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Preface 
Peristalsis accounts for pumping fluids that deals with the propagation of sinusoidal waves which 
enforces the food to protrude from mouth to esophagus. In the urinary system, peristaltic procedure 
occurs due to inadvertently muscular contractions of the ureteral wall which pumps urine from 
kidneys to bladder through ureters. It includes general propulsive and mixing movements and pumps 
the fluids against pressure rise. In physiology, peristaltic phenomenon is an immanent adjective of 
smooth muscle contraction. The mechanism of peristalsis is instructive in large number of biological 
schemes comprising the movement of chyme in the gastrointestinal tract, blood circulation in small 
blood vessels and in the ducts efferent of the male reproductive tract. In industrial field, the 
phenomenon of peristaltic pumping suggests various suitable applications such as transfer of sanitary 
fluids, blood pump in heart lung machine etc. A most prominent application of peristaltic pumping is 
in the manufacturing of roller pumps in order to pumping fluids without being distorted in contact 
with the pumping apparatus. Keeping all above valuable applications in mind, mathematical analysis 
of peristaltic flows of various non-Newtonian fluid models are presented in this thesis. All problems 
are solved in dimensionless form with the help of exact, analytical and numerical methods. 
Governing equations are reduced under the implementation of long wavelength and low Reynolds 
number. Solutions for streamlines are found analytically and discussed through graphs. Obtained 
results are also compared with the existing literature through tables and graphs. All pertinent 
parameters are discussed through graphs of velocity, pressure rise, pressure gradient and streamlines. 
To intertwine above discussion, the present thesis is organized in the following manner. 

Chapter one is based on the brief introduction of peristaltic flows. The mathematical models of 
various non-Newtonian fluids are presented. Some basic definitions, governing equations and 
analytical schemes are also incorporated. 

In Chapter two, the series solutions of magnetohydrodynamic peristaltic flow of Jeffiey fluid in 
eccentric cylinders are discussed. This chapter comprises the mathematical modelling of 
magnetohydrodynamic peristaltic flow of Jefiey fluid in the gap between two eccentric tubes in the 
presence of applied magnetic field. The Navier-Stokes equations for JefTrey fluid in three 
dimensional flows are discussed in a cylindrical coordinates. The analybcal solutions are obtained 
with the help of homotopy perturbation method along with eigen function expansion method. The 
graphs of pressure rise, pressure gradient and velocity are drawn. The streamlines are presented to 
discuss the trapping bolus discipline. 

Chapter three contains mathematical and theoretical analysis of peristaltic flow of Jeffiey fluid in a 
rectangular duct having compliant walls. The constitutive equations are solved by using eigen 
function expansion method. The graphical aspects of all pertinent parameters are analyzed. The 
graphs of velocity for two and three dimensional flow are plotted. The trapping bolus phenomenon is 
discussed though streamlines. 

Chapter four deals with exact solution for peristaltic flow of Jeffkey fluid in a cross section of three 
dimensional rectangular duct in the presence of slip at the boundaries. Exact solutions of obtained 



linear boundary value problem are presented. However, the expression for pressure rise is calculated 
by numerical integration. All pertinent parameters are discussed through graphs. 

Chapter five is devoted to the study of unsteady peristaltic flow of an incompressible Carreau fluid 
in eccentric cylinders. The problem is measured in cylindrical coordinates. The obtained highly 
nonlinear second order partial differential equations are solved by perturbation technique. The 
relation for pressure rise is evaluated numerically. As a special case, present results are compared 
with the existing results. The obtained results are plotted to see the influence of different physical 
parameters on velocity, pressure gradient and pressure rise expressions. The velocity profile is drawn 
both for two and three dimensions. The trapping boluses are also discussed through streamlines. 

In chapter six, heat and mass transfer analysis for peristaltic flow of nanofluid through eccentric 
cylinders is discussed under the approximations of long wavelength and low Reynolds number. The 
resulting governing equations are solved analytically by employing the homotopy perturbation 
method. The obtained expressions for velocity, temperature and nanoparticle phenomenon are 
discussed through graphs for two and three dimensions. The resulting relations for pressure gradient 
and pressure rise are plotted for various pertinent parameters. The streamlines are drawn for sundry 
quantities to discuss the trapping phenomenon. 

In chapter seven, the study of chapter six is extended by importing the porous medium effects. 
Analytical solutions are calculated through homotopy perturbation method. The expression of 
pressure rise is obtained through numerical integration. The problems under consideration are made 
dimensionless not only to reduce the complication of the analysis but also to merge the extra 
parameters. The effects of all emerging parameters are measured through sketching graphs. Trapping 
bolus scheme is also presented through streamlines for various pertinent quantities. 

Chapter eight contains the final results of the whole study. 
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Nomenclature 

English symbols 

Height of rectangular duct 

Radius of outer tube 

Magnetic field 

Magnetic field strength 
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Body force 
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Mean volume flow rate 

Instantaneous volume flow rate 

Embedding parameter 

Radial direction in fixed frame 
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Radial direction in wave frame 

Stress tensor 

Elastic tension in membrane 

Time 
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Velocity of inner tube 

Weissenberg number 

Velocity components in wave frame 

Cartesian coordinates in fixed frame 

Cartesian coordinates in wave frame 
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P Viscosity 

X Wavelength 

p f Density of fluid 

PP Density of nanoparticle 

XI Ratio of relaxation time to retardation time 

A2 Delay time 



Symmetric part of velocity gradient 
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Amplitude ratio 

Stream function 

Dimensionless wave number 

Linear operators 

Time constant 

Second invariant strain tensor 

Homotopy function 

Density of nanoparticles 

Cylindrical coordinate 

Temperature profile 

Nanoparticles concentration 

Radius of inner tube 

Inner tube position 

Permeability of free space 

Conductivity 



Chapter 1 

Introduction 

1.1 Some historical background 

Peristalsis is a pattern of pumping fluids in ducts in which a progressive wave of area contraction 

or expansion propagates along the length of a distensible tube containing fluid. It instigates in 

general propulsive and mixing movements and pumps the fluids against pressure rise. Physi- 

ologically, peristaltic phenomenon is an intrinsic attribute of smooth muscle contraction. It is I 
an automatic and valuable scheme that drives the urine from the kidney to the bladder, food 

through the digestive tract, bile from the gall-bladder into the duodenum, movement of ovum 
I 

in the fallopian tube and many other situations. 

The process of peristalsis in human body states that after food is chewed into a swallowed 

bolus and travelled through the esophagus. Smooth muscles blench behind the bolus to pre- 

vent it from being followed back into the mouth, and then successive, unidirectional waves of 

contractions will work to quickly pushes the food into the stomach. This manner works in one 

direction only and its main task is to move food from the mouth into the stomach. Peristalsis 

is a discriminatory discipline of smooth muscle contractions that propels nutriment distally 

through the esophagus and intestines. It was first presented by Bayliss and Starling [I] as a 

type of motility in which there is contraction above and relaxation below a transported. Peri- 

stalsis is entirely unaffected by vagotomy or sympathetectomy, describing its mediation by the 

intestine's local, intrinsic nervous system. 

Peristalsis is a explanation of two particular reflexes within the enteric nervous system 

7 



that, are stimulated by a bolus of foodstuff in the lumen. Mechanical distension and perhaps 

mucosal irritation induce afferent enteric neurons. These sensory neurons coincide with two 

sets of cholinergic interneurons, which exhibit two peculiar symptoms: 

(i) One group of interneurons activates excitatory motor neurons above the bolus. These neu- 

rons, which contain acetylcholine and substance, stimulate contraction of smooth muscle 

above the bolus. 

(ii) Another group of interneurons activates inhibitory motor neurons that stimulate relax- 

ation of smooth muscle below the bolus. These inhibitor neurons appear to use nitric 

oxide, vasoactive intestinal peptide and ATP as neurotransmitters. 

The mechanism of peristalsis is applicable in many biological systems including the move- 

ment of chyme in the gastrointestinal tract, blood circulation in the small blood vessels and 

in the ducts afferents of the male reproductive tract. Also in industry, the phenomenon of 

peristaltic pumping is employed in various suitable applications as transfer of sanitary fluids, 

blood pump in heart lung machines and also in transportation of internecine and toxic liq- 

uids to prevent inclusion with the surrounding environment. A major industrial application of 

peristaltic phenomenon is described in the design of roller pumps, which are used in pumping 

fluids without being corrupted due to the connection with the pumping equipment. A peri- 

staltic pump (usually known as a roller pump) can be specified as positive displacement pump 

used for pumping a variety of fluids. Peristaltic pumps are normally applied to isolate aggres- 

sive/corrosive or sterilelclean fluids from exposed pump segments to prevent cross infectedness. 

They can pump problematic fluids comprising viscous, shear-sensitive and aggressive fluids. 

The design of the pump restrains reverse flow and syphoning without valves. Due to their 

isolationistic design, they are ideal for a wide range of industries and applications like aseptic 

filling, biopharmaceutical, brewing, ceramics, chemical, food and beverage, industrial process, 

mining, paint and pigments, print and packaging, pulp and paper, science and research, water 

& waste applications. Peristaltic tube pumps endow conscionable and programmable dosing of 

pharmaceuticals and chemicals, as well as in industrial printing and packaging. Incorporating 

accurate dosing and repeatability enable the tube pump to account the proficient addition to 

your manufacturing plant or laboratory. There is a smaller variety of panel mounted peristaltic 



tube pumps and hose pumps for use in Original Equipment Manufacture (OEM). These are 

manufactured to suffice fairly into your own machinery and are found extensively in vending 

instruments, print presses, dish washes and chemical dosing systems. However, the peristalsis 

is a prominent mechanism in biological system, the first theoretical and experimental inves- 

tigation of its fluid dynamics aspects was disclosed four decades ago. In real problems, the 

peristaltic flow problems are unsteady with moving free boundary value problems where the 

shape of the wave on flexible tube wall is not known apriority. But the mathematical studies 

on peristaltic transport presented in the literature deal with a proposed train of waves moving 

with successive speed on the flexible boundaries and they are analyzed either in a fixed frame 

or a wave frame travelling with constant velocity of the wave. In a wave frame, the moving 

~ a l l s  represent stationary wavy walls. Moreover, the problem could be treated steady under 

the assumptions that the peristaltic wave train is periodic, the pressure difference about the 

length of the tube is consistent and the tube length is an integral multiple of the wavelength. 

Due to the wide range of biological, medical and industrial applications, the peristaltic 

flows have been succeeded in getting more interest of many researchers including physicists, 

mathematicians, biologists etc. In order to sort out the analytical aspect of such flows, peristaltic 

transport of some basic and applicable fluids has achieved immense consideration in literature. 

The major obligatories were to characterize the primary fluid phenomenon of the peristaltic 

transport and, especially, to work out the pressure gradients generated by the wave, the flow 

behavior in the tube or channel due to peristalsis and the conditions for trapping. In fluid 

mechanics, the study of peristaltic transport starts with the assumption that the fluid is either 

Newtonian or non-Newtonian. This reveals that a constitutive relation is employed which deals 

in relating the stress tensor with pressure and velocity gradients. The equations concerning the 

law of conservation of mass and momentum with the constitutive equation for a Newtonian fluid 

provide the well known Navier-Stokes equations, which justifies the mathematical treatment of 

a motion of fluid after deformation by applied stress/stresses. Some studies on the topic of 

Newtonian and non-Newtonian fluid can be cited in [2 - 331. In the beginning, analyses of 

peristaltic flows were incorporated by theoretical assumptions such as periodic, sinusoidal wave 

trains in infinitely long tubes or channels, having long wavelength or low Reynolds number. 

Yin and Fung 1341 have analyzed the peristaltic waves in circular cylindrical tubes by taking 



a viscous fluid flow problem induced by an axisyn~metric traveling sinusoidal wave of moderate 

amplitude imposed on the wall of a flexible tube and presented the perturbation solution by 

taking the amplitude ratio (ratio of wave amplitude to radius of the tube) as a small parameter. 

They have shown that the mean axial velocity is dominated by two terms. One term corresponds 

to a parabolic profile which is due to the mean pressure gradient imposed by the wall motion. 

The other term comes from meeting the no-slip boundary condition at .the wavy wall rather 

than at the mean position of the wall. They also revealed that if the mean pressure gradient 

approaches a certain positive critical value, the velocity diminishes to zero on the axis and 

relatively larger values of the mean pressure gradient will account for reverse flow in the fluid. 

After one year later, Burns and Parkes [35] have investigated the peristaltic flow of a viscous 

fluid through axial symmetric pipes and symmetrical channels with the approximations of low 

Reynolds number and long wavelength. The solutions are obtained by an asymptotic expansion, 

used for the stream function in powers of the amplitude ratio by assuming the amplitude ratio 

to be small. They described the effects of pressure gradient in their work. Srivastava and 

Srivastava [36] studied the problem of peristaltic transport of a fluid under the same assumptions 

as employed in above studies. They distributed the study in three parts. In first part, they I 

presented a solution for a fluid with variable viscosity in a tapered tube. In second part, the 

solution was applied for plane and axisymmetric geometry, while in third one, the solution is 1 
extended to model biological fluid problems. In the present century, the researchers are also 

keen to enhance the theoretical and experimental investigations of peristaltic flows as these flows 

have become essential part in the progress and development of biomedical and industrial fields. 

Afifi and Gad [37] have described the interaction of peristaltic flow with pulsatile magneto-fluid 

through a porous medium. They considered the viscous incompressible fluid under the effect 

of a transverse magnetic field through a porous medium between infinite parallel walls with 

the imposition of a sinusoidal wave travelling on the walls. Later on, Misra and Pandey 138) 

have presented the mathematical model for the peristaltic transport of blood in small vessels 

by treating blood as a two-layer fluid where the core region is described by Casson model and 

the peripheral region is taken to be Newtonian. They found that the viscosity of the peripheral 

layer increases the flow rate. They also extracted that a thinner peripheral layer enhances the 

flow rate, while it starts decreasing when the yield stress increases and the flow-rate in the case 

10 



of a single layer is higher than the two layer flow-rate provided that the peripheral layer has 

more viscosity than the core layer. After a couple of years, Mekheimer [39] has investigated 

the peristaltic flow of blood under effect of a magnetic field in a non-uniform channels with 

the conditions of low Reynolds number along with long wavelength. He has considered the 

blood as viscous, incompressible and electrically conducting couple-stress fluid and given that 

the pressure rise for a couple stress fluid (as a blood model) is larger than that for a viscous 

Newtonian fluid and seen smaller for a magnetohydrodynamic fluid than for a fluid which is not 

electrically conducting. Nadeem and Akbar [40] have observed the effects of heat transfer on the 

peristaltic transport of MHD Newtonian fluid with variable viscosity. They have obtained the 

exact solution for temperature profile and velocity field is achieved by Adomian decomposition 

method (ADM) along with the numerical solutions as well. 

In all above mentioned studies, the flow problems are considered in two dimensional geome- 

tries (tubelchannels). However, the studies regarding the three dimensional peristaltic flows 

have a very little amount of literature due to the complexity of highly nonlinear partial differ- 

ential equations which often occur for the case of non-Newtonian models in three dimensional 

geometries (channelltube). Only a small number of researchers are keen to work on peristaltic I 

flow problems which deal with the three dimensional investigation. Reddy et al. [41] have \ 

1 

introduced the influence of lateral walls on peristaltic flow in a rectangular duct under the same 
- I 

theoretical restrictions as taken by the researchers in above mentioned studies. They have 

taken the concept that the sagittal cross section of the uterus may be better approximated by 

a tube of rectangular cross section than a two-dimensional channel. The experimental investi- 

gation has been taken into account by Aranda et al. [42] in which they presented the Stokesian 

peristaltic pumping in a three-dimensional tube with a phase shifted asymmetry. They em- 

ployed a computational model of peristaltic pumping of a viscous fluid in three dimensions 

based upon the method of regularized Stokeslets. They evaluated the result that the maximum 

mean flow rate is achieved for the parameter that results in an axisymmetric tube. They also 

made a comparison of their computational results with classical long-wavelength theory for the 

three-dimensional axisymmetric tube to work out the validity of the technique. Two years ago, 

Mekheimer et al. [43] have made analysis regarding effect of lateral walls on peristaltic flow 

through an asymmetric rectangular duct. They have found the exact solutions of the problem 



under the constraints of long wave length and low Reynolds number and measured the effects 

of aspect ratio (relating variation of lateral walls) on the rheological aspects of the viscous fluid. 

More recently, Akram et al. [44] have presented the influence of lateral walls on peristaltic flow 

of a couple st,ress fluid in a non-uniform rectangular duct to sort out the theoretical study of 

peristaltic flow in a three dimensional enclosure and got the exact series solution. They con- 

sidered the flow in a wave frame of reference moving with the uniform velocity away from the 

fixed frame and peristaltic waves produced on the horizontal walls of a non-uniform rectangular 

duct are justified under lubrication approach. They have illustrated the graphical results for 

the flow phenomenon and also discussed the circulating bolus scheme. Some more studies on 

the topic of peristaltic flows of Newtonian and non-Newtonian fluids are given in [45 - 561 . 

A material having pores (voids) is described as porous medium filled with fluid (liquid or 

gas). Some of the nature provided porous media include beach sand, sandstone, lime stone, 

rye bread, wood, and the human lung. However, foams are often also characterized using 

theme of porous media. Most of the time, a porous medium is described by its porosity and 

some times the other properties like permeability, tensile strength and electrical conductivity 

are also measured as a respective aspects of its constituents (solid matrix and fluid) and the I 

pores structure. The porosity of the porous medium is stated as the fraction of the volume I 
of pores to the volume of the medium. The mathematical expression regarding porosity has ! 
been described by Henry Darcy and known as Darcy's law after an experimental investigation. 

He has evaluated a mathematical relationship between flow rate and applied pressure gradient. 

A lot of literature is available which deals with the study of porous medium. Mekheimer and 

Elmaboud 1571 have discussed the theoretical analysis for peristaltic flow through a porous 

medium in an annulus under the constraints of low Reynolds number and long wavelength 

approximation. They considered the flow phenomenon in a wave frame of reference moving 

with constant velocity. They have concluded from their analysis that the peristaltic pumping 

rate and pressure gradient vary inversely with the corresponding increase in the numerical value 

of permeability of porous medium. They also found that the velocity of the fluid increases as 

permeability of the porous medium increases. Three years later, Vasudev et al. [58] have 

presented the peristaltic flow of a Newtonian fluid through a porous medium in a vertical tube 

under the effect of a magnetic field. They found the effects of heat transfer and magnetic field 



of viscous incompressible Newtonian fluid by calculating closed form analytical solutions under 

same assumptions as employed by Mekheimer and Elamaboud [57]. They revealed that the 

pumping region, the time-averaged volume flux decreases with an increase in Darcy number. 

I11 the same year, Mahmoud et al. [59] have published the work on effect of porous medium 

and magnetic field on peristaltic transport of a Jeffrey fluid in an asymmetric channel. The 

expressions for the stream function and pressure gradient are found analytically while numerical 

investigation is used to analyze the pumping phenomenon. 

In nanotechnology, a particle means a small object presenting a whole unit according to its 

movement and attributes. Particles are again recognized with diameter, as coarse particles have 

a range between 10,000 and 2,500 nanometers, fine particles are measured between 2,500 and 

100 nanometers and nanoparticles or ultrafine particles lie between size of 1 and 100 nanQme- 

ters. A base fluid comprising the particles of nano-meter sized is identified as nanofluid (NF). 

Nanotechnology has irnmense contribution in industry since materials of nanometers dimen- 

sion examine incomparable physical and chemical characteristics. Water, ethylene glycol and 

oil are common examples of base fluids used for the nanofluid phenomenon. Nanofluids have 
I 

their enormous applications in heat transfer, like microelectronics, fuel cells, pharmaceutical 
I 

processes, and hybrid-powered engines, domestic refrigerator, chiller, nuclear reactor coolant, 

grinding and space technology etc. Nanofluids explore enhanced thermal conductivity and the 

convective heat transfer coefficient counter balanced to the base fluid. Nanofluid have attracted 

the attention of many researchers for new production of heat transfer fluids in heat exchangers, 

in plants and in automotive cooling significations, due to their extensive thermal properties. A 

large amount of literature is available which deals with the study of nanofluid and its appli- 

cations [60,61] . In the recent time, the interaction of nanoparticles phenomenon in peristaltic 

flows has become the core of attention for many researchers, engineers, mathematicians, model- 

ers and scientists due to the wide range of applications of nanoparticles in the field of peristaltic 

pumping. Nadeem and Maraj [62] have investigated the mathematical analysis for peristaltic 

flow of nanofluid in a curved channel with compliant walls. They reduced the highly nonlinear, 

partial differential equations by using the wave frame transformation, long wave length and low 

Reynolds number assumptions. Peristaltic flow of a nanofluid in a non-uniform tube have been 

produce by Akbar et al. [63]. They have found the numerical data for the graphical results of 



pressure rise and frictional forces with the help of numerical integration. 

1.2 Governing equations for fluid motion 

In order to describe the physical behavior of the fluid flow, one needs to have some mathematical 

relations. In fluid mechanics, we have three basic laws which account for the motion of the fluid 

and those are recognized as law of conservation of mass, momentum and energy. These laws in 

their mathematical form gives the relations for rate of change of mass, momentum and energy 

at a point and are explained as below. 

1.2.1 Law of conservation of mass 

This law states that the mass of the closed system always remains constant with time, as mass of 

the system cannot change quantity except being added or removed. It  means that the quantity 

of mass is conserved over time. The mathematical relation expressing law of conservation of 

mass is known as continuity equation. For compressible fluid, it is defined as 

Here, ,of is the density of the fluid, d ld t  is the material time derivative, V is the velocity field 

and V is the gradient operator. In Cartesian coordinates, material time derivative is defined as 

So the Eq. (1.1) will take the following form 

For an incompressible fluid, the density remains stable and therefore, the continuity equation 

becomes 

v.v = 0. (1.4) 



In Cartesian coordinates, the above equations is written as 

In which U,  V,  W are the velocity components in X, Y, Z directions, respectively. 

1.2.2 Law of conservation of momentum 

This law is defined as the total momentum of an isolated system is always conserved. The 

equations which describe this law mathematically are called as Navier-Stokes equations. In 

general, these equation are composed in the subsequent form 8 

where: P is the pressure, S1 denotes the Cauchy stress tensor and b represents the body force. 

It is to important to mention that the Cauchy stress tensor implies the nature of the fluid. 

For Newtonian fluid, S1 is defined as I 

where 

In component form 

In above expression, Slxx, Slyy, Slzz are normal stresses and SIXY, Slxz, Slyx,  SIYZ, Slzx, Slzy 

are the shear stresses regarded as components of S1. In Cartesian coordinates, for Newtonian 

fluid, Navier-Stokes equations (neglecting body forces) take the following form 



For non-Newtonian fluid, there are a lot of models having different forms of Cauchy tensor 

which represents the physical properties of the corresponding fluid. 

1.3 Governing equations for nanofluid 

MTe can measure the nanofluid phenomenon with the help of four equations (two mass equations, 

one momentum equation and one energy equation). 

1.3.1 Law of conservation of mass 

This law is defined by the equation of continuity which for nanofluid is defined in [64] and is 

described as 

where C is the nanoparticle concentration, t is time, jp is the diffusion mass flux for the nanopar- 

ticles (kg/m2 s), and denotes the nanoparticle flux relative to the nanofluid velocity V and pp 

is the density of nanoparticles. If the external forces are assumed to be negligible, jp can be 

given as the sum of only two diffusion terms i.e., Brownian diffusion and thermophoresis 

Substituting Eq. (1.14) into (1.13) , one finds 

Eq. (1.15) describes that the nanoparticles can move homogeneously with the fluid (second 

term on the left-hand side), but they also follow a slip velocity relative to the fluid (right-hand 

side), which is due to Brownian diffusion and thermophoresis. 



1.3.2 Law of conservation of momentum 

This law gives the equation of momentum which for nanofluid is similar to that of usual Navier- 

Stokes equations but in the presence of external forces which are due to heat and mass convection 

of nanoparticles. So the Navier-Stokes equation for nanofluid in the presence of body forces 

take the following form [64] 

where g is the gravitational force and af represents the volumetric volume expansion coefficient 

of the nanofluid. 

1.3.3 Energy equation 

The energy equation for nanofluid are expressed a s  1641 

(s) = V . K V T  - V . (hpjp) + hpV j,. 

If we put 

and 

Vh, = cpVP, 

then the Eq. (1.17) gets the following form 

where cp is the specific heat of nanoparticles. In above relation, when we set jp = 0, it becomes 

the familiar heat equation for the pure fluid. By incorporating Eq. (1.14) into Eq. (1.20), we 

arrive at the final form of energy equation for nanofluid 



in which ( p ~ ) ~  denotes the heat capacity of the fluid, ( p ~ ) ~  accounts for effective heat capacity 

of the nanoparticle. Eq. (1.21) states that heat can be transmitted in a nanofluid by convection 

(second term on the left-hand side), by conduction (first term on the right-hand side) and also by 

means of nanoparticle diffusion (second and third terms on the right-hand side). Moreover, the 

last two t,erms on the right-hand side simply stand for the additional contribution of nanoparticle 

motion relative to the fluid. It  is to be noted that mass, momentum and energy equations for 

nanofluid are coupled with each other. Once the boundary and initial conditions are known we 

can calculate the coefficients of velocity, temperature and nanoparticle mass concentration. 

1.4 Jeffrey fluid 

The Cauchy stress tensor for Jeffrey fluid is represented as [65] 

where XI is the ratio of relaxation to retardation times, A2 is the delay time, y gives the 

symmetric part of velocity gradient and double dots denote the differentiation with respect to 

time. 

1.5 Carreau fluid 

The Cauchy stress tensor for Carreau fluid is defined as [66] 

in above relation, I? represents the time constant, n shows the power law index and 7 is defined 1 . 1  

Here II is the second invariant strain tensors. 



1.6 Porosity 

A material having pores (voids) is described as porous medium filled with fluid (liquid or gas). 

Porosity measures the empty spaces in a porous medium and comes from the ratio of volume 

of voids over the total volume. Examples of porous media are beach sand, sandstone, lime 

stone, rye bread, wood, and the human lung. However, foams are often also characterized using 

theme of porous media. Most of the time, a porous medium is described by its porosity and 

some times the other properties like permeability, tensile strength and electrical conductivity 

are also measured as a respective aspects of its constituents (solid matrix and fluid) and the 

pores structure (671. The mathematical expression regarding porosity has been described by 

Henry Darcy and known as Darcy's law after an experimental investigation. He has evaluated 

a mathematical relationship between flow rate and applied pressure gradient. Mathematically, 

this law is expressed as 
k l  v = --VP, 
/I 

where, p, gives the dynamic viscosity of the fluid, kl is the permeability of the medium having 

dimensions (length)2 and in general, it describes the second order tensor. After revising the 

above expression, we obtain the following relation 

1.7 Boundary slip 

In practical engineering problems, the no-slip condition does not always hold in reality. For 

instance, at very low pressure (e.g., at high altitude), there may be some molecules a t  the wall 

of the surface that they bounce along down the surface. A mathematical expression for fluid 

slip is 
a~ 

21 - Uwall = PI- 82' (1.27) 

where pl gives the slip parameter. 



1.8 Magnetohydrodynamics 

I\/lagnetohydrodynarnics (MHD) (magneto fluid dynamics or hydromagnetics) deals with the 

attributes of electrically conducting fluids [68]. Plasmas, liquid metals, and salt water or elec- 

trolytes are the common examples of such fluids. The word magnetohydrodynamics (MHD) 

comes from magneto- meaning magnetic field, "hydro" means liquid and "dynamics" means 

movement. The concept of MHD was given by Hannes Alfven 1691 for which he was granted 

with the Nobel Prize in Physics in 1970. 

The fundamental theme of MHD is that magnetic fields can induce currents in a moving 

conductive fluid, which in response impose forces on the fluid and also effects the magnetic 

field itself. The basic equations which describe MHD are a combination of the Navier-Stokes 

equations of fluid dynamics and Maxwell's equations of electromagnetism. 

In the presence of MHD, the momentum equation will be 

where the term J x B is the Lorentz force and can be written as 

Maxwell's equations can be described by the following expressions. 

Solenoidal nature of magnetic field B 

Faraday's law 

Ampere equation 

Charge conservation 



Lorentz force 

Ohm's law 

In above equations, B is the total magnetic field, Bo is the magnetic field strength, E is the 

electric field, po is the permeability of the free space, J is the current density and i? is the 

conductivity. 

1.9 Methods for solutions 

Most of the natural processes can be effectual well elaborated on the macroscopic level, without 

considering the single attitude of molecules, atoms, electrons or other particles. The common 

properties like deformation, density, velocity, pressure, temperature, concentration or electro- 

magnetic field are expressed by partial differential equations (PDEs) which deal with the for- 

mulation of many engineering and scientific problems. We can include some processes in which 

PDEs are employed to predict and control the static and dynamic attributes of constructions, 

blood flow in human body, flow of air past cars and airplanes, weather, thermal inhibition of 

tumors, heating and melting of metals, cleaning of air and water in urban facilities, burning of 

gas in vehicle engines, magnetic resonance imaging and computer tomography in medicine etc. 

Second order partial differential equations are widely used in practical problems. 

In physical phenomena, PDEs (second order) occurred in three forms i.e., elliptic, parabolic 

or hyperbolic. The general form of a PDE of a function u (xl, ..., x,) can be expressed as 

In t,he present thesis, the emphasize will be given on the properties and solution of hyperbolic 

PDEs. Most common example of hyperbolic PDE is a wave equation. A wave equation can 

either be linear or nonlinear depending upon the nature of the physical problem. To solve a 

linear PDE, several methods are available in literature; like method of separation of variable, 

Laplace and Fourier transform methods, Green's functions and eigen function expansion meth- 



ods et,c. Although, solutions of nonlinear PDEs is not an easy task. The nonlinear PDEs have 

a less chances to have an exact or closed form solutions. For that reason, one has to  seek some 

approxiinate numerical or analytical techniques. However, the analytical solutions have more 

significance than numerical because they provide a way of checking the convergence and validity 

by getting number of approximate solutions either numerical or empirical [70,71]. There exists 

a number of analytical techniques which can solve nonlinear PDEs encountered in almost all 

branches of science and engineering. Some of them are listed as: perturbation method, homo- 

topy analysis method, homotopy perturbation method, Optimal homotopy method, Adomian 

decomposition method, Variational iteration method. But here, we will only explain the eigen 

function expansion method and the homotopy perturbation method which are employed in the 

subsequent chapters. 

1.9.1 Eigen function expansion met hod 

Let us consider a non-homogeneous wave equation of the form 

with non-homogeneous boundary conditions 

u ( fa ,  z )  = -1, u (y, 0) = 0, u (y, L) = 0. (1.38) 

To solve this method, we use eigen function expansion method. We express the unknown 

function u (y, z) into the following series [72] 

where 4, (z) = sin?, n = 1,2,3, ... are eigen functions which satisfy the solution of Sturm- 

Livoilue system of homogeneous part of the given equation i.e., 



Now, using the Eq. (1.39) into Eq. (1.37) and applying term by term differentiation, one obtain 

the relat.ions as 

NOW we write f (2) as a Fourier series of eigen function 

where the Fourier series coefficients are given by 

After replacing Eq. (1.43) into Eq. (1.42) and equating the coefficients,we achieve the following 

differential equations for the coefficients 

To obtain the conditions for the differential Eq. (1.45), we utilize conditions given in Eq. (1.38) 

and obtain 

such that 

Now Eq. (1.45) can easily be solved along with above boundary conditions and then the final 

solution is obtained after using the expressions of Yn (y) and 4, (2) into Eq. (1.39). 



1.9.2 Homotopy perturbation method 

The homotopy perturbation method ( H P M )  is a series expansion method works to evaluate 

solution of nonlinear partial differential equations. Main idea of the method comes from the 

construction homotopy function a topic from topology to generate a convergent series solution 

of differential equations. The HPM was first introduced by Ji-Huan He of Shanghai University 

in 1998. This method provides flexibility in the choice of basis functions for the solution and 

the linear inversion operators (73 - 761. 

Let us'describe the basic idea of HPM by considering the following general nonlinear differ- 

ential equation 

LC: (u) + N (u) = f ( r )  , r E 52 (1.48) 

having boundary conditions 

B (u,  B U I B S )  = 0, r n, 
where L is the linear operator, N is the nonlinear operator, B is a boundary operator, Ti. is the 

boundary of the domain 52 and f (r) is a known analytic function. 

According to the theme of homotopy process, He suggests the homotopy 

ii (r, q)  : 52 i R x [O,1] -t $? which satisfies 

fi (G,  q)  = ( 1  - q)  [C (21) - L (uo)] + q [C (21) + N (21) - f ( r ) ]  = 0 (1.50) 

or 

fi (21, 9 )  = L (5) - L (210) + qL ( U O )  + q [ N  (21) - f ( r ) ]  = 0, (1.51) 

in which q E [O, 11 stands for embedding parameter and uo is an initial approximation which 

obey the defined boundary conditions. Now from Eqs. (1.51),  we can simply describe that for 

q - - 0  

H (21, 0 )  = c (21) - c ( u O )  = 0 (1.52) 

and for q -+ 1 

fi (Z, 1 )  = L (21) + N (21) - f ( r )  = 0. 

From above two expressions, we can obviously mention that by changing q from 0 to  1, we 



convert i-; (r ,  q) from uo ( r )  to u (r) and this process is recognized as deformation in topology. 

The basic approximation implies that the solution of Eq. (1.51) can be composed in a power 

series of the embedding parameter q i.e., 

Now sett,ing q = 1, one gets the final approximate solution of Eq. (1.48) i.e., 



Chapter 2 

Magnet ohydrodynamic peristaltic 

flow of a Jeffrey fluid in eccentric 

cylinders 

In this chapter, the series solutions for magnetohydrodynamic peristaltic flow of Jeffrey fluid I 

in the gap between two eccentric tubes has been discussed in the presence of applied magnetic 

field. Geometrically, two eccentric tubes are considered in which the inner tube is rigid while 

the tube at the outer side has a sinusoidal wave propagating along the wall. The governing 

equations for Jeffrey fluid in a cylindrical coordinates for three dimensional flow are given. The 

approximations of low Reynolds number and long wavelength have been employed to reduce 

the highly nonlinear partial differential equations. The problem has been solved with the help 

of homotopy perturbation method along with eigen function expansion method. The graphs 

of pressure rise, pressure gradient and velocity for two and three dimensional flow have been 

drawn. The streamlines have also been presented to discuss the trapping bolus discipline. 

Findings of this chapter are published in the journal of "Applied Mathematics and Information 

Sciences", 7 (2013) 1441-1449. 



2.1 Mat hematical formulation of the problem 

The flow geometry is described as the inner tube is rigid and sinusoidal wave is travelling at 

the outer tube down its wall. The radius of the inner tube is 6 but we require to consider the 

fluid motion to the centre of the outer tube. The centre of the inner tube is now at the position 

R = E ,  Z = 0, where R and Z are coordinates in the cross-section of the pipe. The radially 

varying magnetic field is applied normally to the direction of the flow. The boundary of the 

inner tube is described of order E by rl = S + E cos 8, where E is the parameter that controls the 

eccentricity of the inner tube position. The geometry of the walls is visualized in Fig. 2.1. 

Qnire line of outer cylinder 

Fig. 2.1: The simplified model of geometry of the problem. 



The equations for the radii are 

T1 = b + E C O S ~ ,  

r 2  = a1 +bcos [$(z - d)] , 

where 6 and a1 are the radii of the inner and outer tubes, b is amplitude of the wave, A is 

the wavelength, c is the propagation velocity and t is the time. The problem is considered 

in the system of cylindrical coordinates (R, 0 ,Z)  as radial, azimuthal and axial coordinates, 

respectively. 

In the presence of MHD, the governing Eqs. (1.4) and (1.6) in component notation are as 

follow 

here, V, W and U are the velocity components in R, 0 and 2-directions, respectively, whereas 

S2fiR, S 2 ~ e ,  SZRZ, S2e0, S28Z and S2zZ are stresses for Jeffrey fluid. 

Accordiiig to the flow geometry, the boundary conditions are defined as 

where Vl is the uniform velocity of the inner tube. The velocity component in the azimuthal 

direction is assumed to be unaffected, so the velocity field is taken as (V, 0, U). 



By using the following lion-dimensional parameters 

the governing Eqs. (2.3) to (2.6) (after dropping dashes) are reduced to the following form 

b R e d O [ ~ + ~ ~ + v ~ ]  = - & ? + L &  a~ a2 R aR ( ~ ~ 2 1 2 2 )  + fi & (~202)  
L 

(2.13) 
I 

e + s,& (S2zz) - M 2  (r) U 

where 4 is the amplitude ratio, Re is the Reynolds number, do is the dimensionless wave number * I 

and M (r)  represents the radially varying MHD. 
I 

The components of non-dimensional stresses for Jeffrey fluid are evaluated as 

Using the long wavelength approximation (So + 0) and taking M (r) = MIR, Eqs. (2.11) to  

(2.13) are simplified to the following form 



where M is the MHD parameter. From Eqs. (2.15) and (2.16) it is clear that P is not a function 

of r and 6 .  

The corresponding boundary conditions in non-dimensional form are as given below 

2.2 Solution of the problem 

Solution of Eq. (2.18) is evaluated by using homotopy perturbation method. The homotopy 

equation for the given problem is defined as 

where L1, the linear operator which is assumed to be 

We define the following initial guess 

Zo = fi sinh ( M  
( 2 n g ) )  csc h  dm (ln:)) 

Now we choose 

ii(R,€I,Z,t,q) = u o + p l +  ... 



Using the above equation into Eq. (2.21) and then taking the terms upto first two orders, we 

get, the following problems along with corresponding boundary conditions. 

Zeroth order system 

Ll [uo ]  - Ll [Go] = 0, 

The solution of the above zeroth order system can be obtained by using Eq. (2.23) and is 

directly written as 

u o  (R, 8,Z, t ,  q)  = 4 = Vl sinh M d m  In csch M In . (2.28) ( (3) ( (3) 
First order system 

The solution of the above system is directly defined as 

+C2 (kf2 (1 + XI) - 4) l n 9 )  ' 2  sinh ( M ~ m l n : )  - c 2 M 2  (1  + X i )  - 4 )  

In& 7.1 sinh ( M ~ ~ ~ l n ~ )  2  + 4Md-% (r: sinh (~&%ln$) 

- R~ sinh ( M ~ m l n ? ) )  - 4 M d m g  (ri  sinh ( M - l n ~ )  

d ( I n )  + ~ ~ s i n h  ( ~ d m l n z ) )  X I ) )  -r S1 



where 

, ( M \ I ~ V ~  r csch ( M  \Imln-) 
' 2  = ( ~ + c c o s ~ )  

((E + 8 cos 8) coth ( M  f+ (in?)) + Md-6 

M\Im ( l n ~ ) ) )  sin2 8 ) )  . ( 1  +2csch ( I 
Now for q --+ 1, we approach the final solution. So from Eq. (2.24), we get 

here uo and u1 are defined in Eqs. (2.28) and (2.33). The instantaneous volume flow rate G ( z ,  t )  

is given by 

- 
Q/2rr = 1 ( ( M 2  (1 + X i )  + 4) (2C& + M d m %  

4 M m ( ( M ~ ) ~ - 4 ) ~  

(T? - T : ) )  + 8 M J m -  ( M 2  ( 1  + X i )  - 4)  r:Vl - 2C2 ( M 2  ( 1  + X i )  +4r3 

cash (~J-, ln%) + 2 M J m c s c  h ( ~ d m l n ? )  (2M 

JI$-X1$ (2%~:+ ( M ~  (1  + X i )  - 4)  V I )  - C2 ( M 2  (1  + X i )  - 4 )  

r : l n z )  - 2 M d m c o t h  ( ~ d m l n ? )  (2MJ- ( g  x 

(T-: + T:) + ( M 2  (1 + X i )  - 4)  r : ~ )  - C2 ( M ~  ( 1  + X i )  - 4)  riln:) 

+~C~M\I+T: sinh ( M  J m l n 2 )  + M J ~ %  ( ( M 2 x  

(1 + X 1 )  +4) (r: - r i )  - 4 M d m  (rf + r f )  coth ( M J I + Z ~ ? )  

+ 8 M \ / m  r:r$ csc h ( M d m l n : ) )  X I )  

The mean volume flow rate Q over one period is given by Shapiro et al. [77] and is defined as 

Now we can evaluate pressure gradient aP/aZ by solving Eqs. (2.37) and (2.38) and is obtained 



= (2 ( - 4 ~ ~ n r i +  M J ~  ( 2  ( M ~  (1 + ~ 1 )  - 4 1 ) ~  Q + a x  

C ~ M  J m r ;  - 4  ( M 2  (1 + XI) - 4)  + M 

( M 2  (1 + - 4) 7T6 (4 COS [27T(2 - t)] +(b cos [ 4 ~  (2 - t)]) + 
C2 ( M 2  (1  + XI) + 4 )  nr: cosh ( M ~ m l n ~ )  + MJ-T 

csc h ( ~ d l $ - ~ 1 l n % )  ( 2 ~ 2 7 :  - 2M d m  ( M 2  (1  + Xi) - 4) 

r i ~ . ,  + C2r: (2cosh ( 2 ~ ~ m l n Z )  + ((M d m ) '  - 4 )  

In% 7-2 + M 2  (1 + X I )  - 4)  cosh ( M  J-lnz) x  (2M ) ( 
Jl+x,r jVi+ ~ 2 r ; I n Z ) ) )  / ( M d f X G *  ( ( M 2  ( I  + Xi) 

+4) (r: - rb) - 4 ~ J m  (rf + r;) coth ( M J m l n 2 )  + 8M 

J m r f r i  csc h ( M d m l n 2 )  (1 + XI)) 

The pressure rise A P  ( t )  in non-dimensional form is defined as 

A P  (t) = li E d 2 ,  
. 0 82 

in which dP/dZ is defined in Eq. (2.39). 

2.3 Graphical results and discussion 

The analytical and numerical results obtained for the given analysis are discussed graphically 

in this section. The comparison table and graph are presented to compare the results found 

in the present case with that of already available in literature. The graphical results for the 

data of pressure rise A P ,  pressure gradient dPl8.2 and velocity profile U (R, 0, 2 ,  t )  with the 

variation of all emerging dimensionless parameters flow rate Q, amplitude ratio 4, the velocity 

of the inner tube Vl, the eccentricity parameter c, Jeffrey fluid parameter X1 and the MHD 

parameter M have been analyzed. At the end, the stream lines observing the peristaltic &w 

are drawn for the parameters M ,  Q, X1 and 4 while other parameters remain fixed. 

Table 2.1 is shown to see the matching of results for the current case and the Mekheimer et 

al. [78]. The comparison graph for the values obtained in present work with the results of [78] is 

displayed in Fig. 2.2. The graphs for the pressure rise A P  ( t )  versus flow rate Q under the effects 



of given parameters are drawn in Figs. 2.3 to 2.7. These graphs show the pumping regions, 

that is, the peristaltic pumping (Q > 0, AP > 0) , the augmented pumping (Q > 0, AP < 0) 

and the retrograde pumping (Q < 0, A P  > 0).  The pressure gradient aPla.2 against the the 

coordinat,e Z with the variation of pertinent parameters are shown in Figs. 2.8 to 2.12. The 

velocity field U (R, 8,Z, t )  versus the radial coordinate r is plotted in Figs. 2.13 to 2.17 for both 

two and three dimensions. The stream line graphs are shown in Figs. 2.18 to 2.21. 

It is observed from Fig. 2.2 that the results obtained in the present case are in good 

agreement with that of [78] in most part of the domain. It is also observed that the presence 

of magnetic field for Jeffrey fluid causes to slow down the flow. Fig. 2.3 is plotted to see the 

variation of pressure rise for different values of the eccentricity parameter E and the angle 8 

while all other parameters are kept fixed. It is observed that peristaltic pumping region is 

in between Q E [O, 0.91, augmented pumping is in Q E [0.9,2] and retrograde pumping part 

is Q E [-I, 01. It is also observed from this graph that the pressure rise increases with the 

variation of E but decreases with the angle 8 in between the region Q E [-I, 0.91 and opposite 

behavior is seen in the remaining part. The graph of pressure rise for the parameter M and 

b is plotted in Fig. 2.4. The peristaltic pumping occurs in the region Q E [O, 0.61 , augmented 

pumping is in Q E [0.6,2] and retrograde pumping part is Q E [-I, 01 . It is clear that the 

similar behavior is seen in this case for the parameter M but the opposite attitude is observed , 

with the variation of b as compared to that of E and 8. It tells that the flow rate decreases with , 

M while increases with 6, this shows that the back flow increases and decreases with M and 6, 

respectively. Fig. 2.5 shows that the peristaltic pumping part is Q E [O, 0.31 , while augmented 

and retrograde pumping regions are Q E [0.3,2] and Q E [-I, 01 respectively. The variation of 

pressure rise AP for Vl is similar to that of M (see Fig. 2.6). Fig. 2.7 indicates the effect of 

the parameters XI and b upon pressure rise. This plot reveals that the peristaltic pumping area 

lies in between Q E [O, 0.61 , the retrograde pumping appears in the part Q E [-I, 01 and the 

augmented pumping region is Q E [0.6,2] . The pressure gradient dPld.2 for the parameters M 

and b is drawn in Fig. 2.8. It is measured from this figure that pressure gradient is in linear 

relation with both of the parameters in narrowest parts of the cylinders but inverse relation is 

seen in the wider parts. The variation of pressure gradient with the parameters c j  and E is very 

much similar to that of the parameters M and 6 and is shown in Fig. 2.9. The only difference is 



that the pressure gradient is minimum on the left and right sides of the cylinder while appears 

maximum at the centre. It  means that flow can easily pass without imposition of large pressure 

gradient in the two sides of the channel while much pressure gradient is required to maintain 

the flux in the central part near Z = 0.8. This is in good agreement with the physical condition. 

It can be observed from Figs. 2.10 and 2.11 that the pressure gradient increases with the 

parameters Q and Vl, while when 6 is increased the pressure gradient decreases on the left 

and right sides but increases at the centre of the cylinders. I t  is also seen that the variation 

of pressure gradient remains same in the two sides of the channel and become different at  the 

central part with changing Vl but this variation remains same throughout for the parameter Q. 

The pressure gradient graph for the parameters X1 and 6 is drawn in the Fig. 2.12. It is seen 

here that the pressure gradient increases with 6 at  the middle but decreases at the two sides of 

the cylinders. However, the effect of the parameter XI is totally opposite with that of 6. The Fig. 

2.13 shows that the velocity field is an increasing function of the parameter 6 while decreasing 

u-ith the parameter M. The velocity field is in inverse relation with Q but have a direct variation 
I 

m-ith 6 (see Fig. 2.14). It is observed from Fig. 2.15 that the velocity distribution is increasing I 

with 6 and 4 while reducing for t. Fig. 2.16 shows that the velocity profile is linearly changing 

with 4 and Vl. From Fig. 2.17, it is measured that velocity is lessened with the increasing 

effect of the parameter XI. It  is also observed that velocity is decreasing function of 6 in the I 

! 
region R E [0.2,0.4], while increasing on the rest of the domain. Fig. 2.18 is drawn to see the , 

stream lines for the parameter M. It  is measured from this figure that numbers of bolus are not 

changing but size is increasing with the increasing effects of M in the bottom of the cylinder, 

while bolus are lessened in number when seen in the upper part. The boluses are reduced both 

in size and number when seen for the parameter Q in both parts of the geometry (see Fig. 

2.19). It is seen from Fig. 2.20 that the numbers of bolus are decreasing with different values 

of the parameter 4 in both sides of the cylinder but in the lower half of the channel, the bolus 

becomes smaller with increasing magnitude of the parameter 4. Fig. 2.21 reveals the fact that 

when we increase the value of the parameter XI, the boluses decreased in number but expanded 

in size. 



- - -  - - 

I / Mekheimer et al. [78] I Present work 

I R  b ( R , W , t )  ( U ( R , O , Z , t )  for M = O , X 1  = 0 I U ( R , O , Z , t )  for M = 0.5,Xl = 1 I 

Table 2.1: Comparison of variation of velocity distribution in present work with [78]. 

I Perturbation solution r\.\ 

Fig. 2.2: Comparison of velocity profile U with [78] for fixed values of 6 = 0.1, 9 = 0.87, 



Fig. 2.3: Variation of pressure rise A P  with E and 0 for fixed values of S = 0.1, q5 = 0.2, t = 0.1, 

M = 0.5, Vl = 0.5, X I  = 1.5. 

Fig. 2.4: Variation of pressure rise A P  with M and 6 for fixed values of E = 0.01, 4 = 0.2, 

t = 0.1, 8 = 0.87, Vl = 0.5, XI = 1.5. 
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-1 -0.5 0 0.5 1 1.5 2 
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Fig. 2.5: Variation of pressure rise A P  with E and for fixed values of 6 = 0.1, M = 0.5, 

t = 0.1, 8 = 0.87, Vl = 0.5, XI = 1.5. 

Fig. 2.6: Variation of pressure rise A P  with Vl and 6 for fixed values of c = 0.01, M = 0.5, 

t = 0.1, 8 = 0.87, 4 = 0.2, XI = 1.5. 



Fig. 2.7: Variation of pressure rise A P  with Vl and 6 for fixed values of E = 0.01, M = 0.5, 

t = 0.1, 6 = 0.87, 4 = 0.2, Vl = 0.5. 

Fig. 2.8: Variation of pressure gradient dP/aZ with M and 6 for fixed values of E = 0.01, 

Vl = 0.3, t = 0.3, 6 = 0.87, 4 = 0.1, Q = 0.5, X1 = 1.5. 



Fig. 2.9: Variation of pressure gradient aP/dZ with E and 4 for fixed values of 6 = 0.1, Vl = 0.3, 

t = 0 . 3 , 8 = 0 . 8 7 ,  M = 0 . 5 , Q = 1 , X 1 = 1 . 5 .  

Fig. 2.10: Variation of pressure gradient dP/aZ with Q and 6 for fixed values of E = 0.01, 

Vl = 0.3, t = 0.3, 8 = 0.87, M = 0.5, 4 = 0.1, X1 = 0.5. 



Fig. 2.11: Variation of pressure gradient aP/aZ with Vl and 6 for &xed values of E = 0.01, 

Q = 0 . 5 , t = 0 . 3 , 8 = 0 . 8 7 ,  M=0.5 ,$=0.1 ,X1=0.5 .  

Fig. 2.12: Variation of pressure gradient 8Pla.Z with A1 and 6 for fixed values of E = .0.01, 

Q = 0 . 5 , t = 0 . 3 , 8 = 0 . 8 7 , M = 0 . 5 , ~ = 0 . 1 , V l = 0 . 3 .  



Fig. 2.13: Variation of velocity profile U with M and 6 for fked values of c = 0.1, Q = 0.5, 

t = 0 . 5 , Z = 0 , V l = 0 . 1 , 8 = 0 . 8 7 , ~ = 0 . 1 , X 1 = 1 . 5 .  



Fig. 2.14: Variation of velocity profile U with Q and E for fixed values of 6 = 0.1, M = 0.5, 

t = 0 . 5 , Z = 0 , V ~ = 0 . 1 , 8 = 0 . 8 7 , ~ = 0 . 1 , X 1 = 1 . 5 .  



Fig. 2.15: Variation of velocity profile U with t ,  4 and 6 for fixed values of Q = 0.1, M = 0.5, 

E = 0.01, Z = 0, VI = 0.1, 6 = 0.87, XI = 1.5. 



Fig. 2.16: Variation of velocity profile U with Vl and q5 for fixed values of Q = 0.1, M = 0.5, 

t = 0 . 5 ,  ~ = O . l , Z = 0 , 6 = 0 . 2 , 8 = 0 . 8 7 , X ~ = 1 . 5 .  



Fig. 2.17: Variation of velocity profile U with A1 and 6 for fixed values of Q = 0.5, M = 0.5, 

t = 0 . 5 ,  ~ = O . l , Z = 0 , 1 9 = 0 . 8 7 , q j = O . l ,  Vl=O.l. 



Fig. 2.18: Stream lines for different values of M ,  ( a )  for M = 0.3, (b) for M = 0.4, ( c )  for 

M = 0.5. The other parameters are E = 0.4, Vl = 0.3, t = 0.2, 0 = 0.87, 4 = 0.05, Q = 0.6, 

Fig. 2.19: Stream lines for different values of Q, ( a )  for Q = 0.6, (b) for Q = 0.7, (c )  for Q = 0.8. 

The other parameters are E = 0.4, Vl = 0.3, t = 0.2, 6' = 0.87, q5 = 0.05, M = 1, d = 0.05, 



Fig. 2.20: Stream lines for different values of 4, ( a )  for 4 = 0.05, (b) for C$ = 0.1, (c)  for 

Q, = 0.15. Theother parameters are E =  0.4, Vl = 0.3, t = 0.2, 6' = 0.87, Q = 0.6, M = 0.4, 

Fig. 2.21: Stream lines for different values of X I ,  ( a )  for X1 = 0.5, (b) for X1 = 0.7, (c )  for 

XI = 0.9. The other parameters are E = 0.4, Vl = 0.3, t = 0.2, 6 ' =  0.87, Q = 0.6, M = 1, 

b = 0.05, 4 = 0.05. 



Chapter 3 

Peristaltic flow of a Jeffrey fluid in a 

rectangular duct having compliant 

walls 

The theme of this chapter is to analyze the theoretical and mathematical study of peristaltic 

transport of a Jeffrey fluid in a rectangular duct with compliant walls. The constitutive equa- 

tions have been simplified under the implementation of low Reynolds number and long wave- 

length approximations. The analytical solution of the result'ing equation has been evaluated by 

eigen function expansion method. The graphical aspects of all the parameters of interest have 

also been analyzed. The graphs of velocity for two and three dimensional flow are plotted. The 

trapping bolus phenomenon has also been discussed though streamlines. These observations 

are published in the journal of " Chemical Industry and Chemical Engineering Quarterly", 19 

(2013) 399-409. 

3.1 Mat hemat ical formulation of the problem 

Consider the peristaltic flow of an incompressible non-Newtonian Jeffrey fluid in a cross section 

of rectangular channel having the width 2d and height 2a. In the present geometry, the Cartesian 

coordinate system is taken in such a way that X-axis is taken along the axial direction, Y-axis 

is taken along the lateral direction and Z-axis is along the vertical direction of rectangular 



channel (see Fig. 3.1). The walls of the channel are assumed to be flexible and are taken as 

conipliant, on which waves with small amplitude and long wavelength are considered. 

Fig. 3.1: Schematic diagram for peristaltic flow in a rectangular duct. 

The geometry of the channel wall is given by [79] 

Z = H(X,t)  = f a f  bcos - (X-ct )  , K I 
where a and b are the amplitudes of the waves and x is the direction of wave propagation. 

The walls parallel to XZ-plane remain undisturbed and do not measure any peristaltic wave 

motion. We assume that the lateral velocity is zero as there is no change in lateral direction of 

the duct cross section. Let (U, 0, W) be the velocity for a rectangular duct. Then the continuity 

and momentum Eqs. (1.4) and (1.6) in Cartesian coordinates become 



Let us introduce the following dimensionless parameters 

Using the above dimensionless quantities, the Eqs. (3.2) and (3.5) (after omitting bars) take 

the following form 

The components of stress tensor for Jeffrey fluid are 

Under the assumption of long wave length and low Reynolds number, the governing equations 

in non-dimensional form for the considered flow problem are stated as 



The corresponding non-dimensional boundary conditions for compliant walls are stated as 

where q (X, t )  = (I cos 2n ( X  - t )  and 0 5 4 _< 1. 

The governing equation for the flexible wall may be specified as 

in which L2 is linear operator, which is used to represent the motion of stretched membrane 

with viscosity damping forces [80] such that 

In the above equation, ml  is the mass per unit area, Dl is the coefficient of the viscous damping 

forces, Bl is the flexural rigidity of the plate, TI is the elastic tension per unit width in the 

membrane, K1 is spring stiffness and Po is the pressure on the outside surface of the wall due to  

tension in the muscle, which is assumed to be zero here. The continuity of stress at  Z = f 1 f q 

and using X-momentum Eq. (3.9), yield 

in which El = rnla3c/X3~, E2 = D ~ U ~ / / . L X ~ ,  E3 = ~ ~ a ~ / c p X ~ ,  E4 = ~ l a ~ / c p X ~  and E5 = 

K ~ U ~ / C ~ L X  are the non-dimensional elasticity parameters. 



Eliminating the pressure from Eqs. (3.12) and (3.14), we obtain 

3.2 Solution of the problem 

We use the method of eigen function expansion to solve the above boundary value problem. 

Now let us introduce a transformation 

After using the above equation in Eqs. (3.15), (3.16), (3.20) and (3.21) , we get the system of 

two equations 

with 

W l  ( f  1) = 0 

and 

The corresponding boundary conditions 

vl ( X , f l , Z , t )  = 0,vl (X,Y,fH, t )  = -wl (Y). (3.26) 

where F (X, Y, T) is a constant of integration. The solution of Eq. (3.23) can be easily found by 

using the boundary conditions defined in Eq. (3.24). Now we solve Eq. (3.25) with boundary 

conditions (3.26) and (3.27) by eigen function expansion method. The eigen functions can be 

defined as 



Now we define a series solution of the form 

Using Eq. (3 .29)  into Eq. (3.25) and after using the orthogonality condition, we found 

From Eq. (3 .22) ,  the final solution is evaluated below 

w C O S ~ ~ , Z )  16F ( - l )n  ] 7~ 

cos ( 2 n  - 1 )  -Y, 
coshanH (2n - 113 r3p2  2 

(3.31)  
n=l 

where a, and F are defined as 
7T 

an = ( 2 n  - 1)  2P, 

F (X, Y, t )  = 27~ ( 1  + XI) 4 ( 2 E 2 r  cos 27r ( X  - t )  - 
(3 .33)  

(Eg + 4n2 ( - E ~  + E4 + 4337r2)) sin 27~ (X - t ) )  

It is noted that limiting XI -+ 0 results in reversing the present problem to the viscous fluid 

case. It can also be observed from the above analysis that employing P + 0 and P -t 1,  reduces 

the discussed geometry to the two dimensional channel and square duct, respectively. 

3.3 Graphical results and discussion 

In this section, the effects of different physical parameters of Jeffrey fluid model on velocity 

profile of the fluid under discussion are examined graphically and the trapping phenomenon is 

also illustrated by plotting stream lines for different pertinent parameters. Figs. 3.2 to 3.6 are 

plotted to see the variation of velocity profile with the emerging parameters P, El, E2, E3 and 

E4. The stream lines are sketched in Figs. 3.7 to 3.12, which observe the flow behavior with 

various values of all the observing parameters. In Figs. 3.2, 3.3 and 3.4, the velocity profile is 

plotted with different values of the parameters P, El and E2.  From these figures, one can observe 

that magnitude of the velocity profile is a decreasing function of the above three parameters. 



The effects of different values of the physical parameters E3 and E4 are mentioned in Figs. 

3.5 and 3.6. From these plots, it is seen that velocity profile rises directly with increasing the 

magnitude of E3 and E4. From Figs. 3.2 to 3.6, it can also be seen that the velocity attains its 

maximum value at the centre of the channel and remains symmetric throughout the channel. 

The stream lines for different values of the emerging parameters are drawn in Figs. 3.7 to 3.12 

to lookout for the trapping bolus phenomenon. From Fig. 3.7, it can be seen that number of the 

trapped bolus are reduced with increasing the value of the parameter ,8. Fig. 3.8 is plotted to 

show the stream lines with the XI being raised. From this plot, it is clear that the number and 

size of the trapping bolus rises on left side but reduce in the opposite side of the channel with 

increasing magnitude of XI. The stream lines for different values of the parameter c$ are shown 

in Fig. 3.9. It is clear from this graph that the number of bolus are increasing monotonically 

with increasing 4 in left hand side and the size is decreasing on that side while the inverse 

behavior is seen on the right side of the channel. Fig. 3.10 reveals that the number of trapped 

bolus remain same but size is increasing on the left side while decreasing on the other side of 

the channel with the variation of El. It is measured from Fig. 3.11 that the trapped bolus do 

not change in number but increase in size with increasing value of E2 on left side of the channel 

and have opposite behavior on the different side. The stream lines for E3 are shown in Fig. 

3.12. It is easy to see from this figure that more trapped bolus appear when one increases the 

value of E3 while size of the bolus changes randomly in both sides of the channel. 



Fig. 3.2: Variation of velocity profile U with ,8 for fixed values of 4 = 0.2, X = 0.5, t = 0.4, 

X I  = 0.5, El = 0.1, & = 0.2, E3 = 0.01, Eq = 0.2, E5 = 0.3 (a )  for 2-dimensional, (b)  For 

3-dimensional. 



Fig. 3.3: Variation of velocity profile U with El for fixed values of 4 = 0.2, X = 0.5, t = 0.4, 

XI = 0.5, ,f? = 1.5, Ez = 0.1, E3 = 0.05, E.4 = 0.2, E5 = 0.5 (a) for 2-dimensional, ( b )  For 

3-dimensional. 



Fig. 3.4: Variation of velocity profile U with E2 for fixed values of 4 = 0.2, X = 0.5, t = 0.4, 

p = 1.5, XI = 0.5, El = 0.1, E3 = 0.01, Eq = 0.2, E5 = 0.5 (a)  for 2-dimensional, (b )  For 

3-dimensional. 



Fig. 3.5: Variation of velocity profile U with E3 for fixed values of 4 = 0.2, X = 0.5, t = 0.4, 

p = 2.7, X 1  = 0.5, El = 0.1, E2 = 0.1, E4 = 0.2, E5 = 0.5 ( a )  for 2-dimensional, (b)  For 

3-dimensional. 



Fig. 3.6: Variation of velocity profile U with E4 for hxed values of 4 = 0.2, X = 0.5, t = 0.4, 

/3 = 3, X I  = 0.5, El = 0.1, E2 = 0.1, E3 = 0.2, E5 = 0.5 (a) for 2-dimensional, (b)  For 

3-dimensional. 



Fig. 3.7: Stream lines for different values of P, ( a )  for ,8 = 0.4, (b) for P = 0.6, ( c )  for P = 0.8. 

The other parameters are Y = 0.5, X1 = 1, q5 = 0.2, t = 0.5, El = 1, E2 = 0.2, E3 = 0.05, 

Fig. 3.8: Stream lines for different values of XI, ( a )  for X1 = 0.5, (b) for XI = 1.0, (c) for 

X1 = 1.5. The other parameters are Y = 0.5, /3 = 1.1, 4 = 0.2, t = 0.5, El = 1, E2 = 0.2, 

E3 = 0.01, E4 = 0.2, E5 = 0.3. 



Fig. 3.9: Stream lines for different values of 4, ( a )  for 4 = 0.1, (b) for 4 = 0.2, ( c )  for 4 = 0.3. 

The other parameters are Y = 0.5, XI = 1, P = 1.1, t = 0.5, El = 1, E2 = 0.2, E3 = 0.01, 

Fig. 3.10: Stream lines for different values of El, ( a )  for El = 1, (b) for El = 2, (c )  for El = 3. 

The other parameters are Y = 0.5, X1 = 1, q5 = 0.2, t = 0.5, ,B = 1, E2 = 0.2, E3 = 0.05, 

E4 = 0.2, E5 = 0.3. 



Fig. 3.11: Stream lines for different values of E2, (a) for E2 = 0.5, ( b )  for E2 = 1, ( c )  for 

E2 = 1.5. The other parameters are Y = 0.5, XI = 1,  4 = 0.2, t = 0.5, = 1.1, El  = 0.2, 

Fig. 3.12: Stream lines for different values of E3,  (a) for E3 = 0.01, (b)  for E3 = 0.05, ( c )  for 

E3 = 0.09. The other parameters are Y = 0.5, X 1  = 1, 4 = 0.2, t = 0.5, ,8 = 1, E l  = 0.2, 

EP = 0.05, E4 = 0.2, E5  = 0.3. 



Chapter 4 

Exact solution for peristaltic flow of 

Jeffrey fluid model in a three 

dimensional rectangular duct having 

slip at the walls 

This chapter deals with the exact solutions for the peristaltic flow of Jeffrey fluid model in a 

cross section of three dimensional rectangular channel having slip at the peristaltic boundaries. 

The equation of motion and boundary conditions are made dimensionless by introducing some 

suitable non-dimensional parameters. The flow is considered under the approximations of low 

Reynolds number and long wavelength. Exact solution of the obtained linear boundary value 

problem is evaluated. However, the expression for pressure rise is calculated numerically with 

the help of numerical integration. All pertinent parameters are discussed through graphs of 

pressure rise, pressure gradient, velocity and stream functions. This study has been accepted 

for publication in the journal of "Applied Bionics and Biomechanics", 11 (2014) 81-90. 



4.1 Mat hemat ical formulation of the problem 

Let us consider the slip effects at the peristaltic walls for peristaltic flow of an incompressible 

Jeffrey fluid in a rectangular channel (see Fig. 3.1). The flow is induced by the propagation of 

sinusoidal waves travelling in the direction parallel to the flow. 

Let us analyze the flow in a wave frame (x, y, z) moving with a constant velocity c away 

from the fixed frame (X, Y, Z )  by the transformation 

We define the following non-dimensional quantities along with the already defined in Eq. (3.6) 

Under the assumption of long wavelength and low Reynolds number, the non-dimensional gov- 

erning Eqs. (1.4) to (1.6) in wave frame for the considered flow problem (after exempting the 

prime symbols) are simplified as 
au aw -+ -=o ,  ax az 

where the components of stress tensor SzX,, S2xy, S2xz, SzYy, and for Jeffrey fluid are 



evaluated as 

- = ( l + y ( g + u g + w & ) ) g  5'212 = 

1 s 2 , , = , ( l + ~ ( g + u & + w g ) ) ~  
1 = i+I; (l+- ( ~ + U E + W E ) )  ( % + 6 ~ % )  

s 2 y y  = 0 
a ~ 2 , ~ = & ( 1 + * ( g + u ~ + W g ) ) c  

2 ~ 2 , ~ = , ( 1 + ~ ( g + U g + W & ) ) ~  

Under the long wavelength and low Reynolds number approximations, Eqs. (4.4) to (4.6) have 

the form 

The corresponding slip boundary conditions at  the walls are described as [80] 

From Eq. (4.9) , it is obvious that p # p ( y ,  z )  . Therefore, the Eq. (4.8) can be written in more 

precise form as 

Special cases: There are some special cases which can be derived from the above discussion 

i.e., for ,/3 = 0, we retrieve the case for peristaltic flow of Jeffrey fluid in two dimensional channel, 

XI = 0 gives the peristaltic flow of viscous fluid in three dimensional channel and PI = 0 leads 

to the no-slip conditions. 



4.2 Solution of the problem 

The exact solution of the Eq. (4.11) along with boundary conditions defined in Eq. (4.10) are 

evaluated by adopting the eigen function expansion method and is found as 

a ' cos'l + sinh (ha,)) - (8(1+ ~ l ) sech  (ha,) ( 
(2 ~ a n ~ l c o s n n s i n h  (ha,))) / ((- 1 + 2n)3 7r3p2 
(cr,&cosh (ha,) + sinh (ha,) + Xlsinh (ha,)) 

a,/3 sinh(han) (cash (ha,) + ll+Xl ))) + (8(1+ ~ 1 ) s e c h  (ha,) 

(2$a,~lcosn7rsinh (ha,)) sinh (ran)) / ((-1 + 2n13 

7r3p2 (anP1cosh (ha,) + sinh (ha,) + Xlsinh (ha,))))) 

where a, = (272 - 1) ;/3, n = 1,2,3, .... 

The volumetric flow rate Q is calculated as 

The average volume flow rate over one period (T = X/c) of the peristaltic wave is defined as 

The pressure gradient dp/dx is obtained after solving Eqs. (4.13) and (4.14) and is found as 

00 

8 = - C (Q/ (* + 3 + (8(1+ X1)2cosnasin~ (a&+ 
n=l 

(1 + Xl)sinh (ha,)) tanh (ha,)) / ((-1 + 2n)3 r3a:B (a,& 

cosh (ha,) + (1 + X1)sinh (ha,))))) J 
The pressure rise Ap is evaluated by numerically integrating the pressure gradient dp ldx  over 



one wavelength, i.e., 

4.3 Graphical results and discussion 

We have obtained the exact analytical solutions for the peristaltic flow of Jeffrey fluid model in 

a rectangular channel having slip at the peristaltic walls. In this section, the effects of physical 

parameters on the rheological aspects of the flow phenomenon are described. All the pertinent 

quantities are described through graphical treatment. Numerical variation of pressure rise and 

velocity profile is also described through Tables 4.1 and 4.2. Figs. 4.1 to 4.4 are drawn to show 

the effect of different parameters such as  P, P1, X1 and 4 on pressure rise per unit wavelength 

Ap against the mean flux Q. The fluid flow can be classify on the basis of coordinate system 

generated by taking Ap along y-axis and Q along x-axis in to three major regions: Quadrant (I) 

displays Q > 0 and Ap > 0 is called peristaltic pumping region, Quadrant (11) where Q > 0 and 

Ap < 0 is augmented flow region and Quadrant (IV) contains Q < 0 and A p  > 0 is known as 

backward pumping region. If Ap = 0 it is called free pumping. Fig. 4.1 indicates free pumping 

at Q = 0, an increase in p rises the magnitude of pressure change in quadrant IV while reduces 

in 11. Fig. 4.2 shows the behavior of Ap with changing values of P1. It is observed an increase 

in the values of ,9, gives opposite behavior as compared with P. Figs. 4.3 and 4.4 are drawn 

to show for the variation of X1 and 4 respectively. It is noted that with the increase in X1 

pressure rise suppresses in augmented part while increased in backward pumping and for rising 

4 pressure change inversely. 

The variation in pressure gradient d p l d x  for different parameters P, PI, XI, 4 and Q can be 

observed from Figs. 4.5 to 4.9. Figs. 4.5 and 4.6 display the effects of /3 and PI respectively. 

Increase in p decreases the magnitude of pressure gradient d p l d x  in the wavelength x  E [O, 11 

whereas, increase in pl increases pressure gradient. In both the graphs the pressure at x  < 0.2 

and x > 0.8 attains a much smaller value indicating a low resistance to the flow and at about 

x = 0.5 the maximum resistance to the flow is anticipated. Fig. 4.7 Shows a similar behavior 

for XI as observed for P1. Fig. 4.8 indicates that in the central region increase in amplitude 

ratio qb decreases the pressure but this behavior reverse itself in the region x  < 0.2 and x > 0.8. 



Fig. 4.9 shows decrease in pressure gradient with mean flow rate Q. 

Next we examine the graphical aspects of the different parameters of interest on the velocity 

distribution through Figs. 4.10 to 4.14. The two and three dimensional analysis is submitted 

in these figures for all the observing parameters P, P1, X1, q5 and Q. The variation of P is 

shown in Fig. 4.10. It is observed that velocity decreases with the increasing effects of P.  Fig. 

4.11 shows the variation of velocity for different fixed values of P1. It is noted that in the part 

z E (-1,0.5),  velocity decreases with the increase of while the situation is opposite in the 

rest of the region. The maximum velocity is at the centre of the duct but for smaller values 

of velocity decreases rapidly. The theoretical effects of X1 are displayed in Fig. 4.12. An 

increase in velocity profile is observed when the values of X1 increases. Figs. 4.13 and 4.14 show 

decrease in velocity when q5 increases and increase when Q increases respectively. 

The stream lines are drawn in Figs. 4.15 to 4.18 to see the trapping bolus behavior with the 

variation of emerging parameters P, XI, 4, and Q. From Fig. 4.15, it is seen that numbers of 

the trapped bolus are reduced with increasing the values of the parameter P where as the size 

increases. Fig. 4.16 is for stream lines versus wavelength constructed for XI. It is measured 

here that number of bolus is reduced with the increase of XI. The stream lines for different 

values of the parameter 4 are shown in Fig. 4.17. It is evident that the size of the trapped 

bolus increases with increasing 4. It is measured from Fig. 4.18 that the size of trapped bolus 



decreases with mean flux Q, however the boluses are increased in number. 

Q I Ap when p1 = 0 / Ap when pl = 0.3 1 Ap when ,B1 = 0.5 

Table 4.1: Variation of pressure rise Ap for fixed values of X1 = 0.1, ,8 = 0.5, q5 = 0.1. 



I 2 I u when p, = 0 I u when ,Bl = 0.3 1 u when PI = 0.5 

Table 4.2: Variation of velocity profile u for fixed values of X1 = 3, P = 0.5, 4 = 0.2, Q = 0.5, 

x = 0, y = 0.5. 

Fig. 4.1: Variation of pressure rise Ap with P for fixed values of X1 = 0.1, P1 = 0.1, 4 = 0.1. 



Fig. 4.2: Variation of pressure rise Ap with P1 for fixed values of XI = 0.1, ,8 = 0.5, 4 = 0.1. 

Fig. 4.3: Variation of pressure rise Ap with X1 for fixed values of P = 0.5, PI = 0.1, 4 = 0.1. 



Fig. 4.4: Variation of pressure rise Ap with 4 for fixed values of X1 = 0.1, P = 0.5, P1 = 0.1. 

Fig. 4.5: Variation of pressure rise dp /dx  with P for fixed values of XI = 0.1, PI = 0.1, 4 = 0.7, 

Q = 0.1. 



Fig. 4.6: Variation of pressure rise d p / d z  with PI for fixed values of X1 = 0.1, P = 0.7, $J = 0.6, 

Fig. 4.7: Variation of pressure rise d p / d x  with X1 for fixed values of P = 0.7, PI = 0.1, 4 = 0.6, 

Q = 0.1. 



Fig. 4.8: Variation of pressure rise dp /dx  with Qi for fixed values of X1 = 0.1, ,B = 0.7, ,B1 = 0.1, 

Fig. 4.9: Variation of pressure rise dpldx  with Q for fixed values of P = 0.7, PI = 0.1, 4 = 0.6, 

X1 = 0.1. 



Fig. 4.10: Variation of velocity profile u with ,B for fixed values of 4 = 0.1, x = 0, y = 0.5, 

P1 = 0.1, X1 = 3, Q = 0.5, ( a )  for 2-dimensional, (b)  For 3-dimensional. 



Fig. 4.11: Variation of velocity profile a with for fixed values of Q = 0.1, x = 0, y = 0.37, 

= 0.4, XI = 2, Q = 1, ( a )  for 2-dimensional, (b )  For 3-dimensional. 



Fig. 4.12: Variation of velocity profile u with XI for fixed values of 4 = 0.9, x = 0, y = 0.9, 

= 0.25, B = 0.5, Q = 0.65, (a) for 2-dimensional, (b) For 3-dimensional. 



Fig. 4.13: Variation of velocity profile u with 4 for fixed values of f l  = 0.9, x = 0, y = 0.5, 

= 0.1, XI = 2, Q = 0.5, (a) for 2-dimensional, (6) For 3-dimensional. 



(b) 

Fig. 4.14: Variation of velocity profile u with Q for fixed values of q5 = 0.1, x = 0, y = 0.5, 

,B1 = 0.15, XI = 2, ,B = 0.9, (a) for 2-dimensional, (b) For 3-dimensional. 



Fig. 4.15: Stream lines for different values of ,8, ( a )  for P = 0.8, (b) for = 0.9, ( c )  for P = 1. 

The other parameters are y = 0.1, Q = 0.3, X1 = 0.1, 4 = 0.4, P1 = 0.2. 

Fig. 4.16: Stream lines for different values of XI, ( a )  for X1 = 0.1, ( b )  for X1 = 0.5, ( c )  for 

XI = 0.9. The other parameters are y = 0.1, Q =0.3, P =  1.1, 4=0.4, P1 = 0.2. 



Fig. 4.17: Stream lines for different values of 4, ( a )  for 4 = 0.3, (b) for 4 = 0.4, (c) for 4 = 0.45. 

The other parameters are y = 0.1, Q = 0.3, ,B = 0.9, X1 = 0.1, P1 = 0.2. 

Fig. 4.18: Stream lines for different values of Q, ( a )  for Q = 0.1, (b) for Q = 0.2, ( c )  for Q = 0.3. 

The other parameters are y = 0.1, 4 = 0.4, P = 1.1, X1 = 0.3, P1 = 0.2. 



Chapter 5 

Series solution of unsteady 

peristaltic flow of a Carreau fluid in 

eccentric cylinders 

This chapter is devoted to the study of unsteady peristaltic flow of an incompressible Carreau 

fluid in eccentric cylinders. The problem is measured in cylindrical coordinates. The governing 

equations are observed under the conditions of long wavelength and low Reynolds number 

approximations. The resulting highly non-linear second order partial differential equations are 

solved by series solution technique. 'The relation for pressure rise is evaluated numerically by 

built-in technique with the help of mathematics software. As a special case, the present results 

are compared with the existing results given in the literature. The obtained results are then 

plotted to see the influence of different physical parameters on the velocity, pressure gradient 

and pressure rise expressions. The velocity profile is drawn both for two and three dimensions. 

The trapping boluses are also discussed through streamlines. This work is published in the 

journal of "Ain Shams Engineering Journal", 5 (2014) 293-304. 

5.1 Mat hemat ical formulation of the problem 

Let us observe the peristaltic flow of incompressible Carreau fluid flowing between the two 

eccentric cylinders. The problem has been considered in the system of cylindrical coordinates 



(R, 8,Z)  as radial, azimuthal and axial coordinates, respectively (see Fig. 2.1). According t o  

the nature of the flow, the velocity field is taken as V = (V, 0, U). The Cauchy stress tensor 

for Carreau fluid is defined in Eq. (1.23). Now using the above velocity field, the continuity 

equation remains same as in Eq. (2.10) while momentum Eq. (1.6) takes the following form 

Let us introduce non-dimensional parameters as defined in Eq. (2.9) along with the following 

additional quantities 

The components of non-dimensional stresses for Carreau fluid are defined as 

. 2  2 g2 av 2 
y =2c$(L) ++(-) 

2d2v2 (5.6) +- + +2 (f ) 2  + 2 G  (g)2 
Using the assumptions of long wavelength and low Reynolds number, the non-dimensional form 



of the Eqs. (2.11) to (2.13) (without MHD effects) is simplified as 

The corresponding boundary conditions in non-dimensional form are defined in Eqs. (2.20) and 

(2.21). 

5.2 Solution of the problem 

Solution of the boundary value problem defined in (5.7) is obtained by homotopy perturbation 

method. The deformation equation for the given problem is defined as 

3 n-1 we2 (g) + w ~ e 2 A  ($3 (k )2)  + + ((3)3 + 

+ p a e  1 a s 3 )  - B Z  a ~ )  = o 

where L3, the linear operator is assumed to be L3 = 6 " / 6 ' ~ ~ .  

We define the following initial guess satisfying the boundary conditions 

After employing the homotopy perturbation scheme, we have the following systems of equations. 

Zeroth order system 

L3 [uo] - L3 [Go] = 0, (5.10) 

with boundary conditions mentioned in Eqs. (2.27) and (2.28) . The solution of the above zeroth 

order system can be obtained by using Eqs. (5.9) and (5.10) and is simply found as 



First order system 

The related boundary conditions are mentioned in Eqs. (2.32) and (2.33). The solution of Eq. 

(5.12) is calculated as 

U 1 = -  384R2r:m5mz 1 (288R2r: m7m5Vlmllr (8mf +20m:t2 + 5r4) cos B - 3% R2 

msr:m7m5e7 cos 78 + 3R2r:m7 - m5r5 cos 58(48Vm1 + 7gm8(12m: +e2) + 
24Vm1 in: + 6 ~ ~ r : c '  cos 68(m7m5 (-2V + 7%m8 mil) + 2r2Vl(-m51nR+ ) 

aP 2 mplnrl + -rnglnrz) + 4r4 cos4B(m7rn5 (21BZR m8r: (r2mll(10mT + 3c2)+ 

Vl(mzr?r2(1+ 3~2)m4 - 5mzrl(l+ 6r2)m4 + 18 rf(l0m; + e 2 ) ) ) )  + 6R2 

r$l(mg(26Rrn: + 4Rt2 + r2(8m2Km4 - 4 rnll + r 2 ) )  ZnR - m7(26rlmll+ 

4Re2 + 7-2 (8m2V1 We2 - 4 7 4  +r2) )  lnrl + mgr2(8m2m4 + 22mT + 5r2)  

Inrz)) + 2e2 cos 20 (m7m5 (21% R2 m8r~mI1(48mf + 80m:r2 + 15c4) + 
2~(-4mzRr;m4((5 + 6r2)m11 - 48r2r2) + 4m2rlr2m4(mll -6r2e2) - R2 

(4mzrzm4(mll - 6r2e2) + 4m2r1Kwe2(-(5 + 6r2)mll +48r2e2) + 45rq 

(16mf + 16mle2 + r 4 ) ) ) )  - 6r2rlv1(-m5(8(-5m2m4 + r2(m2V,x 

we2 + 6 4 )  mil + 8(-mzm4 + r2(-17m2m4 + 20 x mil)) e2 + 17r2e4 

+8r((-m2m4 + 36m:) mil + 5(-m2 m4 + lorn:) e2 +4r4)) ZnR + m7(8 

(-5m2m4 + rz(m2 we2 + 6m:))mli + 8(-m2m4 + r2(-17m2m4 + 20m:)) 

c2 + 17r2e4 + 8r1((-m2Vl We2 + 36mq)mll+ 5(-m2m4 + 10mq)e2 + 4r4)) 

lnrl+ ma(-8(5 - m2m4 + 42r2mll)mll- 8(-m2m4 + 2r2(-llm2m4+ 

35mf)) r2 - 49r2r4)lnr2)) + rcosB((r1 - R)m7m5(8m2(-10rrl + 2 

m4 + 44m:))m11r2 + 2(2 - mzm4 + 2r2(17m2(R + rl + 6rrl)r2 - 3(R 

aP 2 +rlr2) m4mllcZ + 21=R rl(64m: + 240m:r2 + 120mfr4 + 5 8 ) )  - 48 

r2r1v1m11(m5(4(4 - m2m4 + rz(mzm4 + 2m3) mll + 2(-7m2m4 + r2 



(llmzm4 +38m:)) c2 + 33r2e4 + R(4(m2m4 + 141nR + (r2 - R)(4(4 - m2m4 

+r2(m2m4 +2m:)) mil + 2(7 - mama + r2(llm2m4 + 38m:)) e2 + 33r2c4 

+rl(4(mzm4 + 14m:)mll + 4(5m2m4 + 49m:)e2 + 63e4))lnrl + 2(r - rl )  

(4(--2m2m4 + r2 (mzm4 + 8m:))mll + (7 - mzm4 + r2(21m2m4 + 136m:)) 

aP 2 c2 + 48r2e4)tnr2)) + 4((r - r2)mg (3= r (r - rl)r~mll(16m! + 168mfc2 

+210m:e4 + 3 5 8 )  + &(m2r:r2m4c2(-4m: + (-1 + 21r2)e2) + r2(m2r2y2 

we2e2(-4(5 + 6~2)mll + (-5 + 162r2)c2)6r?(-16m: - 120mfc2 - 90m:c4 

- 5 6 " ) ) )  + 6r2r?v~(ms(8(-m2m4 + 2rmq)mll i- 4(7 - m2m4 + r2(5m2m4 

+14m:) + r(7m2vfwe2 + 44m:))m11E2 + 2(2 - m2m4 + 2r2(17m2m4 + 21m:) 

+r(14mzm4 + 87m:))e4 + (127- + 7r2)e6)lnr + (r2 - r)(8(-m2m4 + 2rlmll) 

mil + 4(7 - m2m4 + r2(5m2m4 + 14m3 + r1(7m2m4 + 21m:) + r1(14m2m4 

+87m:))c4 + (127-1 + 7r2)c6)lnrl + m8(8(-m2m4 + 2r2mll)mll + 4(7 - m2m4 

+2r2(6m2m4 + 29m:))mii~~ + 2(-2m2m4 + 3r2(16m2m4 + 43m:))e4 + 19r2 

t6)lnr2)) + i3 cos 38(m7 - m5 (21% R2m8r1(80m: + 60m:e2 + 3c4) - 8Vl 

mn(m2rlr2(-2 + 3r2)mq + 2 - mzrr:(-5 + 6r2)m4 + R2(-m2r2(-2 + 3r2)m4 

+2mzrl(-5 + 6r2)v fwe2 + 30r:(8mq + 3c2)) ) )  + 24r2rIVimll(-m5(-4m2m4 

+rz(-20rnzm4 + 8mf + 17c2) + r(16 - mzm4 + 88m:+ 47e2))lnr + (r - r2) 

( 4  - mzm4 + r2(-20mzm4 + 8mf + 17e2) + rl(-16m2m4 + 88mT + 47c2)) 

lnri - 4(r - ri)(-mzm4 + r2(9 - m2m4 + 24m: + 16e2))ln (r2))))  

Finally, q + 1 approaches the final solution 

Now pressure gradient 8Pl8.Z will be evaluated by using Eqs. (2.38) and (2.39) and is found 

as 



aP - - 1 az - 4sTT:m~ms-m:(2(36~r~m11(16m~ + 168mfc2 + 210m:t4 + 35c6) - ~ m 5 V ~  

(mzrim3(4m: + ( 1  - 21r2)c2) + rn2rlr;m3(-8(2 + 3r2)mll + (141r2 - 4)c2)+ 

4rf(64m! + 4(7m2m4 + 134m:)mllr2 + 4(7m2m4 + lllm:)& + 278') + r:r2 

(-8(9mzm4 + 4ramll)mll + 4(49 - m2m4 + r2(85m2m4 + 122 mil)) mllc2 + 2 

(-llmzm4 + 2rz(79rnzm4 +228m:)) c4 + 8lr2e6) + rf(-8(9m2m4 + 4r2mll) 

mil + 4(68 - m2m4 + r2(67m2m4 + 122m:))mllr2 + (41 - m2m4 + 2r2(443 

mzm4 + 456m:))c4 + 8 1 ~ 2 8 ' ) ) )  + 23047rr~q5cos 27r (2 - t )  - m: - 9r:c7 

(2Q + T $ ~  cos 47r (2 - t ) )  cos 78 + 3r:c5 cos 58(2(a(28r; - 45r: r2 + 17ri) 

2 2 -252Qml)mn - 42Qc2 + 3n(-7(12m: + c )+ cos4a (2 - t )  + 4 r , 3 ~ ~ m ~ ~ l n ~ ) )  

+E cos 8(2(63~r! (-64m; - 240mfc2 - 120m:c4 - 5 8 )  + 2am5Vlmll (-rn2r: 

(-2 + 3r2)ms + marlr;(--8 + 9r2)m~ + 4r;(4(mzrn4 + 50m~)mll + 4(5m2m4 

+139m:)c2 + 153c4) + rfr2(4(36 - m2m4 + r2(13m2m42m~))mll + 2(49- 

mzm4 + llr2(llrnzm4 + 34 mu))  c2 + 369r2c4) + r:(4(36 - m2m4 + r2 
(13mzm4 + 2m:))mll + 2(68 - m2m4 + r2(145m2m4 + 374m:))c2 + 369r2 

c 4 ) ) )  + 3~r:(-21(64m! + 240mfc2 + 120m:c4 + 5c6)j2 cos 4a (2 - t )  - 8 

Vlmli(r22(4(4 - m2m4 + rz(mm4 + 2m;))mll+ (12 - m2m4 + 19r2(m2m4 

+4m:))c2 + 33r2c4) + 2r:(4(2 - mzm4 + r2(mqmq + 8m:))mll + (7 - m2m4 

+r2(21mzrn4 + 136mf))c2 + 48r2c4)2rlr2(4(2 - m2m4 + r2(m2m4 + 8m:)) 

mil + (7 - m2m4 + r2(2lmzm4 + 136m:))e2 + 48r2c4))ln2)) + c2 

cos28(252~r:m11(48m~ + 80m?c2 + 15c4) - am5Vl(16m2r1r;m4((2 + 3r2) 

mil - 21r2e2) + 8m2r;m4(-mll+ 6r2c2) + 4r:(8(-m2m4 + 126m~)mll+ 

40(-mzm4 + +28m:)c2 + 77c4) + r;(8(-40m2m4 + r2(11m2m4 + 1 8 ~  

mu))mll + 8(-9mzm4 + r2(-221mzm4 + 200m:))c2 + 191r2c4)+ 

rb(8(-59m2m4 + ~(-7mzrn4 + 18m:))mll+ 8(-9m2m4 + r2 
(-53m2m4 + 200mf))c2 + 191r28)) + 6ar~(21m1(48m': + 80m:e2 + 1 5 8 )  

+2 cos 47r ( 2  - t )  + VI (rZ(8(-6mzm4 + rz(rnam4 + 6m:))mll + 8(-m2m4+ 

ra(-llmzm4 + 20m:))e2 + 17r2e4) + r?(8(-5m2m4 + 42r2mll)mll + 8 

(-mzm4 + 2rz(-llmzm4 + 35m:))c2 + 49r2e4) + r1r2(8(-5m2m4 

+42rzrnll)mll + 8(-m2m4 + an(-llm2m4 + 35m:))c2 + 49r2t4)) ln") r2 



+2c4 ~0~48(252~r~m11(10m:  + 3e2) - 7rm5K(-m2rl(1 + 3r2)m4 + m2rlri 

(4 + 27r2)m4 + 4r;(116m: + 13c2) + r;(5m2m4 - 2r2(-51m2m4 + 56m:) 

+7r2c2) + 7r:r2 (-2rn2mq + 7-2 (-16m: + e2))) + 67rr:(21m1 (10m: + 3e2)42 

cos 47r (2 - t)  + r2~l(r:(8m2m4 + 22m: + 5c2) + rlr2(8m2m4 + 22m: + 5e2)+ 

rt(-m2m4 + r2(5m2m4 - 4m: + c2))) lnz)  + c3 cos38(2(63Qr:(-80mt- 

6 0 r n : ~ ~  - 3e4) + 7rmsvlm11(2rn2r$(-2 + 3r2)mq - 2m2rlri(-8 + 9r2)m4 

+4rf(-16m2m4 + 328m: + 137e2) + r;(-4(4m2m4 + r2(67m2m4 + 14m:)) 

+l6lr2c2) + r:r2(-92rnzm4 + r2(-172m2m4 - 56m: + 161e2)))) + 3 ~ r :  

(-21(80m! + 60m:c2 + 3 ~ ~ ) 4 ~  cos 47r (2 - t)  - 4Vm1(4rf(-m2m4 + rz 

(-9mzm4 + 24m: + 16e2)) + 4rlrz(-m2m4 + r2(-9m2m4 + 24m: + 16e2)) 

+rf (-8rn2ma + r2(-14m2m4 + 8m: + 17e2)))ln2) + 127rr:(3m1(16mf+ 

168m; '~~ + 210m:E4 + 35e6)d2 cos 47r (2 - t)  + v1 (r$(-8m2m4mll + 4 

(-6m2m4 + r2(5mzm4 + 14m:))m11e2 + (-3m2m4 + r2(47m2m4 + 84m;))c4 

+ h e 6 )  + r:(8(-m2m4 + 2r2mll)mll + 4(-7m2m4 + 2r2(6m2m4 + 29m:)) 

muc2 + 2(-2m2m4 + 3rz(l6mzm4 + 43m:))e4 + 19r2e6) + rlr2(8(-m2m4+ 

2 r m l l ) m l l +  4(-7m2m4 + 2r2(6mzm3 + 29m:))mI1e2 + 2(-2m2m4 

+3r2(16m2v2we2 + 43m:))c + 19r2e6))ln2) + 3r:e6 cos 68(a(-4r; + 9r:r2- 

5rq)v + 84Qml + 427rmld2 cos 47r (t - t)  + 2sr2 (r: + 7-17-2 + r i )  v1ln"))) TI 

in which 

The pressure rise A P  (t) can be evaluated numerically by using the expression given in Eq. 

(3.41). 

5.3 Graphical results and discussion 

In this section, we have discussed the effects of all the pertinent parameters on pressure rise, 

pressure gradient, velocity profile and streamlines with the help of graphs. As a special case 

of this problem, the comparison of the present work with that of Mekheimer et al. I781 is also 



manipulated through table and graph as well. The residue error is also presented to see the 

solution validity by varying certain quantities. 

Table 5.1 shows the comparison of velocity variation in this article with the values obtained 

in [78]. In Table 5.2, the residue error analysis for velocity by varying different parameters is 

observed. Fig. 5.1 contains the graphs showing the velocity profile variation with emerging 

parameters for the present analysis and the old one. Figs. 5.2 and 5.3 tell us the variation 

of pressure rise AP with the flow rate Q. We can observe the behavior of pressure gradient 

dP/dZ with space coordinate z from Figs. 5.4 and 5.5. The graphs for the velocity profile U 

are displayed in Figs. 5.6 and 5.7. From Figs. 5.8 and 5.9, the trapping bolus phenomenon is 

discussed through streamlines for different effective parameters. 

If we look at the Table 5.1, we can easily conclude that when we omit the effects of Carreau 

fluid parameters (We = n = O), the present results are very much similar to that of given in 

1781 . From Fig. 5.1, it is clear that the present results for neglecting the effects of Carreau fluid 

overlaps the already produced results. It is also observed from Table. 5.1 and Fig. 5.2 that 

when we include the Carreau fluid parameters (We = 0.5, n = 2), the velocity profile increases 

in the region 0.2 5 R 5 0.4 but in the rest of the domain velocity decreases. 

Fig. 5.2 has the variation of pressure rise AP with S and We. From this figure, it is 

measured that pressure rise AP is varying directly with the the increase in the values of b in the 

retrograde pumping region (AP  > 0, Q < 0) and peristaltic pumping region (AP  > 0, Q > 0) 

but different observations are made for the augmented pumping region (AP < 0, Q > 0). It  

is also revealed from this figure that pressure rise is reduced with the increase in We. It  is 

observed from Fig. 5.3 that peristaltic pressure rise AP is varying directly with the rising the 

magnitude of radius 6 in retrograde pumping region and peristaltic pumping but reducing when 

observed in the augmented pumping region but decreasing with the power law index n. 

Fig. 5.4 shows the effects of 8 and We on the expression of pressure gradient aP/aZ. It is 

noted here that dP/dZ  is decreasing with the increase in We and 6. Fig. 5.5 is drawn to see 

the effects of 6 and n on the pressure gradient 8P/8Z against the coordinate Z. We can say 

that pressure gradient gets inverse attitude when someone increases the magnitude of n but 

reverse behavior is reported when S gets larger. 

The velocity profile U with b and We is sketched in Fig. 5.6 both for two and three 



dimensions. It. is noted from this figure that U gets lessened with the increase in We in the 

part. 0.6 < R < 0.9 but in the remaining part U rises with We but in the whole region, velocity 

enlarges when 6 gains larger values. From Fig. 5.7, it is derived that it gives the similar behavior 

with the parameter 6 and n as that of observed for 6 and We in Fig. 5.6. 

Fig. 5.8 gives the streamlines for the parameter We. It is noted from this figure that 

increasing the magnitude of We results in decreasing the number of bolus in both the parts 

of the geometry but size of the bolus is enlarged. Fig. 5.9 shows that the number of bolus 

is decreased but volume of the bolus expands when someone increases the numerical values of 

flow rate Q. 

--- 

Table 5.1: Comparison of velocity distribution of present work with Mekheimer et al. [78]. 

R 

0.20 

Mekheimer et el. [78] 

~ ( R , w , t )  

0.1000 

Present work 

U(R,e,Z,t)  for We=O, n = O  

0.1000 

U(R,O,Z,t)for We=0.5, n = 2  

0.1000 



Table 5.2: Residue error for velocity profile U. 

Fig. 5.1: Comparison of velocity profile of present work with [78] for fixed values of S = 0.1, 

n 6  

2 

4 
0.17 0.1 

0 

0.87 

Z 

0 

t 

0.4 

Q 

0.9 

We 

1.000 

Residue 

-0.246548 



Fig. 5.2: Variation of pressure rise A P  with b and We for fixed values of c = 0.1, q5 = 0.1, 

t = 0 . 1 , r 3 = 0 . 8 7 , n = 2 , V l = 0 . 9 .  

Fig. 5.3: Variation of pressure rise A P  with 6 and n for fixed values of t. = 0.1, We = 0.5, 

t = 0 . 1 , 8 = 0 . 8 7 , ~ = 0 . 2 , V l = 1 .  



Fig. 5.4: Variation of pressure gradient aP/dZ with 0 and We for fixed values of E = 0.1, 

V 1 = 0 . 9 , t = 0 . 3 , n = 2 ,  c$=O.l ,Q=0.2,6=0.2.  

Fig. 5.5: Variation of pressure gradient aP/dZ with n and 6 for fixed values of E = 0.01, 

Q = 0 . 5 , t = 0 . 3 , 0 = 0 . 8 7 , M = 0 . 5 , ~ = 0 . 1 , V l = 0 . 3 .  



Fig. 5.6: Variation of velocity profile U with b and We for fixed values of E = 0.1, Q = 0.5, 

t = 0.1, Z = 0, Vl = 1, 9 = 0.87, q5 = 0.1, n = 4, (a )  for 2-dimensional, ( b )  for 3-dimensional. 



Fig. 5.7: Variation of velocity profile U with S and n for fixed values of Q = 0.5, We = 1.5, t = 

0.2, E = 0.1, Z = 0.1, 0 = 0.87, 4 = 0.1, Vl = 1, (a) for 2-dimensional, ( b )  for 3-dimensional. 



Fig. 5.8: Stream lines for different values of We, ( a )  for We = 0.1, (b) for We = 0.5, (c )  for 

We = 0.9. The other parameters are t.= 0.3, Q = 0.2, Vl = 0.1, t = 0.2, 8 = 0.87, q5= 0.05, 

Fig. 5.9: Stream lines for different values of Q, (a )  for Q = 0.2, ( b )  for Q = 0.3, (c )  for Q = 0.4. 

The other parameters are t. = 0.3, t = 0.2, 8 = 0.87, Vl = 0.2, We = 0.3, n = 2, S = 0.2, 

4 = 0.05. 



Chapter 6 

Effects of heat and mass transfer on 

peristaltic flow of a nanofluid 

between eccentric cylinders 

This chapter examines the heat and mass transfer analysis for the peristaltic flow of nanofluid 

through eccentric cylinders. The complexity of equations describing the flow of nanofluid is 

reduced through applying the low Reynolds number and long wavelength approximations. The 

resulting equations are highly non-linear, coupled and non homogeneous partial differential 

equations. These complicated governing equations are solved analytically by employing the ho- 

motopy perturbation method. The obtained expressions for velocity, temperature and nanopar- 

ticle phenomenon are sketched through graphs for two dimensions as well as three dimensions. 

The resulting relations for pressure gradient and pressure rise are plotted for various pertinent 

parameters. The streamlines are also drawn for some physical quantities to discuss the trapping 

phenomenon. This work has been published in the journal of "Applied Nanoscience", 4 (2014) 

393-404. 

6.1 Mat hemat ical formulation of the problem 

Let us consider the peristaltic flow of an incompressible nanofluid between two vertical eccentric 

cylinders. The geometry of the flow is described as the inner tube is rigid and sinusoidal wave 



is propagating at the outer tube along its length. Further, we assume that boundary of the 

inner tube is at  the temperature To and the outer tube is maintained at temperature T I .  The 

llano particles concentration is described as Co and Cl at the walls of inner and outer cylinders, 

correspondingly. The problem has been considered in the system of cylindrical coordinates. 

Fig. 6.1: The simplified model of geometry of the problem. 

Introducing a wave frame (r ,  z )  moving with velocity c away from the fixed frame (R, 2) by the 

transformations 

z = Z - c t ,  r = R ,  u = U - C ,  v = V , p = P .  (6.1) 

Let us assume that the velocity field for the flow is V = (v, 0, u). The dimensionless parameters 

used in the problem are defined in Eq. (2.9) and some extra quantities are introduces as follow 

- 0 - T-TO a = C-C P sea: 
TI-To ' ,-& P ~ =  t, SC= &, BT=*(Cl-CO),r= 

P gas: 70 k , (6.2) 
Gr = %(TI  -TO),N~ = * ( C I  Qf - c o ) , N ~  =  TI -T~), a t =  - 

where P, , Nb, Nt , G, and B, represent the Prmdtl number, Brownian motion parameter, 

thermophoresis parameter, local temperature Grashof number and local nanopartide Grashof 

number, respectively. After using the above non-dimensional parameters and employing the 



assumptions of long wavelength (do --+ 0)and low Reynolds number (Re -t 0) , the dimensionless 

form of governing Eqs. (1.15), (1.16) and (1.21) for nanofluid in the wave frame (without using 

primes) take the final form as 

a2u 1 au 1 a2u -+--+-- dp 
dr2 r dr r2 ao2 + B,o+ G,6 = - 

d z '  

The corresponding boundary conditions are described as 

6.2 Solution of the problem 

We use homotopy perturbation method to solve the above non-linear, non homogeneous and 

coupled partial differential equations of second order. The deformation equations for the given 

problems are manipulated as 

(1-9) ('4 p] - ~ 4  P O ] )  + 9 ( &  P] + $%+ 
(6.10) 

~b (EP + + @ P )  + Nt ( (@'+ 3 ( L ) ~ ) )  = 0 } ' 



The linear operator L4 is chosen as 

We suggest the following initial guesses for u7 8 and a 

Now we describe 

Making use of Eqs. (6.14) to (6.16) into Eqs. (6.9) to (6.11) and comparing terms of first two 

orders, we have the following systems 

Zeroth order system 

r4 [uo] - L4 [GI = 0, (6.17) 

with boundary conditions defined in Eqs. (2..27) and (2.28) . 

The solutions of the above zeroth order systems can be obtained by using Eqs. (6.13), (6.17) 

to (6.21) and are found as 

Vl ( lnr  - lnr2)  - lnrl - lnr  
UO ( r ,  87 z ,  q)  = lnrl - lnr2 , 60= 

= no. 
lnrl  - lnr2 



First order system 

The corresponding boundary conditions are stated in Eqs. (2.32) and (2.33). 

The solutions of the above non-linear ordinary differential equations are found as 



01 = - ((lnr - lnr2) (lnr - lnrl) (Nbe2 ( ~ n r ) ~  + Nts2 ( ~ n r ) ~  + 4r21nr 

lnr2 - 3 ~ ~ ~ ~ 1 n r l n r ~  - 3 ~ ~ ~ ~ 1 n r l n r ~  + 12Nbd2 ( ~ n r 2 ) ~  + 12Ntd2 ( 1 7 2 ~ ~ ) ~  

-8c2 (inr2j2 + 9Nbe2 ( ~ n r 2 ) ~  + 9Nte2 ( ~ n r 2 ) ~  - 4e21nr ( ~ n r 2 ) ~  + 8 ~ ~ 1 n r i  

$466 cos 8(lnr2 - ~ n r 1 ) ~ ( 6 ~ ~  + 6Nt - lnr + 21nr2 - l n q )  - 4c21nr 

In (6 + ECOS 8) + NbE21nrlnrl + Nt~21nrlnrl - 24Nbd21nr21nrl 

-24~tS~lnr21nrl + 12~~lnr21nrl - - 15Nte21nr2 

lnrl + 8 ~ ~ 1 n r l n r ~ l n r ~  - 20~~1nr; lnr~  + ~ ~ l n r ~ l n r ~  - 1 5 ~ ~ ~ ~ 1 n r ~  

lnrl + 8 ~ ~ 1 n r l n r ~ l n r ~  - 2 0 ~ ~ l n r ; l n r ~  + 12Nbd2 ( ~ n r ~ ) ~  + 12Ntd2 

( ~ n r 1 ) ~  - 4c2 ( ~ n r 1 ) ~  + 7NbE2 ( ~ n r l ) ~  + 7Nte2 ( ~ n r ~ ) ~  - 4 ~ ~ 1 n r  

( ~ n r 1 ) ~  + 16e21nr2 ( ~ n r l ) ~  - 462 (1nr113 - c2 c o s 2 0 ( ( ~ ~  + N ~ )  

(lnr12 - ( 8  + 3Nb + 3Nt) (~n7-2)~ + 3(4 + 3Nb + 3Nt)lnr2 ( lnrl)  

-(4 + 5Nb + 5Nt) ( ~ n r l ) ~  + lnr((4 - 3Nb - 3Nt)lnr2+ 

(-4 + Nb + Nt)lnrl))))/(24r12 (1nr2 - ~ n r ~ ) ~ )  

01 = ((Na + Nt)c(lnr - lnrz) ( - E  + E cos 28+ ( E  + b cos 6)(lnr2 - lnrl))  
(6.30) 

(lnr - lnrl)(lnr - 21nr2 + 1 n r ~ ) ) / 6 N ~ r ~ ~ ( ~ n r ~  - ~ n r ~ ) ~  

Now for q --t 1, Eqs. (6.14) to (6.16) approach the following solutions 

o (r,  8, z )  = a0 + 01,  (6.33) 

where uo, 00, ao, u l ,  81, and a1 are defined in Eqs. (6.22) and (6.28) to (6.30) respectively. 

The instantaneous volume flow rate Q is given by 

The mean volume flow rate Q over one period is given as 

Q +2 Q (z ,  t )  = - - - + 2 4 ~ 0 s  2nz + +2 cos2 2nz. 
7 1 . 2  (6.35) 



Now we can evalua.te pressure gradient dpldz by solving Eqs. (6.34) and (6.35) and is elaborated 

as 
d P =  1 
z ~ ( 1 5 ~ ~ ( 2 4 Q  - (Br + GT)r ( r l -  r2I3 

(rl  + r2) + 127r4(4 cos 27rz + 4 cos 47rz)) cos 30 + 2e2 cos 20(27r 

( ( B ,  + G,)(rl - r ~ ) ~ ( 4 r ?  + 22rlr2 + 1 9 ~ ; )  - 5(8r: - 27rIr2+ 

1 9 r i ) ~ l )  - 108OQ(r2 - 6)  - 45(B, + G,)7r(rl - r2)3(rl + r2 )  

6 + 607r(36(-r2 + 6)4  cos 2n(z  - t )  + 9(-r2 + 6)42 cos47rz - r2 
2 (2rl + 2rlr2 + r;)vl(lnrl - Inr2))) + E cos O(-B,x(rl - r2)3 

( 4 ( n  - 6)(16r: + 43rlrz + 317-22 - 45(rl + r2)6) + 45(rl + r2)e2) 

-Gr7r(rl - r2)3(4(r2 - 6)(16rf + 43r1r2 + 317-22 - 45(r1 + r2)6) 

+45(r1 + r2)e2) + 40(7r(rl - r2)(28r! + rlra + r;)v1(r2 - 6)+ 

27$(4(r2 - ~ 5 ) ~  + c2))  + 607r(36(4(r2 - 6)2 + e2)4cos 2nz+ 
2 2 9(4(r2 - 6)2 + E )$ cos 47rz - 4r2 (2r: + 2rlr2 + r;)vl 

(rz - S)(lnrl - Inn)))  + 2(-120(7r(rl - r2)2(2rl + r2)V1 

+6Q(r2 - S))(ra - 6)2 - 30(7r(8r: + 3rpr2 - l l r ; )v l  + 36 

Q(r2 - 6))e2 + BTn(rl  - ~ ) ~ ( 2 ( r 2  - S)2(8rf + 14rlr2+ 

8ri - 15(r1 + r2)d) + (8r; + 44r1r2 -+ 381-22 - 45(rl + r2)  

S)e2) + GT7r(r1 - T ~ ) ~ ( ~ ( T ~  - 6)2(8rT + 14rlr2 + 8r;- 

15(rl + r2)S) + (87-12 + 447-17-2 + 38r; - 45(r1 + r2)6)e2)+ 

1807r(-4(r2 - 6)(2(r2 - 6)2 + ~ E ~ ) ~ C O S  27r ( Z  - t )  - (r2 - 6)  

2 2 (2(r2 - 6)2 + 36 )4 cos 47rz + r2(2rf + 2rlr2 + r;)v1c2 

(1n.1 - 1nr2)))) 

The data for pressure rise is obtained by integrating Eq. (2.41) numerically and presented in 

graphs. 

6.3 Graphical results and discussion 

In this section, we discussed the effects of different physical parameters on the profiles of velocity, 

temperature and nano particles concentration. Three dimensional analysis is also made to 

measure the influence of physical quantities on the flow properties in space. The variation 



of pressure gradient and peristaltic pumping is also considered for various values of pertinent 

quantities. The trapping bolus phenomenon observing the flow behavior is also manipulated 

as well with the help of streamlines graphs. Figs. 6.2 to 6.9 are drawn to see the impact of 

different parameters on the peristaltic pressure rise Ap and pressure gradient dp/da, accordingly. 

Variation of velocity profile, temperature distribution and nano particle phenomenon under the 

influence of observing parameters is shown in Figs. 6.10 to 6.15, respectively. The streamlines 

for the parameters B,, G,, Nb and Nt are displayed through the Figs. 6.16 to 6.19. 

Fig. 6.2 represents the effects of parameters 6 and G, on the pressure rise Ap. It  is no- 

ticed here that pressure rise is an increasing function of local temperature Grashof number G, 

throughout the domain but for 6, the pressure rise Ap is increasing in the retrograde pumping 

region (Ay > 0, Q < 0), while decreasing in the peristaltic pumping region (Ap > 0, Q > 0) 

and augmented pumping region (Ap < 0, & > 0). If someone look at the Fig. 6.3,  it is ob- 

served that Ap gets decreased with the increasing effects of Brownian motion parameter Nb. 

From Fig. 6.4, it is measured that pressure rise Ap is varying linearly with local nano particle 
i 

Grashof number B, and the effects of the parameter E are same as that of 6 measured in Figs. 
I 

6.2 and 6.3. Similarly, the variation of the parameter thermophoresis parameter Nt gives the 

same behavior on pressure rise graph as seen for G, (see Fig. 6.5). I 

We can see the impact of parameters local temperature Grashof number G, and local nano 
I 

particle Grashof number B, on the variation of pressure gradient dp/dz from Fig. 6.6 when 

all other parameters ase kept fixed. It is noted that pressure gradient is directly proportional 

to both the parameters. It is also depicted from the considered graph that pressure gradient 

is wider near the walls but closer in the central part of the geometry which means that much 

pressure gradient is needed at the boundaries to maintain the flow as compared with the middle 

part for the parameters G, and B,. To see the influence of radius 6 and flow rate Q on the 

pressure gradient dpldz, we prepared the graph shown in Fig. 6.7. It is seen here that pressure 

gradient is decreasing function of flow rate Q at all points within the flow but it is also measured 

from this graph that dpldz is reducing in the middle of the flow but rising in the boundaries of 

the container. Fig. 6.8 presents the effects of velocity of the inner tube Vl and E on the pressure 

gradient profile. One comes to know from this graph that dplda is changing linearly with Vl 

but for E ,  pressure gradient gets reduction in the region a E [0.9,1.7] while observes increment 



at walls of the outer cylinder, i.e., in the range z E [0.64,0.9] U [1.7,1.97]. We can observe 

the variation of pressure gradient with Brownian motion parameter Nb and thermophoresis 

parameter Nt from Fig. 6.9. We can observe that pressure gradient profile rises directly when 

someone varies the magnitude of both the parameters throughout the flow. 

It is observed from Fig. 6.10 that velocity profile decreases in the region r E [0.1,0.55] but 

increases in the rest of the domain with increasing the value of 6 while direct variation of velocity 

is observed in case of flow rate Q in the every part of the region. We presented the Fig. 6.11 

to obtain the variation of velocity profile u for varying the magnitude of the parameters E and 

Vl . It is depicted that velocity is directly varying with Vl when seen in the range r f [O. 15,0.6) 

but inverse behavior is reported in the zone r E [0.6,1.05] while totally reverse investigation is 

made for the parameter E .  It is noticed from Fig. 6.12 that velocity profile u increases when we 

increase the value of Grashof number G, and local nano particle Grashof number B, at every 

point of the flow. The velocity profile gets maximum altitude with the increasing effects of Nt 

but rise in the value of Nb lessened the height of velocity distribution u (see Fig. 6.13). 

To see the behavior of temperature distribution 6' with the variation of Brownian motion pa- 

rameter Nb and thermophoresis parameter Nt , the Figs. 6.14 (a, b) and 6.15 (a, b) are displayed. 

It is concluded here that temperature is increasing with the increase in the magnitude of Nb 

and Nt. It  is also mentioned here that temperature gets maximum value at the boundary of the 

outer tube and vanished at the centre of the outer tube. We look at the Figs. 6.16 (a, b) and 

6.17 (a, b) in order to observe the impact of Nb and Nt on the nano particles concentration a. 

From these graphs, we can release the observation that nano particles distribution gets larger 

with rising Nt but diminished when we increase the effects of Nb. 

A very interesting phenomenon in the fluid transport is trapping. In the wave frame, 

streamlines under certain circumstances swell to trap a bolus which travels as an inlet with the 

wave speed. The occurring of an internally circulating bolus stiffened by closed streamline is 

called trapping. The bolus described as a volume of fluid bounded by a closed streamlines in 

the wave frame is moved at the wave pattern. Fig. 6.18 shows the streamlines for the various 

values of the parameter local nano particle Grashof number B, in the upper part of the outer 

cylinder. It is noted that number of trapping bolus is decreasing with increasing the magnitude 

of B, while bolus becomes large when we give greater values to the B,. From Fig. 6.19, it can be 



seen that boluses are increased in counting but size of the bolus is reduced while increasing the 

values of local temperature Grashof number G,. The number of trapping boluses is decreased 

with the rising effects of Nb but size of the bolus remains steady with varying Nb (see Fig. 6.20). 

Fig. 6.21 reveals the effect of Nt on the streamlines for wave travelling down the tube. It is 

noticed here that number of bolus is varying randomly with Nt but bolus expanded across the 

wave with increasing the magnitude of Nt. 

Fig. 6.2: Variation of pressure rise Ap with 6 and G, for fixed values of 8 = 0.8, 4 = 0.1, 

B,=0.2, Nb=0.5, Nt =0.2, ~ = 0 . 1 ,  V -  =0.3. 



Fig. 6.3: Variation of pressure rise Ap with 6 and Nb for fixed values of 8 = 0.8, = 0.1, 

Nt = 2, 6 = 0.2, Vl = 0.3. 

Fig. 6.4: Variation of pressure rise Ap with E and B, for fixed values of 8 = 0.8, 4 = 0.1, 

Nb = 0.5, G, = 0.2, Nt = 0.2, 6 = 0.1, Vl = 0.3. 



Fig. 6.5: Variation of pressure rise Ap with E and Nt for fixed values of 0 = 0.8, 4 = 0.1, 

Nb = 0.5, Gr = 0.2, Br = 0.5, b = 0.1, Vl = 0.3. 

Fig. 6.6: Variation of pressure gradient dp ldz  with G, and B, for fixed values of E = 0.01, 

6 = 0.02, Vl = 0.3, 9 = 0.8, 4 = 0.1, Q = 0.5, Nb = 0.5, Nt = 0.2. 



Fig. 6.7: Variation of pressure gradient d p l d z  with 6 and Q for fixed values of E = 0.01, G, = 2, 

VI = 0.3, 6 = 0.8, 4 = 0.1, B, = 0.8, Nb = 0.5, Nt = 0.2. 
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Fig. 6.8: Variation of pressure gradient d p l d z  with e and Vl for fixed values of 6 = 0.1, G, = 2,  

& = 0 . 5 , 0 = 0 . 8 , g ) = O . l ,  B ,=0.2 ,Nb=0.5 ,  Nt=0.2 .  



Fig. 6.9: Variation of pressure gradient d p l d z  with Nb and Nt for fixed values of S = 0.05, 

G r = 2 , Q = 1 , 8 = 0 . 8 , ~ = 0 . 1 ,  B r = 0 . 2 , ~ = 0 . 0 1 , V l = 0 . 1 .  

Fig. 6.10: Variation of velocity profile u with 6 and Q for fixed values of E = 0.1, Nt = 0.5, 

Nb = 0.1, B, = 0.3, G, = 1, z  = 0, Vl = 0.3, 8 = 0.8, 4 = 0.1, (a) for 2-dimensional, (b) for 

3-dimensional. 



Fig. 6.11: Variation of velocity profile u with E and Vl for fixed values of 6 = 0.1, Nt = 0.5, 

Nb = 0.1, B, = 0.3, G, = 1, z = 0, Q = 1, 8 = 0.8, 4 = 0.1, (a) for 2-dimensional, (b )  for 

3-dimensional. 



Fig. 6.12: Variation of velocity profile u with B, and G, for fixed values of 6 = 0.1, Nt = 0.5, 

Nb = 2, E = 0.01, Vl = 0.3, z = 0, Q = 1, 8 = 0.8, c$ = 0.1, (a) for 2-dimensional, ( b )  for 

3-dimensional. 



Fig. 6.13: Variation of velocity profile u with Nb and Nt for fixed values of 6 = 0.1, B, = 0.9, 

G, = 2, E = 0.3, & = 0.1, z = 0, Q = 1, 8 = 0.8, q5 = 0.1, ( a )  for 2-dimensional, (b)  for 

3-dimensional. 



Fig. 6.14: Variation of temperature profile 8 with Nb for fixed values of S = 0.1, t. = 0.4, 

VI = 0.1, Nt = 0.2, z = 0, 0 = 0.8, 4 = 0.1, (a) for 2-dimensional, ( b )  for 3-dimensional. 



Fig. 6.15: Variation of temperature profile 8 with Nt for fixed values of 6 = 0.2, E = 0.4, 

Vl = 0.1, Nb = 0.5, z = 0, 6 = 0.8, 4 = 0.1, (a) for 2-dimensional, ( b )  for 3-dimensional. 



Fig. 6.16: Variation of nanoparticles phenomenon o with Nb for fixed values of 6 = 0.1, E = 0.2, 

Nt = 0.1, Vl = 0.1, z = 0, 8 = 0.8, 4 = 0.1, ( a )  for 2-dimensional, ( b )  for 3-dimensional. 



Fig. 6.17: Variation of nano~articles phenomenon a with Nt for fixed values of S = 0.1, E = 0.4, 

Nb = 0.5, Vl = 0.1, z = 0, 8 = 0.8, 4 = 0.1, (a) for 2-dimensional, (b)  for 3-dimensional. 



Fig. 6.18: Stream lines for different values of B,, ( a )  for B ,  = 0.1, (b)  for B, = 0.5, ( c )  for 

B ,  = 0.9. The other parameters are E = 0.2, Vl = 0.3, 9 = 0.1, 4 = 0.1, Q = 0.6, 6 = 0.1, 

Nt = 0.8, Nb = 0.1, G, = 2. 

Fig. 6.19: Stream lines for different values of G r ,  (a) for Gr = 1, (b)  for GT = 2, ( c )  for GT = 3. 

The other parameters are E = 0.2, Vl = 0.3, 9 = 0.1, 4 = 0.1, Q = 0.6, S = 0.1, Nt = 0.8, 

Nb = 0.1, B ,  = 0.9. 



Fig. 6.20: Stream lines for different values of Nb, (a )  for Nb = 0.1, ( b )  for Nb = 0.5, (c )  for 

Nb = 0.9. The other parameters are E = 0.1, Vl = 0.3, t9 = 0.1, qi = 0.1, Q = 0.6, d = 0.1, 

Nt = 1, G, = 2, B, = 0.2. 

Fig. 6.21: Stream lines for different values of Nt, (a )  for Nt = 0.1, (b)  for Nt = 0.3, (c)  for 

Nt = 0.5. The other parameters are c = O.l,,Vl = 0.3, 0 = 0.8, 4 = 0.1, Q = 0.6, 6 = 0.1, 

Nb = 0.5, GT = 1, B, = 0.3. 



Chapter 

Mat hemat ical treatment for the 

peristaltic flow of nanofluid through 

eccentric tubes comprising porous 

medium 

In the current chapter, mathematical model of peristaltic flow of nanofluid between eccentric 

tubes is investigated through a porous medium. Assumptions of long wave length and low 

Reynolds number are carried out to observe the intestinal flow. The flow is considered to be 

unsteady and incompressible. Analytical solutions are evaluated through homotopy perturba- 

tion method. The expression of pressure rise is obtained through numerical integration whose 

data is presented through table. The problems under consideration are made dimensionless to 

reduce the complication of the analysis and to merge the extra parameters. All the emerging 

parameters affecting the flow phenomenon are discussed graphically. Trapping bolus scheme is 

also presented through streamlines for various pertinent quantities. The contents of this work 

are published in the journal "Applied Nanoscience " , 4 (2014) 733-743. 



7.1 Mat hemat ical formulation of the problem 

Let us analyze the peristaltic pumping characteristics of an unsteady and incompressible nanofluid 

between two vertical eccentric tubes through a porous space (see Fig. 6.1). The dimensions 

of the geometry are similar to those mentioned in chapter 2. Here, the medium of the flow is 

considered as porous. The velocity vector for the current problem is described as V = (V, 0, U). 

We incorporate the dimensionless quantities as described in Eq. (6.2) in addition with the 

following new parameter 

here k1 is the porosity parameter. After including the non-dimensional parameters and consid- 

ering the approximations of long wavelength (A 4 oo) and low Reynolds number (Re << 1) , 
the dimensionless form of governing Eqs. (1.15), (1.16) and (1.21) (after ignoring primes) for 

nanofluid in porous space take the concluding form as 

d28 1 d8 1 d28 "3. i a8a0)  ( ( ~ B ) ~ + I  (b)') 
-+--+--+Nb ( -- +--- +Nt - - 
dR2 R d R  R 2 @  dR aR R2 d8 a8 dR R2 as = 0, (7.3) 

The related dimensionless boundary conditions for above partial differential equations are de- 

scribed in Eqs. (2.20) , (2.21) , (6.7) and (6.8) . 

7.2 Solution of the problem 

We use homotopy perturbation method to solve the above non-linear, nonhomogeneous and 

coupled partial differential Eqs. (7.2) to (7.4). The deformation equations for the given problems 

are described as 



We assume 

as a linear operator. Let us consider the following initial guesses for U, 8 and a 

- V(1nR- 1nr2) - lnrl - InR - 
u(-J = 7 so = - - 0 0 .  

lnrl - 1nr2 lnrl - lnr2 

Now using the same procedure as adopted in last chapter (see Eqs. (6.14) to (6.16)), we have the 

following two systems of differential equations along with corresponding boundary conditions. 

Zeroth order system 

L5 [uo] - f 5  [Go] = 0, (7.10) 

First order system 



Now from Eqs. (7.16) to (7.21), the final solutions for velocity U, temperature 8 and concen- 

tration a can be directly written as 



- W r i  /R )  0 = ------ l n ( n / r 2 )  - (ln$ln$ ( ( ~ b  + Nt) e2 ( l n ~ ) ~  + (4 - 3Ns - 3Nt) c21nRlnr2+ 

1 2 ( ~ b  + ~ t )  d 2  (~n7-2)~  + ( S N ~  + 9Nt - 8 - 41nR)e2 ( ~ n r ~ ) ~  +8c2 (lnr213 + 4  
2 

6fcosQ ( ~ n ? )  (6Ne + 6Nt - In ( R )  + 21nr2 - lnrl) - 4s21n~ln  (6 + ecos6) 

+ (Nb + Nt) e2lnRlnrl - 24 (Nb + Nt) b21nr21nrl + (12 - 15Nb - 15Nt) e21nr2 

lnrl+ (8EnR - 20 ~ n r z ) c ~ ~ n ~ ~ n r 2 i n r ~  + 12 ( N ~  + N ~ )  d2 (lnr1l2 + ( 7 ~ ~ +  

7Nt - 4)e2 ( l n ~ 1 ) ~  + (161nr2 -41nRrl) e2 (lnr1)2 e2 cos 2B((Nb + Nt)  

( l n ~ ) ~  - (8  + 3Nb + 3Nt) ( l n ~ 2 ) ~  + 3(4 + 3Nb + 3Nt)lnr21nrl - (4+ 

5Nb + 5Nt) (lnr1)2 + lnR((4 - 3Nb - 3Nt)lnr2 + (-4 + Nb + Nt)  x 

u = 1 
6NaqZ([nr2-lnr1)3 ( ( N b  + N t ) f  ( I n R  - Inr2) ( C  2@ - l )  + ( C  + cos @) 

In(r l /R)  
. (7.24) 

(Inr2 - lnrl))( lnR - lnrl)( lnR - 21nr2 + lnrl))  + m ( T l / T 2 )  

Now we can evaluate pressure gradient dPld.2 b y  solving Eqs. (2.38) and (2.39) and is elabo- 

rated as 



The parameters used in above expression are defined as 

The pressure rise A P  in non-dimensional form is defined in Eq. (2.41) and is found by numerical 

integration with the help of a mathematical software Mathematics. 



7.3 Graphical results and discussion 

To establish the nanofluid characteristics through a porous space,we analyzed the unsteady and 

incompressible peristaltic flow of nano fluid between two eccentric tubes having different radii 

enclosing the porous medium. Analytical solutions are carried out with the help of homotopy 

perturbation technique. The expression for pressure rise is evaluated numerically to examine 

peristaltic pumping whose variation can be observed from given Table 7.1. All the parameters 

in the problem are made dimensionless by suitable transformations. This section discussed the 

physical behavior of all the pertinent parameters on the distributions of velocity, temperature 

and nano particles concentration. Figs. 7.1 to 7.4 represents the pressure rise variation for 

various emerging parameters. The pressure gradient profiles are displayed in Figs. 7.5 to 7.8. 

The effects of various physical quantities on the profiles of velocity, temperature and nano 

particles phenomenon is discussed through Figs. 7.9 to 7.15. Trapping bolus behavior of the 

intestinal flow is described through streamlines sketched in Figs. 7.16 to 7.18. 

Fig. 7.1 indicates that pressure rise AP is decreasing with local temperature Grashof number 

G, while it increases for the amplitude ratio 4 in the retrograde pumping ( A P  > 0, Q < 0) and 

gives reverse variation in the peristaltic pumping ( A P  > 0, Q > 0) and augmented pumping 

( A P  < 0, Q > 0) regions. One can observe from Fig. 7.2 that pressure rise is increasing with the 

increase in local nano particle Grashof number B, and peristaltic pumping occurs in the region 

Q E [O, 0.5) . From Fig. 7.3, it can be noticed that peristaltic pumping rate is directly varying 

with the porosity parameter k. Fig. 7.4 suggests that pumping rate is inversely proportional 

to the radius 6. 

Fig. 7.5 reveals the pressure gradient variation aP/dZ for the porosity parameter k and flow 

rate Q. It can be seen that pressure gradient is increasing with the increase in the magnitude 

of k but opposite relation is observed with the flow rate Q. It is also noted here that pressure 

gradient curves are varying uniformly with both the porosity of the space and the flow rate. 

From Fig. 7.6, we found that there is inverse change in pressure profile with local nano particle 

Grashof number B, and local temperature Grashof number G,. Fig. 7.7 implies that increase 

in the velocity Vl results in decreasing the pressure gradient curves while there is a direct 

relation between the distance parameter E and the change in pressure aP/aZ. One can explain 

the variation of pressure gradient aP/dZ for the amplitude ratio 4 and the radius 6 from Fig. 



7.8. It is very obvious from this figure that pressure gradient is decreasing with the radius 5 

throughout the flow domain but have opposite behavior with the amplitude ratio in the regions 

Z E [0, 0.3) U (0.8,1] . 

The profile of velocity U for the parameters k and Q can be analyzed from Fig. 7.9. It can 

be observed here that velocity profile is diminished with the increase in porosity parameter k 

but it rises up with the flow rate Q. It  can be predicted from Fig. 7.10 that velocity is changing 

directly with the increase in local nano particle Grashof number B, and local temperature 

Grashof number G, and also it remains uniform throughout the flow. Fig. 7.11 denotes that 

axial velocity distribution U is increasing with the increase in constant velocity Vl of the inner 

annulus but for distance parameter E, it gives same behavior in the domain R E (0.6,l.l) and 

reverse variation in the remaining part. 

The variation of temperature distribution 0 against the amplitude ratio q5 and distance E 

is displayed in Fig. 7.12. It is depicted here that temperature curves are getting lower with e 

and 4. Fig. 7.13 concludes that temperature profile is rising up with the increase in Brownian 

motion parameter Nb and thermophoresis parameter Nt. It can be declared fro Fig. 7.14 that 

concentration of the nanoparticles gets the same variation with E and q5 as that of observed in the 

case of temperature profile. Fig. 7.15 discloses that nanoparticles concentration is increasing 

with thermophoresis parameter Nt but decreases with Brownian motion parameter Nb. 

Trapping bolus phenomenon for local nano particle Grashof number B, can be discussed 

through Fig. 7.16. It is illustrated here that circulating boluses are reduced in the sense of 

numbers but expanded in size with the increase in B,. The variation of trapping boluses with 

the local temperature Grashof number G, is visualized in Fig. 7.17 and it is measured from 

this graph that the behavior of boluses is similar as that experienced in the previous figure. 

However, the influence of porous space on the variation of trapping bolus phenomenon can be 

examined through Fig. 7.18 and it is derived that number of boluses is increasing with the 

increase in numerical values of porosity parameter k while boluses are contracted in dimensions 



which indicates that more the medium is porous the bolus reduces its volume to pass through. 

Table 7.1: Variation of pressure rise A P  for fixed values of 8 = 0.8, 6 = 0.1, B, = 0.2, G, = 0.1, 

Q 

-1.0 

-0.9 

-0.8 

A P  for k = 0.5 ,4= 0.1 

0.527163 

0.450834 

0.374505 

A P  for k = 1 , 4 =  0.1 

0.797414 

0.721085 

0.644755 

A P  for k + oo,q5= 0.1 

1.067660 

0.991332 

0.915003 



Fig. 7.1: Variation of pressure rise A P  with 4 and G, for fixed values of 8 = 0.8, S = 0.1, 

BT = 0.1, k = 0.5, t = 0.3, Nb = 0.5, Nt = 0.2, E = 0.3, Vl = 0.1. 

Fig. 7.2: Variation of pressure rise A P  with q5 and B, for fixed values of 8 = 0.8, 5 = 0.1, 

GT = 1) Nb = 0.1) k = 0.5, t = 0.3, Nt = 0.5, E = 0.3, Vl = 0.1. 



Fig. 7.3: Variation of pressure rise A P  with 4 and k for fixed values of 8 = 0.8, b = 0.1, 

G, = 0.1, Nb = 0.1, B, = 0.1, t = 0.3, Nt = 0.5, E = 0.3, Vl = 0.1. 

Fig. 7.4: Variation of pressure rise A P  with 4 and 6 for fixed values of 8 = 0.8, B, = 0.1, 

G, = 2, Nb = 0.1, k = 0.5, t = 0.3, Nt = 0.5, E = 0.3, Vl = 0.2. 



Fig. 7.5: Variation of pressure gradient aP/aZ with k and Q for fixed values of E = 0.3, 

t = 0.01, B, = 0.3, S = 0.1, Vl = 0.1, 6' = 0.8, q5 = 0.1, G, = 0.5, Nb = 0.1, Nt = 0.5. 

Fig. 7.6: Variation of pressure gradient aP/aZ with Br and Gr for fixed values of E = 0.3, 

t=0.01,  k = 0 . 5 , 6 = 0 . 1 , V ~ = 0 . 1 , 8 = 0 . 8 , ~ = 0 . 1 , Q = 2 ,  Nb=O.l,  N t=0 .5 .  



Fig. 7.7: Variation of pressure gradient aP/aZ with E and Vl for fixed values of k  = 0.5, 

t=O.Ol, B , = 0 . 1 , 6 = 0 . 1 , Q = 2 , 8 = 0 . 8 , ~ = 0 . 1 , G , = 1 ,  Nb=O.l, Nt=0.5. 

Fig. 7.8: Variation of pressure gradient dP/dZ with 4 and 6 for fixed values of E = 0.3, t = 0.01, 

B,=0.1, Q=2,Vl=0.2,8=0.8,  k=0.5,GT=0.2,  Nb=O.l, Nt=0.5. 



Fig. 7.9: Variation of velocity profile U with k and Q for fixed values of 6 = 0.3, Nt = 0.5, 

Fig. 7.10: Variation of velocity profile U with G, and B, for fixed values of E = 0.3, Nt = 0.5, 

Nt,=O.l,t=O.l,  b=0.1, k = 0 . 1 , Q = 2 , z = 0 , V l = 0 . 1 , e = 0 . 8 , q 5 = 0 . 1 .  



Fig. 7.11: Variation of velocity profile U with E and Vl for fixed values of G, = 1, Nt = 0.5, 

Nb=0 .1 , t=0 .3 ,S=0 .1 ,  k=0 .1 ,  Q = l , Z = O ,  B ,=0.3 ,6=0.8 ,4=0.1 .  

Fig. 7.12: Variation of temperature profile with E and 4 for fixed values of 6 = 0.1, t = 0.3, 

Nb=0.4,  Nt=0.2 ,  Z = 0 , 8 = 0 . 8 , k = O . l .  



Fig. 7.13: Variation of temperature profile 8 with Nb and N t  for fixed values of 6 = 0.1, t = 0.3, 

Fig. 7.14: Variation of nano particles concentration a with q5 and 6 for fixed values of 6 = 

0.1,Nb=0.4, N t=0 .2 ,Z=0 ,B=0 .8 , t=0 .3 ,  k=0 .1 .  



Fig. 7.15: Variation of nano particles concentration u with Nb and Nt for fixed values of 6 = 0.1, 

t = O . l , ~ = O . l , Z = 0 , 6 = 0 . 8 ,  t = 0 . 3 , k = 0 . 1 .  

Fig. 7.16: Stream lines for different values of B,, (a )  for B, = 0.3, ( b )  for B, = 0.9, (c )  for 

B, = 2. The other parameters are c =  0.1, Vl =0.1, t =0.1, k=0 .3 ,  6'=0.8, 4 =  0.1, Q = 1, 

b = 0.1, Nt = 0.5, Nb = 0.1, G, = 0.6. 



Fig. 7.17: Stream lines for different values of G,, (a) for GT = 0.6, (b) for G, = 0.9, (c )  for 

G, = 1.5. Theother parametersare ~ = 0 . 1 ,  Vl = 0.1, t =0.1, k=0.3,  8=0.8, $ =  0.1, Q = 1, 

s=O.l, Nt=0.5,  Nb=O.l,  BT=0.3. 

Fig. 7.18: Stream lines for different values of k, ( a )  for k = 0.1, (b) for k = 0.4, (c )  for k = 0.9. 

Theother parameters are E =  0.1, Vl =0.1, t =0.1, Br =0.3, 0 =  0.8, q5= 0.1, Q =  1, S=0.1, 

Nt = 0.5, Nb = 0.1, GT = 1. 



Chapter 8 

Conclusions 

This chapter is prepared to discuss the major findings of the whole study and arranged as 

follows: 

8.1 Concluding remarks of chapter two 

In chapter two, the series solutions for the peristaltic flow of Jefhey fluid have been analyzed 

in between two eccentric tubes under the effects of MHD. The problem is formulated under 

the implementation of long wavelength and low Reynolds number. All the results are described 

graphically by observing the variation of various physical parameters. The main results evalu- 

ated from the above discussion are summarized as follow: 

1. It is found that peristaltic pumping rate increases with 6, M, 6, 4 and Vl but decreases 

with 0 and XI. 

2. It is observed that pressure gradient profile is varying directly with M, 6, E, 4 and Vl 

while inversely proportional to X1 in the centre of the channel, however, the behavior is 

quite opposite at the corners. 

3. It is measured that velocity distribution is an increasing function of 6, E, 4 and Vl but 

decreasing with M, Q and t both for two and three dimensions. 

4. It is seen that number of bolus is increasing but size is decreasing when someone varies 

the values of XI and inverse attitude is reported with the variation of M, 4 and Q. 
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5. It is also observed that HPM and perturbation solutions [78] match closely with each 

other and presence of MHD results in suppressing the velocity profile. 

8.2 Concluding remarks of chapter three 

In chapter three, the peristaltic flow of Jeffrey fluid in a rectangular channel having compliant 

walls has been presented under the assumptions of long wavelength and low Reynolds number. 

The series solution is found with the help of eigen function expansion method. The graphs of 

all the results are presented and discussed for all pertinent parameters. Following main points 

from the graphical behavior are evaluated as: 

1. It is seen that velocity profile is rising with E3 and E4. 

2. It is found that velocity profile is declining with P, El and Ez both for two and three 

dimensions. 

3. It is noted that size of the bolus is increasing on right half of the plane while decreasing 

on left side with the variation of p, 9 and E3. 

4. It is observed that streamlines behavior is quite opposite for XI, El and E2. 

8.3 Concluding remarks of chapter four 

Chapter four gives an account of peristaltic flow in a duct for a Jeffrey fluid with partial slip 

effects. The equations are modeled and simplified using long wavelength and low Reynold's 

number approximations. The effects of various parameters on velocity u, pressure rise Ap, 

pressure gradient d p l d x  and trapping are discussed through graphs. We have concluded the 

following observations: 

1. The velocity field increases with the increase in X1 and Q and decreases with the increase 

in p, PI and 4. 

2. The rise in pressure gradient is observed with increase in P1 and X1 and a reduction is 

observed with increase in @, 9 and Q. 



3. Maximum resistance to the flow is observed at x = 0.5, where as, a small pressure gradient 

is observed at x < 0.2 and x > 0.8. 

4. A linear dependence of pressure rise per unit wavelength is observed, pressure rise increases 

with increase in p and q5 and suppresses in magnitude is observed for PI and XI. 

5. In size of bolus formed above and below y = 0 there is an increase with increase in /3 and 

4 while decrease with the flow rate Q. 

6. The major role of the slip conditions is observed to slow down the flow velocity and 

increase the peristaltic pumping rate. 

8.4 Concluding remarks of chapter five 

In chapter five, analytical series solutions are presented for the peristaltic flow of Carreau fluid 

in gap between two eccentric tubes. The problem is measured under the assumptions of long 

wave length and low Reynolds number. The comparison of present analysis is also made with 

the existing literature. The main findings of the above work are as listed below: 

1. It is measured that in peristaltic pumping, the pressure rise curves rise up with 5 but fall 

down with We and n. 

2. It is observed that pressure rise is a decreasing function of We, n and 8 while increasing 

function of ra.dius S. 

3. From graphical results, it is seen that velocity profile is decreasing with the increase in 

We and n in left half of the domain but reverse attitude is measured in the right half 

while it increases with S throughout the region. 

4. It is depicted that the number of bolus is changing inversely with We and Q but dimen- 

sions of the bolus increase. 

5 .  It is also concluded that if we put We = n = 0 in the present analysis we get the results 

of previous work done in [78] . 



8.5 Concluding remarks of chapter six 

The authors have found the effects of heat and mass transfer on the peristaltic flow of nanofluid 

in a rectangular channel in chapter six. The equations of motion are evaluated in dimensionless 

form in a wave frame of reference. The obtained partial differential equations are solved with 

the help of well known homotopy perturbation method. The effects of all pertinent parameters 

are measured through graphs for velocity, temperature and nano particles concentration both 

in two and three dimensions. From the above analysis, following major points are evaluated: 

1. The pressure rise increases with the increase in local nano particle Grashof number BT 

but opposite attitude is seen for local temperature Grashof number G, and radius of the 

inner tube 6. 

2. Pressure gradient reduces with Q, G,, 6, BT, Vl and E while increases with the amplitude 

ratio 4. 

3. The presence of porous medium affects in decreasing the velocity of the nanofluid while 

the more values of flow rate Q, G,, B, and Vl results in rising up the profile of velocity. 

However, the distance parameter E reduces the velocity of the flow in left part of the 

domain and lifts up in the remaining area. 

4. Temperature distribution decreases with E and 4 but increases with the Brownian motion 

parameter Nb and thermophoresis parameter Nt. 

5. The effect of Nt, E and 4 on nano particles concentration is similar to that of temperature 

profile but Nb leaves the inverse impact on the nano particles concentration. 

6. Trapping boluses are reduced in numbers but enlarge their dimensions with the numerical 

increase in B, and G,. 

8.6 Concluding remarks of chapter seven 

The mathematical model of peristaltic flow of an unsteady nanofluid between eccentric tubes 

having porous space has been analyzed in chapter seven. All the results are obtained analytically 



and discussed the contribution of various emerging parameters graphically. However,the data 

for the pressure rise is obtained by numerical treatment whose variation have been prescribed 

through table. Following are the main results evaluated in this investigation: 

1. The peristaltic pumping rate increases with the increase in porosity parameter lc. 

2. With the increase in values of porosity parameter k, change in pressure becomes large but 

it diminishes with Q ,  G,, S, B,, Vl and E while direct relation is seen between pressure 

gradient and amplitude ratio q5 at the corners as compared with the central part of the 

domain. 

3. The presence of porous medium affects in decreasing the velocity of the nanofluid while 

the more values of flow rate Q, G,, B, and Vl results in rising up the profile of velocity. 

However, the distance parameter E reduces the velocity of the flow in left part of the 

domain and lifts up in the remaining area. 

4. Temperature distribution is varying inversely with E and q5 but direct relation is seen for 

Brownian motion parameter Nb and thermophoresis parameter Nt . 

5. The effect of Nt7 E and 4 on nano particles concentration remains same as for temperature 

profile. 

6. Trapping boluses are increased in numbers but reduced in their dimensions with the 

increase in numerical values of porosity parameter k. 
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