REPRESENTING SHARED JOIN POINTS WITH
STATE CHARTS:
A HIGH LEVEL DESIGN APPROACH

Developed by

Muhammad Naveed
Muhammad Khalid Abdullah

Supervised by

Prof. Dr. Khalid Rashid

Department of Computer Science
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad.
(2007)

M

—

International Islamic University, Islamabad
Faculty of Applied Sciences
Department of Computer Science

Dated: September 08, 2007

FINAL APPROVAL

It is certified that we have read the thesis, entitled “ senting Shared Join Points with State
Charts: a High Level Design Approach”, sub by Mr. Muhammad Naveed 53-
FAS/MSSE/F04 and Mr. Muhammad Khalid Abdullah 63-FAS/MSSE/F04. It is our judgment
that this thesis is of sufficient standard to warrant its acceptance by the International Islamic
University Islamabad for MS Degree in Software Engineering.

PROJECT EVALUATION COMMITTEE

External Examiner:
Dr. Arshad Ali Shahid

Professor (CS))’L//)p
NU-FAST,

Islamabad, Pakistan.

Internal Examiner:

Dr. Naveed Ikram | /\
Department of Computer Science, /\]\

Faculty of Basic and Applied Sciences,

International Islamic University,

Islamabad, Pakistan.

Supervisor:

Prof. Dr. Khalid Rashid _ ‘

Department of Computer Science, X ~))
Faculty of Basic and Applied Sciences, U«_A»\

International Islamic University, A\ V“ { o —}
Islamabad, Pakistan. g{

In
the
Name

of
ALLAH

The Most Merciful
The Most Beneficent

Thesis

A Thesis Submitted to the Department of Computer Science,
Faculty of Basic and Applied Sciences, International Islamic
University, Islamabad, Pakistan, as a Partial Fulfillment of the
Requirements for the Award of the Degree of

MS in Software Engineering

Representing Shared Join Points with State Charts: a High Level Design Approach i

Dedication

To
The Holiest man ever born,
PROPHET MUHAMMAD (PEACE BE UPON HIM)
& To
OUR DEAREST PARENTS & FAMILY
Who are an embodiment of diligence and honesty,
Without their prayers and support
This dream could have never come true
& To
PRECIOUS FRIENDSHIP
That has made us laugh, held us when we cried
and always, always, be among us

Representing Shared Join Points with State Charts: a High Level Design Approach

iii

Declaration

DECLARATION

We hereby declare and affirm that this thesis neither as a whole nor as part thereof has
been copied out from any source. It is further declared that we have completed this thesis
and accompanied software application entirely on the basis of our personal efforts, made
under the sincere guidance of our supervisor. If any part of this report is proven to be
copied out or found to be a reproduction of some other, we shall stand by the
consequences. No portion of the work presented in this report has been submitted in
support of an application for other degree or qualification of this or any other University

or Institute of learning.

Muhammad Naveed
53-FAS/MSSE/F04
Muhammad Khalid Abdullah
63-FAS/MSSE/F04

Representing Shared Join Points with State Charts: a High Level Design Approach v

Acknowledgements

ACKNOWLEDGEMENTS

We bestow all praise to, acclamation and appreciation to Almighty Allah, The Most
Merciful and Compassionate, The Most Gracious and the Beneficent, Whose bounteous
blessings enabled us to pursue and perceive higher ideals of life, who bestowed us good
health, courage and knowledge to carry out and complete our work. Special thanks to His
Holy Prophet Muhammad (SAW) who enabled us to recognize our Lord and Creator and
brought us the real source of knowledge from Allah, the Qur’an, and who is the role

model for us in every aspect of life.

We consider it a proud privileged to express our deepest gratitude and deep sense
obligation to our reverend supervisor Professor Dr. Khalid Rashid who kept our morale
high by his suggestions and appreciation. His motivation leads us to this success without
his sincere and cooperative nature and precious guidance; we could never have been able

to complete this task.

It would not be out of place to express our profound admiration to Dr. Farooq Ahmad
for his dedication, inspiring attitude, untiring help, and kind behavior through out the

project efforts.

Finally we must mention that it was mainly due to our family’s moral support during our
entire academic career that enabled us to complete our work dedicatedly. We once again
would like to admit that we owe all our achievements to our most loving parents, who
mean most to us, for their prayers are more precious then any treasure on the earth. We
are also thankful to our truly, sincere and most loving brothers, sisters, friends and class
fellows who mean the most to us, and whose prayers have always been a source of

determination for us.

Muhammad Naveed
53-FAS/MSSE/F04
Muhammad Khalid Abdullah
63-FAS/MSSE/F04

Representing Shared Join Points with State Charts: a High Level Design Approach v

Project in Brief

Project Title:

Organization:

Objective:

Undertaken By:

Supervised By:

Started On:

Completed On:

Research Area:

Tools:

PROJECT IN BRIEF

Representing Shared Join Points with State Charts: A High Level
Design Approach

International Islamic University, Islamabad, Pakistan.

The objective of the research in this area of Aspect Oriented
Software Development is to provide sufficient design support for

Share Joint Point Issues related to Aspect Oriented Programming.

Muhammad Naveed

Reg. No. 53-FAS/MSSE/F04
Muhammad Khalid Abdullah
Reg. No. 63-FAS/MSSE/F04

Prof. Dr. Khalid Rashid
Department of Computer Science,
Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

January 2006

September 2007

Aspect Oriented Programming, Aspect Oriented Design, UML

Aspectl, Eclipse 3.2, Rational Rose, MS Access 2003

Representing Shared Join Points with State Charts: a High Level Design Approach vi

Abstract

ABSTRACT

Aspect Oriented Programming promises many advantages at programming level by
incorporating the cross cutting concerns into separate units, called aspects. Join Points are
distinguishing features of Aspect Oriented Programming as they define the points where
core requirements and crosscutting concerns are (inter)connected. Currently, there is a
problem of multiple aspects’ composition at the same join point, which introduces the
issues like ordering and controlling of these superimposed aspects. Some strategies are
required to handle these issues as early as possible. State chart is an effective modeling
tool to capture behavior at high level design. This thesis provides methodology to
formulate the strategies for multiple aspects’ composition at high level design, which
helps to better implement these strategies at coding level. It also highlights the need of
designing shared join point at high level, by providing the solutions of these issues using
state chart diagrams in UML 2.0. High level design representation of shared join points
also helps to implement the designed strategy in systematic way. A case study is
implemented based on the proposed methodology. The results of case study after and
before applying proposed methodology are discussed. Future areas related the domains

are also highlighted to encourage the researchers.

Representing Shared Join Points with State Charts: a High Level Design Approach Vil

Table of Contents

TABLE OF CONTENTS

CHAPTER NO. CONTENTS

1. INTRODUCTION
1.1 Shared Join Points
1.2 Software Design in Brief
1.3 Aspect Oriented Design
1.4 Validation of the Research

1.5 Thesis Overview

2. LITERATURE SURVEY AND PROBLEM STATEMENT
2.1 Literature Survey
2.2 Hypothesis
2.3 Problem Statement

2.4 Significance of the Research

3. PROPOSED METHODOLOGY
3.1 Abstract View of Proposed Methodology
3.2 Detailed View of Proposed Methodology
3.2.1 Example Scenario 1

3.2.2 Example Scenario 2

4. IMPLEMENTATION OF CASE STUDY
4.1 Functional Requirements of the Case Study
4.1.1 Use Case Specifications
4.1.2 Use Case Diagram
4.2 Shared Join Point Problem in Case Study and Design Solution
4.2.1 Multiple Aspects at Shared Join Point
4.2.2 Design with Proposed Methodology

PAGE NO.

O O o N =

11
11
14
15
18

20
20
22
24
25

29
29
30
40
41
41
42

Representing Shared Join Points with State Charts: a High Level Design Approach

viil

Table of Contents

4.3 Architecture

4.4 Collaboration Diagrams

4.5 Class Diagram

4.6 Database Model

4.7 Ordering and Controlling issues handling in Code
4.7.1 Ordering
4.7.2 Controlling

S. RESULTS AND DISCUSSIONS
5.1 Results
5.2 Benefits
5.3 Conclusions

5.4 Future Work

REFERENCES & BIBLIOGRAPHY

APPENDIX A- PUBLICATION

Representing Shared Join Points with State Charts: a High Level Design Approach

ix

45
46
51
51
52
52
53

57
57
59
62
63

64

Chapter 1

INTRODUCTION

Chapter | Introduction

1. Introduction

Aspect oriented software development (AOSD) is new software development
paradigm. It has been evolved since 1997. But it is not an entirely a new software
development approach. It is similar the way as object oriented software development
was introduced as a new concept in software community but there were programming
languages and tools already under use before object oriented design became
recognized and adopted by the software community. There have been tools and
development environments that support some of the capabilities for some times now
that are being categorized under the heading of aspect oriented software development.
Like Java, aspect oriented software development is becoming a commonly adopted
and standard approach in practicing and implementing the older ideas that can be

followed to almost at the beginning of software development [1] [2].

Aspect oriented software development environments and aspect orientation supported
tools that weave code, program instructions, and even debuggers all contain some of
the behavior that underlies the aspect-oriented approach. The main difference is
concepts behind the approach and how the concepts drive the technology and tools.
Aspect oriented software development is not about any one of these technologies on
its own, though it is a new and more modular implementation of the advantages that

these technologies have brought to their own domains in the past [2].

Aspect Oriented Programming (AOP) is a programming paradigm in Aspect Oriented
Software Development (AOSD) techniques that describes the cross cutting concerns
of a software system in modular way so that the underlying design intent remains
clear in the source code [1]. This technique was developed by a team at PARC led by
Gregor Kiczales, now a full time professor of computer science at the University of

British Columbia [2].

Kiczales et al. introduced first time the idea of separation of concerns [3]. According
to them, “there are many programming problems for which neither procedural nor
object-oriented programming techniques are sufficient to clearly capture some of the

important design decisions that program must implement. This forces the

Representing Shared Join Points with State Charts: a High Level Design Approach 1

Chapter 1 Introduction

implementation of those design decisions to be scattered throughout the code,
resulting in “tangled” code that is excessively difficult to develop and maintain. The
properties which these decisions address are aspects, they are hard to capture
because they cross-cut the system's basic functionality”. They further highlighted the
importance of Aspect Oriented Programming by comparing three different types of
implementations of a real application that is “easy to understand but inefficient,
efficient but difficult to understand, and an AOP-based implementation that is both
easy to understand and efficient. This presentation is based on three analogous but

simplified implementations [3]”.

Kiczales et al. introduced the new programming constructs like Join Points, Pointcuts,
Crosscutting, and Aspects etc for aspect oriented programming. They also presented
of weaving mechanism of aspects and class [3]. They also developed the most
powerful general purpose programming language called Aspect] for Aspect oriented

Programming, which enables both dynamic and static types of crosscutting behavior

[4].

Before going further into the details, it is worth briefly introducing some of the

concepts and terms that lie under the concept of aspect orientation.

Cross-Cutting Concerns

In aspect oriented software development cross-cutting concerns are basic concerns of
the system which affect the other concerns in the system. These concerns can not be
properly decomposed or modularized from the rest of the system at both design and
implementation level. These concerns crosscut the system functionality throughout
the program. As a result, there is possibility of either scattering or tangling of the

program.

The basic principle of aspect-oriented programming is to enable developers to express
modular cross-cutting concerns in their software. We can describe cross-cutting
concern as “a behavior, and often data that is used across the scope of a piece of
software”. It may be a type constraint that is a characteristic of the software or simply

behavior that every class or set of classes of system must perform [2].

Representing Shared Join Points with State Charts: a High Level Design Approach 2

Chapter 1 Introduction

The most common example of a cross-cutting concern is logging. “Logging is almost
the "Hello World" of the aspect-oriented approach. It is a cross-cutting concern that
affects many areas across the sofiware system and intrudes the business logic. It is
potentially applied across many classes of the system, and this is the form of

horizontal application of the logging aspect that gives cross-cutting its name [2]”.

Aspects

Aspects are part of program that actually crosscut the core concerns or main concerns
of the system. The term aspect is used for cross-cutting concerns and they basically
violate the separation of concerns. In other words, aspects are modular units of
crosscutting concerns [4]. “In aspect orientation, aspects provide a mechanism by
which a cross-cutting concern can be specified in a modular way”. Aspects can be of
multiple dimensions. They allow both functional and non-functional behavior to cross
cut any other concerns. They are not just the mapping of non-functional concerns to
functional requirements. In order to get maximum benefits from aspects we need to
have some basic concepts in place to allow in specifying and applying aspects in a

generic manner. We should be able to [2]:

o Define the aspects in a modular fashion

s Apply aspects dynamically

o Apply aspects according to a set of rules

e Provide a mechanism and a context for specifying the code that will be

executed for that particular aspect

“The aspect-oriented approach provides a set of semantics and syntactical constructs
to get together these demands so that aspects can be specified and applied generically
despite of the type of software being developed. These constructs are advices, join

points, and pointcuts [2]”, and are discussed next.
Advices

An advice is a mechanism which describes that certain code should be executed again

a specific join point in system [4]. In other words, the code that is executed when an

Representing Shared Join Points with State Charts: a High Level Design Approach 3

Chapter | Introduction

aspect is invoked is called advice [1] [2]. It may be called as an additional
functionality that needs to be performed whenever an aspect is invoked or gets called.
An advice contains its own set of rules which specify that when it will be invoked in

regard to the join point that has been triggered.

There are currently three forms of advices that Aspect) supports i.e. before, after and
around advice. Before advice is executed before the core requirement, after advice is
executed after the core requirement and around advice is executed both before and

after core requirement.
Join Points

A join point is where the main program and the aspect interconnect each other. It is
very important concept in aspect oriented programming. Join points are simply
specific points within the application that may or may not invoke some advice. The
specific set of available join points is dependent on the tools being used and the
programming language of the application under development. The following join

points are supported in Aspect] [2]:

o Join when a method is called

o Join during a method's execution

o Join when a constructor is invoked

o Join during a constructor's execution
o Join during aspect advice execution

o Join before an object is initialized

o Join during object initialization

o Join during static initializer execution
o Join when a class's field is referenced
e Join when a class’s field is assigned

o Join when a handler is executed

Among all aspect oriented language constructs, join point is more important. It is

defined as “a well defined execution point in a program [5] .

Representing Shared Join Points with State Charts: a High Level Design Approach 4

Chapter | Introduction

Join points represent the key concept in Aspect-Oriented Software Development
(AOSD). Join point also defines the places where two concerns i.e. core and
aspectual, crosscut each other [3] [4] [5] [6] [7] [8] [9].

Because of the criticality of specifying join points, the main task of aspect-oriented
designers is to identify suitable set(s) of join points, where two concerns interconnect
to each other, and also provide some suitable representation for join points [8] {9]
[10].

Pointcuts

“A pointcut is a set of join points”. Whenever the program execution reaches one of
the join points described in the pointcut, a piece of code associated with the pointcut

(called advice) is executed.

Pointcuts are the Aspect] mechanism for declaring an interest in a join point to initiate
a piece of advice. They encapsulate the decision-making logic that is evaluated to
decide if a particular piece of advice should be invoked when a join point is
encountered. The concept of a pointcut is crucial to the aspect-oriented approach
because it provides an abstract mechanism by which to specify an interest in a
selection of join points without having to tie to the specifics of what join points are in

a particular application [2].

1.1 Shared Join Points

A shared join point is a special type of join point that is being discussed at the
moment. In many cases, “a join point is superimposed by multiple aspects at the same
Jjoin point”, known as a shared join point {4] [8] [10]. There are many example
scenarios where multiple aspects are being superimposed on the same join point [8]
[10] [11]. Currently, there are problems with shared join points at implementation
level due to uncertain execution behavior of superimposed aspects [8] [10] [11]. Since
multiple aspects are being superimposed, it becomes difficult to judge what will be
the exact execution order? If an aspect does not work; how to control the execution

order of other aspects? In short, there come issues like ordering and controlling of

Representing Shared Join Points with State Charts: a High Level Design Approach 5

Chapter 1 Introduction

multiple aspects and are discussed in detail in chapter 2. These problems exist in
practice for many years but for the first time they were discussed in research by Nagy
et al. in 2005. The issues related to shared join points are discussed only at
implementation level [8] [10]. There is not sufficient support available for these issues
at implementation level, but there are some indirect support and recommendation
details for AOP languages [4] [8] [11]. In normal scenario their behavior is
unpredictable. Any aspect can execute before the rest. It requires some support to
handle their execution which is currently not available but some indirect support is
provided by aspect oriented programming languages. For example, Aspect] provides
precedence construct for ordering and do not provide any direct support for
controlling [4] [8]. There are few recommendations for new language constructs to
control the unpredictable behavior. One of them is proposed by Nagy et al. in 2005.
There is some work available on ordering and controlling of aspects in research at
implementation level, but it still require some efforts to find better solutions. In other
words, still there is a room for research in this area. Since shared join point presents
complex scenario, so there is a need to discuss these issues of shared join points at
early software development, particularly at high level design. This study proposes a
methodology that represents the shared join points in early software development life
cycle where it is easy to order and control the multiple aspects. The proposed

methodology is discussed in detail in chapter 3.

1.2 Software Design in Brief

Software design is an important activity in software development life cycle. The
“design” of an application expresses how the application is to be constructed [12]. It
describes the parts involved and how they are to be assembled. A design consists of a
set of documents: Typically, these are diagrams, together with explanation of what the
diagrams mean. A design specification is produced from system requirements. It
excludes code. There are many useful notations for design documentation found in the

Unified Modeling Language [7].

In software development process, a design phase provides an opportunity for software
developers and designers to reason about a required software system as defined by the

functional and non functional requirements of system. The objective of this whole

Representing Shared Join Points with State Charts: a High Level Design Approach 6

Chapter 1 Introduction

activity is to achieve system goals by implying thoughts of necessary behavior, and to
model a corresponding structure to support that behavior. An example in object-
oriented software system could be, that the behavior of system is taken in terms of
interaction diagrams and state diagrams, while the structure can be taken as class and
object diagrams by the designers. These diagrams representing system behavior can
be of different level of abstractions. The final output of design phase is models of
system that specify the behavior of system. These models are normally in the form of
design notations [13]. For this, designers require to follow some standard notations for
designing their systems as the diagrams or notations need to be communicated or
shared with other stakeholders of the system like programmer, client etc. the design
notation are normally language construct of graphical languages. The graphical
languages are being evolved since 1980s, but most prominent among them is UML

(Unified Modeling Language) [14].

UML

The Unified Modeling Language (UML) is a standard language for specifying,
visualizing, constructing, and documenting the artifacts of software systems, as well
as for business modeling and other non-software systems [7] [13]. The development
of UML began in late 1994 when Grady Booch and Jim Rumbaugh of Rational
Software Corporation began their work on unifying the Booch and OMT (Object
Modeling Technique) methods. In the fall of 1995, Ivar Jacobson and his Objectory
Company joined Rational and this unification effort, merging in the OOSE (Object-
Oriented Software Engineering) method. The efforts of Booch, Rumbaugh, and
Jacobson resulted in the releases of the UML 0.9 and 0.91 documents in June and
October of 1996 respectively. Then after different versions, it is the UML 2.0, the
latest version of UML. UML represents a collection of best engineering practices that
have proven successful in the modeling of large and complex systems. UML plays a
very important part in developing object oriented software and the software
development process. UML uses mostly graphical notations to express the design of
software projects. Using the UML helps project teams communicate, explore

potential designs, and validate the architectural design of the software.

Representing Shared Join Points with State Charts: a High Level Design Approach 7

Chapter 1 Introduction

1.3 Aspect Oriented Design

The objectives of Aspect-oriented design (AOD) are identical as that any software
design activity. This is to characterize and specify the behavior and structure of the
software systems. As Aspect Oriented Software Development (AOSD) is to strive for
better modularization of the software systems, so, a unique contribution of Aspect-
oriented design (AOD) is to software design relates to extensions to modularity
capabilities. In AOSD, some concerns of a software system that are normally
scattered and tangled in non-AOD approaches can be modularized in better way. As a
result, cohesiveness is enhanced, and module coupling is reduced in corresponding
module. An Aspect Oriented Design language provides language constructs that
support for modularization of crosscutting concerns regardless of their impacts. It also
supports related specification of concern composition. Apart from that, the design of
each individual modularized concern is developed in such a way that it reflects

software design standards [13].

Like other non AOD approached, the Aspect Oriented Design approach also includes
a process and a design language. “An AOD process is one that takes requirements as
input and produces a design model that may partially or fully recognize architecture.
The AOD process represents separate concerns and relationships between these
concerns in AOD design models. These models are specified at an abstract for
implementation which can occur on an AOP platform or otherwise [13]”. An AOD
language includes constructs that can describe the elements to be used in design.
These elements also represent the relationships that can exist between those elements.
A specific AOD language constructs provide necessary support to modularization the

concerns [13].

Recently, Aspect Oriented Software Development is making strong progress on the
implementation level, but the extensive support at design level is still insufficient
[1s].

Representing Shared Join Points with State Charts: a High Level Design Approach 8

Chapter | Introduction

UML and Aspect Oriented Modeling

Since UML provides numerous diagrams to model the software systems, it also
provides modeling means for aspect oriented software paradigm as well. One of the
main features of UML is stereotype, which helps to modify the objects in the
diagrams. The relationship of UML with Aspect Oriented Modeling will be briefly
described in chapter 2. UML diagrams, particularly behavioral diagrams can be very
useful to describe the behavior of the system. Among these diagrams, State Charts are
very important means to model the system behavior. They can help to early identify
the problems related to shared join points. The proposed methodology is based on

state charts and is given in chapter 3.

1.4 Validation of Research

This is an important point about the research in the area of design that how the
proposed design methodology will be validated? To validate the proposed
methodology, a simple case study of university course registration module is taken.
This case study is first implemented without designing or representing the ordering
and controlling issues of shared join point, and then with designing these issues. This
helped to validate the soundness of proposed study. Detailed functionality of case
study is discussed in chapter 4. The research is validated in two steps; firstly, a shared
join point scenario will be modeled using proposed methodology and secondly, the
modeled shared will be implemented using Aspect), a prominent Aspect Oriented

Programming Language [4].

1.5 Thesis Overview

The thesis is structured as: chapter 2 presents the brief literature survey which we had
during our research. It also defines the problem statement that is developed during the
literature survey. The literature survey of only selected and relevant papers with
respect to problem and solution is presented in this chapter; chapter 3 discusses the
proposed methodology using state charts of UML. The proposed methodology is
discussed at abstract and detail level. In detail level, some example scenarios are

discussed and then these scenarios are designed in detail view of the proposed

Representing Shared Join Points with State Charts: a High Level Design Approach 9

Chapter | Introduction

methodology; chapter 4 provides implementation overview of case study
implemented on the bases of proposed methodology. Firstly, the proposed
methodology is applied on the case study at design level. Secondly, the case study is
implemented using Aspect] on the basis of designed solution using proposed
methodology. This chapter also describes functional specifications and other design
artifacts like architecture and database model of case study and finally, chapter 5
provides results and discussions that include the benefits achieved from the proposed
methodology. Finally, it concludes the overall work about the proposed methodology.
It also highlights the future work that can be done related to the research presented in

this thesis.

Representing Shared Join Points with State Charts: a High Level Design Approach 10

Chapter 2

LITERATURE SURVEY AND
PROBLEM STATEMENT

Chapter 2 Literature Survey and Problem Statement

2. Literature Survey and Problem Statement

This chapter provides a brief overview of the literature survey done during this study. It
also includes the hypothesis and problem statement based on literature survey. The

significance of research in the area of aspect oriented programming and its design is also

highlighted.
2.1 Literature Survey

A detail literature survey is carried out in the field of aspect oriented programming, its

design and state charts of UML.

The programming constructs of Aspect] are introduced by Kiczales et al in 2001. The
application of advices of two conceptually and semantically independent aspects at the
same join point is addressed. It also described that the programmer does not need to

control relative ordering of such advice [4].

The concepts of Join Point as Static Join Point and Dynamic Join Point are addressed.
UML association classes (along with their new features), ports and connectors are used

among components for modeling [7].

A detailed analysis of the problem aroused by shared join points is discussed by Nagy et
al. in 2005. Multiple aspects’ superimposition on the same join point affects the
functionality of each other due to different execution orders among them. Software
engineering perspective of Shared Join Point problems is also discussed. It is
recommended that, to offer one solution which satisfies only a single case is not
preferred. AOP languages should offer a rich set of language mechanism for composition
specifications, so that, the developers may choose the right specification for their
problem. It is important to identify conflicts among aspects at shared Joint point for the
safety and correctness. The already presented core model [10] is enhanced by adding

more constraints and the composition rules for multiple constraints. The integration of the

Representing Shared Join Points with State Charts: a High Level Design Approach 11

Chapter 2 Literature Survey and Problem Statement

purposed model with Aspect] is also presented. This model can be used with Aspect], if
Aspect] support the named advices. Also the Join Point interface has to be extended for
this purpose. For ordering, Aspect] uses declare precedence construct and for controlling,

the construct presented in Core Model needs language support [8] [10].

Anis C. et al. (2006) presented an interaction model on the basis of Interaction
Specification Language (ISL) for modularizing crosscutting concerns of component
based applications. The main idea of interactions is to rewrite a method body using the
reaction (advice). The interaction model is used to handle the issues arouse by the Shared
Join Point in a way, that the composition mechanism generates an advice, which is the
result of merging all advices at that join point. Whenever a shared join point is reached
one single advice is executed, which is semantically equivalent to the composed advice.
The merging mechanism is based on a finite set of merging rules. The software
engineering properties such as analyzability and predictability can also be achieved by

using this tool. Testing and verification becomes much simpler [11].

Mahoney et al. (2004) described the importance of extended Finite State Machines in
order to capture the dynamic behavior of systems [16]. A state chart is connected to a
class that specifies all behavioral aspects of the objects in that particular class. They also
describe that Aspect Oriented Modeling which can help in bridging the gap between
software design and implementation through the use of advanced features of state charts.
They have proposed a framework which helps in simplifying the design of core

requirements and cross cutting concerns.

Mahoney also elaborated the need of crosscutting concerns of reactive systems using
state machines. State Charts are used to describe the dynamic behavior of separate
concerns. The core and aspectual requirements are represented by state in different
orthogonal regions. He addressed the communication mechanism in orthogonal regions
through broadcast events. The broadcast events are used as a mechanism for implicit

weaving of aspect and core model in state charts [17].

Representing Shared Join Points with State Charts: a High Level Design Approach 12

Chapter 2 Literature Survey and Problem Statement

Mohamed Mancona Kande et al. (2001) explained the basic concepts of Aspect], a state
of the art Aspect Oriented Programming Language. Standard UML is used for modeling
these concepts and limitations of UML are highlighted. Some extensions to UML are
proposed to overcome these limitations. A bottom up approach is followed for designing

classes and aspects of Aspect Oriented Programming [18].

Stein D. et al. (2003 and 2004) presented an approach to model the join points with the
help of Join Point Indication Diagram (JPID) and Join Point Designation Diagram
(JPDD). JPID is presented for the indication of join points in core model while JPDD is
presented for the indication of join points in aspects, but it does not address any solution

for Shared Join Points [9] [15] [20].

Wesley Coelho and Gail C. Murphy (2004) presented a dynamic aspect modeling. The
use colors for representing interactions, “+” sign for dynamic expansion relationships and

arrow icons are used to represent crosscutting phenomena [21].

A. Rashid et al. (2002) presented a model to capture Aspect-Oriented Requirement. They
argue that “a non-functional requirement is crosscutting if it transverse more than one
use-cases”. UML1.4 diagrams (Use case model, interaction Diagrams and scenarios) are
used to handle separation of cross cutting concerns (aspects) from core model at
requirements level. The focus of Separation of concern is only on non-functional
requirements as they argue that non functional requirements are global properties of the
system (i.e. Performance) [22]. Although presented methodology is very excellent for
Capturing Crosscutting requirements but the good old experience is always an essential
requirement for the identification of Aspects. The identification of Aspects in functional

requirements is not presented here that can be used as a future research area.

A. Rashid et al. (2005) highlighted the fundamental basis for a high level Join Point
Model based on state transitions and thus a Join Point Model is presented using UML
state machines. A case study of “safety-critical automatic driverless train system” is
discussed in which states of the system are represented in use case diagram. The State-

based Join Points are categorized as dependency-based Join Points, Scope-based Join

Representing Shared Join Points with State Charts: a High Level Design Approach 13

Chapter 2 Literature Survey and Problem Statement

Points and Transition Flow Join Points. The importance of design, the importance of Join

Point Model, and also the importance of State-based Join Point model is discussed [23].

There is massive work on modeling, modeling in join points as well as on aspect oriented
programming where as the work on shared point is only at implementation level. There is
no solution presented by the researchers to represent particular issues of shared join point

at high level in formulation of the suitable design strategies for shared join points.

2.2 Hypothesis

Since there is lack of research in the field of aspect oriented design, though aspect
oriented programming is making strong progress at implementation [15]. Hypothesis that
we establish is to model features of aspect oriented programming, particularly at high
level design. For this reason, we have had most of the literature survey about modeling of
different elements of aspect oriented programming like aspects, pointcuts, advices, join
points. After sufficient literature survey we find that there is need to model the join points
though there are some join point model available in research at the moment. This is
important to model join points because it identify the places where both core and
aspectual requirements interconnect each other. Join points represent the key concept in
Aspect-Oriented Software Development (AOSD) as Join Point is defined as a well
defined execution point in a program [5]. The main task of aspect-oriented designers
should be to identify set(s) of join points, where two concerns i.e. core and aspectual
requirements interconnect to each other, and provide suitable representation for join
points [8] [9] [10]. That is why importance of designing of the join points is very
important. So, we establish our hypothesis in designing join points of aspect oriented
programming. Further we found that there is specialized type of joint points called shared
join points, which is having new dimension in the research at the moment. Our
hypothesis further directs toward the designing of shared join points. Shared join points
are novel in research community. A shared join point is a point in the execution of
system where multiple aspects are superimposed on the same join point. A shared join

point raises the issues like ordering and controlling. There is no direct support available

Representing Shared Join Points with State Charts: a High Level Design Approach 14

Chapter 2 Literature Survey and Problem Statement

to handle these issues at implementation level, but there are some indirect support and
recommendation details for AOP languages available [4] [8] [11]. For example, Aspect]
provides precedence construct for ordering and do not provide any direct support for
controlling [4], We assume that there should be a solution for these issues of ordering and
controlling of shared join points at early software development stages. Hypothesis we
establish is to specify any methodology to model the shared join point as early as possible
in software development lifecycle, particularly at high level design. We also assume that
it could reduce the development cost by identifying the issues regarding shared points
like ordering and controlling. It also includes that methodology or proposed solution
should be so simple that it can help designer to specify the shared join points and also
could help the programmer to easily implement and solve the issues with least
development cost. It was also assumed that state chart diagrams of UML could be helpful
in this regard as the elements of the state charts could provide the solutions of the shared
join point issues like ordering and controlling by modeling it at early design stages,
because state charts are very good modeling diagram for representing the behavior of a

complex scenario.

2.3 Problem Statement

In many cases, a join point is superimposed by multiple aspects at the same time, known
as a shared join point [4] [8] [10]. There are many example scenarios, where multiple
aspects are being superimposed on the same join point [8] [10] [11]. An example is

shown in Figure 2.1.

Representing Shared Join Points with State Charts: a High Level Design Approach 15

Chapter 2 Literature Survey and Problem Statement

<<aspect>>
Aspect_A

<<aspect>>
Aspect_B

ClassName /
ImethodName() \ <<aspect>>

Aspect_C

<<aspect>>
Aspect_D

Figure 2.1 Multiple aspects superimposed on the same Join Point

In the figure 2.1, multiple aspects i.e. Aspect A, Aspect B, Aspect C, and Aspect D are
superimposed on methodName() method. They are required to execute against
methodName() method call. Since aspects are executed regardless how they are created?
i.e. their execution sequence is unpredictable and they execute in any sequence at
programming level. And also how much dependencies exist among them? If we see in the
figure above, we can find that all the aspects are sharing a single join point, which is now
called as shared join point. At this shared join point there are two problems one is
ordering of the multiple aspects which share this join point and second is the controlling

of these aspects. Both problems are discussed one by one in detail.

Requirement of ordering the aspects is that they should run in the following order; first
Aspect A aspect should execute and then aspect Aspect B should be executed after
Aspect B is executed successfully then Aspect C should be executed and at the end

Aspect D. This is the ordering of multiple aspects on shared join point. There is some

Representing Shared Join Points with State Charts: a High Level Design Approach 16

Chapter 2 Literature Survey and Problem Statement

language support available at programming level like precedence construct in Aspect] for
ordering of multiple aspects, but this requirement of ordering should be modeled or
specified at early software development stages i.e. at analysis or design phase. So, that
developer should know about the exact execution sequence of aspectual requirements? If
they are unable to know the exact flow, there will be an assumption based
implementation of these aspectual requirements, which might create a situation where
developer do not be able to implement the business logic according to requirements.
Finally, the developers will have to implement those aspectual requirements again
according to the actual requirements. This can increase the cost of development. There is
a great need to find some mechanism at early software development life cycle to
represent these aspects in the specific order that require to be implemented by developers.
Currently, the issues of shared join points are discussed at programming level only not at
early software development stages. Since shared join points presents a scenario which
should be according to the requirements specified, so they need to be address as soon as

possible.

Now, we discuss the controlling of multiple aspects. There are dependencies among the
aspects like if Aspect B and Aspect C is dependant on Aspect A and Aspect D is
dependant on the Aspect A, Aspect B and Aspect C. we need to control them on the
basis of their outputs. For example, if Aspect A is executed successfully then the entire
aspects dependant on Aspect A should be executed, and if Aspect 4 is not executed
successfully then all the aspects dependant on Aspect A should not be executed.
Similarly, if Aspect D is dependant on Aspect A4, Aspect B and Aspect_C, then Aspect D
should be executed only if all the aspects are executed successfully and if any of the
aspects does not run successfully then Aspect D should not be executed. Here comes the
issue of controlling of multiple aspects on the shared join point. It raises the question that
how to stop the execution of the aspects which depends on other aspects? In normal
scenario all superimposed aspects will execute independent of each other, even though
they have dependency with respect to system functionality. To make them execute
according to the requirement of system, they need to be controlled. There is not sufficient

support available for this issues at implementation level i.e. aspect oriented language

Representing Shared Join Points with State Charts: a High Level Design Approach 17

Chapter 2 Literature Survey and Problem Statement

provide any keyword to handle the controlled execution of multiple aspects. Like,
Aspect] provides precedence construct for ordering and do not provide any direct support
for controlling [4]. These languages’ constructs help in solving the issues regarding
shared join point in some context, but there is need to find suitable keyword which could
provide direct support for ordering and controlling of multiple aspects. There can be
some indirect mechanism available to solve the controlling problem of multiple aspects
as programming level. For example some boolean variables can use to get the outputs of
aspects and these outputs can be evaluated by conditional statements like “if” statement
in programming languages. So, we can say that it requires some strategies to implement
the multiple aspects on shared join point in controlled manner. And these strategies
should be formulated at early software development level like at analysis of design phase
of software development life cycle. But there is no research work related to this issue at
early software development life cycle that how to represent multiple aspects related to a

shared join point in controlled manner.

So, currently no work has been done for shared joint points’ issues like ordering and
controlling discussed earlier at design level. The issues identified by Nagy et al. in 2005,
are still being discussed at programming level. Some recommendations and suggestions
in software engineering perspective are discussed, but no discussion is made about these
issues at design level. Since these issues affect the functionality of the system [10], so
they need to be discussed at early software development in order to find suitable solutions
to handle the issues. These issues at later stages of development could cause increase in

time and cost.
24 Significance of the Research

Research in this area of aspect oriented software development (AOSD) paradigm will
help greatly to improve the aspect oriented design by early identifying and providing the
solutions of shared join point issues, which does not have direct solution available even at
implementation stages. The proposed study will help designer to design the complex

issues regarding shared join point at an early stage. This early representation of such

Representing Shared Join Points with State Charts: a High Level Design Approach 18

Chapter 2 Literature Survey and Problem Statement

issues will help to formulate the strategies for their solution. As a result the programmers
will be able to implement these solutions easily. The research in this area will bring more
improvements in the aspect oriented design which lacks support at the moment. This will
also help to recommend some keywords for aspect oriented programming languages to
solve the issues related to shared join point. This study will make aspect oriented
paradigm more powerful by having strong language support for critical issues of shared

join points in programming languages as well as in design.

Representing Shared Join Points with State Charts: a High Level Design Approach 19

Chapter 3

PROPOSED METHODOLOGY

Chapter 3 Proposed Methodology

3. Proposed Methodology

This chapter explains the proposed methodology in detail. The proposed methodology is
based on the state charts of the unified modeling language (UML) 2.0 to model the shared

join points. This methodology can be used at two levels i.e. abstract and detail.

The Unified Modeling Language (UML) has become industry standard for modeling
general as well as for specific purpose software artifacts. State charts in UML 2.0 are
very important means of modeling and capturing the dynamic behavior of objects [14].
State chart related to a class, can specify all the behavioral aspects in that class [16]. A
state chart diagram is represented through a state machine which models the individual
behavior of the object. State machines throughout the UML versions remained almost the
same [19]. However, some new elements like entry and exit point are introduced in UML
2.0 [14]. Some of the elements of UML 2.0 like, composite state, choice pseudo-state and
terminate pseudo-state are very important means to model the dynamic behavior.

Terminate pseudo-state construct is not available in the previous versions of UML.
3.1 Abstract View of Proposed Methodology

The proposed design methodology mainly uses composite state language elements of
UML state charts for the multiple aspects’ composition at the shared join point. The
methodology at abstract view consists of three main composite states. Composite states
are different from simple states in the way that they could contain multiple sub states i.e.
they could be composed of multiple sub states. In the proposed methodology these
composite states are composition of the aspectual and core requirements i.e. they
compose both aspectual and core requirements of system in composite states. A
composition state which is composed of core requirement is called coreCompositeState
as shown in figure 3.1. The aspectual requirements are composed by aspectual composite
states. Since, aspectual requirements are further subdivided into two different types i.e.

the aspectual requirements that need to implement before the core requirement and the

Representing Shared Join Points with State Charts: a High Level Design Approach 20

Chapter 3 Proposed Methodology

aspectual requirements that need to implement after the core requirements. There is
another type of aspectual requirements that can be executed both before and after the core
requirements at the same. They are normally implemented by the around device in
aspects. This type of aspectual requirement is not modeled in this proposed methodology.
It can be one of the future areas to work on. The proposed methodology is used to model
on those aspectual requirements that will be either executed before the core requirement
or after the core requirements. The composite states that compose these requirements are
also subdivided into two categories i.e. beforeCompositeState and afterCompositeState.
The multiple aspects that superimposed before the core requirement, their ordering and
controlling can be handled in beforeCompositeState and the multiple aspects that are
superimposed after the core requirement, their ordering and controlling can be handled in
afterCompositeState in the proposed solution. This means that each composite state is
responsible for handling issues related to superimposed aspects contained by that
composite state. The core requirement is composed in the coreCompositeState. These
composite states are named as just for understanding, they can be named whatever is
convenient to understand the concept. At the abstract level, the aspectual and core
requirement compositions are handled in composite states. The big picture of proposed

methodology is shown in figure 3.1.

At the abstract level, proposed methodology orders multiple aspects by placing them in
their respective composite state. Further more, the aspects in these composite states can
be ordered by placing in sequence they will be executed for a specific core requirement.
The proposed methodology controls the multiple aspects by evaluating their boolean
guard values at choice pseudostate as shown in figure 3.1. Boolean guard values are
evaluated as “rrue” or “false”, if it is “true” then next aspect or requirement will be
executed and if it is “false” the object will be discarded. There is a terminate pseudostate

in state charts of UML 2.0 for this purpose.

Representing Shared Join Points with State Charts: a High Level Design Approach 21

Chapter 3 Proposed Methodology

heforeCompositeState

® >
Initial k

[boolean)
true false
Choice
coreCompositeState
>< Terminate
Choice
a/\
Boolean] false
true
afterCompositeState
]
o

~ Final

Figure 3.1 Abstract view of proposed methodology
3.2 Detailed View of Proposed Methodology

We further detail the proposed methodology by composing the aspects in their relevant
composite states. In detail view of proposed methodology guard value from each step will
be evaluated and on the basis of this decision to execute next aspect will be taken. For
this, we need to discuss the core requirement and aspectual requirements described earlier
in problem statement of chapter 2. On the basis of problem discussed in chapter 2, we
assume some requirement scenarios to represent the detail view of the proposed

methodology. This also includes formulating strategy against a specific requirement

Representing Shared Join Points with State Charts: a High Level Design Approach 22

Chapter 3 Proposed Methodology

scenario which represents dependencies among the multiple aspects. For this purpose,
two example scenarios are discussed. These scenarios are with respect to core and
aspectual requirements of the system. They also represent the strategies required to
handle the issues of ordering and controlling. We explain the proposed methodology in

detail in the context of the problem defined in chapter 2.

The main requirement of the system is to implement methodName() method of class
ClassName, but apart from that, the functionality of this method should not be completed
unless it fulfills the other requirements that can be said as pre-requisite or post-requisite
requirements. These requirements can be treated as aspectual requirements in the context
of problem. These requirements are handled in Aspect A, Aspect B Aspect C, and
Aspect D.

Let us suppose that Aspect A, Aspect B and Aspect_C are should be executed before the
core requirement i.e. methodName() and Aspect D should run after the core requirement.
Now, we can see that three aspects i.e. Aspect A, Aspect B and Aspect C are
superimposed on the shared join point i.e. methodName() that have dependencies among

them as shown in Figure 3.2.

<<aspect>>
Aspect_A

ClassName e <<aspect>>
Aspect_B

ImethodName()

<<aspect>>
Aspect_C

Figure 3.2 Conflicting Aspects in Shared Join Point that require ordering and controlling

Representing Shared Join Points with State Charts: a High Level Design Approach 23

Chapter 3 Proposed Methodology

They present serious issues of ordering and controlling these superimposed aspects. The
Aspect_ D will be executed after the core requirement so there should be no problem of
ordering and controlling related to this aspect as it does not have any dependency with

other aspects.

3.2.1 Example Scenario 1

Scenario one is that Aspect A should run always first, then Aspect_B, and then Aspect C.
Now, this defines dependencies among the aspects. Here comes the issue of ordering of
these aspects i.e. to make sure that Aspect A should always run first. This needs to be
model in this way that the design clearly represents that Aspect 4 will be executed first.
Since Aspect A will be executed first, the other two aspects are depending upon the
output of Aspect A i.e. if the Aspect 4 does not produce desired results, the 4spect B
should not be executed. It raises another issue i.e. the controlling of dependant aspects i.e.
if execution decisions about the aspects that are dependant upon the output of another

aspect or aspects.

A strategy formulated for scenario one is shown in figure 3.3. Here, we can see that the
logical flow describe ordering of conflicting aspects which further describes that
Aspect_A4 will always be executed first. A boolean guard value will be passed to choice
pseudostate. This choice pseudostate will evaluate the boolean value. If the boolean guard
value is true then Aspect B will be executed, and if the boolean value is false then the
object will be discarded and no further aspect or requirement will be executed. But, if the
value is evaluated as true then Aspect B is executed. The boolean guard value after the
execution of Aspect B will be evaluated and decision will be taken about next aspect’s
execution. Ultimately, we can execute core requirement after the controlled and
successful execution of multiple aspects. In this way, we can handle controlling issue by

applying proposed design methodology.

Representing Shared Join Points with State Charts: a High Level Design Approach 24

Chapter 3 Proposed Methodology

/ heforeCompositeState \

@ >
Initial
Choice
[false] [true]
/
Terminate ><"" 1
A talse]
Choice
[false] [true]
_ <\/
Choice / o
™ .
[true]
coreCompositeState
H(M}
oof
afterComposite State
Aspect_D)
f‘ ;f
&
Figure 3.3 Detail view of proposed methodology with scenario one
3.2.2 Example Scenario 2

Suppose scenario two is that Aspect A should run always first then Aspect B and

Aspect C can be executed simultaneously or in any order. Here we can see that there is

Representing Shared Join Points with State Charts: a High Level Design Approach 25

Chapter 3 Proposed Methodology

dependency between Aspect A and two other aspects i.e. Aspect B and Aspect C. We
again need to order these aspects. But one thing is different as compared to the previous
scenario that we don’t need ordering between Aspect B and Aspect C as they can be
executed in any order or in parallel. Also, we require controlling of aspect in a different

way now.

A strategy formulated for scenario two is shown in figure 3.4. Again we can see that the
logical flow describe ordering of conflicting aspects, which further describes that the
Aspect A will always be executed first. In this scenario a new composite state name
synCompositeState is introduced which contains Aspect B and Aspect C. The reasoning
of introducing this state is that it can execute the two aspects in parallel and the result of
both aspects will be evaluated at choice pseudostate after being passing through join
element of state charts. In this scenario, aspects’ execution policy can be elaborated as
first of all Aspect 4 will be executed. If it returns true value then the control will be
passed to next composite state that is synCompositeState. And if it returns false value
then the object will be directed toward discard state which destroys the object. Since the
Aspect_B and Aspect C will be executed in parallel, so their outputs will be joined at join
pseudo state. After the both aspects return true value only then their joint result will be
true. And if any of the two aspects return false value then their joint result will be false
and ultimately when value will be evaluated at choice pseudostate then object will be
discarded. In case, their joint result is true then core requirement will be executed and
hence before the core requirement the entire aspects are ordered and controlled as per the

required strategy.

Since the Aspect D is supposed to run after the core requirement, there is no need to
order or control this aspect. This representation allows the designers to show a high level
ordering and controlling mechanism for superimposed aspects. It also shows how to
resolve ordering and controlling issues? Detailing proposed methodology on different
scenarios represents that it provides flexibility to designers to apply any of the strategies
given in [9] at high level design. By selecting a suitable strategy to resolve the issue at

high level design will help the programmers to implement the strategy in an ideal way. It

Representing Shared Join Points with State Charts: a High Level Design Approach 26

Chapter 3 Proposed Methodology

provides additional features of handling the new aspectual requirement in systematic
way. The proposed design solution of shared join point allows the designer to represent
shared join point independent of the implementation details i.e. at abstract level which is

one of the most important features while modeling join points [22].

/_ beforeComposite State \1

@ >

Initial

l Choice

[false] [true}

\L (synComposite State ‘\1
Terminate >T< Aspect_B

[false] T Ty U

S Aspect_C
Choice .

coreCompaositeState

.m

>0)

afterComposite State

Figure 3.4 Detail view of proposed methodology with scenario one

Representing Shared Join Points with State Charts. a High Level Design Approach 27

Chapter 3 Proposed Methodology

The design at such an abstract level can provide benefits like scalability, by representing
new conflicting aspects in the model, reusability, reusing the design strategy for other
similar shared join points, and maintainability, if any of the conflicting aspects to be
removed or to be added by identifying its effect on the other aspects. Early representation
of ordering and controlling issues reduces the work cost by identifying the complexity of
issues and formulating suitable strategies to solve the issues accordingly. Early the

problem is identified cheaper to solve.

Representing Shared Join Points with State Charts: a High Level Design Approach 28

Chapter 4

IMPLEMENTATION OF CASE STUDY

/— G030

Chapter 4 Implementation of Case Study

4. Implementation of Case Study

In order to provide the evidence of the soundness of proposed design methodology, a
case study has been considered and implemented. The case study is about the university
registration module. This chapter provides detail discussion about the case study with
respect to design using proposed methodology presented in chapter 3 and with respect to
implementation in Aspect] programming language. The case study has been explained in
section 4.1. In order to fulfill the registration requirements some other prerequisites are
needed to be developed as well. The main scope of application is to handle the multiple
aspects on registerCourse() method as per proposed design methodology. This chapter
also describes some of the functional requirements, architecture diagram, collaboration
diagrams, class diagram and database model of the case study. It discusses the ordering

and controlling issues in design and then in implementation perspective of the case study.
4.1 Functional Requirements of the Case study

A simple case study about the university course registration system has been selected.
Only the requirements that are relevant to shared join point are discussed. The functional
requirements are divided into core and aspectual requirements, which are discussed in the

following sections:
Core Requirement

Course registration is the main requirement of the system which will be implemented by
registerCourse() method, but apart from that, a course can not be registered unless it
fulfills the other requirements like fee submission checking whether pre requisite courses
are also passed or not? These are the aspectual requirements which are discussed in next

section.

Representing Shared Join Points with State Charts: a High Level Design Approach 29

Chapter 4 Implementation of Case Study

Aspectual Requirements

Following aspectual requirements must be performed in order to register courses for a

student successfully:

Requirement 1: System should be able to maintain log of each method invoked. This

aspectual requirement is implemented by Logging aspect.

Requirement 2: Before the course registration, system must check whether the fee has

been paid or not? This Requirement is implemented by CheckFee aspect.

Requirement 3: Before the course registration system must check whether the pre
requisites of the course being registered have been satisfied or not? This is implemented

by CheckPreRequisite aspect.

Requirement 4: This requirement is to check whether the course has been registered and

database is updated or not? This is implemented by DBPersistance aspect.

In objected oriented systems functional requirement are described by use cases.
Aspectual requirements can be represented in form of use cases like functional
requirements [24]. The above discussed aspectual requirements and other functional
requirements of the case study are described in the form of use cases. The aspectual
requirements are shown in filled uses in diagram 4.1. This section first describes the use
cases in the form of use case specifications and then all the use cases are shown in the

form of diagram.

4.1.1 Use Case Specifications

Use Case specification describes how a specific scenario will be performed by system.

GUI Screen Reference: Add Faculty Screen

Use Case ID: UC-01

Representing Shared Join Points with State Charts: a High Level Design Approach 30

Chapter 4

Implementation of Case Study

Use Case Name: Add Faculty
Actor(s): Administrator
Goal: Administrator should be able to add new Faculty.
Preconditions: Main form of application is opened and user is on main
form.
Actor Actions: System Response:
1 User selects Faculty from main 2 System displays menu items.
menu.
3 User selects Add Faculty from 4 System displays Add Faculty screen.
menu item.
5 User enters following information: 6 System takes input data.
e Faculty Code,
e Faculty Name,
e Faculty Location,
o City,
e Country,
e Faculty Notes.
7 User presses Add button. 8 System saves record and shows
message.
Alternative Course of Actions:
5a If Faculty Code or Faculty Name is 6a System displays an error message.
not entered.
7a User presses Close button. 8a System closes Add Faculty screen.

Post Conditions:
New Faculty has been added successfully.

GUI Screen Reference: Add Department Screen

Use Case ID: UC-02

Use Case Name: Add Department

Actor(s): Administrator

Goal: Administrator should be able to add new Department.

Preconditions: Main form of application is opened and user is on main

form.

Actor Actions: System Response:

1 User selects Department from main = 2 System displays menu items.
menu.

3 User selects Add Department from 4 System displays Add Department
menu item. screen.

5 User Selects Faculty Name from 6 System displays selected faculty from
List. list.

7 User enters following information: 8 System takes input data.

¢ Department Code,
¢ Department Name,
e Department Location,

Representing Shared Join Points with State Charts: a High Level Design Approach 31

Chapter 4

Implementation of Case Study

e City,

e Country,

e Department Notes.
9 User press Add button.

Alternative Course of Actions:

5a If Faculty Name is not selected.

7c¢ If Department Code or Department
Name is not entered.

9a User can press Close button.

Post Conditions:
New Faculty has been added successfully.

GUI Screen Reference:

10

6a
8a

10a

System saves record and shows
message.

System displays an error message.
System displays an error message.

System closes Add Department
screen.

Add Program Screen

Administrator should be able to add new Program.
Main form of application is opened and user is on main

System Response:

Use Case ID: UC-03
Use Case Name: Add Program
Actor(s): Administrator
Goal:
Preconditions:
form.
Actor Actions:
1 User selects Program from main 2
menu.
3 User selects Add Program from 4
menu item.
5 User Selects Faculty Name from 6
List.
7 User Selects Department Name 8
from List
9 User enters following information: 10
e Program Code,
e Program Name,
e Program Duration,
e Program Notes.
11 User press Add button 12
Alternative Course of Actions:
5a If Faculty Name is not selected. 6a
7a If Department Name is not selected 8a
9a If Faculty Code or Faculty Name is 10a
not entered.
11a User can press Close button. 12a

Post Conditions:

System displays menu items.
System displays Add Program screen.

System displays corresponding List
of Department Names.

System displays selected department
from list.

System takes input data.

System saves record and shows
message.

System displays an error message.
System displays an error message.

System displays an error message.

System closes Add Program screen.

Representing Shared Join Points with State Charts: a High Level Design Approach 32

Chapter 4

Implementation of Case Study

New Program has been added successfully.

GUI Screen Reference: Add Batch Screen
Use Case ID: UC-04
Use Case Name: Add Batch
Actor(s): Administrator
Goal: Administrator should be able to add new Batch.
Preconditions: Main form of application is opened and user is on main

form.

Actor Actions:

System Response:

1 User selects Batch from main menu., 2 System displays menu items.
3 User selects Add Batch frommenu 4 System displays Add Batch screen.
item.
5 User Selects Faculty Name from 6 System displays corresponding List
List. of Department Names.
7 User Selects Department Name 8 System displays corresponding List
from List of Program Names.
9 User Selects Program Name from 10 System displays selected program
List from list.
11 User enters following information: 12 System takes input data.
e Batch Code,
o Batch Name,
e Program Notes.
13 User press Add button 14 System saves record and shows
message.
Alternative Course of Actions:
5a If Faculty Name is not selected 6a System displays an error message.
from List.
7a If Department Name is not selected 8a System displays an error message.
from List.
9a If Program Name is not selected 10b System displays an error message.
from List.
l1a If Batch Code or Batch Name isnot 12a System displays an error message.
entered.
13a User can press Close button. 14a System closes Add Batch screen.

Post Conditions:
New Batch has been added successfully.

GUI Screen Reference: Add Course Screen

Use Case ID: UC-05
Use Case Name: Add Course
Actor(s): Administrator

Representing Shared Join Points with State Charts: a High Level Design Approach 33

Chapter 4

Implementation of Case Study

Goal:

Preconditions:

Administrator should be able to add new Course.

form.

Actor Actions:

1 User selects Course from main 2 System displays menu items.
menu.
3 User selects Add Course from menu 4 System displays Add Course screen.
item.
5 User Selects Faculty Name from 6 System displays corresponding List
List. of Department Names.
7 User Selects Department Name 8 System displays corresponding List
from List of Program Names.
9 User Selects Program Name from 10 System displays selected program
List from list.
11 User enters following information: 12 System takes input data.
e Course Code,
e Course Name,
o Course Credit Hours,
e Course PreRequisite,
e Course Fee,
e Course Notes.
13 User press Add button 14 System saves record and shows
message.
Alternative Course of Actions:
5a If Faculty Name is not selected 6a System displays an error message.
from List.
7a If Department Name is not selected 8a System displays an error message.
from List.
9a If Program Name is not selected 10a System displays an error message.
from List.
1la If Course Code or Course Name is 12a System displays an error message.
not entered.
13a User can press Close button. 14a System closes Add Course screen.
Post Conditions:
New Course has been added successfully.
GUI Screen Reference: Add Student Screen
Use Case ID: UC-06
Use Case Name: Add Student
Actor(s): Administrator
Goal: Administrator should be able to add Student.
Preconditions: Main form of application is opened and user is on main

form.

Actor Actions:

Main form of application is opened and user is on main

System Response:

System Response:

Representing Shared Join Points with State Charts: a High Level Design Approach 34

Chapter 4

Implementation of Case Study

11

13

15

User selects Student from main
menu.
User selects Add Student from
menu item.
User Selects Faculty Name from
List.
User Selects Department Name
from List
User Selects Program Name from
List
User Select Batch Number from
List.
User enters following information:
e Student Name,
o Father Name,
e Registration No,
e Date of Joining,
e Date of Birth,

¢ D Card No,
e Address,
e City,
e Country,
¢ Email Address,
s Notes.
User press Add button

Alternative Course of Actions:

Sa

Ta

9a

l1la

13a

15a

If Faculty Name is not selected
from List.

If Department Name is not selected
from List.

If Program Name is not selected
from List.

If Batch Number is not selected
from List.

If Student Name or Registration No
is not entered.

User can press Close button.

Post Conditions:
New Student has been added successfully.

Use Case ID:

GUI Screen Reference:

Uc-07

12

14

16

6a

8a

10a

12a

14a

16a

System displays menu items.

System displays Add Student screen.
System displays corresponding List
of Department Names.

System displays corresponding List
of Program Names.

System displays corresponding List
of Batch Numbers.

System displays selected batch from

list.
System takes input data.

System saves record and shows
message.

System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.

System closes Add Student screen.

Submit Fee Screen

Representing Shared Join Points with State Charts: a High Level Design Approach 35

Chapter 4

Implementation of Case Study

Administrator should be able to submit Fee for a
particular course against the student.

Use Case Name: Submit Fee
Actor(s): Administrator
Goal:

Preconditions:

form.

Actor Actions:

1
3

5

7

9

11

13

15

17

19

User selects Fee from main menu.
User selects Submit Fee from menu
item.

User Selects Faculty Name from
List.

User Selects Department Name
from List

User Selects Program Name from
List

User Selects Batch Number from
List.

User Selects Student Name from
List

User Selects Course Title from List

User Select Is Fee Submitted Status
from List.
User press Add button

Alternative Course of Actions:

S5a

7a

9a

11a

13a

15a

17a

19a

If Faculty Name is not selected
from List.

If Department Name is not selected
from List.

If Program Name is not selected
from List.

If Batch Number is not selected
from List.

If Student Name is not selected
from List.

If Course Title is not selected from
List.

If the fee is already submitted for
the selected course.

User can press Close button.

Post Conditions:
Fee has been added successfully.

Main form of application is opened and user is on main

System Response:

2
4

6

8

10

12

14

16

18

20

6a

8a

10a

12a

14a

16a

18a

20a

System displays menu items.
System displays Submit Fee screen.

System displays corresponding List
of Department Names.

System displays corresponding List
of Program Names.

System displays corresponding Lists
of Batch Numbers and Course Titles
System displays corresponding List
of Student Names.

System displays selected name from
list.

System display Course Fee in read
only format.

System displays selected option from
list.

System saves record and shows
message.

System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.

System closes Submit Fee screen.

Representing Shared Join Points with State Charts: a High Level Design Approach 36

Chapter 4

Implementation of Case Study

GUI Screen Reference: Add Result Screen
Use Case ID: UC-08
Use Case Name: Add Result
Actor(s): Administrator
Goal: Administrator should be able to add Result for a
particular course against the student.
Preconditions: Main form of application is opened and user is on main

form.

Actor Actions:

1

3

5

11

13

15

17

19

User selects Result from main
menu.

User selects Add Result from menu
item.

User Selects Faculty Name from
List.

User Selects Department Name
from List

User Selects Program Name from
List

User Selects Batch Number from
List.

User Selects Student Name from
List

User Selects Course Title from List

User Select Is Fee Submitted Status
from List.
User press Add button

Alternative Course of Actions:

S5a

7a

9a

1la

13a

15a

[7a

19a

If Faculty Name is not selected
from List.

If Department Name is not selected
from List.

If Program Name is not selected
from List.

If Batch Number is not selected
from List.

If Student Name is not selected
from List.

If Course Title is not selected from
List.

If the result is already added for the
selected course.

User can press Close button.

System Response:

2

4

6

8

10

12

14

16

18

20

6a

8a

10a

12a

14a

16a

18a

20a

System displays menu items.
System displays Add Result screen.

System displays corresponding List
of Department Names.

System displays corresponding List
of Program Names.

System displays corresponding Lists
of Batch Numbers and Course Titles
System displays corresponding List
of Student Names.

System displays selected name from
list.

System displays selected course from
list.

System displays selected option from
list.

System saves record and shows
message.

System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.
System displays an error message.

System closes Add Result screen.

Representing Shared Join Points with State Charts: a High Level Design Approach 37

Chapter 4 Implementation of Case Study

Post Conditions:
Result has been added successfully.

GUI Screen Reference: Register Course Screen

Use Case ID: UC-09

Use Case Name: Register Course

Actor(s): Administrator

Goal: Administrator should be able to register a particular

course for the student.
Preconditions: Main form of application is opened and user is on main
form.

Actor Actions: System Response:

1 User selects Result from main 2 System displays menu items.
menu.

3 User selects Add Result from menu 4 System displays Add Result screen.
item.

5 User Selects Faculty Name from 6 System displays corresponding List
List. of Department Names.

7 User Selects Department Name 8 System displays corresponding List
from List of Program Names.

9 User Selects Program Name from 10 System displays corresponding Lists
List of Batch Numbers and Course Titles

11 User Selects Batch Number from 12 System displays corresponding List
List. of Student Names.

13 User Selects Student Name from 14 System displays selected name from
List list.

15 User Selects Course Title from List 16 System displays selected option from

list.
17 User enters following information: 18 System takes input data.
o Course Registration Date,
o Course Registration Notes.

19 User press Add button 20 System displays menu items.

Alternative Course of Actions:

5a If Faculty Name is not selected 6a System displays an error message.
from List.

7a If Department Name is not selected 8a System displays an error message.
from List.

9a If Program Name is not selected 10a System displays an error message.
from List.

11a If Batch Number is not selected 12a System displays an error message.
from List.

13a If Student Name is not selected 14a System displays an error message.
from List.

15a If Course Title is not selected from 16a System displays an error message.

Representing Shared Join Points with State Charts: a High Level Design Approach 38

Chapter 4 Implementation of Case Study

List.

17a If the course is already registered 18a System displays an error message.
for the selected course.

19a User can press Close button. 20a System closes Register Course

screen.
Post Conditions:
Course has bee registered successfully.

GUI Screen Reference: All View Screens of the System

Use Case ID: UC-10

Use Case Name: View Specific Record

Actor(s): Administrator

Goal: Administrator should be able to any specific record.

Preconditions: Main form of application is opened and user is on main

form.

Actor Actions: System Response:

1 User selects a specific Item from 2 System displays menu items.
main menu.

3 User selects View a specific sub 4 System displays available
menu item. corresponding records on screen.

Alternative Course of Actions:

Post Conditions:
Record is displayed successfully.

Representing Shared Join Points with State Charts: a High Level Design Approach 39

Chapier 4

Implementation of Case Study

4.1.2

Use Case Diagram

Add Student
Add Faculty

Admin

Logging

Submit Fee
Add Result

Register Course

Faculty Member

«uses» «uses»

DBPersistanc

Figure 4.1 Use Case Diagram for the Case Study

Representing Shared Join Points with State Charts: a High Level Design Approach 40

Chapter 4 Implementation of Case Study

4.2 Shared Join Point Problem in Case Study and Design

Solution

This section identifies and describes ordering and controlling issues of shared join point
in the case study presented in section 4.1. Design solution for shared join point problems

is presented using proposed methodology presented in chapter 3.
4.2.1 Multiple Aspects at Shared Join Point
Above discussed functional requirements of the case study highlight some problems with

respect to shared join point.

<<Aspect>>
Logging

<<Aspect>>
CheckFee

CourseRegistration

<<Aspect>>
CheckPreRequisite

<<Aspect>>
DBPersistance

Figure 4.2 Multiple aspects superimposed on a shared join point

Representing Shared Join Points with State Charts: a High Level Design Approach 41

Chapter 4 Implementation of Case Study

In the above figure 4.2, multiple aspects i.e. Logging, CheckFee, CheckPreRequisite, and
DBPersistence are superimposed on registerCourse() method. They are required to
execute again registerCourse() method call. They present issue of ordering and
controlling of these superimposed aspects on the same join point. Ideally, their order of
execution should be; first Logging aspect should execute and if Logging aspect gets
successfully executed then next aspect will be executed, if Logging gets unsuccessful, the

other aspects should not be executed. Two main issues arise;

e Ordering of the multiple aspects i.e. make sure that Logging aspect should always

run first.

¢ Controlling of succeeding aspects (to ensure that if first aspect Logging does not

execute properly); how to stop the execution of other aspect?

These issues have already been discussed in detail in previous chapters 2 and 3. In normal
scenario all superimposed aspects are executed independently, even though they have
dependencies with respect to system functionality. They need to control in order to

implement according to the requirements of the system.

4.2.2 Design with Proposed Methodology

Since, the requirement of logging is implemented by the aspect named Logging. The
responsibility of Logging aspect is to maintain the log of every entrance to a method, so
Logging aspect should run before the registerCourse() join point which is now well

defined point in the program.

The other requirements like student fee checking and course prerequisites checking for
the course being registered by the student are implemented by CheckFee and
CheckPreRequisite aspects respectively as described earlier. These aspects should also
run before the registerCourse() join point. All three aspects will be executed on the
registerCourse() join point at the same time. In other words the join point

registerCourse() is being shared by the multiple superimposed aspects.

Representing Shared Join Points with State Charts: a High Level Design Approach 42

Chapter 4 Implementation of Case Study

The problem of ordering and controlling among these three aspects arises, because in
normal scenario any aspect can be executed by the compiler. If either of the aspects does
not provide the desired results, the course should not be registered. The last requirement
is to check the database persistence implemented by DBPersistence aspect, which ideally

should run at the end when a course has been registered.

Suppose that database is up and DBPersistence aspect is working perfectly. This aspect
should inform the user about the course registration, whether it has been successful or
not? It is the only aspect which will execute after the core requirement gets completed

and do not have any conflict with other aspects.

. beforeCompositeState
H Logging

J 1st choice
- Ipseudostate

X [false] e
2nd choice [faksel] synCompositeState)
pseudostate @e——-(CheckFee }_.
N, . [hoolegn]
— = <§V ____________
(:)(-——{ CheckPreRequisite]-:—.
ftrye)

coreCompositeSiate

Hregis‘ter(:ourse(} J

afterCompositeState

.”"‘—'-9{ DBPersistance]

Figure 4.3 Detailed case study design of proposed methodology

Representing Shared Join Points with State Charts: a High Level Design Approach 43

Chapter 4 Implementation of Case Study

The superimposition of three aspects requires great efforts to handle their ordering and
controlling issues. In order to define better ordering and controlling strategies, we need to
model shared join points at high level design. In figure 4.3, two different categories of
composite states are defined; one implementing the core requirement and other

implementing the aspectual requirement.

We are more concerned with the first composite state i.e. beforeCompositeState that
contains the aspects need to be executed before the core requirement and on the bases of
these results the core requirement will be implemented. This composite state contains an
aspect Logging and a sub-composite state syncCompositeState which contains two
aspects CheckFee and CheckPreRequisite in its orthogonal region for their concurrent
execution. The concept of synCompositeState is the same like beforCompositeState and
afterCompositeState but differ in this way that aspects contained by this composite state
will be executed concurrently as they both are independent to each other. If any of the
aspects contained by this state produce undesired results, the combined output of both
will be false. The true results of this state only can guarantees the execution of core
requirement. The aspects in beforeCompositeState are superimposed and required to be
ordered and controlled. If we consider the above discussed scenario, the Logging aspect
should always run first. This Logging aspect will transmit boolean guard value to first
choice pseudostate as input. This pseudostate evaluates these boolean guard values and
decides whether to transmit the object or not? If boolean guard value is evaluated as true,
the object will be forwarded to syncCompositeState which contains two aspects namely
CheckFee and CheckPreRequisite. Otherwise it will be sent to terminate pseudostate,
which destroys the object action and as a result other requirements will not be fulfilled.
This allows controlling of the other aspects if the first does not work properly. If it works
properly, then the object is passed into syncCompositeState and boolean guard value has
been referred to CheckFee and CheckPreRequisite aspects in the orthogonal regions, both
will synchronously run and their combined result will be transmitted as boolean guard
value to second choice pseudostate that evaluates the boolean guard value. If the value is
true, it implements the course registration core requirement otherwise object will be sent

to terminate pseudostate. Synchronous handling of two aspects takes place because they

Representing Shared Join Points with State Charts: a High Level Design Approach 44

Chapter 4 Implementation of Case Study

don’t have any ordering constraint and they are not dependant on each other as well i.e.
any one of the aspects in syncCompositeState could run after the other. Also the
synchronous handling of these aspects in the orthogonal regions will be handled by

default as run to-completion, in which each event is handled before the next occur [18].

The DBPersistence aspect is an aspect that should run after core requirement, so there is
no need to order or control this aspect. Its role is to just inform whether the database is

updated or not.

4.3 Architecture

The architectural view for the application is basically layered as shown in figure 4.4. The
core and aspectual requirements are implemented at the same layer. The “gui” layer is
responsible for users’ actions handling and other related operations. The “db” is

responsible to data connection opening/closing and data storage.

<<QOther Files>> <<Graphical User Interface>>
files gul
>
il R
|
<<Core Requirements>> <<Aspectual Requi 55>
cr ar

<Ccross cut>3

<<Database Access>>
db

Figure 4.4 System Architecture Diagram

Representing Shared Join Points with State Charts: a High Level Design Approach 45

Chapter 4 Implementation of Case Study

4.4 Collaboration Diagrams

1: createFrameAddF aculty()
frame : > frame :

MainWindow AddFacultyWindow

o
/2.’”171t:'—%ddFaculty()

3: connectDB()
T 4: disconnectDB()

i objFac: T objConn :
| Faculty
Figure 4.5 Collaboration Diagram for Add Faculty
) 1: createFrameAddDepartment()
frame : > frame :
MainWindow AddDepartmentWindow
2: string:=getFacultyCode()
N
3: int:=addDepartment()
objFac :
Faculty
4: connectDB()
5: disconnectDB()
objDep : - objConn :
Department DBConnection

Figure 4.6 Collaboration Diagram for Add Department

Representing Shared Join Points with State Charts: a High Level Design Approach 46

Chapter 4

Implementation of Case Study

2: string:= etFacuItyCode()

N\
\,
\ \\\
e 1: createFrameAddProgram() .
frame - S frame :
| MainWindow AddProgramWindow
s :
///// {’

e

5: connectDB()
6: disconnectDB()
—>

objConn :

Figure 4.7 Collaboration Diagram for Add Program

2: string: —getFayultyCode
1: creaTéFrameAddProgram()

/
e
\\\) /
frame :
-- AddBatchWindow
objProg : _/_A____,__,: ‘‘‘‘‘‘ e
_Program4: string: —getProgramCocLe() | N
T i3 stnng ﬂetDepanmentName()
4 / \
‘\ e " \\A
B Vv \
\ pd 5: mt 'addBatch() .
| 7 | N
L \ objDep: |
i -~ Department |
objConn: { I :
DBConnection |7

objBatch
Batch

6: connectDB()
7. disconnectDB()

Figure 4.8 Collaboration Diagram for Add Batch

Representing Shared Join Points with State Charts: a High Level Design Approach

47

Chapter 4

Implementation of Case Study
N

\
|

’ frame :
MainWindow

e

o
2: string:=getF§_7c;ultygodé'('3
1: crea?éE rameAddProgram() -
\\ &

./‘//
N -
™~ , " 4: string:=getProgramCode()
frame : - objProg :
AddCourseWindow Program
e T T ~.5: int:=addCourse()
S TN X
e \\\.
3: string ;7—-get9/epanmentName() \‘\\\\
objDep : - -
Department objConn:

T Course

6: connectDB()
7: disconnectDB()

DBConnection

Figure 4.9 Collaboration Diagram for Add Course

frame :
MainWindow

Ob]FaC

_Facuity
L

1: cre\ateﬁngneAddProgram() 2: string:=getF %ul_tyc/ode()
Tl A 4
.\\\\\ //
NG d
. e
e e frame :
objDep e

Department <

AddStudentWindow 1

- / \\\\
L ! objProg:
5 /sjri(g:—'zgetBatchCode() / / p,’og,gm
P L N - b -
e 6: int:?a\édStudent()
objBatch /
/

i 7: connectDB()
{8 disconnectDB
© objStu: |

| Stuent |

objConn :
DBConnection

Figure 4.10 Collaboration Diagram for Add Student

Representing Shared Join Points with State Charts: a High Level Design Approach

48

Implementation of Case Study

Chapter 4

ch |

~
frame :

. objDep: | ——— AddFeeWindow
Department e I N
3: string:=getDepartmentName() ,’ \U \\\\\\\\\\\\\\\\
I 6: String:=getCourseName() objProg :
oo string =getCourseCode(. Program
] 8:int’ ge{CourseFee()

|
q tStudentName

9: string:=g
10:i # ubmitFee() \

. objConn:
; ‘

DBCaonnection
objCour :

.

— \\\\
11:co I%D 87)

12: (‘:IisconnectDB()

objFac:
i _Faculty]
]
e
2: string:=getFa/cnfyCode() obiCour -
7) :
P -
e e ey Ny // __________ -
objDep : . yd 8: string /geteuu'r'seName()
DQEﬂmni] T 7 T -string:=getCourseCode()
G frame : [
3: string: —getDepartmentNanTe() AddResultWindow /
_____ ’/ ’/ Y S !
- 8. string:=getStudentName i
. Acsing: 'getpr"g’amcm’eo / 9 in?.\:gad%StudentResun()O /
objProg : S AN ,'
Fﬂ'ggrm 5: string‘3getBatchCode() \\\ |
7 \\\ l‘
N i
\\\ :’I
10: connectDB() ™ i
11: disconnectDB() objStu :
Student

objConn ; !
DBConnection | <

Figure 4.12 Collaboration Diagram for Add Result

Representing Shared Join Points with State Charts: a High Level Design Approach

Chapter 4 Implementation of Case Study

) ob)Prog
Program
/ ™, . s .\\\ e -~
L \& 2: strmg.—g\g\tFacultyCode() 4 string::getPr/ogréfnCode()
—— V\ A7 /
N AN \\ - e
N P e
\ ///
e N\ - 5: string:=getBatchCode()
frame : —> objBatch :
AddCourseRegistrationWindow | Batch
3 string:=getge,partfﬁ'e’ri{ﬁame() \\
r & o \\.\
“ ~
[/ 6: st\rmg:=getCourseName()
7: string>=getCourseCode()
/ 8: int:=ge \our\seFee()
9: string:=getStudentName() AR
10: int.=regjsterCourse() \-\\
i \\\
/ b
.
g ~.
- \\.
/ 11: connectDB() N
: 12: disconnectDB() S
objStu: | — obiConn: | opiCour
. Student DBConnection | L

Figure 4.13 Collaboration Diagram for Register Course

Representing Shared Join Points with State Charts: a High Level Design Approach

50

Chapter 4 Implementation of Case Study

4.5 Class Diagram

Student Faculty Department

! NaddFraculty()
getTotalRecords()
getFacultyName(}
lgetFacultyCode()

MaddDepartment()
etTotalRecords()
etDepartmentName()
getDepartmentCode()

tStudentRegistrationNo()
dStudentResult()

1
L

Program Course
CourseRegistration
18 addProgram() fMaddCourse() —

getTotalRecords() igetTotalRecords() terCourse()

getProgramName() igetCourseName() bmitFee()

getProgramCode() getCourseCode() heckCourseRegistration()
lgetCourseFee() wkcheckFeeSubmission()
lgetPreRequisiteCCode() \

\S DBConnection "
Logging
dBatch() CheckPreRequisite
tTotalRecords() onnectDB() m 0
{NgetBatchNumber() isconnectDB() L S “check re()
| $getBatchCods() it
DBPersistance
CheckFee
P¥checkdb()
checkFee()

Figure 4.14 Class Diagram

Figure 4.5 shows only classes that are related to core requirements, aspectual

requirements and database connection but not graphical user interface classes.

4.6 Database Model

MS Access 2003 is used as database. Database model is given in the following section. In
architecture diagram, db layer contains database file and class named DBConnection

which is responsible for opening and closing of database connections.

Representing Shared Join Points with State Charts: a High Level Design Approach 51

Chapter 4 Implementation of Case Study

FID i DD
; %FCude {DCode iRDate
Fiame DName CTide Riote
Flocation iDocation Hccredithours ICResult
{FCity IpCity - {CPreRequisite ICCode
! 'EFCOUT‘W DCauntry {CFee i%StuRegstrationNo
Fhiate DNote IcNate " :
o IFCode : * {PCode S
SRt 0 s D A R G i Stufame
| StuFstherName
StuRegistrationNo
StuDOJ
: StuDOB
MName ifStulDCard
/LDate_Time i :1StuAddress
[i 8Code Stucity
1BNumber StuCountry
{1BNote StuEmailaddress
TRCOde i Stulote
” : BCode
Figure 4.15 Database Model
. . . .
4.7 Ordering and Controlling Issues Handling in Code

This section discusses the implementation (in Aspect]) of the case study with the help of
proposed methodology. Aspect] is one of the prominent languages of aspect oriented
software development [3] [4]. This section also describes how controlling and ordering

issues can be better implemented with the help of proposed methodology?

For ordering of superimposed aspects at the same join point precedence construct is
available in Aspect). It is very important to understand the execution order of the
superimposed aspects in the program. In the absence of precedence construct the
execution order of the program is unpredictable. Any of aspects can be executed before
the rest, when there are more than one superimposed aspects on the shared join point with

before or after advices.

4.7.1 Ordering

To ensure that the Logging aspect should run before any other aspect, precedence
construct with respect to aspect sequence (ordering) is declared in each aspect. When

program begins execution and control reaches at any of aspects, the compiler can find the

Representing Shared Join Points with State Charts: a High Level Design Approach 52

Chapter 4 Implementation of Case Study

ordering flow of the aspects. Following statement is written in all aspects such as

Logging, CheckFee, CheckPreRequisite,

declare precedence:Logging*;

Since in the case study, we are making sure that only Logging aspect should run first.
Both aspects i.e. CheckFee and CheckPreRequisite can execute in any order after the
successful execution of Logging aspects. So, we will use only above mentioned statement
for ordering the aspects. When we also need to order other aspects, the following

statement can be used;

declare precedence: Logging, CheckFee,*;

When control reaches in any of these aspects, this statement informs the compiler that
first of all Logging aspect will have to be executed. The statement given above describes
that after Logging aspect, CheckFee aspect will be executed. This statement is declared in
all aspects define order of aspects. In this fashion ordering of the superimposed aspects

on the same shared join point can achieved as shown in table 4.1 and 4.2.

4.7.2 Controlling

Ordering of superimposed aspects at same join point is the first step toward controlled

execution of the aspects.

When execution of the aspects has been done in an ordered manner, it is the right time to
introduce the strategy for controlling the aspects. For this reason some static boolean
variables are used, which are responsible for storing the updated values so that the
execution of relevant aspects can be controlled depending on current values in the static

boolean variables. The whole phenomenon is explained:

In the CourseRegistration class the controlled variables are;

Representing Shared Join Points with State Charts: a High Level Design Approach 53

Chapter 4 Implementation of Case Study

public static boolean logging=true ;
public static boolean checkFee=true;

public static boolean checkPreReg=true;

public static boolean dbPersistance=true;

Default values of these variables are set “frue”. If the execution of any of the aspects
produces negative result for other aspects than the corresponding static boolean variable

are changed from “true” to “false”.

In such a case the next aspects first checks the value of the controlled variable (which
effects the execution of this variable) and if the value is “false” than the execution of
current aspect skips itself and the value of referring controlled variable becomes “false”

and vice versa. See ‘Logging’ aspect in table 4.1.

package ar;

import java.sql.Statement;

import javax.swing.JOptionPane;
import db.DBConnection;

import cr.CourseRegistration;

public aspect Logging {
declare precedence:Logging*;//Ordering the aspects

pointcut Jog(String crDate, String crNote, String cCode, String stuRegistrationNo):
call(int cr.CourseRegistration.registerCourse(String, String,String, String))
&& args(crDate, crNote, cCode, stuRegistrationNo);

before(String crDate, String crNote, String cCode, String stuRegistrationNo) :
log(crDate, crNote, cCode, stuRegistrationNo){
try{
int result=0;
Statement statement=null;
DBConnection dbconn= new DBConnection();

dbconn.connectDB();
java.util.Date now = new java.util.Date();

statement = dbconn.conn.createStatement();
String sql = "INSERT INTO tbl Log (MName" +

Representing Shared Join Points with State Charts: a High Level Design Approach 54

Chapter 4 Implementation of Case Study

" LDate_Time) VALUES
('"+thisJoinPoint.getSignature().toString()+"" +
" ""+now.toString()+"")";

result=statement.executeUpdate(sql);
dbconn.disconnectDB();

if (result>0){
System.out.printin("Successful Logging!");
CourseRegistration.logging=true;
yelse{
CourseRegistration.logging=false;
JOptionPane.showMessageDialog(null,"Logging Failed! try
later");
}
}
catch(Exception e) {
System.out.printin(e.getMessage());
CourseRegistration.logging="false;

Table 4.1 Logging aspect

The first statement in bold text in the above aspects is responsible for the ordering issue
of the superimposed aspects at the shared join point registerCourse(). This has been
discussed in the previous section. The next bold text statement is responsible for setting
boolean values “frue” as the logging functionality is successfully evaluated by the “if”
statement above. The next and the last statement in bold text is used to set static boolean
variable “false” as it is the else part of “if”” statement which represents failure of logging
functionality. In this way boolean static variables can be set “true” or ‘‘false” based on

the success or failure of respective aspect.

Now, we see that how the values of boolean static variable are represented in proposed
methodology design and declared in CourseRegistration class can be evaluated. In the
proposed design methodology, these values were being evaluated by choice pseudostate
UML state charts. In Aspect) programming, these values are evaluated by “if” statement

of programming language. As shown in table 4.2 for CheckFee aspect:

Representing Shared Join Points with State Charts: a High Level Design Approach 55

Chapter 4 Implementation of Case Study

package ar;
import javax.swing.JOptionPane;
import cr.CourseRegistration;

public aspect CheckFee {
declare precedence:Logging*;//Ordering the aspects
pointcut checkFee(String crDate, String crNote, String cCode, String stuRegistrationNo):
call(int
cr.CourseRegistration.registerCourse(String, String,String, String))
&& args(crDate, crNote, cCode,
stuRegistrationNo);

before(String crDate, String crNote, String cCode, String stuRegistrationNo) :
checkFee(crDate, crNote, cCode, stuRegistrationNo){

if (CourseRegistration.logging==false){
//code for stopping this aspect to run
CourseRegistration.checkFee=false;
telse{
CourseRegistration objCR=new CourseRegistration();
int chkValue=0;
chkValue=objCR.checkFeeSubmission(cCode, stuRegistrationNo);

if (chkValue>0){
CourseRegistration.checkFee=true;
System.out.printin("Fee is submitted!");
Yelse{
CourseRegistration.checkFee=false;
//System.out.printin("Fee is not submitted!");
JOptionPane.showMessageDialog(null,"Fee is not submitted!");

Table 4.2 CheckFee aspect

The first statement in bold text in table 4.2 represents an “if” statement which evaluates
boolean static variable values of logging aspect. If boolean static variable value is
evaluated as ‘false” the code in body of “jf” statement sets checkFee boolean static
variable as ‘false” which will be executed by the next aspect, and if it is evaluated as
“true” the corresponding functionality of aspect will be implemented. This way

controlling of the aspect will be done.

Representing Shared Join Points with State Charts: a High Level Design Approach 56

Chapter 5

RESULTS AND DISCUSSIONS

Chapter 5 Results and Discussions

5. Results and Discussions

This chapter mainly discusses the results achieved by applying proposed methodology on
case study and without applying proposed methodology on case study. Benefits of the
proposed methodology at design and implementation level are discussed. This chapter

also concludes the overall study. Future work is also presented.

5.1 Results

In order to see whether the proposed methodology helps in ordering and controlling of
the multiple aspects superimposed on the shared join point at design level, some

execution scenarios with respect to aspectual requirement are represented.

Core Requirement Aspectual Requirements

‘ J’\ CheckFee '
' CheckPreRequisite ’

Logging

' registerCourse() '

@<

DBPersistance

Figure 5.1 Execution sequence of aspects without ordering and controlling

Representing Shared Join Points with State Charts: a High Level Design Approach 57

Chapter 5

Results and Discussions

Figure 5.1 represents an execution scenario where aspects are not ordered and controlled.

It clear represents that aspects are not executing according to the aspectual requirements

presented in chapter 4 (see 4.1). This is normal behavior of multiple aspects at shared join

point that is why it presents the issues of ordering and controlling. The proposed

methodology presented in chapter 3 and 4 helps to resolve these issues at design level.

Then this design helps in implementing the aspectual requirements as per desired

strategy. Table 5.1 and 5.2 represent the comparison of case study results achieved

without ordering and controlling the multiple aspects through proposed methodology and

with ordering and controlling the multiple aspects through proposed methodology.

no other aspect or
core requirement
should be executed.
DBPersistance will
always run after
core requirement.

2 Requir!ad Aspect Aspects’ E;;_efcutinn Sequence without Ordering and Controlling

2 -Execution Case # 01 Case # 02 Case # 03 Case # 04

= | .Sequence
Logging, CheckFee, CheckFee, CheckPreRequisite, | CheckFee,

« || CheckFee, CheckPreRequisite, | CheckPreRequisite, | Logging, Logging,

§ CheckPreRequisite, | Logging, DBPersistance. DBPersistance. DBPersistance.

2‘-’- DBPersistance. DBPersistance.

Lo

-]

)

£

5

®

(o}
This is successful All the aspectual Logging aspect is CheckFee aspect is | CheckPreRequisite
scenario as requirements are failed to maintain failed to check the | aspect is failed to
Logging aspect fulfilled in log even then other | fee submitted even | check the fee
runs first of all. unordered and dependant aspects then other submitted even
After the uncontrolled way. executed which dependant aspects then other

& | successful violated overall executed which dependant aspects

(3] . . .

g | execution of strategy. violated overall executed which

& | Logging aspect strategy. violated overall

w | either CheckFee or strategy.

E CheckPreRequisite

= | aspect run. If

£ | Logging aspect is

£ | unsuccessful then

S

Table 5.1 Ordering and controlling without proposed methodology

Representing Shared Join Points with State Charts: a High Level Design Approach

58

Chapter 5

Results and Discussions

» | Required Aspect | Aspects’ Execution Sequence with Qrdering and Controlling
2 | Execution Case #01 Case #02 | Case # 03 Case # 04
2 | Sequence
Logging, Logging, Logging Logging Logging(Successful),
» | CheckFee, CheckFee, (Failed)* (Successful), | CheckFee(Successful)
© | CheckPreRequisite, | CheckPreRequisite, CheckFee CheckPreRequisite(Failed)*
2| DBPersistance. DBPersistance. (Failed)*
3
H
o
S
) *Execution | * Execution | * Execution stopped
stopped stopped
This is successful All the aspectual Logging CheckFee CheckPreRequisite aspect is
scenario as requirements are aspect is aspect is failed to check pre requisite
Logging aspect fulfilled in ordered | failed to failed to course so other aspects did
runs first of all. and controlled way. | maintain check fee not execute according to the
After the log so submitted so | strategy.
&1 successful other other
g execution of aspects did | aspect(s) did
% | Logging aspect not not execute
« | either CheckFee or execute according to
e CheckPreRequisite according | the strategy.
= °| aspect run. If to the
§ Logging aspect is strategy.
S | unsuccessful then
O | no other aspect or
core requirement
should be executed.
DBPersistance will
always run after
core requirement.
Table 5.2 Ordering and controlling with proposed methodology
5.2 Benefits

Major benefits of the proposed methodology are presented. These benefits cover different

perspectives of users and software systems.

For designer

The proposed methodology helps designer to design solution for complex scenarios of
shared join points presented in case study in previous chapters. This will also help them

to solve related issues as early as possible.

Representing Shared Join Points with State Charts: a High Level Design Approach 59

Chapter 5 Results and Discussions

For Programmers

After designer formulates the suitable strategies for ordering and controlling, it is
programmer’s responsibility to implement that. The proposed methodology helps
programmer to implement the designed strategy in an ideal way. The proposed
methodology clearly specifies how to handle the ordering and controlling issues of shared
Join point. Programmer would not find any problem to implement the superimposed

aspects.

Scalability

The designed solution using proposed methodology is scalable in the sense that it can
help in representing new conflicting aspects in the model. For example, if there is a new
aspectual requirement which again uses a same join point that is already being used by

some other aspect as shown in diagram below.

<<Aspect>>
AspectA

e <<Aspect>>
e AspectB

P e
i P

‘ CourseRegistration | .

<<Aspect>>
= NewAspect

E¥registerCourse()

<<Aspect>>
~ AspectC

Figure 5.2 Scalability

Representing Shared Join Points with State Charts: a High Level Design Approach 60

Chapter 5 Resuits and Discussions

Figure 5.1 shows that there are four aspects which have already superimposed on the
same join point. And there is another aspect with the name of NewAspect which is being
superimposed in same join point. The proposed methodology can help designers to

effectively handle this situation.

Reusability

The proposed methodology can be reused for solutions of similar complex problems. A
similar problem is presented in [8]. This proposed design solution can be used for that

problem as well.

Independent of implementation detail

The presented design methodology of shared join point allows the designer to represent
shared join point independent of the implementation details at abstract level [19]. This
would help to implement the designed solution in any of the programming languages like
Aspect) (one of the most prominent aspect oriented language) or AspectSharp (provide

framework to implement aspect oriented programming Microsoft C#).

Maintainability

The proposed methodology can also help in maintaining the software systems. If there is
an aspect that conflicts other aspects and required to be removed or updated, the proposed
methodology can help to maintain the design and then implementation. In future, if there
is a need to add a new aspectual requirement, even then state chart model of proposed
methodology can help to add new aspect corresponding to new aspectual where it is
required to be. The proposed methodology at high level design can help in maintaining
the software systems designed and developed in aspect oriented software development

(AOSD) paradigm.

Representing Shared Join Points with State Charts: a High Level Design Approach 61

Chapter 5 Resuits and Discussions

Less rework

Early representation of ordering and controlling issues reduces the work cost by
identifying the complexity of issues and formulating suitable strategies to solve the issues

accordingly. Early the problem is identified cheaper to solve.
Helps in formulating strategies for complex scenarios

The proposed methodology helps formulating suitable strategies required to solve shared
join point issues like ordering and controlling discussed earlier. It provides flexibility for

designers to apply any of the strategies given in [9] at high level design.
3.3 Conclusions

Previously shared join points were discussed at implementation level and to the best of
our knowledge there is no research done for this particular problem at design level. The
research thesis describes the need of modeling shared join point at high level design. In
this regard, state charts of UML 2.0 have been used for modeling at high level. The main
elements of state charts are composite states which compose the superimposed aspects at
shared join point. At abstract level, the composite states are used to categorize into core
and aspectual requirements. The strategies for ordering and controlling are implemented
through detailing the state charts using the choice pseudostate as dynamic selection
element and guard values to evaluate the next transition. State charts represent a better
way to handle shared joint point Issues at high level design. This allows the designers to
design issues regarding the shared join points at early design stages, and programmers
can implement these strategies accordingly. A case study is presented with proposed
methodology, which shows in detail how issues(s) regarding shared join point(s) can be

represented at high level design. Some of the benefits like scalability and maintainability

are also discussed.

Representing Shared Join Points with State Charts: a High Level Design Approach 62

Chapter 5 Results and Discussions

54 Future Work

Future work can be done for superimposed aspects having around advice which needs to
execute both before and after the core requirement. For example, there could be another
composite state that can contain the superimposed aspects having around advices.
Currently, work can be done on this issue and how it can be represented and integrated in
the proposed methodology. The around advice has not been discussed in the proposed

methodology, so this could be one of the area to work on in future.

Since shared join points represents the problem which occur again and again. So, they
represent a problem that can require solution in the form of design pattern. This work can

further be studied with respect to discover new design pattern for the shared join point
problem.

The proposed methodology can be used to recommend a suitable language construct to

control the execution of multiple aspects superimposed on the same join point.

Representing Shared Join Points with State Charts: a High Level Design Approach 63

REFRENCES & BIBLIOGRAPHY

References & Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

References & Bibliography

Aspect-Oriented Software Development. http://www.aosd.net.

Russell Miles; “Aspect] Cookbook”. O'Reilly. December 2004.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, Ch., Loingtier, J .and
Trwin, J.: “Aspect-Oriented Programming”. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP "97) (Yviskyld, Finland,
June 9-13, 1997). Springer-Verlag, Berlin Heidelberg, 1997, LNCS 1241, Pages
220-242.

Kiczales, G, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm & W. Griswold: “4n
Overview of AspectJ’. In Proceedings of ECOOP 2001, LNCS 2072, Springer
Verlag, 2001.

Stein, D., Hanenberg, St., Unland, R..: “An UML-based Aspect-Oriented Design
Notation For Aspect)”. In Proc. Of AOSD ’02 (Enschede, the Netherlands, Apr.
2002), ACM, pp. 106-112.

Boucke N., Holvoet T.: “State-based join points. Motivation and requirements”.
In Filman, R. E., Haupt, M., Hirschfeld, R. (eds): Proceedings of the Second
Dynamic Aspects Workshop (2005) 1-4.

Eduardo Barra Zavaleta, Gonzalo Génova Fuster, Juan Llorens Morillo: “An
approach to Aspect Modelling with UML 2.0”. Workshop on Aspect Oriented
Modeling, October 11, 2004, Lisbon, Portugal, held in Conjunction with the 7th
International conference on the Unified Modeling Language- UML 2004, October
10-15, 2004, Lisbon, Portugal.

[. Nagy, Lodewijk Bergmans and Mehmet Aksit: “Composing Aspects at Shared
Join Points”. Proceedings of International Conference NetObjectDays,
NODe2005.

Stein, D., Hanenberg, S. and Unland, R.: “On Representing Join Points in The
UML”. In Proceedings of the 2nd Workshop on Aspect Modeling with UML at
the Fifth International Conference on the Unified Modeling Language and its
Applications (UML 2002), (Dresden, Germany, 30 September — 4 October, 2002).

Representing Shared Join Points with State Charts: a High Level Design Approach 64

References & Bibliography

[10]

{11]

(12}

[13]

[14]

[15]

{16]

[17]

(18]

[19]

{20]

I Nagy, L. Bergmans, M. Aksit.: “Declarative Aspect Composition”. Technical
Report, http://trese ewi.utwente.nl/publications/publications.php?
action=showPublication&pub_id=346 University of Twente, (April 2005).

Anis Charfi, Michel Riveill, Mireille Blay-Fornarino, Anne-Marie Pinna-Déry:
“Transparent and Dynamic Aspect Composition”. In Workshop on Software
Engineering Properties of Languages and Aspect Technologies (SPLAT), Bonn
(Germany), 21 march 2006.

Eric Braude: “Software Design: From Programming to Architecture”. John Wiley
& Sons, Inc. 2004.

A. Rashid et al.: “4 Survey of Aspect-Oriented Analysis and Design Approaches”.
18 May 2005.

Object Management Group: “Unified Modeling Language”. Superstructure,
version 2.0 formal/05-07-04.

Stein, D.; Hanenberg, S.; Unland, R.: “Modeling Pointcuts. Early Aspects”.
Workshop on Aspect-Oriented Requirements Engineering and Architecture
Design, AOSD 2004, Lancaster, UK, March 22, 2004.

Mahoney, M., Bader, A., Aldawud, O., Elrad, T.: “Using Aspects to Abstract and
Modularize Statecharts.” The 5th Aspect-Oriented Modeling Workshop in
Conjunction with UML 2004.
http://www.cs.iit.edu/~oaldawud/AOM/mahoney.pdf.

Mark Mahoney: “Modeling Crosscutting Concerns in Reactive Systems with
Aspect-Orientation”. Doctoral Symposium at MoDELS/UML 2005, Montego Bay
Jamaica, October 2005.

Mohamed Mancona Kande, Jorg Kienzle and Alfred Strohmeier, “From AOP to
UML- A Bottom-Up Approach”, Swiss Federal Institute of Technology Lausanne,
Switzerland. [2001].

Michelle Crane, Juergen Dingel: “UML Vs. Classical Vs. Rhapsody Statecharts:
Not All Models Are Created Equal”. ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2005).

Stein, D.; Hanenberg, S.; Unland, R.: “Position Paper on Aspect-Oriented

Modeling: Issues on Representing Crosscutting Features”. 3™ International

Representing Shared Join Points with State Charts: a High Level Design Approach 65

References & Bibliography

[21]

[22]

(23]

[24]

Workshop on Aspect-Oriented Modeling with UML, AOSD 2003, Boston, MA,
March 18, 2003.

Wesley Coelho and Gail C. Murphy: “Modeling Aspects: An Implementation-
Driven Approach”. Workshop on Best Practices for Model Driven Software
Development at OOPSLA 2004.

A. Rashid, Araujo J., A. Moreira, and 1. Brito: “dspect-Oriented Requirements
with UML”. Workshop on Aspect-Oriented Modeling with UML (held with UML
2002).

A. Rashid and N. M. Ali: “4 State-based Joir Point Model for AOP”. Workshop
on Views, Aspects and Roles — VAR (held with ECOOP 2005).

Ivar Jacobson, Pan-Wei Ng: “Aspect-Oriented Software Development with Use
Cases”. Addison Wesley Professional. December 2004,

Representing Shared Join Points with State Charts: a High Level Design Approach 66

Appendix A

PUBLICATION

TRANSACTIONS ON ENGINEERING, COMPUTING AND TECHNOLOGY VOLUME 15 OCTOBER 2006 ISSN 1305-5313

Representing Shared Join Points with State
Charts: A High Level Design Approach

Muhammad Naveed, Muhammad Khalid Abduliah, Khalid Rashid, and Hafiz Farooq Ahmad

Abstract—Aspect Oriented Programming promises many
advantages at programming level by incorporating the cross cutting
concermns into separate units, called aspects. Join Points are
distinguishing features of Aspect Oriented Programming as they
define the points where core requirements and crosscutting concerns
are (inter)connected. Currently, there is a problem of muitiple
aspects’ composition at the same join point, which introduces the
issues like ordering and controlling of these superimposed aspects.
Dynamic strategies are required to handle these issues as early as
possibie. State chart is an effective modeling tool to capture dynamic
behavior at high level design. This paper provides methodology to
formulate the strategies for multiple aspect composition at high level,
which helps to better implement these strategies at coding level. It
also highlights the need of designing shared join point at high level,
by providing the solutions of these issues using state chart diagrams
in UML 2.0. High level design representation of shared join points
also helps to implement the designed strategy in systematic way.

Keywords—Aspect Oriented Software Development, Shared Join
Points.

I. INTRODUCTION

SPECT Oriented Programming [1] [2] is a new software

development paradigm which enables to increase the
comprehensibility, adaptability and reusability by
modularizing the crosscutting concerns into the units called
“aspects” [3] [4]. It provides solutions of many real time
problems that neither the object oriented nor procedural
languages can sufficiently handle [2] [5]. “Aspect” in AOP is
like a class entity which mainly differs in instantiation and
inheritance [3]. Other constructs of AOP are join points,
pointcuts, advices and introductions [2] {5], among all, join
point is more important. Join point is defined as a well defined

This work is a part of our research project for Department of Computer
Science at Intemnational Islamic University, Islamabad, Pakistan.

Muhammad Naveed is a student of MS (Software Engineering) at
Intemnational Islamic University Islamabad, Pakistan. Also working as a
Software Engineer in ESOLPK, 12 SNC Center, Blue Area, Islamabad,
Pakistan (e-mail: naveed_2334@yahoo.com).

Muhammad Khatid Abdullah is a student of MS (Software Engineering) at
International Islamic University [siamabad, Pakistan (e-mail:
am.khalid@yahoo.com).

Khalid Rashid is with Faculty of Applied Science, Intemational Islamic
University Islamabad, Pakistan (e-rnail: drkhalid@yahoo.com).

Hafiz Farooq Ahmad is with Department of Computer Science,
International Isfamic University Islamabad, Pakistan (e-mail:
farooq@comtec.co jp).

ENFORMATIKA V152006 ISSN 1305-5313

80

execution point in a program [3].

Join points represent the key concept in Aspect-Oriented
Software Development (AOSD). Join points define the places
where two concerns i.e. core and aspectual, crosscut each
other {2] [3] (5] [6] [7] [8] [9]. Main task of aspect-oriented
introductions [2] [5], among all, join point is more important.
Join point is defined as a well defined execution point in a
program [3].

Join points define the places where two concerns i.e. core
and aspectual, crosscut each other [2] [3] [S] [6] [7] 8] [9].
Main task of aspect-oriented designers is to identify set(s) of
join points, where two concerns interconnect to each other,
and provide suitable representation for join points [8] [9] [10].

In many cases, a join point is superimposed by multiple
aspects at the same time, known as a shared join point [5] [8]
[10]. There are many example scenarios (one discussed in
section 4), where multiple aspects are being superimposed on
the same join point [8] [10] [I1]. Currently, there are
problems with shared join points at implementation level due
to uncertain execution behavior of superimposed aspects [8]
[10] [11]. Since muitiple aspects are being superimposed, it
becomes difficult to judge what will be the exact execution
order? If an aspect does not work; how to control the
execution order of other aspects? There is not sufficient
support available for these issues at implementation level, but
there are some indirect support and recommendation details
for AOP languages [5] [8] [I1]. For example, Aspect)
provides precedence construct for ordering and do not provide
any direct support for controlling [5].

These issues are novel and being discussed at
implementation level only [8] {10]. These issues require the
strategies to order and control the superimposed aspects at run
time. The strategy presented at implementation level requires
to be modeled for shared join points at the early software
development stage [12] [13]. Due to the significance of join
points, particularly, the shared join points, the representation
of issues regarding the shared join points in an aspect-oriented
development environment is a major task for aspect-oriented
designers at high level design. This high level representation
can reduce the work cost by the formulation of early design
decisions.

Software design is an important activity in the software
development. It is like a blueprint of the software to be built
[14).Recently, Aspect Oriented Software Development is
making strong progress on the implementation level, but the
extensive support at design level is still insufficient [13].

© 2006 WORLD ENFORMATIKA SOCIETY

TRANSACTIONS ON ENGINEERING, COMPUTING AND TECHNOLOGY VOLUME 15 OCTOBER 2006 ISSN 1305-5313

Unified Modeling Language (UML) [7] of OMG group is one
of the most popular modeling languages to design different
artifacts of the software systems. UML [i5] provides
numerous diagrams to model properties of a software system
[16]. It has become an industry standard now for a while. It
provides a verity of diagrams that can be used to model
software for aspect oriented development paradigm [17] [18).
Among these diagrams, state charts are very important to
model the dynamic behavior of the system. When the decision
on what action is to take in response to a given input, the state
chart is an effective design tool [18]. This work explains how
the shared join points can be modeled using state charts of
UML 2.0 at high level design. It also proposes a methodology
to formulate the strategies based on dynamic decisions at high
level design and finally the formulated strategy is
implemented in Aspect), one of the most prominent Aspect
Oriented Programming languages [5].

The rest of the paper is organized as follows; Section 2
provides literature review. Section 3 presents proposed
methodology for modeling shared join points with state charts
at high level design. Section 4 describes the application of the
proposed methodology to a case study, and finally, Section 5
concludes the paper.

II. LITERATURE REVIEW

A detailed analysis of the problem aroused by shared join
points is discussed by Nagy et al. in 2005. Multiple aspects’
superimposition on the same join point affects the
functionality of each other due to different execution orders
among them. Software engineering perspective of Shared Join
Paint problems is also discussed. It is recommended that, to
offer one solution which satisfies only a single case is not
preferred. AOP languages should offer a rich set of language
mechanism for composition specifications, so that, the
developers may choose the right specification for their
problem. It is very important to identify conflicts among
aspects at shared Joint point for the safety and correctness.
The already presented core model [10] is enhanced by adding
more constraints and the composition rules for multiple
constraints. The integration of the purposed model with
Aspect] is also presented. This model can be used with
Aspectl], if Aspect] support the named advices. Also the Join
Point interface has to be extended for this purpose. For
ordering, Aspect] uses declare precedence construct and for
controlling, the construct presented in Core Model needs
language support [8] [10].

Anis C. et al. presented an interaction mode! on the basis of
Interaction Specification Language (ISL) for modularizing
crosscutting concerns of component based applications. The
main idea of interactions is to rewrite a2 method body using the
reaction (advice). The interaction model is used to handle the
issues arouse by the Shared Join Point in a way that, the
composition mechanism generates an advice, which is the
result of merging all advices at that join point. Whenever a
shared join point is reached one single advice is executed,
which is semantically equivalent to the composed advice. The
merging mechanism is based on a finite set of merging rules.

ENFORMATIKA V152006 ISSN 1305-5313

81

The software engineering properties such as analyzability and
predictability can also be achieved by using this tool. Testing
and verification becomes much simpler [11].

Mahoney et al. described the importance of extended Finite
State Machines in order to capture the dynamic behavior of
systems [18]. A state chart is connected to a class that
specifies al! behavioral aspects of the objects in that particular
class. They also describe that Aspect Oriented Modeling can
help in bridging the gab between software design and
implementation through the use of advanced features of state
charts. They have proposed a framework which helps in
simplifying the design of core requirements and cross cutting
concerns.

Mahoney elaborated the need of crosscutting concerns of
reactive systems using state machines. State Charts are used to
describe the dynamic behavior of separate concerns. The core
and aspectual requirements are represented by state in
different orthogonal regions. He addressed the communication
mechanism in orthogonal regions through broadcast events.
The broadcast events are used as a mechanism for implicit
weaving of aspect and core model in state charts [19].

The programming constructs of Aspect) are introduced by
Kiczales et al. The application of advices of two conceptually
and semantically independent aspects at the same join point is
addressed. It also described that the programmer does not
need to control relative ordering of such advice [5].

Mohamed Mancona Kande et al. explained the basic
concepts of Aspect), a state of the art Aspect Oriented
Programming Language. Standard UML is used for modeling
these concepts and limitations of UML are highlighted. Some
extensions to UML are proposed to overcome these
limitations. A bottom up approach is followed for designing
classes and aspects of Aspect Oriented Programming {16].

The concepts of Join Point as Static Join Point and
Dynamic Join Point are addressed. UML association classes
(along with their new features), ports and connectors are used
among components for modeling [7].

Stein D. et al. presented an approach to model the join
points with the help of Join Point Indication Diagram (JPID)
and Join Point Designation Diagram (JPDD). JPID is
presented for the indication of join points in core model while
JPDD is presented for the indication of join points in aspects
[18] [19] {20}, but it does not address any solution for Shared
Join Points.

There is massive work on modeling, modeling join points
as well as on aspect oriented programming where as the work
on shared point is only at implementation level. There is no
solution presented by the researchers to represent particular
issues of shared join point at high level in formulation of the
suitable design strategies for shared join points.

1L

This section presents the proposed methodology based on
state charts of UML 2.0. The section is divided into two sub-
sections. First describes, why to use state charts for shared
join point modeling and second subsection explains the
proposed design methodology.

PROPOSED METHODOLOGY

© 2006 WORLD ENFORMATIKA SOCIETY

TRANSACTIONS ON ENGINEERING, COMPUTING AND TECHNOLOGY VOLUME 15 OCTOBER 2006 ISSN 1305-5313

A. State Charts for Shared Join Point Modeling

The Unified Modeling Language (UML) has become
industry standard for modeling general and as well as for
specific purpose software artifacts. State charts in UML 2.0
[15] are very important means of modeling and capturing the
dynamic behavior of objects. State chart related to a class, can
specify all the behavioral aspect in that class [18]. A state
chart diagram is represented through a state machine which
models the individual behavior of the object. State machines
throughout the UML versions remained almost same [20].
However, some new elements like entry and exit point are
introduced in UML 2.0 [15]. Some of the elements of UML
2.0 like, composite state, choice pseudostate and terminate
pseudostate are very important means to model the behavior.

B, Methodology

The proposed design methodology mainly uses composite
state of UML for the multiple aspects’ composition at the
shared join point. The mode! consists of three main composite
states. These composite states are composition of the aspectual
and core requirements. Aspectual requirements are further
subdivided into two composite states; beforeCompositeState
and afterCompositeState. 1f multiple aspects are superimposed
before the core requirement, then their ordering and
controlling will be handled in beforeCompositeState. And if
the multiple aspects are superimposed after the core
requirement, then their ordering and controlling will be
handled in afferCompositeState. This means that each
composite state is responsibie for handling issue related to
superimposed aspects contained by that composite state. The
core requirement is composed in the coreCompositeState.
These composite states are named as just for understanding.
So, at the abstract level, the aspectual and core requirement
compositions are handled in composite states. The big picture
of proposed methodology is shown in Fig. 1.

betore Corrposite State

ol g

coreComposite &ate

oo}

After Compasite State

Fig. 1 Abstract view of proposed methodology

IV. CASESTUDY

To understand the problems of shared join point, it becomes
more convenient if we consider following case study. There
are also some examples related to these issues, discussed in

ENFORMATIKA V15 2006 ISSN 1305-5313

82

[8] [111. The case study is about university course registration
system. There are some requirements such as, no student will
be allowed to register course without prior submission of fee,
and also no course will be registered if its prerequisites are not
passed by the student. The system should maintain log and
database persistence. In this scenario of university course
registration, CourseRegistration class fulfils the core
requitement of the system. The requirement of course
registration is fulfilled by register Course() method. The other
requirements are implemented in different aspects.

Suppose that requirement of logging is implemented by
aspect named Logging. The responsibility of Logging aspect is
to maintain the log of every entrance to a method, so Logging
aspect should run before the registerCourse() join point which
is now well defined point in the program.

There are other requirements of student fee checking and
course prerequisites checking for the course being registered
by the student. These requirements are implemented by
CheckFee and CheckPreRequisite aspects respectively. These
aspects should also run before the registerCourse() join point.
Now, all three aspects will be executed on the
registerCourse() join point at the same time. In other words
this join point is being shared by the multiple superimposed
aspects.

The problem of ordering and controlling among these three
aspects arises. If either of the aspects does not provide the
desired results, the course should not be registered. The last
requirement is to check the database persistence implemented
by DBPersistence aspect, which ideally should run at the end
when course has been registered.

<<Aspect>>
Logging

<<Aspect>>
CheckFee

CourseRegistration

—

E¥registerCourse() <<Aspect>>

CheckPreRequisite

<<Aspect>>
DBPersistance

Fig. 2 Multiple aspects’ composition

Suppose that database is up and DBPersistence aspect
should work perfectly if the course has been registered. Now,
the superimposition of three aspects requires great efforts to
handle their ordering and controlling issues. The
superimposition of the multiple aspects at the join point
registerCourse() are shown in Fig. 2. All four aspects are
superimposed with registerCourse() join point. The ordering
and controlling issues are discussed at implementation level
and some strategies and software engineering rules are also
highlighted in [8] [11]. In order to define better ordering and
controlling strategies, one needs to model shared join points at
high level design, so that the ordering and controlling

© 2006 WORLD ENFORMATIKA SOCIETY

TRANSACTIONS ON ENGINEERING, COMPUTING AND TECHNOLOGY VOLUME 15 OCTOBER 2006 ISSN 1305-5313

strategies can be implemented perfectly at implementation
level. This reduces the work cost by identifying suitable
strategies at the early software development stage.

A. Application of the Proposed Methodology

The proposed methodology uses state charts, a design
constructs of UML 2.0 [15] to represent shared join point for
the case study discussed in university course registration
scenario.

This model comprises of three main composite states;

beforeCompositeState is to formulate the aspects that need to
be run before the core functionality which will be composed
in the second composite state coreCompositeState. Last
composite state is afterCompositeState which should contain
the aspect(s) that require(s) to be run after the core
functionality as shown in Fig. 3. Purposed model can be
customized. For example, there can be another composite state
for those aspects which need to be executed before as well as
after the core requirement i.e. around the core requirement.

. beforeComposite State
.‘“”*3'[Lagging]
] 1st choice
boojean -
X [false] { ! - pseudostate
! ftrue)
2nd choice [talse] synComposite State A
pasudostate (} - _.l CheckFee |'e .
p) _ Ibooiedn
S <>__“ I y L
(»)e———-—1 CheckPreRequisite
[trie) H
¥
coreCompositeState

Hregister(:ourse() }

afterCompositeState

M DBPergistance

Fig. 3 Detail design of proposed methodology for case study

Two different categories of composite states are defined;
one implementing the core requirement and other
implementing the aspectual requirement. We further sub-
categories the aspectual composite state into before and after
composite states. By having three composite states at abstract
level, we can easily model the core and aspectual
requirements in a systematic way.

We are more concerned with the first composite state i.e.
beforeCompositeState that contains the aspect need to be
executed before the core requirement and on the bases of their
results the core requirement will be implemented. This
composite state contains an aspect Logging and a sub-
composite state syncCompositeState which contains two
aspects CheckFee and CheckPreRequisite in its orthogonal
region for their concurrent execution. The aspects in
beforeCompositeState are superimposed and required to be

ENFORMATIKA V15 2006 ISSN 1305-5313

83

ordered and controlled. If we consider the above discussed
scenario, the Logging aspect should always run first. This
Logging aspect will transmit boolean guard value to first
choice pseudostate as input, which will evaluate these boolean
guard values and decides where to transmit the object. If the
boolean guard value is evaluated as true, the object will be
forwarded to syncCompositeState otherwise it will be sent to
terminate pseudostate, which destroys the object action. If the
object is in syncCompositeState and the boolean guard value
has been referred to CheckFee and CheckPreRequisite aspects
in the orthogonal regions, both will synchronously run and
their results will be transmitted as boolean guard values to
second Choice pseudostate that evaluates the boolean guard
value. If the value is true, it implements the course registration
core requirement otherwise object will be sent to terminate
pseudostate. Synchronous handling of two aspects takes place

© 2006 WORLD ENFORMATIKA SOCIETY

TRANSACTIONS ON ENGINEERING, COMPUTING AND TECHNOLOGY VOLUME 15 OCTOBER 2006 ISSN 1305-5313

because they don't require any ordering constraint. Any one
of the aspects in syncCompositeState could run after the other.
Also the synchronous handling of these aspects in the
orthogonal regions will be handled by default as run to-
completion, in which each event is handled before the next
occur [20].

The DBPersistence aspect is an aspect that should run after
core requirement, so there is no need to order or control this
aspect. This representation aliows the designers to show a
high level ordering and controlling mechanism for
superimposed aspects. It also shows how to resolve ordering
and controlling issues discussed. It provides flexibility to
designers to apply any of the strategies given in [9] at high
level design. By selecting a suitable strategy to resolve the
issue at high level design will help the programmers to
implement the strategy in an ideal way. It provides additional
feature of handling the new aspectual requirement in
systematic way. The presented design of shared join point
allows the designer to represent shared join point independent
of the implementation details at abstract ievel {21]. The design
at such an abstract level can provide benefits like scalability,
by representing new conflicting aspects in the model,
reusability, reusing the design strategy for other similar shared
join points, and maintainability, if any of the conflicting
aspects to be removed or to be added by identifying its effect
on the other aspects. Early representation of ordering and
controlling issues reduces the work cost by identifying the
complexity of issues and formulating suitable strategies to
solve the issues accordingly. Early the problem is identified
cheaper to solve.

V. CONCLUSION

Previously shared join points were discussed at
implementation level and to the best of our knowledge there is
no research done for this particular problem at design level.
The paper describes the need of modeling shared join point at
high level design. In this regard, state charts of UML 2.0 have
been used for modeling at high level. The main elements of
state charts are composite states which compose the
superimposed aspects at shared join point. At abstract level,
the composite states are used to categorize into core and
aspectual requirements. The strategies for ordering and
controlling are implemented through detailing the state charts
using the choice pseudostate as dynamic selection element and
guard values to evaluate the next transition. State charts
represent a better way to handle shared joint point Issues at
high level design. This allows the designers to design issues
regarding the shared join points at early design stages, and
programmers can implement these strategies accordingly. A
case study is presented with proposed methodology, which
shows in detail how issues(s) regarding shared join point(s)
can be represented at high level design.

REFERENCES
[1] Aspect-Oriented Software Development. http://www.aosd.net.

ENFORMATIKA V15 2006 [SSN 1305-5313

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, Ch,
Loingtier, Jand lrwin, J.: “Aspect-Oriented Programming”. [n
Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP '97) (Yvaskyld, Finland, June 9-13, 1997).
Springer-Verlag, Berlin Heidelberg, 1997, LNCS 1241, Pages 220-242.

[3] Stein, D., Hanenberg, St., Unland, R... “An UML-based Aspect-Oriented
Design Notation For Aspect)”. In Proc. Of AOSD '02 (Enschede, the
Netherlands, Apr. 2002), ACM, pp. 106-112.

{4] Wesley Coetho and Gail C. Murphy: “Modeling Aspects: An
Implementation-Driven Approach”. Workshop on Best Practices for
Model Driven Software Development at OOPSLA 2004.

{51 Kiczales, G, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm & W.
Griswold: “An Qverview of Aspect]”. In Proceedings of ECOOP 2001,
LNCS 2072, Springer Verlag, 2001.

[6] Boucke N., Holvoet T.. “State-bused join points: Motivation and
requirements”. In Filman, R. E., Haupt, M., Hirschfeld, R. (eds):
Proceedings of the Second Dynamic Aspects Workshop (2005} 1-4.

[7] Eduardo Bama Zavaleta, Gonzalo Génova Fuster, Juan Llorens Morillo:
“An approuch to Aspect Modelling with UML 2.0”. Workshop on
Aspect Oriented Modeling, October 11, 2004, Lisbon, Portugal, held in
Conjunction with the 7th International conference on the Unified
Modeling Language- UML 2004, October 10-15, 2004, Lisbon,
Portugal.

[8) 1. Nagy, Lodewijk Bergmans and Mehmet Aksit: “Composing Aspects at
Shared Join Points”. Proceedings of International Conference
NetObjectDays, NODe2005.

{9] Stein, D., Hanenberg, S. and Unland, R.: “On Representing Join Points
in The UML”. In Proceedings of the 2nd Workshop on Aspect Madeling
with UML at the Fifth International Conference on the Unified
Modeling Language and its Applications (UML 2002), (Dresden,
Germany, 30 September — 4 October, 2002).

[10] 1. Nagy, L. Bergmans, M. Aksit.: “Declarative Aspect Composition”.
Technical Report,
http:/trese.ewi.utwente.ni/publications/publications.php?
action=showPublication&pub_id=346 University of Twente, (April
2005).

[11] Anis Charfi, Michel Riveill, Mireille Blay-Fomnarino, Anne-Marie
Pinna-Déry: “Transparent and Dynamic Aspect Composition™. In
Workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT), Bonn (Genmany), 21 march 2006.

[12] A. Rashid, N. M. Ali: “4 State-based Join Point Model for AOP”.
Workshop on Views, Aspects and Roles — VAR (held with ECOOP
2005).

[13] Stein, D.; Hanenberg, S.; Unfand, R.: “Modeling Pointcuts. Early
Aspects”. Workshop on Aspect-Oriented Requirements Engineering and
Architecture Design, AOSD 2004, Lancaster, UK, March 22, 2004.

[14] Eric Braude: Software Design: From Programming to Architecture. John
Wiley & Sons, Inc. 2004,

[15] Object Management Group: “Unified Modeling Language”.
Superstructure, version 2.0 formal/05-07-04.

{16] Mohamed Mancona Kande, Jorg Kienzle and Alfred Strohmeier, “From
AOP to UML- A Bottom-Up Approach”, Swiss Federal Institute of
Technology Lausanne, Switzerland. [2001].

[17] A. Rashid, Aravjo J., A. Moreira, and 1. Brito. “Aspect-Oriented
Requirements with UML”. Workshop on Aspect-Oriented Modeling
with UML (held with UML 2002).

[18] Mahoney, M., Bader, A., Aldawud, O., Elrad, T.: “Using Aspects to
Abstract and Modularize Statecharts.” The 5th Aspect-Oriented
Modeling Workshop in Conjunction with UML 2004.
hitp://www cs.iit.eduw/~oaldawud/AOM/mahoney.pdf.

[19] Mark Mahoney: “Modeling Crosscutting Concerns in Reactive Systems
with Aspect-Orientation”. Doctoral Symposium at MoDELS/UML 2005,
Montego Bay Jamaica, October 2005.

[20] Michelle Crane, Juergen Dingel: “UML Vs. Classical Vs. Rhapsody
Statecharts; Not All Models Are Created Equal”. ACM/IEEE 8th
International Conference on Mode! Driven Engineering Languages and
Systems (MoDELS 2005).

[21] Stein, D.; Hanenberg, S.; Unland, R.: “Pasition Paper on Aspect-
Oriented Modeling: Issues on Representing Crosscutting Features™. 31d
International Workshop on Aspect-Oriented Modeling with UML,
AQOSD 2003, Boston, MA, March 18, 2003,

© 2006 WORLD ENFORMATIKA SOCIETY

