%
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and extra stress tensor for the maxwell fluid is defined by the following expression

D

A =Vv+ (V)T

DS

o = (v.V)S — (Vv)S — S(VV)T'

Stress tensor and velocity components in 3-dimension are defined as

Siz Szy Sex v
so-| s, s, 5. | ve| v
S;:: S;y S;z _w6

Using Eqgs. (3.24) — (3.26), we obtain the following equations
( /\wod ) SlII 2uIzS;:z: =
13 s
(1M ) Sty (St + 0181 =0,
(1 - /\wod ) S, — .S, = pul,

(1 et /\’U)Od ) Sl - 2’[};5;3/ =

<1 - /\wod ) Sl ’U;S;z = /J-’U;,

(1 /\’U)Od > S;z =

From Eq. (3.32) S., = 0 usé this in Eqs. (3.29) and (3.31) we get

ds!
S, — Awp = = pul, }

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)










where

~
4 >,
fat
Re+\M M 2QRe ReGr
A ey _— = —— fd = — =
0 Rex -1’ VTS Rer=1m BT R AT Me A= T
, GmRe
An = {\AIO, A = R(E/\—Tl’ A1z = AAja.
Szz = (1= ARe) j—z + AMu — 2Re \Qu — A\Gr Ref — A\GmRe ¢,
dv .
Syz = (1 — ARe) o AMv + 2Re AQu.
Solving equations (3.43) to(3.45) by Hofnotopy Perturbation Method, the following homo-
topies are defined as
- (d*T dPu | %g' —A6%+A7ﬂ—Asy+A9%
[ H, (@,p) = (1—-p) (@—gﬁg)w wo_E é; =0, (3.48)
b | —Awf+ Ang = Ang + Asg;
d*7  d%v [ %7 dv du
. Hy =(1- -A AU - A Ag—| =0, 3.49
x‘i;‘i (v,p) = (! )(dz2 d22)+1> 2 67> + A7v st + Ag ] (3.49)
LN _ 5
/ 5 , 420 | - db i
. ~ 420 d2%6 —zg+PrRe——QPrRe0 .
Hj (&p) =(1-p) ) —"d—f +p| ¢ 4 e = 0. (3.50)
z z +EcPr (N(u, v, 0))
where

dv _du ~di du
— -} - 06— — X —
+2Re A\Q <u 1z v dz) AGr Re 1z GmRe (}Sdz

- where p € [0,1] is the embedding parameter.

Assume the solution in the form of

o< o0 - oo - - (;0
Z M=) Up", 0= 6npl, N(G,7,6) = > Bup", (3.51)
n=0 n=0 n=0

n=0

where

o

P
o]
:

AN £ 0]

=0 =0
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using equation (3.51) in (3.48) - (3.50), and equating the coefficient of like powers of p we

get:

Solving equation (3.52) — (3.53) we obtain the series solution’for velocity profile and tem-

W(2) — AgS 1 Azilg — Aso + AR
— A1 + Au%l — And+ A13% =0,
W(2) ~ AR + At — AsTlo + As =0,
8(2) + PrRefy(z) — QPrRedo(2) + EcPr By =0,
%(0) =0, @ (1) =0,
51(0) =0, T1(1) =0,

6.(0) =1, 6,(1) = 0.

W(2) — Ae % + A7ty
— Aty + Ag TR — A1of; + All‘% =0,
T(z) — Ag T2 + A7y — Agily + Ag SR =0,
@J;(z) + PrReE;(z) . QPrReal(z) + EcPrBs =0,
u2(0) = 0, uz(1) =0,
72(0) =0, %2(1) =0,
92(0) =1, 62(1) = 0.

32
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perature distribution as follows

2
e
U= lirri (ﬁo + pg +p2172 + ) R
p—'
v = lirri (170 + Pty + P*Ts + ) , s (3.55)
p—'
— limm (8 v 27,
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3.5 Result and discussion

&

In order to get the physical meaning of the problems, the effect of various parameters on velocity
field, temperature field and concentration field are discussed.

The figures (3.3)-(3.12) describes the behavior of velocity field versus z due to the variation
of Reaction parameter R, heat sink and source parametér @, rotating parameter §2, Magnetic
parameter M and Maxwell parameter A\ for Sc = .6,_Pr = .71, Re = 2, M =Gr =Gm = 2,
Uy=VW=R=Q=m=n=1, Ec=.001, =1, A =0.1. From figures (3.3) — (3.4) and
(3.11) — (3.12) we observe tﬁat velocity u in z-direction decreases and velocity v in y-direction
increases as increasing reaction parameter R and magnetic parameter M. The effect of heat
sink and source @ is shown in Figs. (3.5) — (3.6). It.is observed that velocity u in z-direction
decreases and velocity v in y-direction increases as increasing heat sink/source parameter. The
effect of rotating parameter §2 on the.velocity component « and v is depicted in Figs. (3.7)-(3.8).
» It is observed that the velocity u in z-direction increases and velocity v 1n y-direction decreases

by increasing €. The effect of Maxwell parameter A is shown in Figs (3.9) — (3.10) in which

velocity u in z-direction increases and velocity v in y-direction decreases by increasing Maxwell

4.

parameter.

The effect of heat sink and source parjameter Q and prandtl number Pr for Sc = .6, Pr = .71,
Re=M=2Gr=Gm=Uy=V=Q=R=m=n=Q=1, Ec= .00, A =0.1 on
the temperature field depicted in the Figs. (3.13) and (3.14). Fig. (3.13) show that the fluid

temperature decrease with the increase of heat sink parameter and increases by increasing heat

L o s et s

sink. The effect of prandtl number is shown in Fig. (3.14), it is observed that as we increase

the prandtl number the temperature of the fluid decreases.

The variation of the concentration field C versus z under the influence of Schmidt number
Sc and chemical reaction parameter R for }z =1, Sc=0.66, Re = 1, n.= 2 is presented in the
. figures (3.15) and (3.16). The concentration decreases by increasing the chemical reaction and
‘Schmidt parameter.

In all figures it is observed that the magnitude of velocity and temperature is lesser than in

the case of Newtonian fluid as compared by the Maxwell fluid.
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Fig. 3.11: Effect of M on u(z). Fig. 3.12: Effect of M on v (z).

Fig. 3.13: Effect of Q on T'(z). Fig. 3.14: Effect of Proon T'(z).
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Fig. 3.15: Effect of Sc on C(z). Fig. 3.16: Effect of R on C(2).
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