
Representing Nonfunctional Requirements using
UML2

Submitted by

Irurn Ilyas
(128-FAS/MSSE/F06)

Supervised By:
Dr. Naveed Ikrarn

Co-Supervised By:
Atif Qureshi

Department of Computer Science
Faculty of Basic and Applied Sciences

International Islamic University, Islamabad
2008

Representing Nonfunctional Requirements using
UML2

Irum Ilyas
128-FAS/MSSE/F06

A Thesis

Submitted in partial fulfillment of the requirement for

the award of degree of

Master of Science (MS)

In Software Engineering

Department of Computer Science
Faculty of Basic and Applied Sciences

International Islamic University, Islamabad

Department of Computer Science

Faculty of Basic and Applied Sciences

International Islamic University

Islamabad.

Date: 1 lth arch, 2009

Final Approval

It is certified that we have read the thesis submitted by Miss. Irum Ilyas and it is our

judgment that this thesis is of sufficient standard to warrant its acceptance by llU1 for the

degree of Master of Science in Software Engineering.

Committee:

External Examiner:

Dr. Iftikhar Niaz

Head of Department of Computer Science,

Ripha International University.

Internal Examiner:

Zohaih Zafar

Lecturer.

Department of Computer science, FBAS, IIUI.

Supervisor:

Dr. Naveed Ikram

Associate Professor,

Department of Computer science, FBAS, IIUI.

Co-Supervisor:

Atif Qureshi

Lecturer,

Department of Computer science, FBAS, IIUI.

Abstract

The way requirements should drive the rest of the software development process has been

a subject of many research projects in the past. Recent research shows that software

development demands early incorporation of the nonfunctional requirements in order to

produce quality software that can meet today's challenges. Customers are demanding

quality which can only be achieved by considering nonfunctional requirements as early as

possible. Since errors due to nonfunctional requirements are the most expensive and

difficult to correct, improperly dealing with nonfunctional requirements can lead to more

expensive software and a longer time to the market. This research work tries to fill the

gap of identification of nonfimctional requirements and then how to deal nonfunctional

requirements in software systems during design process. In this research I find how to

tackles the problems of nonfunctional requirements, and how the models will satisfice

these nonfunctional requirements. The models for the incorporation of nonfunctional

requirements are including from Unified Modeling Language v2 artifacts. The Unified

Modeling Language v2 artifacts are interaction overview diagram, composite structure

diagram and component diagram. This integration can be used in the early stage of

software development with ongoing projects or to enhance even legacy system with

nonfunctional requirements. I validate my approach by performing a case study.

Acknowledgement

Primary and foremost, all praises for Almighty Allah, the kind and merciful. the creator

of the universe, who provided me the right ability, strength and courage to complete the

work presented here. I invoke peace for Hanat Muhammad (peace be upon him), the last

prophet of Allah who is eternally a torch of guidance for humanity as a whole.

Working on this study was the most valuable and worth learning experience of my life. It

was the time to put the learning and knowledge of the past semesters to test. Along with

the unique learning experience came the realization that there is so much to be learned

from the practical field that cannot be gained from the books alone. After the completion

of this dissertation, I think that, although, I have ventured every possible measure to

make it a presentable piece of work, yet man is fallible and I am not an exception.

I would like to express my deep and sincere gratitude to my co-supervisor, Atif Qureshi

and Supervisor, Dr. Naveed Ikram, Associate Professor in department of computer

science and also to Department of Computer Science. Both supervisors have wide

knowledge and logical way of thinking has been a great importance for me. Both have

understanding, encouraging and personal guidance have provided a good basis for the

present thesis.

Lastly, I am grateful to my family for the inspiration and moral support. I would not be

here without their tremendously encouragement and understanding.

Imm flays

LIST OF ACRONYMS

Abbreviation Title

RE

SE

NFRs

FRs

UML

IOD

CSD

CD

SRS

POST

OCL

CBD

L EL

CrAS

ChAS

SEI

XML

Requirement Engineering

Software Engineering

Non-Functional Requirements

Functional Requirements

Unified Modeling Language

Interaction Overview Diagram

Composite Structure Diagram

Component Diagram

Software Requirement Specification

Point of Sale Terminal

Object Constraint Language

Component Based Development

Language Extended Lexicon

Credit Authorization Service

Check Authorization Service

Software Engineering Institute

extensible Markup Language

TABLE OF CONTENTS

Chapter # Title

List of Figures I Graphs

List of Tables

Introduction

1.1 Problem Domain

1.2 Main Contributions

1.3 Research Problem

1.4 Research Method

1.5 Outline of Thesis

Literature Review

2.1 NFRs

2.1.1 What are NFRs?

2.1.2 Why NFRs are important?

2.1.3 Approaches for dealing NFRs

2.1.5 Related Work

2.1 .5. 1 NFR Framework

2.1 S.2 Applications of NFR framework on UML artifacts

2.1.6 Comparison among Different Approaches

Strategy for integration of NFRs

3.1 Eliciting NFRs

3.2 Building Domain Glossary

3.3 Representation of NFRs

3.3.1 The NFR Framework

3.3.2 Refining NFRs using NFR graph

3.3.3 Creating NFR graphs

3.4 Integrating NFRs

3.4.1 Integrating NFRs in Use Cases

3.4.2 Integrating NFRs in Class Diagram

3.4.3 Integrating NFRs in Sequence and Communication

Diagram

3.4.4 Integrating NFRs in IOD

3.4.5 Integrating NFRs in CSD

3.4.6 Integrating NFRs in CD

Case Study(P0ST)

4.1 Introduction

4.1.1 Use Case Descriptions

4.2 Integrating NFRs in POST

4.2.1 Integrating NFRS in POST Use Case

4.2.2 Integrating NFRs in POST Class Diagram

4.2.3 Integrating NFRs in POST Sequence & Communication

Diagram

4.2.4 Integrating NFRs in POST IOD

4.2.5 Integrating NFRs in POST CD

4.2.6 Integrating NFRs in POST CSD

Conclusion and Future Directions

5.1 Conclusion

5.2 Future Research Directions

References

Appendix A

Appendix B

vii

Fig. #

2.1

3.1

3 . 2

3 .3

34

3 . 5

3.6

4.1

4.2

4.3

4.4

4 . 5

4.6

4.7

4.8

4.9

4.10

4.11a

4.11b

4.12a

4.12b

4.13a

4.13b

4.23a

4.23b

4.248

4.24b

4.25a

4.25b

LIST OF FIGURES /GRAPHS

Title

NFR Association points

The use case or scenario integration process

The class diagram integration process

The sequence and communication integration process

The [OD integration process

The CSD integration process

The CD integration process

Use case diagram for POST before integration

NFR graph to be integrated

Use case diagram for POST after integration

Class returned Item after integration

Class sale after integration

NFR graph for sale items

NFR graph for returned item

Class diagram before integration

Class diagram after integration

Class payment after integration

Sequence diagram for makepayment (credit payment) before integration

Sequence diagram for makepayment (credit payment) after integration

Sequence diagram for makepayment (check payment) before integration

Sequence diagram for makepayment (check payment) after integration

Communication diagram for enterItem before integration

Communication d i a p m for enterItem after integration

IOD for use case process sale before integration process

IOD for use case process sale after integration process

IOD for use case handle returns or returned items after integration

IOD for use case handle returns or returned items after integration

CD for POST

CD for POST after integration process

viii

4.26 UML profile for NFR.

4.27 Composition and association of classes

4.28a CSD before integration

4.28b CSD after integration

LIST OF TABLES

Table # Title

2.1 Comparison among different approaches

2.2 Views are used to speci@ NFRs

4.1 Domain Glossary

Pg. #

28

29

57

Chapter 1

Introduction

1. Introduction

This chapter describes the problem domain, main contributions and research problem,

research method and outline of thesis.

1.1 Problem Domain

Requirement engineering (RE) is critical for the success of any major development project.

The success of a software system [Cheng & Atlee, 20071 depends on how well it fits the needs

of its users and its environment. Software requirements (SR) include these needs, and RE is

the process through which the requirements are determined. Successful RE involves

understanding the users need, customers, and other stakeholders; understanding the contexts

in which the to be developed software will be used; modeling, analyzing, negotiating, and

documenting the stakeholders requirements; validating that the documented requirements

match the negotiated requirements; and managing requirements evolution [Cheng & Atlee,

20071.

Software system, aside from implementing the entire functional requirements (FRs) must

also deal with the nonfunctional requirements (NFRs) [Cysneiro's & Leite, 20041. NFRs

should be dealt with from the beginning and throughout the software development process

[Cysneiro's & Leite, 20041. NFRs have been frequently neglected or forgotten in software

design [Cysneiro's & Leite, 20041. NFRs were not considered when we model the FRs in

use cases, sequence diagram, communication diagram and all other diagrams. NFRs are very

important for the success of every project.

During the last decade NFRs got importance and from the literature it is realized that NFRs

are very important for the success of every project [Cysneiro's & Leite, 20041, [Cysneiro's &

Yu, 20031 & [Chung & Yy 20001. Besides the basic functionality, nonfunctional aspects are

demanded by the market. Usually nonfunctional aspects are treated only at the design stage

of a software system. And all these nonfunctional aspects must be treated as NFRs of the

software [Cysneiro's & Leite, 19991. NFRs should be dealt throughout the software

development process [Cysneiro's & Leite, 20041.

Literature has been pointing out that NFRs are very difficult to achieve and at the same time

are expensive to deal [Cysneiro's & Leite, 20041. Ineffectively dealing with NFRs has led to

a series of failures in software development, the case of London Ambulance System

[Finkelstein & Dowell, 19961, where the deactivation of the system right after its deployment

was strongly influenced by NFRs noncompliance [Cysneiro's & Leite, 20041 & [Finkelstein

& Dowell, 19961. Errors due to omission of NFRs or not properly dealing with them are

among the most expensive type and most difficult to correct [Cysneiro's & Yu, 20031.

There have been reports showing that not properly dealing with NFRs have led to

considerable delays in the project and consequently to significant increases in the final cost

[Cysneiro's & Leite, 19991. The development of a real time system by Paramax System

Corp. experienced major delays in its deadlines and significant increasing costs which put the

deployment in risk [Cysneiro's & Yu, 20031. There were many reasons for that, but one of

the most important reasons relies on the fact that performance (NFR) was neglected during

the development of the software leading to several changes in both hardware and software

architecture, as well as in both the design and code of the software [Cysneiro's & Leite,

2004.

1.2 Main Contributions

NFRs are gained very importance during last decade, yet it is continues to have promise in

advancing the field. But not as much work had done in this area as other fields. The main

inspiration for undertking my research work comes from [Cysneiro's & Leite, 20041 that

puts light on future focus of NFRs in software design. In this paper, they present a process to

elicit NFRs, analyze their interdependencies, and trace them to functional conceptual models.

This paper also suggests different directions for future research one of which is dealing with

other Unified Modeling Language (UML) artifacts.

Mostly work has done in this field by the inspiration of Chung's work [Mylopoulo~ &

Chung, 19921, [Chung & Nixon, 19951 & [Chung & Yu, 20001. ~ y l o p o u l o s & Chung,

19921 proposes a comprehensive framework for representing and using NFRs during the

development process. The framework consists of five basic components which provide for

the representation of NFRs in terms of interrelated goals. Such goals can be refined through

refinement methods and can be evaluated in order to determine the degree to which a set of

NFRs is supported by a particular design.

Chung's paper [Chung & Nixon, 19951 are dealing with NFRs and have conducted three

empirical studies of small portions of software systems, in order to give a n initial evaluation

of a framework [Mylopoulos & Chung, 19921 for dealing with NFRs in the software

development process. The studies dealt with several NFRs, primarily accuracy, security and

performance.

Leite, 20011. NFRs have also been integrated with functional models [L.Cysneuos & Leite,

20041 [L.Cysneiros & Leite, 20011.

My contribution will contribute to fill the gap of identification of NFRs and then how to deal

NFRs in software systems during design process. In this research I find how to tackles the

problems of NFRs, and how the models will satisfice these NFRs.

Software systems are becoming large and complex day by day. This complexity includes not

only static structure of classes but their relationship with each other their functionality,

behavior, state etc., it is difficult to grasp this information as a whole for any system which

leads to misunderstanding of that system. Modeling of software systems help to minimize

this complexity by abstracting out vital information from that system. Software systems can

be modeled from different point of view-s.

According to the 4+1 architectural views model was proposed by Kruchten [P.

Kruchten,l995], the views are structural view, behavioral vicw, implementation view,

environmental view and one is use case view. As I found in literature [L.Cysneiros & Leite,

20011, [L.Cysneiros & Leite, 20041 the work on NFRs modeling of use case view and some

diagrams of structural view and behavioral view has already been done. There is need to do

some work on behavioral view and structural view and implementation view. As there is no

work done on implementation view so I am continuing my research on implementation view,

CSD and CD are considered in my research from implementation view. CSD is also included

in structural view. As these diagrams have a lack of information about non functional aspects

of the software system, especially NFRs related to different components and their

implementation. In literature I find that there is need to improve the understanding of NFRs

at component and implementation level and also to complete the understanding of NFRs in

these diagrams to make these diagrams complete and also to improve the quality of software

system at run time in implementation view.

In behavioral view, there is work done on sequence diagram and collaboration diagram. But

some diagrams are left for the integration of NFRs. The focus of my research work on

behavioral view is on IOD, this diagram is a combination of interaction diagram including

sequence diagram, communication diagram and timing diagram. I want t o find that, is there

any impact in diagram when we combine interaction diagrams in an IOD, any addition of

instances, classes, association or any NFR which may change the IOD. The literature of

software engineering does not provide any mechanism to incorporate NFRs in these types of

models.

My research focus is to find out a mechanism to incorporate NFRs in these views, so that it

will help us to understand that particular view (Implementation, Behavioral) of system.

The research questions of this thesis are:

1. How to deal and tackle the problems of NFRs in software during design process?

2. How NFRs can be incorporated in UML 2 models?

1.5 Outline of thesis

The rest of the thesis is organized as follows:

Chapter 2 presents a survey on the related research work. It covers two research fields

namely:

i) NFRs modeling, its importance, its approaches and how we deal with NFRs; and

ii) UML? Diagrams which are used for modeling named as IOD, CSD and CD.

Chapter 3 proposes a strategy how we integrate NFRs in the UML2 diagrams. The strategy

deals with UML2 diagrams to represent the NFRs.

Chapter 4 is the case study which shows the implementation of the strategy. The

performance and security of a POST are presented as a proof of concept.

Chapter 5 presents conclusion and discusses the future research direction.

Chapter 2

Literature Review

2. Literature Review

Requirements are the essential part for the development of any system. Requirements are FRs

and NFRs. FRs captures the proposed behavior of the system, in terms of the services or

tasks the system is required to perform. NFRs along with FRs play a significant role in

software development. This chapter covers the concept of NFRs. The section deals with the

basic concept of NFRs and importance to consideration of NFRs and approaches for

modeling of NFRs, activities of NFRs, NFR framework and application of NFR framework

in UML artifacts.

2.1 NFRs

2.1.1 What are NFRs?

IEEE defines NFRs as:

"IVFRS in sofhvare system engineering are a software requirement that describes not what

the software will do, but how the sofhvare will do it, for example, sof&are performance

requirements, software external interface requirements, design constraints, and sof?are

ycruliry atlributes. NFRs are d~ficulr to test; therefore, they are usually evuluated

subjectively" [Subrina, 20061.

NFRs define global constraints on a software system or subsystem, on a functional

requirement, on the development process or on the deployment process. They are global in

the sense that they arise from all parts of the system and from their interactions [L.Cpsneiros

& Yu, 20031.

A requirement that specifies system properties, such as environmental and implementation

constraints, performance, platform dependencies, maintainability, extensibility, and

reliability. A requirement that specifies physical constraints on a functional requirements [I.

Jacobson, Booch & Rumbaugh, 19991.

Requirements which are not specifically concerned with the functionality of a system. They

place restrictions on the product being developed and the development process, and they

specify external constraints that the product must meet [G. Kotonya & Sommewille, 19981.

"NFRs are global requirements on its development or operational cost, performance,

reliability, maintainability, portability, robustness, and the like" [Mylopoulos & Chung,

19921.

NFRs are also known as Quality Requirements [Mylopoulos & Chung , 1992] & [Boehm &

Barry , 1996] and distinct to FRs, NFRs state constraints to the system as well as particular

notion of qualities a system might have, for example, security, reliability, performance,

safety, usability, accuracy. So we can say that FRs state "what" the system must do, whereas

NFRs constrain "how" the system must accomplish the "what". As a consequence, NFRs are

always linked to FRs [ISSCO, 19951 [Kimer & Davis, 19961.

NFRs are requirements that impose restrictions on the product being developed [L. Xu &

Ziv, 20051.

Sofiware systems implementing all the desired fhctionality must also deal with the non

functional requirements of the system. NFRs are constraints or conditions on the

functionality of a system. NFR is focused on how the software must perform something

instead of on what the software must do. NFRs are the requirements such a s reliability,

security, accuracy, safety, look and feel requirements, performance, as well as organizational,

political and cultural requirements.

2.1.2 Why NFRs are important?

There has been a lot of work showing that complex systems must deal with non-functional

aspects [Mylopoulos & Chung, 19921 & [Chung & Nixon, 19951. These nonfunctional

aspects should be dealt within the process of NFRs definition [Cysneiro's & Yu, 20031.

Errors due to the ignorance of NFRs or not properly dealing with them are among the most

expensive type and most difficult to correct [Mylopoulos & Chung, 19921, [Cysneiro's &

Leite, 19991 & [Ebert, 19971.

Besides that, the market is increasing its demands for software that implemented all the

desired functionality but also copes with nonfunctional aspects such as: reliability, security,

accuracy, safety, performance as well as others [Cysneiro's & Leite, 20041. These

nonfunctional aspects must be treated as NFRs of the software. They still, should be dealt

with from the beginning of software development process [Chung & Nixon, 19951 &

[Subrina & Tahvildari,], throughout the whole life cycle.

Although NFRs have been presented in many software development methods, but they are

presented in later stages of requirement, not deal with the first class of requirement like in

requirement elicitation phase. NFRs should be considered in requirement elicitation phase.

Then model properly into the design phase with FRs in the UML artifacts. Otherwise. they

are not proceeding on the next phases of the software. Modeling NFRs allows them to be

organized for better visualization and understanding. It will help software engineers to

analyze NFRs [Cysneiro's & Yu, 20031. When NFRs are not properly model in the design

phase which may lack the deficiencies of the software. Researchers consider the design of

software as the basic foundation of building a high quality product. Some examples of

systems are given as a proof, which shows that the deficiency of the system due to ignorance

of NFRs in design phase and not properly model.

A more serious problem related to NFRs can be seen in the London Ambulance Service

Report [Finkelstein & Dowell, 19961 & [Cysneiro's & Yu, 20031. The London Ambulance

System was deactivated just after its deployment because, among other reasons, many NFRs

were neglected during the system development such as: reliability (vehicles location), cost

(emphasis on the best price), usability (poor control of information on the screen), and

performance (the system did what was supposed to do but he performance was

unacceptable).

The development of a real time system by Paramax System Corp. experienced major delays

in its deadlines and significant increasing costs which put the deployment in risk. There were

many reasons for that, but one of the most important reasons relies on the fact that

performance was neglected during the development of the software leading to several

changes in both hardware and software architecture, as well as in either the design or code of

the software [Cysneiro's & Yu, 20031 & [Lindstrom, 19931.

2.1.3 Approaches for dealing NFRs

Most of the early work on NFRs focused on measuring how much a software system is in

accordance with the set of NFRs that it should satisfy, using some form of quantitative

analysis Fenton & Pfleeger , 19971 & [Keller , 1990] offering predefined metrics to assess

the degree to which a given software object meets a particular NFRs.

Previous research may be either characterized as process oriented or product oriented.

Process oriented technique to integrate NFRs into the design proves while product oriented

approaches focus on evaluating the end product to determine whether it satisfies the NFRs

[Hill & Wang, 20041.

Product-oriented approaches are those concerned with measuring how much software

complies with NFRs. They do not help to prevent problems but are helpful to evaluate the

degree of compliance with non-functional needs [Cysneiro's & Yu, 20031.

Process-oriented approaches focus on the software development process. It aims to help

software engineers searching for alternatives to ~ ~ c i e n t l y meet NFRs while developing the

software [Cysneiro's & Yu, 20031.

Recently, a number of works proposed to use approaches which explicitly deal with NFRs

before metrics are applicable [L.Cysneiros & Leite, 20011, [Chung & Yu, 20001. These

works propose the use of techniques to justify design decisions on the inclusion or exclusion

of requirements which will impact on the software design. Unlike the metrics approaches,

these latter approaches are concerned about making NFRs a relevant and important part of

the software development process [Cysneiro's & Yu, 20031.

2.1.5 Related Work

The idea of integrating NFRs with FRs at design level is not a new one. A survey of the

approaches found that most of the research works used the UML model to represent a system

as shown in table2.2 and these works propose some extensions in order to add NFRs during

the design phase with the model representation of the FRs. The different frameworks

proposed by different researchers are included in related work and how these frameworks are

applied to UML artifacts.

2.1.5.1 NFR Framework

Lawrence Chung et al. [L. Chung & J. Mylopoulos 19921 presents a comprehensive

framework for representing and using NFRs during the development process. The framework

consists of five basic components which provide for the representation of NFRs in terms of

interrelated goals. Such goals can be refined through refinement methods and can be

evaluated in order to determine the degree to which a set of NFRs is supported by a particular

design. The framework consists of five major components: a set of goals for representing

NFRs, design decisions, and arguments in support of or against other goals: a set of link

types for relating goals or goal relationships (hereafter links) to other goals; a set of generic

methods for refining goals into other goals; a collection of correlation rules for inferring

potential interactions among goals; and finally, a labeling procedure which determines the

degree to which any given NFRs is being addressed by a set of design decision. During the

design process, goals are organized into a goal graph structure, very much in the spirit of

AND/OR trees used in problem solving.

Luiz Marcio Cysneiro's et al [L.Cysneiros & Leite, 20041 present a process to elicit NFRs,

analyze their interdependencies, and trace them to functional conceptual models. They focus

their attention on conceptual models expressed using UML. Extensions to UML are proposed

to allow NFRs to be expressed. They showed how to integrate NFRs into the class, sequence,

and collaboration diagrams. They also showed how use cases and scenarios can be adapted to

deal with NFRs. They use the Language Extended Lexicon (LEL) driven approach to

describe the application domain in LEL to provide context for both FRs and NFRs. This

policy assures that a common and controlled vocabulary is used in both knctional and

nonfunctional representations. Later they analyze those domains separately and build the

functional view of the system using UML diagrams. Then they build the non-functional view

of the system using NFR framework. They extend the NFR framework to adopt their

notations. Finally, they integrate the NFRs with the functional representation of the system

by proposing some extensions to UML models.

Mvreird et al [Ana. Moreira & Brito, 20021 propose a model for integrating crosscutting

quality attributes with FRs by the UML use case diagram and sequence diagram. They adopt

NFR Framework's goal analysis Framework (without visual notations and diagrams) to

analyze NFRs textually for cross-cutting relevance to one or more use cases. The template

they proposed to specify a quality attributes was also influenced by the approaches of Chung

et al [J. Mylopoulos & Chung , 1992] .They propose a template for quality attributes with

specific fields, including description, focus, source, decomposition, priority, obligation, and

influence. Then, they integrate those quality attributes with FRs using standard UML

dia~ammatic representations (e.g. use case diagram, sequence diagrams) extended with

some special notations.

Subrina Anjum et a1 [Subrina & Tahvildari, 20051 proposes a framework to incorporate

NFRs, as reusable components, with standard UML notations. This framework can also be

integrating those reusable NFRs with the extracted UML representations of legacy systems

during the reverse engineering process. This framework uses the standard XMI

representation of UML models without proposing any extension to it. This framework starts

with such extracted UML model of a legacy system. It consists of three phases 1)

ldentification of FRs and NFRs, 2) Specification of FRs and NFRs and 3) Integration of

NFRs.

Dimitrov et a1 [E. Dimitrov & Schmietendorf, 20021 describe three approaches for UML-

based performance engineering. The three approaches are: 1) Direct representation of

performance aspects using UML, 2) Expanding UML to deal with performance aspects and

3) Combining UML with formal description techniques.

In the first approach, they propose some methods for specifying performance aspects with

some of the UML models with standard UML notations. For the use case model, they define

a load and time-weighted use case diagram for specifying performance aspects with the

standard UML notations. For the interaction diagram, they propose to add some additional

time information by labeling the messages with relative constraints such as assigning time

attributes to the messages and to the method executions. According to this approach the

labeling of messages with time will be interpreted as latency and labeling of methods with

time will be interpreted as time for method execution. For state transition diagram. they

proposed to assign a thinking time along with the probability assigned to each transition. In

the second approach, they expand the UML for supporting Real-time Object-Oriented

Modeling methods for supporting performance aspect. They used UML tailoring mechanism

which are based on stereotypes, tagged values, and constraints to convert the Real-time

Object-Oriented Modeling constructs to UML. In the third approach they combine UML with

Message Sequence Charts and software development lifecycle type formal description

techniques to support performance of a software system.

The frameworks on NFRs are defined above as different researchers proposed different

frameworks. As mentioned above research works, some focused on particular NFR and some

are system dependent. Cysneiro used the NFR framework which described by Chung. They

proposed the strategies for the integration of NFRs on UML artifacts. So Cysneiro works

inspired from Chung worked. The work of Cysneiros is major work on integration of NFRs

on UML artifacts. Chung works on NFR framework, this NFR framework is most

comprehensive for the representing and using nonfunctional requirements during the

development process. Dirnitrov explained his work on specific NFR, and apply on a specific

system; they didn't propose any framework for the integration of NFRs. Moreira proposed a

template to specify a quality attributes was also influenced by the approaches of Chung.

Moreira works on NFR related to Cysneiros as Moreira described template to record quality

attributes and Cysneiros used LEL to record NFRs. Cysneiros used the NFR graphs for the

operationalization of NFR which is also based on Chung's worked, whereas Moreira didn't

used any graphs for the operationalization of NFRs. Subrina described a framework for

integrating NFRs with the UML design of a software system which can be applied during the

re-engineering process of a legacy system. Although the framework can also be used during

fonvard engineering but when if the developers follow the standard XMI during their model

design. My concern is related to forward engineering so Subrina works also specific in case

of forward engineering, if the developers can't follow the XMI, so they can't apply this

framework for the integration of NFRs.

My contribution will contribute to fill the gap of identification of NFRs and then how to deal

NFRs in software systems during design process. I am proposing a strategy that tackles the

problems of NFRs, and proposing a systematic process to assure that the models will satisfice

these NFRs. This strategy is based on the use of domain glossary to build fbnctional and

nonfunctional perspectives. Using this glossary, I shall show how to record NFRs against

FRs. Then how to integrate NFRs in UML 2 models, and present a systematic way to

integrate NFRs into the functional model of UML 2.

2.1.5.2 Application of NFR Framework on UML Artifacts

The application of NFR framework on different UML artifacts like use case diagram, class

diagram, sequence diagram, collaboration diagram and activity diagram. Different researcher

applied different ways for the integration of NFRs in UML artifacts.

2.1.5.2.1 Application of NFR Framework on Use case

Supakkul & Chung et al [S. Supakkul & Chung, 20041 proposed a use case and goal-driven

approach to integrate FRs and NFRs. They used the UML use case model to capture

functionality of the system and they also used the NFR Framework [L. Chung & Yu, 20001

to represent NFRs. They proposed to associate the NFRs with four use case model elements:

actor, use case, actor-use case association and the system boundary. Figure 2.1 shows these

NFR association points. They name these associations \Actor Association Point", \Use Case

Association Point", \Actor-Use Case Association (AU-A) Point", and \System Boundary

Association Point" respectively. Having such an extension to the UML use case model. NFRs

can be integrated at the design level with FRs and can provide better understanding of the

requirements model.

development, or

System Eoundary

mmnunication, or
hfo exchange

requirements

u
Figure 2.1: NFR Association points IS. Supakkul & Chung, 20041

Cysneiros et a1 [L.Cysneiros & Leite, 20041 used the strategy for the integration of NFRs in

use case diagrams. They first identified LEL symbol appears in the use case diagram. They

also identified if any LEL symbol appears in any of the use cases or actors of the diagram.

For each LEL symbol they find, they search the set of NFR graphs to identify those where

this symbol appears. They may eventually, find one or more NFR graphs that contain the

symbol being searched for. They take every graph where the symbol appears and check if the

use case diagram realizes the dynamic operationalizations in the graph. LEL intends to

capture every meaningful term used in the Universe of Discourse. If a use case diagram does

not have at least one LEL symbol, either there are symbols in LEL that may have aliases not

yet specified or a symbol is missing. Most of all, all the actors in a use case diagram must be

LEL symbols. If a symbol is missing, LEL must be updated and all the processes that are

carried out within the nonfunctional perspective must take place again, e g , search for NFRs

that may apply to this symbol, create NFR graphs. Every use case or actor included, due to

NFR satisfaction, must be followed by an expression using the pattern: {NFR-Type

VFR-topic]). The use of this expression aims at adding traceability between the functional

and nonfunctional perspectives.

Moreira et a1 [A.Moreira & Brito, 20021 proposed a strategy to first identify requirements

then specify it and then integrate it. According to his approach which is applied on use case,

first identify requirements then from those requirements identify actors and use cases and

idcntify quality attributes from those requirements. After identifying requirements and actors

and use case then specify all these in use case diagram and then specify quality attributes in a

template. All quality attributes are specified or recorded in a template with this information:

" name, including description, focus, source, decomposition, priority, obligation, influence,

where, requirements and contribution ". Then finally integrate these quality requirements in a

use case diagram. They augmented the use case diagram to include a new stereotyped use

case for each quality attribute and make the crosscut initial use cases include the new ones.
2

Then they showed these stereotypes in the use case diagram with the include relationship.

Dimitrov et a1 [E. Dimitrov & Schmietendorf, 20021 used a process based on IS0 14756 for

a formalized description of the workload within the framework of use case diagrams. This

requires many steps: identifying activity types and recording the number and types of users,

deriving task types by assigning activity types to task mode and defining service level

requirements, defining chain types as fixed sequence of task types, defining the percentage

occurrence frequency q and the user preparation time for concrete chain types while the

program runs and laying down the reference yalue of mean execution time t ~ = f (response

times) for concrete task types. They define a load and time-weighted use case diagram for

specifying performance aspects with the standard UML notations.

The different researchers had done a different work on integration of NFRs in use case

diagram. Moreira and Cysneiros worked on use case diagram both works inspiration come

from Chung work [L. Chung & Yu, 20001. For the integration of NFRs both researchers used

the Chung work on NFR. Chung [L. Chung & Yu, 20001 described the most comprehensive

framework on NFR for representing and dealing with NFR. C~sneiros used the NFR graphs

for the integration of NFRs in use case diagram from C h u g NFR framework [L. Chung

Yu, 20001. Moreira used the approaches of Chung for the integration of NFRs in use case

diagram and integration is also familiar with the Cysneiros worked on use case diagram.

Dimitrov worked on NFR for just a specific NFR which is performance and didn't give any

work related to any other NFR.

2.1.5.2.2 Application of NFR Framework on Class Diagram

Cysneiros et a1 [L.Cysneiros & Leite, 20011, [L.Cysneiros & Leite, 20041 described

integration of the nonfunctional perspective into the class model is based on the use of LEL.

It means that every class belonging to the class diagram has to be named using a LEL

symbol. The use of LEL as an anchor to construct both perspectives is facilitating their

integration. It can also be used for validating both models since, if for some reason one

cannot find a LEL symbol for naming a class, it means that either any LEL s)mbol has an

alias that was not yet considered, or the symbol is missing in LEL definition and, therefore,

should be added to it. If that is the case, one may go over the nonfunctional perspective

again, i.e., evaluate the symbol for possible NFRs, represented in the graphs. Using this

anchor, the integration process is centered on searching for a symbol that appears in both

models, and evaluating the impacts of adding the NFRs operationalizations to the class

diagram. They start the process by picking out a class from the class diagram. There is no

order for choosing one class or another. They search all the NFR graphs looking for any

occurrence of this symbol. For each graph where the name of the class are searching for

appears, have to identify the dynamic and static operationalizations from this graph.

For dynamic operationalizations found, check if the operations that belong to this class

already hlfi l l the needs expressed in the graph's operationalizations. On the other hand, for

static operationalizations, check if the class attributes already fulfill the needs expressed in

the graph's operationalizations. If they do not, then they are adding operations and attributes

to the class. Note that, adding new operations may sometimes call for the inclusion of new

attributes in order to implement the desired operation or vice-versa.

2.1.5.2.3 Application of NFR Framework on Sequence Diagrams and

Collaboration Diagrams

Cysneiros et a1 [L.Cysneiros & Leite, 20041 described a strategy for integrating NFRs into

the sequence diagram by examined every class of the class diagram. For every operation

included because of NFR satisfaction, they searched the sequence and collaboration diagrams

where this class appears. For each diagram they find, they must check if the new operations

added due to NFR satisfaction will imply any change in this sequence diagram. It may be

necessary to add classes, messages, or both to the diagram. If there is any pre or post

condition attached to an operation, they may also need to specify it attached as a note to a

message. And must be able to represent that new message together with pre and post

conditions in the sequence diagrams were added due to NFR satisficing. This is done by

using a note linked to the message where the condition will apply. This note will contain the

expression that portrays the pre or post condition. Any message included in these diagrams

due to NFR satisfaction will have the same traceability expression they used with attributes

and operations. The integration on communication diagrams were done in a similar way.

Moreira et a1 [A.Moreira & Brito, 20021 described the integration of NFRs in UML

sequence diagram. When they found the result fiom the use case diagram after integration of

NFRs then they further precede. They used stereotypes in the use case diagram for

integration. Then they used those stereotypes in the sequence diagram. They showed through

the arrows and with the grey rectangles in the lifeline of sequence diagram. They identified

the points wherein the constraint applies with the units of time.

Dimitrov et a1 [E. Dimitrov & Schmietendorf, 20021 used sequence diagram as special

interaction diagrams offer sufficient potential to obtain and present performance information.

They represent time relations by introducing an explicit time axis (time progress from top to

bottom). The vertical layout of messages in the diagram helps define the messages

chronological sequence. For the interaction diagram, they proposed to add some additional

time information by labeling the messages with relative constraints such as assigning time

attributes to the messages and to the method executions. According to this approach the

labeling of messages with time will be interpreted as latency and labeling of methods with

time will be interpreted as time for method execution.

As 1 conclude all the work done by different researchers like Moreira worked on sequence

diagram was done on the basis of use case diagram means result of integration of use case

diagram is used in sequence diagram. Those use cases which are added after integration are

included in sequence diagram through mentioned boxes in lifelines and units of time are also

showed in sequence diagram. Cysneiros worked on sequence diagram is done through after

the integration of NFRs in Class diagram. They first check that any NFRs inclusion changes

the impact of class diagram then these changes also manipulate in sequence diagram like

addition of any new class, any operation or any attribute. Dirnitrov just added some

additional time information by labeling the messages with relative constraint.

2.1.5.2.4 Application of NFR Framework on Activity Diagram

Atif et al p. Usman, Atif, Rinvan & Shahzad] described the integration of NFR into

activity diagram. This integration requires the identification of each activity from use cases

and domain glossary. The activities identified in use cases must exist in domain glossary. If

there is any activity in use cases but not present in domain glossary then domain glossary

must be updated. The activities are then represented in activity diagrams. They assumed that

activity diagrams are drawn for important activities of Universe of Discourse. Usually

activity diagrams are drawn from use cases. They then explored domain glossary to identify

NFRs for each activity. From NFR graph, they used satisficing sub goals at leaf nodes to

operationalize the NFR in activity diagram. The operationalization of NFR requires looking

for relevant actions in activity diagram and then mapping satisficing sub goals of NFR graph

on these actions. The operationalization of NFR through activity diagrams gives result in new

actions or as constraints on existing actions. The mapping either is an action or constraint.

New action is proceeded or follows existing action and is being referred to as pre and post

actions. The constraints are appended in existing actions and are referred to as in actions. The

pre actions mean that these must be performed before the execution of actual action; post

actions are performed after the execution of actual action and in actions are treated as a

condition or constraint on actual action.

2.1.6 Comparison among Different Approaches

ConceptResearch Work

NFR Framework

NFR in Conceptual model through NFR
graphs and LEL Symbols.

Model to identify and specify quality
attributes at an early stage
A framework for Performance
engineering

A framework for integrating NFRs with
FRs in the use case model.

Homogeneous UML use-case model

Zxtending UML with UML profile

\JFRs in Software Architecture
JML profile for modelinr! design
lecision and for m o d e l i n g ~ ~ c in a
generic way.

Table 2.1 : Compa

Approach I Paper
Based on NFRs 1 [L. Chung & Yu ,2000

based approach for Schrnietendorf ,2002]
performance modeling)

Based on NFRs (A use [S. Supakkul& Chung,
case and Goal driven 2004]
approach) *

Based on NFRs [Brian, 20041

Based on NFRs [S. Supakkul & Chung,
2005]

Based on NFRs [L .Xu & Ziv ,20051
Based on NFRs TL. Zhu & I. Gorton,

son among different approaches

Table 2.1 shows the research work which is based on NFRs and shows the different

approaches to handle the NFR of the system. The research works are presented in

chronological order. The most comprehensive work on NFRs is based on NFR framework

which was proposed by Chung [L. Chung & Yu, 20001. The Chung NFR framework is the

most comprehensive for the representation and dealing for NFRs. The template Moreira

proposed to specify a quality attributes was influenced by the approaches of Chung et a[.

Then Cysneiros also used Chung et a1 NFR framework [L. Chung & Yu, 20001 and apply it

into use case view, behavioral view and structural view as mentioned in table 2.2. Different

researchers proposed different frameworks mentioned in table 2.1 and some of the researcher

applied frameworks on UML artifacts shown in table 2.2. Table2.2 shows the frameworks

which are applied on UML artifacts. Table 2.2 shows these works according to five views.

Some views are covered but some views are not covered yet like implementation view and

inclusion of some new diagrams in behavioral view and structural view in version UML2.

Papers

[A.
Moreira
Brito,
2002]
F.
Dimitrov
&
Schmietel
dorf
2002]
[S.
Supakkul
.% Chun~
lo04]
L.
2ysneiros
k Leite
!004]

Table 2.2: Views are used to specify NFRs

According to the 4+1 architectural views model was proposed by Krutchen, the views are

structural view, behavioral view, implementation view, environmental view and one is use

case view. Software systems can be modeled from these views. As shown in table 2.2,

implementation view is not covered in any researcher in any paper. The CSD and CD are

included in implementation view. As these diagrams have a lack of information about non

functional aspects of the software system, especially NFRs related to different components

and their implementation. In literature I find that there is need to improve the understanding

of NFRs at component and implementation level and also to complete the understanding of

NFRs in these diagrams to make these diagrams complete and also to improve the quality of

software system at run time in implementation view.

As shown in table 2.2, the behavioral view covers work on sequence diagram and

collaboration diagram. But some diagrams are left for the integration of NFRs. IOD is

diagram is the combination of all interaction diagrams like sequence diagram and

communication diagram and timing diagram. I want to find that, is there any impact in

diagram when we combine interaction diagrams in an IOD, any addition of instances, classes,

association or any NFR which may change the IOD. The literature of software engineering

does not provide any mechanism to incorporate NFRs in these types of models. My research

focus is to find out a mechanism to incorporate NFRs in these views, so that it will help us to

understand that particular view (Implementation, Behavioral) of system.

Chapter 3

Stratew for Inte~ration of NFRs

3. Strategy for the Integration of NFRs

Developing quality software always requires the proper elicitation of NFRs with the FRs. If

the NFRs are not reflected properly in the design phase, the quality of the software will

suffer. Researchers consider the design of software as the basic foundation of building a high

quality product.

Software models like requirements, conceptual, and design models are realizations of FRs.

Few attempts are made to model NFRs in UML artifacts like [A. Moreira & Brito, 20021, [E.

Dimitrov & Schmietendorf ,2002 1, [S. Supakkul & Chung, 2004] & [L. Cysneiros & Leite ,

2004 1. Research in RE has shown recently that besides modeling FRs, there is need to

incorporate NFRs in functional models as well &Cysneiros & Leite, 20011 & [Dardenne &

Van , 19931. "Modeling NFRs allows them to be organized for better visualization and

understanding" [Cysneiro's & Yu, 20031. It will help software engineers to analyze NFRs.

This integration will improve the understanding and quality of functional models.

Chung worked on NFRs [J. Mylopoulos & Chung, 19921 & [L. Chung & Yu, 20001, the most

comprehensive framework for the integration of NFRs and dealing for NFRs [I. Mylopoulos

& Chung, 19921. Cysneiros used the Chung [L. Chung & Yu, 20001 worked on NFR and

applied it into UMLl diagrams, the worked on the integration of NFR in UML artifacts were

done in a very comprehensive way so I am further extending on UML2 diagrams with using

NFR framework and Graphs. As mentioned in table 2.1 different research works, some

focused on particular NFR and some are system dependent. Cysneiros used NFR framework

and applied it into use case view, behavioral view and structural view. But some views are

not covered yet like implementation view and inclusion of some new diagrams in behavioral

view and structural view in UML2. My work is focus on implementation view, behavioral

view and structural view. I am proposing the strategy for the integration of NFRs in IOD,

CSD and CD which are not dependent for a particular system and not for a particular NFR.

My proposing strategy deal NFRs with respect to the system. The different steps for the

integration of NFRs are as follows:

1. Eliciting NFRs

2. Building Domain Glossary

3. Representation of NFRs

a NFR Framework

b. Refining NFRs using NFR graph

4. Creating NFR Graphs

5. Integrating NFRs in Use case diagram

6. Integrating NFRs in Class Diagram

7. Integrating NFRs in Sequence and Communication Diagram

8. Integrating NFRs in IOD

9. Integrating NFRs in CSD

10. Integrating NFRs in CD.

The step 1 and 2 are our contribution whereas step 3 and 4 are included from C h u g [L.

Chung & Yu, 20001 & [J. Mylopoulos & Chung, 19921 NFR framework. The steps 5 to 7 are

included from Cysneiros [L. Cysneiros & Leite, 20041 integration strategies for NFRs. The

steps 8 to 10 are ow contribution for the integration of NFRs in UML2.

3.1 Eliciting NFRs

The elicitation of NFRs, Cysneiros [L. Cysneiros & Leite, 20041 elicited NFRs through LEL

symbols. LEL registered the vocabulary of universe of Discourse. They build LEL for the

functional and nonfunctional perspective. First build LEL for the functional perspective then

nonfunctional perspective is added. I assume that requirements have already been elicited

and specified in requirements document like Software Requirement Specification (SRS), use

cases etc. These requirements documents will be used to search NFRs. There is no hard and

fast rule to identify NFRs. I have used a simple principle to identify NFRs from requirement

documents. Typically verbs are treated as functional and adverbs are treated as NFRs. For

example an FR might be stated as "customer want to complete sales processing". On the

other hand NFR might be phrased as "Customer want to conlplete sales processing very

quickly". Some other NFRs for POST are: The system shall be highly available since the

effectiveness of sales depends on its availability. The system shall be portable to a range of

different platforms to support aproduct line of POST systems. The system shall be usable by

clerks with a minimum of training and with a high degree of efficiency.

3.2 Building Domain Glossary

The concept of domain glossary is to record tasks and their corresponding NFRs. Tasks are

added in glossary by analyzing the requirements documents. Tasks are functional in nature

e.g. items, payment etc. NFRs are constraint on these tasks e.g. Payment authorization

service that they will make or guarantee the payment to the seller, and the management of

items. Each task is represented in domain glossary by its name, description and it's

associated NFRs.

Domain glossary is based on a vocabulary system composed of tasks where each task is

expressed through its description and associated NFRs. The description explains the meaning

of the task and its relation with other task. The associated NFRs specify the non functional

aspects of the mentioned task.

3.3 Representation of NFRs

I am using Chung [L. Chung & Yu, 20001 NFR framework to represent NFRs. The NFR

Framework for representing and using nonfunctional requirements during the development

process. I

3.3.1 The NFR Framework

Chung [J. Mylopoulos & Chung, 19921 proposed a comprehensive framework for the

representation and dealing NFRs during the development process. Chung framework based

on five basic components which provide for the representation of NFRs in terms of

interrelated goals. Such goals can be refined through refinement methods and can be

evaluated in order to determine the degree to which a set of NFRs is supported by a particular

design.

The NFR framework view NFRs as goals that might conflict among each other and must be

represented as soft goals to be satisficed. Each goal decomposed into sub-goals represented

by a graph structure inspired by the And / Or trees used in problem solving. The

decomposition is done using contribution links. Contribution links can be categorized as an

or contribution or an and contribution. Contribution links allow one to decompose NFRs to

the point that one can say that the operationalizations to this NFR have been reached (i.e., the

goals are no longer "soft"). Operationalizations can be viewed as FRs which has arisen from

the need to meet NFRs. These operationalizations may add some new methods, attributes,

entities and constraints in functional models. The NFR framework also used correlation links

to show contributions (positive and negative) from one NFR to another.

3.3.2 Refining NFRs using NFR graph

The NFR Gamework [J. Mylopoulos & Chung, 19921 was extended to represent the

operationalizations in two different ways [Cysneiro's & Yu, 20031. They are called dynamic

and static operationalizations. Dynamic operationalizations are those that call for some action

to be carried out. Static operationalizations express the need for some data to be used in

design of the s o b a r e to store information which is necessary for satisficing the NFR

[Cysneiro's & Yu, 20031.

3.3.3 Creating NFR Graphs

TO build the NFR model, must go through every task looking for descriptions that express the

need for an NFR. For each NFR found, one must create an NFR graph where this NFR will

be the root of the graph. This graph must be further decomposed into sub goals and then

express all the operationalizations that are necessary to satisficed this NFR. This can be

accomplished either using the knowledge base on NFRs or investigating what descriptions

and associated NFRs are added to domain glossary to satisficed NFRs.

If during decomposition any new term is identified, it is added in domain glossary. NFRs are

treated as goals, which can be decomposed in satisficing sub goals. The terms used for these

goals are task in the domain glossary. Sub goals can further be decomposed in other

satisficing goals. A goal will only be satisficed when all of its sub goals are satisficed.

Satisficing NFRs may result in additional functionality. The leaf nodes of NFR graph will be

used to operationalize the NFR. This Operationalization may add some new attributes,

methods, entities and constraints in functional model.

3.4 Integrating NFRs

Cysneiros [L. Cysneiro's & Leite, 20041 strategies for the integration of NFRs in use case,

sequence diagram, collaboration diagram and class diagram. I am using these strategies. I am

explaining these strategies because I am applying these strategies on a case study. Cysneiros

explained these strategies with respect to LEL which is build for the nonfunctional

perspective. I am building domain glossary for the nonhctional perspective so I am

applying these strategies according to domain glossary instead of LEL symbols. I want to

cover all views in one particular system so I am using these strategies and applying it on a

case study POST. Then also my contribution is on strategy for integrating NFRs in IOD,

CSD and CD. The consideration of NFRs in all views in one particular system is considering

in this research work.

3.4.1 Integrating NFRs in Use Cases

Cysneiros [L. Cysneiro's & Leite, 20041 explained the strategy for the integration of NFRs in

use case in this way.

The integration of NFR in use cases requires the identification of each use case from the

domain glossary. They identified if any domain glossary task appears in the diagram. They

also identified if any domain glossary task appears in any of the use cases or actors of this

diagram. For each domain glossary task they find, they search the set of NFR graphs to

identify those where this task appears. For example, the use case of process sale has security

NFR.

From NFR graph, they used satisficing sub goals at leaf nodes to operationalize the NFR in

use case. The operationalizations of NFR requires looking for relevant use case in use case

diagram and then mapping satisficing sub goals of NFR graph on these actions. The

operationalizations of NFR through use case diagram will result in new actions or as

constraints on existing use case. The mapping will either be an action or constraint. Figure

3.3 [L. Cysneiro's & Leite, 20041 shows the integration process for use case or scenario.

Pick up next
gtaph That
npplies

NFR gnph
New scenario

Scenarios - €7 DO i t until them is no
Scenario rille scmaria lctl w analyn: P c k up a

scenario
7

Figure 3.1: The use case or scenario integration process [L. Cysneiro's & Leite, 20041

3.4.2 Integrating NFRs in Class Diagram

Cysneiros [L. Cysneiro's & Leite, 20041 explained the strategy for the integration of NFRs in

class diagram in this way.

Integration of the non functional perspective into the class model will be based on the use of

domain glossary. Here, it means that every class belonging to the class diagram has to be

named using a name domain glossary. The use of domain glossary as an anchor to construct

both perspectives to facilitates their integration. It can also be used for validating both

models since, if for some reason one cannot find in domain glossary for naming a class, it

means that either that was not yet considered, or is missing in domain glossary and therefore

should be added to it. The integration process is starting on searching for a task that appears

in both models, and evaluating the impacts of adding the NFRs operationalizations to the

class diagram. Figure 3.4 [L. Cysneiro's & Leite, 20041 shows the integration method for the

class diagram. They start the integration by picking out class or another. They search all the

NFRs graphs looking for any occurrence of this task. For each graph where the name of the

class they are searching for appears, they have to identify the dynamic and static

operationalizations from this graph. For dynamic operationalizations found, they have to

check if the operations that belong to this class already fulfill the needs expressed in the

graph's operationalizations. On the other hand, for static operationalizations they have to

check i f the class attributes already fulfill the needs expressed in the graphs

operationalizations. If they do not, then they have to add operations and attributes to the

class.

New decisions on I Pick up
next
graph
that
aoolies

~~ ~~

NFRs satisficing

G r a ~ h s
I

Q Static
'\
1 Operationalizations
. Dynamic I ; NFRgraph

where the name impacts due to

R of the chosen inclusions made in the
classes appears class diagmm

3
5 Evaluate again

Evaluate necessary
inclusions to satisfies this

~~~k for NFR in the class diagram 
NFR: \ Class, r: . , .. . .  '%... . % . , ;. New at

tr

ibutes operations classes. and 
that ! >. 

applies to Amibutes and \ .; \ ... 
Operations . . .  : % 

this class . . 
i '. 
? * 

1 0 Class 

Pick up a 
Class 

A 
t 

New Design 
Class .... 
Diagram 

Do it until there are no 
classes left to analyze 

Figure 3.2: The class diagram integration process [L. Cysneiro's & Leite, 20041 



3.4.3 Integrating NFRs in Sequence and Communication Diagrams 

Cysneiros [L. Cysneiro's & Leite, 20041 explained the strategy for the integration of NFRs in 

sequence and communication diagrams in this way. 

Integrating NFRs into the sequence and collaboration diagrams is done by examining every 

class of the class diagram. For every operation included because of NFR satisfaction, they 

may search the sequence and collaboration diagrams where this class appears. For each 

diagram they found, they must check if the new operations added due to NFR satisfaction 

will imply any change in this sequence or collaboration diagram. 

It may be necessary to add classes, messages, or both to the diagram. If there is any pre or 

post condition attached to an operation, they may also need to specify it attached as a note to 

a message. 

They must be able to represent that new messages together with pre and post condition in the 

sequence and communication diagrams were added due to NFR satisficing. This is done by 

using a note linked to the message where the conditions will apply. This note will contain the 

expression that portrays the pre or post condition, any message included in these diagrams 

due to NFR satisfaction will have the same traceability expression they used with attributes 

and operations. Figure 3.5 [L. Cysneiro's & Leite, 20031 shows the integration method for 

the sequence and communication diagram. 



Special Condition 

Verify the 

which 
required 

:.... 

Special Condition 

2 
n Cmerations, attributes which ,-I 
Y satisfies NFRS 

Pick classes with NFR 

Figure 3.3: The sequence and communication integration process 

[L. Cysneiro's & Leite, 20041 



3.4.4 Integrating NFRs into IOD 

The IOD focuses on the overview of the flow of control of the interactions. An IOD is a form 

of activity diagram in which nodes represents interaction diagrams. Interaction diagrams can 

include sequences, communication, interaction overview and timing diagrams and [OD is a 

combination of sequence, communication and timing diagram. 

The purpose of integration of NFRs in IOD is, sequence diagram are produced against every 

individual event in a use case and a use case have more than one sequence diagrams. 

Although NFRs are modeled on use cases [L.Cysneiros & Leite, 20041 as well but it is 

difficult to map those NFRs to each individual sequence diagram against that use case. There 

is a need to have a single model realizing an individual use case in terms of sequence 

diagram. IOD represents an individual use case in terms of sequence diagram. The 

integration of NFRs fulfills those needs. Figure 3.6 shows the integration process for the 

IOD. 

The integration process for the IOD is as follows: 

1. Pick up an interaction, 

2. Analyzes it and look for NFRs that applies to this interaction, 

3. Evaluate necessary addition to satisficed this NFR in IOD, 

4. Analyze all possible impacts due to addition made in IOD and then, 

5. Evaluate this process again for the verification for any addition, 

6. Analyze all the interaction in this ways when there is no interaction left to analyze. 

In this way some new interactions or new messages/classes or note with pre or post 

condition are added in IOD. When I apply NFRs on IOD, the addition of new interactions or 

new messagedclasses or note show changes in the model. These addition or changes makes 



the model perfect and complete and enhance its understanding and also improves the quality 

of the system. 

Overview 
Diagram 

New Message /New Classes- ,... 
/-' Any note with 

,,-. 
p... pre or post 

%.. 

i New interactions '., \ condition 
Evaluate - necessary 
addition to Analyze all possible impacts 
satisfice 4 due to addition made in 10D 
this NFR in 
IOD 

/ 5 Evaluate again 

Look for NFRs that applies 
2 to this interaction f Operations, messages or a 

condition which satisficed 
NFRs 

Pick up an interaction Communication 
Diagram 

1 t 
6 Do it until there is no 

interaction lei? to analyze 

Figure 3.4: The IOD integration process 



3.4.5 Integrating NFRs into CSD 

The CSD introduced in UML2 which has a lack of information about non functional aspects 

of that system, especially NFRs related to different composite classes and their 

implementation. The CSD deals with the internal structure of a classifier, including its 

interaction points to other parts of the system. It shows the configuration and relationship of 

parts that together, perfom the behavior of the containing classifier. 

The integration of NFRs in CSD covers the implementation and structural view of software 

system. Figure 3.7 shows the integration process for CSD. 

The integration process for the CSD is as follows: 

1. Pick up a composite class, 

2. Analyzes it and look for NFRs that applies to this composite class, 

3. Evaluate necessary addition to satisficed this NFR in CSD, 

4. Analyze all possible impacts due to addition made in CSD, 

5. Evaluate this process again for the verification of any addition, 

6 .  Analyze all the composite classes in this ways when there is no composite class left to 

analyze. 

In this way, addition of some new composite class or new parts in composite class or any 

association between parts and composite classes are added in CSD. When I apply NFRs on 

CSD, the addition of new composite class or new part or any new association show changes 

in the model. These changes make the model complete, clear the understanding of system at 

implementation and structural level and improves the quality of the system. 



Evaluate 
necessary 
addition to 
satisfice this 
NFR in 
composite class 

3 

New composite class 

Analyze all 
4 possible impacts 

9 
due to addition 
made in CSD - P 

A A 
I 

Evaluate again 
5 

/..r 
,..... /... 

.-..- 
_r 

../'. . New part 

Any association 
between parts or 
composite class 

Conlposite 
Structure 
Diagram 

2 

Look for 
NFRs that 
applies to 
this 
composite 
class \ 

Pick up a 
composite class Do it until there is no conlposite 

class lee to analyze 
_7 

1 

I 

Figure 3.5: The CSD integration process 



3.4.6 Integrating NFRs into CD 

The CD main purpose is to show the structural relationships between the components of a 

system. In UMLl.1, a component represented implementation items, such as files and 

executables. Unfortunately, this conflicted with the more common use of the term 

component, "which refers to things such as COM components. Over time and across 

successive releases of UML, the original UML meaning of components was mostly lost. 

UML2 officially changes the essential meaning of the component concept; in UMLZ, 

components are considered autonomous, encapsulated units within a system or subsystem 

that provide one or more interfaces. Although the UML2 specification does not strictly state 

it, components are larger design units that represent things that will typically be implemented 

using replaceable modules. But unlike UMLI, components are now strictly logical, design 

time constructs. The idea is that you can easily reuse and or substitute a different component 

implementation in your designs because a component encapsulates behavior and implements 

specified interfaces. 

The integration of NFRs in CD covers the implementation view of software system. The CD 

has lack of information about non functional aspects of that system, especially NFRs related 

to different components and their implementation. Figure 3.8 shows the integration process 

for component diagram. 

The integration process for the CD is as follows: 

1. Pick up a component, 

2. Analyzes it and look for NFRs that applies to this component, 

3. Evaluate necessary addition to satisficed this NFR in CD, 

4. Analyze all possible impacts due to addition made in CD, 



5. Evaluate this process again for the verification of any addition, 

6. Analyze all the components in this ways when there is no component left to analyze. 

Some NFRs are not operationalized at component level then I attach these NFRs in a form of 

a special note with condition, mention the condition for which it will be use. But we have to 

consider the association between components. Sometimes some components required or 

provide interface then we have to inspect these interfaces and model the related NFRs on 

these components by attaching some notes to that association or relationship which show the 

creation of adding those notes. In this way, addition of some notes between components is 

added in CD. When I apply NFRs on CD, the addition of new notes shows changes in the 

model. These changes make the model complete, enhances the understanding of system at 

component level and improves the quality of the system at implementation and run time. 



Chapter 4 

Case Study(P0ST) 



4. POST (Case Study) 

4.1 Introduction 

This case study is about a POST system. A POST is a computerized system used to record 

sales and handle payments; it is typically used in a retail store. It includes hardware 

components such us a computer and bar code scanner, and software to run the system. It 

interfaces to various service applications, such as third-party credit and check authorization 

systems, tax calculator and inventory control. The main objectives of the system are to deal 

with sale, returned items and handle payments of those returned items. These systems must 

he relatively fault-tolerant; that is, even if remote services are temporarily unavailable (such 

as the inventory system), they must still be capable of capturing sales and handling at least 

cash payment. 

POST Functions 

I am discussing two main use cases of POST because these use cases are the main use cases 

for any sale system. First sale is required to run for any sale system and then returned of 

those sale items. 

1 .  Sales 

(a) Sale items 

(b) Return purchased items 



4.1.1 Use Case descriptions 

4.1.1.1Use case: Sale items 

Actors: Customer, Cashier, Accounts ReceivableiTo Pay System 

Description:,A Customer arrives at a checkout with items to purchase. The Cashier records 

the purchase items and collects payment. On completion, the Customer leaves with the items. 

Steps o r  transactions 

1. This Use Case begins when a Customer arrives at a POST checkout with items to 

purchase. 

2. The Cashier records the identifier of each item. 

3. The System determines the item price and description and adds information to the current 

sales transaction. 

4. On completion of item entry, the Cashier indicates to the POST that item entry is 

complete. 

5. The System calculates and presents the sale total. 

6. The Cashier tells the customer the total. 

7. The Customer chooses payment type: 

(a) If cash payment, see section Pay by Cash 

(b) If credit payment, see section Pay by Credit 

(c) If check payment, see section Pay by Check 

8. The System logs the completed sale. 

9. The System prints a receipt. 

10. The Cashier gives the receipt to the Customer. 

11. The Customer leaves with the items purchased. 



Alternative 

Line 2. If there is more than one of the same item, the Cashier can enter the quantity as 

well. The subtotal of these items is shown. 

Line 2. Invalid identifier entered. Indicate error. 

Line 7. Customer didn't have enough money. Cancel sales transaction. 

Section: Pay by Cash 

Steps or transactions 

1. The Customer gives cash payment - the "cash tendered" - possibly greater than the sale 

total. 

2. The Cashier records the cash tendered. 

3. The System shows the balance due back to Customer. 

4. The Cashier deposits the cash received and extracts the balance owning. The Cashier gives 

the balance owning to the Customer. 

Alternative 

Line 4. Insufficient cash in drawer to pay balances. Ask for cash from Supervisor cashier, 

or ask Customer for a payment closer to sale total. 

Section: Pay by Credit 

Steps or  transactions 

1. The Customer communicates their credit information for the credit payment. 

2. The System generates a credit payment request and sends it to an external Credit 

Authorization Service (CrAS). 

3.  CrAS authorizes the payment. 

4. The System receives a credit approval reply from the CrAS. 



5. The System posts (records) the credit payment and approval reply information to the 

Accounts ReceivablelTo Pay System. (The CrAS owes money to the Store, hence AIR must 

track it). 

6. The System displays authorization success message. 

Alternative 

Line 3.  Credit request denied by CrAS. Suggest a different payment method. 

Section: Pay by Check 

Steps o r  transactions 

1. The Customer writes a check and identifies itself. 

2. The Cashier records identification information and request check payment authorization 

(ChAS). 

3. The System generates a check payment request and sends it to an external ChAS. 

4. The ChAS authorizes the payment. 

5. The System receives a check approval reply from the CrAS. 

6. The System displays authorization success message. 

Alternative 

Line 4. Check request denied by ChAS. Suggest different payment method. 

4.1.1.2Use case: Return purchased items 

Actors: Customer*, Cashier 

Cross Reference: F1.b 

Description: A Customer arrives at a checkout with purchased items to return. The Cashier 

records the returned items. On completion, the Cashier refunds the Customer the total money. 



Steps o r  transactions 

1. This Use Case begins when a Customer anives at a POST checkout with items to return. 

2. The Cashier records the identifier of each item. 

3.  The System determines the item price and description and adds information to the current 

return transaction. 

4. On completion of item entry, the Cashier indicates to the POST that item entry is 

complete. 

5. The System calculates and presents the refund total. 

6. The Cashier gives the customer the money back. 

7. The System logs the completed return. 

Alternative 

Line 2. If there is more than one of the same item, the Cashier can enter the quantity as 

well. The subtotal of these items is shown. 

Line 2. Invalid identifier entered. Indicate error. 

Line 6. Insufficient cash in drawer to pay total. Ask for cash from Supervisor Cashier. 

4.2 Integrating NFFb in POST 

POST case study is used for validation of NFRs integration process. I am integrating NFRs 

on use case diagram, class diagram, sequence and communication diagram, IOD, CSD and 

CD. For the nonfunctional perspective as I mentioned in chapter 3, I am building a domain 

glossary to record the NFRS against each functional requirement so domain glossary for 

POST is shown in table 4.1. 



Process Sale 

( Task 

Handle Returns 

Description I NFRS 

'rocess Rental 

lanage Users 

lanage Security 

A Customer arrives at a 

checkout with items to 

purchase. 

The Cashier records the 

purchase items and collects 

payment. 

A Customer arrives at a 

checkout with purchased 

items to return. The Cashier 

records the returned items. 

A cashier gives the item on 

rent. 

System administrator has to 

manage the details of users 

of the system. 

System administrator has to 

nanage the security of all 

z k s  

Security of payments either 

in credit or through checks. 

Performance involves in 

payment authorization. 

Maintain the records of 

sale items. 

Accuracy and Consistency 

of the item which is to 

return. 

Security of Customer 

which takes item on rent. 



Register Register class deals the new I Security involves for 

Payment 

Sale 

'roduct Catalog 

sale; enter items, payments 

and end of sale. 

Payment class deals with 

the payments. 

Sale class deal with sale and 

nake the quantity of sale, 

;et total and make payment. 

'roduct Catalog gives the 

lescription of the product. 

making payments. 

Maintain record of the 

items. 

Maintain and Update the 

records of the return sale. 

Security involves for 

handling payments. 

Security involves for 

making payments. 

Maintain the records 

sale 

Catalog provides useable 

description of the product. 

Table 4.1 : Domain glossary 



4.2.1 Integration of NFRs in POST Use Case 

Figure 4.1 shows the use case diagram of POST without integration of NFRs. 

I Process Rental \ 

Manage Users L 

y p ~ h t  Authorizati. 

<<actor>> 

calculator 

Accounting 
system 

Figure 4.1 : Use case diagram for POST before integration 

In the figure 4.2 shows the decomposition of NFR Security. In figure 4.2 Security [Payment] 

refers to NFR security regarding the process sale task. I found that in order to achieve 

security o f  payment either in check or credit. These are represented as sub goals as Security 

[Payment.Check] and Security [Payment.Credit]. In figure 4.2 these sub goals are further 

decomposed in two sub goals of Security [Payment.Check] and three sub goals of Security 

[Payment.Credit]. These sub goals are represented in figure 4.2 as Security 

[Payment.Check.RecordIdenti.Info], Security [Payment.Check.Authorize] and Security 



[Payment.Credit.Communicate Credit Info], Security [Payment.Credit.Approve Credit 

Payment], Security [Paymnet.Credit.Request Credit Payment]. 

The Security [Payment.Check.Authorize.GenerateChec~] and Security 

[Payment.Check.Authorize.ApproveCheck Payment]. 

By further refining these goals we come to know that goal 

Security [Payment.Check.Authorize.GenerateCheck Payment] is decomposed in 

satisficing sub goals Security [Payment.Check.Authorize.GenerateCheck 

Payment.SecureCommunication] and Security 

[Payment.Check.Authorize.ApproveCheckPayment.AuthenticateAccess].they are 

represented as leaf nodes in figure 4.2. Through analysis we found that Security of 

Payment can be achieved by restricting the access to authenticated operators and 

secondly by providing secure communication between system and bank. 

Security [Payment.Credit.CommunicateCreditInfo] is decomposed into Security 

[Payment.Credit.CommunicateCreditInfo.SecureCommunication] and Security 

[Payment.Credit.RequestCreditPayment] is decomposed into Security [Payment. 

Credit.RequestCreditPayment.AuthenticateAccess] and . Security 

[Payment.Credit.ApproveCreditPayment] is decomposed into Security 

[Payment.Credit.Approve Credit Payment.Authenticate Access]. 

Security [Messaging Services] must be secure, but they are not operationalized. 

Security [Database Services] must be secure, but they are not operationalized. 



They are represented as leaf nodes in figure 4.2. Through analysis I found that security of 

payment can be achieved by restricting the access to authenticated operators and secondly by 

providing secure communication between system and bank. 



Security [Messaging Services] 

Security [Database Services] 

Security [Payment Security [Payment 
Authorization. Check] Authorization. Credit] 

Security [Payment Security [Payment Security 
Authorization. Check. Record Authorization. Check. [Payment 
Identification Info] Authorization. 

Credit. Approve 
Credit Payment] 

\ Security [Payment \ 
Authorization. Check. Security [Payment 
Authorize. Generate Authorization. Check, 

Check Payment] Authorize. Approve 
Checks Payment] 

Authorization. / 
Credit. 
Communicate 
Credit Info. Secure 
~ommunication] / ,& Authorization. security redit. ~ecurit? [Payme 

Request Cred' Authori t 

Access 

Figure 4.2: NFR graph to be integrated 

62 



Figure 4.3 shows the NFR use case diagram from NFR graph figure 4.2, the satisficing sub 

goals are integrated in use case diagram to operationalize the NFR. 

To achieve the sub god of security, we need to restrict unauthenticated access to system and 

to maintain access log of operators. Secure communication with bank is also required to 

protect the Customer's bank account details. So the authenticated access in case of credit and 

check payment is added in use case diagram and it should verify it through credit or check 

authorization system. Maintain item and manage returned item are added as a use case which 

conforms the availability of sale items and then maintain the records of the sale items. The 

items which are returned to the system they must be managed properly or record properly. 

This operation will ensure that the information entered1 changed is updated correctly at all 

places and there are no in consistencies. 

I believe that these new actions will enhance the understanding and quality of use case 

diagram. It will help designers and developers to conform to the FRs and NFRs of users. 

Implementation of these actions is left on designers and developers. This process has to be 

carried out for all the use case diagrams that compose the software specification. 



Handle Returns Authorization Service 

<<actor>> 

Figure 4.3: Use case diagram for POST after integration 



4.2.2 Integration of NFRs in POST Class Diagram 

Integration of NFRs into class diagrams for a POST according to the integration strategy in 

figure 3.4. Let us take for example a class sale items from POST. I had to search all NFR 

graphs in the non functional perspective looking for the symbol sale item. One of the NFR 

graphs found is shown in figure 4.6, where I can see that the operationalizations state that the 

software must maintain the available records of the sale items. I have to check if any 

operation in the class sale already performs these actions. If they do not, I should add 

operations to handle these actions. 

Notice that, if the class that I am analyzing is part of a generalization, association, I have to 

check if any super class or subclass of this class does not have operations, or attributes that 

satisfy the needed operationalizations. 

According to Cysneiro's, integration of NFRs into class diagrams calls for some extensions 

to be made on how to use UML notation for these diagrams. Cysneiro's explained his paper 

four heuristics on how to proceed. 

1. Classes created to satisfice an NFR may have the name of the class followed by 

traceability link that points out to the NFR whose operationalizations demanded the class be 

created. This link will follow the syntax: {NFR [LEL Symbol]}. Since NFRs are often more 

difficult to be on designer's minds than FRs, having this traceability link avoids classes to be 

withdrawn from the class diagram during a reviewing process, because one could not find 

any reason why this class must exist. 



Returned Item { Accuracy 8 Consistency (Returnedltems] ) 

-name 
quantity 
price 

+retumPaymenl() { accuracy 8 ansistency[Returned item]}(J 

Figure 4.4: Class Returned Item after integration 

Figure 4.4, shows an example of such a class. This class is created when I am analyzing the 

class Sale in the class diagram for POST. I searched the set of NFR graphs in the non 

functional perspective looking for the class Sale for items. The returned item should be 

maintained so this NFR is added due to maintain the record of return items. 

It is important to make it clear that the creation of a new class to satisfice an NFR will always 

be a design decision. The software engineer could have chosen, in this case, to add the same 

attributes and operations present in the'class shown in figure 4.4, to another existing class 

such as sale class. 

2. Adjacent to each operation that has been included to satisfice an NFR; add a link to the 

nonfunctional perspective. As in heuristic one, this is to enforce traceability between models, 

so the designer can easily check nonfunctional aspects whenever the changes anything in this 

class. The link will follow the same pattern as in heuristic one. 

Let us take for example the class sale mentioned before. Suppose I add an operation named 

authenticateAccess0 in order to perform one of the operationalizations, I should represent it 

as follows: authenticateAccess0 {Security [Payment]}. These operationalizations as showed 

in figure 4.5. 



Sale { Maintain [sale Items] ) 

-isComplete:Boolean 
-time: Date 
+bewmecompleteO 
+makelineltemO 
+makepaymento 
+getTotalO 
+authenticateAccessO {Security [Payment] )O 1 

Figure 4.5: Class Sale after integration 

3.  If an NFR calls for pre or post conditions to apply for an operation, they may add these pre 

or post conditions to the respective operations. 

This heuristic is used for dealing with operational restrictions should be inputted as pre or 

post conditions to an operation and whenever possible should be stated using Object 

Constraint Language (OCL). These pre and post conditions can also be stated in a note linked 

to the class. 

4. Adjacent to each attribute that has been added to satisfice an NFR, may use the same 

expression they used in the operations to establish a link to the nonfunctional perspective. 

Figure 4.9 is class diagram after integration, shows an example with the results of applying 

these heuristics. This figure shows the class diagram of POST after integration process. 

During the integration process, I analyzed each class I had in the class diagram. I picked out 

the class from class diagram before integration and analyze it; I searched the nonfunctional 

perspective looking for any occurrence of this symbol. 



Maintain [Sale 
Items. Update Store] 

/"\ Maintain [Sak 

Maintain [Sale Items. Update 
Items. Update Store. Receive 

Store. Receive Items Info] 

Items Invoice] 

Maintain [Sale 

Maintain [Sale Items. 
Select Identification 
Info] 

Items. update Maintain [Sale 
Store. Receive Items. Update Store. 
Items Invoice. Receive Items Info. 
Update Item] Update item] 

Figure 4.6: NFR graph for sale items 



Accuracy & Consistency 

Figure 4.7: NFR graph for returned item 



Figure 4.8: Class diagram before integration 

*becwneComdeteO 
. .' descriplim 

hnaLelineltem0 
hnakePayment0 ~inei&ms (wemq 

%trot40 i SalesLineltwn 

%uthenticateAccess~ ' ; iequantity : Integer 

* g e t R e c ~ ~ u m l t e m ~  I 
hetmPayment0 , i %tSubTotalO 

MUTed Item 
.-s;M-m; i payment 

Pa)rme* 
+Wnhty !&mount : Quantity 

....... i *autenticateAccersO 

Figure 4.9: Class diagram after integration 

70 



4.2.3 Integration of NFRs in POST Sequence Diagram and Communication 

Diagram 

Integrating NFRs into the sequence and communication diagrams is done by examining 

every class of the class diagram. I am following the strategy for integration of NFRs in 

sequence and communication diagrams as mentioned in figure 3.5. 

Let us take for example the class Payment shown in figure 4.10. Applying the strategy, I 

searched the sequence diagram or communication diagram seeking for instances of the above 

class. Figure 4.11 a shows the one we found. 

Examining the existing diagram, ad the operations included in the class due to NFR 

satisficing, along with the special conditions represented in the note, I concluded that some 

changes had to be made in this diagram. Figure 4.1 1b shows the resulting diagram. I can see 

in this figure that the message tagged with the number 3 to authorize the payment, I added 

the note to satisfice a security NFR and performance NFR to authenticate access and 

authentication< 1 minute. This is necessary so the software could check, the payment 

authentication of the customer, if the customer account work and authenticated, and then 

perform the operation. For the Payment authentication I attached another note, to message 

number 3, which means that the authentication process should be less than one minute. 

Payment 

-amount I 
Figure 4.10: Class Payment after integration 



C 
e(credlt cald rurnber ) I _ -  .I 

Figure 4.1 1 a: Sequence diagram for makepayment (credit payment) before integration 

Figure 4. I1 b: Sequence diagram for makepayment (credit payment) after integation 



- --- """I Sale i 
~- 

0 ... . 0 .- -. 
I I aY :Check Auihorization j 
I I Senice - .... ... 
+ke~ayment(check payment); ~ ~- 3 I I I I 

Icreate(check number, amount); I 
I --rhwk number, mount] I 
I 

..... I - .- 
I 

> 
I 
I 

11 
I 

I I 

I I I 

I I 
I I 

I I 
I I 

I I 
I I 

1 I 
I I 

! 
I I 

! I I 

Figure 4.12a: Sequence diagram for makepayment (check payment) before integration 

:Resister ;--I 
0 0 
1 makePayment(ckck payment) ry--l [ = ~ a t i o y  

Figure 4.12b: S equ 

L... ...... 
/PerAxmnace(PayK&TA&G~+ Secutity[~aymentl 

I Autlwnzatnrn < l min Payment Authmlzation I '1 
lence diagram for makepayment (check payment) after integration 

Let us take another example the class sale shown in figure 4.5. Applying the strategy, I 

searched the communication diagram seeking for instances of the above class. Figure 

4.13~1 shows the one we found. Examining the existing diagram, and the operations 



included in the class due to NFR satisficing, along with the special conditions represented 

in the note, I concluded the some changes had to be made in this diagram. Figure 4.13b 

shows the resulting diagram. I can see in this figure that the messages tagged with the 

number 8 is added to satisfice the maintainability NFR to record the sale item. This is 

necessary so the softwxe could check the sale items should be recorded in the register 

and update all the record according to the transactions. Then the number 9 message added 

due to the returned item that should be recorded in the register. And must check the 

accuracy and consistency of the returned items. 

1: [new s a y  create0 

+ 

Figure 4.13a: Communication diagram for enterhem before integration 



1: [new sde] create0 

. . 
hem] . 
retum.item=mgisle(TeCord.item ) 

Figure 4.13b: Communication diagram for enterItem after integration 



4.2.4 Integration of NFRs in POST IOD 

Integrating NFRs into the IOD is done by examining the messages of sequence and 

communication di~yain.  We follow the strategy for integrating NFRs in IOD as mentioned 

in figure 3.6. 

Let us take for example the use case returned items or handle returns. Figure 4.24a shows the 

1OD for use case returned items before integration. During the integration of NFRs in class 

diagam, a class and some methods are added in POST case study due to different NFRs. 

These changes have also impact in IOD. Like in class diagram, class returned items are 

added during the NFRs integration. The retumed item is added in a result of when the 

returned items record are maintained and updated. During this procedure, we must check the 

accuracy and consistency of the returned item and maintain the record then return payment to 

customer. 

Figure 4.24b shows the IOD for use case retumed item after integration. Before integration 

the IOD for returned items called three reference diagrams. Because when we analyze NFRs, 

the addition of new reference diagram is added in the diagram. When customer retumed the 

item or items, cashier must check the record of item and then the accuracy and consistency of 

items and then return payment. Cashier checks all the record of returned item from the 

saleLineItem. So saleLineItem is called in this use case for the inspection of record of 

returned items. Now, saleLineItem is added in IOD for returned item use case. Cashier 

checks the record of returned item from the message getRecordOfReturnedltem(), the invoice 

generated last time when he bought all the items so get the record of returned item and then 

return the payment of returned item to customer. And also maintain and update the record of 

returned item. 



This process makes the easy way for designers and especially for developers to cover the 

NFRs in a single diagram against a use case. This process is useful because developer see all 

possible NFRS and interactions against a single use case. 



create 

-+: create 

-I : Spec=get ProdustSpec(item id) 

>: : add Lineltem(spec,quantity) ; 
r >: 

!;a: IOD for use case process sale before integration. 
78 

J 
C 

P 

sd endsale 

[q Sd makepayment 

+: 
I becomeComplcte 
--- >! :Repister a 

-3 ; makePayment(credit Payment) I 

>: : Create(credit card #) 

>I 



naheNewSale : 
F: creak 

create 

\1 
ntzrltem 

-: 
I Spec=get ProdustSpec(item id) : 

>: 
I add Lineltem(spec,quantity) 

: maintainltem(item,quantity) j 
< 

:Resister 1 
+: : makepayment (credit Paymcnt) j 

>: create (crcdir card Yn) 

>: authorize (credit card 8)  : 
>I 

. 3 b :  10D for use case process sale after integntion. 
79 



seq returnlternSpeciRcation 

I Not satisfied 

lo:  IOD for use case handle returns or returned item before integration. 

80 



seq retumltemSpecification 

1 

: Spec=return ProductSpec(item id) I---- 

seq recordReturnlteni 

seq retrnpayment 

Satisfied 
Specification 

seq saleLinellems 

p+q 
make lineltem(quantity) j 

8 create(quan1ity) 

,P 

Sprcificalion 

usc case handle returns or returned item after 
8 1 

- Not satistied 



4.2.5 Integration of NFRs in POST CD 

Database 

NextGen 

Figure 4.25a: CD for POST before integration 

"A component represents a modular, deployable and replaceable part of a system that 

encapsulates implementation and exposes a set of interfaces [OMG 011." 

I am following the strategy for integrating NFRs in CD as mentioned in figure 3.8.Figure 

4.25a represents the CD for the system POST. 

Let us take for example the component "NextGen" and another component is "Messaging 

Service". When the component of NextGen is requiring an interface from messaging service, 

then the messaging service must be secure between the NextGen and messaging service 

component. Security [Messaging Senice] for the payment authorization or for the payment 

must be secure and must be secure communication are formed between these two 

components. When the component of NextGen is requiring an interface from database. then 



check all possible NFRs related to these interactions. The one is that the security [database] 

must be maintained. Figure 4.25b represents the CD after integration. 



Services] for the Messaging Service 
payment authorization 
or payment must be 

NextGen 

{Availability 

- 

services] 
must be secure) 

Figure 4.25b: CD for POST after integration process 

84 



Another way to integrate NFRs in CD is by using "UML profile" [L. Zhu Br I. Gorton, 20071. 

If we use this UML profile for NFR then first we have to update class digram of system. We 

have to show all NFRs related to the system in the class diagram. Then we can associate 

those NFRs to component in CD. According to this profile, first we consider the six element 

framework kom the S o h a r e  Engineering Institute (SEI) [Len, Clements & Kazman, 20031. 

These six elements are stimulus, source of stimulus, environment, artifact, response and 

response measures. The six elements are specified for the NFRs. Figure 4.26 shows the UML 

profile for NFR. When we consider this profile we have to consider the related NFRs to the 

system and then specify six elements and then add in the class diagram and then incorporate 

in CD. 

Figure 4.26: UML profile for NFR. 



4.2.6 Integration of NFRs in POST CSD 

Figure 4.27: Composition and association of classes 



Figure 4.28a: CSD before integration 

CSD shows the internal structure of a class and the collaborations that this structure makes 

possible [OMG Superstructure, 20071. Composite class contains different parts and these 

parts have strong relationships with their composite class. The composite classes are 

interacting through ports with other composite class. 

The integration of NFRs into the CSD is done by examining the class diagram. I am 

following the strategy for integrating NFRs in CSD as mentioned in figure 3.7. 



When 1 integrate NFRs in CSD, classes are involved in CSD but when these classes involved 

in composite class and have relationship with other composite class, so we have to consider 

the nonhnctional aspect of these composite class or relationships. 

Let us take for example the composite class "Sale" which consists of number of different 

parts like ProductDescription, saleLineItems, Register and Payment. When we integrate class 

diagram, we found new class named as Returned Item, so this class has also a relationship 

with the composite class sale. According to the figure 4.27, the sale has a returned item class. 

So this class shows as a part of composite class sale, shown in figure 4.28b. 

Without this integration or addition in the diagram is incomplete, so the understanding of 

system is partial. The integration of CSD makes it complete and easily understandable. 



Figure 4.28b: CSD after integration 



.s mentioned above in CD, another way to integrate NFRs in CSD is by using "UML 

~rofile" [L. Zhu & I. Gorton, 20071. If we use this UML profile for NFR then first we have to 

lpdate class diagram of system. We have to show all NFRs related to the system in the class 

diagram. Then we can associate those NFRs to composite class in CSD. According to this 

profile, first we consider the six element framework fiom the SEI [Len, Clements & Kazman, 

20031. These six elements are stimulus, source of stimulus, environment, artifact, response 

and response measures. The six elements are specified for the NFRs. As figure 4.26 show the 

UML profile for NFR. When we consider this profile we have to consider the related NFRs 

to the system and then specify six elements and then add in the class diagram and then 

incorporate in CSD. 



Chapter 5 

Conclusion 



5. Discussion 

This chapter presents a discussion on the contributions of this thesis and limitations of the 

research, followed by an outline ofthe future work. 

5.1 Conclusion and Limitations 

Despite the fact that NFRs are very difficult to attain and at the same time are expensive to 

ieal with, a few research work &.Cysneiros & Leite, 20011, &.Cysneiros & Leite, 20041 

lave focused on them as first class requirements in a development process. Developers have 

nainly focused on the FRs of the system during the design phase. However, the key point 

~ehind the success of a software system lies in specifying the NFRs along with FRs during 

he design phase. A survey p. Grimshaw, Godfrey, 20011 from a small sample of 

qmizations, of the state of the practice in terms of NFRs as shown that: 

I .  nonfunctional are often overlooked, 

2. questioning users is insufficient, 

3. methods do not help the elicitation of NFRs, and 

4. there is a lack of consensus about the meaning and utility of NFRs. 

Lesearchers are trying to find ways to identify the NFRs easily during the design of a 

 aware system. Software systems are becoming large and complex day by day. This 

omplexity includes not only static structure of classes but their relationship with each other 

leir functionality, behavior, state etc., it is difficult to gasp this information as a whole for 

1). system which leads to misunderstanding of that system. Modeling of software systems 

:Ip to minimize this complexity by abstracting out vital information from that system. The 



roblem of effectively designing and analyzing s o h a r e  system to meet its NFRs is critical 

I the system success. 

nly recently, research results are showing ways of dealing with NFRs [L.Cysneiros & Leite. 

1011, [L. Chung & Yu 20001 at the software definition level. Eliciting and specifying NFRs 

difficult [L.Cysneiros & Leite, 20041. Few attempts have been made to elicit NFRs 

..Cysneiros & Leite, 20011. NFRs have also been integrated with functional models 

,.Cysneiros & Leite, 20041 [LCysneiros & Leite, 20011. 

Iy contribution also contributes to fill this regard in software development during design 

ocess. The problem with the identification of NFRs and then how to deal NFRs in software 

,stems during design process. I proposed a strategy that tackles the problems of NFRs, and 

aposes a systematic process to assure that the models will satistice these NFRs during 

sign process. The objective is to provide a consistent way of dealing with NFRs at all 

iges of development and in different views. The main contribution is to show that a 

mbination of widely used functional or conceptual models with an NFR framework is 

Fcctive in improving the overall quality of the requirement process. This strategy is based 

the use of domain glossary to build functional and nonfunctional perspcctives. Using this 

~ssary, firstly I showed how to record NFRs against FRs. Secondly, I also showed how to 

egate NFRs in UML 2 functional models, and presented a systematic way to integrate 

:Rs into the functional model of UML 2. 

:veloping quality software always requires the proper elicitation of NFRs with the FRs. 

e elicitation process of NFRs is based on the use of a domain glossary. Domain glossary is 

ied on a vocabulary system composed of tasks where each task is expressed through its 

jcription and associated NFRs. The description explains the meaning of the task and its 



relation with other task. The associated NFRs specify the non functional aspects of the 

mentioned task. 

Secondly, I showed the NFRs integration strategies in a systematic way. These strategies are 

building for NFRs to integrate in UML 2 functional models. The integration process also 

deals with the representation of multiple NFRs for the same class, and also to address 

dynamic model instead of addressing only static models. 

I improved our strategy by applying the case study POST. The result found in the case study, 

suggest that the use of this strategy can lead to a final functional or conceptual model with 

better quality, as well as to a more productive software development process and also the 

exclusion of misunderstandings of the system. Through this modeling of NFRs, we analyze 

the system in an organized way and we achieve the better visualization and understanding of 

the system. Although my strategy may be used for almost any type of NFR, I understand that 

its results will be more effective when addressing NFRs that effectively demand actions to be 

performed by the system, and therefore, affects the software design. The lack of automation 

between the task use in glossary and the construction of the NFR graphs also poses some 

concerns about the time spent in this job, as well as in the accuracy of the process. 

NFRs such as Maintenance and Portability are not easily operationalized in a specific point 

of the artifact, but rather will be more related on how the design is organized. My strategy 

help to elicit such NFRs, but since they are not operationalizable, they are dealt in abstract 

level in my strategy. 

On the other hand, NFRs such as Security, Performance, Accuracy, Consistency. and other, 

frequently demand the design to be carefUlly studied in order to satisfice these NFRs. Hence, 



it will be more likely that these NFRs will be the type of NFRs that my strategy will help the 

most. 

This strategy is useful for the integration of all NFRs related to software system whle  some 

profiles are also available for the integration of NFRs but these profiles are dealt to specific 

NFRs not for all NFRs related to system. 

I believe that there is no research and its results are an ultimate solution to any research 

problem under investigation. I assume that the case which I selected and presented is good 

representative and successful for all kinds of software. Yet, there is a limitation: NFRs such 

as Portability and Maintenance are not easily operationalized in a specific point of the 

artifact; they are dealt in proposed strategy but in an abstract level. 

Based on the literature survey, proposed strategy and the result of case study, I can claim that 

I found satisfactory answers to the research question outlined in the chapter 1. It is also 

possible to argue that the proposed solution positively affects the software systems and 

provides a better way and quality to represent the software system through the consideration 

of NFRs. 



5.2 Future Research Directions 

My current research focuses on incorporating or integrating NFRs into the design of a 

iystem. The artifacts of UML 2 include IOD, CSD and CD is covered in our research work. 

The future research directions are as follows: 

1. The automation of integration strategy will certainly improve its productivity. 

2. The extensions of this strategy to other UML artifacts which are not yet covered like 

package diagram and object d i a g g .  

3. Apply this strategy on different case studies and controlled experiments for 

improvements, 

4. All NFRs are not discemable at run time [Standish Group, 39943, my strategy deals 

with discernable NFRs. Non discemable NFRs are difficult to operationalize. So 

work need to he carried out to model non discemable NFRs like modifiability. 

reusability etc. 



References 

[ A. Finkelstein & 
Dowell, 19961 

[ A.Moreira & Brito, 
2002 ] 

[ A. Moreira & 
Brito, 2002 ] 

[Betty & Atlee, 2007 
I 

[Brian, 20041 

[Boehm & Barry, 
1996 ] 

[Boehm , 1978 ] 

[ Dardeme & Van , 
19931 

[Donald, 20041 

[D.J. Grimshaw, 
Godfrey & Draper, 
2001 ] 

A. Finkelstein & J. Dowell. (1996). A Comedy of Errors: The 
London Ambulance Service Case Study. Proceedings of 8'h 
International Workshop on Software Specification and Design, 
IEEE Computer Society Press. 

A. Moreira, I. Brito, & J. Arajo. (2002) Crossculting quality 
attributes for requirements engineering. In Tne fourteenth 
International Conference on Software Engineering and 
Knowledge Engineering, Ischia, Italy. 

A. Moreira, I. Brito, J. Arajo. (2002). A Requirements Model for 
Quality Attributes. In the 1" International Conference on Aspect- 
Oriented Software Development, Dresden, Germany. 

Betty H.C. Cheng & Joanne M. Atlee. (2007). Research Directions in 
Requirements Engineering. IEEE Future for Software 
Engineering, Washington, USA. 

Brian Berenbach. (2004). Towards a unified model for 
requirements engineering. In Proceedings of the 4th International 
Workshop on Adoption-Centric Software Engineering (ACSE), 
Edinburgh, Scotland. 

Boehm, Barry and In. (1996). Identfiing Quality-Requirement 
Conflicts. In the Proceedings of the 2"* International Conference 
on requirement Engineering, Washington, USA. 

Boehm, B. "Characteristics of Software Quality" North Holland 
Press, 1978. 

Dardenne A, Van Lamsweerde A, Fickas S. (1993). Goal 
Directed Requirements Acquisition. Science Computer 
Programming. 

Donald Bell. (2004) UML basics: The Component diagram. IBM 
Global Services. 

D.J. Grimshaw, W. Godfrey, and G.W. Draper. (2001). Non- 
Functional Requirements Analysis: Dejiciencies in Structured 
Method. Information & S o h a r e  Technology, Elsevier. 



[ E. Dimitrov & 
Schrnietendorf , 
2002 ] 

[E. Insfran & Pastor 
,2002 ] 

[E. Insfran & Pastor 
, 19991 

[Ebert ,1997 ] 

[Fenton & Pfleeger , 
19971 

[G. Booch & 
Stevens, 20031 

[G. Kotonya & 
Sommerville, 19981 

[G. Salazar, P. 
Botella, 20001 

[H. Wada & J. 
Suzuki, 20061 

[H. Espinoza, H. 
Dubois, 20061 

E. Dimitrov and A. Schrnietendorf. (2002). UML-based 
Performance Engineering Possibilities and Techniques. IEEE 
Software, Ottawa, Canada. 

E. Insfran, 0. Pastor and R. Wieringa. (2002). Reqzriremenfs 
Engineering-Based Conceptual Modeling. Springer-Verlag 
London Limited. 

E. Insfran, Wieringa R, Pastor 0. (1999). Using TRADE lo 
Improve an Object-Oriented Method. Technical report, Computer 
Science Department, University of Twente, Enschede, The 
Netherlands. 

Ebert, C. (1997). Dealing with Nonfinctional in Large SoJtware 
System's. Annals of S o h a r e  Engineering, USA. 

Fenton, N.E. and Pfleeger, S.L. (1997). Soffware Metrics: A 
Rigorous and Practical Approach. In the 2" International 
Thomson Computer Press, Elsevier. 

Grady Booch, Perdite Stevens, John Whittle. (2003). The Unified 
Modeling Language" Modeling Languages and Applications. 6' 
Intemational conference San Francisco, CA, USA. 

G. Kotonya, I. Somrnerville. (1998). Requirements Engineering: 
Processes and Techniques. John Wiley & Sons. 

G. Salazar Zarate, P. Botella. (2000). Use of UML modeling 
nonfunctional aspects. In Proceedings of 1 3 ' ~  International 
Conference on Software and System Engineering and their 
Applications, London, UK. 

Hiroshi Wada, Junichi Suzuki, Katsuya Oba. (2006). A Model- 
Driven Development Framework for Non-jimctiond Aspects in 
Service Oriented Architecture. IEEE Intemational Conference on 
Service Computing, Pisa. 

Huascar Espinoza, Hubert Dubois, Sebastien Gerard, Dorina C 
Perrius & Murray Woodside. (2006). Annotating UML Models 
with Nonfirnctional Propertiesfor Quantitative Analysis. Springer 
Berlin, Heidelberg. 

Evaluation ofNatural Language Processing Systems. (1995). 
http://www.issco.unige.ch1'ewg95. 



Grner & Davis , Kirner T.G., Davis A .M. (1996). Nonfunctional Requirements of 
3961 Real-Time Systems. Advances in Computers, Academic Press, 

New York. 

Celler . 1990 ] Keller, S.E. et al. (1990). Specrfying Sofht:are Quatip 
Requirements with Metrics. In Tutorial System and Software 
Requirements Engineering IEEE Computer Society Press. 

.. Chung & J. L. Chung, J. Mylopoulos, E. Yu, and B. Nixon. (1992). 
[ylopoulos & , Representing and Using Nan-Functional Requiremenfs: A 
)92 ] Process-Oriented Approach. IEEE Transactions S o h a r e  

Engineering. 

..Cysnciros & Leite Luiz Macio Cysneiros, Julio Cesar Sarnpaio do Prado Leite. 
lo04 ] (2004). Nonfuncrional Requirements: From Elicitation to 

Conceptual Models. IEEE Transactions on Software Engineering. 

.. Chung & Nixon, L. Chung and B. Nixon. (I 995). Dealing wifh Nonfinctional 
)95 ] Requirements: Three Experimental Studies of a Process-Oriented 

Approach. Proceedings of 17th International Conference on 
Software Engineering, IEEE. 

..Cysneiros & Yu , L.M. Cysneiros and E. Yu. (2003). Non-FunctionalRequirements 
Elicitation. Pers~ective in Software Requirements, Kluwer 

A 

Academics. 

. Chung & Yu , 
0 0  ] 

.Cysneiros & 
ite, 1999 ] 

L.M. Cysneiros, J.C.S.P. Leite, and J.S.M. Neto. (2001). A 
Framework for Integrating Nonfunctional Requirements into 
Conceptual Models. Requirements Engineering Journal, IEEE. 

L.M. Cysneiros and J.C.S.P. Leite. (2001). Usin UML to Reflect a ~Vonfunctional Requirements. Proceedings of 11 CASCON 
Conference. 

L. Chung, B. Nixon, E. Y y  and J. Mylopoulos. (2000). Non- 
Functional Requirements in Sofhuare Engineering. Kluwer 
Academics. 

L.M. Cysneiros and J.C.S.P. Leite. (1999). Inregrating Non- 
Functional Requiremenls into Datrr Modeling Proceedings of 4" 
International Symposium Requirements Engineering, Limerick. 
Ireland. 



[Larman , 1998 ] 

[L. Xu & Ziv ,20051 

[Lindsbom , 19931 

[L. Zhu & I. Gorton, 
2007 ] 

[Len, Clements & 
Kaunan, 20031 

[M. Usman, Atif, 
Rizwan & Shahzad] 

[OMG 
Superstructure 
2007 ] 

[OMG 011 
P.Botella & X. 
Burgues, 20011 

[R. Hill & Wang , 
2004 ] 

Larman C. (1998). Applying UML and Patterns. An introduction 
to Object Oriented Analysis and Design and Iteralive 
Development. Prentice-Hall. 

Lihua Xu, Hadar Ziv, Debra Richardson, Zhixiong Liu. (2005). 
Towards Modeling Non-Functional Requirements in Software 
Architecture. Annual Aspect Oriented Software Development 
Conference, Limerick, Ireland. 

Lindstrorn, D.R. (1993). Five Ways to Destroy a Development 
Project. IEEE Software. 

Liming Zhu, Ian Gorton. (2007). UML Profiles for Design 
Decisions and Non-Functional Requirements. Second workshop 
on sharing and reusing architectural knowledge. Architecture, 
rationale and design intent (Shark-ADI'07) IEEE. Minneapolis, 
m. 

Len Bass, Paul Clements and Rick Kazman. (2003). Software 
Architecture in Practice. 2" edition; Addison- Wesley. 

Muhammad Usman, Atif Qureshi, Rizwan bin Faiz, Shahzad 
Rafiq. Modeling non-functional requirements in activity 
diagrams, MRSP research group, Faculty of engineering and 
sciences, Muhammad Ali Jimah university, Islamabad, Pakistan. 

OMG Unified Modeling Language: Superstructure. Version 2.1 . I  
(with change bars) formall 2007-02-03. 

OMG (2001). OMG UML specification. www.omg.org. 
Pere Botella, Xavier Buryis, Xavier Franch, Mario Huerta, 
Guadalupe Salazar. (2001). Modeling Non-functional 
Requirements. Proceedings of Journals of Integrating the 
Requirements Application JIRA, Sevilha. 

Raquel Hill, Jun Wang, Klara Nahrstedt. (2004). Quantzfying non- 
finctional requirements: A process orienfed approach. 
Proceedings of the 12th IEEE International Requirements 
Engineering Conference. 

[S. Supakkul & S. Supakkul and L. Chung. (2004). Integratingfrs and n f s :  A 
Chung, 2004 ] Use Case and Goal Driven Approach. In 2nd International 

100 



;. Supakkul8 
hung, 2005 ] 

itandish Group, 
194 ] 

fu & Eric:1997] 

Conference on Software Engineering Research, Management and 
Applications, Los Angeles, CA. 

Sam Supakkul and Lawrence Chung. (2005). A UML Profile for 
Goal-Oriented and Use Care-Driven Representation of NFRs and 
FRs. In Proceedings of the 3rd Lnternational Conference on 
Software Engineering Research, Management and Applications, 
Mt. Pleasant, MI. 

Subrina Anjum Tonq Ladm Tahvildari. (2005). Towards a 
Framework to Incorporate NFRs into UML Models. Proceeding 
of IEEE WCRE Workshop on Reverse Engineering to 
Requirements (RETE), Pittsburgh, Pennsylvania, USA. 

Subrina Anjum Tonu. (2006). Incorporating NFRs with UML 
Models. A thesis, university of waterloo, Ontario, Canada. 

The Standish Group. (1994). Causes of Failed Sofhvare Projecrs. 

Yu, Eric. (1997). Towards Modeling and Reasoning Support for 
Early-Phase Requirements Engineering. Proceedings of the 3rd 
International Symposium on Requirements Engineering, New 
York, USA. 



APPENDIX A 

UML 2.0 Diagrams 

UML 2 diagrams which are used for the integration of NFRs. The IOD, CSD and CD are 

involved in integration from UML 2. 

1. IOD 

The IOD focuses on the overview of the flow of control of the interactions. It is a variant of 

the activity diagram where the nodes are the interactions or interaction occurrences. The IOD 

describes the interactions where messages and lifelines are hidden. You can like up the "real" 

diagram and achieve high degree navigability between diagrams inside the IOD [OMG 

Superstructure, 20071. 

orams. An IOD is a form of activity diagram in which nodes represents interaction dia, 

Interaction diagrams can include sequences, communication, interaction overview and timing 

diagrams. Most of the notation for IOD is the same for activity diagram. For example, initial, 

final, decision, merge, fork and join nodes are all the same. However. IOD introduce two 

new elements: interaction occurrences and interaction elements [OMG Superstructure, 20071. 

a. InteractionUse 

An InteractionUse refers to an interaction. The InteractionUse is shorthand for copying the 

contents of the referred interaction where the InteractionUse is. To be accurate the copying 

must take into account substituting parameters with arguments and connect the formal gates 



wit21 the actual ones. It is common to want to share portions of an interaction between several 

other interactions. An InteractionUse allows multiple interactions to reference an interaction 

that represents a common portion of their specification [OMG Superstructure, 20071. 

Figure 1 : InteractionUse 

b. Interaction Element 

~nteraction elements are similar to interaction occurrences, in that display a representation of 

existing interaction diagrams within a rectangular frame. Tney differ in that they display the 

context of the references diagram inline. 

Figure 2: Interaction element [OMG Superstructure, 20071 

All the same controls from activity diagram (fork, join, merge, etc.) can be used on IOD to 

put the control logic around the lower level diagrams. 

2. CSD 

A UML2 CSD shows the internal structure of a class and the collaborations that this structure 

makes possible. This can include internal parts, ports through which the parts interact with 



each other or through which instances of the class interact with the parts and with the outside 

world, and connectors between parts or ports. A composite structure is a set of interconnected 

elements that collaborate at runtime to achieve some purpose. Each element has some 

defined role in the collaboration [OMG Superstructure, 20071. 

CSD in the UMLZ specification [OMG Superstructure, 20071 

The key composite structure entities identified in the UML2 specification are internal 

structure, parts, ports, collaborations, structured classes, and actions. 

Internal Structure 

The internal structure sub package provides mechanisms for specifying structures of 

interconnected elements that are created within an instance of a containing classifier. A 

structure of this type represents a decomposition of that classifier and is referred to as its 

"internal structure." 

a. Par t  

A part is an element that represents a set of one or more instances which are owned by a 

containing classifier instance. So for example, if a diagram instance owned a set of graphical 

elements, then the graphical elements could be represented as parts; if it were useful to do so, 

to model some kind of relationship between them. Note that a part can be removed from its 

parent before the parent is deleted, so that the part isn't deleted at the same time. 

A part is shown as an unadorned rectangle contained within the body of a class or component 

element. 



I 

Figure 3: Part [OMG Superstructure, 20071 

b. Port 

The Ports sub package provides mechanisms for isolating a classifier from its environment. 

This is achieved by providing a point for conducting interactions between the intemals of the 

classifier and its environment. This interaction point is referred to as a "port." Multiple ports 

can be defined for a classifier, enabling different interactions to be distinguished based on the 

port through which they occur. By decoupling the internals of the classifier from its 

environment, ports allow a classifier to be defined independently of its environment, making 

that classifier reusable in any environment that conforms to the interaction constraints 

imposed by its ports: A port is shown as a named rectangle on the boundary edge of its 

owning classifier. 



Figure 4: Port [OMG Superstructure, 20071 

c. Collaborations 

Objects in a system typically cooperate with each other to produce the behavior of a system. 

The behavior is the hctionality that the system is required to implement. A behavior of 

collaboration will eventually be exhibited by a set of cooperating instances (specified by 

classifiers) that communicate with each other gy sending signals or invoking operations. 

However, to understand the mechanisms used in a design, it may be important to describe 

only those aspects of these classifiers and their interactions that are involved in 

accomplishing a task or a related set of tasks, projected from these classifiers. Collaborations 

allow us to describe only the relevant aspects of the cooperation of a set of instances by 

identifying the specific roles that the instances will play. Interfaces allow the externally 

observable properties of an instance to be specified without determining the classifier that 

will eventually be used to specify this instance. Consequentially, the roles in collaboration 

will often be typed by interfaces and will then prescribe properties that the participating 

instances must exhibit, but will not determine what class will specify the participating 

instances. 

A collaboration element is shown as an ellipse. 



,I_.___--.---.-__ 
P .- -.- .. .-.' -.. 

Collaboration -. 
' . +. 

I 

Figure 5: Collaboration [OMG Superstructure, 20071 

d. Structured Classes 

The stmctured classes sub package supports the representation of classes that may have ports 

as well as internal structure. 

e. Actions 

The actions sub package adds actions that are specific to the features introduced by 

composite structures (e.g., the sending of messages via ports). 

"A component represents a modular part of a system that encapsulates its contents and whose 

manifestation is replaceable within its environment. A component defines its behavior in 

terms of provided and required interfaces. As such, a component serves as a type. whose 



conformance is defined by these provided and required interfaces" [OMG Superstructure, 

20071. 

In component-based development (CBD), CD offer architects a natural format to begin 

modeling a solution. CD allows an architect to verify that a system's required functionality is 

being implemented by components, thus ensuring that the eventual system will be acceptable. 

In addition, CD is useful communication tools for various groups. The diagrams can be 

presented to key project stakeholders and implementation staff. While CD are generally 

geared towards a system's implementation staff, CD can generally put stakeholders at ease 

because the diagram presents an early understanding of the overall system that is being built. 

Developers find the CD useful because it provides them with a high-level, architectural view 

of the system that they will be building, which helps developers begin formalizing a roadrnap 

for the implementation, and make decisions about task assignments andlor needed skill 

enhancements. System administrators find component diagrams useful because they get an 

early view of the logical software components that will be running on their systems. 

The Basics of CD 

Drawing a component in UML2 is now very similar to drawing a class on a class diagram. In 

fact, in UML2 a component is merely a specialized version of the class concept. This means 

that the notation rules that apply to the class classifier also apply to the component classifier. 

In UML2, a component is drawn as a rectangle with optional compartments stacked 

vertically. A high-level, abstracted view of a component in UML2 can be modeled as just a 

rectangle with the component's name and the component stereotype text andlor icon. The 

component stereotype's text is cccomponentn" and the component stereotype icon is a 



rectangle with two smaller rectangles protruding on its left side (the UML1.4 notation 

element for a component). Figure 2 shows three different ways a component can be drawn 

using the UML2 specification. 

Figure 6: The different ways to draw a component's name compartment [OMG 

Superstructure, 20071 

When drawing a component on a diagram, it is  important that you always include the 

component stereotype text (the word "component" inside double angle brackets, as shown in 

Figure 2) andlor icon. Reason is: in UML, a rectangle without any stereotype classifier is 

interpreted as a class element. The component stereotype and/or icon distinguish this 

rectangle as a component element. 



APPENDIX B 

Integration of NFRs in Sequence and Communication Diagrams 

The integration of NFRS in sequence and communication diagrams for hvo major use cases 

are given below: 

I : Reqister :PmductCatalog 
i i 

id, quantity) I 
t 

I I 
I 
I 

1 
I I 
I spec=get ProductSpec(item t 
I I 

I 

I I 

I I I 

I I 

I I 

add Lineltel(spec, quantity) I 
- 1 >I 

I tl 
I 
I I 

I 
I 

I I 
1 

Figure 4.14a: Sequence diagram for enterltem before integration 



,- . . .- - -~ - 
:Re4i51er 1 . .. - . - 

. . ... 
id, quantity) ! --TJ 

Figure 4.14b: Sequence diagram for enterItern affer integration 

Figure 4.15a: Sequence diagram for endsale before integration 



I I 

)naintainltem(itern] 

--._ -- ---.- . -. . -- -. . 
I Items] 
I 
r I 
I I 
I I 
I I L 
I 

. . . - . - . 
I 

maint~nRetumftemReco$(item) --2'~-- I & - ~ 

I (Accuracy & Consistency[Returned I' 

I I 
I I 

-7 
I I 
I I 

retum.item=registenecord.item - -. -. - - ) I 
----d 

I I 
I I 
I I 

Figure 4.15b: Sequence diagram for endsale after integration 





I 
I 

addjitem) I 1 I 

Figure 4.1 7a: Sequence diagram for recordReturnItem before integration 

-- 
:Cashier i 

escription) I L 1 
I 

-----+I 
I I I 
I I I 

I add(itern) I add(itern) I 
i l  I 

i 
I 

! 
I-. 
I 

, 
I 

t I 

I 1 ! 
I I I 
I I ! I 
I I I I 
I I I 
I I I 

! I I I 

I (Accuracy 8 Consistency 
'[Returned item] 
return.itern=registerrecord.item I 

Figure 4.17b: Sequence diagram for recordReturnItern after integration 



1: make 

( 2: create(check number, amount) 

:Check Authorization 

-- - - <- 
3: authorize(check number, amwnt) 

Figure 4.18a: Communication diagram for makepayment (check payment) before 

integration 

1: makePayment(check payment) 

1 2: creatHcheck number, amount) 

S&ce 
- - - - - . - - - - - -- -- .- . . - . . 

3: auihorize(ct@k number, amount) -_  -- . 

Figure 4.1 8b: Communication diagram for makepayment (check payment) after integration 



1: makePayment(credit payment) 

2: create(credii card number) 

i 
. 

:Credit Authorization -- :Payment i 
Senice I_____+ ,- 

3: authorize(credit card number) 

Figure 4.19a: Communication diagram for makepayment (credit payment) before 

integration 



Figure 4.20a: Communication diagram for endsale before integration 

-. 
/ { Maintainlsale Items] 

1 sale.item = register.itern ) I 
, I 

[ { ~ c c u r a c ~  & Consistency[Retumed -?\. 
: Item] 
i - return.itern=registenecord.item ..- } - - - - . -- -- - -- 1 

Figure 4.20b: Communication diagram for endsale aftcr inte~ation 



Figure 4.2 la: Communication diagram for recordReNmitem before integration 

(Accuracy 8 Consistency 
[Returned Item] 
retum.item=registenecord.item 

Figure 4.21b: Communication diagram for recordRetmItem after integration 



Figure 4.22a: Communication diagram for SaleLineItems before integration 

! -- .- 

I ' {  s e c u n t y [ ~ a y m e n t l ~  
i check record for return 
'payment) i . . . .. - . - >  

Figure 4.22b: Communication diagram for saleLineItems after integration. 




