Representing Nonfunctional Requirementsusing
UML2

Submitted by

Irurn Ilyas
(128-FAS/MSSE/F06)

Supervised By:
Dr. Naveed Ikram

Co-Supervised By:
Atif Qureshi

Department of Computer Science
Faculty of Basic and Applied Sciences
International 1slamic University, |slamabad
2008

CgNTRAL -

<IaRARY
SLAMABAD.

Representing Nonfunctional Requirementsusing
UML2

By

lrum llyas
128-FAS/MSSE/F06

A Thesis
Submitted in partia fulfillment of the requirement for

the award of degree of

Master of Science (M S)
In Softwar e Engineering
Department of Computer Science
Faculty of Basic and Applied Sciences

| nternational Islamic University, | slamabad

2008

Department of Computer Science
Faculty of Basic and Applied Sciences
| nternational Islamic University
| slamabad.

Date: 11™ March, 2009

Final Approval

It is certified that we have read the thesis submitted by Miss. Irum llyas and it is our
judgment that this thesisis of sufficient standard to warrant its acceptance by 11UI for the
degree of Master of Science in Software Engineering.

Committee:

External Examiner:
Dr. Iftikhar Niaz
Head of Department of Computer Science,

Ripha International University.
| nternal Examiner:

Zohaih Zafar &MBsdi

Lecturer.

Department of Computer science, FBAS, I1UI.
Supervisor :

Dr. Naveed |kram /‘A
Associate Professor, /V\
Department of Computer science, FBAS, 11UI.

Co-Supervisor:
Atif Qur eshi f’/ (ﬁ\

L ecturer,

Department of Computer science, FBAS, 11UI.

Abstract

Theway requirements should drivethe rest of the software devel opment process has been
a subject of many research projects in the past. Recent research shows that software
development demands early incorporation of the nonfunctional requirements in order to
produce quality software that can meet today's challenges. Customers are demanding
quality which can only be achieved by considering nonfunctional requirements asearly as
possible. Since errors due to nonfunctiona requirements are the most expensive and
difficult to correct, improperly dealing with nonfunctional requirementscan lead to more
expensive software and a longer time to the market. This research work tries to fill the
gap of identification of nonfunctional requirements and then how to deal nonfunctional
requirements in software systems during design process. In this research | find how to
tackles the problems of nonfunctional requirements, and how the models will satisfice
these nonfunctional requirements. The models for the incorporation of nonfunctional
requirements are including from Unified Modeling Language v2 artifacts. The Unified
Modeling Language v2 artifacts are interaction overview diagram, composite structure
diagram and component diagram. This integration can be used in the early stage of
software development with ongoing projects or to enhance even legacy system with

nonfunctional requirements. | validate my approach by performing acase study.

ifi

Acknowledgement

Primary and foremost, all praisesfor Almighty Allah, the kind and merciful. the creator
of the universe, who provided me the right ability, strength and courage to complete the
work presented here. | invoke peace for Hazrat Muhammad (peace be upon him), the last
prophet of Allah who iseternally atorch of guidance for humanity as awhole.

Working on this study was the most valuable and worth learning experience of my life. It
was the time to put the learning and knowledge of the past semesters to test. Along with
the unique learning experience came the redlization that there is so much to be learned
from the practical field that cannot be gained from the books alone. After the completion
of this dissertation, | think that, athough, | have ventured every possible measure to
make it a presentable piece of work, yet manisfallible and I am not an exception.

| would like to express my deep and sincere gratitude to my co-supervisor, Atif Qureshi
and Supervisor, Dr. Naveed Ikram, Associate Professor in department of computer
science and aso to Department of Computer Science. Both supervisors have wide
knowledge and logical way of thinking has been a great importance for me. Both have
understanding, encouraging and personal guidance have provided a good basis for the
present thesis.

Lastly, | am grateful to my family for the inspiration and moral support. | would not be

here without their tremendously encouragement and understanding.

Irum flays

Abbreviation

RE
SE
NFRs
FRs
UML
IOD
CSD
CD
SRS
POST
OCL
CBD
LEL
CrAS
ChAS
SEI
XML

LIST OFACRONYMS

Title

Requirement Engineering
Software Engineering
Non-Functiona Requirements
Functional Requirements
Unified Modeling Language
Interaction Overview Diagram
Composite Structure Diagram
Component Diagram

Software Requirement Specification
Point of Sale Terminal

Object Constraint Language
Component Based Devel opment
Language Extended L exicon
Credit Authorization Service
Check Authorization Service
Software Engineering I nstitute

extensible Markup Language

Chapter #

TABLE OF CONTENTS

Title
List of Figures| Graphs
List of Tables

Introduction
1.1 Problem Domain
1.2 Main Contributions
1.3 Research Problem
1.4 Research Method
1.5 Qutline of Thesis
Literature Review
2.1 NFRs
2.1.1 What are NFRs?
2.1.2 Why NFRs areimportant?
2.1.3 Approachesfor dealing NFRs
2.1.5 Related Work
2.1.5.1 NFR Framework

2.1.5.2 Applicationsof NFR framework on UML artifacts
2.1.6 Comparison among Different Approaches

Strategy for integration of NFRs

3.1 Eliciting NFRs

3.2 Building Domain Glossary

3.3 Representation of NFRs
3.3.1 The NFR Framework
3.3.2 Refining NFRs using NFR graph
3.3.3 Creating NFR graphs

3.4 Integrating NFRs
3.4.1 Integrating NFRs in Use Cases
34.2 Integrating NFRsin Class Diagram

Pg.#

viil

e = e DL T S S T |

3.4.3Integrating NFRsin Sequence and Communication 42

Diagram
3.4.4Integrating NFRsin 10D 44
3.4.5IntegratingNFRsin CSD 46
3.4.6Integrating NFRsin CD 48
Case Study(POST) 52
4.1 Introduction 52
4.1.1 Use Case Descriptions 53
4.2 Integrating NFRsin POST 56
4.2.1 Integrating NFRSin POST Use Case 59
4.2.2Integrating NFRsin POST Class Diagram 65

4.2.3 Integrating NFRsin POST Sequence & Communication 71
Diagram

4.2.41Integrating NFRsin POST 10D 76

4.2.5 Integrating NFRsin POST CD 82

4.2.6 Integrating NFRsin POST CSD 86
Conclusion and Future Directions 92
5.1 Conclusion 92
5.2 Future Research Directions 96
References 97
Appendix A 102
Appendix B 110

Vil

Fig.# Title

21 NFR Associationpoints

31 The use case or scenario integrati on process

3.2 The classdiagram integration process

3.3 The sequence and communi cationintegration process

34 The IOD integration process

3.5 The CSD integration process

3.6 The CD integration process

41 Use case diagram for POST beforeintegration

4.2 NFR graph to be integrated

4.3 Use case diagram for POST after integration

4.4 Class returned Item after integration

4.5 Class sale after integration

4.6 NFR graph for saleitems

4.7 NFR graph for returneditem

4.8 Classdiagram before integration

49 Class diagram after integration

410 Class payment after integration

4.11a Sequencediagramfor makePayment (credit payment) before integration
4.11b Sequence diagram for makePayment (credit payment) after integration
4.12a Sequence diagram for makePayment (check payment) before integration
4.12b Sequencediagram for makePayment (check payment) after integration
4.13a Communication diagram for enterltem beforeintegration

4.13b Communication diagram for enterltem after integration

4.23a 10D for use case process sale before integration process

4.23b 10D for usecase process sale after integration process

4.24a 10D for use case handlereturnsor returned items after integration
424b 10D for use case handle returns or returned items after integration
4.25a CD for POST

4.25b CD for POST after integration process

LIST OF FIGURES/GRAPHS

viii

Pg#
21
39
41
43
45
47
50
59
62
64
66
67
68
Y
70
70
71
72

73
73
74
75
78
79
80
81
82
84

4.26
4.27
4.28a
4.28b

UML profilefor NFR.
Compositionand association of classes

CSD beforeintegration
CSD after integration

85
86
87
89

LIST OF TABLES

Table# Title

2.1 Comparison among different approaches
2.2 Views are used to specify NFRs

4.1 Domain Glossary

Pg. #
28
29
57

Chapter 1

| ntr oduction

1. Introduction
This chapter describes the problem domain, main contributions and research problem,

research method and outline of thesis.

1.1 Problem Domain

Requirement engineering (RE) is critical for the success of any major development project.
Thesuccess of a software system [Cheng & Atlee, 2007] depends on how well it fits the needs
of its users and its environment. Softivare requirements (SR) include these needs, and RE is
the process through which the requirements are determined. Successful RE involves
understanding the users need, customers, and other stakeholders; understanding the contexts
in which the to be developed software will be used; modeling, analyzing, negotiating, and
documenting the stakeholders requirements; validating that the documented requirements
match the negotiated requirements; and managing requirements evolution [Cheng & Atlee,
2007] .

Software system, aside from implementing the entire functional requirements (FRs) must
also deal with the nonfunctional requirements (NFRs) [Cysneiro's & Leite, 2004]. NFRs
should be dealt with from the beginning and throughout the software development process
[Cysneiro's & Leite, 2004]. NFRs have been frequently neglected or forgotten in software
design [Cysneiro's & Leite, 2004]. NFRs were not considered when we model the FRs in
use cases, sequence diagram, communication diagram and all other diagrams. NFRs are very

important for the success of every project.

During the last decade NFRs got importance and from the literature it is realized that NFRs
are very important for the success of every project [Cysneiro's & Leite, 2004], [Cysneiro's &
Yu, 2003] & [Chung & Yu, 2000]. Besides the basic functionality, nonfunctional aspects are
demanded by the market. Usually nonfunctional aspects are treated only at the design stage
of a software system. And al these nonfunctional aspects must be treated as NFRs of the
software [Cysneiro's & Leite, 1999]. NFRs should be dealt throughout the software
development process[Cysneiro's & Leite, 2004].

Literature has been pointing out that NFRs are very difficult to achieveand at the same time
are expensive to deal [Cysneiro's & Leite, 2004]. Ineffectively dealing with NFRS has led to
a series of falures in software development, the case of London Ambulance System
[Finkelstein & Dowell, 1996], where the deactivation of the system right after its deployment
was strongly influenced by NFRs noncompliance [Cysneiro's & Leite, 2004] & [Finkelstein
& Dowell, 1996]: Errors due to omission of NFRs or not properly dealing with them are
among the most expensive type and most difficult to correct [Cysneiro's & Yu, 2003].

There have been reports showing that not properly dealing with NFRs have led to
considerable delays in the project and consequently to significant increases in the final cost
[Cysneiro's & Lete, 1999]. The development of a real time system by Paramax System
Corp. experienced major delaysinits deadlines and significant increasing costs which put the
deployment in risk [Cysneiro's & Yu, 2003). There were many reasons for that, but one of
the most important reasons relies on the fact that performance (NFR) was neglected during
the development of the software leading to several changes in both hardware and software

architecture, as well as in both the design and code of the software [Cysneiro's & Leite,

2004].

(W8]

1.2 Main Contributions

NFRs are gained very importance during last decade, yet it is continues to have promise in
advancing the field. But not as much work had done in this area as other fields. The main
inspiration for undertaking my research work comes from [Cysneiro's & Leite, 2004] that
puts light on future focus of NFRs in software design. In this paper, they present a processto
elicit NFRs, analyzetheir interdependencies, and trace them to functional conceptual models.
This paper also suggests different directionsfor future research one of which is dealing with
other Unified Modeling Language(UML) artifacts.

Mostly work has done in this field by the inspiration of Chung's work [Mylopoulos &
Chung, 1992], [Chung & Nixon, 1995] & [Chung & Yu, 2000]. [Mylopoulos & Chung,
1992] proposes a comprehensive framework for representing and using NFRs during the
development process. The framework consists of five basic components which provide for
the representation of NFRs in terms of interrelated goals. Such goals can be refined through
refinement methods and can be evaluated in order to determine the degree to which a set of
NFRsis supported by a particular design.

Chung's paper [Chung & Nixon, 1995] are dealing with NFRs and have conducted three
empirical studies of small portionsof software systems, in order to give an initial evaluation
of a framework [Mylopoulos & Chung, 1992] for dealing with NFRs in the software
development process. The studiesdealt with several NFRs, primarily accuracy, security and

performance.

Leite, 2001). NFRs have also been integrated with functional models [L.Cysneiros & Leite,

2004] [L.Cysneiros & Leite, 2001].

My contribution will contribute to fill the gap of identification of NFRsand then how to deal

NFRs in software systems during design process. In this research | find how to tackles the
problems of NFRs, and how the models will satisfice these NFRs.

Software systems are becoming large and complex day by day. This complexity includes not
only static structure of classes but their relationship with each other their functionality,

behavior, state etc., it is difficult to grasp this information as a whole for any system which
leads to misunderstanding of that system. Modeling of software systems help to minimize
this complexity by abstracting out vital information from that system. Software systems can
be modeled from different point of view-s.

According to the 4+1 architectura views model was proposed by Kruchten {P.

Kruchten,1995], the views are structural view, behavioral vicw, implementation view,
environmental view and one is use case view. As | found in literature [L.Cysneiros & Leite,
20011, [L.Cysneiros & Leite, 2004] the work on NFRs modeling of use case view and some
diagrams of structural view and behavioral view has already been done. There is need to do
some work on behavioral view and structural view and implementation view. As there is no
work done on implementation view so | am continuing my research on implementation view,
CSD and CD are considered in my research from implementation view. CSD isalso included
in structural view. Asthese diagramshave alack of information about non functional aspects
of the software system, especially NFRs related to different components and their
implementation. In literature | find that there is need to improve the understanding of NFRs

at component and implementation level and also to complete the understanding of NFRsin

these diagrams to make these diagrams complete and also to improve the quality of software
system at run time in implementation view.
In behavioral view, there is work done on sequence diagram and collaboration diagram. But
some diagrams are left for the integration of NFRs. The focus of my research work on
behavioral view is on 10D, this diagram is a combination of interaction diagram including
sequence diagram, communication diagram and timing diagram. | want to find that, is there
any impact in diagram when we combine interaction diagrams in an IOD, any addition of
instances, classes, association or any NFR which may change the 10D. The literature of
software engineering does not provide any mechanism to incorporate NFRS in these types of
models.
My research focus is to find out amechanism to incorporate NFRs in these views, so that it
will help usto understand that particular view (Implementation, Behavioral) of system.
Theresearch questionsof thisthesisare:

1. How to deal and tacklethe problemsof NFRsin software during design process?

2. How NFRs can be incorporated in UML 2 models?

1.5 Outline of thesis

Therest of the thesisisorganized asfollows:
Chapter 2 presents a survey on the related research work. It covers two research fields
namely:
) NFRs modeling, itsimportance, its approaches and how we deal with NFRs; and
ii) UML2 Diagrams which are used for modeling named as 10D, CSD and CD.
Chapter 3 proposes a strategy how we integrate NFRs in the UML2 diagrams. The strategy
deals with UML 2 diagrams to represent the NFRS.
Chapter 4 is the case study which shows the implementation of the strategy. The
performance and security of a POST are presented as aproof of concept.

Chapter 5 presents conclusion and discusses the future research direction.

Chapter 2

Literature Review

10

2. Literature Review

Requirements are the essential part for the development of any system. Requirements are FRs
and NFRs. FRs captures the proposed behavior of the system, in terms of the services or
tasks the system is required to perform. NFRs along with FRs play a significant role in
software development. This chapter covers the concept of NFRs. The section deals with the
basic concept of NFRs and importance to consideration of NFRs and approaches for
modeling of NFRs, activities of NFRs, NFR framework and application of NFR framework

in UML artifacts.

2.1 NFRs

2.1.1 What are NFRs?

|EEE definesNFRs as

“NFRs in sofhvare system engineering are a software requirement that describes not what
the software will do, but how the software will do it, for example, soffware performance
requirements, software external interface requirements, design constraints, and soffware
quality attributes. NFRs are difficult to test; therefore, they are usually evaluated
subjectively" {Subrina, 2006].

NFRs define global constraints on a software system or subsystem, on a functional
requirement, on the development process or on the deployment process. They are global in
the sense that they arise from all partsof the system and from their interactions [L.Cysneiros

& Yu, 20031.

11

A requirement that specifies system properties, such as environmental and implementation
constraints, performance, platform dependencies, maintainability, extensibility, and
reliability. A requirement that specifies physical constraints on a functional requirements|l.
Jacobson, Booch & Rumbaugh, 1999].

Requirements which are not specifically concerned with the functionality of a system. They
place restrictions on the product being developed and the development process, and they
specify external constraints that the product must meet [G. Kotonya & Sommerville, 1998].
"NFRs are global requirements on its development or operationa cost, performance,
reliability, maintainability, portability, robustness, and the like" [Mylopoulos & Chung,
1992].

NFRs are also known as Quality Requirements [Mylopoulos & Chung , 1992 | & [Boehm &
Barry , 1996] and distinct to FRs, NFRs state constraints to the system as well as particular
notion of qualities a system might have, for example, security, reliability, performance,
safety, usability, accuracy. So we can say that FRs state ""what™ the system must do, whereas
NFRs constrain ""how" the system must accomplish the "what". Asa consequence, NFRs are
always linked to FRs [ISSCO, 1995] [Kimer & Davis, 1996].

NFRs are requirements that impose restrictions on the product being developed [L. Xu &
Ziv, 2005].

Software systems implementing all the desired functionality must also deal with the non
functional requirements of the system. NFRs are constraints or conditions on the
functionality of a system. NFR is focused on how the software must perform something

instead of on what the software must do. NFRs are the requirements such as reliability,

12

security, accuracy, safety, look and feel requirements, performance, as well as organizational,

political and cultural requirements.

2.1.2 Why NFRsare important?

There has been a lot of work showing that complex systems must deal with non-functional
aspects [Mylopoulos & Chung, 1992] & [Chung & Nixon, 1995]. These nonfunctional
aspects should be dealt within the process of NFRs definition [Cysneiro's & Yu, 2003].
Errors due to the ignorance of NFRs or not properly dealing with them are among the most
expensive type and most difficult to correct [Mylopoulos & Chung, 1992], [Cysneiro's &
Leite, 1999] & [Ebert, 1997].

Besides that, the market is increasing its demands for software that implemented all the
desired functionality but also copes with nonfunctional aspects such as: reliability, security,
accuracy, safety, performance as well as others [Cysneiro's & Leite, 2004]. These
nonfunctional aspects must be treated as NFRs of the software. They still, should be dealt
with from the beginning of software development process [Chung & Nixon, 1995] &
[Subrina & Tahvildari,], throughout the whole life cycle.

Although NFRs have been presented in many software development methods, but they are
presented in later stages of requirement, not deal with the first class of requirement like in
reguirement elicitation phase. NFRs should be considered in requirement elicitation phase.
Then model properly into the design phase with FRs in the UML artifacts. Otherwise. they
are not proceeding on the next phases of the software. Modeling NFRs alows them to be
organized for better visualization and understanding. It will help software engineers to

analyze NFRs[Cysneiro's & Yu, 2003]. When NFRs are not properly model in the design

13

phase which may lack the deficiencies of the software. Researchers consider the design of
software as the basic foundation of building a high quality product. Some examples of
systems are given as a proof, which shows that the deficiency of the system due to ignorance
of NFRsin design phase and not properly model.

A more serious problem related to NFRs can be seen in the London Ambulance Service
Report [Finkelstein & Dowell, 1996] & [Cysneiro's & Yu, 2003]. The London Ambulance
System was deactivated just after its deployment because, among other reasons, many NFRs
were neglected during the system development such as: reliability (vehicles location), cost
(emphasis on the best price), usability (poor control of information on the screen), and
performance (the system did what was supposed to do but he performance was
unacceptable).

The development of areal time system by Paramax System Corp. experienced major delays
in its deadlines and significant increasing costs which put the deployment in risk. There were
many reasons for that, but one of the most important reasons relies on the fact that
performance was neglected during the development of the software leading to severa
changes in both hardware and software architecture, aswell asin either the design or code of

the software [Cysneiro's & Yu, 2003] & [Lindstrom, 1993].

14

2.1.3 Approachesfor dealing NFRs

Most of the early work on NFRs focused on measuring how much a software system isin
accordance with the set of NFRs that it should satisfy, using some form of quantitative
analysis [Fenton & Pfleeger, 1997] & [Kdler , 1990] offering predefined metrics to assess
the degree to which a given software object meets a particular NFRs.

Previous research may be either characterized as process oriented or product oriented.
Process oriented technique to integrate NFRs into the design proves while product oriented
approaches focus on evaluating the end product to determine whether it satisfies the NFRs
[Hill & Wang, 2004].

Product-oriented approaches are those concerned with measuring how much software
complies with NFRs. They do not help to prevent problems but are helpful to evaluate the
degree of compliance with non-functional needs[Cysneiro's & Yu, 2003].

Process-oriented approaches focus on the software development process. It aims to help
software engineers searching for aternatives to sufficiently meet NFRs while developing the
software [Cysneiro's & Yu, 2003].

Recently, a number of works proposed to use approaches which explicitly deal with NFRs
before metrics are applicable [L.Cysneiros & Leite, 2001}, [Chung & Yu, 2000]. These
works propose the use of techniquesto justify design decisions on the inclusion or exclusion
of requirements which will impact on the software design. Unlike the metrics approaches,
these latter approaches are concerned about making NFRs a relevant and important part of

the software development process[Cysneiro's & Yu, 2003].

2.1.5 Related Work

The idea of integrating NFRs with FRs at design level is not a new one. A survey of the
approaches found that most of the research works used the UML model to represent a system
as shown in table2.2 and these works propose some extensions in order to add NFRs during
the design phase with the model representation of the FRs. The different frameworks
proposed by different researchers are included in related work and how these frameworks are

applied to UML artifacts.

2.1.5.1 NFR Framework

Lawrence Chung et al. [L. Chung & J. Mylopoulos 1992] presents a comprehensive
framework for representing and using NFRs during the development process. The framework
consists of five basic components which provide for the representation of NFRs in terms of
interrelated goals. Such goals can be refined through refinement methods and can be
evaluated in order to determine the degree to which a set of NFRsis supported by a particular
design. The framework consists of five major components: a set of goals for representing
NFRs, design decisions, and arguments in support of or against other goals: a set of link
types for relating goals or goal relationships (hereafter links) to other goals; a set of generic
methods for refining goals into other goals; a collection of correlation rules for inferring
potential interactions among goals; and finally, a labeling procedure which determines the
degree to which any given NFRs is being addressed by a set of design decision. During the
design process, goals are organized into a goal graph structure, very much in the spirit of

ANDY/OR trees used in problem solving.

16

Luiz Marcio Cysneiro's et al [L.Cysneiros & Leite, 2004] present a process to dlicit NFRs,
analyze their interdependencies, and trace them to functional conceptual models. They focus
their attention on conceptual modelsexpressed using UML. Extensionsto UML are proposed
to allow NFRs to be expressed. They showed how to integrate NFRs into the class, sequence,
and collaboration diagrams. They aso showed how use cases and scenarios can be adapted to
deal with NFRsS. They use the Language Extended Lexicon (LEL) driven approach to
describe the application domain in LEL to provide context for both FRs and NFRs. This
policy assures that a common and controlled vocabulary is used in both functional and
nonfunctional representations. Later they analyze those domains separately and build the
functional view of the system using UML diagrams. Then they build the non-functional view
of the system using NFR framework. They extend the NFR framework to adopt their
notations. Finally, they integrate the NFRs with the functional representation of the system
by proposing some extensions to UML models.

Moreira et al [Ana. Moreira & Brito, 2002] propose a model for integrating crosscutting
quality attributes with FRs by the UML use case diagram and sequence diagram. They adopt
NFR Framework's god analysis Framework (without visual notations and diagrams) to
analyze NFRs textualy for cross-cutting relevance to one or more use cases. The template
they proposed to specify a quality attributes was also influenced by the approaches of Chung
et al [J. Mylopoulos & Chung , 1992] .They propose a template for quality attributes with
specific fields, including description, focus, source, decomposition, priority, obligation, and
influence. Then, they integrate those quality attributes with FRs using standard UML
diagrammatic representations (e.g. use case diagram, sequence diagrams) extended with

some special notations.

17

Subrina Anjum et al [Subrina & Tahvildari, 2005} proposes a framework to incorporate
NFRs, as reusable components, with standard UML notations. This framework can aso be
integrating those reusable NFRs with the extracted UML representations of legacy systems
during the reverse engineering process. This framework uses the standard XMI
representation of UML models without proposing any extension to it. This framework starts
with such extracted UML model of a legacy system. It consists of three phases)
Identification of FRs and NFRs, 2) Specification of FRs and NFRs and 3) Integration of
NFRs.

Dimitrov et al [E. Dimitrov & Schmietendorf, 2002] describe three approaches for UML-
based performance engineering. The three approaches are: 1) Direct representation of
performance aspects using UML, 2) Expanding UML to deal with performance aspects and
3) Combining UML with formal description techniques.

In the first approach, they propose some methods for specifying performance aspects with
some of the UML models with standard UML notations. For the use case model, they define
a load and time-weighted use case diagram for specifying performance aspects with the
standard UML notations. For the interaction diagram, they propose to add some additional
time information by |abeling the messages with relative constraints such as assigning time
attributes to the messages and to the method executions. According to this approach the
labeling of messages with time will be interpreted as latency and labeling of methods with
time will be interpreted as time for method execution. For state transition diagram. they
proposed to assign a thinking time along with the probability assigned to each transition. In
the second approach, they expand the UML for supporting Real-time Object-Oriented

Modeling methods for supporting performance aspect. They used UML tailoring mechanism

18

which are based on stereotypes, tagged values, and constraints to convert the Rea-time
Object-Oriented Modeling constructs to UML. In the third approach they combine UML with
Message Sequence Charts and software development lifecycle type forma description
techniques to support performance of a software system.

The frameworks on NFRs are defined above as different researchers proposed different
frameworks. As mentioned above research works, some focused on particular NFR and some
are system dependent. Cysneiro used the NFR framework which described by Chung. They
proposed the strategies for the integration of NFRs on UML artifacts. So Cysneiro works
inspired from Chung worked. The work of Cysneiros is major work on integration of NFRs
on UML artifacts. Chung works on NFR framework, this NFR framework is most
comprehensive for the representing and using nonfunctional requirements during the
development process. Dimitrov explained his work on specific NFR, and apply on a specific
system; they didn't propose any framework for the integration of NFRs. Moreira proposed a
template to specify a quality attributes was also influenced by the approaches of Chung.
Moreira works on NFR related to Cysneiros as Moreira described template to record quality
attributes and Cysneiros used LEL to record NFRs. Cysneiros used the NFR graphs for the
operationalization of NFR which is aso based on Chung’s worked, whereas Moreira didn't
used any graphs for the operationalization of NFRs. Subrina described a framework for
integrating NFRs with the UML design of a software system which can be applied during the
re-engineering process of a legacy system. Although the framework can also be used during
forward engineering but when if the developers follow the standard XMI during their model

design. My concern is related to forward engineering so Subrina works also specific in case

19

of forward engineering, if the developers can't follow the XMI, so they can't apply this
framework for the integration of NFRs

My contribution will contributeto fill the gap of identification of NFRs and then how to deal
NFRs in software systems during design process. | am proposing a strategy that tackles the
problems of NFRs, and proposing a systematic processto assure that the modelswill satisfice
these NFRs. This strategy is based on the use of domain glossary to build functional and
nonfunctional perspectives. Using this glossary, | shall show how to record NFRs against
FRs. Then how to integrate NFRs in UML 2 models, and present a systematic way to

integrate NFRsinto thefunctional model of UML 2.

2.1.5.2 Application of NFR Framework on UML Artifacts

The application of NFR framework on different UML artifacts like use case diagram, class
diagram, sequence diagram, collaborationdiagram and activity diagram. Different researcher

applied different waysfor the integration of NFRsin UML artifacts.

2.1.5.2.1 Application of NFR Framework on Use case

Supakkul & Chung et al [S. Supakkul & Chung, 20041 proposed a use case and goal-driven
approach to integrate FRs and NFRs. They used the UML use case modd to capture
functionality of the system and they also used the NFR Framework [L. Chung & Y u, 2000)
to represent NFRs. They proposed to associate the NFRs with four use case mode €l ements:
actor, use case, actor-use case association and the system boundary. Figure 2.1 shows these

NFR association points. They name these associations\Actor Association Point”, \Use Case

20

Association Point”, \Actor-Use Case Association (AU-A) Point”, and \System Boundary
Association Point" respectively. Having such an extension to the UML use case model. NFRs
can be integrated at the design level with FRs and can provide better understanding of the

requirements model.

System Boundary

System,
development, or
software process
related NFRs

Access,
comenunication, of

hfo exchange
related NFRs

Functional
requirements
Enternal &Ql ated NF
entity related
NFRs %
-,

Uze Case

Actor

Figure2.1: NFR Association points (S. Supakkul & Chung, 2004]

Cysneiroset al [L.Cysneiros & Leite, 2004] used the strategy for theintegration of NFRs in
use case diagrams. They first identified LEL symbol appears in the use case diagram. They
also identified if any LEL symbol appearsin any of the use cases or actors of the diagram.
For each LEL symbol they find, they search the set of NFR graphs to identify those where
this symbol appears. They may eventualy, find one or more NFR graphs that contain the
symbol being searched for. They take every graph wherethe symbol appears and check if the
use case diagram realizes the dynamic operationalizations in the graph. LEL intends to
capture every meaningful term used in the Universe of Discourse. If a use case diagram does

not have at least one LEL symbol, either there are symbolsin LEL that may have aliases not

21

yet specified or a symbol is missing. Most of al, all the actors in a use case diagram must be
LEL symbols. If a symbol is missing, LEL must be updated and al the processes that are
carried out within the nonfunctional perspective must take place again, e.g., search for NFRs
that may apply to this symbol, create NFR graphs. Every use case or actor included, due to
NFR satisfaction, must be followed by an expression using the pattem: {NFR_Type
[INFR_topic]}. The use of this expression aims at adding traceability between the functional
and nonfunctional perspectives.

Moreira et al [A.Moreira & Brito, 2002] proposed a strategy to first identify requirements
then specify it and then integrate it. According to his approach which is applied on use case,
first identify requirements then from those requirements identify actors and use cases and
identify quality attributes from those requirements. After identifying requirements and actors
and use case then specify all these in use case diagram and then specify quality attributesin a
template. All quality attributes are specified or recorded in a template with this information:
“name, including description, focus, source, decomposition, priority, obligation, influence,
where, requirements and contribution ”, Then finally integrate these quality requirementsin a
use case diagram. They augmented the use case diagram to include a new stereotyped use
case for each quality attribute and make the crosscut initial use cases include the new ones.
Then they showed these stereotypes in the use case dfagraﬂ Wth theinclude relationship.
Dimitrov et al [E. Dimitrov & Schmietendorf, 2002] used a process based on ISO 14756 for
a formalized description of the workload within the framework of use case diagrams. This
requires many steps: identifying activity types and recording the number and types of users,
deriving task types by assigning activity types to task mode and defining service level

requirements, defining chain types as fixed sequence of task types, defining the percentage

22

occurrence frequency g and the user preparation time for concrete chain types while the
program runs and laying down the reference yalue of mean execution time trer (response
times) for concrete task types. They define a load and time-weighted use case diagram for
specifying performanceaspects with the standard UML notations.

The different researchers had done a different work on integration of NFRs in use case
diagram. Moreira and Cysneiros worked on use case diagram both works inspiration come
from Chung work [L. Chung & Yu, 2000]. For the integration of NFRs both researchers used
the Chung work on NFR. Chung [L. Chung & Y u, 2000] described the most comprehensive
framework on NFR for representing and dealing with NFR. Cysneiros used the NFR graphs
for the integration of NFRs in use case diagram from Chung NFR framework [L. Chung &
Yu, 2000]. Moreira used the approaches of Chung for the integration of NFRs in use case
diagram and integration is also familiar with the Cysneiros worked on use case diagram.
Dimitrov worked on NFR for just a specific NFR which is performance and didn't give any

work related to any other NFR.

2.1.5.2.2 Application of NFR Framework on Class Diagram

Cysneiros et al [L.Cysneiros & Leite, 2001], [L.Cysneiros & Leite, 2004] described
integration of the nonfunctional perspective into the class model is based on the use of LEL.
It means that every class belonging to the class diagram has to be named using a LEL
symbol. The use of LEL as an anchor to construct both perspectives is facilitating their
integration. It can also be used for validating both models since, if for some reason one
cannot find a LEL symbol for naming a class, it means that either any LEL symbol has an

alias that was not yet considered, or the symbol is missing in LEL definition and, therefore,

23

should be added to it. If that is the case, one may go over the nonfunctional perspective
again, i.e., evaluate the symbol for possible NFRs, represented in the graphs. Using this
anchor, the integration process is centered on searching for a symbol that appears in both
models, and evaluating the impacts of adding the NFRs operationalizations to the class
diagram. They start the process by picking out a class from the class diagram. There is no
order for choosing one class or another. They search all the NFR graphs looking for any
occurrence of this symbol. For each graph where the name of the class are searching for
appears, have to identify the dynamic and static operationalizations from this graph.

For dynamic operationalizations found, check if the operations that belong to this class
already fulfill the needs expressed in the graph's operationalizations. On the other hand, for
static operationalizations, check if the class attributes already fulfill the needs expressed in
the graph's operationalizations. If they do not, then they are adding operations and attributes
to the class. Note that, adding new operations may sometimes call for the inclusion of new

attributes in order to implement the desired operation or vice-versa.

24

2.1.5.2.3 Application of NFR Framewor k on Sequence Diagrams and

Collaboration Diagrams

Cysneiros et al {L.Cysneiros & Leite, 2004] described a strategy for integrating NFRS into
the sequence diagram by examined every class of the class diagram. For every operation
included because of NFR satisfaction, they searched the sequence and collaboration diagrams
where this class appears. For each diagram they find, they must check if the new operations
added due to NFR satisfaction will imply any change in this sequence diagram. It may be
necessary to add classes, messages, or both to the diagram. If there is any pre or post
condition attached to an operation, they may also need to specify it attached as a note to a
message. And must be able to represent that new message together with pre and post
conditions in the sequence diagrams were added due to NFR satisficing. This is done by
using a note linked to the message where the condition will apply. This note will contain the
expression that portrays the pre or post condition. Any message included in these diagrams
due to NFR satisfaction will have the same traceability expression they used with attributes
and operations. The integration on communication diagrams weredonein asimilar way.
Moreira et al [A Moreira & Brito, 2002] described the integration of NFRs in UML
sequence diagram. When they found the result from the use case diagram after integration of
NFRs then they further precede. They used stereotypes in the use case diagram for
integration. Then they used those stereotypes in the sequence diagram. They showed through
the arrows and with the grey rectangles in the lifeline of sequence diagram. They identified
the points wherein the constraint applies with the units of time.

Dimitrov et al [E. Dimitrov & Schmietendorf, 2002} used sequence diagram as specidl

interaction diagrams offer sufficient potential to obtain and present performance information.

They represent time relations by introducing an explicit time axis (time progress from top to
bottom). The vertical layout of messages in the diagram helps define the messages
chronological sequence. For the interaction diagram, they proposed to add some additional
time information by labeling the messages with relative constraints such as assigning time
attributes to the messages and to the method executions. According to this approach the
labeling of messages with time will be interpreted as latency and labeling of methods with
time will beinterpreted astimefor method execution.

As1 conclude all the work done by different researcherslike Moreira worked on sequence
diagram was done on the basis of use case diagram means result of integration of use case
diagram is used in sequence diagram. Those use cases which are added after integration are
included i n sequence diagram through mentioned boxes in lifelinesand units of time are also
showed in sequence diagram. Cysneiros worked on sequence diagram is done through after
the integration of NFRs in Class diagram. They first check that any NFRs inclusion changes
the impact of class diagram then these changes dso manipulate in sequence diagram like
addition of any new class, any operation or any attribute. Dirnitrov just added some

additional timeinformation by |abeling the messages with relative constraint.

26

2.1.5.2.4 Application of NFR Framework on Activity Diagram

Atif et al (M. Usman, Atif, Rizwan & Shahzad)] described the integration of NFR into
activity diagram. This integration requires the identification of each activity from use cases
and domain glossary. The activities identified in use cases must exist in domain glossary. If
there is any activity in use cases but not present in domain glossary then domain glossary
must be updated. The activities are then represented in activity diagrams. They assumed that
activity diagrams are drawn for important activities of Universe of Discourse. Usually
activity diagrams are drawn from use cases. They then explored domain glossary to identify
NFRs for each activity. From NFR graph, they used satisficing sub goals at leaf nodes to
operationalize the NFR in activity diagram. The operationalization of NFR requires looking
for relevant actions in activity diagram and then mapping satisficing sub goals of NFR graph
on these actions. The operationalization of NFR through activity diagrams gives result in new
actions or as constraints on existing actions. The mapping either is an action or constraint.
New action is proceeded or follows existing action and is being referred to as pre and post
actions. The constraints are appended in existing actions and are referred to asin actions. The
pre actions mean that these must be performed before the execution of actual action; post
actions are performed after the execution of actual action and in actions are treated as a

condition or constraint on actual action.

2.1.6 Comparison among Different Approaches

Concept/Research Work Approach Paper

NFR Framework Based on NFRs [L. Chung & Yu,2000
]

NFR in Conceptual model through NFR | Based on NFRs [L.Cysneiros & Leite,

graphsand LEL Symbols. 2001] & [L.Cysneiros
& Leite , 2004]

Model to identify and specify quality Based on NFRs [Ana Moreira & Brito,

attributes at an early stage 2002]

A framework for Performance Based on NFRs(UML | [E. Dimitrov &

engineering based approach for Schrnietendorf ,2002]

performance modeling)

A framework for integrating NFRs with
FRs in the use case modedl.

Based on NFRs (A use
case and Goal driven

[S. Supakkul & Chung,
2004]

approach)
IHomogeneous UML use-case model Based on NFRs [Brian, 2004]
Extending UML with UML profile Based on NFRs [S. Supakkul & Chung,
2005)
NFRs in Software Architecture Based on NFRs [L .Xu& Ziv,20051
UML profilefor modeling design Based on NFRs (L. Zhu & |. Gorton,

decision and for modeling NFRs ina
ggeneric way.

2007]

Table 2.1: Comparison among different approaches

Table 2.1 shows the research work which is based on NFRs and shows the different
approaches to handle the NFR of the system. The research works are presented in
chronological order. The most comprehensive work on NFRs is based on NFR framework
which was proposed by Chung [L. Chung & Yu, 2000]. The Chung NFR framework is the
most comprehensive for the representation and dealing for NFRs. The template Moreira

proposed to specify a quality attributes was influenced by the approaches of Chung et al.

28

Then Cysneiros also used Chung et al NFR framework [L. Chung & Yu, 2000} and apply it

into use case view, behavioral view and structural view as mentioned in table 2.2. Different

researchers proposed different frameworks mentioned in table 2.1 and some of the researcher

applied frameworks on UML artifacts shown in table 2.2. Table2.2 shows the frameworks

which are applied on UML artifacts. Table 2.2 shows these works according to five views.

Some views are covered but some views are not covered yet like implementation view and

inclusion of some new diagramsin behavioral view and structural view in version UML2.

se Case
ew

Structural | Implement

ation view

Behavioral view

Environm
ent view

s€ case
agram

Deployme
nt diagram

Papers

L

[A.
Moreira
Brito,
2002]

[E.
Dimitrov
&
Schmiete
dorf
2002 3

[S.
Supakkul
& Chung
2004]

fL.
Cysneiros
& Lete
2004]

S o N

Table 2.2: Viewsare used to specify NFRs

According to the 4+1 architectural views model was proposed by Krutchen, the views are
structural view, behaviora view, implementation view, environmental view and one is use
case view. Software systems can be modeled from these views. As shown in table 2.2,
implementation view is not covered in any researcher in any paper. The CSD and CD are
included in implementation view. As these diagrams have a lack of information about non
functional aspects of the software system, especially NFRs related to different components
and their implementation. In literature | find that there is need to improve the understanding
of NFRs at component and implementation level and also to complete the understanding of
NFRs in these diagrams to make these diagrams complete and also to improve the quality of
software system at run time in implementation view.

As shown in table 2.2, the behaviora view covers work on sequence diagram and
collaboration diagram. But some diagrams are left for the integration of NFRs. IOD is
diagram is the combination of all interaction diagrams like seguence diagram and
communication diagram and timing diagram. | want to find that, is there any impact in
diagram when we combine interaction diagramsin an 10D, any addition of instances, classes,
association or any NFR which may change the IOD. The literature of software engineering
does not provide any mechanism to incorporate NFRs in these types of models. My research
focusisto find out amechanism to incorporate NFRs in these views, so that it will help usto

understand that particular view (Implementation, Behavioral) of system.

Chapter 3

Stratew for Integration of NFRs

31

3. Strategy for thelIntegration of NFRs

Developing quality software always requires the proper elicitation of NFRswith the FRs. If
the NFRs are not reflected properly in the design phase, the quality of the software will
suffer. Researchers consider the design of software as the basic foundation of building a high
quality product.

Software models like requirements, conceptual, and design models are realizations of FRs.
Few attemptsare made to model NFRsin UML artifacts like [A. Moreira & Brito, 2002}, {E.
Dimitrov & Schmietendorf ,2002], [S. Supakkul & Chung, 2004] & [L. Cysneiros & Leite ,
2004]. Research in RE has shown recently that besides modeling FRs, there is need to
incorporate NFRs in functional modelsas well [L.Cysneiros & Leite, 2001} & [Dardenne &
Van , 1993]). "Modeling NFRs allows them to be organized for better visualization and
understanding™ [Cysneiro's & Yu, 2003]. It will help software engineers to analyze NFRs.
This integration will improve the understanding and quality of functional models.

Chung worked on NFRs [J. Mylepoulos & Chung, 1992] & [L. Chung & Y u, 2000], the most
comprehensive framework for the integration of NFRs and dealing for NFRs [J. Mylopoulos
& Chung, 1992]. Cysneiros used the Chung [L. Chung & Yu, 2000] worked on NFR and
applied it into UML1 diagrams, the worked on the integration of NFR in UML artifacts were
donein a very comprehensive way so I am further extending on UML2 diagrams with using
NFR framework and Graphs. As mentioned in table 21 different research works, some
focused on particular NFR and some are system dependent. Cysneiros used NFR framework
and applied it into use case view, behavioral view and structural view. But some views are

not covered yet like implementation view and inclusion of some new diagrams in behavioral

32

view and structural view in UML2. My work is focus on implementation view, behaviora

view and structural view. | am proposing the strategy for the integration of NFRs in 10D,

CSD and CD which are not dependent for a particular system and not for a particular NFR.

My proposing strategy deal NFRs with respect to the system. The different steps for the

integration of NFRs are as follows:

L

2.

©

©

Eliciting NFRs
Building Domain Glossary
Representation of NFRs
a NFR Framework
b. Refining NFRsusingNFR graph
Creating NFR Graphs
Integrating NFRs in Use case diagram
Integrating NFRs in Class Diagram
Integrating NFRs in Sequence and Communication Diagram
Integrating NFRsin 10D

Integrating NFRs in CSD

10. Integrating NFRsin CD.

The step 1 and 2 are our contribution whereas step 3 and 4 are included from Chung [L.

Chung & Yu, 20001 & [J. Mylopoulos & Chung, 1992] NFR framework. The steps5to 7 are

included from Cysneiros[L. Cysneiros & Leite, 2004] integration strategies for NFRs. The

steps 8 to 10 are ow contribution for the integration of NFRsin UML2.

33

3.1 Eliciting NFRs

Theelicitation of NFRs, Cysneiros [L. Cysneiros & Leite, 2004] elicited NFRs through LEL
symbols. LEL registered the vocabulary of universe of Discourse. They build LEL for the
functional and nonfunctional perspective. First build LEL for the functional perspective then
nonfunctional perspective is added. | assume that requirements have aready been dlicited
and specified in regquirements document like Software Requirement Specification (SRS), use
cases etc. These requirements documents will be used to search NFRs. There is no hard and
fast rule to identify NFRs. | have used a simple principle to identify NFRs from requirement
documents. Typically verbs are treated as functional and adverbs are treated as NFRs. For
example an FR might be stated as " customer want to complete sales processing™. On the
other hand NFR might be phrased as "Customer want to complete sales processing very
quickly**. Some other NFRs for POST are: The system shall be highly available since the
effectiveness of sales depends on its availability. The system shall be portable to a range of
different platforms to support aproduct line of POST systems. The system shall be usable by

clerks with aminimum of training and with a high degree of efficiency.

3.2 Building Domain Glossary

The concept of domain glossary isto record tasks and their corresponding NFRs. Tasks are
added in glossary by analyzing the requirements documents. Tasks are functiona in nature
e.g. items, payment etc. NFRs are constraint on these tasks e.g. Payment authorization

service that they will make or guarantee the payment to the seller, and the management of

items. Each task is represented in domain glossary by its name, description and it's
associated NFRs.

Domain glossary is based on a vocabulary system composed of tasks where each task is
expressed through its description and associated NFRs. The description explains the meaning
of the task and its relation with other task. The associated NFRs specify the non functional

aspects of the mentioned task.

3.3 Representation of NFRs

| am using Chung [L. Chung & Yu, 2000] NFR framework to represent NFRs. The NFR
Framework for representing and using nonfunctional requirements during the development

process.

3.3.1 TheNFR Framework

Chung [J. Mylopoulos & Chung, 1992] proposed a comprehensive framework for the
representation and dealing NFRs during the development process. Chung framework based
on five basic components which provide for the representation of NFRs in terms of
interrelated goals. Such goals can be refined through refinement methods and can be
evaluated in order to determine the degreeto which a set of NFRsis supported by a particular
design.

The NFR framework view NFRs as goals that might conflict among each other and must be
represented as soft goals to be satisficed. Each goal decomposed into sub-goals represented

by a graph structure inspired by the And / Or trees used in problem solving. The

decomposition is done using contribution links. Contribution links can be categorized as an
or contribution or an and contribution. Contribution links allow one to decompose NFRs to
the point that one can say that the operationalizations to thisNFR have been reached (i.¢., the
goals are no longer "' soft™). Operationalizations can be viewed as FRs which has arisen from
the need to meet NFRs. These operationalizations may add some new methods, attributes,
entities and constraints in functional models. The NFR framework also used correlation links

to show contributions (positive and negative) from one NFR to another.

3.3.2 Refining NFRs using NFR graph

The NFR framework [J. Mylopoulos & Chung, 1992] was extended to represent the
operationalizations in two different ways [Cysneiro's & Yu, 2003]. They are called dynamic
and static operationalizations. Dynamic operationalizations are those that call for some action
to be carried out. Static operationalizations express the need for some data to be used in
design of the software to store information which is necessary for satisficing the NFR

[Cysneiro's & Yu, 2003].

3.3.3 Creating NFR Graphs

To build the NFR model, must go through every task looking for descriptions that express the
need for an NFR. For each NFR found, one must create an NFR graph where this NFR wiil
be the root of the graph. This graph must be further decomposed into sub goals and then

express all the operationalizations that are necessary to satisficed this NFR. This can be

36

accomplished either using the knowledge base on NFRs or investigating what descriptions
and associated NFRs are added to domain glossary to satisficed NFRs.

If during decomposition any new term is identified, it is added in domain glossary. NFRs are
treated as goals, which can be decomposed in satisficing sub goals. The terms used for these
goas are task in the domain glossary. Sub goals can further be decomposed in other
satisficing goals. A goal will only be satisficed when all of its sub goals are satisficed.
Satisficing NFRs may result in additional functionality. The leaf nodes of NFR graph will be
used to operationalize the NFR. This Operationalization may add some new attributes,

methods, entities and constraints in functional mode!.

3.4 Integrating NFRs

Cysneiros [L. Cysneiro's & Leite, 2004] strategies for the integration of NFRs in use case,
sequence diagram, collaboration diagram and classdiagram. | am using these strategies. | am
explaining these strategies because | am applying these strategies on a case study. Cysneiros
explained these strategies with respect to LEL which is build for the nonfunctiona
perspective. | am building domain glossary for the nonfunctional perspective so | am
applying these strategies according to domain glossary instead of LEL symbols. | want to
cover all views in one particular system so | am using these strategies and applying it on a
case study POST. Then aso my contribution is on strategy for integrating NFRs in 10D,
CSD and CD. The consideration of NFRsin all viewsin one particular system is considering

in this research work.

37

3.4.1 Integrating NFRs in Use Cases

Cysneiros[L. Cysneira's & Leite, 2004] explained the strategy for theintegration of NFRsin
use case inthis way.

The integration of NFR in use cases requires the identification of each use case from the
domain glossary. They identified if any domain glossary task appearsin the diagram. They
also identified if any domain glossary task appearsin any of the use cases or actors of this
diagram. For each domain glossary tak they find, they search the set of NFR graphs to
identify those where thistask appears. For example, the use case of process sale has security
NFR.

From NFR graph, they used satisficing sub goals at leaf nodes to operationalize the NFR in
use case. The operationalizationsof NFR requires looking for relevant use case in use case
diagram and then mapping satisficing sub goals of NFR graph on these actions. The
operationalizations of NFR through use case diagram will result in new actions or as
constraints on existing use case. The mapping will either be an action or constraint. Figure

3.3[L. Cysneiro's & Leite, 2004} showstheintegration processfor use case or scenario.

38

. [New decisions on NFRs g I
Pick up next NfRs satisficing
graph that ; Graphs ‘ P V—-

applies e e -
, . . L
; ", amic Operationalizations
7 NFR graph , Dyn pei
& wherethe 5,)
i symbal ~, Analyze possible
; a impacts due to
A B 4 . inclusions made in
N, the scenario
4
3 N Evatuate again
—
Evaluate neczssary -
inclusions to satisfies this 5
NER in the scenario L New episodes,
ER S ectors and
Analyze scenario Y % resources
2 with titles that has
glossary symbols
which gppears in an
NFR graph Scenarios New scenario
1 Scenarios
—_— o Donuntil H&en: isrlw
Pickup a A Scenario title scenano left W analyzs
scenario L

Figure 3.1: The use case or scenario integration process[L. Cysneiro's & Leite, 2004]

39

3.4.2Integrating NFRs in Class Diagram

Cysneiros[L. Cysneiro's & Leite, 2004] explained the strategy for the integration of NFRs in
classdiagram in thisway.

Integration of the non functional perspectiveinto the class model will be based on the use of
domain glossary. Here, it means that every class belonging to the class diagram has to be
named using a namedomain glossary. The use of domain glossary as an anchor to construct
both perspectives to facilitates their integration. It can also be used for validating both
models since, if for some reason one cannot find in domain glossary for naming a class, it
meansthat either that was not yet considered, or is missing in domain glossary and therefore
should be added to it. The integration process is starting on searching for atask that appears
in both models, and evaluating the impacts of adding the NFRs operationalizations to the
class diagram. Figure 3.4 [L. Cysneiro's & Leite, 2004] shows theintegration method for the
class diagram. They start the integration by picking out class or another. They search al the
NFRs graphs looking for any occurrence of this task. For each graph where the name of the
class they are searching for appears, they have to identify the dynamic and static
operationalizations from this graph. For dynamic operationalizations found, they have to
check if the operations that belong to this class aready fulfill the needs expressed in the
graph's operationalizations. On the other hand, for static operationalizations they have to
check if the class attributes aready fulfill the needs expressed in the graphs
operationalizations. If they do not, then they have to add operations and attributes to the

class.

40

Pick up I
next New decisions on
graph NFRs satisficing |
that NFR I
applies Graohs B
4_._.._.._
Static
*, Operationalizations
. Dynamic
\ NER graph Operationalizations Analyze possible
¥ wher&the name Y impacts due to
of the chosen A inclusions madein the
classes appears N class diagmm
3 -
R /«) 5 Evauateagain
Evaluate necessary I
2 inclusions to satisfies this
LooK o NER in the class diagram
NED - Class, g Ofeibtiessesd
that LN
appliesto éttgr%tuitgﬁsand L
this class P e
O New Design
1 Class Class
» | < Diagram
Pick upa M\ Do it until there areno
Class t classes left to analyze

Figure 3.2: The class diagram integration process [L.

tr

4]

Cysneiro's & Leite, 2004]

3.4.3Integrating NFRsin Sequenceand Communication Diagrams

Cysneiros[L. Cysneiro's & Leite, 2004] explained the strategy for theintegration of NFRsin
seguence and communication diagrams in thisway.

Integrating NFRs into the sequence and collaboration diagrams is done by examining every
class of the class diagram. For every operation included because of NFR satisfaction, they
may search the sequence and collaboration diagrams where this class appears. For each
diagram they found, they must check if the new operations added due to NFR satisfaction
will imply any change in this sequence or collaboration diagram.

It may be necessary to add classes, messages, or both to the diagram. If there is any pre or
post condition attached to an operation, they may also need to specify it attached as a noteto
amessage.

They must be able to represent that new messages together with pre and post condition in the
seguence and communication diagrams were added due to NFR satisficing. This is done by
using a note linked to the message where the conditions will apply. This note will contain the
expression that portrays the pre or post condition, any message included in these diagrams
due to NFR satisfaction will have the same traceability expression they used with attributes
and operations. Figure 3.5 [L. Cysneiro's & Leite, 2004] shows the integration method for

the sequence and communication diagram.

Specia Condition C

Sequence

Dhiagram
New Message / New Classes = 4
’J__.,.--'""" _______ s
..... ,_,.-*'"/’ e -
PP :
— ~~ c |
e, B > [~
PP A S L OMmiunicanon
Verify the e | Diagram
operation, -
which New Message / New Classes
required
addition for A
megsages
on special Special Condition
condition
2 .) , i l
= Operations, attributes which ol |
! . satisfies NFRs ass
Pick classes with NFR Diagram

Figure 3.3: The sequence and communication integration process

[L. Cysneiro’s & Leite, 2004]

43

3.4.4Integrating NFRs into 10D

The 10D focuses on the overview of theflow of control of the interactions. AnIOD isa form
of activity diagram in which nodes represents interaction diagrams. Interaction diagrams can
include sequences, communication, interaction overview and timing diagrams and IOD is a
combination of sequence, communication and timing diagram.
The purpose of integration of NFRs in |OD is, sequence diagram are produced against every
individual event in a use case and a use case have more then one sequence diagrams.
Although NFRs are modeled on use cases [L.Cysneiros & Leite, 2004] as well but it is
difficult to map those NFRs to each individual sequence diagram against that use case. There
is a need to have a single model realizing an individual use case in terms of sequence
diagram. 10D represents an individual use case in terms of sequence diagram. The
integration of NFRs fulfills those needs. Figure 3.6 shows the integration process for the
|OD.
The integration processfor the 10D isasfollows:

1. Pick up aninteraction,

2. Analyzesit and look for NFRs that appliesto thisinteraction,

3. Evaluate necessary addition to satisficed thisNFR in 10D,

4. Anayze dl possible impacts dueto addition made in IOD and then,

5. Evaluatethis processagain for the verification for any addition,

6. Analyze dl the interaction in thisways when there isno interaction left to analyze.
In this way some new interactions or new messages/classes or note with pre or post
condition are added in 1OD. When | apply NFRs on 10D, the addition of new interactions or

new messages/classes or note show changes in the model. These addition or changes makes

44

the model perfect and complete and enhanceits understanding and also improvesthe quality

of the system.
I

!]

Interaction |

Overview I

v Diagram
New Message/ New Classes—"
e Any note with
Y.) pre or post
New interactions ™, * condition
Evaluate TN
necessary - A - A,
addition to o A Analyzeall possibleimpacts —l—
?ﬁrlssl{lilieR 0 4 dueto addition madein 10D N\
10D T J
5 Evauateagain
Look for NFRs that applies
2 tothisinteraction
< i Ope(a_tions, messages or a [
A condition which satisficed L
O NFRs Sequence /
Pick up an interaction] Communication ‘ l—'
> /K‘ Diagram
) t
¢ Doituntil thereisno
interaction left to analyze

Figure 3.4: The |OD integration process

45

3.4.5 Integrating NFRsinto CSD

The CSD introduced in UML2 which has alack of information about non functional aspects
of that system, especiadly NFRs related to different composite classes and their
implementation. The CSD dedls with the internal structure of a classifier, including its
interaction points to other parts of the system. It shows the configuration and relationship of
partsthat together, perform the behavior of the containing classifier.
The integration of NFRs in CSD covers the implementation and structural view of software
system. Figure 3.7 shows the integration processfor CSD.
The integration processfor the CSD isasfollows:

1. Pick up acompositeclass,

2. Analyzesit and look for NFRs that appliesto this compositeclass,

3. Evaluate necessary addition to satisficed thisNFR in CSD,

4. Anayzeal possibleimpacts due to addition madein CSD,

5. Evaluatethis processagain for the verification of any addition,

6. Anayzeall the compositeclassesin thiswayswhen thereisno composite classleft to

anayze.

In this way, addition of some new composite class or new parts in composite class or any
association between parts and composite classes are added in CSD. When | apply NFRs on
CSD, the addition of new composite class or new part or any new association show changes
in the model. These changes make the modd complete, clear the understandingof system at

implementation and structural level and improvesthe quality of the system.

46

New composite class r

I
Andyzeal e 0
Evaluate 4 possbleimpacts e Composite
Qdeg?ﬁq dueto addition o New part Structure
Jiion to made in CSD P Di
satisfice this R lagram
NFR in —_— > L
composite class AQ /IA\ Any assocition
Evaluate again , between parts or
3 5 , composite class
2
Look for
NFRs that
appliesto
this
composite
class
Pick upa
composite class Do it until there isno composite

class left to analyze

Figure 3.5: The CSD integration process

47

3.4.6 Integrating NFRs intoCD

The CD main purpose is to show the structural relationships between the components of a
system. In UML1.1, a component represented implementation items, such as files and
executables. Unfortunately, this conflicted with the more common use of the term
component, "which refers to things such as COM components. Over time and across
successive releases of UML, the original UML meaning of components was mostly lost.
UML2 officialy changes the essential meaning of the component concept; in UML2Z,
components are considered autonomous, encapsulated units within a system or subsystem
that provide one or more interfaces. Although the UML?2 specification does not strictly state
it, components are larger design units that represent things that will typically be implemented
using replaceable modules. But unlike UML1, components are now strictly logical, design
time constructs. The ideais that you can easily reuse and or substitute a different component
implementation in your designs because a component encapsulates behavior and implements
specified interfaces.
The integration of NFRsin CD covers the implementation view of software system. The CD
has lack of information about non functional aspects of that system, especially NFRs related
to different components and their implementation. Figure 3.8 shows the integration process
for component diagram.
The integration processfor the CD isasfollows:

1. Pick up acomponent,

2. Analyzesitand look for NFRsthat applies to this component,

3. Evaluate necessary addition to satisficed thisNFR in CD,

4. Analyze all possibleimpacts due to addition madein CD,

48

5. Evauatethisprocessagain for the verification of any addition,

6. Analyzeadl the componentsin thiswayswhen thereis no component left to analyze.
Some NFRs are not operationalized at component level then | attach these NFRs in aform of
aspecia note with condition, mention the condition for which it will be use. But we have to
consider the association between components. Sometimes some components required or
provide interface then we have to inspect these interfaces and moded the related NFRs on
these components by attaching some notesto that association or relationship which show the
creation of adding those notes. In this way, addition of some notes between componentsis
added in CD. When | apply NFRs on CD, the addition of new notes shows changes in the
model. These changes make the model complete, enhances the understanding of system at

component level and improvesthe quality of the system a implementationand run time.

49

Chapter 4

Case Study(POST)

51

4. POST (Case Study)

4.1 Introduction

This case study is about a POST system. A POST is a computerized system used to record
sales and handle payments; it is typicaly used in a retail store. It includes hardware
components such us a computer and bar code scanner, and software to run the system. It
interfaces to various service applications, such as third-party credit and check authorization
systems, tax calculator and inventory control. The main objectives of the system are to deal
with sale, returned items and handle payments of those returned items. These systems must
he relatively fault-tolerant; that is, even if remote services are temporarily unavailable (such
as the inventory system), they must still be capable of capturing sales and handling at least
cash payment.

POST Functions

| am discussing two main use cases of POST because these use cases are the main use cases
for any sale system. First sale is required to run for any sale system and then returned of
those saleitems.

1. Sales

(a) Saleitems

(b) Return purchased items

52

4.1.1 Use Case descriptions

4.1.1.1Use case: Saleitems

Actors. Customer, Cashier, Accounts Receivable/To Pay System

Description: A Customer arrives at a checkout with items to purchase. The Cashier records
the purchase items and collects payment. On completion, the Customer leaves with the items.
Stepsor transactions

1. This Use Case begins when a Customer arrives at a POST checkout with items to
purchase.

2. The Cashier recordsthe identifier of each item.

3. The System determines the item price and description and adds information to the current
sales transaction.

4. On completion of item entry, the Cashier indicates to the POST that item entry is
complete.

5. The System calculates and presents the sale total.

6. The Cashier tellsthe customer thetotal.

7. The Customer chooses payment type:

(&) If cash payment, see section Pay by Cash

(b) If credit payment, see section Pay by Credit

(c) If check payment, see section Pay by Check

8. The System logsthe completed sale.

9. The System prints a receipt.

10. The Cashier givesthe receipt to the Customer.

11. The Customer leaves with the items purchased.

53

Alternative

* Line 2. If there is more than one of the same item, the Cashier can enter the quantity as
well. The subtotal of theseitemsisshown.

* Line 2. Invalid identifier entered. Indicate error.

* Line 7. Customer didn't have enough money. Cancel sales transaction.

Section: Pay by Cash

Steps or transactions

1. The Customer gives cash payment - the **cash tendered” — possibly greater than the sale
total.

2. The Cashier records the cash tendered.

3. The System shows the balance due back to Customer.

4. The Cashier depositsthe cash received and extractsthe balanceowning. The Cashier gives
the balance owning to the Customer.

Alternative

* Line 4. Insufficient cash in drawer to pay balances. Ask for cash from Supervisor cashier,
or ask Customer for apayment closer to saletotal.

Section: Pay by Credit

Steps or transactions

1. The Customer communicatestheir credit information for the credit payment.

2. The System generates a credit payment request and sends it to an externa Credit
Authorization Service(CrAS).

3. CrASauthorizesthe payment.

4. The System receives a credit approva reply from the CrAS.

5. The System posts (records) the credit payment and approval reply information to the
Accounts Receivable/To Pay System. (The CrAS owes money to the Store, hence AIR must
track it).

6. The System displays authorization success message.

Alternative

* Line 3. Credit request denied by CrAS. Suggest a different payment method.

Section: Pay by Check

Steps or transactions

1. The Customer writes a check and identifies itself.

2. The Cashier records identification information and request check payment authorization
(ChAS).

3. The System generates a check payment request and sendsit to an external ChAS.

4. The ChAS authorizes the payment.

5. The System receivesa check approval reply from the CrAS.

6. The System displays authorization success message.

Alternative

* Line 4. Check request denied by ChAS. Suggest different payment method.

4.1.1.2Use case: Return purchased items

Actors: Customer*, Cashier

Cross Reference: Fl.b

Description: A Customer arrives at a checkout with purchased items to return. The Cashier

records the returned items. On completion, the Cashier refunds the Customer the total money.

Steps or transactions

1. ThisUse Case beginswhen a Customer arrives at a POST checkout with itemsto return.

2. The Cashier recordsthe identifier of each item.

3. The System determines the item price and description and adds information to the current
return transaction.

4. On completion of item entry, the Cashier indicates to the POST that item entry is
compl ete.

5. The System cal culatesand presents the refund total.

6. The Cashier givesthe customer the money back.

7. The System logsthe completed return.

Alternative

* Line 2. If there is more than one of the same item, the Cashier can enter the quantity as
well. The subtotal of these itemsisshown.

* Line2. Invalid identifier entered. Indicate error.

* Line 6. Insufficient cash in drawer to pay total. Ask for cash from Supervisor Cashier.

4.2 Integrating NFRs in POST

POST case study is used for validation of NFRs integration process. | am integrating NFRs
on use case diagram, class diagram, sequence and communication diagram, |1OD, CSD and
CD. For the nonfunctional perspective as | mentioned in chapter 3, | am building a domain
glossary to record the NFRS against each functional requirement so domain glossary for

POST isshownintable4.1.

Task

Description

NFRs

'Process Sal e

A Customer arrivesat a
checkout with items to
purchase.

The Cashier records the
purchaseitems and collects

payment.

Security of payments either
in credit or through checks.
Performance involvesin
payment authorization.
Maintain the records of

saleitems.

IHandle Returns

A Customer arrivesat a

. checkout with purchased

itemsto return. The Cashier

recordsthe returned items.

Accuracy and Consistency
of theitem whichisto

return.

Process Rental

A cashier givestheitem on

rent.

Security of Customer

which takes item on rent.

Nanage Users

System administrator hasto
imanagethe details of users

of the system.

Manage Security

System administrator has to
manage the security of all

tasks

57

Register Register classdealsthe new | Security involvesfor
sde enter items, payments | making payments.
and end of sale. Maintain record of the
items.
Maintain and Update the
records of the return sale.
Payment Payment class deals with Security involvesfor
ithe payments. handling payments.
Sale Sdeclassdea with sdleand | Security involves for
make the quantity of sale, making payments.
get total and make payment. | Maintain the recordsof
sale
Product Catalog Iroduct Catalog givesthe Catalog provides useable

description of the product.

description of the product.

Table4.1: Domain glossary

58

4.2.1 Integration of NFRs in POST Use Case

Figure 4.1 shows the use case diagram of POST without integration of NFRs.

1’ -
Customer) g /\
/ ' ARbyrizstt
(p / Authorizati.
a <<actor>>
Cashier Tax
calculator
)
oy Manage Securit \ <<actor>> |
anage oecun .
System % g N Accounting ‘
Administrat e
ministrator \ { \ system .
—

/

Manage Users

Figure 4.1: Use case diagram for POST before integration
In the figure 4.2 shows the decomposition of NFR Security. In figure 4.2 Security [Payment]
refers to NFR security regarding the process sale task. | found that in order to achieve
security of payment either in check or credit. These are represented as sub goals as Security
[Payment.Check] and Security [Payment.Credit]. In figure 4.2 these sub goals are further
decomposed in two sub goals of Security [Payment.Check] and three sub goals of Security
[Payment.Credit]. These sub goals are represented in figure 4.2 as Security

[Payment.Check.Recordldenti.Info], Security [Payment.Check.Authorize] and Security

5%

[Payment.Credit.Communicate Credit Info], Security [Payment.Credit.Approve Credit

Payment], Security [Paymnet.Credit.Request Credit Payment].

The

Security [Payment.Check . Authorize.GenerateCheckPayment] and Security

[Payment.Check.Authorize. ApproveCheck Payment].

By further refining these goals we come to know that goal

Security [Payment.Check Authorize.GenerateCheck Payment] is decomposed in
satisficing sub goals Security [Payment.Check.Authorize.GenerateCheck
Payment.SecureCommunication] and Security
[Payment.Check. Authorize. ApproveCheckPayment. Authenticate Access].they ae
represented as leaf nodes in figure 4.2. Through analysis we found that Security of
Payment can be achieved by restricting the access to authenticated operators and
secondly by providing secure communication between system and bank.

Security [Payment.Credit.CommunicateCreditInfo] is decomposed into Security
[Payment.Credit.CommunicateCreditInfo.SecureCommunication] and Security
[Payment.Credit.RequestCreditPayment] is decomposed into Security [Payment.
Credit.RequestCreditPayment. Authenticate Access] and . Security
[Payment.Credit. ApproveCreditPayment] is decomposed into Security
[Payment.Credit. Approve Credit Payment. Authenticate Access|.

Security [Messaging Services| must be secure, but they are not operationalized.

Security [Database Services] must be secure, but they are not operationalized.

60

They are represented as leaf nodes in figure 4.2. Through analysis | found that security of
payment can be achieved by restricting the access to authenti cated operators and secondly by

providing secure communication between system and bank.

61

Security {[Payment
Authorization]

Security [Payment

Authorization. Check]/o

Security [Payment Security [Payment
Authorization. Check. Record Authorization. Check.

Identification Info] Authorize]
6 é Credit.
/A
Security [Payment \

Authorization. Check.
Authorize. Generate
Check Payment]

/

Authorize. Approve
Checks Payment|

Security [Payment Aughorization.
Check. Authorize. Agprove Check
Payment. Authenticate Access]

Security [Payment Authorization.
Check. Authorize. Generate Check
Paymeny. Authenticate Access}

Figure4.2: NFR graph to be integrated

62

Security [Paymekt
Authorization.

RARRO A oh, Check.

/ Security [Messaging Services)

Security [Database Services|

Security [Payment
.| Authorization. Credit]

GON

Security
[Payment

N Authorization.
Credit. Approve
Credit Payment]

Communtcaie Credi \

Security [Payment

Authorization,
Credit.
Communicate
Credit Info. Secure
Communication]
Saginotizffanngnedit. FRaymb
[Payment
Request Cred Authorizat
Payment. Aythenticate Credit.
Access) Approvp C
Payment.
Autheniica
Access)

Y

O

Figure 4.3 shows the NFR use case diagram from NFR graph figure 4.2, the satisficing sub
goasareintegrated in use case diagram to operationalizethe NFR.

To achieve the sub goal of security, we need to restrict unauthenticated access to system and
to maintain access log of operators. Secure communication with bank is also required to
protect the Customer's bank account details. So the authenticated access in case of credit and
check payment is added in use case diagram and it should verify it through credit or check
authorization system. Maintain item and managereturned item are added as a use case which
conforms the availability of sale items and then maintain the records of the sale items. The
items which are returned to the system they must be managed properly or record properly.
This operation will ensure that the information entered/ changed is updated correctly at all
places and there are no in consistencies.

| believe that these new actions will enhance the understanding and quality of use case
diagram. It will help designers and developers to conform to the FRs and NFRs of users.
Implementation of these actions is left on designers and developers. This process has to be

carried out for all the use case diagrams that compose the software specification.

63

N

_\j’i /

N
’ N T——]

Customer\

g‘; /
N "

N

Cashier

N
'

e
l/ \\

Administrah

System

. Maintaimrltem
P dananas Datrsrmad ffoon
i S VGG ol

s

Manage Security

Manage Users

. A
/ Payment
-3 Authorization Service

<<Lactor>>

N Tax

calculator

<

\

I

<<actor>> |
Accounting
system

Figure4.3: Use case diagram for POST after integration

4.2.2 Integration of NFRsin POST Class Diagram

Integration of NFRs into classdiagramsfor a POST according to the integration strategy in
figure 3.4. Let us take for example a class sale items from POST. | had to search dl NFR
graphs in the non functiona perspective looking for the symbol sale item. One of the NFR
graphs found is shownin figure 4.6, where | can seethat the operationalizations state that the
software must maintain the available records of the sale items. | have to check if any
operation in the class sale already performs these actions. If they do not, | should add
operationsto handle these actions.

Notice that, if the classthat | am analyzing is part of a generalization, association, | have to
check if any super class or subclass of this class does not have operations, or attributes that
satisfy the needed operationalizations.

According to Cysneiro's, integration of NFRs into class diagrams calls for some extensions
to be made on how to use UML notation for these diagrams. Cysneiro's explained his paper
four heuristics on how to proceed.

1. Classes created to satisfice an NFR may have the name of the class followed by
traceability |1k that points out to the NFR whose operationalizations demanded the class be
created. Thislink will follow the syntax: { NFR [LEL Symbol]}. Since NFRs are often more
difficult to be on designer's mindsthan FRs, having thistraceability link avoidsclassesto be
withdrawn from the class diagram during a reviewing process, because one could not find

any reason why thisclass must exist.

Reumad item { Acurary & Congdancy [Returneditems] }
-Name
quantity
price
+refumPayment(} { aoourady & consistency[Returned ltemj})

Figure 4.4: Class Returned Item after integration
Figure 4.4, shows an example of such aclass. This classis created when | am analyzing the
class Sale in the class diagram for POST. | searched the set of NFR graphs in the non
functional perspective looking for the class Sale for items. The returned item should be
maintained so thisNFR is added dueto maintain the record of return items.
It isimportant to makeit clear that the creation of anew class to satisfice an NFR will aways
be a design decision. The software engineer could have chosen, in this case, to add the same
attributes and operations present in the'class shown in figure 4.4, to another existing class
such as saleclass.
2. Adjacent to each operation that has been included to satisfice an NFR; add a link to the
nonfunctional perspective. Asin heuristicone, this isto enforce traceability between models,
s0 the designer can easily check nonfunctional aspectswhenever the changesanything in this
class. The link will follow the same pattern as in heuristic one.
Let us take for example the class sale mentioned before. Suppose | add an operation named
authenticateAccess() in order to perform one of the operationalizations, | should represent it
asfollows: authenticateAccess() {Security [Payment]}. These operationalizationsas showed

infigure 4.5.

66

Sale { Maintain [sale Items])

-isComplete:Boolean
-time: Date

+becomecomplete()

+makeLlineltem()

+makePayment(}

+getTotal()

+authenticateAccess() {Senurity [Payment] X)

Figure4.5: Class Sale after integration
3. If an NFR callsfor pre or post conditions to apply for an operation, they may add these pre
or post conditions to the respective operations.
This heuristic is used for dealing with operational restrictions should be inputted as pre or
post conditions to an operation and whenever possible should be stated using Object
Constraint Language (OCL). These pre and post conditions can also be stated in a note linked
to the class.
4. Adjacent to each attribute that has been added to satisfice an NFR, may use the same
expression they used in the operationsto establish alink to the nonfunctional perspective.
Figure 4.9 is class diagram after integration, shows an example with the results of applying
these heuristics. This figure shows the class diagram of POST after integration process.
During the integration process, | analyzed each class | had in the class diagram. | picked out
the class from class diagram before integration and analyze it; | searched the nonfunctional

perspective looking for any occurrence of thissymbol.

67

Maintain [Sale Items]

O

\

Maintain [Sale Items.

Maintain[Sale Select |dentification
Items. Update Store] Info

/ \ Maintain [Sale

Maintain [Sale
ltems. Update
Store. Receive
Items Invoice]

Maintain{Sale
Items. Update

Store. Receive
Items Invoice.

Update Item]

5

Maintgin [Sale [tems.

g%p g' H&je%ee Select

ltems Info] Info. Updete Item]

Maintain [Sale
Items. Update Store.
Receive ltemsInfo.
Update item]

&

Figure4.6: NFR graphfor saleitems

68

Accuracy & Consistency

ldentification Atem]

Figure 4.7: NFR graphfor returned item

69

Product

3 Store ! N oot
éﬁaddrﬁs catalog JL— ProduciCatalog descriplions {map) Specification ;
! B name : %descnphon.
P . E’geﬂ:'rodudDescnptronO rice ;
| %addCompleteSaleQ E \ Sitemid
calaiog < K
) description
register; ; E
’ i SafesLineltem
i . L ei%quanﬁty: Integer
)
. . i
: ; . ' *getSubTotal)
i [.7 iineltems {weredj
: - : Sale
: [_B‘.’g’.‘steiﬁmi &isComplete : Boolean
. SendSaisg ; cumentSaie l% DaheTme _ payment Payment ;
i :':nmemﬂ'“ﬂ i ' ‘] ‘beccrneComplete() Q&mounl Quanhty
i akd’aym;netg i ::Yn‘:kelmehemo :
i - 1akeNewS : kePayment()
| %getTatal)
: P
' CompletadSales fortered) |
Figure4.8: Classdiagram beforeintegration
Spaddress , catalog _-aﬁp,r?fitffif T Product
Sname ; ~ SgetProductDescription() descriptions map) g pecification |
add in | ‘addComp!etesale{)l catalog Sdescription |
- - e rice H
i! : {, Sale e &sitemlD ;
4 [&isComplete : Boalean e i
L | Qptime : Da!e‘nme o e
o H 1? U .
regis i - -
i comp!etedSafes{om’arad} mﬁ:“g‘eo descriptian
H Irel - 1
¢ i “makePayment(lineftems fordered} :)
i SgstTotal() : Saleslineitem
; ; ‘authem;cala\ccesso] ! &quantity : Integer
: cumentSale 1 $getRecordORetumtemy) ;
e f ':rgetumPaymento 0 { payment ¢ “getSubTotall
Register } - i
. . I AP
SandSale(T T
::lr::rﬂpemo S Retumed Item
ePayment{} record & rzme payment Payment
$makeNewSale(Epquant :) .
SauthenticateAccess() pantity ; &amount : Quantity
*maintainitemy() e | %autenticateAccess(}
‘maantamRetm:temRecordo
$retumPayment() ‘retumPayment()

Figure4.9: Classdiagram after integration

70

4.2.3Integration of NFRsin POST Sequence Diagram and Communication

Diagram

Integrating NFRs into the sequence and communication diagrams is done by examining
every class of the class diagram. | am following the strategy for integration of NFRs in
sequence and communication diagrams as mentioned in figure 3.5.

Let us take for example the class Payment shown in figure 4.10. Applying the strategy, |
searched the sequence diagram or communication diagram seeking for instancesof the above
class. Figure 4.11ashows the one we found.

Examining the existing diagram, and the operations included in the class due to NFR
satisficing, along with the special conditions represented in the note, | concluded that some
changes had to be made in thisdiagram. Figure 4.11b shows the resultingdiagram. | can see
in this figure that the message tagged with the number 3 to authorize the payment, | added
the note to satisfice a security NFR and performance NFR to authenticate access and
authentication< 1 minute. This is necessary 0 the software could check, the payment
authentication of the customer, if the customer account work and authenticated, and then
perform the operation. For the Payment authentication | attached another note, to message

number 3, which meansthat the authentication process should be less than one minute.

Payment

-amount
+authenticateAccess() { Security [Payment] X}

Figure 4.10: Class Payment after integration

71

f_—?Rggis!er :Sale
I

i
h’nakePaymem(cred:t paymen

ﬂ-Cred._- &mhoﬂ;élvcn '
= Senice

create{credit card number) E
authorize(credit card number) |

Sy)

)
o |
] 1
? .‘ ihozeforedt camt mmber) 1
! 1
|
!
i }
{ i
!]
L i
| |

Figure4.11a Sequence diagram for makePayment (credit payment) before integration

Al
il
ti

l :Ii_gg—i‘:gei—] (Sale

I
!]
{makeF’aymeni(credil payment)} 5 o
:Payme o e e o
i 1] iHevmen :Credit Authotization
j Sendce
! | create(credit card number) [1
!] authorize(credit card number) |
! _ e s
| i ‘\ |
I ” 3 i
| - \ I
7 | . L 1
! |] \ I
|] 17 \ i
!] 4 1 |
! i B \ !
| 1 s I 14 I
' [} .] [I
- |
Performance [Payment Authorization] 0 Sectrity [Payment] N
Authorization < 1min ! Payment authorization]
f |
U |

Figure 4.11b: Sequence diagram for makePayment (credit payment) after integation

72

~III—III| ri— H

Q [_ ‘Payment | e Avetedzanon.
! Senice ’
akePaymerL(pheck payment)| -— —-U—--———J | S, _AD_ = .
—5'—
u 1 |
|
O R — U!hmze{check number, amourt)
T L >
]

—

|

I
Im
D icreate(check number_-omoosd
|

|

|

I

I

|

|

!

i

i

Figure4.12a: Sequence diagram for makePayment (check payment) before integration

I :Rehister Sale
’ 0

makePayment(check payment) ' :Payment :Check Authorization ,'

! crezte{check number, amoum)=
~11 autharize{check number, amount)

f
'
[
.
P
.’-
.

T

p

j 2 =

3

I

|

! 1

i 1

1 |
ot 1
i |

1 |

t

—_—— e b —————— e ——
Performnace{Payment Authorization} L, Qectmty[Payment] 8
Authorization < 1 min Paymem Authorzation

Figure4.12b: Sequence diagram for makePayment (check payment) after integration

Let us take another example the class sale shown in figure 4.5. Applying the strategy, |
searched the communication diagram seeking for instances of the above class. Figure

4.13a shows the one we found. Examining the existing diagram, and the operations

73

includedin the class due to NFR satisficing, along with thespecial conditions represented
in the note, | concluded the some changes had to be made in this diagram. Figure 4.13b
shows the resulting diagram. | can see in this figure that the messages tagged with the
number 8 is added to satisfice the maintainability NFR to record the sale item. Thisis
necessary so the software could check the sale items should be recorded in the register
and updateall the record accordingto the transactions. Then the number 9 message added
due to the returned item that should be recorded in the register. And must check the

accuracy and consistency of thereturned items.

1:[news ay create()

—>
5. malelineftem(spec, qty} 6: create{spec, qty) e
! ‘Register —> :Sale — st:SalesLineltern]
l 1
2: create()
1/3: spec:= specification(id} \l/
-ProductCat; \L 7. add(sl)

:Salelineitern j

J, 4: spec;= find(id)

| Broductspeciicaion|
|

Figure4.13a: Communicationdiagramfor enterltem before integration

74

1: [new satej create0

—_—>
o 5: maleLineltem(spec, qty) 6 create(spec, qty) S
‘Register —_> :Sale > : s1: SalesLinettem:
e ; |
< L e e =
8: mairtainftem(item) 2: create()
<= :
9: maintainRetunitemRecord(item) J,
N
[T
\L 3: spec:= smciﬁcatignﬁd}
:ProductCatalog] N \L 7: 2dd(sD
1 \
\ 3
: S, :SaleLineftern J
i kS
i \ —
i/ 4; spec;= find(id) ‘, "\
i . hY
3 { Maintainfsale ftems] AN
| isale.ilem = register.item } |
i !
* :ProductSpecification L :

[t Aceuraev & ConsistencylRetumed AN
hem]

retum.ltem=registemecord.item }

Figure4.13b: Communication diagram for enterltem after integration

4.2.4 Integration of NFRs in POST 10D

Integrating NFRs into the IOD is done by examining the messages of sequence and
communication diagram. We follow the strategy for integrating NFRsin IOD as mentioned
infigure3.6.

Let ustake for examplethe use case returned items or handle returns. Figure 4.24a showsthe
IOD for use case returned items before integration. During the integration of NFRs in class
diagram, a class and some methods are added in POST case study due to different NFRs.
These changes have also impact in 10D. Like in class diagram, class returned items are
added during the NFRs integration. The retumed item is added in a result of when the
returned items record are maintained and updated. During this procedure, we must check the
accuracy and consistency of the returned item and maintain the record then return payment to
customer.

Figure 4.24b shows the IOD for use case retumed item after integration. Before integration
the 10D for returned items called three reference diagrams. Because when we analyze NFRS,
the addition of new reference diagram is added in the diagram. When customer retumed the
item or items, cashier must check the record of item and then the accuracy and consistency of
items and then return payment. Cashier checks al the record of returned item from the
saleLineltem. So saleLineltem is caled in this use case for the inspection of record of
returned items. Now, saleLineltem is added in IOD for returned item use case. Cashier
checksthe record of returned item from the message getRecordCfReturnedltem(). theinvoice
generated last time when he bought all the items so get the record of returned item and then
return the payment of returned item to customer. And also maintain and updatethe record of

returned item.

76

This process makes the easy way for designers and especially for developers to cover the
NFRs in asinglediagram against a use case. This processis useful because devel oper seeall

possible NFRS and interactionsagainst asingle use case.

77

makeNewSale)
: Register
T » Sale
makeNewSale | -
>, create
; > create - -
1 h [lineitems: List<salel ineltem>
' 1
': = ,
' : '
1 i]
: ' :
L)
b
«q enteritem j
: Register ; ProductCatalog : Saje
i T

enter]tem(ilem id,quantity)

Y |
! Spec=get ProdustSpec(item id) |
>,
' add Lineltem(spec,quantity) |
r >
sd endSale ,J ’—————1
: Register ‘Sale Sd makePayment)
E becomeComplete .
——— > :Register :Sale

-
i
b
L]
F

makePayment{credit Payment)

Nt
>

Payment
Pay

}' Create{credit card #)

o |

1

®

3a: 10D for use case process sale before integration.

78

ceNewSale)

: Regjster

nakeNewSale !

—_— create

create

iineltems; List<saleLineitem>

nteritem)

: Register

eritem{item id,quantity)

1
3
1

- ProductCatalgo

: Sale

| :
~y N
! Spec=get ProdustSpec(item id) ! '
> ! ~—-><>
¢ add Lineltem(spec,quantity) | |
H maintainltem(item,quantity) :— %E l
< . : 1
W
endSale j
: Register :Sale
———— T
—> :
' becomeComplete !
; >
WV
makePayment J
Register :Sale
! . . .
__>- :Payment :CreditAuthorizationService
¢ makePayment (credit Payment) E
; > ceate(creditcard#) !
E T > authorize(creditcard # |

.23b: {OD for use case processsale after integration.

79

s returnitemSpecification)
: Register : ProductCatalog
v :
returnltem(id des) ! ,
] i
—> . :
v Spec=retum ProductSpec(item id) .
1
: X —>
- g
¥ [}
* i
) 1
xq recordReturnttem)
Satisfied
Specification
<
Register :Store
returnitem(id,des) ‘ '
' ‘
1 '
1 1
: add(item) '
: R
E)
' 1
[]]
i v
¢ reernPayment)
:Register :Payment
' :
L)]
])
—————> rewmPayment() :
L !

A 4

7 Not satisfied

Specification
. {

ta: |OD for use case handle returnis or returned item before integration.

80

seq returnitemSpecification

: Register

returnltem(id,des) E

oy,
-

Spec=return ProductSpec(item id)

: ProductCatalog

N

.
-
T
seq recordReturnttem
Satisfied
:Register :Store Specification
| 0
] 1
retumitem(id,des) ! . : <
>; add(ltem) \:
L i
j maintainRetumitemRecord(} 3
; 3
; 3
_ Y M
seq retrmPayment
:Register :Payment
: =.
————3! returnPayment() !
i |
4 e |
1 1
1] 1
[: :
' .
W W
seq saleLineitems
:Repister :Sale
make lineltem(quantity) ! .
. create(quantity}
-
- >| :saleLineltems
. D
N y getRecordofReturneditem() !
' ' N
' " e
— Not satistied
Specification

2D fou use case handlereturnsor returned item after

S{ <
B\

4.2.5 Integration of NFRs in POST CD

Database

[]
L

Messaging

‘“)Of Senice

El]

Figure 4.25a: CD for POST before integration

"A component represents a modular, deployable and replaceable part of a system that
encapsul ates implementation and exposes a set of interfaces [OMG 01].”

| am following the strategy for integrating NFRs in CD as mentioned in figure 3.8.Figure
4.25a represents the CD for the system POST.

Let us take for example the component "NextGen' and another component is **Messaging
Service'. When the component of NextGen is requiring an interface from messaging service,
then the messaging service must be secure between the NextGen and messaging service
component. Security [Messaging Service] for the payment authorization or for the payment
must be secure and must be secure communication are formed between these two

components. When the component of NextGen is requiring an interface from database. then

82

check all possible NFRs related to these interactions. The one is that the security [database]

must be maintained. Figure 4.25b representsthe CD after integration.

83

{Security [Messaging\\
Services] for the M essaging Service
payment authorization
or payment must be
secure}

I ——
O]

NextGen
R {Availability
[system]
: Effectiveness
i | ofsale=its
I_'——t || availability}

(C\) Database
{Security [Database N

services|
must be secure)

Figure4.25b: CD for POST after integration process
84

Another way to integrate NFRsin CD is by using"UML profile" [L. Zhu & |. Gorton, 20071.
If we use thisUML profilefor NER then first wehave to update class diagram of system. We
have to show al NFRs related to the system in the class diagram. Then we can associate
those NFRs to component in CD. According to this profile, first we consider the six element
framework from the Software Engineering Institute (SEI) [Len, Clements & Kazman, 2003).
These six elements are stimulus, source of stimulus, environment, artifact, response and
response measures. The six elements are specified for the NFRs. Figure 4.26 showsthe UML
profile for NFR. When we consider this profile we have to consider the related NFRs to the

system and then specify six elements and then add in the class diagram and then incorporate

in CD.
od HFR
eslErzotype »
MR
metaclswe
* Class - wurce_of simuius Shing
- Emulus 8wWing
T eExtAndIs - endonments &ting
- reponse: fing
- aimulated_astitach siing
- Tfeponse_meswre: ghing
- aenada: £aing
oD ?
‘Hzllahlb?;‘ oRE Oty e
Beocurtty
- mean_tme_to_fxiture: foat]
- scouraty: Peconiape - no_pf_userc (nt
- predidon: Porenings

«dereotype s
Boatablity

productivity: sung

adereotypis caercatypes

Perfomance ModHabimy - rempoas: SUng
- meporoe_tme: fioat
fespon_Ume: fost - no_gependent: I -~ scalabillty; &Ping
latepcy: flast -« no_dependency: int -

o = Mioughput foat
thmughpet flomt - hansH_swemge mpact Pepemage -
utiltzation: Fercentage - efart bodlean

reconme: Btiing

HII|II

Figure 4.26. UML profile for NFR.

85

4.2.6 Integration of NFRs in POST CSD

¥

ATl »-2% ™
; m«ge%iﬁﬁﬂés

Figure 4.27: Composition and association of classes

86

£

2 L R e
B R A g,)

ot DTty 3

i

il
oA | e,

v - AT
S R
P .r.ww:u.,iw N La‘.r.w, h e

B
o

i
b

-

Tty i

T TR R
M L e prog . .,1%§lmu& ¥

Figure4.28a: CSD beforeintegration

CSD shows the internal structure of a class and the collaborations that this structure makes

possible [OMG Superstructure, 2007]. Composite class contains different parts and these

parts have strong relationships with their composite class. The composite classes are

interacting through ports with other composite class.

| am

The integration of NFRs into the CSD is done by examining the class diagram.

87

following the strategy for integrating NFRsin CSD as mentioned in figure 3.7.

When1 integrate NFRs in CSD, classes areinvolved in CSD but when these classesinvolved
in composite class and have relationship with other composite class, so we have to consider
the nonfunctionat aspect of thesecompositeclassor relationships.

Let us take for example the composite class'Sd€* which consists of number of different
parts like ProductDescription, saleLineftems, Register and Payment. When we integrate class
diagram, we found new class named as Returned Item, so this class has also a relationship
with the compositeclasssale. Accordingto thefigure4.27, thesale has a returned item class.
So this class shows asa part of composite classsale, showninfigure4.28b.

Without this integration or addition in the diagram is incomplete, so the understanding of

systemispartial. Theintegration of CSD makesit complete and easily understandable.

88

ok]
- :'k i ; ¢

o ,_

Figure4.28b: CSD after integration

89

s mentioned above in CD, another way to integrate NFRs in CSD is by using “UML
rofile” [L. Zhu & |. Gorton, 2007]. If we usethisUML profilefor NFR thenfirst we haveto
1pdate class diagram of system. We have to show al NFRs related to the systems in the class
diagram. Then we can associate those NFRS to composite class in CSD. According to this
profile, first we consider the six element framework fiom the SEI [Len, Clements & Kazman,
2003]. These six elements are stimulus, source of stimulus, environment, artifact, response
and response measures. The six elements are specified for the NFRs. As figure 4.26 show the
UML profile for NFR. When we consider this profile we have to consider the related NFRs
to the system and then specify six elements and then add in the class diagram and then

incorporatein CSD.

90

Chapter 5

Conclusion

91

5. Discussion

This chapter presents a discussion on the contributions of this thesis and limitations of the

research, followed by an outline of the future work.

5.1 Conclusion and Limitations

Despite the fact that NFRs are very difficult to attain and at the same time are expensive to
leal with, afew research work [L.Cysneiros & Leite, 2001], [L.Cysneiros & Leite, 2004]
1ave focused on them as first class requirements in a development process. Developers have
nainly focused on the FRs of the system during the design phase. However, the key point
yekind the success of a software system lies in specifying the NFRs along with FRs during
he design phase. A survey [D. Grimshaw, Godfrey, 20011 from a small sample of
yrganizations, of the state of the practice in terms of NFRsas shown that:

|. nonfunctional are often overlooked,

2. questioning users is insufficient,

3. methods do not help the€licitation of NFRs, and

4. thereisalack of consensusabout the meaning and utility of NFRs.
.esearchers are trying to find ways to identify the NFRs easily during the design of a
oftware system. Software systems are becoming large and complex day by day. This
omplexity includes not only static structure of classes but their relationship with each other
reir functionality, behavior, state etc., it isdifficult to gasp this information as a whole for
1y system which leads to misunderstanding of that system. Modeling of software systems

:Ipp to minimize this complexity by abstracting out vital information from that system. The

roblem of effectively designing and analyzing software system to meet its NFRs is critical
 the system success.
aly recently, research resultsare showing ways of dealingwith NFRs {L.Cysneiros & Leite.
)01}, [L. Chung & Yu, 2000] at the software definition level. Eliciting and specifying NFRs
difficult [L.Cysneiros & Lete, 2004]. Few attempts have been made to elicit NFRs
.Cysneiros & Leite, 2001]. NFRS have also been integrated with functional models
Cysneiros & Lete, 2004] [L.Cysneiros & Leite, 2001}].
y contribution also contributesto fill this regard in software development during design
ocess. The problem with the identification of NFRsand then how to ded NFRsin software
stems during design process. | proposed astrategy that tackles the problems of NFRs, and
oposes a Systematic process to assure that the models will satisfice these NFRs during
sign process. The objective is to provide a consistent way of dealing with NFRs at al
iges Of development and in different views. The nain contribution is to show that a
mbination of widely used functional or conceptual models with an NFR framework is
eetive in improving the overall quality of the requirement process. This strategy is based
the use of domain glossary to build functional and nonfunctional perspectives. Using this
ssary, firstly | showed how to record NFRs against FRs. Secondly, | also showed how to
egrate NFRs in UML 2 functiona models, and presented a systematic way to integrate
‘Rs into the functional modd of UML 2.
veloping quality software always requires the proper dicitation of NFRs with the FRs.
e dicitation processof NFRS is based on the use of adomain glossary. Domain glossary is
sed on a vocabulary system composed of tasks where each task is expressed through its

scription and associated NFRs. The description explains the meaning of the task and its

93

relation with other task. The associated NFRs specify the non functional aspects of the
mentioned task.

Secondly, | showed the NFRs integration strategiesin a systematicway. These strategiesare
building for NFRs to integrate in UML 2 functionad models. The integration process also
deals wth the representation of multiple NFRs for the same class, and also to address
dynamic model instead of addressingonly static models.

| improved our strategy by applying the case study POST. The result found in the case study,
suggest that the use of this strategy can lead to a final functional or conceptual model with
better quality, as well as to a more productive software development process and also the
exclusion of misunderstandingsof the system. Through this modeling of NFRs, we analyze
thesystem in an organized way and we achieve the better visualization and understanding of
the system. Although my strategy may be used for amost any type of NFR, | understand that
itsresultswill be more effective when addressing NFRs that effectively demand actionsto be
performed by the system, and therefore, affects the software design. The lack of automation
between the task use in glossary and the construction of the NFR graphs also poses some
concerns about the time spent in thisjob, as well asin the accuracy of the process.

NFRs such as Maintenance and Portability are not easily operationaized in a specific point
of the artifact, but rather will be more related on how the design is organized. My strategy
help to dlicit such NFRs, but since they are not operationalizable, they are dealt in abstract
level in my strategy.

On the other hand, NFRs such as Security, Performance, Accuracy, Consstency. and other,

frequently demand the design to be carefully studied in order to satisfice these NFRS. Hence,

94

it will be more likely that these NFRs will be the type of NFRs that my strategy will help the
most.

This strategy is useful for the integration of all NFRs related to software system while some
profiles are also available for the integration of NFRs but these profiles are dedlt to specific
NFRs not for all NFRsrelated to system.

| believe that there is no research and its results are an ultimate solution to any research
problem under investigation. | assume that the case which | selected and presented is good
representative and successful for all kinds of software. Yet, thereisa limitation: NFRs such
as Portability and Maintenance are not easily operationalized in a specific point of the
artifact; they are dealt in proposed strategy but in an abstract level.

Based on the literature survey, proposed strategy and the result of case study, | can claim that
| found satisfactory answers to the research question outlined in the chapter 1. It is also
possible to argue that the proposed solution positively affects the software systems and
provides a better way and quality to represent the software system through the consideration

of NFRs.

5.2 Futur e Resear ch Directions

My current research focuses on incorporating or integrating NFRs into the design of a
system. The artifactsof UML 2 include 10D, CSD and CD is covered in our research work.
The future research directionsare asfollows:
1. Theautomation of integration strategy will certainly improveits productivity.
2. Theextensionsof this strategy to other UML artifacts which are not yet covered like
package diagram and object diagram.
3. Apply this strategy on different case studies and controlled experiments for
improvements,
4. All NFRsare not discemableat run time [Standish Group, 1994}, my strategy deals
with discernable NFRs. Non discemable NFRs are difficult to operationalize. So

work need to he carried out to model non discemable NFRs like modifiability.

reusability etc.

96

Refer ences

[A. Finkelstein &
Dowell, 1996]

[A.Moreira & Brito,
2002]

[A.Moreira&
Brito, 2002]

[Betty & Atlee, 2007
|

[Brian, 2004]

[Boehm & Barry,

1996 |

[Boehm , 1978]

[Dardenne & Van,
1993]

[Donald, 2004]

[D.J. Grimshaw,
Godfrey & Draper,
2001]

A. Finkelstein & J. Dowell. (1996). A Comedy of Errors. The
London Ambulance Service Case Study. Proceedings of 8™
International Workshop on Software Specification and Design,
|EEE Computer Society Press.

A. Moreira, |. Brito, & J. Arajo. (2002) Crosscutting quality
attributes for requirements engineering. In The fourteenth
International Conference on Software Engineering and
Knowledge Engineering, Ischia, Italy.

A.Moreira, |. Brito, J. Arajo. (2002). A RequirementsModel for
Quality Attributes. Inthe 1" International Conference on Aspect-
Oriented Software Development, Dresden, Germany.

Betty H.C. Cheng & Joanne M. Atlee. (2007). Research Directionsin
Requirements Engineering. | EEE Futurefor Software
Engineering, Washington, USA.

Brian Berenbach. (2004). Towards a unified modd for
requirements engineering. In Proceedings of the 4th International
Workshop on Adoption-Centric Software Engineering (ACSE),
Edinburgh, Scotland.

Boehm, Barry and In. (1996). Identifying Quality-Requirement
Conflicts. In the Proceedings of the2™ International Conference
on requirement Engineering, Washington, USA.

Boehm, B. " Characteristics of Software Quality" North Holland
Press, 1978.

Dardenne A, Van Lamsweerde A, Fickas S. (1993). Goal
Directed Requirements Acquisition. Science Computer
Programming.

Donald Bell. (2004) UML basics: The Component diagram. IBM
Global Services.

D.J. Grimshaw, W. Godfrey, and G.W. Draper. (2001). Noxn-

Functional Requirements Analysis. Deficiencies in Sructured
Methods. Information & Software Technology, Elsevier.

97

[E. Dimitrov &
Schrnietendorf ,
2002]

[E. Insfran & Pastor
,2002]

[E. Insfran & Pastor
, 1999]

[Ebert ,1997]

[Fenton & Pfleeger,
1997}

[G. Booch &
Stevens, 2003]

[G. Kotonya &
Sommerville, 1998]

[G. Salazar, P.
Botella, 2000]

[H. Wada & J.
Suzuki, 20061

[H. Espinoza, H.
Dubois, 2006]

[ISSCO, 1995]

E. Dimitrov and A. Schrnietendorf. (2002). UML-based
Performance Engineering Possibilities and Techniques. IEEE
Software, Qt ana, Canada.

E. Insfran, O. Pastor and R. Wieringa. (2002). Reguirements
Engineering-Based Conceptual Modeling. Springer-Verlag
London Limited.

E. Insfran, Wieringa R, Pastor O. (1999). Using TRADE ¢
Improve an Object-Oriented Method. Technical report, Computer
Science Department, University of Twente, Enschede, The
Netherlands.

Ebert, C. (1997). Dealing with Nonfunctional in Large Seftware
System's. Annals of Software Engineering, USA.

Fenton, N.E. and Pfleeger, S.L. (1997). Software Metrics: A
Rigorousand Practical Approach.Inthe2" International
Thomson Computer Press, Elsevier.

Grady Booch, Perdite Stevens, John Whittle. (2003). The Un|f|ed
Modeing Language" Modeling Languagesand Applications. 6"
Intemational conference San Francisco, CA, USA.

G. Kotonya, I. Somrnerville. (1998). Requirements Engineering:
Processes and Techniques. John Wiley & Sons.

G. Salazar Zarate, P. Botella. (2000). Use of UML modeling
nonfunctional aspects. In Proceedings of 13" International
Conference on Software and System Engineering and their
Applications, London, UK.

Hiroshi Wada, Junichi Suzuki, Katsuya Oba. (2006). A Model-
Driven Development Framework for Non-functional Aspects in
Service Oriented Architecture. IEEE Intemational Conference on
Service Computing, Pisa.

Huascar Espinoza, Hubert Dubois, Sebastien Gerard, Dorina C
Perrius & Murray Woodside. (2006). Annotating UML Models
with Nonfunctional Properties for Quantitative Analysis. Springer
Berlin, Heidelberg.

Evaluation of Natural Language Processing Systems. (19953).
http://www.issco.unige.chl'ewg95.

98

lmer & Davis,
)96]

Celler . 1990]

.. Chung & J.
vlopoulos & ,
)92 1

.Cysneiros & Leite
004 |

. Chung & Nixon,
95]

.Cysneiros & Yu,
03]

.Cysnetros &
ite, 2001]

Cysneiros &
ite, 2001]

.Chung & Yu,
00}

.Cysneiros &
ite, 1999]

Kirner T.G,, DavisA .M. (1996). Nonfunctional Requirements of
Real-Time Systems. Advances in Computers, Academic Press,
New York.

Keller, SE. et al. (1990). Specifying Software Quality
Requirements with Metrics. In Tutorial System and Software
Requirements Engineering IEEE Computer Society Press.

L. Chung, J Mylopoulos, E. Yu, and B. Nixon. (1992).
Representing and Using Nan-Functional Reguirements: A
Process-Oriented Approach. IEEE Transactions Software
Engineering.

Luiz Marcio Cysneiros, Julio Cesar Sampaio do Prado Leite.
(2004). Nonfunctional Requirements. From Elicitation to
Conceptual Models. | EEE Transactions on Software Engineering.

L. Chung and B. Nixon. (1995). Dealing with Nonfunctional
Reguirements: Three Experimental Studies of a Process-Oriented
Approach. Proceedings of 17th International Conference on
Software Engineering, |IEEE.

L.M. Cysneiros and E. Yu. (2003). Non-Functional Requirements
Elicitation. Perspective in Software Requirements, Kluwer
Academics.

L.M. Cysneiros, JC.SP. Lete, and JSM. Neto. (2001). A
Framework for Integrating Nonfunctional Requirements into
Conceptual Models. Requirements Engineering Jowrnal, | EEE.

L.M. Cysneirosand JC.SP. Leite. (2001). Using UML to Reflect
Nonfunctional Requirements. Proceedings of 117 CASCON
Conference.

L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. (2000). No»-
Functional Requirements in Software Engineering. Kluwer
Academics.

L.M. Cysneiros and J.C.S.P. Leite. (1999). Integrating Non-
Functional Requirements into Data Modeling Proceedings of 4
International Symposium Requirements Engineering, Limerick.
Ireland.

99

[Larman, 1998}

[L. Xu & Ziv,20051

[Lindstrom , 1993]

[L. Zhu & I. Gorton,
2007]

[Len, Clements &
Kazman, 2003]

[M. Usman, Atif,
Rizwan & Shahzad]

[OMG
Superstructure
2007]

[OMG 01}
P.Botella & X.
Burgues, 2001]

[R. Hill & Wang,

2004]

[S. Supakkul &
Chung, 2004]

Larman C. (1998). Applying UML and Patterns. An introduction
to Object Oriented Analyss and Design and Ierative
Development. Prentice-Hall.

Lihua Xu, Hadar Ziv, Debra Richardson, Zhixiong Liu. (2005).
Towards Modding Non-Functional Requirements in Software
Architecture. Annual Aspect Oriented Software Development
Conference, Limerick, Ireland.

Lindstrom, D.R. (1993). Five Ways to Destroy a Development
Project. |IEEE Software.

Liming Zhu, lan Gorton. (2007). UML Profiles for Design
Decisions and Non-Functional Requirements. Second workshop
on sharing and reusing architectural knowledge. Architecture,
rationale and design intent (Shark-ADI'07) |EEE. Minnegpalis,
MN.

Len Bass, Paul Clements and Rick Kazman. (2003). Software
Architecturein Practice. 2° edition; Addison- Wedley.

Muhammad Usman, Atif Qureshi, Rizwan bin Faiz, Shahzad
Rafig. Modeding non-functiona requirements in activity
diagrams, MRSP research group, Faculty of engineering and
sciences, Muhammad Ali Jinnah university, Idamabad, Pakistan.

OMG Unified Modeling Language: Superstructure. Version 2.1.1
(with change bars) formal/ 2007-02-03.

OMG (2001). OMG UML specification. www.omg.org.
Pere Botella, Xavier Burgués, Xavier Franch, Mario Huerta,
Guadatupe Salazar. (2001). Modeling Non-functional
Requirements. Proceedings of Journals of Integrating the
RequirementsApplicationJIR A, Sevilha

Raquel Hill, Jun Wang, Klara Nahrstedt. (2004). Quantifying non-

Junctional requirements. A process oriented approach.
Proceedings of the 12th IEEE International Requirements
Engineering Conference.

S. Supakkul and L. Chung. (2004). Integrating frs and nfrs: A
Use Case and Goal Driven Approach. In 2™ Internationd

100

s. Supakkul &
hung, 2005]

subrina &
ahvildari ,2005]

ubrina, 2006

tandish Group,
04]

"u & Eric,1997]

Conferenceon Software Engineering Research, Management and
Applications, Los Angeles, CA.

Sam Supakkul and Lawrence Chung. (2005). A UML Profile for
Goal-Oriented and Use Care-Driven Representation of NFRs and
FRs. In Proceedings of the 3rd International Conference on
Software Engineering Research, Management and Applications,
Mt. Pleasant, MI.

Subrina Anjumn Tonw, Ladan Tahvildari. (2005). Towards a
Framework zo Incorporate NFRs into UML Models. Proceeding
of IEEE WCRE Workshop on Reverse Engineering to
Requirements(RETE), Pittsburgh, Pennsylvania, USA.

Subrina Anjum Tonu. (2006). Incorporating NFRs with UML
Models. A thesis, university of waterloo, Ontario, Canada.

The Standish Group. (1994). Causes of Failed Saftware Projects.
Yu, Eric. (1997). Towards Modeling and Reasoning Support for
Early-Phase Requirements Engineering. Proceedings of the 3rd

Intemational Symposium on Requirements Engineering, New
York, USA.

101

APPENDIX A

UML 2.0 Diagrams
UML 2 diagrams which are used for the integration of NFRs. The 10D, CSD and CD are
involved in integration from UML 2.

1.10D

The 10D focuses on the overview of the flow of control of the interactions. It is a variant of
the activity diagram where the nodes are the interactions or interaction occurrences. The IOD
describes the interactions where messages and lifelines are hidden. Y ou can like up the "'redl"
diagram and achieve high degree navigability between diagrams inside the IOD [OMG
Superstructure, 2007].

An 10D is a form of activity diagram in which nodes represents interaction diagrams.
Interaction diagrams can include sequences, communication, interaction overview and timing
diagrams. Most of the notation for IOD is the same for activity diagram. For example, initial,
final, decision, merge, fork and join nodes are all the same. However. 10D introduce two

new elements: interaction occurrences and interaction elements[OMG Superstructure, 2007].

a. InteractionUse

An InteractionUse refers to an interaction. The InteractionUse is shorthand for copying the
contents of the referred interaction where the InteractionUse is. To be accurate the copying

must take into account substituting parameters with arguments and connect the formal gates

102

with the actual ones. It is common to want to share portionsof an interaction between severd
other interactions. An InteractionUse allows multiple interactionsto reference an interaction

that represents a common portion of their specification[OMG Superstructure, 2007].

Ref

Figure 1: InteractionUse

b. Interaction Element

Interaction elements are similar to interaction occurrences, in that display a representation of
existing interaction diagrams within arectangular frame. They differ in that they display the

context of the referencesdiagram inline.

sd interaction Overview J/
ad Activity Diagram /
@ Action H : ’

Figure2: Interaction element [OMG Superstructure, 2007]
All the same controlsfrom activity diagram (fork, join, merge, etc.) can be used on [OD to

put the control logic around the lower level diagrams.

2.CSD

A UML2 CSD showsthe internal structureof aclassand the collaborationsthat this structure

makes possible. This can include internal parts, ports through which the parts interact with

103

each other or through which instancesof the classinteract with the parts and with the outside
world, and connectors between partsor ports. A composite structureisa set of interconnected
elements that collaborate at runtime to achieve some purpose. Each element has some
defined rolein the collaboration[OMG Superstructure, 2007].
CSD in the UMLZ specification [OMG Superstructure,2007]
The key composite structure entities identified in the UML2 specification are interna

structure, parts, ports, collaborations, structured classes, and actions.

Internal Structure

The interna structure sub package provides mechanisms for specifying structures of
interconnected elements that are created within an instance of a containing classifier. A
structure of this type represents a decomposition of that classifier and is referred to as its

"interna structure."

a Part

A part is an element that represents a set of one or more instances which are owned by a
containing classifier instance. So for example, if a diagram instance owned a set of graphical
elements, then the graphical elements could be represented as parts; if it were useful to do so,
to model some kind of relationship between them. Note that a part can be removed from its
parent before the parent is deleted, o that the part isn't deleted at the same time.

A partis shown as an unadorned rectangle contained within the body of a classor component

element.

104

cd Pact

Cornponent1

Partd

Pari2

Figure 3: Part [OMG Superstructure,2007]

b. Port

The Ports sub package provides mechanismsfor isolating a classifier from its environment.
Thisis achieved by providing a point for conducting interactions between the internals of the
classifier and its environment. This interaction point is referred to asa'*port." Multiple ports
can be defined for aclassifier, enabling different interactionsto be distinguished based on the
port through which they occur. By decoupling the internals of the classifier from its
environment, ports allow a classifier to be defined independently of its environment, making
that classifier reusable in any environment that conforms to the interaction constraints
imposed by its ports A port is shown as a named rectangle on the boundary edge of its

owning classifier.

105

od Port

Componant2

Pos1

Figure 4 Port[OMG Superstructure, 2007]

c. Collaborations

Objectsin a system typically cooperate with each other to produce the behavior of a system.
The behavior is the functionality that the system is required to implement. A behavior of
collaboration will eventually be exhibited by a set of cooperating instances (specified by
classifiers) that communicate with each other by sending signals or invoking operations.
However, to understand the mechanisms used in a design, it may be important to describe
only those aspects of these classifiers and their interactions that are involved in
accomplishingatask or arelated set of tasks, projected from these classifiers. Collaborations
allow us to describe only the relevant aspects of the cooperation of a set of instances by
identifying the specific roles that the instances will play. Interfaces alow the externally
observable properties of an instance to be specified without determining the classifier that
will eventually be used to specify this instance. Consequentially, the roles in collaboration
will often be typed by interfaces and will then prescribe properties that the participating
instances must exhibit, but will not determine what class will specify the participating
Instances.

A collaboration element isshown asan ellipse.

..........
-
S

] e

Collaboration

-~

. Computer -
> Y
4 L
. Il
. t
: / \ :
L] [}
B !
Backup Device Scftware i

a4
=

Figure 5: Collaboration[OMG Superstructure,2007]

d. Structured Classes

The structured classessub package supportsthe representation of classesthat may have ports

as wdl asinterna structure.

e Actions

The actions sub package adds actions that are specific to the features introduced by

compositestructures(e.g., thesending of messagesviaports).

3.CD

A component represents a modular part of a system that encapsulates its contentsand whose
manifestation is replaceable within its environment. A component defines its behavior in

terms of provided and required interfaces. As such, a component serves as a type. whose

107

conformance is defined by these provided and required interfaces” [OMG Superstructure,
2007).

In component-based development (CBD), CD offer architects a natural format to begin
modeling a solution. CD allows an architect to verify that a system'’s required functionality is
being implemented by components, thus ensuring that the eventual system will be acceptable.
In addition, CD is useful communication tools for various groups. The diagrams can be
presented to key project stakeholders and implementation staff. While CD are generally
geared towards a system's implementation staff, CD can generally put stakeholders at ease
because the diagram presentsan early understanding of the overall system that is being built.

Developersfind the CD useful becauseit provides them with a high-level, architectural view
of the system that they will be building, which helps devel opers begin formalizing a roadrnap
for the implementation, and make decisions about task assignments and/or needed skill
enhancements. System administrators find component diagrams useful because they get an

early view of the logical software components that witl be running on their systems.

TheBasicsof CD

Drawing a component in UML2 isnow very similar to drawing a class on a class diagram. In
fact, in UML2 a component ismerely aspecialized version of the class concept. This means
that the notation rules that apply to the class classifier also apply to the component classifier.
In UML2, a component is drawn as a rectangle with optional compartments stacked
vertically. A high-level, abstracted view of a component in UML2 can be modeled asjust a
rectangle with the component's name and the component stereotype text and/or icon. The

component stereotype's text is «compenent»” and the component sterectype icon is a

108

rectangle with two smaller rectangles protruding on its left side (the UML1.4 notation
element for a component). Figure 2 shows three different ways a component can be drawn

using the UM L2 specification.

xcompanents scompanetits

Order Order Order

Figure 6: The different ways to draw acomponent's name compartment [OMG

Superstructure, 2007]

When drawing a component on a diagram, it is important that you always include the
component stereotype text (the word "component” inside double angle brackets, as shown in
Figure 2) and/or icon. Reason is: in UML, a rectangle without any stereotype classifier is
interpreted as a class element. The component stereotype and/or icon distinguish this

rectangle as a component element.

109

APPENDIX B

I ntegration of NFRs in Sequence and Communication Diagrams

Theintegration of NFRS in sequence and communicationdiagramsfor hvo major use cases

are given below:

| iRegister | ‘ProduciCatalog [e |
! a

id, quantity) i i I

i = f_[

|

| spec=get ProductSpec(item ic) ! %

T,

[~ - i

L i

| \

add Line!terri(spec. guantity) |

— '>i‘|

— ———— e —— ——

Figure4.14a: Sequencediagram for enterltem beforeintegration

11¢

:Register

id, quantity)

—

spec=get Product Spec(ilem id)

m&fiéfdg'“ﬂi
- ,_.._-.ﬁ_—..-..i_.fu- et e
}

!
f

]
i

gl

)
adg Linelterr](spec. quantity)
1

i
mainlainlterf\ﬁtem, quantity)

:Sale

R —

1
mairtainRetumnitem}Record{item, quantity)

-7
i

]

1

ySale l

i ;
!
Y
|
{
!
|
i

T
|
!
|
I
|
|
|
1
|
|

sale.item = register.item }

- —m ey —

{ Accuracy & Caonsistency[Retumed
tem])

| retum.item=registerecord.item }

Figure4.14b: Sequencediagram for enterltem after integration

T acala |
[susale i

B E T

Figure4.15a: Sequence diagram for endSale before integration

111

~[{Maintain[sale lems] <

i

:Reqister s:sale

" TbecomeComplete!
.L!...ﬂ..«_.ﬁ___._._. .u>.i—l.§
l]
1
| 1
1 |
! !
1 |
imaintainltem{item
D< ““““““ T e
. i Tl |{Maintain[sgis fems] T
i i sale.item = register.item }
I
|
i

maintajnrRetumitemRecori(item)

El o ‘U-H T T
'g&%l‘uracy & Consistency[Retumed "
em

retum. item=registerrecord.item }

h

Figure4.15b: Sequencediagram for endSale after integration

112

makeLinettem{guantity) 1
__r.__}.l_

create(quantltﬂ)\ SaieLlnenem '

SRR s

—————— =L

Figure 4.16a: Sequence diagram for saleLineltem before integration

-Reqisler i Sale
o !
D makeLineltem{guantity} D
! >[t] create(quantity) "é'ééit—n?zifém
maintaintemn(ftern) e e T
[] e T, getRecoﬂOiRetmnnemo g
] _ pewrmm]
| .
3 ~ . |
1 ma mtamRelumltemRecord(nem) . |
il e -]
U / 1) \
: I : * . i
ol
’l i il i
t '_,_____...L——-—-—-__,___--r\ R
l ! I |{ Maintain[sale tems] [1 Secunty[Payment] D"s
i sale tem = register.ltem} | check record forretum
S — i i
{ Accuracy & Consistency[Retumed s | lpayment} |
ttem} l smr e T

retum,. tem=registemecord. item } i

Figure 4.16b: Sequence diagram for saleLineltem after integration

113

s ey

Cashier

, —-——-——I ‘Register

}étore

e by

(id.description)

) A

addjitem)

L —

add(itern)

————— =
o

i
—_— —_—— '
. - e — e e m e e

Figure4.17a: Sequence diagram for recordReturnitem before integration

— —

i'
!

[o] Fedster S|
escription) ——t—— o . ‘________ o

1

T @

! 1

i add(item) : add(item) I

i“' e e e e > II

E me%ijtainRetumnemRecord(item id, quantity)

i <SS VR 5

| T * 3

] J \ }

1

i | ‘ |

: | | |

1 |

| i :

;_(-A_écuracy & Consistency o
'[Returned item]
retum.item=ragisterrecord.item

S -

Figure4.17b: Sequencediagram for recordReturnltern after integration

114

1: makePayment(check payment}

| Register | > ;.-_.._,_{ :Sale |
o o
2 create(check number, amount)
""-Check Authorization r_:f:;.;hen{
Senvice - !

3: authorize{check number, amount)
Figure 4.18a: Communication diagramfor makePayment (check payment) before

integration

1: makePayment{check payment)

{ :Register | —> [sale |
e |
2 create{check number, amount)
:Check Authorization | - { _ann_;;.ﬂt }
Senice ”{{Hf I) i

) 3. authorize({cheék number, amount)

‘;—Ea'é*rféﬁhanceﬁpayment Authb_!_i’zétion]l‘ [Security[Payment]
! Authorization < 1 min Payment authorization

Figure 4.18b: Communication diagram for makePayment (check payment) after integration

1. makePayment{credit payment)
"iRegister | > . :Sale]

| D

2: create{credit card number)

" :Credit Authorization
Senice

<
3. authorize{credit card number)

Figure4.1%a: Communication diagram for makePayment (credit payment) before

integration

116

ndSale) 1: becomeComplete

SN Register | 3 | sisale

R e = i e e
I
H

P —— L e e

Figure 4.20a: Communication diagram for endSale before integration

1: becomeComplete R
—> r iRegister | = - | sisale ;
— o : |

S
2: maintainltem(item)

3: maintainRetumnitemResosd(iter)

s { Maintain[sale [tems]
’ sale.item = register.item } "
|

iltem]

;{Accuracy & Consistency[Retumed 4
tret um.item=registerrecord.tem } 1

Figure4.20b: Communication diagram for endSale after integration

118

1: add(item) e
Castier —> { Regster

R e

2: add(item)

(5o |

R

Figure 4.21a: Communication diagram for recordReturnliem before integration

1: add(item) L
E@é‘ﬁ[‘_@t > { -Registet
] e

2: add{item) . :
3 maintainRetumigemRecord(item 1d,quant|!ty)

(Accuracy & Consistency E]

[Retumed ltem)
retum.item=registerrecord.item

Figure4.21b: Communication diagram for recordReturnitem after integration

119

i_
|

Reg|ster

[Pp——

1: makelineltem(quantity)

\E/z: create{quantity)

:Salelineltem

Figure 4.22a: Communication diagram for SaleLineltems before integration

3. maintaintem{tem)
5. maintainReturnitémRecord(it...

Sale > RegTsTe}ﬁ |

v i e {

S R

< .
1: makeLineftemiquantity) .

f 2 create{quantity) ' S
etReconiOtRetumItem() | .
1 ~.
|. ; -

4 !

{ Accuracy & Consistency[Returned I { Maintain[sale ltems] ty
itern] sale.itermn = register.item }

Ii retum.item=registerrecard.item } i
SaleLineitem Vo T e
e \
_ 1
1 .
P at D,
lgﬁeﬁ(u?e % g]f&neret rn i
payment) H

e e o

Figure4.22b: Communication diagram for saleLineltems after integration.

120

