Code Mobility

“Runtime Process Migration” e ¥e. (yuey 7-//¢5

To//6S

Developed by

Muhammad Kamran Naseem

Supervised by

Prof. Dr. Khalid Rashid
Sohail Iqbal Ayubi

Department of Computer Science
International Islamic University, Islamabad
(2004)

LIRFARY
Islamabad




< » o von GBSl




In the name of ALLAH,
The Most Beneficent,
The Most Merciful.



Department of Computer Science,

International Islamic University, Islamabad.
June 30, 2004

Final Approval
It is certified that we have read the thesis; entitled “Code Mobility (Runtime
Process Migration)” submitted by Muhammad Kamran Naseem University
Reg. No. 19-CS/MS-01. It is our judgment that this thesis is of sufficient .
standard to warrant its acceptance by the International Islamic University,

Islamabad, for the Degree of MS (Computer).

Committee

External Examiner W(/// -
Dr. Abdu){Sattar

Consultant e
Allama Igbal Open University,
Islamabad.

Internal Examiner A&/JM

Asim Munir

Lecturer,

Department of Computer Science,
International Islamic University,
Islamabad.

Supervisors \ W
Prof. Dr. Khalid Rashid

Dean,

Faculty of Applied Sciences,

International Islamic University,

Islamabad. \VD/‘
Sohail Igbal Ayubi M

Lecturer, '

Department of Computer Science,

International Islamic University,
Islamabad.




A dissertation submitted to the
Department of Computer Science,
International Islamic University, Islamabad
as a partial fulfillment of the requirements
for the award of the degree of
MS (Computer)




Code Mobility (Runtime Process Migration) Declaration

Declaration

I hereby declare that this software, neither as a whole nor as a part thereof has been
copied out from any source. It is further declared that I have developed this software
entirely on the basis of my personal efforts made under the sincere guidance of our
teachers. No portion of the work presented in this report has been submitted in support of

any application for any other degree or qualification of this or any other university or

institute of learning.

Muhammad Kamran Naseem
19-CS/MS-01




Code Mobility (Runtime Process Mzzgrati'on) Dedication

Dedication

To Muslim Ummah, whosé dynasty’s pendulum,
I wish to see, again marking the peak.
To my parents who pray for me unconditionally, and
To my family and friends for their enthusiastic company.

Muhammad Kamran Naseem,

Islamabad,
29-01-2004

vi



Code Mobility (Runtime Process Mfgration) Acknowledgements

- Acknowledgements

All praise to the Almighty Allah, the most Merciful, the most Gracious, without whose

blessings, I was unable to complete the project.

To my parents for their supreme support and patience, buttressed me during my

struggling period and the status today 1 gained, is due to them.

I would like to thank sincerely my supervisors Dr. Khalid Rashid and Mr. Sohail Igbal
Ayubi for all their help over the past number of months, their sincere efforts helped me to
complete my project successfully. I would also like to thank my class fellows for their
assistance and support ‘1 grasped, when required. In the end, special thanks go to
Muhammad Israr of Streaming Networks, Islamabad, whose facilitation made my efforts

confident enough to complete a major portion of this document.

Muhammad Kamran Naseem
19-CS/MS-01

vii



Code Mobility (Runtime Process Migration) Project in Brief

Project in Brief

Project Title: ©+ CodeMobility
(Runtime Process Migration)

Objective: ” To Develop a technique of process
migration to boost distributed computing.

Undertaken By: ' Muhammad Kamran Naseem
Supervised By: Prof. Dr. Khalid Rashid
ean,

Faculty of Applied Sciences &
Faculty of Management Sciences,
International Islamic University,
Islamabad.

Sohail Igbal Ayubi

Lecturer,

Department of Computer Science,
International Islamic University,

Islamabad.
Technologies Used: C _
: Microsoft® Visual C++ 6.0
System Used: Intel Pentiom® 11
Operating System Used: Microsoft® Windows® 2000 Professional
' Microsoft® Windows® XP Professional
Testing Tested on TCP/IP based star network
Date Started: 15" February, 2003

Date Completed: , 1 January, 2004

viii



Code Mobility (Runtime Process Migration)

Revision History

Revision History

Changes

Date Recommended by
17-02-2004 | Grammatical & Critical Errors Dr. Khalid Rashid
09-03-2004 | Technical Errors in Chapter 2 Dr. Khalid Rashid
20-03-2004 | Finalizing of Chapter 2 & 6 Dr. Khalid Rashid

30-06-2004

Inclusion of Test Result Tables and Charts.

Dr. Abdul Sattar

ix



Code Mobility (Runtime Process Migration) | Abstract

Abstraét

Traditional architectures, technologies and methodologies used to develop large scale
distributed applications reveal diversity of limitations and drawbacks in configurability,
scalability and customizability. Only Java Applets provide code mobility for common
platforms. Even then the code mobility provided through Java applets is the weaker one.
This thesis describes the idea of implementing strong code mobility in terms of platform
independence, microprocessor architecture reliance and resource management. Our
proposed system establishes a shared connection with the resources and its surrounding
environment based on distributed structured XML-based knowledge. The resources
managed by the process are trans‘;)arentiy shared between the nodes, so that the developer
can program in a centralized setting. The goal is to present a solution for strong mobility
for commonly used platforms. The Research work presents a conceptual framework for
understanding code mobility. The framework is centered on a classification that
introduces three dimensions: technologies, design paradigms, and applications. The
contribution of the research work is muiti fold. First, it provides a set of terms and
concepts to understand the code mobility of Type-III (introduced in this thesis). Second, it
introduces criteria and strategy that support the developer in implementing the strong
code mobility. Thirdly, the issues that must be addressed for making code mobility
embedded part of operating systems and developing environment. Fourthly, the
identification of the classes of applications has been enlightened for the developers to
recognize the importance of code rﬁobility, also helping them in designing their
applications about mobile code, and, finally, the discovered mobility Type-III has been

exemplified through a simulation.




Code Mobility (Runtime Process Migration) Abbreviations

Abbreviations

CSPEC Control Specification

DFD Data Flow diagram
ERD Entity Relationship diagram
OS Operating System

TMEFA  Type-III Mobility Enable File Search Application

N/W Network

CS Client-Server

REV Remote Evaluation ‘
COD Code On Demand

CM Code Mobility

JVM Java Virtual Machine
PM Process Migration

LB Load Balancing

MCL Mobile Code Language
MCA ‘Mobile Code Applications
EU Execution Unit

CE Computational Environment

xi



Code Mobility (Runtime Process Migration) Table of Contents

TABLE OF CONTENTS
Ch. No. Contents : Page No.
FINAL APPROVAL ...oeetveeeerveieeeeerecciecesrteseesnneesasiesseseeesesssssesasseesanssnsesssnnes iii
DECLARATION ..coviiiiiiiieiseeitrisisiesesstnssovssesssesssseessssinssesssssssssenssesssetnsssssssnnnn %
DEDICATION ....viieiiiiriieiieciineecseneesnes e treteeeteseressesnbraratabrrrrrrerrataesosonenann vi
ACKNOWLWDGEMENTS ....oiitiiiiiiineeereesestessteessstesssnessssseeesssesssessesesssneess vii
PROJECT IN BRIEF .. ..iuvtiiiiiiiioiiiireeiisiiireeeeseesieseresrssesseneesosorsessassssssnssssseees viii
REVISION HISTORY ..ueeiiitiiiieierieiiiiereestescseveeeesinsaesessssssnsesssnsssssnssssasssssssons ix
ABSTRACT .coovvviieriresis o] ST S S x
ABBREVIATIONS 1.t et eteiiitesestsesteesseeesssbesnsessasnsssossnssesssressemsnnssssssesasseresan xi
LIST OF FIGURES.....uvviiicitetieiiiissiaeeeestieseesssasessonnsernessesennnenssansessnsraseensnsnte xv

1. INTRODUCTION.....cccoivsuisnrnsreersenssnnrasssressnessssessssesssnsssssssessesssases 1

1.1 CODE MOBILITY oooiirtitteiicireecesiiieesesitsaessseeessaseeeossssssesssssasststessssasstesesesssssnnesssensnsessnsnses 1
1.1.] STRONG MOBILITY .enterieeteetetesteseresseteatesentessseesneseseseesetesentesssassssessesessnsessnsesrsoeres 2
1.1.2 WEAK MOBILITY ..ottt et be e s snesanone 2

1.2 PROCESS MIGRATION ...vveiiiiuiiesiesieieviseeresitresscsvtesesssnsesssesssssssessssossasassesssessssessssssnsresssasans 3

1.3 DRAW BACKS WITH CURRENT SYSTEM ...uvieiieiriesiveieeeeeesissreeeeesessssnsesesssssssessssssossensesanns 3

1.4 CONFUSING TERMS ...ouvevrivieeriiiriesestersesseresesisneessssssssssessssensesssssssnsnssssssessrssnsessssssssrsessnns 3

1.5 NEED OF PROCESS MIGRATION................. eereeeritireesiesistreseasarreberiosasieareseteeatereeiannrnran 4

1.6 THE PROJECT e ceitteaeeieieimeeeiteecesrteeesansessssessssesssesansssuesssessrsssnsesssssetssnnessssnestssasesssssseeanns 7

1.7 PROJECT SCOPE ..ccvivveerieierieerecrsneresinecssieesasens e bete e teerateeeertrteeiataesesiteaebesaaarsesenteeeane 8
1.7.1 TYPES OF MOBILE CODE ....ccoorviiiiriieeiieitre s ceiseeeesssssereesesssssssessessssnsesssossasesssnsnne 8

1.8 JOB TRANSFER ...ctrurrurserrernsriseisitastssesssss sttt s as s sba e e ss e bbb sansetecns 9

1.9 PLATFORM INDEPENDENT CODE MOBILITY SOLUTION.........cvvevsesieeresesseseeasnsesnssessses 9
1.9.1 APPLICATIN LEVEL MECHANISM......cvtiieiieeiiiirereeieiiereeeesiesssntereesenssaesesansasersesnesns 9

2.1 STRUCTURED ANALYSIS .....ivviivieiieeeinn e 12
2.1.1 OBJIECT DESCRIPTION.......eveeeeversteeeeeseeeseseesesaeasssssssessssssessesseseessesesnssessossenessees 13
2.1.2 DATA FLOW DIAGRAM ....ocutveeeteitceeetireceritveieessevineseeessetssesaessessssneeesensssesassnnnens 15
2.1.3 PROCESS SPECIFICATIONS ..uvvevuvircteesirrresveessstseissseesssssssossssesemsnsiessssssssesssasssaessnns 21

2.1.3.1 START treevtuiireerraaeriemsaeesssiseessistsssersrssnesesssnssessssssssnssssssserssnssssnssessenesssnesessssonsens 21
2.1.3.2 SEARCH eeuuveiiviurmsniiressesersresesssesssssssissessessasssassessessssonsessnnnsnes erievernesiereararaeeenen 21
2.1.3.3 MIGRATION «ecnmeereiieeeeennserenaeeeanees Feteeeeressaeeateeeanaeaneseaneeaatataaeesauaenareeeaneeanaeannsene 22
2.1.3.3.1 CAPTURE PROCESS STATE .....c.cuvenen. iereretseteresaeteresieseseesessesaasstrttesnnteeeasaeanian 23
2.1.3.4 REACTIVATION AT SERVER ee.eeieiveisesiitesesssessonssosesessessesmnsensassssssssssssesssnssesesssonenssns 23
2.1.3. 5 ERRORHANDLER ...ccoeeviierievieisitssessesssssssssasnssesassssssnsesssessessnsnssssmsnesssesnesssneessnnnes 24
2.1.4 STATE TRANSITION IDIAGRAM ...uvuviirieriiicininierireesesenssessiossssnsmssasssnsnsssssrssessasesonsen 24
2.1.5 CONTROL SPECIFICATIONS .......ccouvennn. et teereritntr e et te e rtrrrtrrrorrtteteaeaea e rnrrarraaans 25
2.1.6 DATA DICTIONARY ..ouovviiiiiiinirtinereeerierueeessessorsessmsessarsessssssssssssssssasasesssessessoennses 25

xii



-~

Code Mobility (Runtime Process Migration) ' Table of Contents

3. SYSTEM DESIGN....cocciiinnirnnsunscsnnsacsnssasssssssnssencssesssnsssessessensss 28

3.1 RELATIONSHIP OF ANALYSIS TODESIGN ......covtiiiiiiiii it 29
3.2 DESIGN TYPES .oiiiovittiretiosiieeeeceateeeissisessesseiesesstsessessessssisssstessessasssssssessesssseesessssssesessssss 30
3.2.1 DATADESION coviieteeeeeiteetes ettt e e eia e st e ssresetaesstessasesobessstaesassesssnsssreesssssrasensee 30
3.2.2 INTERFACE DESIGN .....ccooriiiiirinireieiieisierctcts et s bt s 31
3.2.3 ARCHITECTURAL DESIGN .....oicitieieieiieieteeeeeceieeeceseteeresaeeesseeaeseesenvesseessensnneses 32
3.2.4 PROCEDURAL DESIGN ..ioviioviiiiiieticiitieesnreeeeeeeeeeeseessnsesaessssiasassensessssasaseesssnnness 38

4. SYSTEM DEVELOPMENT AND IMPLEMENTATION. ......45

4.1 CLIENT APPLICATION AND MIGRATION HOST......c.ooiiiiiiiniiiiiniiiiie e 46
4.1.1 SHARED CONNECTION .....0eeceretiteiuastecseabansesnesnessessnuessesssnssstesssssssesssessessssaasonssans 49
4.1.2 NON-SHARED CONNECTION .. .ceivtiiteeiereesieesssresessaessossaressassesesssssessasssessssessnsnses 49
4.1.3 SHARED DISCRETE CONNECTION ....vuveiisieeseeeieneeeesasieessssssassvesssssessssssssessssssesss 49

42 WINS 2 AP o e 49
4.2.1 SOCKET API'S DESCRIPTION ..ocivreririrtrtiereerserersssissssssssssesrsseesssiesssessssisssssrnsaresens 50
4.2.2 FILE FUNCTIONS vttt iririiiesieieeriesiseeresesseessesssseeessssssssesessssssnsssessssssinsssessonssesnsonnne 51

4.3 FUNCTIONALITY ADDED TO SOFTWARE USING VISUAL C++.....ooiiiiiiiiii e, 51
4,31 SPLASH SCREEN ...eoitiititieisirieiesteeesirerreessnsteessiisrssesssssssssssessosssssessesssssnsnsessssossnreres 52
4.3.2 SINGLE INSTANCE OF APPLICATION ......uvciiteiieteereereeiessereiosssrsensssesesssssessssserssnes 53
4.3.3 USER FRIENDLY INTERFACE AND FUNCTIONALITY ...oovvvriiiieiirernrieeeieirneesscnnneneeas 53

4.3.3.1 SEARCH/SUSPEND RESUME INTERFACE ....cciiveeiieereeereeeereensessnsensssessesesererssseessussnennnes 53

4.3.3.2 OPTIONS INTERFACE «..ceevevvvturuessnieressesessesssnssenseessnsnnnsessessonsssesssnnesosressnsnseessssssanes 58

4.3.3.3 SERVER INTERFACE ...c.cttcttttiieeieesiseerasassasssnsansaseossesieseserseseesnsannssnssessesssesaeressneernes 62

4.3.4 SYSTEM TRAY INFORMER ...cccvvvriiiteiiieeirreieessrenesesessnserseesesnsssessssssssusnsesssssnsessenes 65

4.3.5 PROPER IMESSAGES tutvteeiieriirienreeiiitreeeeesteesssnsseessessnserseserssnusssseesssrsssnssseessssssessen 67

3.6 HELP FILE oottt e eatte s iaaereessssensss s e e s esasnvassesssnsanseeesesarnansesan 68

4.3.7 FILE NAME AND PATH SELECTION....cotiiiiririiiisiunereieessrreeresesesseeressesssssesesssssansenn 68

4.3.8 DISABLING INTERFACE CONTROLS DURING EXECUTION ...iovcvirvirvrrcnirenrnrineinnnnnes 69

5. TESTING AND REULTS. ...uttirtirteeeersrecresnseeesesressrsnssessssesssenene 71

5.7 OBJIECTIVES OF TESTING iioovvtiireiiiiiiiteesseisiteesessessssissasssssssesssrsesessssesssssessssssesssssassens 72

5.2 OBIECT ORIENTED TESTING STRETIGIES .....ceivevriirrenrerentineesieniessieneessessesmessesssessenerees 72

5.3 TYPES OF TESTING DONE ..veeiiiiieeiiereiriniteseieeressinetesessstaesesssssssntaeasessssssssesssssommsssensn 73

5.4 EVALUATION .ouvtvvtiieiriirirsireriitceecesistteeeessasssassesessssssasssstsssssssessesssssssstessssesssseesstrnenssnstnn 74

5.5 BENCHMARKING.......ueuuiieiieerieisteneeiiteeeessiriesessiiseeessrstaeessssssstssesssssssssnessessssssssesessrssnsesens 75

5.6 TYPE-III NETWORK TRAFFIC ...oocviiiiviiiiiieteee i ietteeeeecmeeeeesesanaeneeeesensnaaeaesessansennsassassseseens 76

5.7 ENHANCEMENT ...otitiicioreteeisteesenireesssosessessesessisssssessssssesesassssessessssssssssseesssssssssessesssessses 77

6. FUTURE ENHANCEMENTS. .ot ttittiieernnnneneesenessisesessensencrarees 78

6.1 REQUIREMENTS FROM THE OPERATING SYSTEM ..oieuvvrieeieirrrrreeeeieesnsreeseosnresnesensssesens 79

6.2 PROPOSED LANGUAGE SPECIFICATIONS ..ucviiveriieieresieeesererieessesesesssnessssssssssssesssensseesoseees 80

6.3 FOCUSED IMPLEMENTATION SOLUTION FOR STRONG MOBILITY ...oevvrvrrieieeesiveceeerineenen 81

6.3.1 INTEL MEMORY ADDRESSING TECHNIQUE........ccoettirurieirininninanitsesicees s 81
6.3.2 SEGMENT AND OFFSET ADDRESSING SCHEME ....c.cccivumrririerecninrereeesensrereeesanseeeas 82
6.3.3 FTCHING DATA ..cooeereeeiereenrieens eeeeeetsareeeeetseeaeeeeeaaraetesaesestrraeaeeiasrebaeeentrens 83
6.3.4 MIGRATING THE FETCHED DATA ........... e teseesirarertaetrta et aeretteeeaeaetssassaraarararerntes 83
6.3.5 PROTOCOL ENCAPSULATION .p.eciitieseeeeieeieeieessesreessrsssesssnsssesssessosssnsessasssonsnsssses 84

6.3.6 CODE RETREIVAL AND REACTIVATION .. ceeeeeteeeetee e et eeeeeeeesessessaeesaaienmsemnereness 84




Code Mobility (Runtime Process Migration) Table of Contents

6.3.7 RESOURCE MANAGEMENT ....cuiiivicniieinreieseeeertsreeissesssnnsessesserssssinsessstesesssssenseseens 85
6.3.8 IMPLEMENTATION STEPS OF STRONG MOBILITY ..uvvviiiivieirneereereeiesinreeeesssnnareeeons 85
B. 3.9 FINALE ..ttt eete ettt saae e st s e s be s e s atsseesbatesstnenessastnsernsassensnessanneen 86
BIBLIOGRAPHY AND REFERENCES ...covvrrririrrecrccnerencennnsc 87
APPENDIX-A (USER MANUAL) ... cuuutiimmnmnnsmsnsnsnsnsasssssssnssasasssass 90
APPENDIX-B (BASIC CONCEPTS) «.cvttuetuninsenninseasnnssasssssecsnncsans 103
APPENDIX-C (PUBLICATIONS) .cuuueeuenisnmossnmsnssssessasssssnsssosancs 110

xiv



Code Mobility (Runtime Process Migration) List of Figures

List of Figures

Figure No. ' : Caption Page No.
Figure 1.1 Code Mobiiity Technique ' 1
Figure 1.2 Strong Code Mobility , 2
Figure 1.3 Service Migration ‘ 6
Figure 2.1 Analysis Model . ‘ 14
Figure 2.2 Process Image Object 15
Figure 2.3 0 DFD for Type-I11 mobility enabled File Search Application 17
Figure 2.4 Level 1 DFD of Type-III mobility enabled File Search Application 18
Figure 2.5 Level 2 DFD of Process Searching 19
Figure 2.6 Level 2 DFD of Migration Process ' 20
Figure 2.7 Level 3 DFD of Capturing Process State 20
Figure 2.8 Level 0 DFD of Remote Service 21
Figure 2.9 Level 1 DFD of Reactivation Process at Server 21
Figure 2.10  State Transition Diagram 25
Figure 3.1 Relation of Analysis model to design model 31
Figure 3.2 Processinfo Object 32
Figure 3.3 Program structure 33
Figure 3.4 Program Structure of User Interaction process 34
Figure 3.5 Program structure of Search process 35
Figure 3.6 Program structure of Migration process 36
Figure 3.7 Program structure of State Capturing process 37
Figure 3.8 Program structure of Procc;ss Revival 38
Figure 3.9 Procedural Design 39
Figure 3.10  Procedural Design of Searching 40

Xy



Code Mobility (Runtime Process Migration) List of Figures
Figure 3.11 Procedural Design of Migration 41
Figure 3.12  Procedural Design of Capturing Data Space 42
Figure 3.13  Procedural Design of Process Revival 43
Figure 3.14  Overall Procedural Design of Type-III 44
Mobility, including client and Server
Figure 5.1 Comparison of Different Mobility Types 75
Figure 5.2 Graphical Representation of different mobility types 76

xvi



Chapter 1

Introduction



Chapter 1 Introduction

1. INTRODUCTION

As the power of individual workstations increase, distributed systems are becoming
more popular. Users have all the capabilities that are provided by their workstations,
and at most times, this is sufficient. However, there are cases when the power of one
workstation is not sufficient to complete all the tasks at hand. One solution to this
problem is to distribute some of the tasks to an idle workstation. Studies have shown
that over 65% of workstations are idle at any given time. Distributing processes over
all of the workstations in the network balances the load at each machine so the overall

time needed to complete tasks is reduced.

This project deals with the discovery and development of a different paradigm of
distributed computing. Through the framework provided, it has been made possible
for the running processes of one machine to migrate to another machine when
necessary. It is a successful approach towards load balancing, fault tolerénce,
extension of server capabilities, avoiding distribution of state, remote device control

and configuration and others as discussed in section 1.5.

The future enhancements include the implementation of strong code mobility and the

extension of Type-III mobility for a platform independent process migration.

1.1 Code Mobility

Code mobility is the capability of software systems to dynamically reconfigure the
bindings between the software components of an application and their physical
locations (nodes) within a computer network (Figure 1.1)[1]. Code Mobility is of two

types.

[

Z N\ Z N\

Node A ‘ ' Node B

Figure 1.1 Code Mobility Systems

Code Mobility (Runtime Process Migration) 1



Chapter 1 Introduction

1.1.1 Strong Code Mobility

The code along with data and state of the process travels from source machine
to the destination machine during execution. Figure 1.2 elaborates Strong

Code Mobility.

Program
e Step1
® Step2
® Step3
® Step4

State State
Capture Recovery

 [Checkgoint] 5 |

Source Destination

A

Figure 1.2 Strong Code Mobility

1.1.2 Weak code Mobility

Only code of the process is sent from one machine to the other and that code
still has to start execution. Weak mobility is more commonly available in

commercial and research systems and is the reason of

—  Success of Java

— Serialization / Externalization mechanism

Code Mobility (Runtime Process Migration) 2



Chapter 1 ' Introduction

1.2 Process Migration

Process migration is the function which controls how code mobility is
achieved [1]. As a result of successful process migration the suspended

process on client resumes its execution on server.
1.3 Drawbacks with current system

The popularity of code mobility is increasing in industry and academia,
however

e  Applets in a Web browser are still the only pervasive application

. Research has been focusing almost completely on new technologies,

thus leading to
o Lack of quantitative evaluations and experimental evidence

e  Java API has no support for accessing thread state

e  Requires extension of JVM

o  Loss of portability

e  No specifications about how the code is to migrate

o What are the pre and post-conditions of the transfer operation?

o What are the triggers of the operation?

1.4 Confusing Terms

e  Mobile Agents

e  Agents
In the distributed system community the term “Mobile Agent” is used to denote a
software component that is able to move between different execution environments.
This definition has actually different interpretations. “Mobile Agents” are just code
fragments associated with initialization data that can be shipped to a remote host.
They do not have the ability to migrate once they have started their execution. On the
other hand, in the Artificial Intelligence community the term “AGENT” denotes a
software component that is able to achieve a goal by performing actions and reacting
to events in a dynamic environment [1]. The behavior of this component is
determined by the knowledge of the relationships among events, actions, and goals.

Moreover, knowledge can be exchanged with other agents, or increased by some

Code Mobility (Runtime Process Migration) 3



Chapter 1 Introduction

inferential activity. Although mobility is not the most characterizing aspect of these
entities, there is a tendency to blend this notion of intelligent agent with the one
originating from distributed systems and thus assume implicitly that a mobile agent is
also intelligent (and vice versa). This is actually generating confusion since there is a
mix of concepts and notions that belong to two different layers, i.e., the layer
providing code mobility and the one exploiting it. Finally, there is no definition or
agreement about the distinguishing characteristics of languages supporting code

mobility.
1.5 Need of Process Migration

Code mobility represents a new way of building distributed software systems.
Motivation for adopting the code mobility paradigm has been surveyed in great detail

in the literature. The benefits of mobile code are appealing. We list several examples:
1.5.1 Real-time interaction with remote resources

Most computing resources, like databases, file systems, or even physical
displays, are not transportable. If such resources are located at a remote site,
then computation that requires real-time interaction with the resources has to
happen where the resources reside. Code mobility allows one to prescribe the
location of computation to make real-time interaction possible. For example,
active contents like Java applets prescribe interactive presentation that is to be

rendered on the browser side.
1.5.2 Fault Tolerance

The fault tolerance is much improved in code mobility than the conventional
client-server systéms. Migrating software components from their working
nodes which have experienced a partial failure can improve the fault tolerance
of the application system. A server program can move service code to a
consumer device so that the device can be served even after it is disconnected

from the network.

Code Mobility (Runtime Process Migration) _ 4



Chapter 1 : ‘ Introduction

1.5.3 Reduction of Communication Traffic

Mobile computers (e.g. hand-held computers or intelligent mobile phones)
usually interact with servers through unreliable, low-bandwidth, high-latency,
high-cost networks. Code mobility becomes an attractive alternative because
network traffic can be reduced by migrating the client program to the server

side, thus avoiding the potential cross-network communication bottlenecks.
1.5.4 Extension of server capabilities

In traditional client-server applications, the server offers a predefined set of
services. It is very difficult to extend the capability of the server without
redefining its interface. Code mobility offers a flexible infrastructure for
extensible server. Whenever néw process is migrated to this server from a
remote server, the capabilities of this server are extended by one. Because of
this inherent connection to extensibility, many of the issues in code mobility

security also appear in the study of extensible operating systems.
1.5.5 Reduction of server loads

Traditional client-server model sometimes suffers from the fact that massive
computational burden is imposed on a single server. Code mobility can
transfer processing activities (those are servicing processes) from the server to
the side-server/backup server. Clients wishing to access facilities of a server
after that server is fully loaded may request to side-server/backup server. This
technique can address the overloadmg problem of servers. As shown in Figure
1.3, server programs can clone/move their services to a better execution
environment to balance the load or to avoid bottlenecks of long waiting

delays.
1.5.6 Avoiding distribution of state

In traditional client-server applications, the state of computation is distributed
among the servers and the clients. As a consequence, it is difficult to maintain

consistency of the distributed states, and to express the correctness of the

Code Mobility (Runtime Process Migration) . 5



Chapter [ Introduction

computation. Code mobility localizes computation states in a single process.
They offer a better abstraction that makes the crafting of distributed software a

more manageable task.

Server

Backup Server

Service

Migration Migration

, Old Path
- New Path

Client Client

Figure 1.3 Service Migration
1.5.7 Protocol Encapsulation

No particular protocol is needed to achieve the code migration among

distributed systems.

1.5.8 Immature Field

Field is still immature anq lacks‘suitable methodologies and framework.
1.5.9 Service Customization

The interfaces or services are not statically defined. After a server receives
process(es) from other server, its services are increased dynamically. This

leads to dynamic extension in server capabilities.

Code Mobility (Runtime Process Migration) 6



Chapter 1 ' Introduction

1.5.10 More Flexibility and Up gradation

Supporting more flexible software deployment and maintenance. A server
program can move service code to a consumer device so that the device can be
served even after it is disconnected from the network. Automatic software up
gradation without human interaction on the client side can be achieved. Code
mobility can be used for on-line extension of application functionality or
software upgrades. A software component can be delegated a task and sent to
a remote device to perform its operation. This can be used for network

management applications.

Any application that can be crafted under the mobile code paradigm can also be
structured as a client-server application. However, mobile code systems offer many
software engineering advantages that its client-server counterpart lacks. The above list
illustrates several representative ones. Recently, Gianpaolo propose an abstract model
for evaluating the potential benefit of adopting various mobile code paradigms. The
result suggests that the ’advantages corrupt only for certain kinds of application

domains. It is important to distinguish the implementation process and the paradigm.

1.6 The Project

Code Mobility under the defidition of distributed computing is swiftly getting
popularity. Though the idea of code mobility was delivered in 1998 by Fuggetta,
Picco & Vigna, the field is still immature. No proper and suitable framework,
methodology and design paradigms are available for code mobility. More over, only
JAVA Applets have been introduced, which are also weak mobility accommodators.
The project focuses on introducing other undefined type of code mobility, its
suggested solutions and implementation along with new distributed technique, called
“Job Transfer”. The work done in this project provides framework, methodology and
design paradigms, which open up new horizons of research in distributed computing.
We implement “Type-Ill Mobility”, which -is the most straightforward,
uncomplicated, economical and faster against, weak and strong mobility in terms of
process selection, code fetching, transferring and re-executing. The “Type-llI
Mobility” framework presented in this thesis is platform independent and can be

implemented for any operating system and network protocol.

Code Mobility (Runtime Process Migration) 7



Chapter 1 , Introduction

1.7  Project Scope

Previously the work was done on weak mobility and introduction of new languages
that could support code mobility. Most of the work has been done to prove that Java is
the best mobility provider language, in terms of weak mobility. Many researchers
consider that strong mobility is not impossible to implement but is extremely difficult
to implement, because it requires greater time consumption, sound system level

expertise and also involves insecurity.

“Understanding Code Mobility” by Fuggetta, Picco & Vigna,[1] the authors have
introduced two basic types of code mobility, -that is strong mobility and the weak
mobility, but no solution of strong mobility has been provided. More than hinety
percent work done under the definition of code mobility basically addresses Mobile
Agents and weak code mobility(Applets), which should be defined under the heading
of mobile code, not code mobility. The mechanisms defined against mobile code are

defined as

1.7.1 Types of Mobile Code

e Mobile Agents (MA)

e Remote Evaluation (REV)

e Code on Demand (COD)

e Job Transfer (JT)

e Code Mobility (CM)
The project provides efﬁcient process state capturing, migration and rehabilitation at
the remote machine, by implementing Type-IIl mobility. Previously in 1998 Fuggetta,
Picco & Vigna[1] have done some work on code mobility. No gigantic or immense
accomplishment has been achieved during the middle era. This Project includes the

following:
o Implementation solution of Strong mobility for Intel Architecture
o New mobile code mechanism i-e “Job Transfer”
e Introduction to Type-III mobility
¢ Implementation of Type-III mobility and Job Transfer

e Framework for Type-III code mobility implementation

Code Mobility (Runtime Process Migration) 8



Chapter 1 Introduction

1.8 Job Transfer

Our research has made us able to introduce this new mobility paradigm in

Client/Server computing. Its details are as under.

Locations 4 and B both have the know-how and resources or a shared connection to
the resource, but at any time 4 faces some vital problems in computations and gets
unable to continue with its jobs. Therefore for a given process, it copies its Data and
State, and transfers it to B. B takes the data and state, associates it with local instance

of corresponding code and executes it.

1.9 Platform Independent Code Mobility Solution

Away from the two solutipns provided for homogeneous and heterogeneous (those are
kernel level and user level, refer to Appendix-B), we bring in a general solution that is
applicable to both homogeneous "and heterogeneous. This Application Level
Mechanism is presented underneath. An implementation (Chapter 3) of this

mechanism unlocks the potential of Application Level Mechanism.
1.9.1 Application level Mechanism

In the user level mechanism described in Appendix-B, wrapper routines and runtime
libraries are written to achieve that mechanism. The solution we suggest under the
definition of Application Level Mechanism, demonstrates that there is no need of
writing runtime libraries and routines. As kernel level solution implementation is not
an ordinary job (refer to. Appendix-B), for majority of users and developers this is
stumbling block. Further more critical information related to a process, is just kept
with kernel or with the application itself. The only solution the user/developer is left
with, are runtime libraries and routines. If runtime libraries and routines are put into
action, though this is also a tough job for many programmers, every input/output,
function call, parameters and return values are to be registered with mobility agent by
the applicatibn or should be tracked ’by the runtime libraries/routines. This all
becomes a complex process which itself demands more CPU cycles or causes extra
loads on system. We show that as process information is just kept with kernel and the
process itself, in addition kernel level process migration also has not been

implemented so far, why process does not migrate itself, without any request to

Code Mobility (Runtime Process Migration) 9



Chapter 1 Introduction

kernel, and without any help of runtime libraries and wrapper routines? As we can
track the process which should be migrated, we make that process enabled of
migrating itself or its data space. In case of data space transfer remote node should
have un-instantiated code of that process. Further more remote server should have any

of these:

e The standalone resource that is being used by the migrated process at previous
node

¢ The resource is transferred/ copied along with the data space/state

e A shared connection is established to the resource (can be called network

reference)

This can not be considered as a limitation, because the server, to whom process is
migrated, is obviously capable of executing this particular process. By capable we
mean in terms of hardware and software. For-example if a process which has been
migrated, is performing a job of providing clients with their account usage details,
will also provide the clients with account usage details on new side-server/ backup
server. If the process can’t execute at side-server, this means that either that server has
no connection with the database or hardware in-capabilities of server obstruct in its
job. This all has been concluded with the supposition that backup server’s job is
always to support the server in case of fault tolerance, load balancing and service
customization, and a backup server is just like server but in idle state or with
maximum CPU cycles available to use at anytime. In our project process itself copies
its data space and migrafes itself. The only condition we applied here is that, we just
migrate process by sending data space to the remote 'node and the resource is already
available at new node or a shared connection to that resource is available. In the next

chapters we analyze, design and implement this technique, respectively.

1.10 Objectives

The objectives of the project ére to introduce framework, design paradigms and
methodologies which should be helpful in implémentation and enhancement of
different types of code mobility. This will ultimately provide the feasible solution
available at commercial level and to everyday user to unbolt the screws of Code
Mobility.

Code Mobility (Runtime Process Migration) 10



Chapter 2
System Analysis



Chapter 2 : __ System Analysis

2. © SYSTEM ANALYSIS

At technical level, Software Engineering begins with a series of modeling tasks that
lead to a complete specification of requirements and a comprehensive design
representation for the software to be built. The Analysis model, actually a set of
models, is the first technical representation of a system. Over the y'ears many methods
have been proposed for analysis modeling. However two of them now dominate the
analysis modeling landscape. - The first, structured analysis is a classical modeling
method and the other approach is object oriented method. We have used the first
modeling technique for the analysis of the software Type-lIII Mobility Enabled

Process Migration.
2.1 Structured Analysis

Structured analysis is a model building activity. Using a notation that satisfies the
operational analysis principles, we create models that illustrate information (data and
control) contents and flow, we partition the system functionally and behaviorally, and

we show the core of what must be built.

The Structured Analysis Model must achieve three primary objectives.

. Describe what the customer requires.

. Establish a basis for the creation of a software design.

. Define a set of requirements that can be validated once the software is
built.

To accomplish these objectives, the analysis model derived during the structured
analysis takes the form illustrated in Figure 2.1. At the heart of the model lies the data
dictionary — a repository that contains description of all data items consumed or
produced by the software. Threé différent diagrams surround the core. The entity-
relationship diagram (ERD) depicts relationships between data objects. The ERD is
the notation that is used to conduct the data modeling activity. The attributes of each
data object noted in the ERD can be described using a data object description. The

Data flow Diagram (DFD) provides an indication, how data are transformed as they

Code Mobility (Runtime Process Migration) : 12



Chapter 2 ' : System Analysis

move through the system and depict the functions and sub functions that transform the

data flow.

The DFD provides additional information that is used during the analysis of the
information domain and serves as a basis for the modeling of function. A description
of each function presented in the DFD is contained in a process specification

(PSPEC).

The State-transition diagram (STD) indicates how the system behaves at the
participation of external events. To accomplish this, the STD represents the various
modes of behavioral modeling. Additional information about control aspects of the

software is contained in the control specification (CSPEC).

s ,
o A :
# g
& Entity’ \ 8
& [ Relationship - DataFlow {9
| = [ Disgram Data Diagram | %
L=F Dictionary =
Y =4

State-Transition
Diagram

Control Specification

Figure 2.1 Analysis Model

2.1.1 Object Description

In Object Description Section we describe the Objects. Object is a representation of
almost any composite information that must be understood by the software. By

composite, we mean something has a number of different attributes or properties. In

Code Mobility (Runtime Process Migration) _ 13



Chapter 2 ’ System Analysis

Type-III Mobility Enabled File Search Application, the most important object is
Processinfo Object. It is used by the Application to perform the search and migration.
The object is partially opaque. This means that we are only supposed to directly
access or change certain fields in the structure. The opaque fields are similar to the
private and protected members of a C++ class, and the non-opaque or accessible fields
are analogous to public members. The important fields of the object are described

below where non-opaque fields are shown as bold,

ProcessInfo

Server IP
Server Name
Mobility Type
Resource Type
Process Type
Resource Name
Search String
Server Port
Result Status
File Pointer
Buffer

RN

Figure 2.2 Process Image Object

Server IP is the Internet protocol address of server, running the host
service for process data space receptibn.

Server Name is the Machine Name of server, running the host service
for process data s;;ace reéeption.

Mobility Type stores information to explain which type of mobility
has to be performed for the current process, i-e Type-III, Strong or
weak mobility. »

Resource Typé tells the type of the resource, that -is shared or
standalone.

Process Type notifies status of current process after mobility. That is

clone or migrates. Clone means process continues its execution after

Code Mobility (Runtime Process Migration) 14



Chapter 2 System Analysis

transferring its data space whereas after migration process’ current
instance is abandoned from memory.

. Resource Name stores name of the file through which search has to be
performed.
Search String is the string that has to be searched through file.

. Server Port is the server port at which data space reception server is
listening for current process.
Results Status is a Boolean variable which tells whether complete
results, including results of this machine, are to be displayed at the
destination machine. In other words, do current results also have to be
dispatched along data space?

. File Pointer is the pointer variable which keeps the current status of
the file/resource after the most recent instruction.

. Buffer is the information stream which consists of data space of the
process after the state capturing. This buffer is dispatched to the server
for re-invocation of this process at server side.

As there is only one object in our software so we can not make the ERD of the

software.

2.1.2 Data Flow Diagrams (DFD)

As information moves through the software, it is modified by a series of
transformations. A DFD is a graphical technique that depicts information flow and the
transformations which are applied as data move from input to output. The DFD is also

known as Data flow graph or a bubble chart.

Our software is expanded up to the third level DFD and all the functions shown in the
DFDs are described in PSPEC. |

Figure 2.3 shows the Context level DFD for the software Type-III mobility enabled
File Search Program. This level is the highest level of abstraction where no details are
shown only the input to the software and output from software is shown. There is only

one bubble which is the software and reveals no function of the software.

Code Mobility (Runtime Process Migration) 15



Chapter 2 System Analysis

Connect and Dispateh |pamote/Backup)
Dafa Space

. Server
Type-ill
U . Mobil'm,r‘ Disploy
Con'h'oi Pain IJEIEP.'J‘.'.“.E_‘L, enabled e Screen ’
O ™ andbata File Search Results
Application
N Continuous
Interaction Resource

Figure 2.3 Level 0 DFD for Type-IIl mobility enabled File Search Application

Now the DFD is expanded and level one shows the detail of the process or functions
of the software. This level is called level 1 DFD for the software and reveals the

function but not the sub function.

Code Mobility (Runtime Process Migration} ' 16



Chapter 2

System Analysis

Control Panel

r
P> Cop
0 un""”and
Liser input Start
5
e
2 Screen
S o | ]
é Q
9 AR
% Resource/File
Process
F
B 2
&
o |
&,
' Finished
Process/
a \igrate___ Migrate
EXIT : \
Remote/Backup Server

Figure 2.4 Level 1 DFD of Type-III mobility enabled File Search Application

Figure 2.4 shows the expansion of bubbles in level 0 DFD, here the level of

abstraction decreases but only up to the functions still the sub functions are not

reveled. It also shows the data storage and the arrows, to indicate which process stores

the data and which process uses the stored data. The Control Panel is basically the

user provided instructions/commands or data, and the interface through which user

interact with the software and gives command for performing different actions at

runtime, Process State Capture and Migration. While the Screen is an output device,

Code Mobility (Runtime Process Migration)

17



Chapter 2

System Analysis

in our case Screen is the monitor screen and shows the results, errors and different

messages describing process status at present.

7 Validate
user

Maich
user input
“sting with

Emror

Figure 2.5 Level 2 DFD of Process Searching

Level 2 DFD for Searching process is shown in Figure 2.5. This level shows the sub

functions of the file searching process and describes almost all the functionality or

calculation involved in searching through file.

Code Mobility (Runtime Process Migration)

18



System Analysis

Chapter 2

Validate
server
cptions

Check
availability
of
server

" Connect
to the
- Semver

Send stream Send
Data Space }
to server »

Figure 2.6 Level 2 DFD of Migrétion Process

Error

Error
Handling s

Level 2 DFD of Migration process is shown in Figure 2.6. This level shows the sub
functions of the migrating process and describes almost all the functionality or

calculation involved in searching through. Level three of state capturing has been

elaborated in Figure2.7 to overcome any possible confusion.

System overloaded
= Event

Suspend
search

Organize
dispatch
stream

Figure 2.7 Level 3 DFD of Capturing Process State

19

Code Mobility (Runtime Process Migration)



Chapter 2 System Analysis

This level shows the sub functions involved in capturing the state and describes
almost whole of the functionality required. The information about the data space is
stored into a stream after a successful collection of data. The important thing to note
from the whole process of State Cllapmring is that the process of searching through file

is suspended during state capturing.

Connect and Dispatch Remole/Backup

/_L DataSpace |  qaver
Receive information stream Reactivaﬁ Displa
_ w] TMEF ispiay =IJ Screen }

"wicaw Results -
Continugus

Interaction | esource

Figure 2.8 Level 0 DFD of Remote Service

The remote server’s Level zero data flow diagram is represented in Figure 2.8.
Though it is an abstract model, note that three outside interactions of process are same

as of Level Zero of Type-III Mobility Enabled File Search Application in Figure 2.3.

Information stream

PEEIFREEINS

| LONGGERUE MG (A0

| Display Resuls,,| Sereen |

| Connect and Dispaich _,, | Remote/Backup;
Dala Space Senjer

Figure 2.9 Level 1 DFD of Reactivation Process at Server

Level 0 DED of Remote service has been expanded to Level 1. This is shown in

Figure 2.9. This is the maximum expansion of functionality, the remote service

Code Mobility (Runtime Process Migration) 20



Chapter 2 System Analysis

provides. This figure illustrates that migrated process can further migrate to another

node, provided, that node is running the appropriate server.

2.1.3 Process Specification (PSPEC)

The PSPEC of our software in the forrﬁ of PDL (Process definition language)

are explained in section 2.1.3.1 t0 2.1.3.5

2.1.3.1 Start

Procedure Start;
Read the input data;
If data is valid
then send user command to Search;
Else do not send user command to Search;
End if;
Endproc

2.1.3.2 Search

Procedure Search;
Get Basic Information about the search string and resource name;
If Basic Information is not valid then print error message;
Else Read the search string;
Initialize resource;
Display Process Status
If resource initialization failed then print error message;
Else Match string contenfs with file contents char by char;
If contents matched;
Then add increment char count;

End if;

If char count equals search string count;
Then Increment results found;
Display the Process Status;

End if;
End Displaying Process Status;

Code Mobility (Runtime Process Migration) ‘ 21



Chapter 2 System Analysis

Display user required results based on display options;
Display the completion message;
End if;
End if;
Endproc

2.1.3.3 Migration

Procedure Migration;

Get Information about the Servef;

Validate the Server Info;

If validation fails;

Then print error message;

Else begin
Suspend Search Process;
Read the Data Space;
Copy Data Space into information stream;
Check availability of server;
If Server not available; -
Then print error message;

Reium; .

Else Connect to the server;’

Send information stream;
End if;

If could not send;
Then Display Error message;
Else Continue;
Endif;
- End begin;
End if;
Endproc

Code Mobility (Runtime Process Migration) , 22



Chapter 2 ] : System Analysis

2.1.3.3.1 Capturing Process State

Procedure Capture State;

Suspend the search Thread;

Initialize capture thread;

Read Data Space of Search Process;

If failed to copy

Then print error message;

Else Store read data space in information stream;
Endif;

Pass information stream to server handling module;
Endproc ' '

2.1.3.4 Reactivation at Server
Procedure Reactivation; '

Get Information stream from client;

Validate the received Information stream;

If validation failed;

Then print error message;

End if;

Parse the information stream;

Invoke suspended T.M.E.F.S Application;

Call Error Handler; -

Disarrange information stream;

Reconstruct data space according to information stream;

Call Error Handle;;

Establish connection with resource;

Call Error Handler;

- Display received results on screen;

Resume suspended T.M.E.F.S Application;

Endproc

Code Mobility (Runtime Process Migration) 23



Chapter 2 System Analysis

2.1.3.5 Error Handler

Procedure Error Handling;
If error occurred during the process;
Then Set the required Icon;
Display Message;
Get further command;
End if; B
| Endproc

2.1.4 State Transition Diagram (STD)

The State Transition Diagram indicates how the system behaves as consequence of
external events. By studying STD, a software engineer can determine the behavior of

the system and can ascertain whether there are “holes” in the specified behavior.

{

| Validate options Reconstract

- intprati v

3 mvﬁksmrmmag; =
. Error Handler

| % Transfer fo server | |
i Fy

Gl
'F:ansfar Dty

[Connect to server

Miqrati@n

Figure 2.10  State Transition Diagram

Figure 2.10 shows the State Transition Dlagram for the software Type-III Mobility
Enabled File Search Apphcatlon

Code Mobility (Runtime Process Migration) 24



—

T~165

Chapter 2

System Analysis

2.1.5 Control Specification (CSPEC)

The Control Specification (CSPEC) represents the behavior of the system in two

different ways. One is called specification behavior and the second one is the

combinational specification. The CSPEC does not provide any information about the

inner working of the processes that are activated as a result of this behavior.

2.1.6 Data Dictionary

The Data Dictionary is an organized listing of all data elements that are

relevant to the system, with precise and exact definitions. The Data Dictionary of the

software is:

Name:

Aliases:

Where used/how used:

Description:

Name:

Aliases:

Where used/how used:

Description:

Name:

Aliases:

Where used/how used:

Description:

Name:

Aliases:

ServerIP

IPADDRESS

Connect2Server (input), Migrate (input)

ServerIP = “any valid 1P address with four octets to

locate server”.

ServerName
SERVER_NAME
Connect2Server (input), Migrate (input)

ServerName = “any null terminated string representing

the name of the server machine on network”.

MobilityType'

MOBILITY_TYPE

CaptureState (input), Migrate (input)

MobilityType = “numeric value amongst 0,1 & 2. 0
stands for weak, 1 stands for strong and 2 stands for

Type-111 mobility”.

ResourceType
RESOURCE_TYPE

Code Mobility (Runtime Process Migration) 25



Description:

Name:

Aliases:

Where used/how used:

Description:

Nawme:

Aliases:

Where used’/how used:

Description:

Name:

Aliases:

Where used/how used:

Description:

Name:

Aliases:

Where used/how used:

Description:

Name:

Chapter 2 System Analysis
Where used/how used:  Migrate (input)
Description: ResourceType = “Boolean value where 0 stands for
shared resource and 1 stands for standalone”.
Name: ProcessType
Aliases: PROCESS_TYPE
Where used/how used:  Migration(input)

ProcessType = “Numeric value to recognize whether

process has to be migrated or cloned”.

ResourceName

FILENAME _

Search (input), CaptureState (input)

ResourceName = “any valid null terminated path
containing (optional) alphanumeric string describing

resource name”.

SearchString
SEARCH_STRING

‘Search (input), CaptureState (input)

SearchString = “any valid alphanumeric null terminated

string”.

ServerPort
none
Connect2Server (input)

ServerPort = “““humeric value”.

ResultStatus
CHECK_RESULTS
CaptureState (input)

ResultStatus = “Boolean variable”.

FiIePointer

Code Mobility (Runtime Process Migration) ' 26



Chapter 2

System Analysis

Aliases:

Where used/how used:

Description:

Name:

Aliases:

Where used/how used:

Description:

none

‘Search (input), CaptureState (input)

FilePointer = “pointer variable to keep address of

file/resource”.

Buffer

none

ReceiveDataSpace(input), ReconstructDataSpace(input)
CaptureState(Output), Dispatch2Server(input),

Buffer = “stream variable to store data space”.

Code Mobility (Runtime Process Migration) o 27



- Chapter 3
System Design



Chapter 3 . System Design

3. / SYSTEM DESIGN

Design is an iterative process'transforming requirements into a “blueprint” for
constructing the software. It is the first step in the development phase for any
engineered product or system. It can also be defined as “the process of applying
various techniques and principles for the purpose of defining a device, a process or a

system in sufficient detail to permit its physical realization.”

The designer’s goal is to produce a model or representation of an entity that will later
be built. The process by which the model is developed combines perception and
judgment based on experience in building similar entities, a set of principles and/or
heuristics that guide the way in which the model erlves and ultimately leads to a

final design representation.
3.1 Relationship of Analysis to Design

For design we need analysis’ results, which serve as base information for design. In
fact we explore the analysis in detail and produce design such that it is directly

mapped into coding.

Figure 3.1 shows the relation of Analysis model to Design model and the arrows
shows which of the information from the analysis model is necessary for which
design. Data Design is created using the Data Dictionary and Entity-Relationship
Diagram information of Analysis model. Architectural Design is created using the
information from Data Flow Diagram of the Analy§is model. Interface Design is also
created using the information frpm data flow diagram. Procedural Design uses the

information from CSPEC, PSPEC and state-transition diagram of the Analysis model.

Code Mobility (Runtime Process Migration) . 29



Chapter 3 . System Design

Figure 3.1 Relation of Analysis model to design model

3.2 Design Types

There are four types of Designs.

Data Design

Interface Design

Architectural Design

Procedural Design

3.2.1 Data Design

The Data Design transform the information domain model created during analysis
into the data structures that will be required to implement the software. The data
objects and relationships defined in the entity-relationship diagram and the detailed

data content depicted in the data dictionary provide the basis for the data design.

Data Design is the first of four design activities that are conducted during software
engineering. The primary activity during data design is to select logical representation
of data objects identified during the requirement definition and specification phase.

The selection process may involve algorithmic analysis of alternative structures in

Code Mobility (Runtime Process Migration) 30



Chapter 3 ' System Design

order to determine the most efficient design or may simply involve the use of a set

module that provide the desired operations upon some representation of an object.

Processinfo

Server_IP
Server_Name
Mobility_Type
Resource_Type
Process_Type
Resource_Name
Search_S8iring
Server_Port
Result_Status

File_Pointer
Msuffer ’ /

Figure 3.2 ProcessInfo Object

As our software contains only one object because it is not a database project and
contains information only about the process and server so the data design is very

simple and holds information about only one object named ProcessInfo.

Figure 3.2 shows the Object ProcessInfo along with its attributes. This information is
not stored in a database or in a file. This is the user input data at the start of process

execution.

3.2.2 Interface Design

The interface design describes how the software communicates with itself, to systems
that interoperate with it and with humans who use it. An interface implies a flow of
information (e.g. data and/or control). Therefore, the data and control flow diagrams
provide the information required for interface design. The interface Design can be

seen in Appendix A. The entire diagrams related to the interface are shown there.

Code Mobility (Runtime Process Migration) 31



Chapter 3 v System Design

3.2.3 Architectural Design

The Architectural Design defines the relationship among major structural elements of
the program. This design representation—the modular framework of a computer
program — can be derived from the analysis model(s) and the interaction of

subsystem defined within the analysis model.

The Program Structure of the software is show in Figure 3.3, 3.4, 3.5, 3.6, 3.7 of DFD
level 1,2 and 3.

Type-ill Mobility
Enabled Application
\d Y Y ‘ Y Y l
User Interaction Search Transfer Reactivate Output
Contralier > Capure Stgte Data Space Process Controlier

Figure 3.3 Program structure

Code Mobility (Runtime Process Migration) S 32



Chapter 3 System Design

[User Interaction]

Y

L 4 Y

Read user Invoke Command

command ‘ ‘ Processing

and data

Validate [ Select Process |
Command
A 4
. {Activate Process|
Prosuce innvalid

message

Display méssages
& status

Figure 3.4 Program Structure of User Interaction process

Code Mobility (Runtime Process Migration) ' 33



Chapter 3 System Design

| Search Process |

.
i

¥

A X —
| Set user Options | Check avaifability

/ of resource

¥
Create search
Thread

A

Open Resource

v

Interact with resource |
A

A

Y . 4
Produce invalid | | | Match user data
message | with file contents

Display messages
& status

Figure 3.5 Program structure of Search process

Code Mobility (Runtime Process Migration) 34



Chapter 3

System Design

| Migration |

b4

¥ '
[ Set user Options | | Capture State }

¥
Validate Server

- %nns

Check availability
of server

A

r 3

A

L
IConnect to Server |

Y

. k J
Produce invalid .| Send Data Space]
message
~,

Display messages

Figure 3.6 Program structure of Migration process

Code Mobility (Runtime Process Migration) .

35



Chapter 3 System Design

Capture State
Yy

| Set user Options | Suspend Search|
Thread

A 4
A/!nitialize Capture

- Thread

!

«——Copy Data Space|

¥
Organize Dispatch
] Stream

!

Pass infonnationJ

y
Produce invalid ! stream fo server
message Handling Module:

Display messages
& status

Figure 3.7 Program structure of State Capturing process

Code Mobility (Runtime Process Migration) 36



Chapter 3

A

Information Stream

Receive

"

Y

A

Creale

Suspended}

Process

h 4

Disatrange

|information

Stream

\d

Y

| Set user Options |

b4
[Reconstruct
Received

o
i

A4

» Produce invalid

message

Data Space,

k

Resume
Suspended
Process

L3

L
—| Search

Display messages

& stalus

4
Suspend
Y

[ Mi:cjrate l—

Figure 3.8 Program structure of Process Revival

System Design

Code Mobility (Runtime Process Migration)

37



Chapter 3 Svstem Design

3.2.4 Procedural Design

The procedural design transforms structural elements of the program architecture into
a procedural description of software components; Information obtained from the

PSPEC, CSPEC and STD serve as the basis for procedural design.

The Procedural Design for the software is shown in the Figures 3.8, 3.9, 3.10, 3.11,
3.12,3.13 and 3.14.

an

i

Search
Clone /op:ﬁ Migrate
Se%rch
k y

Clone Search | Migrate

Y
_ {Display Resuts
71 and Messages

Figure 3.9 Procedural Design

Code Mobility (Runtime Process Migration) _ 38



Chapter 3 ' ‘ System Design

Start

Validate User
input data

Check availability
of resource

- No
Create search
Thread
<« N Created?
Yes
Open Resource
4
Error Message
Producer
_pi Interact with
Resource

v

Display Resulls | = raglits Search
and Messages : Through File

Figure 3.10 Procedural Design of Searching

Code Mobility (Runtime Process Migration) 39



Chapter 3 : System Design

Start

Suspend
Search Thread

@ﬁ% Capture State

T
No
< No Validate
Server Options
<
Check Server <
Availability
< No vailable? Cogmect o
erver
Yes
ot No onnected?
Dispatch < ' Yes
DataSpace
v :
Error Message
Producer

l

Y

Dispfay Results |
and Messages

Figure 3.11 Procedural Design of Migration

Code Mobility (Runtime Process Migration) » 40



Chapter 3 . : System Design

(Start)

Suspend
Search Thread

Initialize Capture

Thread
Copy Data Space
Error Message ,
Producer |« No
Organizé
information
' : STKD
Display Results
and Messages Pass Info Stream
i ’ 1o server handlers

Figure 3.12 Procedural Design of Capturing Daté Space

Code Mobility (Runtime Process Migration) 41



Chapter 3 System Design

Receive Information

Stream
. Yes Create Suspended
Received? Process instance
No
<t
Disarrange
information Stream
Construct new
Data Space
v Y
Error Message
Producer
Resume Suspended
Process
Display Results | -
and Messages leResuls|  Search

v

Migrate

y

Figure 3.13 Procedural Design of Process Revival

Code Mobility (Runtime Process Migration) 42



Chapter 3

System Design

Validate User |

InputData

v

Search

Resulls

v

v

Copy

Data Space

v

Transfer
Data Space

v

Reception of Data
Space at Server

l.

Create suspended

Process instance

y

v

Suspend |

abessop
0443 BONPOId

Create new data |
space of Process >

Resume Suspended

Process

\

11

safessaly pue
s)nsay Aeidsiq

Y

Figure 3.14 Overall Procedural Design of Type-III1 Mobility,

including client and Server

Figure 3.10, 3.11, 3.12, 3.13 and 3.14 are the procedural diagrams of Searching,

Migration, State Capturing, Process Revival at Server and Overall Procedural Design

Code Mobility (Runtime Process Migration)

43



Chapter 3 System Design

of Type-III Mobility (including client and Server) processes respectively. Figure 3.14
makes it clear that process after migration to the server can further migrate to another

server/node.

The Design Activity is completed here and can'easily be mapped to coding in

implementation section which is last activity of the software development Process.

Code Mobility (Runtime Process Migration) » 44



Chapter 4

System Development and
Implementation



Chapter 4 . System Development and [mplementation

4. SYSTEM DEVELOPMENT AND
IMPLEMENTATION

This is the second last activity in the project and comes before testing of the whole
program; however the partial testing can be done during implementation after

completion of our every module.

This software is developed using C/C++ and Visual C++. The mobility type used to
implement is Type-III mobility and has been selected considering efficiency, smaller
in size to travel at network, accuracy in data space collection and revival with a
minimum chances of error occurrence. The software is divided into three modules

searching through File, Migration and Rehabilitation of received data space at server.

4.1 Client Application and Migration Host

This software works as a Client-Server Applications and uses the non-sharing
connection. Where the application created using Visual C++ works as a client and
handles all the functionality related to Graphical User Interface. Whereas backend
computational competence of C/C++ has been used. The server interface for the
remote machine as well, has been designéd in Visual C++ and C/C++

accomplishment at backend. Server related complex computations are performed
through C/C++, |

There are two connection types available among Clients and Server. The connection

types are listed below.[10].
e Shared Connection
¢ Non-shared Connection.
¢ Shared Discrete Connections

To exercise client-server architecture POSIX provides a mechanism of SOCKETS, a
collection of Function calls through which we can create connection(s) among server
and client application(s)/process(es). We can also create connections through other

mechanisms available in Visual C++ and different frameworks {10]. Main techniques

Code Mobility (Runtime Process Migration) 46



Chapter 4 System Development and Implementation

available for this purpose are listed below along with their limitations and reasons of

not using them to solve our problem.

o Pipes

o Mailslots

e Dynamic Data Exchange ,(DDE)'

o Component Object Modeling (COM)

e Distributed Component Object Modeling (DCOM)

e Remote Method Invoca.tion (RMI)

e Remote Procedural Call (RPC)

e Also P2P (peer 2 peer) connections esta‘blishplent through
o Serial port communication

o Parallel port communication

Though we are not bothered about the protocol to be used, but the problems or

limitations with majority of the above said techniques are listed.

Component Object Modeling (COM) by VC;++: COM is a component based
solution provided for Microsoft Windows based platfonhs._ This model provides
different application with sharing a single fnemory block or object on a single
machine through an interface provided by the developer. That is both server and client
applications or processes reside on the same machine. In our case we are in need of

same solution but our client and server reside on two different machines on a network.

Dynamic Data Exchange (DDE) by VC++: Dynamic Data Exchange is the
mechanism provided by Microsoft through which an application or process
communicates among GUI (graphic user- interface) controls and their associated

variables. This architecture is incapable to cope with our problem domain.

Code Mobility (Runtime Process Migration) : ' 47



Chapter 4 ! ' Svstem Development and Implementation

Distributed Component Object Modeling (DCOM): DCOM is a component based
solution provided for Microsoft Windows based platforms. This model provides
different application with remote function calling through an interface provided by the
developer. In this architecture server and client may reside on two different machines
over a network. The limitation for our project with this architecture is that in DCOM
after a server function calling server returns fesult(s) back to the client, depending
upon the parameters passed. In our case we are in need of partially same solution but
we need server to execute the rest of the process. The other thing to note about
DCOM is that DCOM server always executes functions only which are already
available at server. A client is just eligible to pass this function with the parameters
and use server’s code for completion of its process(es). This client-server paradigm is

élso known as REV (Remote Evaluation).

Remote Method Invocation (RMI) by JAVA: RMI is the technique provided by
JAVA language of calling a method located remotely over internet. The problem with
RMI is that parameter(s) are passed to the remote method while called and as a result
of this, the remote method executes on the basis of those parameters and returns

result(s).

Remote Procedural Call (RPC) by VC++: RPC is the technique provided by Visual
C++ of calling a procedure located remotely over internet. The problem with RPC is
that parameter(s) are passed to the remote method while called and at a result of this,
the remote procedure executes using those parameters and returns result(s). This is the
equivalent technology to the Java’s RMIL. One thing to be kept in mind is, “DCOM
itself, at the back end uses RPC”.

Serial & Parallel port communication: Serial & Parallel communication can also be
used to transfer data between two computer nodes, with a limitation, that this creates a
P2P (peer-to-peer) scenario, while we have to implement a solution for a local area

network (LAN), more precisely for internet.

Pipes & Mailslots: Pipes and mailslots though fulfill our requirement of connecting
and dispatching data among different nodes of network, as these are real-time network
communicators/dispatchers. But'these are more difficult than sockets, to handle,

control, complex to implement and are not much common among application

Code Mobility (Runtime Process Migration) 48



Chapter 4 System Development and Implementation

developers to use for communication. Rather pipes are mostly used in real-time

networks for fast communication and data transfer.

4.1.1 Shared Connection

In this type of connection, if the server is not started/initialized/connected by any
other appIication/process, client will start the Server in the sharing environment. Any
further client with a shared connection facility, interacts with the server without
creating another instance of the server, rather it just directly links itself to the
previously created instance or opened connection. As a result of this both applications
share the same server workspace variables. Most of the times these type of
connections are created when both server and clients reside on single machine. But
there are the cases when these connections are created among applications/processes
over network, for example a web server over internet providing user information

services. |

4.1.2. Non-Shared connection

In this type of connection, if the server is not started by any other client, the client will
start the server. When any other client calls for a server connection a new instance or
connection is created for that client. These two clients can not share the server

workspace variables.

4.1.3. Shared Discrete Connection

This is the shared connection with the difference that just one instance for all clients is
created but for every client request a different thread or sub process is created. First
client creates the server instance while rest of the clients use that instance to create

corresponding threads for them. No one owns the server process instance.

42 Win32 API

The term Win32 is used to describe an Application Programming Interface (API) that
is common to all of the Microsoft 32-bit Windows platforms. These platforms
currently include Windows 95, Windows 98, Windows NT, and Microsoft Windows

CE. The Win32 API is a set of functions, structures, messages, macros, and interfaces

Code Mobility (Runtime Process Migration) 49



Chapter 4 Systern Development and Implementation

that provides a consistent interface to enable you to develop applications for any of

the Win32 platforms. Table 4.1 lists some of the services provided by the Win32 API.

Table 4.1 Win32 API Services

Win32 API service Description
Window Provides the means to create and manage a user interface.
Management ' '
Window Provides a set of common user interface controls. Using the common controls
Controls helps keep an application's user interface consistent with that of the shell and

other applications. It also saves a significant amount of development time.

Shell Features || Provides access to system objects and resources such as files, storage devices,
printers, and network resources.

Graphics Provides functions and related structures used to generate graphical output for
Device displays, printers, and other graphical devices.
Interface
System Provides access to the resources of the computer via features of the underlying
Services operating system. :

4.2.1 SOCKET APY’s Description

The socket API functions and their description used to establish a connection among a

client and Server are listed in Tab|1e 4.2:

T able 4.2 Socket API Functions

Socket The socket function creates a socket that is bound to a specific service provider.

Accept The accept function permits an incoming connection attempt on a socket.

bind The bind function associates a local address with a socket.

connect The connect function establishes a cqnnection to a specified socket.

listen The listen function places a socket a state where it is listening for an incoming
connection.

WSAStartup | The WSAStartup function initiates use of Ws2_32.dli by a process.=

WSACleanup The WSACleanup function terminates use of the Ws2_32.dll.

closesocket The closesocket function closes an existing socket.

shutdown The shutdown function disables sends or receives on a socket.

L

Code Mobility (Runtime Process Migration) , 50



Chapter 4

System Development and Implementation

4.2.2 File Functions:

Table 4.3 lists the Functions and their description which are used for serialization in

C.

" Table 4.3 C Serialization Structure and Functions
FILE Stores information about current state of stream; used- in all stream I/O
structure . ) )

operations.

Ftell Gets the current position of a file pointer.
Fseek Moves the file pointer to a specified location.
Rewind Repositions the file pointer to the beginning of a file.
Fclose Closes a stream (fclose) or closes all open streams (_fcloseall).
feof Tests for end-of-file on a stream.
Ferror Tests for an error on a stream.
fflush Flushes a stream.
Fgetc Read a character from a stream
_fgetchar Read a character from stdin
Fputc Writes a character to a stream
Putc Writes a character to a stream
Fread Reads data from a stream.
Fsetpos Sets the stream-position indicator.
Fwrite Writes data to a stream.
Getc Read a character from a stream

4.3 Functionality Added to Software Using Visual C++

All the errors related to the software except computational errors are handled Using

Visual C++ and it show all the error messages and other interactive message to the

user. Whole Graphical Interface is designed using Visual C++ and Screen Shots of

Code Mobility (Runtime. Process Migration) 51




Chapter 4 System Development and Implementation

which are provided in User Manual (See Appendix A). Following functionalities are

added to the software using visual C++.

o Splash Screen at the start of the software (Both Applications).
o Single Instance of Application (Server).

e System tray Informer (Server)

o User friendly interface for user ease and functionality.

¢ Directory Selection Dialog box for selecting the path.

¢ Disabling opefational interface during execution.

e Proper Error and interactive message for the user.

o Help file (Client).

4.3.1 Splash Screen

The Splash Screen or Welcome Screen Window is shown during Client and
server initialization- it also shows the status of the Application. It is a very good
technique to show something on the screen while preprocessing of application is
going on.

CSplash* m_WelcomeéDlg;

m_WelcomeDlg = new CSplash{);

m_WelcomeDlg->Create (IDD SPLASH, this);

m_WelcomeDlg~>ShowWindow (SW_SHOW) ;

if ( //pre conditions )
{

m_WelcomeDlg->m Message.SetWindowText ("Starting
Application...");
UpdateData(false);

//Add initialization code here -

}

m WelcomeDlg->DestroyWindow () ;

delete m_WelcomeDlg; -

Code Mobility (Runtime Process Migration) 52



Chapter 4 - System Development and implementation

4.3.2 Single Instance of lApplication

Only one instance of Server Application is allowed to run in order to maintain
consistency between the whole Process Migration.
HANDLE hmutex =
CreateMutex(NULL,TRUE,"JUSTTOCHECK");
// then check for that name whether it already
exists or not by following code,
// 1f exists release mutex and return false

otherwise just release the mutex

{ .
if ( hmutex && GetLastError () ==
ERROR_ALREADY EXISTS)

{

ReleaseMutex (hmutex);
exit(1l);

4.3.3 User Friendly Interface and Functionality
Server interface has been divided into three main sections.

e  Search/Suspend/Resume
. Options
o Server

. Informer

4.3.3.1 Search/Suspend/Resume Interface

This is the first and the nearly everyone important part of the software. This interface
lets the user interact with the software throughout the lifecycle of Application/process.
Search process searches for a user provided string through a file provided by user.
This is the base process of our application which has to be migrated. As process
continuously interacts with the résourcé/ﬁle during its life cycle therefore “searching
through file” has been chosen for migration purpose. Before migration of this process
its execution is necessary. After the execution starts, corresponding results are
displayed through associated controls, and migration option is enabled. If the user has

run the software for the first time that is the process has not migrated from any other

Code Mobility (Runtime Process Migration) 53



Chapter 4 System Development and Implementation

node then unless and until he configures server and sets migration options, he will be
unable to carry migratioh of current process during execution. It connects with the
resource using the library functions, defined above. And also maintain a connection
with the resource during whole life cycle of search process. This area defines the
following things: The first Edit Box Labeled “File Name” requires the user to
specify the file/resource through which a string has to be searched. This is not an
editable field through keyboard. To specify the file name user presses the “Browse”

button.

1. Browse button brings the File Open Dialog in front of the main application
and user can select the file/resource and path through this dialogue. When user

presses the button following code is executed to perform the operation.

CrileDialog m fileDlg(true, NULL, "Resource",
OFN_FILEMQS_TEXIST, "TextFiles (*.txt)i*.txt]!|",
NULL) ; |

if(m_fileDlg.DoModal ()==IDOK)

{

// Set Resource name
// Set Rgsource path
// Enable search field-

Before this code the instance of the Dialog is created. The DoModa 1( ) shows
the dialog in front of the screen and when after selection of valid path user
press ok then SetWindowText( ) sets the path to the edit box of the main

application window. At the end the instance of the Dialog is deleted.

2. The search button is enabled after all validations of resource and search string.
After the user presses the search button following main tasks and code lines

are executed:

Code Mobility (Runtime Process Migration). ‘ 54



Chapter 4 ’ System Development and Implementation

m_hSearchThread= CreateThread
(NULL, O, (LPTHREAD_ START ROUTINE)
SearchThread, this, CREATE_SUSPENDED, &dw) ;

// Disable Options Button
// Enable Suspend Button

3. Following important lines of code are executed when the suspend button is
pressed:

ptr->GetDlgItem (IDC_BUTTON_SEARCH) -

>SetWindowText ("Resume") ; _
ptr~>GetDlgitem (IDC_BUTTON MIGRATE)->EnableWindow (true);
SuspendThread (ptr~>m_hSearchThread) ; '

4. Lines of code listed below are executed on ptess of “Resume”:

ResumeThread{m_hSearchThread);
- toggle=~toggle;
loop=0;
GetDlgItem(IDC_BUTTON SEARCH) -
>SetWindowText ("Pause");
GetDlgItem(IDC BUTTON_MIGRATE)->EnableWindow (FALSE) ;
GetDlgItem (IDC_BUTTON HELP)->EnableWindow (FALSE);
GetDlgItem (IDC_BUTTON_ABOUT) ->EnableWindow (FALSE) ;

The search thread includes following vital lines of code:

int len;

if( ptr->m_serial_no==0)
ptr->m_results.Delete Allltems();

CString strText, searchtext;

1

ptr->m_searchstring.GetWindowText (searchtext);
len=searchtext.GetLength{();

ptr->fp=fopen (ptr->m_FileName, "r");

if (ptr->fp==NULL)

{
ptr->CWnd: :MessageBox {"Resource ‘ is unavailable\nor invalid
resource transfer\nRetry with another resource","Invalid

Resource",MB_ICONSTOP) ;

Code Mobility (Runtime Process Migration) \ 55



Chapter 4

System Development and Implementation

ptr->OnButtonBrowse() ;

}

else if(len==0)

{

else

ptr->CWnd: :MessageBox ("Please Enter a

search”, "Missing Search String ",MB_ICONQUESTION) ;

ptr->m searchstring.SetFocus(};

char ch;

fseek (ptr->fp, ptr->position, SEEK SET);

if( ferror( ptr->fp ) )

{

perror ( "Reéd‘error" )

AfxMessageBox ("The resource has the same
previous node "but with
attributes",MB ICONSTOP}; ‘
ExitThread (1) ;-

Sleep (ptr->sleep);

while (ch!=EQF)

{

Sleep(l);
ch=fgetc (ptr->fp);
if{ch=='\n")
{
if (ptr->loop==1)
{

string to

name as on

different

ptr~>GetDlgltem (IDC_BUTTON SEARCH) -

>SetWindowTeXt(“Resume");

ptr->GetDlgltem (IDC _BUTTON MIGRATE) -

>EnableWindow (true);

SuspendThread (ptr->m_hSearchThread) ;

} :
ptr->lines++;
ptr->pos=1;
ptr—>k=0;

continue;

Code Mobility (Runtime Process Migration)

56



Chapter 4 System Development and Implementation

else if (ch==searchtext.GetAt (ptr->x))
ptr->x++; '
else
{
if (ptr->loop==1)
{
ptr->GetDlgItem (IDC_BUTTON SEARCH)-
>SetWindowText ("Resume") ;
ptr->GetDlgIltem (IDC _BUTTON MIGRATE) -~
>EnableWindow (true) ;
SuspendThread (ptr->m_hSearchThread) ;
} ' .
ptr->pos+=ptr->x+1;
ptr->x=0;

continue;

if (ptr->x==len)

{ .
strText.Format(TEXT("%d"), ptr->m_serial no+l);
ptr->m_results.Insertltem(ptr-

>m_serial no,strText);

strText.Format(TEXT(“%d"), ptr->lines);
ptr—>m_results.SetItemTéxt(ptr—>m_serial_no, 1,
strText);

strText.Format (TEXT ("%d"), ptr->pos);

ptr->m_results.SetItemText (ptr->m_serial no, 2,

strText);

ptr->m_serial no+t;

ptr->pos+=ptr->x;

ptr->%x=0;

if (ptr->loop==1}

{
ptr->GetDlgltem (IDC_BUTTON_SEARCH) -
>SetWindowText ("Resume") ;
ptr->GetDlgltem (IDC_BUTTON_ MIGRATE) -~
>EnableWindow (true);

SuspendThread (ptr->m_hSearchThread) ;

Code Mobility (Runtime Process Migration) 57



Chapter 4 ' ; : System Development and Implementation

}

ptr->GetDlgltem(IDC_BUTTON_ SEARCH)->SetWindowText ("Search”);
ptr->GetDlgltem(IDC_BUTTON MIGRATE)->EnableWindow (FALSE}) ;
ptr->GetDlgItem(IDC_BUTTON;BROWéE)—>EnableWindow(TRUE);
ptr->GetDlgItem (IDC_BUTTON OPTIONS)->EnableWindow (TRUE) ;
ptr->GetDlgltem (IDC_BUTTON_ HELP)->EnableWindow (TRUE) ;
ptr~>GetDlgItem (IDC_BUTTON ABOUT)~>EnableWindow (TRUE) ;
ptr->created=0;

ptr->toggle=0;

ptr->position=0;

ptr—>lines=1;.

ptr->pos=0;

ptr->x=0;

ptr->m_serial no=0;

ExitThread (0} ;

4.3.3.2 Options Interface .

This is the 2nd division of the software interface and is used to set the migration
options and server configurations. User.can set here the type of process resettlement

to be accomplished, type of mobility to be carried out and other ones elaborated

below.
Process. Type of the Process Migration

Migrate. Means the current instance of the program terminates afier it tries to

relocate it on another node/ backup server.

Clone. If selected this option the process makes a copy on host and keeps

executing on the current machine as well.

Show Complete Results on Destination. If checked means that results found on this

machine will also be displayed along with the results found on the server machine.

Resource. Properties of the resource/File being used
Shared. The resource is shared among the server and the client.

Standalone. Both nodes have separate resources on same addresses/ paths.

Code Mobility (Runtime Process Migration) , 58



Chapter 4 System Development and Implementation

Destination.* Server/destination identification which is running the service for

reception of the data space of current application.
IP. IP address of the server.

Name. Name of the server

*User can provide with anyone of these two i-e IP or Name. '

Mobility. Type of the mobility which has to be carried out
Weak. Only code is dispatched to the destination.
Strong. Code alohg with data and state travels to the destination.

Type-III. Data and State travels to the server.

Sleep Element. Holdup time during searching process instruction. The reason of
providing this feature is that user or tester can experience the migration process
during searching. Default and the minimum value of sleep element are set to 15

milliseconds.

Option dialogue is brought on’ screen through the following code. This code also

includes data exchange before and after the dialogue modal.

OptDlg dlg;
dlg.m_sleep = sleep;

dlg.m migrate = process; -

If

dlg.m results results;

dlg.m resource = resource;

i

dlg.m mobility = mobility;
dlg.m servername = servername;
dlg.m_ipAddress = serverip;

UpdateData (true);

if (dlg.DoModal () ==IDOK)

( , .
sleep = dlg.m_sleep;
process= dlg.m migrate;

results = dlg.m results;

Code Mobility (Runtime Process Migration) 59



Chapter 4 System Development and Implementation

Il

resource dlg.m_resource;

il

mobility dlg.m mobility;
servername = dlg.m_servername;
serverip = dlg.m ipAddress;
}
if(sleep < 1)

sleep=15;

1. First items of the dialogue box are of radio type which enables the user to set

process migration type. Here

MIGRATE = 0;
CLONE =.1

Where m_migrate is the variable used for this radio control.

2. Second item on dialogue is a check box control which lets the user to set the
results option on server. Its description has already been mentioned above.

The variable used for check box control is m_results. Where

TRUE = show complete results on server

FALSE = do not show complete results on server

3. Then there is a Resource type selection radio control. Through this control
user can specify which type of resource is this, which is being used by the

process. The control variables values are handled as below

il

0 SHARED
1 = STANDALONE

4. Fourth item is a group box which contains the server IP and name. First item is
an [PCONTROL and the other one is an edit box. User can specify server [P
or name by entering IP. values or name in IP control or edit box respectively.
On changing any of the field the other field gets disabled. The code for this

functionality is written below.

void OptDlg::0OnFieldchangedIpaddress (NMHDR*
pNMHDR, LRESULT* pResult)

{

Code Mobility (Runtime Process Migration) 60



Chapter 4 _System Development and Implementation

if(m_ip.IsBlank())
m name.EnableWindow (true);
else

{

m_name.SetWindowText ("");

m_name .EnableWindow (false); '

/************************/

void OptDlg::OnChangeEditName()
{

CString str; o
m_name.GetWindowText (str);
if (str.GetlLength() > 0 )

{

m_ip.EnableWindow (false);

m_ip.SetWindowText ("");

else

m_ip.EnableWindow (true);

5. The second last item of the dialogue is the setter for mobility type to be took
placed upon user inclination. This radio type control let the user to select any
three types of code mobility that is weak mobility, strong mobility and Type-
III mobility. The constants used here are specified below

0
1

]

WEAK MOBILITY

i

STRONG: MOBILITY

Code Mobility (Runtime Process Migration) 61



Chapter 4

System Development and Implementation

2 = TYPE3 MOBILITY

The above mentioned code of dialogue used to get information from user and

direct the process functionalities depending upon these data. The tasks are

performed well enough and appropriate messages are displayed on proper

times.

4.3.3.3 Server Interface

Third part of the software interface i$ the server interface and used for receiving

images or data spaces of processes from remote clients and recreate those processes

on the basis of those images and data spaces. The server interface consists of a list

control and a button which provides the foilowing information about the images-and

data spaces.

1. The list control consist of the following fields

Serial number
Name

Size

Client name
Time of arrival

Time if re-execution

2. Terminate the service button which actually terminates the server instance

from the machine. After this button’s function is performed successfully, this

server is no more available to the clients for connecting and receiving data

space or images and rehabilitating them.

The server tries to reconstruct new data space on the basis of received information

stream from the client. The code for server listening, receiving and reconstructing new

process is hinted below.

retcode = listen(socket_descriptor,0};

if (retcode == SOCKET_ERROR)
AfxMessageBox ("Listen Failed");
/**************/
DWORD dw;

Code Mobility (Runtime Process Migration) 62



!
|
i
|

ol

System Development and Implementation

Chapter 4

m_AcceptThread=CreateThread (NULL, 0, (LPTHREAD_START_ROUTINE)

Accept, this, 0, &dw) ;

/**************/

DWORD dw;
m_RcvThread=CreateThread (NULL, 0, (LPTHREAD START_ ROUTINE)

Receive,this,O,&dw);

/****;\'*********/

Receive Thread Code Hints.
ptr->length= recv(ptr->new_socket,ptr->Buffer,sizeof ptr-

>Buffer, 0);

if (ptr->length == SOCKET ERROR)

)

{
continue;
AfxMessageBox ("Failed to Receive Data Space"):;

else
//temporarily store data
if (fpt==NULL)
{

AfxMessageBox ("Bbnormal Fixed Storage Medialncant
handle received Data Space");

continue;

else

// parse here the received data space and //extract

all information

strText.Format (TEXT ("%d"), ptr-
>ProcessesReceived);
ptr->m results.InsertItem(ptr-

>ProcessesReceived, strText) ;
strText.Format (TEXT ("%s"), ptr->clientname);

ptr->m _results.SetItemText (ptr->ProcessesReceived,

1, strText):;

63

Code Mobility (Runtime Process Migration)



Chapter 4 ) System Development and Implementation

ptr->m results.SetItemText (ptr->ProcessesReceived,

2, ptr->received image name);

strText.Format (TEXT("%d"), ptr->image_size);
ptr->m_results.SetltemText (ptr->ProcessesReceived,
3, strText);

ptr->ProcessesReceived++;

}

Sleep (1)
, ,

Accept Thread .Code Hints.

while (1)
{
ptr->addrlen = sizeof(ptr->new_sin);
ptr->new_socket = accept (ptr->socket descriptor, (struct

sockaddr *) &(ptr->new_sin), &(ptr->addrlen));

_if (ptr->new_socket == INVALID_ SOCKET)
{

AfxMessageBox ("Unable to acccept a connection from
host\n Possible abnormal nétwork conditions");
} !
Sleep (11) 7
mémcpy(ptr—>ClientAddr,&(ptr—
>new_sin).sin_addr,sizeof(ptr—>ClientAddr));
ptr->pClientHostEnt = gethostbyaddr (ptr-~
>ClientAddr, sizeof (ptr->ClientAddr), PF_INET);

if(ptr->pClientHostEnt == NULL)
{ .

AfxMessageBox ("Get host by address failed"):;

strcpy (ptr->clientname, "Not Available");

else
strcpy (ptr->clientname,ptr->pClientHostEnt-
>h_namej ;

Sleep(5);

Code Mobility (Runtime Process Migration) ' 64



Chapter 4 System Development and Implementation

4.3.4 System Tray Informer

Whenever a new image/data si)ace is received a message window from system tray
pops up to inform that an image/data space has been received. Though have not
implemented any extra processing to be done at this stage, further options for the
received image can be applied here. Following function is used to create the message

window before displaying.

int CTaskbarNotifier::Create(CWnd *pWndParent)

{
m_pWndParent=pWndParent;

CString strWndClass=AfxRegisterWndClass (0, AfxGetApp()~
>LoadStandardCursor (IDC_ARROW) ,GetSysColorBrush {COLOR_WIN
DOW) ,NULL) ;

return
CreateEx (0, strWndClass, NULL,WS_POPUP, 0, 0,0, 0, pWndParent-
>m_hWnd, NULL) ;

}

Following function is used to show the message window.

ptr->m wndTaskbarNotifier.Show{"Process Received");
Implementation details of the above mentioned Show function are given below:

void CTaskbaqutifier::Show(LPCTSTR szCaption, DWORD
dwTimeToShow, DWORD dwTimeTolive, DWORD dwTimeToHide, int
nIncrement)

{
unsigned int nDesktopHeight;

m_strCaption=szCaption;

m_dwTimeToShow=dwTimeToShow;
m_dwTimeToLive=dwTimeToLive;
m_dwTimeToHide=dwTimeToHide;

::SystemParametersInfo (SPI_GETWORKAREA, 0, &rcDesktop, 0) ;
nDesktopWidth=rcDesktop.right-rcDesktop.left;
nDesktopHeight=rcDéskto§.bottom—rcDesktop.top;
nScreenWidth=::GetSystemMetrics (SM. CXSCREEN) ;
nScreenHeight=::GetSystemMetrics (SM_CYSCREEN) ;

Code Mobility (Runtime Process Migration) 65



Chapter 4 System Development and Implementation

BOOL bTaskbarOnRight=nDesktopWidth<nScreenWidth &&
rcDesktop.left==0;

BOOL bTaskbarOnLeft=nDesktopWid£h<nScreenWidth &&
rcDesktop.left!=0;

BOOL bTaskBarOnTop=nDesktopHeight<nScreenHeight &&
rcDesktop.top!=0; '

BOOL bTaskbarOnBottom=nDesktopHeight<nScreenHeight &&
rcDesktop.top==0;

switch (m_nAnimStatus)
{
case IDT HIDDEN:
ShowWindow (SW_SHOW) ;
if (bTaskbarOnRight)
{

} ' _
else if (bTaskbarOnLeft)
{

}
else if (bTaskBarOnTop)
{

} .

else //if (bTaskbarOnBottom)

{ v

// Taskbar is on the bottom or Invisible

m_dwDelayBetweenShowEvents=m dwTimeToShow/(m nSkinHeight/
m nIncrement);

}
SetTimer (IDT APPEARING,m dwDelayBetweenShowEvents,NULL);
break;

case IDT WAITING:
case IDT_APPEARING:

case IDT DISAPPEARING:

Code Mobility (Runtime Process Migration) : 66




Chapter 4 System Development and Implementation

SetWindowPos(NULL,m_nCurrenthsX,m_nCurrentPosY,m_nSkinWi
dth,m nSkinHeight, SWP_NOOWNERZORDER | SWP_NOZORDER |
SWP_NOACTIVATE) ;

RedrawWindow () ;
break; '

}
4.3.5 Proper Messages

Proper Error, Information and Question Messages are shown at proper time along
with the ICONS so at first sight user can guess which kind of message is displayed by

the software. Sample Messages are:

. CWnd::MessageBox("Invalid File Extension","InValid

Resource",MB ICONSTOP) ;
® (CWnd::MessageBox("Could not connect to

server", "Server unavailable",MB_ICONSTOP);

e  CWnd::MessageBox ("Supported version is too low\n

for communication","Low Version",MB ICONSTOP) ;

. CWnd::MessageBox("Connection to server failed", "No

Connection",MB ICONSTOP) ;

e CWnd::MessageBox("Cant get. Localhost entry", "Bad
Local Resources",MB_ICONSTOP) ; |

* CWnd::MessageBox({"Cant get Remote Host
entry", "Server Name Problem",MB_ICONSTOP) ;

e (CWnd::MessageBox ("Cant Get RemoteHost Entry", "Server
IP Problem",MB_ICONSTOP) ;

e CWnd::MessageBox ("Connection to server could not be
established", YNo Connection”,MB ICONSTOP) ;

. CWnd: :MessageBox ("Could not dispatch
dataspace", "Data Transfer Failed",MB_ICONSTOP);

¢ AfxMessageBox ("Abnormal Fixed Storage Medialncant
handle received Data Space"):

e AfxMessageBox ("Unable to acccept a connection from
host\n Possible abnormal network conditions")

e AfxMessageBox ("Failed to Receive Data Space");

Code Mobility (Runtime Process Migration) . _ 67



Chapter 4 System Development and Implementation

e AfxMessageBox ("Abnormal Fixed Storage Media\ncant

handle received Data Space");

4.3.6 Help File

A Help file is being provided along with the software to the user to consult with, in
case he faces any difficulty. It has been tried our best that, the help file completely
elaborates the usage of software interface and working. There is a button of Help and
also user can call the Help File by Pressing FI. OnHelpInfo () Function is

overwrite to invoke help on F1.

OnHelpInfo (HELPINFO* pHelpInfo)
//Function to overwrite for help

{
OnHelpinformation () ;

return false;

}

void OnHelpinformation ()
{
WinHelp (0, HELP_ FINDER);

}
4.3.7 File Name and Path Selection

This is the dialog box which is created for the user to select the file/resource name

and its path. Following are the important lines of code to create and display this

dialog.
CFileDialog m_fileDlg(true, NULL,
"Resource",OFN_FILEMUSTEXIST, "TextFiles (*.txt)|*.txt||",
NULL) ; '

if(m fileDlg.DoModal ()==IDOK)

{
CString str;
m_searchstring.EnableWindowktrue);
str=m_fileDlg.GetPathName();
m_ filename.SetWindowText (str);
CString str2;
str2 = m fileDlg.GetFileExt();

if(str2.CompareNoCase ("txt")== ~1 )

{

Code Mobility (Runtime Process Migration) 68



Chapter 4 ___System Development and Implementation

CWnd: :MessageBox ("Invalid File
Extension","Invalid Resource",MB_ICONSTOP) ;

else

int j=0;

int len=str.GetLength{);
strZ.Format("len =%d", len) ;
for (int 1=0;1 < len;i++)'

{

Sleep(l):;
m FileName[i]=str.GetAt (j);
if (str.GetAt(j)=="\\")

{
m FileName[++i]="\\";
lgn++; ‘
}
J++;
} .

m FileName[i]='\0"';

4.3.8 Disabling operational interface controls during execution

When the system is in specific module that is searching or migration, rest of the
controls, regarding to different processes are disabled to protect the user from illogical
and instantaneous input to the software. Some of the code lines concerning this
activity are written below. '

GetDlgItem(IDC_BUTTON_ SEARCH)->EnableWindow (FALSE) ;
GetDlgItem(IDC_BUTTON_MIGﬁATE)—>EnableWindow(FALSE);
GetDlgItem(IDC_BUTTON HELP)->EnableWindow(true);
GetDlgItem(IDC_BUTTON ABOUT)->EnableWindow(true);
GetDlgItem(IDC_EDIT_SEARCH)—>EﬁabléWindow(FALSE);

ptr->GetDlgItem(IDC BUTTON SEARCH)-

>SetWindowText ("Search") ;

Code Mobility (Runtime Process Migration) ‘ 69



Chapter 4 System Development and Implementation

ptr->GetDlgTtem (IDC_BUTTON MIGRATE)->EnableWindow (FALSE) ;
ptr->GetDlgItem(IDC_BUTTON BROWSE)->EnableWindow (TRUE) ;
ptr~>GetDlgItem(IDC_BUTTON OPTIONS)->EnableWindow (TRUE) ;
ptr—>GetDlgItem(IDC_EUTTdN_HELP)—>En§bleWindow(TRUE);

ptr->GetDlgItem(IDC BUTTON ABOUT)->EnableWindow (TRUE) ;

Code Mobility (Runtime Process Migration) ' 70



’Chapte'r 5
Testing and Results



Chapter 5 . Testing and Results

5. TESTING AND RESULTS

Testing is an important phase during software development life cycle, and shows the
stability of the product. Also it helps in comparing the final product with the
objectives. Software testing ‘is_ a critical element of software quality assurance and

represents the ultimate review of specification, design and coding.

Testing should focus upon the system’s external behavior; a secondary purpose of
testing is pushing the limits of the system in order to understand how it fails under

certain conditions. A design must be testable and an implementation must be tested.

The Software basically has been divided into three components or modules
(Searching, Migration and Rehabilitation & Revival). Initially unit test was performed
on every unit. Syntax errors were removed and the validation checks were tested and
corrected entirely. For semantic errors, every program unit was tested with the help of

test data.

After this all three modules were combined to form complete software as the
integration completed. Again the Syntax and semantic errors were checked and
removed. After the completion of individual testing of all the modules, the modules
were integrated and testing phases were applied, then errors were checked and

removed.
5.1 Objectives of Testing

The overall objective of the testing is to find the maximum number of errors in

minimum amount of effort.
5.2 Testing Strategies

Testing begins with unit testing, then progress towards integration testing, and
finishes with validation and system ‘testing. In unit testing single modules are tested
first. Once each module is tested individually, it is integrated into a program structure

while a series of regression tests are run to uncover errors due to interfacing of

Code Mobility (Runtime Process Migration) ' 72



Chapter 5 Testing and Results

modules and side effects caused by addition of new units. Finally the system as a

whole is tested.
5.3 Types of Testing Done

We conducted various types of testing to make the software stable and error free.

. Code Inspection

Reviews and walk through.

. Unit Testing

All the modules of the project were first tested individually by inserting

invalid values. Exceptions thrown were properly handled.
. Integration Testing

After the modules were tested individually, they were combined to form the
final product. All the links and paths were tested. Invalid values were also

checked and measure taken to handle them successfully.

Tests of inter object and inter process coordination should be built at several
granularity levels. For example, tests of two or three interacting objects/modules,

dozens of objects, and thousands of them are all needed.
. Black Box Testin_g

The software was tested on Windows 2000 Professional and measures taken

that expected output is generated on input.
. System Testing

The Software was checked under different versions of Windows Operating

Systems
. White Box Testing

Prior testing is part of white box testing in which we look inside the code.

Here we can often find errors. This includes tests, those force most or all

Code Mobility (Runtime Process Migration) . , 73



Chapter 5 Testing and Results

computation paths to be visited, and especially those that place components

near the edges of their operating conditions form classic test strategies.
. Beta testing

Use by outsiders rather than developers often makes up for lack of imagination
about possible error paths by testers. Beta testing was done by International

Islamic University, Islamabad’s students.

o Regression testing

Tests should never be thrown out (unless the tests are wrong). Any changes in
classes, modules etc., should be accompanied by a rerun of tests. Most

regression tests begin their lives as bhg reports.
5.4 Evaluation

Evaluation of the software is carried out to check the stability and usability of the
product being developed .We took measures to ensure that the developed software
becomes effective and easy to use. Some of the features of the product are given

below.
J Efficiency and Effectiveness

The product developed is effective and efficient.
. Accuracy

The Software provides reliable results. Only Microsoft Windows based
Operating systems can be used as Platform for this software (different

compatible versions are mentioned on Page viii).
. Easy to use

The product is easy to use. All a deprived client has to do is,

o Connect to the server

o Send their data spaces for restoration

Code Mobility (Runtime Process Migration) _ 74



Chapter 5 . Testing and Results

Mobility Comparisons
10000

@
X 8000
E
&% 8000 O Memory image
E H Critical data
'; 4000 1 @ Compiled Code
g 2000 -
(&

String Soa Ohlect Search Simpte

Displayer Drawing Qugee

Application

Figure 5.2 Graphical Representation of different mobility types
5.6 Type-1lI Network Traffic

The network load to achieve the Type-III code mobility is detailed through the

following equation which gives the Bytes to travel on network.

* sizeof ( Ztostrmg(v n) -iZtostrmg(v V)

+ NS + sizeof(PI id) + sizeof(P H))

Where

= variable name

= variable name
No. of wariables

= No. of Separators
= Separator bytes
PI_id = Process image

identifier ,

P _H = Protocol Header
Always (N > n)

< <
<48

nZ

* This Complexity is valid for applications having variable based state.

Code Mobility (Runtime Process Migration) 76



Chapter 5 Testing and Results

5.7 Enhancement

The software we have developed provides the basic functionality of code mobility on
top of weak code mobility. It introduces Type-III mobility implementations. Further
functionality that can be added includes:

o Strong Mobility

) Portable Data Space Migration

The overall objective of the testing process is to identify the maximum number of
errors in the code with a minimum amount of efforts. Finding an error is thus
considered a success rather than failure. On finding an error, efforts were made to

handle and correct it.

Code Mobility (Runtime Process Migration) ‘ . 77



Chapter 6

Conclusion &
Future Enhancements



Chapter 6 Conclusion & Future Enhancements

6. Conclusion & Future Enhancements

As with any project, several ideas came to light that might improve the performance
of system but have not been implemented. Some of these did not seem to provide.
additional benefit, while others were not implemented due to lack of time. Now, we
describe some of these ideas and ourintuition as to whether their implementatidn

would be beneficial.

This imitial work will be extended in t_hree directions: first, we will implement the
solution for Strong Code Mobility and will cover other language and operating system
features that could not be covered here. Second, we shall extend and refine our
proposed Type-IIl model to provide a platform independent implementation.
Eventually, we wish to develop a runtime library for supporting code mobility on
Windows based platforms and in the next step, for independent platforms. This
portion of document also includes some suggested solutions for the interest of

research scholars of Code mobility. The solutions are:

6.1 Requirements from the Operating System

A better solution would allow the system to automatically decide whether a process
can be executed remotely. If the system maintains a history of the past performance of
a process, it can use a number of different metrics to decide whether a process should
be executed remotely. One drawback with this approach is that the system is guessing
whether the process should be executed remotely. However, every time a process is
executed, the system will have more information concerning the behavior of the
process. In most cases, after a relatively few number of executions, the history of a
process will be mature enough to accurately predict whether the process should be

executed remotely.

The following services are vital in order to support a kernel-level implementation of a

migration

e Virtual address space that is arranged identically for each instance of an
application/process. Namely, the code and the static data reside at the same

virtual addresses in each copy of a program.

Code Mobility (Runtime Process Migration) : .79



Chapter 6 ) Conclusion & Future Enhancements

e Protection of pages in virtual memory and exception handling on a protection
fault.

» Interface for the creation and management of threads, including a mechanism
for obtaining and updating a thread’s state.

¢ Some mechanism' for resetting the location of threads’ stacks. It should be

possible to reserve a range of virtual addresses for the stack of a thread.

6.2 The proposed language specifications

Programming languages concerns are portability, safety, efficiency, security,
confidentiality, integrity, availability and authenticity. These all issues must be
achieved as in conventional languages. The concern we focus here are portability and
availability. Most of the MCL’s rather all of them introduced so far lack portability or
availability. Therefore we take into account enhancements in Java, as it is getting

popular day by day because of its portability and availability. .

Given that Java Virtual Machine (JVM) provides a platform independent support to
the processes written in jéva, also exposing Applets the only pervasive application of
code mobility. Even applets are also weak mobility implementers. We propose
extension. in Java language such that at the next step it supports strong mobility as

well. The primary features of new language are to support

e Capture of the execution state'of a single Java thread, thread group, or all
threads (complete process) in the JVM. |

* Capture of the execution state at fine levels of granularity (ideally, between
any two Java byte code instructions). _

o Capture of the execution state as transparently to the Java code executing in
the JVM as possible.

e Cross-platform compatibility for the execution state information.

» Flexibility in how much information is captured (in particular whether to
include the definitions of Java classes).

e [Easy portability to a variety of platforrﬁs (at least Win32 and various
UNIX/Linux platforms).‘

¢ Flexible usage in different contexts and inside different applications.

Code Mobility (Runtime Process Migration} ; ‘ ' 80



Chapter 6 ' Conclusion & Future Enhancements

e Enforcement of fine-grained and dynamicélly changing limits of access to

resources such as the CPU, memory, disk, network, and GUI.

6.3 Focused Implementation Solution for Strong Mobility

In connection with current languages and technologies we propose a platform
independent but architecture based strong mobility implementation. This solution is

provided below. -

Code mobility is not a new concept. The research work on distributed operating
systems has followed a more structured approach. In this research area, main problem
is to support the migration of active processes and objects, along with their code and
data, at the operating system level over a network. In particular, process migration
concerns the transfer of a process being run by an operating system, from machine
where it is running to a different one'[1]. Though Java Applets have gained great
popularity under the definition of code mobilityv but they also provide weak code
mobility, where only code is transferred, which yet has to start execution. There are
no such common technologies which provide strong code mobility. In this paper we
present an implementation of strong code mobility which is platform indépendent but
microprocessor architecture épéciﬁc. This paper discusses a technique for user level
process migration between computers, for collecting the memory contents of a
process on one computer in an information stream, and for restoring the data content
from the information stream to the memory space of a new process on a different
computer. Unlike Java feature of object serialization [2], the data fetching and re-
establishment method enables complicated data structures such as indirect memory
references that is pointers, to be migrated properly between two computer nodes.

Study is based on Intel 386 and onward microprocéssor architecture.

6.3.1 Intel memory addressing technique

The microprocessor has a set of rules that apply to segments whenever memory is
addressed. The rules, which apply in the real and protected mode, define the segment
register and offset register combination [3]. For example, the code segment register is
always used with the instrﬁction poin'terv to address the next instruction in the program.

This combination is CS: IP or CS: EIP, depending upon the microprocessor’s mode

Code Mobility (Runtime Process Migration) . ' ‘ 81



Chapter 6 Conclusion & Future Enhancements

of operation. The code segment register defines the start of the code segment and the

instruction pointer locates the next instruction within the code segment.

<CodeSpace>
g I : t /
ilie Clon
<[CodeSpace> L (bbedspotched]ed che
Coda fefching ¥ML Cocument {optional)

Figure 1 Mechanism from Code Fetching to Code Dispatching

6.3.2 Segment and Offset Addressing Scheme Allows Relocation

Our basic process model is a standard, procedurai, stack based model of computation. We
use the complicated scheme of segment plus offset which allows programs to be
relocated in the memory system [3]. Even it also allows programs written to function
in the real mode to operate in a protected mode system. A relocateable program and
relocateable data are program ang data that can be placed in any area of memory and
are used without any change in their contents. The segment and offset addressing
scheme allows both programs and data to be relocated without changing the
instructions or contents of program or ;data, respectively. This is ideal for use in a
general-purpose computer system in which not all machines contain the same memory
areas. Because memory is addressed within a segment by an offset address, the
memory segment can be moved to any place in the memory system without changing
the offset addresses [3]. .This- is accomplished by moving the entire prdgram, as a

block, to a new area and then changing the contents of the segment registers.

Process migration occurs when a process is transferred between two machines which
differ in software environments such as compiler, operating system, or software tools.
Our study says that, if memory contents can be cloned or relocated on the same
system then they can also be cloned on another system’s memory over network. This
network can be a set-up from p2p to internet. In this way the programs picked from

real mode can also be instantiated in protected mode.

Code Mobility (Runtime Process Migration) : 82



Chapter 6 ' ' Conclusion & Future Enhancements

6.3.3 Fetching Data

In the approach to process migration, there is a need for efficient methods to identify,
assemble and restore data contents of a process. From now wards we refer data, code
and state as process. For migrating a process, all data necessary for future execution
of the process is collected (Figure 1) and then restored in the segments of the new
process on another machine. We copy the binary contents of process from the system
memory into an information stréam and store them into a buffer. Since there are two
basic types of data objects that can be contained in the memory space of a process, the

storage object and the memory reference object [4].

Due to different operating system memory management and loading operations, a
memory address used in'a process on one computer may be worthless to a process on
a different computer. When the executable file is loaded into the computer's main
memory, its contents are placed at particular memory locations, depending on the
memory management scheme used by the operating system of that node. Therefore,
while a memory address in one process refers to particular data, most probably the
same memory address might be undefined or.may refer to any unrelated data when
used by a process on another machine. For this purpose a Value-to-Pointer table is
maintained to store the data addressed by any pointex. These pointers can be identified
while scanning the memory for shipment of data. Each pointer entry in the table is
assigned with pointer’s value and offset, which makes easy to assign data values to

pointers on the destination machine.
6.3.4 Migrating the fetched data
The fetched data, code, execution state along with required register values is
transferred to the destination machine (Figure 2). We use to dispatch the copied data

(Code & data etc from the computer memory) in eXtensible Markup Language
(XML) tags from one machine to the other (Figure 1).

The reason why to use XML for shipment and maintenance is its several potential

advantages [5]. It provides

e ageneral, open and self-describing data format

Code Mobility (Runtime Process Migration) , &3



Chapter 6 Conclusion & Future Enhancements

e an open and interoperable environment for distributed applications which rely
on the concept of code mobility. This opens up the possibility to separate the
maintenance from the design and implementation aspects of code mobility.

e hierarchical and complex relationship between or within dispatched data
segments.

e creating structured documents in flexible ways.

o designed for use on the internet and for exchanging data.

All the above said points are directly related to our requirements and we think XML
most suitable for transferring data. As XML based data transfer is not secure over a

network, we apply optional security measures before transferring the process (Figure

1.

|

Exacution Siote
X ond
stiction Pointer] §

\ ‘ / E Cala Spooa |

Node-1 Node2 Legend

Figure 2 Abstract model of Code Migration
6.3.5 Protocol Encapsulation

Though we use TCP/IP for comrr;unicatjon but did not bother about the protocol to be
used while transferring the data. We are not concerned with which technique or
protocol to be adopted for dispatching or receiving the information stream. That has to
be decided by the programmer on the basis of operating system and software
environment to be used. The process can be transferred via direct network-to-network

communication (network migration) or by any other means of communication.

6.3.6 Code Retrieval and Reactivation

To restore the contents to the memory space on a different machine, the restoration

mechanism must be able to extract the collected data from the received information

Code Mobility (Runtime Process Migration) 84



Chapter 6 « Conclusion & Future Enhancements

stream and reconstruct the data structure into the memory space. When we receive
information stream of the migrating process on destination machine, we restore the
data from the information stream and reactivate it until the end of its execution. The

reverse of (Figure 1) is practiced on destination machine.
6.3.7 Resource Management

When a process is migrated from one machine to another there might be a case that
the migrated process is using a resource at the previous node. We believe either that
resource is already available at new node (Figure 3b) or resource on previous node is
shared (Figure 3a). If the resource is not available at new node then that resource
(Figure 3d) or a reference to that resource (Figure 3¢) is dispatched along with the
code, if possible. By resource we mean device(s) or file(s). The process rebinds with

the resource already available at new node or previous node, if possible.

Neda-1 4ty
i/ .

{b) Arecdy Avatable Resource

A A AT sy
R R R A e e

(c) Referenced Resoucs

Figure 3 Resource Management

6.3.8 Implementation steps of Strong Mobility
Each operation involving code mobility is divided into the following steps:

i)  Determine the requested code in the system memory.

ii)  Fetch the required code along with state into a stream or buffer.
iii) Transfer code. ' |
iv) Integrate code into the target system i.e.

a) Activate the instance of the code

Code Mobility (Runtime Process Migration) 85



Chapter 6 . Conclusion & Future Enhancements

b) Connect it to the existing data or code or resource

c) Continue its transfer over the network to yet another node if réquired.

These steps of implementing strong code mobility have been elaborated in Figure 4

Souice Machine

Figure 4 Four steps of Process Migration

'

6.3.9 Finale

We have uncovered a technique for collecting memory contents of a process on one
computer into a platform-independent infoﬁnation stream, and for restoring the data
content from that information stream to the memory space of a new brocess on a
different computer. The mechanisms of data collection and restoration enable
complicated data structures such as pointers to be migrated properly. This mechanism
examines the current program state for migration of process and can be used in
process migration, as well as in.sequential ahd parallel distributed computin'g. These
procedures may be used in any general solution of process migration over a network

to carry out the following tasks automatically and effectively.

* Recognize the complex data structures like pointers of a migrating process . for
process migration.

* Replicate the data into a machine-independent format.

e Transmit the buffered information stream for a new process on the destination

node.

Decode the transmitted information stream and retrieve the data in the memory space

of the new process and reactivate it on the destination machine.

Code Mobility (Runtime Process Migration) . 86



Bibliography and References



Code Mobility (Runtime Process Migration) Bibliography and References

Bibliography and References

Research Papers & Books

[1] Fuggeta A, Picco G. P, Vigna G., Understanding Code Mobility: Transactions On
Software Engineering. IEEE , v.24, (1998). .

[2] R.Riggs, J. Waldo, A. Wollrath, K. Bharat "Pickling State in the Java System",
Computing Systems, 9(4), pp. 313-329, Fall 1996.

[3] Barray B. Brey. The Intel Microprocessors: Fifth Edition, pp 55, 57. 2000.

[4] Sun X, Chanchio K., Data collection and restoration for homogeneous or
heterogeneous process migration: June 19, 1998.

[5] Ralf-Dieter, Friedrich, Wolfgang K., On Maintaining Code Mobility: November
2001.

{6] Iris Reinhartz-Berger, Dov Dori, Shmuel Katz. Modeling Code Mobility
Paradigms in OPM/Web: July 2002.

[7] William O., Automatic Process Selection for Load Balancing June 1992.

[8] Yeshayahu A, Raphael F., Designing a process migration facility: The Charlotte
experience. 1998.

[9] Niranjan S, Jeffrey M. B, Maggie R. B, Paul T. G, Gregory A. H, and Renia J,
Strong Mobility and Fine-Grained Resource, Control in NOMADS, 2000.

[10) Adam J. F, Process State Capture and Recovery in ngh Performance
Heterogeneous Distributed Computing Systems, 1998.

[11] Veaceslav C., Mobile Agents vs. Mobile Code.

[12] Gian P. P., p.CODE: A Lightweight and, Flexible Mobile Code Toolkit, 1998.
[13] Anna P., Programming Languages for Mobile Code.

[14]Navid N, Meije, Reactive Autonomous Mobile Agent.

[15] Gianpaolo C, Carlo G, Gian P. P, Giovanni V., Analyzing Mobile Code
Languages, 1998.

Books
[16] Barray B. Brey. The Intel Microprocessors: Fifth Edition.

[17] Software Engineering, A Practitioner’s Approach (Fourth Edition) by Roger S.
Pressman 1992, McGraw-Hill Companies Inc.

[18] Desktop Applications with Microsoft Visual C++ 6.0 MCSD Training Kit, by
Julian Lindars, Microsoft Press inc.

[19] Network Programming for Microsoft Windows, by Anthony Jones and Jim
Ohlund, Microsoft Press Inc.

[20] The Art of Assembly Language.
[21] PC Intern.

88



Bibliography and References

Code Mobility (Runtime Process Migration)

Others
¢ MSDN

e http://www.CiteSeer.org/cs

89



Appendix-A

User Manual



Appendix-A ‘ ‘ User Manual

Overview

This software is developed for coping with different distributed computing
requirements. These type of software can be used anywhere to overcome the
complexity of process mobility. This program expldits an easy to use interface and an
extraordinarily accurate, fast and reliable technique called Type-IH Mobility to

migrate the processes over a network and internet in broad-spectrum.

This software is developed in C/C++ and Visual C++,

This Program is developed by: Software Development Team

To get this software Contact: Contact us at http:/www.iiui.edu.pk

To learn about the program see the Main Windows (Applications)

Code Mobility (Runtime Process Migration) . _ 91



Appendix-A

User Manual

Splash Screen

Whenever the application starts (unless it is migrated from a remote location) a splash
screen appears on the screen. During this period necessary initializations and pre

computations are carried out. Figure 1 and Figure 2 show File Search clients and

Migration Host’s splash Screens respectively.

Figure 1 File Search Client Splash Screen

Unlocking the Potentialof
Distributed Connrsting

Figure 2 Migration Host Splash Screen

Code Mobility (Runtime Process Migration) 92



Appendix-4 ) ‘ : User Manual

Main Window (File Search Application)

This is what the main program window looks like (Figure 3)

FileSearch

Figure 3 Client Main Window

File Name It shows the path to the resource/file along with name (Figure 4). User

can not type the file name here directly rather he has to select the file with the help of

dialog, appeared by pressing browse button.

C:\Resources\Shared Resowrces\Resource 1. TXT

Figure 4 File Name

Open File Dialog User presses the browse button to locate the resource/file

through which a string has to be performed. Dialog appearing in Figure 5 is popped

up on pressing of browse button.

Code Mobility (Runtime Process Migration) 93



Appendix-A » User Manual

" |E] Resource 5

SETUPXLG

Type: Text Document
Size: 445 bytes

Figure 5 Open File Dialog

Figure 6 Search String

Search String In the edit box labeled “Search String” (Figure 6), user enters the

string which has to be searched tl'1roughl file (resource).

Pause/Resume After the searching has been started the text of control button
labeled “Search” is changed to “Pause”. On pressing of pause searching process is
suspended and the control button’s label alters to “Resume”. On pressiﬁg of resume
the searching process again starts execution Where it was suspended. Keep in mind
that it is necessary to suspend the process before we want it to migrate. Pause/Resume

button captions are shown in Figure 7.

e

() ' (i)

Figure 7 Pause (i) & Resume (ii) Buttons

Code Mobility (Runtime Process Migration) 94



Appendix-A - User Manual

[

Results This is a list control, which is used to show the search results. Whenever a
match of user provided string is confined in file (resource), corresponding results are

immediately shown in result area. Controls used for results are shown in Figure 8.

Figure 8 Search Results Display

Where serial number is the number of'occurrence, line is the line number on which
occurrence spotted and the position tells the column number or the character number

in that line from where the search string started.

Figure 9 Control Pane

Control Pane Figure 9 demonstrates the different controls provided to the user for

handling the software rather using the software in an efficient way. These include
options, help, about and exit button. All these cause an options dialog, help file, about

box and exit from the current instance of application, respectively.

About Box About box consists of the information regarding the development team,

motive of development and some other information. A screenshot of About Box is

shown in Following Figure 10.

Code Mobility (Runtime Process Migration) 95



Appendix-A User Manual

Type-li Mabliity enabled §
File Search Application
e Version 1.0.1.1

omputer Science ¢
jp]iéd‘Sciehces
Islamic University,

Figure 10 Client’s About Box

Help File Whenever during execution user needs help about the software, he may
press help button to appear online help regarding this software. This feature works

only if the process has not been migrated from any other computer. Figure 11 shows a

glimpse of help file.

Windows Help

W % = 55553 T 7
{the applicalion, deVEIOpEer and Jevelopmen

: 'Exit: Céu;es Application to terminate.

Results: This List control box displays the results found so far
The result consists offo]lowing fields

Serial No: The serial mamber. of result:

Line; Line number ofi which a string was located -
resourceffle.
Position: Character/Column mimber of the cotrespon
line on which the searching string was found.

|
|
|
|

Configurations

Figure 11 Client Help File

Code Mobility (Runtime Process Migration) ‘ 96



Appendix-A User Manual

Options Pressing the “Options” button on control pane caused the options dialog,
f
shown in Figure 12, to be appeared. Through this dialog user can set many options

concerning mobility, process and server. Options are elaborated in more detail in

subsequent headings coming on.

i Configurations

‘Figure 12 Options Dialog

Process Type of the Process Migration (Figure 13)

Migrate Means the current instance of the program terminates after it tries to

relocate it on another node/ backup server.

Clone If selected this option the process makes a copy on host and keeps

executing on the current machine as well.

Figure 13 Process Type

Code Mobility (Runtime Process Migration) ‘ 97



Appendix-A User Manual

Show Complete Results on Destination If checked means that results found

on this machine will also be displayed along with the results found on the server

machine (Figure 14).

Figure 14, Result Display options

Resource Properties of the resource/File being used (Figure 15)

Shared The resource is shared among the server and the client.

Standalone Both nodes have separate resources on same addresses/ paths.

Figure 15 Resource Type

Destination Server/destination identification which is running the service for

reception of the data space of current application (Figure 16).
IP IP address of the server.
Name Name of the server

*user can provide only one that is Server IP or Server Name but not both at a time.

When entry in edit box named “Name” is made IP field is disabled or vice versa.

Code Mobility (Runtime Process Migration) 98



Appendix-A ) ' . User Manual

Figure 16 Destination Selector

Mobility Type of the mobility which has to be carried out (Figure 17)
Weak Only code is dispatched to the destination.
Strong Code along with data and state travels to the destination.

Type-III Data and State travels to the server.

Figure 17 Mobility type Selector

Sleep Element Holdup time during searching process instruction. The reason of
providing this feature is that user or tester can experience the migration process

during searching. Default and the minimum value of sleep element is 15 milliseconds.

.

Figure 18 Sleep/Delay'element

User manual comes to an end here. Now we see the different aspects of server

application, named Migration Host.

Main Window (File Search Application)

This is what the main server program window looks like (Figure 19)

Code Mobility (Runtime Process Migration) 99



Appendix-A ' User Manual

"Mjg«t;i(bth‘s'L -

Vaj,:rion F| eserﬁh_..exe '44_8 DR (1:9: 21294 A

1 kaynoon - FilsSearch.exe 4470 21:31:16: 21419
2. Kapnoon FileSearchiexe, 4538 21:31:37 21:31:40
3 ‘kayndon FileSearch,exe 4408 . 213238 21:32:42

Figure 19 Migration Host interface

System Tray Informer Whenever a process image or data space is received by
server a message window pops up from system tray to inform or notify to the user that
a process image or data space has justlbeen received. Though we have not but, here
further options can be applied. An appearance of system tray informer has been

shown in Figure 20.

Process Recetved

Figure 20 System Tray Informer

Received Process’ History A complete list of process images/data spaces is

organized by server. A quick look is shown in Figure 21 of this list.

Code Mobility (Runtime Process Migration). ‘ ' 100



Appendix-A User Manual

This list includes

e Serial No Sequence number of received process/data space with respect of

arrival.

e Client Name Name of client who dispatched its process to Migration Host

for rehabilitation/revival.
o Image name Name of Process whose image/data space was received.
o Image Size Size of the memory image of process after revival/execution.

¢ Reception Time Time at which the process image/ data space was received

o Execution Time Time at which the process of received image/data space

was rehabilitated of re-energized.

0 n FieSeaichexe 4483 21:29.400  21:29:44 |
1. kapnoon FileSearchexe 4470 2131416 213118
12 kaynoon- FileSearch.ere’ 4538 21:31:37 21:31:40
.3

" kapnoon - FileSearch.exe 4408 21:32:34 213242 |

Figure 21 Received Process Images History

Service Terminator The Figure 22 shown below shows the control button, the
user is provided with to términate the server that is Migration Host. After the
migration host is terminated this particular system or node will not be able to receive

the process images/data spaces anymore.

Figure 22 Terminate Service

Code Mobility (Runtime Process Migration) 101



Appendix-A . ‘ . User Manual

About Box About Box of fhe server consists of version information of the

Migration Host. About Box is also shown in Figure 23

o

| About Migration Host

Figure 23 Server About Box

Since Migration host was intended to be a service running endlessly on server
machines, even then an interface to the server has been provided. The reason of not
making it the service was just to demonstrate the user, the capabilities of Type-III

mobility. Although an interface has been provided ‘but it has kept in mind that
e No more than one instance of this application can exist at a time.
e Task bar entry has been removed
¢ System tray icon has'been provided for interaction

e User can not close this application accidentally.

Code Mobility (Runtime Process Migration) 102

1



Appendix-B
Basic Concepts



Appendix-B__ ‘ Basic Concepts

1. Process

Our basic process model is a standard, procedural, stack based model of computation.
In a conventional sequential programming language, the runtime view of a program is
an executing unit which consists of a code segment, which provides the static
description of the program's behavior, and a program state. The state contains the
local data of all active routines together with control information, such as the value of
the instruction pointer and the value of return pbints for all active routines.

2. Process Migration , ,

Process migration is the function which controls how code mobility is achieved. As a
result of successful process migration the suspended process on client resumes its
execution on server. . |

3. Migration Types

Migration can be either proactive or reactive. In proactive migration, the time and
destination for migration are determined autonomously by the migrating EU. In
reactive migration, movement is triggered by a different EU that has some kind of
relationship with the EU to be migrated, e.g., an EU acting as a manager of roaming
EUs. The remote cloning

4. Cloning

Cloning is just like migration but after migration current/source instance terminates its
execution but not in case of cloning. Normally word cloning has been used in the
sense of copying on remote node.

5. Execution Unit

EU informally describes a running program with an associated state of execution. Typical
examples of EUs are single-threaded processes or individual threads of a multi-threaded
process. Resources represent eﬁternal entities that any process interacts with.

6. Computational Environment

CE is defined as computational environment provided to an EU for execution and
dynamic linking.

7. Existing Mobile Code Paradigms

Fuggetta explains that traditional approaches to software design are not sufficient
when designing large scale distributed applications that exploit code mobility and
dynamic reconfiguration of software components. In these cases, he continues, the
concepts of location, distribution of components among locations and migration of

components to different locations need to be taken.into account at the design stage.

Code Mobility (Runtime Process Migration) 104



Appendix-B ) : Basic Concepts

The three main design paradigms eXploiting code mobility are
1. Remote Evaluation
2. Code on Demand
3. Mobile Agents

Common Mobile Code Paradigms extends the
Client-Server approach from Data to Code ,

Remote Evaluation | Code on Demand Mobile Agent
Client code Data Data + code
Server | Data ' Code -

Initiator | Client sends the Client requests the | The agent initiates its
code to server and code from server . | transfer from client to
gets back results and executes it server |

Table 1: Common Code MoBility Paradigms

In fact thrice of the remote evaluation, code on demand and mobile agent extends the
client-server approach. In which one party in requester and the other is server. Any of

these two initiate the process (see Table 1).

8. Which Processes Can Execute Remotely?

Once a load balancing algorithm is determined, how can we decide which processes
should migrate to a target client? The goal of load balancing is to increase the
throughput of each workstation so that the maximum numbers of processes are
executed in the least amount of time. The goal of process selection for remote
execution is to find those processes that, when executed remotely increase the overall
throughput for the entire system. We must determine which processes can be migrated

and which of those processes should be migrated.

e Which processes should be migrated?

e Should all processes be considered candidates for migration, or only a few
particular CPU intensive processes?

e How are CPU-intensive processes to be identified?

While they provide the question, the issue is left open. We must find some means to

determine which processes are the best candidates for remote execution.

Code Mobility (Runtime Process Migration) 105



Appendix-B ‘ Basic Concepts

The three main design paradigms exploiting code mobility are
1. Remote Evaluation
2. Code on Demand

3. Mobile Agents '

Common Mobile Code Paradigms extends the
Client-Server approach from Data to Code
Remote Evaluation | Code on Demand Mobile Agent
Client code Data Data + code
Server Data Code -
Initiator | Client sends the 1 Client requests the | The agent initiates its
code to server and code from server transfer from client to
gets back results and executes it server

Table 1: Common Code Mob'ility Paradigms

In fact thrice of the remote evaluation, code on demand and mobile agent extends the
client-server approach. In which one party in requester and the other is server. Any of

these two initiate the process (see Table 1).

8. Which Processes Can Execute Remotely?

Once a load balancing algorithm is determined, how can we decide which processes
should migrate to a target client? The goal of load balancing is to increase the
throughput of each workstation so that the maximum numbers of processes are
executed .in the least amount of time. The goal of process selection for remote
execution is to find those processes that, when executed remotely increase the overall
throughput for the entire system. We must determine which processes can be migrated

and which of those processes should be migrated.

e Which processes should be migrated?

¢ Should all processes be considered candidates for migration, or only a few
particular CPU intensive processes?

e How are CPU-intensive processes to be identified?

While they provide the question, the issue is left open. We must find some means to

determine which processes are the best candidates for remote execution.

Code Mobility (Runtime Process Migration) 105



Appendix-B : . Basic Concepts

First, we must define which processes are eligible for migration. Ha"c and Jin state: If,
in the system not loaded by any additional processes, the mean response time of a
process executed locally is greater than the mean response time caused by migration
of this process and relative files, then this process is called migratable in the sense of

load balancing. Otherwise, the process is called nonmigratable.

While Gait states that during execution, a process may be rescheduled on another

Processor if:

e The local resident time slice becomes exhausted;

e An idle processor waiting for processes from other nodes makes entry into the
shared file.

e The process is swapped out to make place for newly created (or high priority)

processes.

Also system critical processes at any stage and at any cost, even fulfilling the above
said conditions and postulates can not be migrated. Examples of these processes are
smss, crss, winlogon, services, Isass (Accounts Managing services) and some more on
WINDOWS XP and WINDOWS 2000 series operating systems.

9. Process Evaluation for Migration

Another method for selecting processes to execute remotely is to estimate from past
performance whether the process should migrate. There are two problems that must
be considered when using past performance as a guide to the migratability of a
process. What characteristics should a process exhibit to be eligible for remote
execution, and what data is a;/ailable from previous executions of the process?

In History, propdsed by Svennson, the amount of CPU time necessary to complete
execution is used to determine whether a process should execute remotely. This
approach is based on the assumption that the greatest cost associated with executing a
process remotely is the amount of CPU time necessary to send the process to the
target client. Upon completion, the amount of CPU time used by the process is

recorded, and averaged in with all previously recorded times.

Code Mobility (Runtime Process Migration) 106



Appendix-B Basic Concepts

10. Solutions for implementing Code Mobility

For a convenient solutions scheme development or introduction we divide these

solutions in two categories.

e Homogeneous Systems-

e Heterogeneous Systems

10.1 Homogeneous Systems

F ollowing text suggests solutions for homogenous systems.

10.1.1 Kernel Level Mechanism

Y '

Process state capture mechanisms to support activities such as process migration and
checkpoint/restart have been the subject of a great deal of research, both in terms of
mechanisms and policies. Ideal homogeneous state capture mechanisms can be
implemented inside operating systems at the kernel level due to efficiency concerns
and because a process’ external state is more readily available at this level. For
example, systems such as Charlotte, Sprite utilize kernel-level state capture and
recovery mechanisms to support process migration. Although these and other kernel-
level homogeneous state capture mechanisms differ in certain performance related
respects, they share a common basic approach to capturing the state of a process. The

state of the process is commonly defined to consist of:

e Virtual Memory: code, stack, and data segments of the process’s address
space’

 Open Files: file descriptors, file pointers, /O buffers, etc.

e Communication Buffers: connéction information, message buffer contents,
etc.

e Processor State: current condition codes, program counter, stack pointer,
general purpose registers, etc.

e Environment Data: process identifier, user name, etc.

All of these parts of the process'state are accessible at the kernel level, and thus state
capture involves marshalling or communicating this information in a well-defined

format. For example, capturing a process’ virtual memory might involve saving the

Code Mobility (Runtime Process Migration) 107



Appendix-B . ‘ Basic Concepts

page table of the process along with the contents of any valid pages. Of course, the
implementation of state capture operations varies widely depending on the intended
use and context. For example, during process migration, an effort is often made to
transfer the minimal state needed to restart the process at its destination first, and to
transfer remaining state subsequently to reduce migration latency. Altematively,’ for
the purposes of check pointing, incrementél schemes for saving a process’s memory,
such as periodically capturing only dirty pages, may improve time/space performance.
Beyond the obvious issue of heterogeneity, kernel-level state capture schemes have a
number of undesirable features in met system contexts. First, as the number of
different architecture and operating system platforms grows, the issue of mechanism
portability becomes important in addition to efficiency concerns. Furthermore, in
metasystem approaches, it is typically infeasible to mandate replacement of the
operating system on all participating nodes. These issues, along with the requirement
of support for heterogeneity, strongly suggest the use of user-level state capture

mechanisms.

10.2 Heterogeneous Systems

User Level Mechanism described below recommends an ideal solution of code

mobility for heterogeneous systems.

10.2.1 User Level Mechanism

A number of systems to date have provided some form of homogeneous process state
capture implemented at the user level (i.e. without direct, special kernel support). For
example, Condor performs process state capture and recovery in homogeneous
environments by using a slightly modified core du}np of the process to capture and
recover memory and processor state. Needed operating system specific information
associated with the process is ma{intainéd at the user level by tracking the parameters
and return values of all system calls via‘wrapper routines. An alternative approach
described by Plank et. al. links programs with a special library that contains code to
capture a process’s internal state. In this design, processor state is captured using the

Unix setjmp system call.

Although these approaches are typically somewhat less efficient than kernel level

implementations, user-space designs are generally more portable (e.g. Condor and

Code Mobility (Runtime Process Migration) ‘ 108



Appendix-B ' : Basic Concepts

Libchckpt are highly portable among Unix-based platform). A commbn argument
against user-level state capture schemes is the difficulty involved in capturing and
recovering a process’s external and kernel-level state. For example, some user-level
approaches such as Condor and Mandelberg/Sunderam restrict certain forms of intra-
process communication mechanisms. However, this argument against user-lével state
capture mechanisms is largely unfounded, as .demonstrated systems such as
MIST/MPVM, Fail-safe PVM, and Hector. These systems provide a location
independent communication layer that leave process migrations transparent to
message paséing operations performed at the application level. Similar user-level
wrappers are possible for other services that involve external state such as file

systems.

Lo

Code Mobility (Runtime Process Migration) T 109



| Appendix—C‘ |




Information Technology Journal 3 (2): 188-191, 2004
ISSN 1682-6027 ,
© 2004 Asian Network for Scientific Information

Implementing Strong Code Mobility

Muhammad Kamran Naseem, Sohail Igbal and Khalid Rashid
Department of Computer Science, International Islamic University, Islamabad, Pakistan

Abstract: This study presents the idea of implementing strong code mobility in terms of platform independence,
microprocessor architecture reliance and resource management. Proposed system establishes a shared
connection with the resources and its surrounding environment based. on distributed structured XML -based
knowledge. The resources managed by the process are shared between the nodes, so. that the developer can
program in a centralized setting, The goal is to present a solution for strong code mobility for commonly used

platforms.

Key words: Strong code mobility, code mobility, code mobility implementation

INTRODUCTION

Code mobility is not a new concept. The research
work on distributed operating systems has followed a
more structured approach. In this research area, main
problem is to support the migration of active processes
and objects, along with their codes and data, at the
operating system' level over a network. In particular,
process migration concerns the transfer of a process
being run by an operating system, from machine where it
is running to a different one™. Though Java Applets have
gained great popularity under the definition of code
mobility but they also provide weak code mobility, where
only code is transferred, which yet has to start execution.
There are no such common technologies which provide
strong code mobility. In this study an implementation of
strong code mobility which is platform independent but
microprocessor architecture specific is presented. A
technique for user level process migration between
computers, for collecting the memory contents of a
process on one computer in an information‘stream and for
restoring the data content from the information stream to
the memory space of a new process on a different
computer are discussed. Unlike Java feature of object
serialization®, the data fetching and re-establishment
method enables complicated data structures such as
indirect memory references that is pointers, to be migrated
properly between two computer nodes. Study is based on
Intel 386 and onward microprocessor architecture.

Intel memory addressing technique: The microprocessor
has a set of rules that apply to segments whenever
memory is addressed. The rules, which apply in the real

and protected mode, define the segment register and
offset register combination™. For example, the code
segment register is always used with the instruction
pointer to address the next instruction in the program.
This combination is CS: IP or CS: EIP, depending upon the
microprocessor’s mode of operation. The code segment
register defines the start of the code segment and the
instruction pointer locates the next instruction within the
code segment.

Segment and offset addressing scheme allows relocation:
The complicated scheme of segment plus offset which
allows programs to be relocated in the memory system
was used®. Even it also allows programs written to
function in the real mode to operate in a protected mode
system. A relocate-able program and data are program and

_data that can be placed in any area of memory and used

without any change in their contents. The segment and
offset addressing scheme allows both programs and data
to be relocated without changing the instructions or
contents of program or data, respectively. This is ideal for
use in a general-purpose computer system in which not all
machines contain the same memory areas. Because
memory is addressed within a segment by an offset
address, the memory segment can be moved to any place
in the memory system without changing the offset
addresses™. This is accomplished by moving the entire
program, as a block, to a new area and then changing the
contents of the segment registers.

Process migration occurs when a process is
transferred between two machines which differ in software
environments such as compiler, operating system or
software tools. Presented study defines that, if memory

Corresponding Author: Muhammad Kamran Naseem, Department of Computer Science, International Islamic University,
Islamabad, Pakistan E-mail: kamran_naseem@yahoo.com



Inform. Technol. J., 3 (2): 188-191, 2004

—
<Codespace>
| A= | A=
‘ ode 5 —
e 5] —
e | : =
> @ =
- Cloned code
</Codespace> | [to be dispached]
Security
. - ional
Code felching XML Document (optional)

Fig. 1: Mechanism from code fetching to code dispatching

Node-1

-\ =B
B -0 Fo

» » (stock and
. instruction pointer

Execution state

Data space
Node-2 Legend

Fig. 2: Abstract model of code migration

contents can be cloned or relocated on the same system
then they can also be cloned on another system’s memory
over network. This network can be a set-up from p2p to
internet. In this way the programs picked from real mode
can also be instantiated in protected mode.

Fetching data: In the approach to process migration, there
is a need for efficient methods to identify, assemble and
restore data contents of a process. From now inwards we
refer data, code and state as process. For migrating a
process, all data necessary for future execution of the
process was collected (Fig. 1) and then restored in the
segments of the new process on another machine. We
copy the binary contents of process from the system
memory into an information stream and store them into a
buffer. Since there are two basic types of data objects that
can be contained in the memory space of a process: the
storage object and the memory reference object'”,

Due to different operating system memory
management and loading operations, a memory address
used in a process on one computer may be worthless to
a process on a different computer. When the executable

file is loaded into the computer's main memory, its
contents are placed at particular memory locations,
depending on the memory management scheme used by
the operating system of that node. Therefore, while a
memory address in one process refers to particular data,
most probably the same memory address might be

-undefined or may refer to any unrelated data when used

by a process on another machine. For this purpose a
Value-to-Pointer table was maintained to store the data
addressed by any pointer. These pointers can be
identified while scanning the memory for shipment of
data. Each pointer entry in the table was assigned with
pointer’s value and offset, which makes casy to assign
data values to pointers on the destination machine.

Migrating . the fetched data: The fetched data, code,
execution state along with required register values was
transferred to the destination machine (Fig. 2). We
use to dispatch the copied data (Code and data etc.
from the computer memory) in extensible Markup
Language (XML) tags from one machine to the other

(Fig. 1).

189



Inform. Technol. J., 3 (2): 188-191, 2004

AN PANDS PAN
Node-1 Node-2 | iNode-1 Node-2
(a) Shared resource () Already available source
AN VAN yAN ' AN
Node-1 Node-2 || Node-1 Node-2
© Referenced resource ! ‘ (d) Dispached resource
Fig. 3: Resource management
Sourve machine Target machine
Code Code Code Code
Feiching Shipping Retrieving Activating
Requested Required L Required Requested
process data data process

Fig. 4: Four steps of process migration

The reason to use XML for shipment and
maintenance is that it provide several . potential
advantages:

I. A general, open and self-describing data format

1. 2. An open and interoperable environment for
distributed applications which rely on the
concept. of code mobility. This opeﬁs up the
possibility to separate the maintenance from the
design and implementation aspects of code
mobility. '

Hierarchical and complex relationship between or

within dispatched data segments. '

Creating structured documents in flexible ways.

Designed for use on the internet and for exchanging

data. b

All the above mentioned points are directly related to
the requirements and it was observed that XML was most
suitable for transferring data. As XML based data transfer
was not secure over a network, we apply optional security
measures before transferring the process (Fig. 1).

Protocol  encapsulation: Though TCP/IP for
communication was used but we did not bother about the

190

protocol to be uséd while transferring the data.

The technique or protocol to be adopted for
dispatching or receiving the information stream was not
concerned but may be decided by the programmer on the
basis of operating system and software environment to be
used. The process can be transferred via direct network-
to-network communication (network migration) or by any
other means of communication.

Code retrieval and reactivation: To restore the contents
to the memory space on a different machine, the

restoration mechanism must be able to extract the

collected data from the received information stream and
reconstruct the ‘data structure into the memory space.
When we receive information stream of the migrating
process on destination machine, we restore the data from
the information stream and reactivate it until the end of its
execution. ‘The reverse of (Fig. 1) was practiced on
destination machine.

Resource management: When a process was migrated
from one machine to another there might be a case that
the migrated process was using a resource at the previous
node. We believe either that resource is already available
at new node (Fig. 3b) or resource on previous node is



4

Inform. Technol. J., 3 (2): 188-191, 2004

shared (Fig. 3a). If the resource is not available at new
node then that resource (Fig. 3d) or a reference to that
resource (Fig. 3c) is dispatched along with the code, if
possible. Here by resource we mean device (s) or file (s).
The process rebinds with the resource already available
at new node or previous node, if possible. ) \

Steps of strong code mobility implementation: Each
operation involving code mobility is divided into
- following steps:

(I} Determine the requested code in the system memory

(i) Fetch the required code along with state into a stream
or buffer

(iii) Transfer code

(iv) Integrate code into the target system: I-e

(a) Activate the instance of the code '

(b) Connect it to the existing data or code or resource

© Continue its transfer over the network to yet another
node if required.
These steps of implementing strong code mobility

have been elaborated in Fig. 4.

DISCUSSION

Applications of process migration inclu(ie

Load distribution: migrating processes from overloaded
machines to under loaded machines to exploit unused
_ computing cycles.

Fault resilience: Migrating processes from those
machines that may experience partial failure.

Resource sharing: Migrating processes to machines with
special hardware or other unique resources such as
databases or peripherals required for computations.

Data access locality: Migrating processes toward the
source of data.

Mobile computing: Migrating processes from a hostto a
mobile computer.

191

A technique for collecting memory contents of a

_process on one computer into a platform-independent

information stream and for restoring the data content from
that information stream to the memory space of a new
process on -a different computer was presented. The
mechanisms of ‘data collection and restoration enable
complicated data structures such as pointers to be
migrated properly. This mechanism examines the current
program state for migration of process and can be used in
process migration, as well as in sequential and paraliel
distributed computing. These procedures may be used in
any general solution of process migration over a network
to carry out the following tasks automatically and
effectively.

® - Recognize the complex data structures like pointers of
a migrating process for process migration

® Replicate the data into a machine-independent format

¢ Transmit the buffered information stream for a new
process on the destination node

e Decode the transmitted information stream and

retricve the data in the memory space of the new
process and reactivate it on the destination machine

REFERENCES

1. Fuggeta, A, G.P. Picco and G. Vigna, 1998.
. Understanding Code Mobility: Transactions on
Software Engineering. IEEE., 24.
2. Riggs, R, J. Waldo, A. Wollrath and K. Bharat, 1996.
. Pickling State in the Java System, Computer Sys.,
- 9:313-329.
3. Barray, B.B., 2000 The Intel Microprocessors:
5th Edn., pp: 55-57.

4. Sun, Xian-He and K. Chanchio, 1998. Data collection

and restoration for homogeneous or heterogeneous
process migration. Software Practice and Experience,
32:1-27.



Notes




. Notes

Code Mobility (Runtime Process Migration) _ 116



Notes

Code Mobility (Runtime Process Migration) ' 117



