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Preface

The study of boundary layer flow [1-7] has attracted many researchers in past three decades.
This theory is due to Ludwig Prandtl [8]. According to which the viscous effects are
significant in a thin layer near the boundary called as a boundary layer. This assumption not
only simplified the Navier-Stokes equations but also resolved the dilemma between the
difference in experimental and theoretical results in fluid flow past solid boundaries. The
first successful implementation of boundary layer theory was discussed by Blasius in his
doctoral thesis [9] who was a student of Prandtl. Blasius problem is one of the famous
problems in boundary layer theory. In the Blasius flow the free stream velocity was assumed
to be constant. Later on Falkner and Skan [10] discovered a very famous similarity solution
for variable free stream velocity. The numerical solution of the transformed equations was
given by Hartree [11}.

The Falkner-Skan flow has been studied in different ways extensively in the literature. The
study of temperature field associated with two dimensional steady and incompressible
boundary layer flow governed by the Falkner-Skan equation has extensive application in the
field of hydrodynamics and aerodynamics. Researchers such as Hsu et al [12], Assaithabi
[13], Howarth [14], Cebecci and Keller [15] and Sher and Yakhot [16] have studied the
Falkner-Skan wedge flow numerically due to difficulties arising in obtaining exact solutions
of the problems in close form. As for as Heat transfer analysis of Falkner-Skan wedge flow
is concern, Lin and Lin [17] has introduced a similarity solution method for the forced
convection heat transfer of any prandtl number and then solve it by using numerical scheme
such as shooting method. Later on Kuo [18] studied the heat transfer analysis of the Falkner-
Skan wedge flow by converting it into a pair of initial value problem and then solved it by
using differential transform method. Since there were problem in finding the solution with
the Falkner-Skan wedge flow with numerical scheme, as one has to find the solution for
each discrete value of the parameter separately. It took lot of time to calculate the solution of
the problem within reasonable range of the parameter. In order to rectify this situation, Liao
introduced homotopy analysis method in his book Beyond Perturbation [19] which is rapid
convergent series solution approach. Later, Liao [20] has applied this method to give an
analytical solution of the temperature distribution in viscous Blasius flow Problem. Since
then, lot of work of this field have been investigated by different authors [21-33] and
established the fact of homotpy analysis method as rapid convergent method.

In this thesis, Chapter 1 comprises basic definitions and preliminaries of the homotopy
analysis method. In chapter 2, temperature distribution in the falkner-Skan wedge flow by
Yao [34] is reproduced and compared its results with numerical results in the book [35]. In
chapter 3, we extend the analysis of Yao and investigated the heat and mass transfer effects
in the Falkner-Skan wedge flow with radiation by using homotopy analysis method.
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Chapter 1

Preliminaries

In this chapter, some basic definitions, concepts of different types of fluids and basic equations
which govern the flow are given. The basic idea of homotopy analysis method (HAM) and its
advantages are explained in this chapter.

1.1 Deformation

It is a relative change in position or length of the fluid particles.

1.2 Fluid

A fluid is a substance that deforms continuously under the application of shearing, i.e., tangen-
tial stress, no matter how small the shearing stress is but in the absence of it there is no change

in position of fluid particles.

1.3 Flow

In the presence of different forces, material goes under deformation. In many cases, this de-
formation of fluid is change of position of particles. If this change in position of fluid particles

continuously increases without limit, the process is known as flow.
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1.4 Fluid Mechanics

It is the branch of engineering and physics that deals with the nature and properties of the
fluid both in motion and at rest.In practice, the study of fluid-mechanics can be divided into

two categories

1.4.1 Internal flow systems

Are those where fluid flows through confined spaces e.g., flow through pipes, pumping of blood

through blood arteries and water in the channels.

1.4.2 External flow systems

Are those where confining boundaries are at relatively larger or at infinite distance such as

atmosphere through which airplanes and space vehicles travel.

1.5 Stress Field

A field in which surface forces and body forces are in-countered are called stress field. A stress

field is a region where the stress (surface forces and body forces) is defined at every point.

1.6 Surface Force.

Surface forces include all the forces acting on the boundary through direct contact. Since these

forces act only in the short range, therefore these forces are also called short range forces.

1.7 Body Forces

Forces which does not require any physical contact and distributed over the whole volume of
the fluid are known as body forces. Gravitational and electromagnetic forces are categorized as

body forces. These are infect long range forces.



1.8 Pressure

Pressure is a surface force that acts normal to the area under consideration. The force per
unit area is called pressure.Let A is the surface area of a fluid and F is the magnitude of force
acting normal to the surface, then the pressure p* due to the force on unit area of this surface
is defined as

*

F
p = _A,_. (1.1)

1.9 Density

It is defined as the mass per unit volume. Mathematically it can be can written as

(1.2)

B~
i
<13

Here p is the density, m is the mass and V is the volume.

1.10 Viscosity

Viscosity is the measure of the resistance of a fluid which is being deformed by either shear
stress or tangential stress. In general, viscosity is "thickness" thus, either is "thin" having a
lower viscosity, while honey is thick having a higher viscosity. It is mathematically defined as

the ratio of shear stress to the rate of shear strain.i.e.

shear stress

= Tate of shear strain’ (13)
where p is the coeflicient of viscosity.
1.11 Kinematic viscosity
The ratio of viscosity to density is referred as kinematic viscosity v defined as follows
b
v=-. 14
> (1.4)

(=]
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1.\12 Classification of fluids

1.12.1 Ideal fluids

The fluids, for which viscosity is zero are termed as ideal fluids. The fluid with zero viscosity
offers no resistance to shearing forces and hence during the flow the deformation of the fluid
all shear forces are zero. An ideal fluid is fictitious and does not exist in nature however many
fluids under certain engineering applications show negligible viscosity effects and can be treated

as ideal fluids. All ideal fluids are incompressible.

1.12.2 Real fluids

All the fluids for which dynamic viscosity is non-zero are known as real fluids. Real fluids are

also known as viscous fluids.

1.12.3 Newton’s law of viscosity.

According to this law “shear stress is directly and linearly proportional to the rate of deforma-

tion” .For one dimensional flow we can write as

du
Tyz = l‘@, (1.5)

where T, is the shear stress and du/dy is a deformation rate. Real fluids are further classified

into two classes on the basis of Newton’s law of viscosity

1.12.4 Compressible fluids

All real fluids are said to be compressible to some extent, that is change in pressure or tempera-
ture will result in change in density. All the gases are treated as compressible flows.Mathematically

Vv £0.

1.12.5 Incompressible fluids

If the change of pressure or temperature is so small and will produce negligible change in

density. In this situation the fluid is termed as incompressible. All the liquids are treated as



incompressible lows. Mathematically %’f = 0 => p =constant. Where d/dt is called material
derivative, i.e, p is constant not only with respect to time but also with respect to space

coordinates. In this case V.v=0.

1.12.6 Newtonian fluids

The fluids which obey Newton’s law of viscosity are categorized as Newtonian fluids. In New-
tonian fluids the viscosity coefficient is independent of the rate of deformation. Water, air,

gasoline and mercury are some examples of Newtonian fluids.

1.12.7 Non-Newtonian fluids

The fluids for which “shear stress is directly but non-linearly proportional to the rate of
deformation”. Mathematically it is defined as

Tyz =k (%) , n#l (1.6)
or,
du
Tyz = 1) (@) ’ (17)
where .
du\""
- (E§> (1.8)

is the apparent viscosity which is a function of the rate of deformation. Examples of non-

Newtonian fluids are tooth paste, ketchup, gel, shampoo, blood and soaps etc.

1.13 Types of flows

1.13.1 Uniform flow

The flow in which the velocities of fluid particles at all sections of a pipe or channel] are same.



1.13.2 Non-uniform flow
The flow in which the velocities of fluid particles are not the same at all sections of the flow

domain.

1.13.3 Steady flow

A flow in which the quantity of fluid flowing per second is constant . In other words, flow for

which fluid properties are independ of time. For such flow

o _
-a"t‘ = 01 (1'9)

where + is the any fluid property and ¢ is the time.

1.13.4 Unsteady flow

A flow in which the quantity of fluid flowing per second is not constant .i.e., velocity depends
upon time so
3y
— # (. 10
5 7 0 (1.10)
1.13.5 Laminar Flow
The smooth flow of :9. fluid in which adjoining layers of the fluid flow parallel to one another.
During laminar flow, all the fluid particles move in distinct and separate layers; there is no

mixing between adjacent layers.

1.13.6 Porosity

The measure of void spaces in a material is called porosity and is a fraction of volume of voids

over the total volume.

1.13.7 Porous medium

A porous medium is a material containing pores (voids). Natural porous media include soil,
sand, mineral salts, sponge, wood etc. Synthetic porous media include paper, cloth filters,

chemical reaction catalysts and membranes.



1.13.8 Prandtl number

The Prandtl number Pr is a dimensionless number which is the reaction of the product of

dynamic viscosity and specific heat with thermal conductivity %, i.e .,

P = .“_k“z (1.11)

The Prandtl number serves as to control the relative thickness of the momentum and thermal

boundary layers.

1.13.9 Schmidt Number

Schmidt number is a dimensionless number defined as the ratio of momentum diffusivity (viscos-
ity) and mass diffusivity and is used to characterize fluid flows in which there are simultaneous

momentum and mass diffusion convection processes. It is denoted by Sc and defined as

_v _ B viscous diffusion rate
Se = D = pD ~ molecular (mass) diffusion rate (112)

1.14 Falkner-Skan flow.

A Falkner-Skan flow is an external flow with a pressure gradient in which the free stream velocity

Ueo(Z) is proportional to z™

Uoo ¢ T (1.13)

1.15 Falkner-Skan Transformation.

The transformations for incompressible external flows is the Falkner-Skan transformation

U = (ueva)'/2f(n), (1.1)
n= (%‘i)lﬂy, (1.2)
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used extensively for external boundary-layer flows. The Falkner-Skan transformation can be
used to reduce the boundary-layer equations into ordinary differential equations for similar

flows. It can also be used for nonsimilar flows for convenience in numerical work.

1.16 Heat-Transfer

Heat is the total kinetic energy of all the molecules of the substance transfers from one system
to a second system at lower temperature, by virtue of the temperature difference. Heat transfer
to a body increases its thermal energy, just as doing work on a body increases its momentum

and kinetic energy.

1.17 Mass Transfer

Mass transfer is the transfer of mass from high concentration to low concentration. The phrase
is commonly used in engineering for physical processes that involve molecular and convective

transport of atoms and molecules within physical systems.

1.18 Homotopic functions

In topology two functions are said to be homotopic if one function can be transformed contin-
uously into the other. Formally, a homotopy between two continuous functions f and g from a

topological space X to a topological space Y is defined to be a continuous function
H:Xx[0,1] -, (1.15)

from the product of the space X with the unit interval [0,1] to Y such that for all point z in
X and
H(z,0) = f(z) , H(z,1) = g(z). (1.16)

If we consider second coordinate as time t then at time t = 0 we have the initial function f and

at £ = 1 we have the terminal function g.

11



1.19 Homotopy analysis method

In fluid mechanics, mostly differential equations representing the fluid flow phenomena are
nonlinear. Since it is very difficult to find out the exact solution of those nonlinear problems, so
we have no choice other than numerical schemes. In numerical scheme, we need a large amount
of time in developing solution for every single value of the parameter involved in nonlinear
differential equation. For this reason we preferred to use series solution method for finding
the solution. Amongst them homotopy analysis method introduced by Liao {19] is common in
practice due to its advantages over rest of the methods the basic idea of HAM is described as

follow:

1. Consider a nonlinear equation governed by
A(u) + f(r)=0, (1.3)

where A is a nonlinear operator, f(r) is a known function and u is an unknown function.

By means of homotopy analysis method, one first constructs a family of equations
(1 = QLH(r, p) — uo(r)] = ¢i{ A[t(r, p) — F(r)]}- (1.4)

where u,(r) is an initial guess chosen by using the "Rule of solution expression” such that
it satisfies the boundary conditions, £ is an auxiliary linear operator is to be chosen in
such a way that it must generate the set of base functions that are used to define the
initial guess, % is an auxiliary parameter, q € [0,1] is an embedding parameter, T(r, q)

is an unknown function of r and g. Liao [6] expanded ¥(r, q) in Taylor series about the

embedding parameter -
"U(r,p) = uo(r) + Z Um(r)qm, (15)
m=]
where
1 8™%(r,q)
U (r) = o lg=0 (1.6)

The convergence of the series (1.19) depends upon the auxiliary parameter A. If it is

12



convergent at g = 1, one has

[0 <}
u(r) = uo(r) + Z U (T) (1.7)
m==1
Differentiating the zeroth order deformation equation (1.35) m-times with respect to p
and then dividing them by m! and finally setting ¢ = 0 we obtain the following mth- order

deformation equation

Ltm(r) = XmUm—-1(r)] = FRm (1), (1.8)
in which
xm={ hmsl (19)
I, m>1

m=]1

k-1 o
R (1) = T - o {‘flqk_‘f {uo(r) +2 um(r)q'"] } (1.10)
p=0

There are many different ways to get the higher order deformation equations. However,
according to the fundamental theorem in calculus [7}, the term um(r) in the series (1.19)
is unique. Note that HAM contains an auxiliary parameters A, which provides us with a
simple way to control and adjust the convergence of the series solution (1.21) .

1.19.1 Advantages of HAM

The HAM has following advantages,

1. It is valid even if a given non-linear problem does not contain any small/large parameters

at all

2. It provides us with a convenient way to control the convergence of approximation series

and adjust convergence regions where necessary

3. It can be employed to efficiently approximate a nonlinear problem by choosing different

sets of base function.

13



Chapter 2

Heat and mass transfer in the

Falkner-Skan wedge flow

2.1 Introduction

Baoheng Yao [34] consider the temperature distribution in the Falkner-Skan wedge flow. Hom-
potopy analysis method is applied to solve the governing nonlinear ordinary differential equa-
tion. Convergence of the solution is' discussed the effect of the sundry parameters is also

discussed in this chapter.

2.2 Mathematical description

Let us consider a two-dimensional steady and incopressible boundary layer flow passing a wédge,

for a main stream with velocity U varying as z* , the transformations

n =y —q%:-fu, | 2.1)
lz,y) = \/%g%f(n) (2.2)

These are the velocity components along and normal to the boundary layer. Now by using these

velocity components in two dimensional steady and incompressible laminar flow, the governing

P

14



Navier Stock’s equation

uéu- +v§2 = U?—U— + ng_"j
dr 8y = O Oy?

reduce to a famous nonlinear Falkner-Skan equation

)+ f)f"(n) + BlL - ()] =0 (2.1)

with the boundary conditions
fO =0, F0)=0, f(+oo)=1 (2.4)

Where 8 = (,%5 is a parameter of the stream wise pressure gradient, ¥(z,y) is a stream
function,  and y are coordinates along and normal to the boundary layer, and v is the kinematic
viscosity. To consider the related heat transfer problem, a non-dimensional temperature is define

as
Tw -T

0=TW—T°°

(2.5)

Where T denotes the dimensional temperature, and Ty and T, are constant temperature at
the boundary and at infinity, respectively. Thus in the absence of frictional heat, 8(n) satisfies

the second order differentials equation

8" (n) + Pr f(n)6'(n) = 0 (2.6)

with boundary conditions

8(0) = 0, 6(+00) = 1 @.7)

-

where Pr is the Prandt] number which is the ratio of the momentum diffusivity of the fluid and
its thermal diffusivity. In order to solve Eq. (2.3) and (2.6) subject to the boundary conditions
(2.4) and (2.7), homotopy analysis method is used.

15



2.3 Series solution by HAM

1 [ ] ’ i 1 y

. . « » . 4 te
functions helps to accelerate the convergence of the series solution. Similarly, an inappropria

choice of base functions result in divergence of the series solution. The chosen basis function

also determine the choice of initial guess for HAM solution. Consider the boundary conditions

in (2.4) and (2.7), it is appropriate to choose two sets of basis functions for f and 8 respectively

{nme—‘znn, m,m > 0}, (28)
and
{n™e™,m,n > 0},

(2.9)
to express the solutions of Egs. (2.3) and (2.6) as

+00 +00

=YY aman™e ™, (2.10)

m=0n=0
and
+00 400

B =33 bman™e™™, (2.11)

m=0n=0

where am 5 and by n are coefficients to be determined.

2.4 Zeroth-order deformation equation of HAM

Consider the boundary conditions in (2.4) and (2.7) and the solution expression in (2.10) and
(2.11), the initial guess which satisfies the prescribed boundary conditions are chosen to be

2
folm) =1 == 5 i (2.12)

and

fo(m) =1-e€™", (2.13)

16



for f and 6 respectively and correspondingly linear operators £ and £y are chosen as

Foa 0
£y=r—4—, 2.14
/ o on (2.14)
and
0? 0
£o= 7=+ =—, 2.15
which satisfies the following conditions
.£‘f[Clez'7 +Ce™ 4 C3) =0 (2.16)
and
£o[D1e™ + Dg] =0 (2.17)

where Ci(i = 1 — 3) and D;j(j = 1,2) are integral constants to be determined by boundary
conditions. Obviously, C; should be chosen to be zero because we seek a finite solution. The

zeroth-order deformation problems are :

(1 —q@)£7[F(n;9) — fo(n)] = gh1H(n)N1[F(n, q)] (2.18)

and

(1 —q)£4[6(n; @) — 6o(n)] = ghaHa(n) N2[F (1, q),6(n, q)] (2.19)

with the boundary conditions

M) | o= 1,6(0;0) = 0,6(+o050) =1,  (2.20)

F(0,0) =0, 2ED o= 0, 200

S on

where
MiF(n, a)] = 33F(n,q) + Flmg )a2F(n,q) + B[ - (aFé:;’;q)).‘,]

Nz[F(n,9),6(n,9)] = Qf%%—@ +Pr.F(m;q) .39597:’; 9)

and g € [0,1] is an embedding parameter, hy and fy are non-zero auxiliary parameter, Hy(n)
and Hy(n) are non-zero auxiliary functions. Clearly, when ¢ = 0, the solutions to Eqs. (2.18)

17



and (2.19) are given by
F(n;0) = fo(n), 6(n;0) = 6o(n) (2.21)

and when g = 1, because of /i # 0, Hy(n) # 0 and Hy(n) # 0 the solutions are equivalent to
those of Eqs. (2.3) and (2.6) provided that the conditions

F(n;1) = f(n) (2.22)

and
0(m;1) = 6(n) (2.23)

are satisfied. Therefore, as the embedding parameter ¢ increases from 0 to 1, ¢(n;q) varies
continuously from the initial guess solutions fo(n), o(n) to the exact solutions f(n) and 6(n)
of Eq. (2.3), and so does (n; q) from the initial guess solution fg(n) to the exact solution (1)
of Eq. (2.6). This process is so-called deformation in topology. With the aid of terms used in
topology, Eqgs. (2.18) and (2.19) are correspondingly called zeroth-order deformation equations
of HAM. Therefore, F'(7; q) and 8(n; g) can be expanded in a Taylor series with respect to q as

+00
F(n;9) = folm) + Y _ fu(n)g* (2.24)
k=1

and

+00
8(m;9) = 6o(n) + »_ Ok(n)g* (2.25)
k=1

where

) = 5 TEBD |, (2.26)

and

Ok(n) = %ng—sz;q)‘ lg=0 (2.27)

Obviously, the convergence region of the series (2.24) and (2.25) depends upon the choice of
auxiliary linear operators £ and £y, the auxiliary parameter /; & /i, and the two non-zero
auxiliary functions Hy(n) and Hg(n). If all of them are properly chosen so that convergences

of the above two series solutions at ¢ = 1 are guaranteed, the series solutions Egs. (3) and (6)
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can be expressed as follows

+co

F(mq) = fo(m)+ Y, fx(n) (2.28)
k=1
+co

6(niq) = bo(m) + 3 6u () (2.20)
k=1

2.5 kth-order deformation equation of HAM

For convenience, define the vectors

Fi={foln), i(m), Folm), o S (M, (2:30)

Bk = {60(n), 61(n), 62(m), .., Bx(m)}, (2.31)

Where k € N. Differentiating the zero-order deformation Eqs. (2.18) and (2.19) & times with
respect to g, setting ¢ = 0 and then dividing by k!, the k-th order deformation equation is
obtained as

£4[fu(n) = Ui fuor(m)] = B Hp(m)RL(Fr_yom), (2.2)
£L0[0x(1) = Webr_1(n)] = haHp(n) R (fr—1,05-1,7), (2.3)

with the boundary conditions

fe(0) =0, £,(0) =0, fi(+00) =0, (24)
8x(0) = 0, fx(+00) =0, (2.5)
where
\1:,,={ Ok<1 , (2.6)
1,k>1

k-1
RB{(fe-t,m) = fea(n) + 3, [fi0) fiasm) = BEMMfeca—s(n)] + B0 - W), (2:36)

=0
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k-1

RY(fe-1,0%-1,1) = 6y (n) + Pr > £ (n)Fi—1_;(n)- (2.37)
=0

Let f£(n) and 6x(n) denotes special solution of equations

£7 (R ()] = M By (MR (fe-1,7), (2:38)

£0 [63(n)] = P2Ho(n)Ric(fe-1,0k-1,1m) (2.39)

and then according to the properties of linear operators in Eqs.(2.16) and (2.17), we seek the
solutions to Eqs.(2.32) and (2.33) in the following form

Fe(m) = Wi feo1(m) + f(n) + CF e + CEe™ + CF (2.40)

8k(n) = Vabi—1(n) + 63(n) + Df'e™ + Dff (2.41)
where Cf, CX, and C¥ are coefficients to be determined by the boundary conditions in (2.34),
i.e.
ck =0,

ot =-r0- %Y,
Dff = -6; (0),
DX =0 (2.42)

Furthermore, according to the rules of the solution expression and coefficient ergodicity by the
HAM and as HAM provides great freedom to choose the auxiliary function the proper choice
of ;auxilia.ry function the appropriate auxiliary function help to accelerate the convergence of
the series solution. It is observed that the auxiliary functions Hy(n) and Hy(n) are uniquely
determined by

Hy(n) =1, Ho(n) =e™" (2.43)
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Thus, the non-linear Eqs.(2.3) and (2.6) are converted into a series of linear boundary value
problems as Eqs.(2.32) and (2.33),which can be easily solved by symbolic computation software
such as Mathematica and Maple.

2.6 Results and analysis

reveo;
s

Fig. 2.1: The 10th-order HAM solution of f”(0) with different %; verses § = 2 (solid line
fiy = —3/2; dotted line iy = —1; dashed line k3 = —1/2). The dots represent the numerical
results of White [35].
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Fig.2.2: The 10th order HAM solution of 6'(0) as a function of k; with 8 = 2 and A,
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Fig. 2.3: The 10th-order HAM solution of 6’(0) verses Pr § = 0,1,2‘when B
kg = —1/2. The dots represent the numerical results of White (35].
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Fig. 2.4: The 10th-order HAM solution §'(0) with different A, verses Pr (solid line h = —1;
dotted line by = —1/2;dashed line fip = —1/(1 + Pr/20)), when 8 = 2 K; = 1. The dots
represent the numerical results of White [35].
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Fig. 2.5: Comparison of the 15th order HAM solution of f/(n) verses n with the numerical
results by White [35] for 8 = 0,1 and 2.The dots represents the numerical results of White {35].
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Fig. 2.6: The 15th order analytical solution of 8(n) for the heat analysis of the Falkner-Skan
wedge flow with 8 = 2, Pr = 20 and A; = —1, i = —1/2.The solid line represents the 30th
order HAM approximate solution and dots represent 10th order HAM solution.
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Fig. 2.7: The 15th order analytical solution of & () as a function of 7 for the heat analysis of
the Falkner-Skan wedge flow with § = 2, Pr = 20 and F; = —1, hp = —1/2. The solid line
represents the 15th order HAM solution,and dots represent 10th order HAM solution.
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2.7 Results and Discussion

In order to assure the convergence of the series solution of the given nonlinear boundary value
problem for all required range of the parameters, we need to find the most appropriate value of
hy for the solution f(n) particularly. For this purpose Fig. 2.1 is drawn which represents the
graph of 10th order HAM solution of f” (0) against B for different values of A; = —3/2,—1 and
—1/2. It is observed that the values of f”(0) for A; = —3/2 coincide with the numerical values
of White [35] only in the range 8 < 3 and for all larger values it deviates from the numerical
results. However the values of f”(0) for A; = —1 coincide with the numerical data upto the
range of 8 < 5,which clearly indicate that the choice of 5; = —1 is comparatively better than
the ki; = —3/2. Most interestingly, It is seen that the values of f”(0) matches with the numerical
values upto the range of 8 = 10 with A; = —1/2. In fig. 2.2, Ay—curve is drawn for different
values of the parameters Pr = 1,5 and 10 of 10th order approximate solution 6'(0) with 8 = 2
with k; = —1. As pointed out by Liao [19], the region of hy for which the curve ¢ (0) verses hyp
is horizontal is valid region for the auxiliary parameter #g.

It can easily be seen that for all values of Pr = 1,5 and 10, the value of Az can be used
for the interval of [—1.5,—0.5]. However, for larger values of Pr, it is observed that the choice
of fip = —1/2 is not appropriate as shown in Fig. 2.3. It is observed that the value of 9'(0)
c&incide with the given numerical result for upto Pr < 30 for 8 = 0,1 and 2 with the choice
of ip = —1/2. Fig. 2.4 represents the 10th order approximate solution 9’(0) with different
values of hp = ~1, hp = —1/2 and K = 1/(1 + Pr /20) against Pr. It is observed that with
hp = —1, the value of 9'(0) coincide with the numerical values only upto Pr < 20, the choice of
hp = —1/2 can enhance the convergence of solution upto Pr < 30. Furthermore it is observed
that the choice of .ﬁz =1/(1+Pr /20) is most appropriate and can be helpful for the assurance
of the convergence for upto very larger value of Pr = 100,as with this choice of %, values of
6’ (0) coincide with the numerical values only upto 0 < Pr < 100.

A comparison of the 15th order HAM solution f'(n) verses n with the numerical results
by White is shown in Fig. 2.5. It is observed that the 15th order HAM solution shows good
agreement with the numerical solution of White for 8 = 0,1 and 2. By increasing the order of
approximate solution, accuracy of any order can be achieved. Moreover, comparison of the 15th

order HAM solution 8(n) with 10th order HAM solution for A = —1/2 is shown in Fig. 2.6
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with 8 =2, Pr = 20, h; = —land h; = —1/2. Comparison of 15th and 10th order aﬁproximate
analytical solutions § () for the heat transfer analysis of the Falkner-Skan wedge flow with
f=2,Pr=20and i = —% is shown in Fig. 2.7. This further shows the convergence of the
series solution to the heat transfer of the Falkner-Skan wedge flow according to the homotopy

analysis method.

2.8 Conclusions

An efficient homotopy analysis method, has been applied to investigate the temperature field
associated with the Falkner-Skan boundary-layer problem and a series solution is presented in
this chapter. Interestingly, the choice of i provides an easy way to extend the convergent region
of the series solution to heat transfer analysis of the Falkner-Skan wedge flow. The results agree
well with those of the numerical method by White. The results of the present work are effective
for a very large range of Prandtl numbers (0 < Pr < 100), which shows the validity of the series

solution.
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C‘hapter 3

Heat and mass transfer in the
Falkner-Skan wedge flow with

radiation

In this chapter heat and mass transfer in the Falkner-Sken wedge flow with radiation is con-
sidered. The governing ordinary differential equation is solved by rapid convergent homotopy
analysis method. Convergence of the solution is properly analyzed. The effects of the pertinent

parameters are shown and discussed through graphs in this chapter.

3.1 Mathematical description

The boundary layer equation of the mass concentration is given by

8¢  Oc & e
'wa—x + 'U@ = Dw, (31)
where
¢ = cw®(n), 3.2)
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with the boundary conditions

¢ = cy,aty=0,

C = Cooy 88 Y —* 00. (3.3)
Now
dc _ ’ y U(k + 1)
Oc U(k + 1)
cw® 3.5
3 = (n) (3.5)
d%c U(k+1)
2 =t [ 252D, (36)
Now replacing the above results and after simplifying
" (n) + Sef () () = 0 (37)
where
_ C—Co v
o= E—— and S, = IES)) (3.8)
where S, is the Schmidt number. The boundary conditions become
®n) = 1 —-n=0,
®(n) = 0 —-n=o0. (3.9)

To consider the related heat transfer problem, a non-dimensional temperature is define as

Tw-T

9=TW—T°°

(3.10)

Where T denotes the dimensional temperature, and Tw and T, are constant temperature at

the boundary and at infinity, respectively. Thus in the presence of radiation, §(n) satisfies the
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THBO33

second order differential equation
3 1 '
(1 + 3Ra)6" () + Pr.f(n)6 () =0, (311)

with boundary conditions given in Eq. (2.7). Here Ry is radiation number. To solve the system
of differential equation (2.3,3.8) and (3.12) subject to the boundary conditions (2.4), (3.10) and
(2.7) respectively, homotopy analysis method is used. The procedure for the solution of the Eq.
(2.3) subject to the boundary condition (2.4) is same as given in chapter 2. However, for the

solution of Eq. (3.12), homotopy is applied as in the next section.

3.2 Series solution by HAM

3.2.1 Zeroth-order deformation equation of HAM

Consider the boundary conditions in Eq. (3.10) and the solution expression in (2.11) for the

Eq. (3.8), the initial guess which satisfies the prescribed boundary conditions are chosen to be

¢0(’7) = e_ﬂi (312)

for ¢ corresponding linear operé.tor £ is defined as

o 9
£o= =+ —, 3.13
which satisfies the following condition
£¢[E1e_” + Ez] =0, (3.14)

where E;(j = 1,2) are constants of integration to be determined by boundary conditions.
Obviously, to have finite solution, Eo must be chosen to be zero. Zeroth order deformation

equations for HAM is constructed as

(1 — q)£4[®(m; 9) ~ do(n)] = ahiaHy(m)N3[®(n; 9), F(n, q)] (3.15)

i
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with the boundary conditions
®(0;¢) =1 and ®(+00;q) =0. (3.16)

where

25 (-
No{F(n,0), (n, )] = ToBD) | gy, q)a‘I’(’?» )

o
and ¢ € [0,1] is embedding parameter, fi3 is non-zero auxiliary parameter, Hs(n) is non-zero
auxiliary functions. Clearly, when ¢ varies from 0 to 1, ¢(n;q) varies continuously from the

initial guess solution to the final approximate solution, i.e.

®(n;0) = ¢o(n), B(m;1) = é(n). (3.17)

Where ®(7; ¢) can be written with the help of Taylor series as

<400
o(n; q) = do(m) + _ de(ma* (3.18)
k=1
where
$r(n) = }:,Q—(I;—((}q—) lg=o0 - (3.19)

Obviously, the convergence region of the series (3.18) depends upon the choice of auxiliary
linear operators £4, the auxiliary parameter /iy & 3, and the auxiliary functions Hg(n). If
all of them are properly chosen in such a way so that convergences of the above two series at

g =1 are guaranteed, then due to Eq. (3.17), we get
400
2(n;q) = do(m) + Y_ ¢x(m) (3.20)
=]

3.3 kth-order deformation equation of HAM

For convenience, define the vectors

¢k = {¢o(n),¢1(ﬂ),¢2(7l), ’¢k(n)} ) (321)
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Where k£ € N. Differentiating the zero-order deformation Eqs. (3.15) with respect to the
embedding parameter g, k times and setting ¢ = 0 and then dividing by k!, the kth order

deformation equation is obtained as

£164() = Vb1 ()] = BsHy(D) R (Bt f1_yo ), (3.22)

with the boundary conditions
$x(0) =0, ¢y(+00) =0, (3.23)

where Uy is defined in Eq. (2.6).

k-1

RY(Bp—1» Fe1,1) = $pr (0) + 5 Y £ (M1 (n)- (3.24)

—0

Let ¢;(n) denotes a special solution of the equation defined as

£4[$1()) = HaHs(n)RE (fr1, br—1,,7) (3.25)

and then according to the properties of linear operators in Eqgs.(3.14), we seek the solutions to

Eqs.(3.7) in the following form
() = Tidy 1 (1) + $i(n) + Ef €™ + Eff (3.26)
where Ef and EX are coefficients to be determined by the boundary conditions in (3.23), i.e.
EX = ¢ (0) and EX =0. (3.27)
It is observed that the auxiliary functions Hy(n) can conveniently be determined by
Hy(n) =™ (3.28)

Thus, the nonlinear system of Eqs. (2.1,3.7) and (3.11) are converted into a series of linear
boundary value problems as Egs.(2.2,2.3) and (3.25),which are solved very easily by using

symbolic computation software Mathematica.
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3.4 Results and discussions

Since the solution obtained by the Homotopy analysis method is infinite series, it is to ensure
first the convergence of the solution. For this purpose we have drawn an Ai—curve in Fig.
3.1. Since homotopy analysis methods provide us great freedom to choose the initial guess,
auxiliary linear operator and auxiliary functions. But this should all be chosen in such a way
so that the series solution obtained by HAM is convergent. As pointed out by Liao in his book,
beyond perturbation [19], if the solution is convergent, then it must be one of the solution of the
given boundary value problem. The suitable value of the auxiliary parameter also responsible
for the convergence of the solution. Suitable range of the auxiliary parameter % is such that
for which fi—curve become paralle] to the i—axis. It is observed from Fig. 3.1 that suitable
range for Az, which is auxiliary parameter associated with the dimensionless ¢, is the interval
—1.75 < kg < —0.25 for Sc = 1 and 2. For each value of A3 lie in this interval assured the
convergence of the series solution. Since dimensionless concentration field changes with the
change of Schmidt number Sc and 8, for each value of the prescribed parameters, suitable
value of fi3 must be chosen accordingly to ensure the convergence of solution.

arim

-0

-0.3

:2}

Fig.3.1: Graph showing 15th order HAM solution of ¢'(0) as a function of A; and Agwith 8 =2
and A; = —1 for Sc=1 and 2.
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Fig. 3.4: Graph showing 15th order HAM solution 8(n) verses 7 for different values of Rd when
ks =-1/2, by = —-1/(1 +Pr/20), 8 =2 and Pr=0.7.
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Fig.3.5: Graph showing 15th order HAM solution #(n) verses 7 for different values of Pr when
F1= -1, ke = -1/(1 4+ Pr/20), 8 = 2,Pr = 1/2, where dashed line is for Rd = 0 and solid line

is for Rd = 1.
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Fig.3.6: Graph showing 15th order HAM solution #(n) verses n for different values of # when
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Fig. 3.7: Graph showing 15th order HAM solution ¢ (0) verses Pr for different values of Rd
when A; = —1 and 8 = 2.Where dots represent the numerical values of White [35].
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