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Preface

In the study of fluid mechanics. equations describing the boundary layer fluid flows
along with the soluticn of such governing equation with the help of some suitable
transformation are of great importance [1]. This is all duc the boundary layer theory
and application in [luid dynamics that various useful mathematical differential
equations have been derived in due to study different. Since many fluids of industrial
importance are of non-Newtonian type, therefore in this connection such fluids are
highly dcgraded over Newtonian fluids. Generally, it is obscrved that in need life and
industrial fluid application can be recognized by their usage in petroleum drilling,
polymer engineering, certain separation processes manufacturing of foods and paper
and some other industrial processes |2]. Therefore, such investigation of fluid Tows
cannot be neglected while dealing with the fluids in the fuid of Tuid dynamics.

The term non-Newtonian fluid corresponds Lo various nonlinear relations among stress
and strain therefore it is impossible express all the properties of various non-Newtonian
fluids through single governing equation. Therefore, different models are there for non-
Newtonian fluid [3]. One of such non-Newtonian fluids is Casson fluid. This fluid
behave as elastic solid and Casson fluid corresponds to a yield shear stress in governing
equation.

Crang [4] is known to be first to study time independent 2D flow of a non-Newtonian
fluid caused by a stretching sheet that moves in its own plane having linearly variable
velocity. The idea of Crane [4] was extended by many researchers to study various
aspects of fluid and heat flow in a fluid of infinite extent surrounding a stretching sheet
[3-16].

Some fluids like oil, water and ethylene glycol mixtures etc. do not transfer heat

efMiciently because of having low thermal conductivity. The thermal conductivity these



fluids may be enhanced through suspension of normalized particle materials. Main
characteristic feature of the nanofluid is thermal conducting enhancement [17].

Chapter 1 consists some basic definition and prerequisites [S] for the convenience and
better understanding of the reader. Chapter 2 is a review of study presented by Raj
Nandkeolyar [18). This chapter explains the investigation of heat and mass transfer
through nanofluid over a stretching sheet with homogeneous-heterogeneous reactions.
Numerical solution of this problem is obtained using BVP4C. Chapter 3 is a review of
investigation presented by Bhattacharyya [19] to analysis heat flow through Casson
fluid close to stagnation point over a stretching sheet. Numerical solution for this

investigation are obtained using shooting method.
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Chapter 1

1.1 Fluids

A substance which occupied no fixed shape and deforms easily due to external pressure is known
as fluid.

1.2 Flow

A phenomenon showing the continuous deformation when subject to the applied forces is said to

be flow.

1.3 Properties of fluid

1.3.1 Density

Amount of mass in a unit volume is termed as density. The mathematical form of density p at a

point is

p = lim (ﬂ) {1.1)

v—=0 v

1.3.2 Pressure

The normal force F acting on surface S per unit area is termed as pressure. Mathematically, the

pressure p is defined as

p =lim (). (12)

5—+0 5
1.3.3 Viscosity

The frictional force between any two adjacent layers of a fluid which opposes the motion of one

layer over other is known as viscosity of that fluid.

Mathematically, viscosity u is defined as



Tyx
p=r= (1.3)

1.3.4 Kinematic viscosity
Ratio of viscosity to the density is termed as Kinematic. Mathematically,

_#
v==E, (1.4)

1.4 Types of Fluid

The fluids are of generally two types which are explained as follows:

1.4.1 Ideal fluid

A fluid with no viscosity or negligible viscosity (u = 0) is said to be on ideal fluid.
1.4.2 Real fluid

A fluid whose viscosity is not equal to zero (u # 0} is known as real fluid. 1t is also called viscous

fluid and denoted by u. Real fluid has two major branches.

(1) Newtonian fluid
{2) Non-Newtonian fluid

1.4.3 Newtonian fluid

If stress is linearly proportional to strain then such fluid is known as Newtonian fluid, e.g. water,

oil and alcohol etc. Mathematically, this relationship is written as

du
Tz x5
d

Tyx = B - (1.5)

where  is constant of proportionality.



1.4.4 Non-Newtonian fluid

Ii stress is not linearly proportional to strain then such fluid is known as Newtonian fluid, e.g.

shampoo, paint and blood etc. The mathematical expression of non-Newtonian fluid is

duy™

Te=1(5%) » (a#1) (1.6)

1.5 Types of flow
The nature of fluid flow can be categorized in following types.
1.5.1 Compressible flow

If the density of flowing fluid changes with the position then such a fluid flow is said to be

compressible flow. Flow of gases is the most common example of compressible flow.

1.5.2 Incompressible flow

[f the density of the fluid remain constant throughout the motion then such a fluid flow is termed

as incompressible flow. The example of incompressible flow is the flow of liquids.

1.5.3 Steady flow

If the properties of the fluid in the domain are not changing with respect to time, then such fluid

Aow is said to exhibit stcady flow. Mathematically, it can be represented as

8q _
—=0. (1.7)

where g represents any property of the fluid.
1.5.4 Unsteady flow

If flow properties time dependent then such flow is said to be unsteady flow. Mathematically, it

can be written as



9q
rya 0. (1.8)

1.5.5 Laminar flow

The flow of a fluid in which layers of fluid slide smoothly past each other or remains parallel to
cach other is called laminar flow or stream line flow. The pattern of laminar flow is shown in the

figure below.

faminar flow

TN

1.5.6 Turbulent flow

The flow of a fluid in which there is great disorder and the layer’s of fluid does not slide smoothiy

past each other is called turbulent flow. The pattern of turbulent flow is shown in the figure below.

turbulent flow

— G — —
-—-—'——',""—-L.______ g —

|3
i
| 4

1.6 Temperature

Measure of the average heat in a substance is known as temperature.



1.7 Heat

Heat is a form of energy which flows either between a system and its surrounding or within a

system by virtue of a temperature difference.

1.8 Modes of Heat transfer

‘The heat transfcr from one place to another through following modes:
1.8.1 Conduction

The process by which heat energy is transferred from particle to another particle by collision is

called conduction. The mode of heat transfer usually occurs in solids.
1.8.2 Convection

'The process in which heat is transferred from one place to another due to transfer of molecules the

substance is called convection. This phenomenon appears in liquid and gasses.

1.8.3 Radiation

‘The process in which heat is transferred from one place to another without any material medium

is known as radiation, Visible light is the example of radiation.
1.9 Continuity equation
|.aw of conservation of mass may be represented through continuity equation given as follows

dp B
S TN =o. (1.9)

[‘ollowing form of above equation is obtained by considering flow incompressible i.e. density do

not depend upon time or space or is assumed constant
V.V =0. (1.10)

Above equation may be represented as follows in cylindrical coordinate system



du 18(vr) 1aw

— Al
azty ar +ra¢ 9, (1.1

where 1, v and w corresponds to the components of velocity along x y and z directions.

1.10 Energy equation
Heat transfer in fluids may be studied through energy equation which is modeled with help of first

law of thermodynamics. Following form of energy equation is obtained in rectangular coordinate

system
a'r+ a'r+ aT [ k 62T+62T+62T L (1L.12)
“ox TV gy Yoz~ pep ) |9x% Ayt dz* pep ¢ '
here, we may define dissipation function as follows in 3D case
_, (611)2 av [au av 6w w avr N du N aw? (L13)
¢ = \Gx dy 6x ay az z  ox '

Above equation may take following form in cylindrical coordinate system

or, _oT woT _ [k 62T+16(6T)+162T+ N 10
Yoz Var rop pcp)|822  rar Tor] T T age pCy 4 '

here the cylindrical form of dissipation function may be expressed as follows

o [rawn? 6v2 1aw 19u av | du)?
‘P—z[(z) +G) (G5 +3) ] L%*“‘ atal t s

[16v Bw w
rdo 3r r

1.11 The momentum equation

The momentum equation of motion is given by



pg—:-—- divT + pb, (1.16)

T and b being stress tensor and body force respectively. Further stress tensor T is given as
Tex jxy sz
T={hx Ty 42|, (1.17)
Jux jzy 2z

where Ty, Jy, and J,, represents normal stresses and J,y, J,;, J;, are called shear stress.

1.12 Runge-Kutta method of order 4.

Suppose second order IVP is given by

D =f(z»2),  lab] (1.18)

dx?

subject to the initial conditions are
y@=a  Z@=p (1.19)

To solve the above equation, we have need to change the 2nd order TVP into the system of two 1st

order IVP. For this, we introduce z as follows

d
ﬁ=z:g(x,y,z) (1.20)

L= f@y.)
Now equation (1.19) become
y(a@)=a, z(a) = p. (1.21)

Solution of equation (1.20) with initial conditions Eq. (1.21) can be calculated absolutely through
formula [16]

Yrer = Y +3 (01 + 242+ 245 + qa), (1.22)



Zng1 = 2n + 2 (py + 2p2 + 293 + D), (1.23)
where

g1 = hg (X, Yns Zn )y h
M= hf(xm Y zn)

q; = hg (xn :yn + = rh 20 +

2
P2 = hf (In ‘-J’n !zn )
%)

> (1.24)
a3 = hg (xn+ 5.3+ 2,2, +
D3 =hf(xn JJ’n !zn+pzz):
qs = hg(x, + hr Yn + G3,Z + D3,
Ps = hf (X, + B, yn + 3,27 + p3)./
n and h are number of steps and size of steps respectively defined as ¢ = 2;—“ .
1.13 Shooting method
Consider the two-point BVP as follows,
y'=fxyy) labl (1.25)
Subject to boundary conditions
y(a) =a (126)

y(b) = 8.

This method involves replacing of BVP into system of first order initial value problem. In this

method, we solve the IVP,

y'=fx,y.y), (1.27)

with initial condition

y(@=a, yl(a)=sY. (1.28)



Where s is some approximation of the initial slope. Using any of the methods for solving the
above 1VP, the approximation y{(b) to the solution y(b) is determined. This value is either

smaller or larger than the required solution y{b) = #. Let us denote,
9(s®) = y O by —y(d) = yO(b) - . (1.29)

Where 5% is the first approximation of s, If g(s{°?} = 0, then the condition atx = b is satisfied.
If this condition is not satisfied, then we repeat the above procedure using y'(x) = s(*) to find
another estimate y @ (b) for y(b). The process is usually repeated until the computed value at x =
b agree with the boundary condition y{b) = f8. Depending on the choice of ¥'(b), the computed

solution may over shoot or under shoot the required solution.

The shooting method may be described as a procedure which defines a functional relationship
g(s™) = 0, between y(b) and the slope y'(b). The problem is then to find the root of this
equation, i.e. g(s(®) = 0. The secant method can be used for the value of s,

s(n)_s(n 1) _
sttt = gl — [_g(s(n') _g(s(n—i))] (g(s™) ~b) n=123,.. (1.30)

if the differential equation is linear, then shooting method becomes very simple. It can be shown

that the functional relationship g(s(} = 0 between y’(b) and y(b) is also linear.



Chapter 2

Heat and Mass transfer analysis in nanofluid flow over a

stretching sheet with homogeneous-heterogeneous reactions

Present chapter is related to study the effects of homogencous-heterogencous reactions on the heat
trans{er through nanofluid with internal heat generation source done by Raj Nandkcolayar ef al
[ 18]. The Now under consideration is also under the effect of externally applied magnetic ficld.
Raj Nandkeolayar er al [ 18] are the responsible for presenting this intuitive idea by considering
the copper and gold particle and ended up with obtaining an exact solution in the form of
hypergeometric functions. Moreover, a numerical solution has also been sought, by using BVP4c,

in order to make an in-depth look into the considered prublem,

2.1 Mathematical Modecling
I.ct us assume the two-dimension, incompressible steady flow of nanofluid with viscous fluid as
a base fluid over a stretching sheet with heat generation. The fluid is assumed as electrically
conducting. Consider the sheet is placed in the xz-planc and y is perpendicular to the planc. Two
[orces with same magnitude but opposite in direction arc exerted along the sheet to keep the wall
sirctched and origin location is fixed. The fluid flow is passed through a uniform strong the
magnetic field and it is assumed that the induced magnetic field is very small and hence ignorable
in comparison of applicd magnetic field [7]. The fluid has a water based nanofluid that includes
copper of gold, chemically denoted as (Cu) and (Au) respectively. Nanoparticles and the base fluid
exhibit thermal eqoilibrium state and no slip is present between them. We considered that a
homogcneous and heterogeneous reactions medel occurs as investigated i [6] is given
respectively by

A+ 28 - 38, rate = k, ab? (2.1)

and

A- 8 rate = kga. (2.2)

10



Here a and b being concentration of the chemical species A and B, k. and k; are constants.

Equations of governing flow problem are as follow:

S+n=0,
u 2 4 p 38 Fay BPu o5
dx 3y pny 0¥ pas ’
u%}: +vg—;- anfgy:+(p;")uf(r T.),
uZt+v3t= DSt~ keab?,
UG +”g—:=ngi;+kcabZ,

with boundary conditions

u=uy,=cx, v=0, T=TW=T°°+CG)2

da db
DA_E = k.a, Dg-'a =—ka a y=0

u=-0, T=T, a-a, b—-0 as y—x

The nanofluid dynamics viscosity given by Brinkman [14] is

_ B
iy = Gy

where ¢ being solid volume fraction. The effective density of nanofluid is defined as
Pny = (1 - (b)pf + (bps ’

and thermal diffusivity is

Knf
Apr = ——,
nf (pcp)ﬂr

where k,,, being thermal conductivity and (pc,) , being heat capacitances and define as

Kny _ Kst2hy=24(ks—ks)
ki | kst2kpt29(p—ks)

11

(2.3)

2.4)

2.5)

(2.6)

@7

2.8)

2.9)

(2.10)

@2.11)

(2.12)



(pcp),, = (1 = D pcp)s + $locy)s, (2.13)

Here the index corresponds to thermal characteristics of nf= nanofluid, f = base fluid and s =
nanosolid particles. Eq. (2.3) is automatically satisfied by nominating a stream function ¥ (x, y)

which satisfies the usual velocity stream function relation.

1 1
where ¥ = (cvp)2xf(n), f(n) is nondimensional stream function and 7 = (;C;)Ey. The velocity

components can be define as

u=cxf(n) and v= —(cv;)%f (m (2.19)
nanofluid’s temperature is given by
T=T.+ (T, —T,)8(n). (2.15)
Chemical species A and B have the concentration which is mathematically given by
a = a,g(n) and = a,h(m) (2.16)

where a, is a constant, 8(77) is the nondimensional temperature, and g(n) & h(n) are
nondimensional concentrations. From equations (2.9)-(2.16), equations (2.4)-(2.8) in

nondimensional form simplify to the two-point BVPs as follows

f'"+¢1(ff"-fz-f'—f'2)=0, (2.17)
9"+Pr%¢3(fe'—2f'9+f—39)=o, 2.18)
—g +fg —keh’ =0, (219
E";h"+ fR +kgh® =0, (2.20)

with BCs

12



fO)=0, f@=1 fM-0 asp-w
80)=1, 8 -0 as n-o
£0) =kg0), gm-1 aspoo ' (2:21)
SR(0) = —k.g0), R -0 aspow

where
b= -9y - 9 +4(2)) 222)

b ={a-0+4(2)] (223)

b= {a-0+E%4) @20

The nondimensional constants in equations, (2.17)-(2.21) are M, Pr, §, B, Sc, k and Ks
represent magnetic parameter, Prandtl number, ratio of diffusion coefficients, heat generation,
Schmidt number, strength of the homogeneous reaction and strength of the heterogeneous reaction

respectively. These are defines as

vB,? Qo (puep)s Yyr
= R ﬁ = , Pr= . Sc=—+,
pre clpep)y ke D
2.25
6 =28 k = Keao” K, =X [ &2
= = sT ol

Here Aand B are of equivalent size which implies that D,-and Dg-are also equal, i.e., § = 1 [6].

This supposition yield following equation,
gh)+hm)=1. (2.26)

Eq. (2.19) and Eq. (2.20) under this supposition reduce to
—& +fg—ke(1- =0, Q27

with following BCs

g0 =Kg0), gm-1 as n-ow (2.28)

13



2.2.1 Solution of momentum equation

The energy and species equation are decoupled by momentum boundary layer equation. On
integrating equation (2.17) in terms of n over the interval [0, n] with the boundary condition (2.21)

will give the following exact solution

1—e~5"

f(n) = . (2.29)

b

where s being parameter related with nanoparticle volume fraction, fluid density, nanoparticle

density and magnetic field parameter. This will satisfy the Eq. given by

5= J¢1+ (1~ $)25M. (2.30)
It should be highlighted that for ¢ to be zero, Eq. (2.30) reduce to s = V1 + M, which are
presented by [4].
2.2.2 Solution of heat exchange equation
We define the following variable,

£=—Trem, 2.31)

g2

Eq. (2.18) and thermal BCs (2.21) will become
Egge + [1— A, (Pr* + D)ge + % Pr A, =0, (2.32)

g(—Pr7)=1, £(0) -0, (2.33)
where Pr* = g being modified Prandtl number. Result obtained from Eq. (2.32} in the form of
hypergeometric functions which is given below,

g(f) = C’DEGF [I‘I, 1+ (™ Alﬂs (234)

where

mlm+1)...(m+r—1)x
aln+r)...(r+r-1)r!

Flmn,z]l =37

14



Upon using the boundary condition (2.33) and expressing result in terms of independent variable,

we have

__e™Mepg, 1+4n, —Aze”%)
gﬁ;)— Fla. 14n, -] ) (2.35)

Rate of surface heat exchange is obtained in the form of

(l—f—n)Ffa+1, 2+n, —Adz/-saFla, 1+n,-3;]

g0 = Pl Trn ] , (2.36)
where
+ _ k
a=ﬂ‘2—", A=Z’;, A=A, Ap=APrs

2.2.3 Skin friction coefTicient

The quantity which is physically quite appealing is C;, that gives the surface drag. The shearing

stress T, is defined as
= |2 = o U Cxf () 2.37)
Tw = ~Hnfs aylyo T (1—¢)2E Pry s .
where py ¢ being viscosity coefficient. The skin friction coefficient is given by

T
r =, (2.38)

Upon using Eq. (2.37) in equation (2.38), we get
Cr(1 - $)5\/Re, = —2£"(0), (239)
where Re, is said to be local Reynolds number and is defined by Re, = xu,,/vy.

2.2.4 Caoefficient of heat transfer

The rate of heat exchange at the wall can be defined as
ar _ AR Y
G = —kng 5;]y=o = —knsC (%) ’u; 8'(0). (2.40)

15



The Nusselt number is defined as

Tqw
K i (Tw "Tm)

Nu, = (2.41)

and using equation (2.40) in equation (2.41), the dimensional rate of heat exchange at wall is

obtained as

2.7 Graphical results

2.7.1 Tables

Table 2.1: Thermo physical characteristics of water and nano-particles.

pkg/m?) Cp(i/kgK) k (W /mK)
" Pure water 997.1 4179 0.613
Copper water(Cu) 8933 385 401
Gold (Au) 19282 129 310

_——

16



Table 2.2: A comparison of exiting ~ f''(0) due to Cu-water nano-fluid against various values of

M and ¢ when Pr = 6.2 with that of Hamad [5] and Kameswaran et al. [16]

M @ Hamad[5] Kameswaran et al. [16] Our results

0 0.05 1,10892 1.108919904 1.1089199038
0.1 1.17475 1.174746021 1.1747460214
0.15 1.20886 1.208862320 1.2088623198
0.2 1.21804 1.218043809 1.2180438095

Q.5 0.05 1.29210 1292101949 1.2921019495
0.1 1.32825 1.328248829 1.3282488285
0.15 1.33955 1339553714 1.3395537136
0.2 1.33036 1.330356126 1.3303561264

! 0.05 1.45236 1.452360679 1.4523606792
0.1 1.46576 1.465763175 1.4657631753
0.15 1.45858 1.458581570 1.4585815696
0.2 1.43390 1.433898227 1.4338982265

2 0.05 1.72887 1.728872387 1.7288723875
0.1 1.70789 1.707892022 1.7078920216
0.15 1.67140 1.671398302 1.6713983015
02 1.62126 1.621264175 1.6212641754
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Table 2.3: A comparison of calculated local Nusselt number —8'(0) due to Cu-water nano-
tluid for different values of Pr with that of Grubka and Bobba [15] and

Kameswaran [16]

Result Pr=072 Pr=10 Pr=30 Pr=10 P =100
Grubka & Bobba [15] 1.0885 1.3333 2.5097 4.7969 15.7120
Kameswaran et al. [16] 1.08852 1.33333  2.50973 4.79687 15.71163
QOur results 1.088524 1.333333  2.509725  4.796873 15.711967

Table 2.4: Calculated numerical value of - f(0) and —8'(0) for different values of
magnetic parameter M, heat generation parameter § and solid volume fraction ¢

whenk = K, =1and Sc =5

Cu-water Au-water

M B ¢ —f'(O —6'(0) —f"(0) —-8'(0)

l 0.1 0.1 1.46576318 3.10463489 1.71639926 2.98796095
2 0.1 0.1 1.70789202 3.03362162 1.92729341 2.92395300
3 0.1 0.1 1.91972098 2.96973231 2.11728443 2.86467942
2 0.15 0.1 -— 2.98338556 - 2.86876051
2 0.2 0.1 e 293155781 - 2.81089758
2 0.1 0.0  1.73205081 3.60882094 1.73205081 3.60882094
2 0.1 0.1 1.70789202 3.03362162 1.92729341 2.92395300
2 0.1 0.2 1.62126418 2.58126309 1.95635457 2.39868695
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2.8 Results and Discussion

The solution of the boundary value problem modeled in term of coupled non-linear ordinary
differential cquations (2.17) — (2.20) subject to BCs (2.21) is obtained by using shooting method
for various values assigned to the magnetic parameters M, solid volume fraction paramcter ¢, heat
generation parameter 8, strength of homogencous and heterogeneous reactions are presented by &
and Ks respectively. Table 2.2 gives the comparison of the values of computed skin friction
cocfticient — £/ (0) with the results presenied is [5] and [16]. Table 2.3 is constructed to show the
comparison of computed local nusselt number —8'(0) with the results available in [15] and [16]
for various values of Pr. Table 2.4 represents skin friction coefficient - f*'(0) and heat transfer
ratc —8'(0) for various flow parameters M, 8 and ¢. It is noted from the table 2.4 that due to
increase in the value of M, the increase in ~ £ (0) and decrease in —8'(0) is noted tor both Au-
water and Cu-water nanofluids, Figures 2.1-2.10 depict the profile of fluid velocity f'(n), fluid
lemperature §(17), and specics concentration g{n) for different assigned values of the involved
paramcters. Figurcs 2.1-2.3 show the variation of species concentration g(n), fluid temperature
8{n)} and nanotluid velocity f'(n) due to magnetic parameter M. 1t is observed from thesc figures
that the magnetic parameler M effect is inversely proportional to the species concentration g(n)
and fluid velocity f'(xn), where fluid temperature 8(n) is directly proportional to the effect of
magnetic parametcr M. 1t is because of the reason that the resistance force appear in the flow field
due to presence of magnctic field. Figures 2.4- 2.6 show the variation of species concentration
£ ), Muid 1emperature 8(n) and tluid velocity f'(n) for different values of solid volume fraction
¢. Increases in the value of solid volume fraction ¢ increases the fluid temperature 8(s;) for both
Cu-water and Au-water. It is noted that species concentration g} and fluid velocity f'(n)
increases in Cu-water for increasing solid volume fraction ¢ while decreasing in Au-water for
increasing solid volume fraction ¢. Moreover the concentration boundary layer thickness increases
for Cu-water and decreases for Au-water with increasing nanoparticles. Figure 2.7 show the
variation of fluid temperature 8(n) for various values of heat generation 8. It is clearly observed
that fluid tempcerature 8(7) rises with rise in the values of heat generation f. Figures 2.8 and 2.9
show the impaets of the intensity of the homogencous reaction denoted by k and heterogencous
rcaction denoted by K on the concentration of species g(i7). We obscrved that the increase in the

value of k and K increases the specics concentration g(7,) as can be seen in figure 2.10.
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Chapter 3

Heat transfer analysis in Casson fluid near a stagnation point

over a stretching/shrinking sheet

3.1 Introduction

In this chapter, we focus the investigation of boundary layer flow of heated Casson fluid towards
the stagnation point over a shrinking/stretching sheet [19]. The governing partial differential
equations are converted into set of ordinary differential equations with the help of similarity
transformation. Then the transformed nonlinear boundary value problem in term of ordinary
differential equations has been tackled by “Shooting method” in order to seek a reliable and
approximate solution of the given problem. The effects of some important parameters and

variables are displayed graphically and discussed in detail.

3.2 Mathematical construction of the problem

Consider stcady of incompressible and two-dimensional flow of Casson fluid over a
shrinking/stretching sheet near the point of stagnation represented by the region 0 £ y < . The
flow of such isotropic and incompressible type of fluids has exquisitely been described by the

relation given by Nakamura [12] as follows

(,U.ﬁ + \%)ZBU T >,
Tij = Py (3.1)
(Hﬁ + J__E—T[_c)zeu <,

Where g being plastic dynamic viscosity, py, is fluid stress, m is the product of component of rate
of deformation, namely 7 = e;;e;;, e;; being the (I, j)-th component of the rate of deformation and

7. is critical value of & based on non-Newtonian form.
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Stagnation point

T, O
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U, = —

Fig, 3.1: Geometry of problem

The following governing equations describe the above flow model

u Ay _
e + 5‘ =0, {3.2)

o v dvs o
uEZ+vE=U+v 1+ 1/8)5 (3.3)

where u and v being velocity components along the x-direction and y- direction, U; = ax being

M .
straining velocity, v being kinematic fluid viscosity and f# = B2 /py being non-Newtonian
parameter. The BCs for the problem are given by

u=U, v=0 ay=06u—-U a y—-wo (3.4)

where U,, = cx is shrinking/stretching velocity of the sheet. The shrinking and stretching cases
are studied through ¢ > 0 and ¢ < 0 respectively.

26



By using the velocity-stream function relationship

o _
=5 v=—= (3.5)

¥ being the stream function, the Eq. (3.2), is automatically satisfied and Eq. (3.3) becomes

ay a*y  awaty . di ( 1) a3y
dy dxdy  dx ay? Us dx tu{l+ g/ ay®’ (3.6)

The boundary conditions reduce to

aw¥ ay ay
'a';:Uw, 3=Oat y =0 E;_’US as y - w 3.7)

The introduced nondimensional variable for the stream function is
W = Vavxf(n) -8
where 7 represents the similarity variable that can be written as n = y./a/v.

Upon using Eq. (3.8) and the similarity variable, the equation (3.6) is given by
(L+5)fm+ff = fr+1=0, 39)
wherc prime sign denote derivative w. r. to n.The boundary condition now simplify

fm=9o_ fm=c/a at 1 =0, (3.10)
f(ng)—-1 as n—owo.

Now by considering the distribution of temperature in the flow field, the principle energy equation

is given by

aT ar ar
Ty T 3.1
ax dy  pcydy?

where T, p, «, and ¢, being temperature, fluid density, thermal conductivity and specific heat

respectively. The boundary conditions for the problem are given by

T=T, a y=0 T-T, as y-wo, (3.12)
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where T,, is constant temperature and T,, is constant free stream temperature,

The non-dimensional temperature € is defined as

T-Tx

g(n) = . (3.13)

Tw~To

Using Eq. (3.8), Eq. (3.13) and the similarity variable 7, the Eq. (3.11) finally takes the following

form:
8"+ Prfe =0. (3.14)

Here primes indicates derivative in term of 7 and Pr = cpu/x represents the Prandt] number.

The boundary condition from Eq. (3.12) now become
8(n)=0, at n=08(#n -0, as 1w (3.15)
3.3 Numerical solution of the problem

Since the exact solution to non-linear, coupled differential given in Egs. (3.9) and (3.14) hardly
possible. Therefore, in order to obtain the solution of it, the numerical approach has been taken
into account. In this confection, a well-known numerical method namely shooting method has been
used to achieve an approximate solution to the above given non-linear boundary value problem by

converting the boundary value problem to initial value problem. Thus the system of first order IVP

is given as
f=n 3
f =
f =y
. 1
¥y = ((=nya + 62" - 1)/ + ) & (3.16)

6=y,
8 =ys

Y's = —=Prynys J

Subject to the following initial conditions
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y1(0) =0, y(0) = c/a, y3(0) =s,
y,(0) =1, y;(0) =t (.17

Where s and t are two unknown missing conditions. The missing conditions can be found in such
a way that the sotution satisfies the boundary conditions (3.10) and (3.15). We construct the
solution of initial value problem represented by (3.16) with the help of Runge-kutta 4th order
scheme. The missing constants s & ¢ are iterated with the help of Newton- Rephson method and
iterated up to the accuracy10™> . It is noted that the missing conditions and the value of infinity

arc highly dependenting on the physical parameters 8, Pr and ¢/,

3.4 Graphical results

3.4.1 Tables

Table 3.1: Comparison of Numerical values of f (0) obtained by the present scheme with
that of Wang [10] and Ishak [11] for various values of ¢/a and for £ — oo for
stretching sheet case

c/a Present study Wang{10] Ishak et al.[11]
0 1.2325878 1.232588 1.232588
0.1 1.1465608 1.14656 1.146561
0.2 1.0511299 1.05113 1.051130
0.5 0.7132951 0.71330 0.713295

1 0 0 0
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Table 3.2: Comparison of Numerical values of f"(0) for first and second solution obtained

by the present scheme with that of Wang [10] and Ishak [11] for various values of
c/a and for f# = oo for stretching sheet case.

Present study Wang[10] Ishak et al.[11]
c/a 1st 2™ 1st 2nd 1st 2nd
solution solution solution  solution solution solution

-0.25
-0.5 1.4022405 140224 1.402241
-0.75 1.4956697 149567 1.495670
-1 1.4892981 1.48930 1.489298
-1.1 1.3288169 0 1.32882 1328817 0
-1.15 1.1866806 0.0492286 1.186681 0.049229
-1.2 1.0822316 0.1167023 1.08223 0.116702 1.082231 0.116702
-1.24 0.9324728 0.2336491 0932474 0.233650
-1.2465 0.5842915 0.5542856 0.55430 0.584295 (.554283
-1.24657 0.5745268 0.5639987
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cla=-1.22
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Figure 3.4: Graphical view of the effects shown by £ on the profile of dual velocity given by

£'(p) against 1.

1 T T T T T T T T i

First solution 7

c/a=-1.212

Figure 3.5: The influence of § on the profile of dual velocity gradient given f'(n) against 5.
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Second
solgtion

8w
&
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0.1 Pr=1-

Figure 3.7: The effects of # on the profile of dual temperature given by 8{r) against n.

33



p=1 —
B=2 ...
p=5---| 1
Bmco o
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Figure 3.9: The influence of £ on the profile of velocity given by f(n) for shrinking sheet case.

34



0.95

0.9

0.85

0.8

(v

0.75

0.7

0.865

c’a= 0.6

0.9

n

Figure 3.11: The influence of # on the profile of velocity () for stretching sheet case.
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Figure 3.13: The influence of ¢/a on the profile of dual temperature 8(n) for shrinking sheet

Case,
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ey

Figure 3.14: The influence of Pr on the profile of dual temperature 8(n) for shrinking sheet

case,

3.5 Results and discussion

The solution of Lq. (3.9) and Eq. (3.14) in view of boundary condition (3.10) and (3.15) are
obtained by using shooting scheme for various values, assigned to the parameters i.e. Casson
parameter 8, velocity ratio ¢/4 and Prandt! number Pr[9]. Table 3.1 and Table 3.2 represent the
comparison of the values of £ '(0) by present scheme with that Wang [10] and Ishak ez.a/ [11] for
dilfercnt value of ¢/a for stretching and shrinking sheet case. It is observed that the dual solutions
exist in some situations of shrinking sheet case, the solution is unique stretching sheet case. In
Figures 3.2-3.3, we show that the values of £"(0) and —6 '(0) decreases with decreases in Casson
parameter, Figure 3.4 shows the variation of dual solutions for some values of Casson parameter.
In Fig. 3.4, we observe that the velocity is decreasing with decreasing of different values in Casson
parameter for both 1st and 2nd solutions and for unique solution (Figures 3.9 & 3.11). In Figure
3.5, we indicate that velocity gradient profiles decreases with decreases in Casson parameter near
the shect, but distant from the sheet, it increases. In Figure 3.6, the stream function profile
rcpresents the back flow character of stagnation point flow over a shrinking sheet. Figure3.7, we

observe that value of temperature profile increases with decreases in Casson parameter for 1st and
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