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Abstract

Dual-function radar-communication (DFRC) is a crucial technology that in-

tegrates radar and communication by sharing frequency resources and hard-

ware. Recent advancements have expanded the scope of information embed-

ding using a unified aperture. This technology now extends beyond military

and surveillance to a wide range of civilian and commercial uses. However,

beamspace and waveform design have not received enough attention. Further

investigation is needed to fully realize the potential of DFRC systems.

This dissertation comprises two major sections. The first section focuses on

the design of constant modulus waveforms for DFRC systems based on a multi-

input multi-output (MIMO) configuration of sensors deployed in the far-field.

Initially, a non-convex optimization problem is formulated to minimize inter-

ference power while maintaining a constant modulus constraint. An iterative

solution is proposed based on the alternating direction method of multipliers

(ADMM). The designed waveforms achieve improved beams for both radar

and communication while maintaining low sidelobes. These waveforms ensure

enhanced detection probability and bit error rate (BER) for radar and communi-

cation, respectively. The effectiveness of the proposed method is demonstrated

through extensive simulations.

Another waveform design strategy is proposed for MIMO radar-communication

systems, focusing on optimization with constraints on waveform similarity and
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constant power. ADMM is also applied to this problem, leading to a novel

method of selecting penalty parameters to enhance performance. This strategy

prioritizes the power of the main beam in desired directions, such as the radar

target and communication receiver, while minimizing sidelobes. The synthe-

sized waveforms are simulated, and the results validate their effectiveness.

The second section of the research addresses beamspace design, with a novel

contribution being the development of a beamspace transformation matrix tai-

lored for DFRC systems within a MIMO framework. An optimization prob-

lem is formulated to minimize power emissions in undesired locations while

preserving the desired power levels toward targets under a constant modulus

constraint. The non-convex optimization in this case is also carried out using

ADMM. The algorithm produces improved beams for radar and communica-

tion while maintaining low sidelobes. This approach enhances radar detection

probability and improves BER performance for the DFRC system. Simulation

results demonstrate the effectiveness of the proposed approach.
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Chapter 1

Introduction

The convergence of radar and communication technologies, known as dual-

function radar-communication (DFRC), represents a transformative synergy at

the intersection of wireless communication and radar systems. This integration,

also referred to as RadCom, joint DFRC, integrated sensing and communica-

tion (ISAC), seeks to harness the complementary strengths of radar sensing

and communication functionalities to enhace the capabilities of modern wire-

less systems. By combining radar’s ability to detect objects and measure dis-

tances with communication’s prowess in transmitting data, RadCom promises

enhanced spectrum utilization, improved efficiency, and the facilitation of mul-

tifunctional applications that were previously challenging to achieve.

However, the realization of RadCom presents several technical challenges

that must be addressed to fully exploit its potential. One significant challenge

lies in waveform design, where the waveform characteristics must be opti-

mized to support both radar sensing and communication requirements simul-

taneously. This entails balancing considerations such as pulse duration, mod-

ulation scheme, and bandwidth allocation to ensure robust radar performance

while accommodating high-speed data transmission. Another critical aspect is

beamspace design, which involves the efficient utilization of antenna arrays to
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form and steer beams for both radar and communication purposes. Beamspace

techniques enable spatial multiplexing, enhancing spectrum efficiency and en-

abling spatially selective communication and radar operations.

Navigating these challenges requires innovative approaches and methodolo-

gies that integrate radar and communication functionalities seamlessly. This

chapter explores the background of joint radar-communication, delving into

waveform design principles, beamspace techniques, and the overarching objec-

tives and contributions of research in this emerging field. By addressing these

fundamental aspects, this research aims to pave the way for advanced RadCom

systems capable of supporting diverse applications across industries, from au-

tonomous vehicles to military and telecommunications sectors.

1.1 Background

1.1.1 Joint Radar-Communication

Radar and communication systems have historically developed separately.

Radar systems are designed to detect objects, measure distances, and track

movement by emitting radio waves and analyzing their reflections. Initially

developed for military use during World War II, radar has since expanded to

civilian applications like air traffic control, weather monitoring, and remote

sensing.

Communication systems, in contrast, focus on transmitting information be-

tween two or more points using electromagnetic waves. These systems evolved

from basic telegraphy to modern digital communication, improving data rates

and reliability through advancements in modulation and signal processing.

The combination of radar and communication into RadCom or dual-function

2



radar-communication (RadCom/DFRC) systems represents a major advance-

ment. RadCom/DFRC merges radar’s ability to detect objects with communi-

cation’s capacity to send data. This integration allows systems to simultane-

ously detect objects and transmit data, improving decision-making in real-time

environments like autonomous vehicles and smart cities. RadCom/DFRC sys-

tems also make better use of radio frequencies, helping to alleviate spectrum

scarcity, while shared hardware reduces costs and improves flexibility.

1.1.2 Waveform Design

A waveform refers to the shape or structure of a signal used to carry informa-

tion in communication or radar systems. In radar , waveforms are short bursts

of energy designed to improve detection range, accuracy, and resolution. By

adjusting pulse duration, frequency, and modulation, radar systems can better

detect objects and measure distances.

In communication , waveforms encode data for transmission. Modern com-

munication waveforms use advanced modulation schemes like phase-shift key-

ing (PSK), quadrature amplitude modulation (QAM), or orthogonal frequency-

division multiplexing (OFDM) to transmit data efficiently and minimize errors.

In RadCom/DFRC systems , waveforms must perform both radar and com-

munication tasks. These RadCom/DFRC waveforms are designed to detect

objects and transmit data simultaneously. The radar side processes reflected

signals to detect objects, while the communication side decodes the transmitted

data. Parameters like pulse duration, frequency, and modulation are adjusted

to balance radar detection and communication needs. Advanced modulation

schemes like PSK and OFDM are typically used for the communication side.

Designing waveforms for RadCom/DFRC systems is challenging because
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both radar and communication functions must share the same spectrum and

hardware. The waveforms need to balance precise radar detection with reli-

able data transmission. This requires innovative designs that adapt to changing

environments and operational needs.

For RadCom/DFRC systems, waveform design focuses on optimizing pa-

rameters like pulse duration and modulation to achieve both radar and commu-

nication goals. Adaptive waveforms, for example, can adjust pulse character-

istics in real-time based on environmental feedback, enhancing radar detection

while maintaining efficient data transmission. By integrating radar and commu-

nication functions into a single waveform, RadCom/DFRC systems maximize

spectrum utilization and improve system efficiency.

1.1.3 Beamspace Design

Beamspace processing is a technique used in radar and communication sys-

tems to control the spatial characteristics of antenna arrays. In radar systems,

beamspace processing helps focus antenna beams on specific directions, im-

proving target detection and accuracy. This technique also reduces interference

from other signals, enhancing radar performance.

In communication systems, beamspace processing enables spatial multi-

plexing and beamforming, which improves signal strength and spectral effi-

ciency. By directing signals to intended receivers and reducing interference

from other directions, beamspace processing enhances communication quality

and range.

In RadCom/DFRC systems , beamspace processing is crucial because it al-

lows the same antenna arrays to be used for both radar and communication.

This technique dynamically allocates antenna resources between radar sensing
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and communication tasks. RadCom/DFRC systems can switch between radar

beamforming for object detection and communication beamforming for data

transmission, optimizing spectrum usage and system efficiency.

Beamspace processing in RadCom/DFRC involves designing algorithms to

manage antenna arrays effectively. This includes beamforming algorithms that

adjust beam directions in real-time to track moving objects or establish stable

communication links. By using beamspace processing, RadCom/DFRC sys-

tems increase operational flexibility, improve spectral efficiency, and reduce

hardware complexity by sharing antenna resources for both radar and commu-

nication functions.

1.1.4 Summary of Background

The motivation for RadCom/DFRC systems is to improve spectrum effi-

ciency and reduce hardware costs. These systems combine radar’s object de-

tection with communication’s data transmission, useful for real-time applica-

tions like autonomous vehicles. The main challenge is designing waveforms

and antenna systems that can handle both radar and communication functions

at the same time. This must be done within the same spectrum and hardware.

The solution lies in creating composite waveforms and beamspace techniques .

These methods allow DFRC systems to adapt in real-time, optimize spectrum

use, and reduce interference, improving overall system performance.

1.2 Problem Statement

DFRC systems face significant challenges in meeting the increasing perfor-

mance demands in waveform and beamforming design. Moreover, the conver-
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gence of radar and communication technologies on a single platform introduces

additional complexities such as increased computational demands and the need

to mitigate mutual interference.

Efficient waveform designs are vital for minimizing mutual interference and

ensuring effective co-existence by maintaining a constant modulus. The de-

signed waveforms play a pivotal role in achieving a seamless balance of integra-

tion of functionalities under the constraints of spectrum and hardware capabili-

ties. Therefore, a thorough investigation is imperative for designing new wave-

forms that optimize the overall performance of integrated radar-communication

systems.

Moreover, modern radar and communication systems are increasingly adopt-

ing MIMO configurations to enhance performance. Consequently, a robust

beamspace design capable of efficiently managing complex antenna arrays is

critical. Given that computational complexity significantly escalates during the

joint operation of radar and communication systems, effective beamspace pro-

cessing techniques are crucial for optimizing resource allocation.

Effective waveform and beamspace designs will enable RadCom systems to

operate efficiently in diverse and dynamic environments. This technology will

benefit a wide range of applications, including autonomous vehicles, military

surveillance, and independently operating robots in remote areas.

1.3 Objectives of Research

The objectives of this research aim to tackle the challenges outlined in the

Problem Statement.

• The first objective is to optimize joint waveforms tailored for radar and
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communication functionalities to mitigate mutual interference. This in-

volves designing uncorrelated waveforms that are optimized using convex

optimization techniques, while adhering to specified performance con-

straints.

• The second objective is to propose optimized beamspace designs to en-

hance system performance and reduce computational complexity in DFRC

systems. These designs will focus on efficiently managing antenna arrays

and beamforming processes to optimize resource utilization.

1.4 Contributions of the Research

The contributions of this research encompass three main papers, each ad-

dressing different aspects of waveform and beamspace design in MIMO-based

joint radar-communication systems:

1. Constant Modulus Waveform Design for DFRC Systems This paper

focuses on the design of constant modulus waveforms for Dual Function

Radar-Communication (DFRC) systems operating in a far-field scenario

with a multi-input multi-output (MIMO) sensor configuration. The re-

search begins by formulating a non-convex optimization problem aimed

at synthesizing waveforms that minimize interference power while ad-

hering to a constant modulus constraint. The problem is tackled using

the alternating direction method of multipliers (ADMM) algorithm, iter-

atively optimizing the waveforms to approximate a desired beampattern

with high radar beam gain and slightly elevated communication beam

gain, while maintaining low sidelobe levels. Simulation results validate

that the designed waveforms significantly enhance detection probability
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for radar and reduce bit error rate (BER) for communication components,

demonstrating the effectiveness of the proposed methodology.

2. Constant Power Waveform Design Strategy for MIMO-Based DFRC

Systems This paper presents a novel waveform design strategy tailored for

MIMO-based DFRC systems, focusing on the challenge of constant power

waveforms. The research formulates an optimization problem aimed at

minimizing power radiation in undesired directions while ensuring wave-

form similarity and adherence to constant power constraints. Utilizing the

ADMM algorithm as the computational framework, the approach intro-

duces a new method for selecting penalty parameters to optimize wave-

forms that approximate desired beampatterns. The designed waveforms

achieve high radar and communication main-beam gains in target direc-

tions while effectively reducing sidelobes elsewhere. Simulation results

validate the efficacy of the strategy in generating intended radar and com-

munication signals within the far-field of the antenna array, offering a

promising solution for dual-function radar-communication systems.

3. Constant Modulus Beamspace Design for MIMO-Based DFRC Sys-

tems This paper addresses the constant modulus beamspace design prob-

lem for MIMO-based DFRC systems, proposing an efficient solution method-

ology. The research formulates the beamspace design as a challenging

non-convex optimization problem due to the constant modulus constraint,

making conventional methods impractical. The paper employs the ADMM

algorithm to iteratively tackle this problem, leveraging the augmented La-

grangian method and dual decomposition principles for enhanced perfor-

mance. The proposed method enhances radar detection probability and
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improves BER for communication components by synthesizing optimized

beampatterns. Simulation results demonstrate the effectiveness of the de-

sign approach across various metrics, highlighting its convergence prop-

erties and capability to synthesize desired beampatterns effectively.

These contributions advance the state-of-the-art in waveform and beamspace

design for MIMO-based DFRC systems, offering novel methodologies and

demonstrating their effectiveness through comprehensive simulation studies.

1.5 Thesis Outlines

This dissertation investigates the convergence of radar and communication

functionalities within a unified system, focusing on optimizing system perfor-

mance through waveform design and beamspace processing. The research is

structured into four chapters, briefly introduced as follows.

Chapter 1 offers an overview of the thesis, discussing the background of

joint radar-communication and the motivation for addressing research chal-

lenges such as waveform design and beamspace processing in this domain. It

defines the research problem, outlines research objectives, and discusses the

contributions of the study.

Chapter 2 provides a comprehensive review of relevant literature on radar,

communication, and joint radar-communication, covering historical develop-

ments and recent trends. It also examines literature related to waveform design

and beamspace processing, supported by citations from reports and articles dis-

cussing various techniques and methodologies.

Chapter 3 delves into detailed discussions on two waveform design meth-

ods for joint radar-communication. Both methods utilize ADMM-based op-
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timization techniques to achieve specific objectives while adhering to various

constraints. The first method focuses on designing constant-modulus wave-

forms for MIMO-based dual-function radar-communication systems. Mean-

while, the second method is dedicated to designing constant-power waveforms

for similar integrated systems.

Chapter 4 explores a beamspace design method for joint radar-communication.

This approach employs ADMM-based optimization techniques to achieve de-

fined objectives while addressing multiple constraints. Specifically, the method

concentrates on designing a constant-modulus beamspace transformation ma-

trix for MIMO-based dual-function radar-communication systems.

Chapter 5 concludes the thesis by presenting the outcomes of the research

and evaluating the extent to which the research objectives have been achieved.

It compares these results with contemporary research findings, highlighting the

significant contributions made. The chapter also proposes future research di-

rections in the field, emphasizing opportunities for further advancements in

dual-function radar and communication systems. Additionally, it includes a list

of publications resulting from this work.

10



Chapter 2

Background and Related Literature

This chapter provides a comprehensive introduction to dual-function radar-

communication (DFRC) systems, emphasizing their historical development and

a thorough review of relevant literature, including recent trends. It also delves

into the waveform design problem and beamspace processing within the con-

text of DFRC systems. Additionally, the chapter offers an introduction to the

alternating direction method of multipliers (ADMM), highlighting its signifi-

cance and applications in optimizing DFRC systems.

2.1 Joint Radar-Communication

Although some early research on DFRC exists [6; 7], the current widespread

interest in this field is a relatively new phenomenon [8–10]. Historically, radar

and communication technologies have evolved along separate paths, each with

its own unique advancements and applications. Therefore, to fully appreci-

ate the significance of their convergence, it is essential to first provide a brief

overview of their individual developments. This foundational understanding

will set the stage for a deeper exploration of the innovative merging of radar

and communication technologies into integrated DFRC systems.
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2.1.1 Radar

The term radar, derived from radio detection and ranging, was coined by the

U.S. Navy in 1940 to describe systems that utilize radio waves for detecting and

tracking a wide range of objects, from spacecraft and aircraft to ships, guided

missiles, weather formations, and motor vehicles. Radar systems play a crucial

role by providing essential information such as range, direction, altitude, speed,

and velocity of these objects. Modern radar design integrates advanced signal

processing, control systems, information theory, probability theory, and statis-

tical techniques to enhance robustness, adaptability, and overall effectiveness

[11].

Originally developed in the early twentieth century for detecting ships and

preventing collisions, radar technology experienced significant advancements

during the two World Wars. A pivotal milestone was the patenting of a func-

tional radar system by Sir Robert Watson-Watt in 1935, which laid the foun-

dation for practical radar applications. These advancements greatly enhanced

radar capabilities, allowing for more effective detection and tracking of various

objects [12]. During the second World War, German radar systems pioneered

mechanical beam steering techniques, rotating directional antennas to scan en-

tire surveillance regions, marking a pivotal advancement in radar capabilities

[13]. Evolving from these early developments, radar systems have progressed

considerably, now incorporating technologies like phased array radar (PAR)

[14]. PAR systems utilize multiple antenna elements to steer radiation patterns,

offering advantages such as high-gain beam patterns, frequency agility, and

precise multi-target tracking capabilities. Innovations like frequency diverse

array (FDA) radar further optimize beam patterns dynamically across range

and angle, adapting to environmental conditions for enhanced performance in
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complex scenarios [15]. At the forefront of radar technology are cognitive

radar (CR) systems, which integrate adaptive waveform techniques and ma-

chine learning to autonomously optimize radar operations based on real-time

data and mission objectives, thereby pushing the boundaries of radar capability

and application [16].

There are two primary categories of radars based on the number of anten-

nas, i.e., single antenna radars and multiple antenna radars [17; 18]. Single

antenna radars traditionally employ mechanical rotations to scan the surveil-

lance region in all directions. Later advancements introduced electrical beam

steering in phased array radars (PAR), which were initially developed at Lin-

coln Laboratory in 1958 [19]. This marked the beginning of utilizing multiple

antenna elements in radar systems, enabling precise control over the radar beam

direction without mechanical movement.

Phased array radars, comprising an array of antenna elements, exploit rel-

ative phase variations among these elements to direct the radiation pattern to-

wards desired directions while mitigating undesired ones [14; 20; 21]. The

Figure 2.1 show a PAR system based on a ULA with N antennas. These PAR

systems offer high-gain beam patterns that are computationally efficient, pro-

viding enhanced frequency agility, the capability to generate multiple beams,

and improved accuracy in tracking multiple targets [14]. These attributes make

phased arrays pivotal in modern radar applications. Despite their advantages,

PAR systems typically employ electronic phase shifters, which are significantly

more expensive than traditional reflector antennas used in surveillance. More-

over, conventional phased array beam steering remains fixed in angle across all

range cells, independent of target range, limiting performance in applications

reliant on range-specific operations such as interference suppression, ambiguity
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Figure 2.1: Uniform linear array based PAR system with N antennas [1]

resolution, and directional communications [22].

To address these limitations of PAR economically and effectively, researchers

have developed frequency diverse array (FDA) radars [23–25]. These systems

implement range-angle dependent electronic beam steering using successive

frequency offsets across array elements. The Figure 2.2 show a PAR system

based on a ULA with N antennas. By varying frequencies, FDAs can dynami-

cally adjust beam patterns in response to range and angle changes, facilitating

adaptive responses to range-dependent interferences [26; 27]. Unlike PAR sys-

tems, FDA radar beam patterns exhibit periodicity in range, angle, and time,

periodically illuminating specific range-angle pairs of object positions.

In addition to traditional phased arrays and FDAs, multiple-input multiple-

output (MIMO) radar systems represent another advancement in radar technol-

ogy [2; 28]. The Figure 2.3 show an N antenna MIMO system, transmitter and

receiver. MIMO radars utilize multiple transmit and receive antennas to ex-

ploit spatial diversity, enhancing target detection, localization accuracy, and ro-
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Figure 2.2: Uniform linear array based FDA system with N antennas [1]

bustness against interference [29]. MIMO configurations enable simultaneous

transmission of multiple waveforms and reception of complex signals, lever-

aging spatial processing techniques to achieve superior performance in diverse

radar scenarios [30].

2.1.2 Communication

Communication systems, integral to modern society, encompass a rich his-

tory of technological advancements and evolving applications [31–33]. Orig-

inating from fundamental telegraphy and telephony systems of the 19th and

early 20th centuries, modern communication technologies have transformed

global connectivity and information exchange. Today’s communication sys-

tems span a wide spectrum, from traditional wired telephony to advanced wire-

less networks and satellite communications.

The term ’communication’ broadly refers to the transmission and reception

of information between entities, enabling real-time interaction, data exchange,
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Figure 2.3: MIMO transmitter and receiver with virtual array concept [2]

and collaboration across vast distances. Early communication technologies

such as the telegraph, invented in the early 19th century, revolutionized long-

distance messaging by transmitting coded electrical signals over wires [34].

This innovation laid the groundwork for subsequent developments in telecom-

munications, leading to the invention of the telephone by Alexander Graham

Bell in 1876, which enabled voice communication over long distances [35].

In the 20th century, rapid advancements in communication technologies ac-

celerated the evolution of global networks. The development of radio commu-

nication and wireless telegrahhy, pioneered by figures like Guglielmo Marconi,

facilitated wireless transmission of signals over long distances, transforming

maritime communication, broadcasting, and eventually, mobile communica-

tions [36; 37]. The mid-20th century saw the advent of digital communication

technologies, beginning with the invention of the transistor and the subsequent

development of digital signal processing techniques.
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Recent decades have witnessed a paradigm shift in communication sys-

tems driven by digitalization, convergence, and the proliferation of mobile and

broadband technologies [38–40]. The emergence of the internet in the late

20th century revolutionized communication by enabling global data transmis-

sion through interconnected networks. The integration of voice, data, and mul-

timedia services over IP-based networks has ushered in the era of converged

communication systems, where traditional boundaries between telecommuni-

cation, broadcasting, and computing continue to blur.

Today, communication systems encompass a diverse range of technologies

including fiber-optic networks, satellite communications, cellular networks, and

emerging technologies such as 5G and beyond. These systems enable high-

speed data transmission, multimedia streaming, real-time collaboration, and

IoT connectivity on a global scale. The evolution towards more intelligent,

adaptive, and secure communication systems continues to drive innovation in

areas such as artificial intelligence, machine learning, and quantum communi-

cation.

2.1.3 Joint Radar-Communication

DFRC systems represent a convergence of radar and communication tech-

nologies, aimed at maximizing spectrum utilization and operational efficiency

[8–10]. Historically, radar and communication systems have evolved indepen-

dently, serving distinct purposes in navigation, surveillance, and information

exchange. However, the integration of these technologies into unified sys-

tems promises enhanced capabilities for both civilian and military applications.

Figure (2.4) shows different scenarios of joint radar-communication for au-

tonomous vehicles.
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Figure 2.4: Different joint radar-communication scenarios for autonomous vehicles [3]

The term ’joint radar-communication’ refers to systems that combine radar

functionalities, such as object detection and tracking, with communication ca-

pabilities for data exchange or control signaling. This integration enables dual-

functionality within a single platform, reducing equipment footprint, power

consumption, and operational costs while enhancing mission flexibility and sit-

uational awareness.

Early developments in DFRC systems date back to experimental efforts

during the mid-20th century, where radar systems were adapted to carry out

rudimentary communication tasks and vice versa [6]. However, significant ad-

vancements have been made in recent decades, driven by advances in signal

processing, antenna technology, and system integration.

Modern DFRC systems leverage sophisticated waveform design techniques

to optimize signal transmission and reception in shared frequency bands [41–

43]. These systems employ adaptive beamforming and beamsteering technolo-

gies to enhance spatial resolution, minimize interference, and improve com-
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munication reliability. By dynamically allocating resources between radar and

communication functions, DFRC systems maximize spectrum efficiency while

maintaining operational effectiveness.

Recent developments in DFRC systems include the integration of cogni-

tive capabilities, where systems autonomously adapt their operation based on

environmental conditions and mission objectives [44–46]. Cognitive radar-

communication systems utilize machine learning algorithms to analyze and

optimize waveform characteristics, adapt to changing electromagnetic environ-

ments, and mitigate interference [47].

The deployment of DFRC systems spans diverse applications, from military

surveillance and battlefield communications to civilian use cases such as air

traffic control, disaster response, and remote sensing. These systems enable

simultaneous operation of radar and communication functions, facilitating real-

time data exchange, target tracking, and situational awareness in dynamic and

complex environments.

2.2 Waveform Design: Optimizing Signals for Wireless Ap-

plications

At the heart of modern telecommunications and radar systems lies the con-

cept of waveform design [41; 42; 48]. A waveform, is a time-varying signal

that carries information or serves a specific purpose in a system. It is typically

represented by its amplitude and frequency characteristics. It can take various

forms — from simple sine waves to complex modulated signals — each tailored

to meet specific requirements in communication, radar, or other applications.

In communications, waveforms encode information that can be transmitted
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over a medium, such as wires, fiber optics, or through the air via radio waves.

These signals can be analog or digital, depending on the nature of the infor-

mation and the transmission medium. In radar systems, waveforms are essen-

tial for transmitting and receiving signals that detect and track objects. These

waveforms, transmitted as pulses or continuous waves, interact with objects and

reflect back to the radar receiver, providing information on the object’s range,

speed, and other characteristics.

Waveform design plays a crucial role in optimizing the performance and

efficiency of communication and radar systems. The design process involves

shaping the characteristics of the signal to achieve desired objectives, such as

maximizing data transmission rates, improving signal-to-noise ratio (SNR), en-

hancing spectral efficiency, and ensuring robustness against interference and

noise.

Waveforms can be classified in different ways like continuous, pulsed and

modulated waveforms. Continuous waveforms have a continuous and unbroken

shape over time, such as sine waves and cosine waves. They are commonly used

in applications requiring continuous transmission or oscillation, such as in radar

for continuous wave (CW) radar systems. Pulsed waveforms consist of discrete

bursts of energy separated by periods of little to no transmission. They are

widely employed in radar systems for detecting and ranging objects, where the

duration and timing of pulses determine the radar’s range resolution and max-

imum detectable range. Modulated waveforms alter one or more properties of

a carrier wave to encode information. Common modulation techniques include

Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation

(PM), and more advanced forms such as Quadrature Amplitude Modulation

(QAM) used in digital communication systems.
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The design of optimal waveforms presents several challenges, particularly in

modern, complex systems. Designers must balance conflicting objectives such

as bandwidth efficiency versus robustness to noise and interference, which of-

ten involves trade-offs. In systems like Multiple-Input Multiple-Output (MIMO)

radar and communication, waveform design becomes even more intricate due to

the need to optimize multiple signals transmitted and received by multiple an-

tennas simultaneously. Additionally, waveforms should be adaptive to chang-

ing environmental conditions, varying channel characteristics, and operational

requirements to maintain reliable performance.

Recent advancements in waveform design leverage sophisticated mathemat-

ical tools and algorithms to enhance system performance. Optimization tech-

niques, such as genetic algorithms (GA), particle swarm optimization (PSO),

and convex optimization, are employed to determine optimal waveform param-

eters under given constraints. Machine learning approaches, including Deep

Learning and Reinforcement Learning, are increasingly applied to automate

waveform design, enabling adaptive optimization based on real-time condi-

tions. Additionally, cognitive waveforms utilize cognitive techniques to dynam-

ically adjust parameters based on environmental feedback, thereby improving

adaptability and efficiency.

2.2.1 Waveform Design for Radar

The design of radar waveforms has been a topic of significant research in-

terest for several decades [1]. A fundamental question in this field is: what

constitutes a good waveform for radar? This question was particularly chal-

lenging in the early days of radar technology, as radar waveforms themselves

do not inherently carry information; any pulse, pulse train, or continuous wave
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Figure 2.5: Basic operation of pulse radar [4]

can be reflected from metallic targets. However, research has demonstrated

that certain properties make some waveforms more suitable for specific radar

functions than others. The approach to designing an optimal radar waveform is

typically task-dependent. For instance, to detect a particular target, maximiz-

ing the output signal-to-noise ratio (SNR) is crucial, and the optimal waveform

concentrates all available energy into the target’s largest mode. A well-designed

transmit waveform not only facilitates accurate parameter estimation but also

reduces the computational burden at the receiver, enhancing overall system per-

formance.

Pulse radar systems were developed prior to the extensive progress made

during World War II. These early radar systems primarily employed simple

pulse waveforms, which involved transmitting short bursts of electromagnetic

energy into the environment. The reflections of these pulses were analyzed
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to determine the presence and distance of objects. In waveform design, pulse

radar systems transmit bursts separated by periods of silence, during which the

radar listens for echoes. The basic principle of a pulse radar is shown in Figure

(2.5). The time delay between the transmission and reception of a pulse is

used to calculate the distance to the target. Valued for their straightforward and

reliable design, pulse radar waveforms provide crucial range information and

enable the detection of various objects, such as aircraft and ships.

World War II served as a transformative period for radar technology, accel-

erating its development in significant ways. The maturation of several pivotal

radar techniques in the late 1940s and early 1950s—including pulse Doppler,

also known as moving target identifier (MTI), monopulse (simultaneous lob-

ing), phased array, and synthetic aperture—marked crucial milestones in wave-

form design for radar systems. These advancements underscored the impor-

tance of tailored waveforms to meet specific operational challenges and en-

hance performance across various radar applications.

• Pulse Doppler radar (MTI): Introduced to distinguish moving targets

amidst clutter, pulse Doppler radar systems required waveforms optimized

for precise Doppler frequency resolution, enabling enhanced target detec-

tion capabilities.

• Monopulse radar: Essential for accurate target tracking and guidance

systems, monopulse radar relied on meticulously designed waveforms to

ensure high angular resolution and stability, crucial for maintaining track-

ing accuracy.

• Phased array radar: Phased array radars revolutionized beam steering by

electronically adjusting waveforms, necessitating sophisticated designs to
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maintain beam coherence and accuracy across multiple array elements.

• Synthetic aperture radar (SAR): SAR systems demanded waveforms

capable of high range resolution and long-term coherence to synthesize

large apertures and achieve detailed spatial imaging of target areas.

• Frequency Diverse Arrays (FDA): FDA radar systems utilized wave-

form designs that dynamically adjusted beam patterns based on range and

angle, enhancing adaptability and performance in complex environments

with varying interferences.

• Multiple-Input Multiple-Output (MIMO) Radar: Leveraging spatial

diversity with multiple antennas, MIMO radar systems required waveform

designs capable of simultaneous transmission and reception of multiple

signals, optimizing target detection, localization accuracy, and interfer-

ence mitigation.

Table 2.1 highlights significant milestones in the evolution of radar wave-

form design.

2.2.2 Waveform Design for Communication

Waveform design in communication systems has evolved significantly over

the past centuries, driven by technological advancements and the quest for more

efficient and reliable transmission methods. From the early days of Morse code

to the era of 5G and beyond, each milestone represents a leap forward in our

ability to transmit information over vast distances with increased speed, accu-

racy, and resilience to noise and interference.
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Year Milestone

1862 Maxwell’s equations lay the theoretical foundation for electromagnetic wave

propagation and reflection.

1884 Oliver Heaviside simplifies Maxwell’s equations, making them more

accessible and applicable to practical engineering.

1904 Development of pulse-Doppler radar during World War II, significantly

enhancing radar’s ability to detect moving targets.

1943 Introduction of matched filter theory, optimizing radar waveform design

to maximize signal-to-noise ratio (SNR) and detection performance.

1950s Introduction of continuous wave (CW) radar and frequency-modulated

continuous wave (FMCW) radar, improving range resolution and

measurement accuracy.

1958 Development of phased array radar (PAR) at Lincoln Laboratory,

enabling electronic beam steering and multi-target tracking.

1970s Development of chirp radar and linear frequency modulation (LFM)

waveforms, which offer improved range resolution and Doppler tolerance

1980s Advancements in synthetic aperture radar (SAR) and inverse synthetic

aperture radar (ISAR) using sophisticated waveform design for

high-resolution imaging.

1990s Introduction of adaptive radar waveforms, utilizing real-time

environmental feedback to optimize performance.

2000s Emergence of multiple-input multiple-output (MIMO) radar, leveraging

spatial diversity and advanced waveforms for enhanced detection and resolution.

2010s Development of cognitive radar systems, incorporating machine learning

and adaptive waveforms to optimize radar operations dynamically

2020s Exploration of quantum radar technologies, potentially revolutionizing

radar waveform design with principles of quantum mechanics for superior performance

Table 2.1: Important Milestones in Radar Waveform Design

2.2.2.1 Early Telegraph and Telephone Era

The journey of waveform design can be traced back to the 19th century,

when Samuel Morse’s demonstration of the telegraph system in 1838 marked

a pivotal moment in communication history. Morse code, using simple on-off

keying waveforms, allowed messages to be transmitted over electric wires by

encoding text characters as sequences of dots and dashes. This method laid the

foundation for subsequent advancements in telecommunication.

In 1876, Alexander Graham Bell patented the telephone, revolutionizing

communication with analog waveforms that transmitted voice signals over wires.
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The analog signals varied in amplitude (for voice) and frequency (for tones),

enabling real-time voice communication across distances previously unimagin-

able.

2.2.2.2 Radio Broadcasting and Modulation Techniques

The advent of radio broadcasting in the early 20th century introduced new

challenges and opportunities in waveform design. Amplitude modulation (AM),

widely adopted in the 1920s, enabled the transmission of audio signals over ra-

dio waves by varying the amplitude of the carrier signal in proportion to the

amplitude of the input signal. This breakthrough allowed for widespread dis-

semination of news, entertainment, and cultural programming.

In 1933, Edwin Armstrong’s invention of frequency modulation (FM) of-

fered improved audio quality and greater resistance to noise compared to AM.

FM works by varying the frequency of the carrier wave in response to the audio

signal, reducing interference and static, thus enhancing the clarity of broad-

casted sound.

2.2.2.3 The Digital Revolution and Modern Modulation Schemes

The digital revolution in communication began in earnest in the mid-20th

century with the development of digital modulation techniques. Pulse code

modulation (PCM), introduced in the 1950s, revolutionized voice communica-

tion by converting analog signals into digital form for transmission over digital

networks. PCM paved the way for digital communication systems, offering

higher fidelity and reliability compared to analog counterparts.

During the 1960s, phase-shift keying (PSK) and frequency-shift keying (FSK)

emerged as early digital modulation schemes. PSK modulates the phase of the
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carrier signal to represent digital data, while FSK uses different frequencies

to represent different binary states. These techniques laid the groundwork for

more sophisticated digital communication systems capable of transmitting data

with improved efficiency and reliability.

2.2.2.4 Advancements in Modulation Complexity

By the 1970s, quadrature amplitude modulation (QAM) emerged as a break-

through modulation scheme, combining amplitude and phase modulation to

achieve higher data rates and spectral efficiency. QAM variants such as 16-

QAM and 64-QAM became integral to digital communication standards, en-

abling higher-speed data transmission over existing communication channels.

In the 1980s, orthogonal frequency-division multiplexing (OFDM) emerged

as a pivotal modulation technique. OFDM divides the transmission bandwidth

into multiple orthogonal subcarriers, each carrying a part of the data stream.

This approach improves spectral efficiency, mitigates multipath interference,

and enhances robustness in challenging transmission environments, making it

ideal for broadband communication systems.

2.2.2.5 Digital Security and Spread Spectrum Techniques

The 1990s witnessed significant advancements in digital security and ro-

bustness with the introduction of spread spectrum techniques. Direct sequence

spread spectrum (DSSS) and frequency-hopping spread spectrum (FHSS) tech-

niques were developed to enhance communication security and resistance to

interference. DSSS spreads the signal over a wide frequency band using a

pseudo-random sequence, while FHSS rapidly switches frequencies during trans-

mission to minimize the impact of interference.
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2.2.2.6 Emergence of MIMO and Cognitive Radio

In the 2000s, multiple-input multiple-output (MIMO) technology revolu-

tionized wireless communication by using multiple antennas to transmit and

receive multiple data streams simultaneously. MIMO systems leverage spatial

diversity to improve spectral efficiency, increase data throughput, and enhance

link reliability in both stationary and mobile communication environments.

The concept of cognitive radio emerged as a promising approach in the

2010s, enabling intelligent and adaptive use of radio spectrum. Cognitive radio

systems employ dynamic spectrum access and advanced waveform adaptation

techniques to optimize spectrum utilization in real-time based on environmental

conditions and user requirements. This approach maximizes spectral efficiency

and enhances the flexibility of communication networks, paving the way for

future 5G and beyond technologies.

2.2.2.7 Cellular Netwroks - Towards 5G and Beyond

In the 2020s, the focus has shifted towards millimeter-wave (mmWave)

communication and 5G technologies. These advancements leverage advanced

waveform designs and massive MIMO (multiple-input multiple-output) to achieve

unprecedented data rates, ultra-low latency, and massive connectivity. mmWave

communication utilizes high-frequency bands to transmit large volumes of data,

enabling applications such as augmented reality, autonomous vehicles, and in-

dustrial automation.

Wireless mobile communication has evolved through several generations,

from the introduction of 1G networks in the 1980s enabling basic voice calls

to the current 5G networks offering enhanced mobile broadband services and

support for IoT devices. Each generation, including 2G for digital voice and
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SMS, 3G for mobile internet access, and 4G for high-speed data transmis-

sion, has marked significant milestones in improving connectivity and user

experience. 5G builds upon these advancements by introducing ultra-reliable

low-latency communication (URLLC), massive machine-type communication

(mMTC), and enhanced mobile broadband (eMBB), supporting diverse appli-

cations with varying requirements. Looking ahead, research and development

efforts are underway for 6G networks, envisioned to further enhance capabili-

ties such as terahertz spectrum utilization, AI-driven networks, and ubiquitous

connectivity, ushering in a new era of seamless, high-speed wireless communi-

cation.

Table 2.2 highlights significant milestones in the progress of waveform de-

sign of communication systems.

2.2.3 Waveform Design for Joint Radar-Communication

Waveform design for DFRC systems encompasses several strategic approaches

aimed at integrating radar and communication functionalities efficiently. These

methods can be categorized into four main classes: separate coordinated sig-

nal transmission, communications waveform-based schemes, radar waveform-

based techniques, and dedicated dual-function waveforms.

2.2.3.1 Separate Coordinated Signal Transmission

In this approach, distinct signals are employed for radar and communica-

tion purposes to mitigate cross-interference between the two functions. This is

the scenario where radar and communication systems co-exist on the same fre-

quencies spectrum but do use the same hardware platforms. Techniques such as

time and frequency division are commonly used to allocate separate resources
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Year Milestone

1838 Samuel Morse demonstrates the first practical telegraph system, using simple

on-off keying waveforms (Morse code) for communication.

1876 Alexander Graham Bell patents the telephone, which uses analog waveforms to

transmit voice signals over wires.

1920s Introduction of amplitude modulation (AM) for radio broadcasting, enabling audio

signals to be transmitted over long distances.

1933 Edwin Armstrong develops frequency modulation (FM), providing improved audio

quality and resistance to noise compared to AM.

1948 Claude Shannon publishes his groundbreaking work on information theory, laying

the theoretical foundation for digital communication and waveform design.

1950s Introduction of pulse code modulation (PCM), a method for digitally representing

analog signals, leading to the development of digital communication systems.

1960s Development of phase-shift keying (PSK) and frequency-shift keying (FSK), early

digital modulation schemes that improve data transmission efficiency and reliability.

1970s Emergence of quadrature amplitude modulation (QAM), combining amplitude and phase

modulation to achieve higher data rates.

1980s Introduction of OFDM, which improves spectral efficiency and robustness to multipath

interference, becoming the basis for many modern communication standards.

1990s Development of spread spectrum techniques, such as direct sequence spread

spectrum (DSSS) and frequency-hopping spread spectrum (FHSS), enhancing security

and resistance to interference.

2000s Implementation of MIMO technology, utilizing multiple antennas and sophisticated

waveforms to significantly increase data throughput and link reliability.

2010s Advancements in cognitive radio, leveraging dynamic spectrum access and adaptive

waveforms to optimize communication in real-time based on environmental conditions.

2020s Exploration of millimeter-wave (mmWave) communications and 5G technologies,

utilizing advanced waveforms and massive MIMO to achieve unprecedented data rates

and low latency.

Table 2.2: Important Milestones in Communication Waveform Design

for each waveform. For instance, different time slots or frequency bands are as-

signed to radar and communication signals, ensuring minimal interference and

optimizing system resources [17]. Fixed and non-overlapping frequency allo-

cation strategies have been explored in various studies [18], while others have

introduced randomized antenna allocation to enhance communication rates and

radar angular resolution [19]. Spatial beamforming with multiple antennas is

also utilized to reduce interference by directing radar waveforms away from

communication receivers’ channels [21]. Despite the computational demands

30



of optimal resource allocation, simpler fixed allocation schemes are often im-

plemented to balance performance and complexity.

2.2.3.2 Communications Waveform-Based Schemes

This approach involves using standard communication waveforms for radar

probing, leveraging their efficiency and adaptability. Orthogonal Frequency Di-

vision Multiplexing (OFDM) is widely adopted in communication-centric JRC

designs due to its spectral efficiency and robustness against inter-symbol in-

terference (ISI) [23]. OFDM waveforms are adapted for radar applications by

adjusting sub-carrier spacing to accommodate radar range and velocity require-

ments [24], [25]. However, processing OFDM waveforms for radar purposes

can lead to high sidelobes, a challenge addressed by dividing subcarriers into

symbol-specific groups [22].

2.2.3.3 Radar Waveform-Based Techniques

Radar-centric JRC strategies embed communication functionalities within

radar waveforms or use index modulation (IM) techniques. Modified radar

waveforms, such as frequency modulated continuous wave (FMCW) with em-

bedded phase-modulated symbols, offer simplicity and power efficiency but

may limit data rates due to waveform constraints [26], [27]. IM techniques

exploit radar parameters like antenna allocation or carrier frequency indices to

transmit communication data without altering the radar waveform itself. IM-

based systems, including those utilizing Frequency Agile Radar (FAR) prin-

ciples, enhance spectral efficiency by adapting radar waveforms dynamically

across multiple carrier frequencies [30], [31], [33].
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Year Reference Description

1963 [6] The first DFRC scheme is proposed, the radar pulses are used to embed

communication data

1996 [7] The AMRFC program by the Office of Naval Research (ONR) of the US to

develop integrated RF systems that could simultaneously perform multiple

RF functions

2003 [49] An investigation of radar and communications utilizing LFM waveforms

is presented

2006 [50] An integration system of radar and communication based on DSSS is proposed

2006 [51] Application of MIMO radar-centric OFDM waveforms for communication

application is proposed

2007 [52] The designed, simulated, fabricated, and tested of UWB multifunctional

communication-radar system is presented

2011 [42] OFDM based DFRC signaling scheme is proposed

2014 [53] The first information-theoretical analysis for DFRC systems

2016 [54] The first signaling scheme for MIMO DFRC systemis in proposed where

communication data is embedded into the sidelob of a MIMO radar beampattern

2020 [55] First instance of RIS-assisted joint radar-communication

2022 [56] First instance of application of beamspace to JRC applications

Table 2.3: Important Milestones in Joint Radar-Communication Waveform Design

2.2.3.4 Dedicated Dual-Function Waveforms

The evolution towards dedicated dual-function waveforms aims to optimize

performance trade-offs between radar and communication functions. These

waveforms are specifically designed to fulfill both radar detection requirements

and communication data transmission needs simultaneously. Unlike traditional

waveform extensions, dedicated dual-function waveforms are tailored to achieve

specific radar beam patterns while maintaining communication integrity [36]–[38].

Optimization techniques such as joint precoding and beamforming ensure that

radar performance meets desired criteria while minimizing interference and

maximizing communication reliability [37], [38].

Table 2.3 highlights significant achievements in the field of DFRC systems.
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2.3 Beamspace Processing and Beamspace Transformation

Matrix Design

Beamspace (BS) signal processing is a spatial signal processing technique

that uses beam output data to perform various operations, such as beamform-

ing, direction-of-arrival (DOA) estimation, and interference mitigation. In BS

processing, the array output is first processed by a beamformer to form a set of

beams, and then the beam outputs are used for further processing instead of the

element outputs.

Some key applications of BS signal processing in joint radar-communications

include the following.

• Waveform design: BS processing can be used to design waveforms for

dual-function radar-communication (DFRC) systems. For example, Saleem

et al. have designed constant modulus waveforms for MIMO-based DFRC

systems using BS techniques.

• DoA Estimation: BS processing can improve DOA estimation perfor-

mance at low computational cost compared to element-space processing.

Qi et al. have proposed a method for DOA estimation of coherent signals

using BS matrix reconstruction.

• Interference mitigation: By restricting beams to a sector of interest, BS

processing can attenuate signals or interferences outside that sector, re-

ducing their impact on the desired signal.

• Reduced computational complexity: BS processing has lower dimen-

sionality than element-space processing, requiring fewer samples for co-

variance matrix estimation and reducing computational load.
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Figure 2.6: Beamforming in element-space [5]

• Improved detection threshold: The averaging procedure in BS beam-

forming can lower the detection signal-to-noise ratio (SNR) threshold com-

pared to element-space processing.

• Robustness to noise and wavefront distortions: BS processing can re-

duce the sensitivity of high-resolution methods to noise distribution and

wavefront distortions.

Beamspace processing can be contrasted with the so-called element-space

processing. In element-space processing, the input data consists of the raw sig-

nals from each individual antenna element, while in beamspace processing, the

input data is the output of a beamformer that combines the signals from multiple

elements into a set of beams. The space spanned by output of the beamformers

is called beamspace, and processing using this output is called beamspace pro-

cessing. Figures 2.6 and 2.7 show the comparison of a beamformer in element-

space and beamspace, respectively. Beamspace processing has lower dimen-
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Figure 2.7: Beamforming in beamspace [5]

sionality than element-space processing, as the number of beams is typically

much smaller than the number of antenna elements, leading to reduced compu-

tational complexity. It also offers improved interference mitigation by restrict-

ing beams to the sector of interest and attenuating signals outside that sector,

a capability not present in element-space processing. Furthermore, beamspace

processing can enhance direction-of-arrival (DOA) estimation performance at

a lower computational cost, though element-space processing provides higher

resolution. Beamspace processing also reduces sensitivity to noise distribution

and wavefront distortions, making it more robust compared to element-space
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processing, which is more susceptible to these effects. However, element-

space processing is more compatible with existing radar systems that use in-

dividual antenna elements, whereas beamspace processing requires additional

beamforming hardware and software.

2.3.1 Beamspace Technology: State-of-the-Art

Beamspace technology has gained significant attention in various wireless

communication and radar applications due to its ability to enhance spatial res-

olution and improve spectral efficiency. Recent literature highlights its efficacy

in millimeter wave (mmWave) systems, where it enables precise beamforming

and spatial multiplexing, crucial for high-speed data transmission and robust

radar imaging [57–59]. Moreover, advancements in hybrid beamforming and

the integration of reconfigurable intelligent surfaces (RIS) further underscore its

potential in overcoming propagation challenges and optimizing system perfor-

mance [60–62]. Sun et al. proposed a joint user grouping and beam selection al-

gorithm for lens antenna arrays in beamspace millimeter-wave multi-user mas-

sive MIMO (B-MIMO), which significantly enhanced energy efficiency with-

out a substantial loss in spectral efficiency [63]. Wei et al. proposed an efficient

alternating optimization algorithm based on the techniques of weighted mini-

mum mean square error, Lagrange multiplier, and majorization-minimization

to enhance system performance and validate the effectiveness of double-RIS

in improving system performance [64]. Cheng et al. proposed an expectation

maximization (EM) based algorithm for learning the parameters in the formula-

tion of channel estimation, integrating it into the framework of sparse signal re-

covery [65]. Pal et al introduced a novel beam selection algorithm for downlink

mmWave multi-user MIMO systems, selecting K beams for users and demon-
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strating superior performance compared to existing methods [66]. Sarker et

al. proposed a hybrid beam selection (HBS) scheme for beamspace MIMO-

NOMA systems, enabling efficient multiple beam group selection to enhance

spectral performance and solve power allocation challenges through an iterative

beam power maximization algorithm [67].

2.4 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is a powerful

algorithm designed to solve convex optimization problems efficiently by de-

composing them into smaller, more manageable pieces. This decomposition-

coordination approach allows for the solutions to local subproblems to be coor-

dinated to find an optimal solution to a larger, more complex global problem.

ADMM can be viewed as a strategic blend of dual decomposition and aug-

mented Lagrangian methods. Dual decomposition breaks down a problem into

smaller subproblems that can be solved in parallel, while the augmented La-

grangian method introduces penalty terms to enforce constraints more effec-

tively. By combining these two approaches, ADMM leverages the strengths of

both, achieving efficient and robust solutions to constrained optimization prob-

lems.

ADMM is closely related to several other well-known algorithms in the op-

timization landscape. These include:

• Douglas-Rachford Splitting: An iterative method for finding zeroes of

the sum of two maximal monotone operators.

• Spingarn’s Method of Partial Inverses: A technique for solving convex

optimization problems by iteratively applying partial inverses.
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• Dykstra’s Alternating Projections Method: An algorithm for finding

the intersection of convex sets by iteratively projecting onto each set.

• Bregman Iterative Algorithms: Methods that use Bregman distances to

solve various optimization problems.

2.4.1 ADMM - Applications in Radar-Communication

The versatility of ADMM has led to its application across a wide range of

fields, including machine learning, signal processing, and control systems. Fol-

lowing are some of the applications of ADMM in radar signal processing.

• Waveform Design: Optimizing radar waveforms for improved target de-

tection and classification can be formulated as a constrained optimization

problem. ADMM helps in designing waveforms that meet specific crite-

ria, such as maximizing the signal-to-noise ratio (SNR) while adhering to

power and bandwidth constraints.

• Sparse Signal Recovery: Radar systems often need to recover sparse

signals from noisy measurements, such as in target detection and imag-

ing. ADMM is well-suited for solving sparse optimization problems, en-

abling the accurate reconstruction of signals with minimal computational

resources.

• Beamforming: In radar beamforming, the goal is to direct the radar beam

in specific directions to enhance target detection. ADMM is used to op-

timize the weights of the antenna array elements, ensuring that the beam

is accurately steered towards the desired direction while minimizing inter-

ference.
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Following of some applications of ADMM in signal processing for commu-

nication.

• MIMO Systems: Multiple-input multiple-output (MIMO) systems use

multiple antennas at both the transmitter and receiver to improve commu-

nication performance. ADMM is employed to solve optimization prob-

lems related to channel estimation, beamforming, and power allocation,

enhancing the system’s capacity and reliability.

• Network Optimization: In communication networks, optimizing resource

allocation, such as bandwidth and power, is essential for maintaining high-

quality service. ADMM is used to solve distributed optimization prob-

lems, allowing network resources to be allocated efficiently across multi-

ple nodes while meeting quality-of-service (QoS) constraints.

• Signal Detection and Estimation: Accurate detection and estimation of

transmitted signals in the presence of noise and interference are critical

for reliable communications. ADMM is applied to various signal process-

ing tasks, including equalization, channel estimation, and error correction,

improving the overall performance of communication systems.

2.4.2 ADMM - Recent Literature

There has been significant recent research on the applications of ADMM to

optimization problems in radar, communication, and joint radar-communication

systems. Cheng et al authors propose a decentralized algorithm using ADMM

and decomposition theory to co-design radar waveforms and communication

transmit weights for collocated MIMO radar and MISO communication sys-

tems sharing the same frequency band, minimizing DOA estimation errors
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while satisfying SINR and energy constraints [68]. Cheng et al. proposed a

method using alternating minimization and ADMM for transmit sequence de-

sign in DFRC systems with one-bit DACs, aiming to minimize symbol mean-

square error while ensuring radar target localization, and also present a com-

putationally efficient beamforming design using an accelerated primal gradient

method [69]. Xu et al. proposed using Rate-Splitting Multiple Access (RSMA)

in multi-antenna Dual-Functional Radar-Communication (DFRC) systems to

jointly optimize communication and radar performance using ADMM, and

claimed enhanced system efficiency, and simplified architecture [70]. Liu et al.

investigated RIS-assisted DFRC systems optimizing transmit waveform using

ADMM and RIS passive beamforming using majorization-minimization meth-

ods to enhance radar sensing and communication [71]. Yu et al. The paper in-

troduces a spatio-spectral modulation strategy for integrated waveform design

in a dual-function MIMO system, aiming to optimize radar beampattern and

multi-user communication by minimizing ISL and shaping ESD, using an SBE

framework with ADMM to ensure convergence and effectiveness [72]. Wei

et al. introduced a DFRC system with multiple intelligent reflecting surfaces

(IRSs) to improve detection of non-line-of-sight targets through joint design of

frequency-dependent beamforming and phase shifts, via ADMM-based max-

imin optimization [73]. Cheng et al. explored transmit hybrid beamforming

and DOA estimation in multi-carrier DFRC systems, integrating communica-

tion symbols into radar pulses and optimizing beamforming with consensus-

ADMM for QoS while ensuring orthogonality and power constraints [74].

Here are some of the most recent references from the relevant literature,

i.e., past and current year. Murtada et al. proposed a method to acceler-

ate the convergence of ADMM formulations for distributed radar imaging,
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which can enhance radar imaging performance by capturing diverse spatial

scattering properties [75]. Zhao et al. proposed RIS-assisted ISAC systems

with optimized transceiver designs integrating communication metrics and non-

convex radar constraints, utilizing ADMM, based on manifold optimization

theory [76]. Yao et al. addressed mutual interference in radar-aided mmWave

vehicle-to-infrastructure (V2I) communication, in spectrally crowded environ-

ments, using joint MIMO waveform and filter bank design, optimizing SINR

via ADMM, enhancing location accuracy and lowering V2I beam training over-

head [77]. Chalise et al. proposed a generalized likelihood ratio test-based con-

stant false alarm detector for distributed radar networks using ADMM, achiev-

ing robust performance via distributed average consensus-based estimation and

demonstrating effectiveness across varying communication conditions and mod-

ulation techniques [78]. Chen et al. presented an ADMM-based algorithm

for optimizing ISAC waveform precoding, balancing communication interfer-

ence and radar waveform fidelity under PAPR constraints, and introduced a

new criteria for ideal radar waveform design to enhance sensing performance,

validated through numerical simulations [79]. This paper introduces a com-

prehensive MIMO-radar-MIMO-communications framework addressing spec-

tral sharing challenges between the two systems using ADMM-based design

of radar codes and precoders [80]. Zhang et al. highlighted the use of mul-

tipath exploitation in RIS-assisted ISAC systems for fluctuating target detec-

tion, emphasizing the benefits of spatial diversity gain, and proposed to use an

ADMM-based optimization algorithm to jointly design transmit and RIS reflec-

tion beamforming in ISAC systems, enhancing target detection and communi-

cation quality by exploiting multipath propagation [81]. Li et al. proposed a

novel symbol-level precoding-based waveform design for MIMO-OFDM ISAC
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systems, minimizing range-Doppler sidelobes using the ADMM method [82].

Lee et al. proposed designing constant modulus waveforms for dual-function

radar-communication systems using ADMM and majorization-minimization

algorithms for joint optimization of radar sensing and communication [83].

2.5 Summary

This chapter explored the historical development and advancements in radar

and communication technologies, followed by an examination of DFRC sys-

tems and recent trends in these fields. Radar technology evolved from early

20th-century ship detection methods to sophisticated systems with enhanced

signal processing and beamforming capabilities. Communication technolo-

gies similarly progressed, incorporating complex modulation schemes and data

transmission techniques. The convergence of these fields led to DFRC systems,

which efficiently integrated radar and communication functionalities, utilizing

shared waveforms and hardware for improved spectrum utilization. The review

also covered advanced optimization techniques, such as the alternating direc-

tion method of multipliers (ADMM), highlighting their role in enhancing the

performance and efficiency of modern radar, communication, and DFRC sys-

tems. The chapter concluded with a discussion of current trends, reflecting on-

going innovations and emerging applications in these interconnected domains.
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Chapter 3

ADMM based Waveform Design for

Dual-Function Radar-Communication

This chapter introduces two methods for designing waveforms for MIMO

dual-function radar-communication (DFRC) systems, focusing on constant mod-

ulus and constant power waveforms. The constant modulus waveform design

formulates the problem as an optimization problem with constraints on wave-

form synthesis and constant modulus, and solves the problem iteratively us-

ing the ADMM framework. This approach produces waveforms that approx-

imate a desired beampattern with high-gain radar and communication beams,

maintaining low sidelobe levels, and ensuring improved detection probability

and bit error rate (BER). Similarly, the constant power waveform design aims

to minimize power radiation in undesirable locations while adhering to con-

straints on waveform similarity and power constancy, also utilizing an ADMM-

based algorithm. A novel method for selecting penalty parameters enhances

this process, resulting in waveforms that achieve high radar and communica-

tion mainbeams with low sidelobes and effectively approximate the desired

waveforms at the receiver end. Both methods are validated through simula-

tion results, demonstrating their effectiveness in enhancing the performance of
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dual-function radar-communication systems. This research makes significant

contributions to waveform design in DFRC systems, offering robust solutions

to the inherent complexities of such systems and advancing the field’s develop-

ment.

3.1 Constant Modulus Waveform Design for DFRC

In this section, we investigate a constant modulus waveforms design to ap-

proximate a desired beampattern for dual-function radar-communication based

on a MIMO system. Note that the desired beampattern consists of a high-gain

radar main beam with a slightly high gain communication beam while main-

taining the desired low sidelobe levels. First, we formulate the waveform design

problem as an optimization problem. Because the constant modulus constraint

makes the problem non-convex and NP-hard, traditional methods cannot be ap-

plied to solve the problem. Therefore, we use a well-known alternating direc-

tion method of multipliers (ADMM) algorithm to obtain an iterative solution to

the problem. The ADMM blends the idea of the augmented Lagrangian method

(ALM) with the dual decomposition method [54,55] to achieve an improved

performance. The designed waveforms ensure an improved detection probabil-

ity and bit error rate (BER) for radar and communications parts, respectively.

Finally, the simulation results validate the efficiency of the proposed design in

terms of convergence, approximation of the desired waveform, and beampat-

tern synthesis
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Figure 3.1: System model

3.1.1 Signal Model

Consider a multi-input, multi-output joint radar-communication system, which

is equipped with a uniform linear array (ULA), consisting of M transmit an-

tenna sensors, as shown in Figure 3.1. Also, the radar and communication

receivers consist of M transmit antenna elements. The antenna array transmits

an integrated waveform for radar target detection that is also decoded at the

communication end for the detecting encoded information.

Let sm(n) ∈C denote the nth sample of a discrete waveform, consisting of N

samples, emitted by the mth antenna, where m = 1, ...,M and n = 1, ...,N. Let

s(n) denote a vector that collects the nth samples of the waveforms transmitted
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by all antennas, i.e. s(n) = [s1(n), ...,sM(n)]T . Then the far-field waveform in

the direction θ is given by

x(n;θ) = aH(θ)s(n) (3.1)

where

a(θ) = [1,e− j2πdsin(θ)/λ , ...,e− j2π(M−1)dsin(θ)/λ ]T (3.2)

is the transmit steering vector, with λ being the wavelength and d the inter-

element spacing between the individual antenna elements. Let S = [s1, ...,sN]

is the M×N space-time transmit waveform matrix.

Let xR = [xR(0), ...,xR(N − 1)]T be the desired radar waveform and xC =

[xC(0), ...,xC(N − 1)]T be the desired communication waveform. The transmit

waveform matrix S is designed such that the xR is synthesized in radar direction

θR and xC in communication direction θC,respectively, where θR ̸= θC, i.e.,

a(θR)S = xT
R (3.3)

and

a(θC)S = xT
C . (3.4)

Equations (3.3) and (3.4) can be combined as

AH (Θ)S = X, (3.5)

where A(Θ) = [a(θR),a(θC)] and X = [x(θR),x(θC)]
T .
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3.1.2 Problem Formulation

The problem under consideration is to design a transmit waveform matrix

S so that the power radiation in the sidelobe region can be minimized. More-

over, there are two constraints. The first constraint is the waveform synthesis

(WS) constraint i.e., the transmit waveform matrix S synthesizes the desired

radar waveform xR and the desired communication waveform xC in the direc-

tion of radar target and communication users, respectively, as given by Eq.

(3.5). The second constraint is the constant modulus constraint which prevents

the non-linear signal distortion in the amplifiers to increase the efficiency of the

transmitter. The constant modulus constraint constraint is expressed as

|S(m,n)|= 1,0 ≤ m ≤ M−1;0 ≤ n ≤ N. (3.6)

The problem can be formulated as an optimization problem given by

minimize
S

∥ AH
(

Θ̃

)
S ∥2

F

subject to AH (Θ)S = X

|S(m,n)|= 1,0 ≤ m ≤ M−1;0 ≤ n ≤ N,

(3.7)

where Θ = [θR,θC] is the collection of radar and communication direction an-

gles while Θ̃ = [θ1,θ2, · · · ,θK] is the collection of angles of K side lobes.

The CM constraint Equations (3.6) renders the optimization problem (3.7)

as non-convex. Being NP-hard, this problem is difficult to solve using any

convex optimization methods. The problem (3.7) can be re-formulated for ease

of analysis, in two steps: the vectorization step and the realization step.
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3.1.2.1 Vectorization

In the vectorization step, the matrices S and X are vectorized by stacking all

of their respective columns vectors into a single columns vector. Correspond-

ingly, matrices A(Θ) and A
(

Θ̃

)
are also updated. This is given by

s = vec(S)

x = vec(X)

A(Θ) = IN ⊗A(Θ)

A
(

Θ̃

)
= IN ⊗A

(
Θ̃

)
.

(3.8)

The CM constraint is given in terms of s as

|s(i)|= 1, i = 1,2, · · · ,MN (3.9)

which is, equivalently, given by

sT Eis = 1, i = 1,2, · · · ,MN (3.10)

where

Ei (m,n) =





1, m = n = i

0, otherwise
(3.11)

where 0 ≤ m,n, i ≤ MN. At the end of the vectorization step, the problem Eq.

(3.7) can be express as

minimize
s

sHA
(

Θ̃

)
A

H
(

Θ̃

)
s

subject to A
H
(Θ)s = x

sT Eis = 1, i = 1,2, · · · ,MN.

(3.12)
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3.1.2.2 Realization

In the realization step, the complex-valued variables are converted to the

real-valued version. For example, the realization of s takes the real part of s

in one column vector and the complex part in another vector and then stacks

the columns vectors together to give sr. The realization of sr, xr, Ar (Θ) and

Ar

(
Θ̃

)
is given as

sr =


ℜ{s}

ℑ{s}




xr =


ℜ{x}

ℑ{x}




Ar (Θ) =


ℜ{A(Θ)} −ℑ{A(Θ)}

ℑ{A(Θ)} ℜ{A(Θ)}




Ar

(
Θ̃

)
=


ℜ{A

(
Θ̃

)
} −ℑ{A

(
Θ̃

)
}

ℑ{A
(

Θ̃

)
} ℜ{A

(
Θ̃

)
}




(3.13)

In terms of vectorized real-valued variables, the CM constraint is given by

sT
r Eisr = 1, i = 1,2, · · · ,2MN (3.14)

where

Ei (m,n) =





1 : m = n = i

1 : m = n = i+MN

0 : otherwise

(3.15)
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and 0 ≤ m,n, i ≤ 2MN. At the end of the realization step, the problem Eq.

(3.12) can be expressed as

minimize
sr

sT
r Ar

(
Θ̃

)
A

T
r

(
Θ̃

)
sr

subject to A
T
r (Θ)sr = xr

sT
r Eisr = 1, i = 1,2, · · · ,MN.

(3.16)

The optimization problem in Eq. (3.16) can be solved to get sr−opt , which is

the vectorized and real-valued version of Sopt . So the reverse operation i.e.,

Sopt = mtx
(
sr1−opt + i · sr2−opt

)
(3.17)

can be performed to get Sopt , where sr1−opt contains the first MN elements, the

real part, and sr2−opt contains the other MN elements, the imaginary part.

3.1.3 ADMM Formulation and Solution

The optimization problem Equation (3.16), like Equation (3.7), is non-convex

and NP-hard. Analytical solutions to problems like this are challenging to get

and alternatives like numerical or heuristic techniques are employed instead to

get approximate solutions. Even using heuristic techniques, like genetic al-

gorithm (GA), it may be difficult to formulate the CM constraint. Therefore,

we use the ADMM based iterative technique to approximate a solution to this

problem.

An auxiliary variable rr is introduced in Eq. (3.16) and the following equiv-

50



alent version is obtained

minimize
rr,sr

rT
r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

subject to AT
r (Θ)rr +AT

r (Θ)sr = 2xr

T(rr)sr −1 = 0

r = s.

(3.18)

It can be observed that the WS constraint in Equation (3.16), sr is expressed as

two times sr and one of them is replaced by rr in Equation (3.18). Also, the

CM constraint, consisting of MN equations in Equation (3.16), is expressed in

its compact form in Equation 3.18 as

G(rr,sr) = G(sr,rr) = 0 (3.19)

where G(rr,sr) ∈ R
2MN×2MN is a vector given by

G(rr,sr) = T(rr)sr −1, (3.20)

where 1 and 0 are 2MN ×1 vectors all 1’s and 0’s respectively, and

T(rr) =
[
rT

r E1;rT
r E2; · · · ;rT

r EMN

]
∈ R.MN×2MN (3.21)

The augmented Lagrangian of Eq. (3.18) is given as

L {rr,sr,u,v,w,} = rT
r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

+ ρ1

2

∥∥AT
r (Θ)rr +AT

r (Θ)sr −2xr +u
∥∥2

2

+ ρ2

2
∥T(rr)sr −1+v∥2

2

+ ρ3

2
∥rr − sr +w∥2

2

(3.22)

where u ∈ R
4N×1,v ∈ R

MN×1 and w ∈ R
2MN×1 are the dual variables and
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ρ1,ρ2,ρ3 > 0 are the adjustable penalty parameters.

The (m+1)th iteration of the algorithm, in terms of the different variables,

is given as following

rm+1
r := arg min

rr

L (rr,s
m
r ,u

m,vm,wm) (3.23a)

sm+1
r := arg min

sr

L
(

rm+1
r ,sr,u

m,vm,wm
)

(3.23b)

um+1 := um +AT
r rm+1

r +AT
r sm+1

r −2xr (3.23c)

vm+1 := vm +T
(

rm+1
r

)
sm+1

r −1 (3.23d)

wm+1 := wm + rm+1
r − sm+1

r . (3.23e)

As can be seen from Equation (3.23), the update Equations (3.23c), (3.23d) and

(3.23e) are straight-forward. The sub-equations Equation (3.23a) and Equation

(3.23b) are convex and give closed-form solutions. The details of the updates

of variables rr and sr is presented next.

3.1.3.1 Update of rr

To get the (m+ 1)th update of rr, we take the gradient of Equation (3.23a)

with respect to rr and equate the result with 0, i.e.,

∇rr
L (rr,s

m
r ,u

m,vm,wm) = 0. (3.24)

The solution to Equation (3.24) is given by

rm+1
r = Ξ−1

1 ξ 1 (3.25)
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where

Ξ1 = ρ1Ar (Θ)AT
r (Θ)+ρ2TT (sr)T(sr)+ρ3I (3.26)

and

ξ 1 =C Mρ1Ar (Θ)
(
2xr −u−AT

r (Θ)sr

)

ρ2TT (sr)(1−v)ρ3(sr −w)

−Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr.

(3.27)

3.1.3.2 Update of sr

Similar to the rr update, in sr update, we take the gradient of Equation

(3.23b) with respect to sr and equate the result with 0, i.e.,

∇sr
L

(
rm+1

r ,sr,u
m,vm,wm

)
= 0. (3.28)

The solution to Equation (3.28) is given by

sr
m+1 = Ξ−1

2 ξ 2 (3.29)

where

Ξ2 = ρ1Ar (Θ)AT
r (Θ)+ρ2TT (rr)T(rr)+ρ3I (3.30)

and

ξ 2 = ρ1Ar (Θ)
(
2xr −u−AT

r (Θ)rr

)

+ρ2TT (rr)(1−v)+ρ3(rr +w)

−Ar

(
Θ̃

)
AT

r

(
Θ̃

)
rr.

(3.31)

53



3.1.3.3 Termination Criteria of the Algorithm

Let the primal residuals at iteration m+1 be defined as

dm+1
pr1 = AT

r rm+1
r +AT

r sm+1
r −2xr (3.32a)

dm+1
pr2 = T

(
rm+1

r

)
sm+1

r −1 (3.32b)

dm+1
pr3 = rm+1

r − sm+1
r (3.32c)

and the dual residuals be defined as

dm+1
rs1 = rm+1

r − rm
r (3.33a)

dm+1
rs2 = sm+1

r − sm
r . (3.33b)

Then, as suggested by [84], reasonable termination criteria are

∥ dm+1
pr1 ∥2

2 ≤ ε
pri
1 , (3.34a)

∥ dm+1
pr2 ∥2

2 ≤ ε
pri
2 , (3.34b)

∥ dm+1
pr3 ∥2

2 ≤ ε
pri
3 , (3.34c)

∥ dm+1
dr1 ∥2

2 ≤ εdual, (3.34d)

∥ dm+1
dr2 ∥2

2 ≤ εdual. (3.34e)

where ε
pri
1 , ε

pri
2 , ε

pri
3 are the tolerances for the primal residual and εdual

1 is the

tolerance for dual residuals. These tolerances, in accordance with [84], are

defined as

ε
pri
1 =

√
4Nεabs + εrelmax

{
∥ AT

r rm+1
r ∥2,∥ AT

r sm+1
r ∥2,∥ 2xr ∥2

}
(3.35a)

54



ε
pri
2 =

√
MNεabs + εrelmax

{
∥ T

(
rm+1

r

)
sm+1

r ∥2,∥ 1 ∥2

}
(3.35b)

ε
pri
3 =

√
2MNεabs + εrelmax

{
∥ rm+1

r ∥2,∥ sm+1
r ∥2

}
(3.35c)

εdual =
√

2MNεabs + εrel ∥ ρ1w ∥2 (3.35d)

Table 3.1 summarizes the steps of the algorithm.

Summary of the proposed algorithm

Input:

Step 1) Initialize: r0
r ,s

0
r ,u

0,v0,w0,ρ1,ρ2,ρ3,

ε
pri
1 , ε

pri
2 , ε

pri
2 , εdual , m = 1

Step 2) While the termination criteria, Eq. 3.34, are not satisfied, do

Step 3) Update rm+1
r using Eq. 3.25

Step 4) Update sm+1
r using Eq. 3.29

Step 5) Update um+1 using Eq. 3.23c

Step 6) Update vm+1 using Eq. 3.23d

Step 7) Update wm+1 using Eq. 3.23e

Step 8) m = m+1

Step 9) End while

Output:

Table 3.1: Summary of the proposed algorithm

For clarity, a list of symbols, their dimensions and description is provided in

Table 3.2.

3.1.3.4 Penalty Parameter Selection

Choosing the penalty parameters properly is very important in ADMM. The

values of penalty parameters are decreased or increased depending on the val-

ues of some predefined tolerances. Different methods can be used choose the

penalty parameters like hit-and-trial etc. Another method is to related the val-

ues of the penalty parameters to iteration numbers so that the values of penalty

parameters increased or decreased (from initially defined value) in steps. One

standard method is to relate the values of the residual norms with the tolerances

by using the concept of ’residual balancing’ as given by Eq. (3.36).
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Symbol Dimension Description

M 1×1 Number of antennas

N 1×1 Number of samples

K 1×1 Number of side lobes

d 1×1 Antenna inter-element spacing

IN N ×N Identity matrix

λ 1×1 Wavelength

sm(n) 1×1 nth sample of a discrete waveform

s(n) M×1 nth samples of the waveforms transmitted by all antennas

S M×N Space-time transmit waveform matrix

s MN ×1 Vector version of s

sr 2MN ×1 Real-valued version of s

xR N ×1 Desired radar waveform

xC N ×1 Desired communication waveform

X 2×N Combination of desired communication waveform as a matrix

x 2N ×1 Vector version of X

xr 4N ×1 Real-valued version of x

a(θR) M×1 Steering vector in radar direction

a(θC) M×1 Steering vector in communication direction

A(Θ) M×2 Combination of a(θR and a(θC

A(Θ) MN ×2N Vector version of A(Θ)

Ar (Θ) 2MN ×4N Real-valued version of A(Θ)

A
(

Θ̃

)
M×K Combination of side lobe steering vectors

A
(

Θ̃

)
MN ×KN Vector version of A

(
Θ̃

)

Ar

(
Θ̃

)
2MN ×2KN Real-valued version of A

(
Θ̃

)

u 4N ×1 Dual variable

v MN ×1 Dual variable

w 2MN ×1 Dual variable

η , µ 1×1 Positive constants

ρ1, ρ2, ρ3 1×1 Penalty parameters

Table 3.2: List of symbols

ρk+1 =





ηρk if dm+1
pr1 > µε

pri
1

ρk/η if ε
pri
1 > µdm+1

pr1

ρk otherwise

(3.36)

where ρk is the penalty parameter, and µ > 1 and η > 1 are constants, dm+1
pr1

is the primary residual and ε
pri
1 is the tolerance.

Note: A a novel method for penalty parameter optimization was proposed in
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another work, also discussed later in this chapter. That method is not discussed

in this section.

3.1.4 Simulation Results and Analysis

In this section, the performance analysis of the algorithm is discussed and

the results of some numerical examples are presented to evaluate the perfor-

mance of the proposed waveform design method. A ULA consisting of M = 32

antenna elements having half wavelength enter-element spacing has been con-

sidered at the transmitter and receiver sides. The radar target is located at

θR = 0◦ and the communication user at θC = 45◦. The desired radar waveform

is based on linear frequency modulation (LFM). Similarly, the desired commu-

nication waveform uses the QPSK modulation scheme. We have considered

Ns = 1 symbols and Nb = 2 bits per symbol. Thus each waveform carries 2 bits

of information per pulse repetition interval (PRI).

Different experiments are performed to evaluate the performance in different

scenarios. Since both radar and communication receivers expect some desired

waveforms, coherent detection can be used to match the received signal wave-

form with the desired waveform. Monte-Carlo simulations are done to evaluate

the performance of communication for different values of signal-to-noise ratio

(SNR).

The proposed method is compared with far-field radiated emission design

(FFRED) [85], iterative optimization technique (using directly normalized wave-

forms) [86], and the theoretical values. In FFRED method, 0%, 10% and 40%

of the total power is allocated to the orthogonal complement waveform, of

which the FFRED-40% has the best performance. Authors of [86] proposed

several waveform design methods. One method designed non-constant mod-
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ulus waveforms, had closed-form solution to the waveform design problem.

They also proposed an iterative method for constant modulus waveforms. How-

ever, being computationally complex, they used the results of the first method

using non-constant modulus waveforms and used iterative optimization for fur-

ther refining those waveforms. They defined this method as "directly normal-

ized" in their simulations.

3.1.4.1 Computational Complexity Analysis

The computational complexity analysis helps estimate the computational re-

sources, like time and memory, needed to execute an algorithm. It provides

insight into how the algorithm scales with the input size. This information is

useful for optimizing the algorithm or considering alternative approaches if the

complexity is too high.

To determine the computational complexity of the proposed algorithm, each

section of the code was examined to count the number of operations or iter-

ations relative to the input size. The main loop in the code runs ’iter’ times.

Within each iteration, there are multiple operations, including matrix multipli-

cations, norm calculations, and variable updates. The complexity of each of

these operations was analyzed and combined to obtain an overall complexity

estimate. Input size-dependent variables, such as M and L, and their influence

on complexity were also considered.

The proposed algorithm has high computational complexity, approximately

cubic. This is mainly due to a matrix inversion operation. After matrix in-

version, other significant time-consuming operations include matrix multipli-

cations.

For r updates, the calculation of Ξ1 takes O(KM2L2), calculation of γ takes
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O(M2L2), therefore the complexity of the update of r using Eq (3.25) is O(KM2L2+

M2L2 + M3L3). Overall, the computational complexity of the algorithm is

O(2(KM2L2 +M2L2 +M3L3)) at each iteration.

3.1.4.2 Data Rate Performance

The communication data rate is

R = Nb ×Ns × fPRF , (3.37)

where Nb is the number of bits per symbol, Ns is the number of symbols in one

pulse and fPRF is the pulse repetition frequency.

3.1.4.3 ADMM Convergence Analysis

Plots of the norms of primal and dual residuals dpr1, dpr2, dpr3, ddr2, ddr2,

and the stopping criteria limits ε
pri
1 , ε

pri
2 , ε

pri
2 , εdual against the iteration num-

bers are shown in Figure 3.2 and 3.3. The plots show that the stopping condi-

tions are met within 20 iterations.

Figure 3.4 shows a plot of the objective function values. The objective func-

tion is the first line of Equation (3.18). As obvious in the figure, the objective

function settles within 10 iterations. This is in accordance with the settling

down of the primary and dual residuals, Figure 3.2 and 3.3, and the constant

modulus requirement, Figure 3.4.

3.1.4.4 Beampattern Analysis

Figure 3.5 shows the transmit beampattern formed by the waveform matrix

S designed through the propose ADMM based approach for a DFRC system

with 32 antenna elements.
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Figure 3.2: Norms of primary residuals per iteration

Figure 3.3: Norms of dual residuals per iteration
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Figure 3.4: Convergence of the objective function Eq. (3.18)

Figure 3.6 shows the transmit beampatterns as synthesized by the waveform

matrix S designed through the propose ADMM based approach and that of

iterative optimization with amplitude weighting (IO-AW) as reported in [87].

In both cases, the systems have 16 antenna elements, the radar target is located

at θR = 0◦ and the communication user at θC = 45◦. Also, in both cases, the

power of the desired radar waveform is designed to be 10 dB more than that

of the communication waveform. As it can be seen in the figure the IO-AW

method leaks power at −45◦ or, in other words, makes a mirror lobe towards a

direction where there is no communication user. Otherwise, the sidelobe levels

of the two beampatterns are almost the same. Thus, the beampattern formed

through the proposed method outperforms the beampattern formed through IO-

AW.
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Figure 3.5: The transmit beampattern formed by the DFRC system with 32 antenna elements

Figure 3.6: The transmit beampattern formed by the systems
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3.1.4.5 Waveform Error Analysis

Normalized waveform error is a performance metric that can be used to de-

scribe how closely the desired waveforms match the synthesized waveforms.

Moreover, it can also give convergence performance, as the faster it decreases

with the increasing number of iterations, the better the performance of the al-

gorithm. Mathematically, this metric, denoted here as ηi, is defined as

ηi =
∥Xi∥2

F

∥X∥2
F

(3.38)

where

Xi = AH (Θ)Si. (3.39)

Figure 3.7 shows the normalized waveform error in decibels (dB) plotted

against the iterations. Since this is a normalized metric, it typically does not

have specific units.

Table 3.3 provides a comparison of different methods for normalized wave-

form error.

Method Waveform modulus Normalized waveform error/dB

FFRED-0% Non-constant -320.08

FFRED-10% Constant -34.08

FFRED-40% Constant -113.56

MNO Non-constant -312.06

IO Constant -39.40

IO-AW Constant -40.90

ADMM-based (Proposed) Constant -35

Table 3.3: Comparison of different methods for normalized waveform error

Figure 3.8 shows how the CM constraint is met. The plots in the figure show

the maximum and the minimum modulus samples of S, and the desired uni-

modulus samples, at each iteration. As can be seen in the plots, the maximum
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Figure 3.7: Normalized waveform error

and the minimum values settle at 1 at about the 10th iteration.

3.1.4.6 Radar Performance Analysis

The radar performance evaluation is provided in two figures: the first figure

compares the desired LFM waveform for radar and the far-field synthesized

waveform, whereas the second gives the detection probability (pD) versus SNR.

The waveform synthesized in the radar direction is shown in Figure 3.9. As

shown in Figure 3.9(a), the synthesized radar waveform and the desired radar

waveform seem almost identical, which validates the efficiency of the proposed

scheme. However, there are small differences between the waveforms, shown

in Figure 3.9(b). These differences or sample errors are defined as

eR = xR −a(θR)S. (3.40)

64



Figure 3.8: The waveform modulus per iteration showing the constant modulus constraint is

satisfied.

Figure 3.10 shows the graph of detection probability plotted against SNR.

The probability of false alarm is set as 10−4. For comparison, pD versus SNR

graphs of other methods are also provided. As the figure shows, FFRED-40%

[85] has the best pD, which is almost the same as that of the desired LFM.

However, the graph of the proposed method is so close that the difference be-

comes visible on zooming-in the plots. At the same time, the proposed method

provides better pD than that of directly normalized method [86].

3.1.4.7 Communication Performance Analysis

Like radar performance, communication performance, too, is evaluated by

two figures: the first figure gives a comparison of the desired communication

waveform and the far-field synthesized waveform, whereas the second figure

gives the SER versus SNR.
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Figure 3.9: Synthesized radar waveform, (a) Desired waveform vs far-field synthesized wave-

form, (b) Difference between the desired waveform vs far-field synthesized waveform.

The waveform synthesized in the communication direction is shown in Fig-

ure 3.11. As with radar waveforms, the synthesized and the desired commu-

nication waveforms seem almost exact. The sample errors in this case, Figure

3.11(b), are defined as

eC = xC −a(θC)S. (3.41)

Figure 3.12 shows SER plotted against SNR. Again, for comparison, SER

versus SNR graphs of other methods are provided. The ’2 bits per symbol’

graph represents the theoretical values. Again, the graphs of FFRED-40% [85]

and the proposed ADMM method are very close, although FFRED-40% has a

relatively better performance. Both methods outperform the directly normal-

ized waveform method [86].
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Figure 3.10: Comparison of different methods: detection probability vs SNR

3.2 Constant Power Waveform Design for MIMO based DFRC

Systems

In this work, we present a waveform design strategy for MIMO-based joint

radar-communication systems, addressing the challenge of constant power wave-

forms. At first, the optimization problem focuses on minimizing power radi-

ation in the undesired locations while adhering to constraints like waveform

similarity and constant power. Next, we utilize the ADMM algorithm as the

computational framework for addressing the problem. Importantly, we intro-

duce a novel approach for selecting penalty parameters for achieving an opti-

mized waveforms to successfully approximate the desired beampattern, achiev-

ing high radar and communication main-beams in the desired directions, while
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Figure 3.11: Synthesized communication waveform, (a) Desired waveform vs far-field synthe-

sized waveform, (b) Difference between the desired waveform vs far-field synthesized wave-

form.

generating low sidelobes elsewhere. Moreover, these waveforms effectively

generate the intended radar and communication signals within the far-field of

the antenna array. Ultimately, the simulation outcomes substantiate the efficacy

of this devised methodology, offering a prospective solution for dual-function

radar-communication within MIMO setups.

3.2.1 System Model

An integrated system with MIMO DFRC architecture is considered. The

setup comprises a uniform linear array (ULA) with M transmit-receive antenna

elements. In the far-field of the system reside the radar and communication re-

ceivers, each composed of M antenna elements. The DFRC system send out an
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Figure 3.12: Comparison of different methods: SER vs SNR

integrated waveform, utilized both for encoding information in communication

and for radar functionality, processing echoes reflected from potential targets.

The system is the same as shown in Figure 3.1.

Consider sm(l) ∈ C be the l-th sample, l = 1, . . . ,L, of the desired joint

waveform, transmitted by the m-th antenna, m = 1, . . . ,M and l = 1, . . . ,L, of

the ULA.

Similarly, let sl = [s1(l),s2(l), . . . ,sM(l)]T ∈ C
M×1 denote the l-th samples

of the waveforms transmitted from all the M antennas. The synthesised wave-

form in the direction θ is given by

x(l;θ) = aH(θ)sl (3.42)
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where a(θ) is steering vector, given by

a(θ) = [1,e− j2πdsin(θ)/λ , . . . ,e− j2π(M−1)dsin(θ)/λ ]T ∈ C
M×1 (3.43)

with d being the distance between the adjacent antenna elements and λ the

wavelength. Also let the collection s = [sT
1 ,s

T
2 , . . . ,s

T
L ]

T ∈ C
LM×1 be the space-

time transmit waveform vector.

Let xR = [xR(0), . . . ,xR(L−1)]T ∈C
L×1 denote the desired radar waveform.

Similarly let xC = [xC(0), . . . ,xC(L− 1)]T ∈ C
L×1 denote the desired commu-

nication waveform. The LM × 1 transmit waveform vector s is required to be

designed such that it synthesises xR in the radar direction θR and xC in commu-

nication direction θC, where θR ̸= θC, i.e.,

aH(θR)sl = xR,l (3.44)

and

AH(θR)s = xR (3.45)

where A(θR) = IL ⊗a(θR) ∈ C
LM×L. Similarly

aH(θC)sl = xC,l (3.46)

and

AH(θC)s = xC (3.47)

where A(θC) = IL ⊗ a(θC) ∈ C
LM×L. For ease of computation, a combination

of Equations (3.45) and (3.47) can be formulated as

AH (Θ)s = x, (3.48)
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where A(Θ) = [A(θR) A(θC)] ∈ C
LM×2L and x = [xT xT ]T ∈ C

2L×1.

3.2.2 Problem Formulation

The main objective involves the design of waveform s to minimize transmit-

ted power within the sidelobes while maintaining unchanged transmission in

the radar and communication directions. Additionally, two specific constraints

are imposed: the first constraint necessitates that the transmitted waveform s

produces the waveform xR, which is the required radar waveform, towards the

target, and the waveform xC, which the required communication waveform,

in the communication user’s direction. This represents the waveform synthe-

sis (WS) constraint, formulated mathematically in Equation (3.48). The other

constraint is guarantee that the same amount of power is radiated in each trans-

mission instance. This is the constant power constraint, as gives by Equation

(3.48)

sT s = Pmax (3.49)

This problem, the objective and constraints, is framed as an optimization

problem as

minimize
s

∥ AH
(

Θ̃

)
s ∥2

2

subject to AH (Θ)s = x

sT s = Pmax,

(3.50)

where Θ = [θR θC] is the representation of radar and communication angles in

combined form, and Θ̃ = [θ1 θ2 · · · θK] is the set of K undesired directions..

To make the computation easy, the variables are converted into their real-

valued versions by stacking together their real and imaginary parts. In the end,

the real and imaginary parts can be combined again. For example, the real part
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of the ML× 1 complex-valued s, the waveform vector, is stored in one vector

and the complex part in another vectore and the two are stacked together to give

another 2ML×1 real-valued vector sr.

This procedure is applied to s, x, A(Θ), and A
(

Θ̃

)
as

sr =


ℜ{s}

ℑ{s}




xr =


ℜ{x}

ℑ{x}




Ar (Θ) =


ℜ A(Θ)} −ℑ{A(Θ)}

ℑ{A(Θ)} ℜ{A(Θ)}




Ar

(
Θ̃

)
=


ℜ{A

(
Θ̃

)
} −ℑ{A

(
Θ̃

)
}

ℑ{A
(

Θ̃

)
} ℜ{A

(
Θ̃

)
}




(3.51)

In terms of these new variables, the constant power constraint is given by

sT
r sr = Pmax. (3.52)

Similarly, the problem Equation (3.50) is changed as

minimize
sr

sT
r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

subject to AT
r (Θ)sr = xr

sT
r sr = Pmax.

(3.53)

Different methods, numerical or others, can be used to approach the wave-

form design problem, Equation (3.53), and obtain the solution, i.e., the real-

valued version, sr−opt , of the required transmit waveform sopt . The required
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transmit waveform is obtained as

sopt = sr1,opt + i · sr2,opt (3.54)

where sr1,opt has the first ML elements and sr2,opt contains the other ML ele-

ments, the real and imaginary imaginary parts of sopt . In this work, ADMM is

used to solved the considered problem.

3.2.3 ADMM based Problem Formulation and Solution

Let Equation (3.53) be rewritten as

minimize
rr,sr

rT
r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

subject to AT
r (Θ)rr +AT

r (Θ)sr −2xr = 0

rT
r sr −Pmax = 0

rr = sr.

(3.55)

where rr is an auxilliary variable. Then, augmented Lagrangian of Equation

(3.55) is represented as

L {rr,sr,u,v,w} = rT
r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

+ ρ1

2

∥∥AT
r (Θ)rr +AT

r (Θ)sr −2xr +u
∥∥2

2

+ ρ2

2

∥∥rT
r sr −Pmax + v

∥∥2

2

+ ρ3

2
∥rr − sr +w∥2

2

(3.56)

where u∈R
4L×1,v∈R

1×1, and w∈R
2ML×1 are the dual variables, and ρ1,ρ2,ρ3 >

0 are the penalty parameters. The augmented Lagrangian is dependent on the

variables rr,sr,u,v, and w. The solution for these variables can be achieved

individually by partitioning the problem into multiple sub-problems. The solu-
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tions for these individual sub-problems can be acquired as

rm+1
r := arg min

rr

L (rr,s
m
r ,u

m,vm,wm) (3.57a)

sm+1
r := arg min

sr

L
(

rm+1
r ,sr,u

m,vm,wm
)

(3.57b)

um+1 := um +AT
r rm+1

r +AT
r sm+1

r −2xr (3.57c)

vm+1 := vm +
(

rm+1
r

)T

sm+1
r −Pmax (3.57d)

wm+1 := wm + rm+1
r − sm+1

r . (3.57e)

Solutions of the Equations (3.57c)–(3.57e) are straightforward. The sube-

quations (3.57a) and (3.57b) yeild closed-form solutions and their details are

provided in the following sub-sections.

3.2.3.1 Update of rr

Take the derivative of subequation (3.57a) with respect to rr and make the

resulting expression equal to 0 to obtain the (m+ 1)-th update of the solution

of rr, , i.e.,

∇rr
L (rr,s

m
r ,u

m,vm,wm) = 0. (3.58)

The solution of Equation (3.58) is expressed as

rm+1
r = Ξ−1

1 ξ 1 (3.59)

where

Ξ1 = ρ1Ar (Θ)AT
r (Θ)+ρ2srs

T
r +ρ3I (3.60)
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and

ξ 1 = ρ1Ar (Θ)
(
2xr −u−AT

r (Θ)sr

)

+ρ2 (Pmax − v)sr −ρ3 (sr −w)

−Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr.

(3.61)

3.2.3.2 Update of sr

As in the update for rr, here too, the derivative of subequation (3.57b) with

respect to sr is computed, and the resulting expression is set equal to zero.

Mathematically denoted as

∇sr
L

(
rm+1

r ,sr,u
m,vm,wm

)
= 0. (3.62)

The solution of Equation (3.62) is expressed as

sm+1
r = Ξ−1

2 ξ 2 (3.63)

where

Ξ2 = ρ1Ar (Θ)AT
r (Θ)+ρ2rrT +ρ3I (3.64)

and

ξ 2 = ρ1Ar (Θ)
(
2xr −u−AT

r (Θ)rr

)

+ρ2 (Pmax − v)+ρ3(rr +w)

−Ar

(
Θ̃

)
AT

r

(
Θ̃

)
rr.

(3.65)

3.2.3.3 Termination Criteria of the Algorithm

The primary and dual residuals, which approach zero as the algorithm con-

verges, can be used to define termination measures. Let the primal residuals at
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(m+1)-th iteration be expressed as

dm+1
pr1 = AT

r rm+1
r +AT

r sm+1
r −2xr (3.66a)

dm+1
pr2 =

(
rm+1

r

)T

sm+1
r −Pmax (3.66b)

dm+1
pr3 = rm+1

r − sm+1
r (3.66c)

Similarly, the dual residuals

dm+1
rs1 = rm+1

r − rm
r (3.67a)

dm+1
rs2 = sm+1

r − sm
r . (3.67b)

Then, the following can be considered as reasonable termination criteria [84]

∥ dm+1
pr1 ∥2

2 ≤ ε
pri
1 , (3.68a)

∥ dm+1
pr2 ∥2

2 ≤ ε
pri
2 , (3.68b)

∥ dm+1
pr3 ∥2

2 ≤ ε
pri
3 , (3.68c)

∥ dm+1
dr1 ∥2

2 ≤ εdual, (3.68d)

∥ dm+1
dr2 ∥2

2 ≤ εdual. (3.68e)

where ε
pri
1 , ε

pri
2 , ε

pri
3 are tolerances for the primal residuals and εdual

1 is the

tolerance for dual residuals, which can be defined as [84]

ε
pri
1 =

√
4Lεabs + εrelmax

{
∥ AT

r (Θ)rm+1
r ∥2,∥ AT

r (Θ)sm+1
r ∥2,∥ 2xr ∥2

}

(3.69a)

ε
pri
2 =

√
MNεabs + εrelmax

{
∥
(

rm+1
r

)T

sm+1
r ∥2 ,Pmax

}
(3.69b)
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ε
pri
3 =

√
2MNεabs + εrelmax

{
∥ rm+1

r ∥2,∥ sm+1
r ∥2

}
(3.69c)

εdual =
√

2MNεabs + εrel ∥ ρ1w ∥2 (3.69d)

3.2.3.4 Summary of the algorithm

A summary of the different stages of the suggested methodology is provided

as following.

Summary of the proposed algorithm

Input: M, L, K, d, θR, θC

1: Initialize: r0
r ,s

0
r ,u

0,v0,w0,ρ1,ρ2,ρ3, and

ε
pri
1 , ε

pri
2 , ε

pri
2 , εdual, m = 1 .

2: Loop: Until the termination criteria, Eq. (3.68), are fulfilled, do

3: Update rm+1
r , Eq. (3.59)

4: Update sm+1
r , Eq. (3.63)

5: Update um+1, Eq. (3.57c)

6: Update vm+1, Eq. (3.57d)

7: Update wm+1, Eq. (3.57e)

8: m = m+1, go to step 2

9: End loop

Output: rm+1
r , sm+1

r

To facilitate a clear understanding, a comprehensive list of symbols, along

with their associated dimensions and descriptive explanations, is available in

Table 3.4.
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Table 3.4: List of symbols.

Symbol Dimension Description

M 1×1 Antennas elements in the ULA

L 1×1 Waveform samples

K 1×1 Sidelobes

d 1×1 Distance between adjacent antenna elements in the array

IN L×L Identity matrix

λ 1×1 Wavelength

sm(n) 1×1 nth sample of the waveform

sl M×1 l-th waveform samples vector

s LM×1 Space-time transmit waveform vector

sr 2LM×1 Real-valued equivalent of s

xR L×1 Desired radar waveform

xC L×1 Desired communication waveform

x 2L×1 xR and xC combined together in a single vector

xr 4L×1 Real-valued equivalent of x

a(θR) M×1 Radar steering vector

a(θC) M×1 Communication steering vector

A(Θ) M×2 a(θR) and a(θC)
Ar (Θ) 2ML×4L Real-valued equivalent of A(Θ)

A
(

Θ̃

)
M×K Steering vectors in all undesired directions

Ar

(
Θ̃

)
2ML×2KL Real-valued equivalent of A

(
Θ̃

)

u 4L×1 Dual variable

v 1×1 Dual variable

w 2ML×1 Dual variable

η , µ 1×1 Positive constants

ρ1, ρ2, ρ3 1×1 Penalty parameters

3.2.4 Penalty Parameter Selection

Appropriate penalty parameter selection is crucial for good performance in

penalty methods like ADMM because the convergence properties of penalty

method are very sensitive to the penalty parameters.

3.2.4.1 Existing Penalty Parameter Selection Methods

There are different methods to choose penalty parameters. The simplest

way is to have them fixed. The fixed penalty parameters can be chosen by

hit and trial or by intelligent guess. Another option is to increase the penalty

parameters with increasing iterations. However, fixed value or monotonically
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increasing values are not good choices. It is better to have variable penalty

parameters that can change adaptively according to the situation. One popular

method of adaptive penalty parameters selection is residual balancing [88].

ρk+1 =





ηρk if dm+1
pr1 > µε

pri
1

ρk/η if ε
pri
1 > µdm+1

pr1

ρk otherwise

(3.70)

where µ > 1 and η > 1 are constants, dm+1
pr1 is the primary residual, and ε

pri
1 is

the tolerance.

3.2.4.2 The Proposed Penalty Parameter Selection Method

The devised approach for selecting penalty parameters ensures an equitable

consideration of all constraints during the optimization procedure. In cases

where the penalty parameters are not judiciously selected, some of the con-

straints are optimized well but others remain poorly optimized. During the

optimization process, the values of the objective function function (the un-

constrained part) and residuals of the constraints get minimized iteratively but

they are not equally minimized. To maintain their presence, the values of the

comparatively more minimized constraints need to be increased by multiply-

ing them with larger penalty parameters. The proposed methods ensures that

the penalty parameters are selected such that all the residuals are minimized

equally well.
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As an example, re-consider the constrained optimization problem (3.55)

minimize
rr,sr

rT
r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

subject to AT
r (Θ)rr +AT

r (Θ)sr −2xr = 0

rT
r sr −Pmax = 0

r = s.

(3.71)

In penalty methods like ADMM, the transformation of a constrained opti-

mization problem into an unconstrained counterpart is a typical approach, aim-

ing for the solution of the unconstrained problem to ideally converge towards

the solution of the original problem. The constrained optimization problem

(3.55) is turned into an unconstrained as

L {rr,sr} = rT
r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

+ ρ1

2

∥∥AT
r (Θ)rr +AT

r (Θ)sr −2xr

∥∥2

2

+ ρ2

2

∥∥rT
r sr −Pmax

∥∥2

2

+ ρ3

2
∥rr − sr∥2

2

(3.72)

Note the difference of Equation (3.72) from Equation (3.56). While quation

(3.56) is a specific for linear ADMM, Equation (3.72) is a generic form. We

have chosen this because we are more interested in the primary residuals and

the fact that the dual variables u, v, and w vanish over time if the algorithm

is correct. We denote the objective functions which is the first line of Equa-

tion (3.71) as zo. Similarly we give new notations to the primary residuals,

Equations (3.66a, 3.66b, 3.66c), as z1, z2 and z3, i.e.

zo =
∣∣∣rT

r Ar

(
Θ̃

)
AT

r

(
Θ̃

)
sr

∣∣∣ (3.73a)
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z1 =
∥∥∥AT

r rm+1
r +AT

r sm+1
r −2xr

∥∥∥
2

2
(3.73b)

z2 =

∥∥∥∥
(

rm+1
r

)T

sm+1
r −Pmax

∥∥∥∥
2

2

(3.73c)

z3 =
∥∥∥rm+1

r − sm+1
r

∥∥∥
2

2
(3.73d)

Then for simplicity, we can rewrite Equation (3.72) as

J {rr,sr}= zo +ρ1z1 +ρ2z2 +ρ3z3. (3.74)

Then we can choose the penalty parameters as

ρ1 = zo/z1 (3.75a)

ρ2 = zo/z2 (3.75b)

ρ3 = zo/z3 (3.75c)

In Equation (3.75), it can be seen that the residuals z1, z2, and z3 are in denom-

inator. When the values of these residuals start approaching zero, the values

of the penalty parameters ρ1, ρ2, and ρ3 get very large. So it is better to im-

pose some upper limit ρmax which should not be exceeded. Therefore, Equation

(3.75) can better formulated as

ρ1 = min(zo/z1,ρmax) (3.76a)

ρ2 = min(zo/z2,ρmax) (3.76b)

ρ3 = min(zo/z3,ρmax) . (3.76c)
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3.2.5 Simulation Results and Analysis

This section delves into evaluating the algorithm’s performance through nu-

merical examples. The examination involves a ULA comprising 32 antenna

elements at both the transmitter and receiver ends. The enter-element spacing

in the ULA is λ/2. The radar target is supposed to be situated at direction

θR = 0◦ while the communication system is situated at θC = 45◦. The required

waveform of the radar is as an up-chirp LFM signal, while the communication

waveform uses the QPSK modulation scheme. To simplify, the scenario con-

siders Ns = 1 symbol per pulse repetition interval (PRI) and Nb = 2 bits per

symbol. Therefore, every waveform conveys 2 bits of information within each

PRI. Additional simulation parameters are summarized in Table 4.2.

Table 3.5: A tabulation of the simulation parameters used in the algorithm

Parameter Value Description

M 16, 32 Number of antennas elements in the ULA

d λ/2 Enter-elements distance in the ULA

u Random Dual variable associated with ρ1

v Random Dual variable associated with ρ2

w Random Dual variable associated with ρ3

η 1.5 Positive constant 1

µ 1.5 Positive constant 2

ρ1 1, 1e12 Penalty parameter 1

ρ2 1, 1e12 Penalty parameter 2

ρ3 1, 1e12 Penalty parameter 3

Numerous experiments were conducted to analyze performance across var-

ious scenarios. Given the pre-defined desired waveforms expected by both the

communication and radar receivers, coherent detection is employed to match

the received signal with the required waveforms at both the radar and commu-

nication sides, respectively. Communication performance is examined using

Monte-Carlo simulations across different values of signal-to-noise ratio (SNR).

The presented methodology is juxtaposed against the Far Field Radiated
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Emission Design (FFRED) approach [85], an iterative optimization technique

employing normalized waveforms directly, , i.e., "direct normalization" [86],

and theoretical benchmarks. Within the FFRED method, power allocation

comprises 0%, 10% and 40% to orthogonal complementary waveforms, with

FFRED-40% demonstrating superior performance. In contrast, the authors of

[86] have introduced a variety of waveform design methodologies. One such

approach involves the development of non-constant mode waveforms, featuring

closed-loop solutions to waveform design quandaries. Additionally, they have

proposed an iterative process for creating constant mode waveforms. Given the

intricate nature of the computations, they have harnessed the outcomes of the

initial non-constant modulus waveform method, subsequently subjecting them

to iterative optimization for further enhancement. In their simulation endeav-

ors, this strategy is denominated as "direct normalization".

3.2.5.1 Computational Complexity Analysis

To compute the complexity of the proposed algorithm, each code segment

is examined for the number of operations based on input size. The algorithm

runs ’iter’ times, performing tasks like matrix multiplications, norm calcula-

tions, and variable updates. The complexity of each operation is summed up,

factoring in variables like M and L.

The proposed algorithm has high complexity, primarily cubic, due to matrix

inversion and subsequent matrix multiplication operations. The overall com-

plexity of the algorithm is dominated by matrix operations. Matrix multipli-

cation of size 2ML× 2ML contributes O(M3L3), while vector operations and

additions contribute lower-order terms like O(M2L2). The most computation-

ally expensive part is the matrix inversion, which also has complexity O(M3L3).
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Hence, the overall complexity is O(M3L3).

3.2.5.2 Communication Performance in Terms of Data Rate

The data rate can be expressed as

R = Nb ×Ns × fPRF , (3.77)

where Nb represents the number of bits per symbol, Ns denotes the number of

symbols in one pulse, and fPRF stands for the pulse repetition frequency.

3.2.5.3 ADMM Convergence Analysis

The algorithm’s convergence is validated by the gradual decrease of the pri-

mal and dual variables. Convergence is confirmed once these variables drop

below predefined termination thresholds, following standard practices in opti-

mization and numerical analysis. In Figures 3.13 and 3.14, the graphical repre-

sentations depict the evolution of the norm values of primal residuals dpr1, dpr2,

dpr3 and dual residuals ddr2, ddr2, on the y-axis of the corresponding figures,

in conjunction with the predefined stopping criteria thresholds ε
pri
1 , ε

pri
2 , ε

pri
2 ,

εdual over the course of iterative progress on x-axis. The residuals on the y-axis

are unitless abstract values.

The plots clearly demonstrate that the stopping conditions are consistently

satisfied within the first 20 iterations. Notably, in Figure 3.13, the primal resid-

ual dpr2 drops sharply and quickly stabilizes. This sharp decrease is likely due

to the relatively high value of the associated penalty parameter ρ2, which is

significantly larger than the other parameters, as shown in Figure 3.17.

Figure 3.15 shows a graphical depiction of the values corresponding to the

objective function, defined in the first line of Equation (3.53). The plot clearly
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Figure 3.13: Primary residual norms per iteration

Figure 3.14: Dual residual norms per iteration
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Figure 3.15: Objective function, Eq. (3.74), per iteration

indicates that the objective function converges well within just 10 iterations.

The convergence behavior of the objective function matches the trends ob-

served in both the primary and dual residuals. This is evident in Figures 3.13

and 3.14. Additionally, it adheres to the constant power criterion, as demon-

strated in Figure 3.19. These consistent observations point to a unified and

coherent convergence pattern throughout the optimization process.

Figures 3.16 and 3.17 display the trajectories of how the penalty parameters

vary over the iterations. These figures compare the penalty parameters gener-

ated by the proposed selection method with those from the residual balancing

method. The comparison highlights the superior performance of the proposed

method. It shows that the penalty parameters converge to more optimal values

as the iterations progress, validating the method’s effectiveness. Figure 3.16
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Figure 3.16: The changing values of the penalty parameters with iterations (using residual

balancing method)

Figure 3.17: The changing values of the penalty parameters with iterations (using the proposed

penalty parameters selection method)
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shows the values of ρ1, ρ2, and ρ3 over iterations when their respective initial

values were 1e1 i.e. 10 each in one experiment and 1e12 in another experi-

ment with the same setting. The trajectories of the parameters follow diverging

paths in the two experiments. The same experiments were done using the pro-

posed methods and Figure 3.17 shows the ρi, i = 1,2,3 with initial values 1e1

approach the values of ρi, i = 1,2,3 with initial values 1e12.

Figure 3.18: The transmit beampattern

3.2.5.4 Beampattern Analysis

Figure 3.18 shows the beampattern generated using s via the proposed ADMM

technique for a 16-antenna DFRC system, compared with the Minimum Norm

Optimization (MNO) method [87] and FFRED [85]. In all cases, the systems

have 16 antenna elements, the radar target is located at θR = 0◦ and the commu-

nication user at θC = 45◦. Results show that the beampattern formed through

the proposed method outperforms the beampatterns formed through MNO and
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FFRED methods. The beampattern achieved through the proposed method has

narrower main than the other methods. Also the beampattern achieved through

the proposed method has lower sidelobes. When compared with each other, the

beampattern of MNO method has better performance than FFRED method in

terms of lower sidelobes but FFRED’s beampattern has narrower beampattern.

But both are outperformed in both cased by the proposed method.

3.2.5.5 Waveform Error Analysis

Figure 3.19 illustrates the fulfillment of the constant power constraint. The

graphs show the power of the the designed waveform, s, and its convergence

towards the targeted power level throughout each iteration. It is discernible

from these plots that the desired power level is effectively approximated for the

designed waveform within the first ten iterations. This observation underscores

the efficiency of the convergence process in meeting the prescribed constant

power constraint.

3.2.5.6 Radar Performance Analysis

The evaluation of radar system performance is presented through two graph-

ical representations. The first figure (Figure 3.20), makes a comparison be-

tween the required linear frequency modulation (LFM) waveform designed for

radar applications and the synthesized waveform in the far-field. The other fig-

ure (Figure 3.21) illustrates the relationship between the detection probability

(pD) and the SNR.

Figure 3.20 displays the waveform synthesized in the direction of the radar

target. As depicted in Figure 3.20(a), a striking resemblance between the syn-

thesized radar waveform and the required radar waveform is evident, substan-
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Figure 3.19: Waveform power per iteration depicting how the constant power requirement is

met

tiating the efficacy of the proposed methodology. Nonetheless, Figure 3.20(b)

exposes subtle disparities between the waveforms, given by the equation

eR = xR −A(θR)s. (3.78)

In Figure 3.21, a graph representing the detection probability in relation

to the SNR is presented. The probability of a false alarm is set at a level of

10−4. Additionally, comparative pD versus SNR curves for alternative method-

ologies are provided for reference. Notably, the FFRED-40% method [85],

exhibits the most favorable pD, closely resembling that of the desired LFM

waveform. However, upon closer examination, the proposed method’s graph

reveals a slight distinction. Simultaneously, it is noteworthy that the proposed
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Figure 3.20: Radar waveform, (a) Desired radar waveform xR vs synthesized far-field waveform

A(θR)s, (b) Waveform error

Figure 3.21: Detection probability vs SNR91



approach outperforms the directly normalized method detailed in [86] in terms

of pD.

3.2.5.7 Communication Performance Analysis

Similar to the assessment of radar system performance, the evaluation of

communication system performance also involves two figures. One figure shows

a comparison between the required communication waveform and the designed

synthesized far-field waveform. While, the other figure assesses the symbol

error rate (SER) in relation to the SNR.

Figure 3.22 illustrates the waveform transmitted in the direction θC. Anal-

ogous to radar waveforms, the resemblance between the synthesized and in-

tended communication waveforms is striking. The sample errors in this context,

as depicted in Figure 3.22(b), are characterized by the equation

eC = xC −A(θC)s. (3.79)

Figure 3.23 presents the SER against SNR for the proposed method. Fur-

thermore, for the purpose of comparison, the SER vs SNR characteristics of

alternative methodologies are also provided. Specifically, the graph labeled ’2

bits per symbol’ corresponds to theoretical values. Moreover, the SER versus

SNR plots of FFRED-40% [85] and the proposed methodology exhibit a re-

markable degree of proximity. However, FFRED-40% shows slightly superior

performance. Both of these methodologies outperform the directly normalized

waveform approach [86].
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Figure 3.22: Communication waveform, (a) Desired communication waveform xC vs synthe-

sized far-field waveform A(θC)s, (b) Waveform error

Figure 3.23: Comparison of different methods: SER vs SNR
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3.3 Summary

This chapter addressed the waveform design problem for MIMO DFRC sys-

tems, proposing two methods. The first focused on designing constant modulus

waveforms, formulated as an optimization problem with constraints on wave-

form synthesis and constant modulus. Due to the problem’s non-convex and

NP-hard nature, an iterative solution using the ADMM framework was devel-

oped. The resulting waveforms approximated a desired beampattern, achieving

a high-gain radar beam and a slightly high-gain communication beam, with low

sidelobe levels. This design improved radar detection probability and commu-

nication bit error rate (BER), as validated by simulations.

The second method tackled the challenge of designing constant power wave-

forms for joint radar-communication systems. The optimization problem min-

imized power radiation in undesired directions while maintaining waveform

similarity and power constancy. An ADMM-based algorithm solved this, and a

novel penalty parameter selection method was introduced. The designed wave-

forms effectively approximated the desired beampattern, ensuring both radar

and communication waveforms were accurately received. Simulation results

demonstrated the scheme’s efficacy. This research advanced waveform design

for dual-function radar-communication systems and provided robust methods

to handle system complexities, contributing significantly to the field.
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Chapter 4

ADMM based Beamspace Design for

Dual-Function Radar-Communication

In this chapter, we consider the constant modulus beamspace design prob-

lem for MIMO based joint radar-communication systems and come with an

efficient solution. First, we formulate the beamspace design problem as a non-

convex optimization problem. Due to the non-convex and NP-hard nature of the

problem caused by the constant modulus constraint, conventional methods are

impractical for solving it. Hence, we employ the ADMM algorithm to tackle

the problem iteratively. ADMM combines the principles of the augmented La-

grangian method (ALM) and dual decomposition, resulting in enhanced perfor-

mance. The proposed method ensures enhanced detection probability for radar

and better BER for the communications components. Finally, through simula-

tion results, we demonstrate the effectiveness of our design in terms of different

metrics like convergence and beampattern synthesis.
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4.1 Joint Radar-Communication System Model

Traditional systems model utilize element-space for processing signals in ar-

ray systems, where each antenna element’s signal contribution is processed in-

dividually. However, the Beamspace represents an alternative approach element-

space for processing signals in array systems. Processing in element-space

leads to high computational complexity, especially in large antenna arrays. In

contrast, beamspace processing exploits the spatial sparsity of signals by trans-

forming them into a domain where signal energy is concentrated in a few dom-

inant directions, known as beams. This transformation significantly reduces

computational complexity, making beamspace processing particularly advanta-

geous in scenarios with large antenna arrays or dense interference. By focusing

on the dominant signal components, beamspace processing enables efficient ex-

traction of relevant information while mitigating computational overhead, thus

offering a powerful tool for enhancing the performance of array processing

systems. In the following subsections, the conventional MIMO model based

on element space for joint radar-communication is elucidated, followed by the

introduction of the beamspace-based system model.

4.1.1 Element-space System Model

A MIMO system is considered consisting of M antennas, with a distance of

d = λ/2 between the antenna elements, as shown in Figure (4.1). All the M

antennas transmit M waveforms, given, for the mth antenna, by

sm(t) =

√
E

M
φm(t), m = 1, · · · ,M (4.1)
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Figure 4.1: A representation of the joint radar-communication MIMO system

where E is transmit energy per pulse, φm(t) is mth transmit waveform, and t is

fast time. All the waveform are considered to be orthogonal, i.e.,

∫

T
|φm(t)|2 dt = 1, m = 1, · · · ,M (4.2)

where T is the pulse duration. The signal transmitted by all antennas is, then,

given by

s(t) =

√
E

M

M

∑
m=1

a∗(θ)φm(t), m = 1, · · · ,M (4.3)

or

s(t) =

√
E

M
aH(θ)φ(t) (4.4)

where φ(t)≜ [φ1(t), · · · ,φM(t)]T is the waveform vector. Some of these wave-

forms are for radar purposes and the rest for communication.

The signal at the receiver side, either radar or communication, can be ex-
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pressed as

xm(t,τ) =

√
E

M

(
aH(θ)φ m(t)

)
bH(θ)+ z(t,τ) (4.5)

where τ represents the slow time index, or equivalently, the pulse number. The

radar and communication sides decode the received signal by match-filtering

with their respective waveforms. Due to the mutual orthogonality of the wave-

forms, the undesired signals get cancelled and only the desired signal survives.

This is expresses as

xm(τ)≜
∫

T
xm(t,τ)φ

∗
m(t)dt, m = 1, . . . ,M (4.6)

Stacking the individual vectors, as obtained in Equation (4.6) together, an MN×
1 is obtained as

y(τ)≜
[
xT

1 (τ), . . . ,x
T
M

]T
(4.7)

where N is the waveform length. While y(τ) here is shown at a single receiver,

but some of it is the radar side and some at communication sides.

4.1.2 Beamspace based System Model

Rather than transmitting omnidirectional, the energy transmission can be

concentrated within a specific sector where the radar targets and communica-

tion users are situated. This is achieved by forming K directional beams, with

each beam transmitting an independent waveform. A beamspace transforma-

tion matrix W can be designed as required to minimized the amount of energy

transmitted within the sector(s) of interest and minimized the energy transmit-

ted towards undesired directions. Let W ≜ [w1, · · · ,wK]
T be the beamspace

transformation matrix, of dimension M ×K where K ≤ M. The kth column of

W is used to form a transmit beam for transmitting the kth waveform φk(t). The
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signal transmitted towards a target/user in the direction θ through the kth beam

can be expressed as

sk(t,θ) =

√
E

K

(
wH

k a(θ)
)

φk(t), k = 1, · · · ,K (4.8)

The signal transmitted via all beams towards the direction θ is expressed as

sk(t,θ) =

√
E

K

K

∑
k=1

(
wH

k a(θ)
)

φk(t) =

√
E

K

(
WHa(θ)

)
φ k(t), k = 1, · · · ,K

(4.9)

The beamspace transformation matrix changes the M × 1 steering vector a(θ)

into a K × 1 vector WHa(θ). It can be observed that because of this transfor-

mation, the actual waveforms transmitted from the antennas are

Ψ∗(t) = W∗φ K(t) (4.10)

At the receiver side, the array observations can be expressed as a complex vec-

tor of size N ×1as

xbeam(t,τ) =

√
E

K

L

∑
l=1

αl(τ)
((

WHa(θ)
)T

φ K(t)
)
×b(θl)+ z(t,τ) (4.11)

By matched-filtering xbeam(t,τ) to each of the waveforms, the received signal

component associated with each waveform can be obtained as

xm,beam(τ)≜
∫

T
xbeam(t,τ)φ

∗
m(t)dt, m = 1, . . . ,M (4.12)

By stacking the individual vector components into a single vector, a virtual data

vector of size KN ×1, is obtained, represented as

ybeam(τ)≜
[
xT

1,beam(τ), . . . ,x
T
M,beam

]T

(4.13)
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4.2 Beamspace Design Problem Formulation

The problem at hand is to design a beamspace matrix W with the objective

of minimizing power radiation in undesired directions, while satisfying certain

constraints. Two such constraints are to ensure that the power radiation in the

radar and communication directions aligns with desired specifications. An ad-

ditional constraint is the constant modulus constraint to inhibit non-linear signal

distortion, thereby enhancing the transmitter’s efficiency.

Two of the constraints are given as

wT ara
T
r w = 1 (4.14)

and

wT acaT
c w = 1, (4.15)

where w is vector that stacks the different columns of the beamspace matrix W.

Without loss of generality, we consider that there are two vectors in W, i.e. wr

and wc representing a radar and a communication beam. Then

w =


wr

wc


 (4.16)

Similarly, ar and ac are given by

ar =


a(θR)

0


 , (4.17)

and

ac =


 0

a(θC)


 (4.18)
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respectively, where 0 is an M×1 vector of zeros, and a(θC) and a(θC) are the

M×1 steering vectors in the radar and communication directions. The constant

modulus (or, in this case, uni-modular) constraint is expressed as

|w(m,1)|= 1,0 1 ≤ m ≤ 2M. (4.19)

The the overall beamspace design problem can be formulated as

minimize
w

wT A(Θ̃)AT (Θ̃)w

subject to wT ara
T
r w = 1

& wT acaT
c w = 1

& |w(m,1)|= 1, 1 ≤ m ≤ 2M.

(4.20)

where the 2M × L matrix A(Θ̃) collects the steering vectors in L undesired

locations, given by

A(Θ̃) =


a(θ1) a(θ2) . . . a(θL)

a(θ1) a(θ2) . . . a(θL)


 . (4.21)

For the ease of computation, especially in dealing with the constant modulus

constraint, it is better to convert the all the variables in the formulated problem

to their real-valued versions.

4.2.1 Conversion to real-valued variables

To convert a complex-valued vector its real-valued version, its real and com-

plex parts are stacked together in another vector that is double in size compared

to the original vector. Thus, real-valued versions of the vector variables w, ar,
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and ac are given as

u =


ℜ{w}

ℑ{w}


 , (4.22)

aR =


ℜ{ar}

ℑ{ar}


 , (4.23)

and

aC =


ℜ{ac}

ℑ{ac}


 . (4.24)

Similarly, the real-valued version of A(Θ̃) is given by

A =


ℜ{A(Θ̃)} −ℑ{A(Θ̃)}

ℑ{A(Θ̃)} ℜ{A(Θ̃)}


 . (4.25)

In terms of the real-valued variables the CM constraint, consisting of 2M equa-

tions in Eq. (4.19), is expressed as

uT Eiu = 1, i = 1,2, · · · ,4M (4.26)

where Ei is a 4M×4M matrix given by

Ei (m,m) =





1 ; m = i

1 ; m = i+2M

0 ; otherwise

(4.27)

The Equation (4.26) can be expressed more compactly as

T(u)u = 1 (4.28)
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where

T(u) =
[
uT E1;uT E2; · · · ;uT E2M

]
∈ R.2M×4M (4.29)

The overall beamspace design problem can then be formulated as

minimize
u

uT AAT u

subject to uT aRaT
Ru = 1

& uT aCaT
Cu = 1

& T(u)u = 1

(4.30)

This non-convex optimization problem can be solved to obtain u, which

gives the beamspace transformation matrix. While conventional convex op-

timization techniques fail to solve such problems, different non-conventional

methods, especially iterative methods like ADMM, can be used to obtain a

solution. An ADMM based formulation of the problem is presented in the fol-

lowing section.

4.3 ADMM based Beamspace Design

The optimization problem described in Equation (4.30) shares similarities

with Eq. (4.20), being non-convex and NP-hard. Obtaining analytical solu-

tions for such problems poses significant challenges, leading to the adoption of

numerical methods to approximate solutions. Even with these and other heuris-

tic approaches like genetic algorithms (GA), formulating the constant modu-

lus (CM) constraint can be problematic. Hence, we utilize an ADMM-based

method, which is iterative in nature, to approximate a solution to the problem.

As a requirement for ADMM, a variable v can be introduced in Equation
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(4.30), leading to the following equivalent version

minimize
v,u

vT AAT u

subject to vT aRaT
Ru = 1

& vT aCaT
Cu = 1

& T(v)u = 1

& v = u

(4.31)

The augmented Lagrangian corresponding Equation (4.31) can be expressed as

L {v,u,α,β ,γ,δ} = vT AAT u

+ ρ1

2

∥∥vT aRaT
Ru−1+α

∥∥2

2

+ ρ2

2

∥∥vT aCaT
Cu−1+β

∥∥2

2

+ ρ3

2
∥T(v)u−1+ γ∥2

2

+ ρ3

2
∥v−u+δ∥2

2

(4.32)

where α ∈ R
1×1,β ∈ R

1×1, γ ∈ R
2M×1 and δ ∈ R

4M×1 are the dual variables

and ρ1,ρ2,ρ3,ρ4 > 0 are the penalty parameters.

The algorithm’s (m+1)th iteration is expressed as follows

um+1 := arg min
u

L (u,vm,αm,β m,γm,δ m) (4.33a)

vm+1 := arg min
v

L
(

um+1,v,αm,β m,γm,δ m
)

(4.33b)

αm+1 := vm+1,T aRaT
Rum+1 −1+αm (4.33c)

β m+1 := vm+1,T aCaT
Cum+1 −1+β m (4.33d)

γm+1 = T(vm+1)um+1 −1+ γm (4.33e)

δ m+1 = vm+1 −um+1 +δ m (4.33f)
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As evident from Equation (4.33), the updates outlined in Equations (4.33c),

(4.33d), (4.33e), and (4.33f) are straightforward. Moreover, the sub-equations

(4.33a) and (4.33b), being convex, yield closed-form solutions. The forthcom-

ing section elaborates on the update procedures for variables v and w.

4.3.1 Update of u

To obtain the (m+1)th update of u, the gradient of subequation (4.33a) with

respect to u is computed and equate the result with 0, i.e.,

∇uL (u,vm,αm,β m,γm,δ m) = 0. (4.34)

The solution to Eq. (4.34) is given by

um+1 = Ξ−1
1 ξ 1 (4.35)

where

Ξ1 = ρ1aRaT
RvvT aRaT

R +ρ2aCaT
CvvT aCaT

C +ρ3TT (v)T(v)−ρ4I (4.36)

and

ξ 1 = ρ1(1−α)aRaT
Rv

+ρ2(1−β )aCaT
Cv

+ρ3TT (v)(1− γ)

+ρ4(v−δ )

−AAT v.

(4.37)
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4.3.2 Update of v

Similarly, in v update, the gradient of (4.33b) with respect to v is computed

and the result is equated with 0, i.e.,

∇vL
(

um+1,v,αm,β m,γm,δ m
)
= 0. (4.38)

The solution to Eq. (4.38) is given by

vm+1 = Ξ−1
2 ξ 2 (4.39)

where

Ξ1 = ρ2aRaT
RuuT aRaT

R +ρ2aCaT
CuuT aCaT

C +ρ3TT (u)T(u)+ρ4I (4.40)

and

ξ 2 = ρ1(1−α)aRaT
Ru

+ρ2(1−β )aCaT
Cu

+ρ3TT (u)(1− γ)

+ρ4(u+δ )

−AAT u.

(4.41)

To summarize, the vectors u and v are derived using Equations (4.34) and

(4.38), respectively. Following a specific number of iterations, both u and v

gradually converge. Consequently, they collectively represent the real version

of the beamspace vector w. Subsequently, the beamspace matrix W is obtained

through a straightforward process of converting from real to complex, followed

by a conversion from vector to matrix.
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4.3.3 Algorithm Termination Criteria

The termination criteria determine when the algorithm should stop its exe-

cution. These criteria ensure that the algorithm completes its task efficiently

and correctly. The stopping criteria in this algorithm depend on the primal and

dual residuals. The primal residuals can be defined as

dm+1
pr1 =

∣∣uT aRaT
Rv−1

∣∣ (4.42a)

dm+1
pr2 =

∣∣uT aCaT
Cv−1

∣∣ (4.42b)

dm+1
pr3 = ∥T(u)v−1∥2

2 (4.42c)

dm+1
pr4 =

∥∥∥um+1 −vm+1
∥∥∥

2

2
(4.42d)

Similarly, the dual residuals are be defined as

dm+1
rs1 = um+1 −um (4.43a)

dm+1
rs2 = vm+1 −vm. (4.43b)

As proposed by [84], suitable termination criteria include

∥ dm+1
pr1 ∥2

2 ≤ ε
pri
1 , (4.44a)

∥ dm+1
pr2 ∥2

2 ≤ ε
pri
2 , (4.44b)

∥ dm+1
pr3 ∥2

2 ≤ ε
pri
3 , (4.44c)

∥ dm+1
pr4 ∥2

2 ≤ ε
pri
4 , (4.44d)

∥ dm+1
dr1 ∥2

2 ≤ εdual, (4.44e)

∥ dm+1
dr2 ∥2

2 ≤ εdual. (4.44f)
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where ε
pri
1 , ε

pri
2 , ε

pri
3 and ε

pri
4 are the primal residual’s tolerances and εdual

1 , the

dual residual’s tolerance. As described by [84], these tolerances are specified

as

ε
pri
1 =

√
4Mεabs + εrelmax{

∣∣uT aRaT
Rv

∣∣ ,1} (4.45a)

ε
pri
2 =

√
4Mεabs + εrelmax{

∣∣uT aCaT
Cv

∣∣ ,1} (4.45b)

ε
pri
3 =

√
4Mεabs + εrelmax

{
∥ T(um+1)vm+1 ∥2,∥ 1 ∥2

}
(4.45c)

ε
pri
4 =

√
4Mεabs + εrelmax

{
∥ um+1 ∥2,∥ vm+1 ∥2

}
(4.45d)

εdual =
√

4Mεabs + εrel ∥ u ∥2 (4.45e)

Provided following is a summary of the steps of the algorithm.

Steps of the proposed method

Input:

Step 1) Initialize: u0, v0, α0, β 0, γ0, δ , ρ1, ρ2, ρ3, ρ4 and

ε
pri
1 , ε

pri
2 , ε

pri
3 , ε

pri
4 , εdual, m = 1 .

Step 2) While the termination criteria, Eq. 4.44, are not satisfied, do

Step 3) Update um+1 , with 4.35

Step 4) Update vm+1 , with 4.39

Step 5) Update αm+1 , with 4.33c

Step 6) Update β m+1 , with 4.33d

Step 7) Update γm+1 , with 4.33e

Step 8) Update δ m+1 , with 4.33f

Step 8) m = m+1

Step 9) End while - WORD HERE NEEDED

For clarity, Table 4.1 presents a list of symbols along with their descriptions.
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Symbol Dimension Description

K 1×1 number of beams

L 1×1 number of side lobes

M 1×1 number of antennas

N 1×1 number of waveform samples

d 1×1 antenna inter-element spacing

IN N ×N identity matrix

λ 1×1 wavelength

sm(t) 1×1 signal transmitted by m-th antenna at time instant t

t 1×1 fast time, i.e. time within each transmit pulse

τ 1×1 slow time, i.e. pulse number

T 1×1 pulse duration

s(t) M×1 overall signal transmitted by all antennas at time instant t

W M×K beamspace transformation matrix

w MK ×1 beamspace vector, w = vec(Wa)

u 2MK ×1 real-valued version of w

v 2MK ×1 auxiliary variable, s.t. u = v

φm(t) 1×1 m-th waveform at time t

a(θR) M×1 steering vector in radar direction

a(θC) M×1 steering vector in communication direction

A
(

Θ̃

)
2M×L combination of the L side lobe steering vectors

A 4M×2L real-valued version of A
(

Θ̃

)

α 1×1 dual variable

β 1×1 dual variable

γ 2M×1 dual variable

δ 4M×1 dual variable

η , µ 1×1 positive constants

ρ1, ρ2, ρ3 , ρ4 1×1 penalty parameters

Table 4.1: List of symbols

4.3.4 Penalty Parameter Selection

Selecting appropriate penalty parameters holds significant importance in the

smooth functioning of algorithms like ADMM. These parameters can be dy-

namically adjusted, either decreasing or increasing, based on some predefined

tolerances. Various strategies, such as trial-and-error approaches, are employed

for this purpose. Another approach involves linking the penalty parameter val-

ues to iteration counts, incrementing or decrementing them in discrete steps

from their initial values. A commonly adopted technique involves associating
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the penalty parameter values with residual norms and tolerances through the

principle of residual balancing as

ρk+1 =





ηρk if dm+1
prk

> µε
pri
k

ρk/η if ε
pri
k

> µdm+1
prk

ρk otherwise

(4.46)

where ρk is the penalty parameter, and µ > 1 and η > 1 are constants, dm+1
prk

is the primary residual and ε
pri
1 is the tolerance.

4.4 Results and Discussion

This section examines the algorithm’s performance and presents the results

of numerical examples to assess the effectiveness of the proposed waveform

design methodology. Across all examples, a Uniform Linear Array (ULA)

comprising either M = 16 or M = 32 antenna elements, each separated by a

half-wavelength inter-element spacing, is utilized at both the transmitter and

receiver ends. The radar target is assumed to be located at θR = 0◦, while the

communication user is positioned at θC = 45◦. Within this context, each trans-

mit beam is tailored to convey Ns = 1 symbol, with Nb = 2 bits assigned per

symbol. Consequently, each waveform transmits 2 information bits in every

pulse repetition interval (PRI). Additional simulation parameters are summa-

rized in Table 4.2.

Various experiments are conducted to analyze performance across diverse

scenarios. Monte Carlo simulations are performed to evaluate communication

performance across different signal-to-noise ratio (SNR) conditions. The sug-

gested methodology is contrasted with several existing approaches, including

the far-field radiated emission design (FFRED) [85], and an iterative optimiza-
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Table 4.2: A tabulation of the simulation parameters used in the algorithm

Parameter Value Description

M 16 Number of antennas elements in the ULA

d λ/2 Enter-elements distance in the ULA

θR 0◦ Direction of radar target

θC 45◦ Direction of communication user

α Random Dual variable associated with ρ1

β Random Dual variable associated with ρ2

γ Random Dual variable associated with ρ4

δ Random Dual variable associated with ρ4

η 1.5 Positive constant 1

µ 1.5 Positive constant 2

ρ1 1, 1e12 Penalty parameter 1

ρ2 1, 1e12 Penalty parameter 2

ρ3 1, 1e12 Penalty parameter 3

ρ4 1, 1e12 Penalty parameter 4

tion technique utilizing directly normalized waveforms [86]. In the FFRED

approach, 0%, 10%, and 40% of the total power are allocated to the orthog-

onal complement waveform, with FFRED-40% demonstrating superior per-

formance. Authors of [86] introduced several waveform design methodolo-

gies. One method involved designing non-constant modulus waveforms with a

closed-form solution to the waveform design problem. Additionally, they pro-

posed an iterative approach for constant modulus waveforms. However, due

to computational complexity, they leveraged the outcomes of the first method

employing non-constant modulus waveforms and employed iterative optimiza-

tion for further waveform refinement. The authors referred to this approach as

"directly normalized".

4.4.1 Computational Complexity Analysis

The analysis of computational complexity gauges the computational resources,

like time and memory, and is necessary for assessing the efficacy of any algo-

rithm. This examination provides insights into behavior of the algorithm across
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varying input sizes. In evaluating the computational complexity of the proposed

method, every segment of the code underwent scrutiny to ascertain the count

of operations or iterations relative to the input size. The primary loop within

the code executed ’iter’ times, wherein numerous calculations and operations

transpired during each iteration, inclusive of matrix multiplications, norm com-

putations, and variable updates. The complexity associated with these oper-

ations underwent meticulous analysis and amalgamation to deduce an over-

arching complexity estimate for the code. Furthermore, considerations were

extended to factors influenced by the input size, such as M and L, to evaluate

their impact on complexity. It is important to note that the proposed algorithm

has significant computational complexity. This is mainly due to its cubic na-

ture, with the matrix inversion operation being the primary contributor. After

matrix inversion, matrix multiplication also requires considerable time, adding

to the overall computational burden.

Regarding the updates for vector u, computing Ξ1 requires O(KM2N2),

while computing γ requires O(M2N2). Consequently, the complexity of updat-

ing u using Equation (4.35) amounts to O(KM2N2+M2N2+M3N3). Summing

these complexities, the overall complexity of the method is O(2(KM2N2 +

M2N2 +M3N3)) per iteration.

Regarding u updates, the calculation of Ξ1 takes O(KM2N2), while compu-

tation of γ takes O(M2N2). Consequently the complexity of u update using Eq

(4.35) is O(KM2N2 +M2N2 +M3N3). The overall computational complexity

of the algorithm is O(2(KM2N2 +M2N2 +M3N3)).
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4.4.2 Communication Data Rate Performance

The data rate can be expressed as

R = Ns ×Nb ×Kb × fPRF , (4.47)

where Ns is the number of symbols in one pulse, Nbits is the number of bits

per symbol, Kb is the number of communication beams and fPRF is the pulse

repetition frequency (PRF).

4.4.3 ADMM Convergence Analysis

The convergence property demonstrates that the algorithm functions effec-

tively, with the residuals diminishing over time until certain stopping criteria

are met. Figure 4.2 shows the plots of the norms of primal residuals dpr1, dpr2,

dpr3, and dpr3, Equation (4.42), and the stopping criteria limits ε
pri
1 , ε

pri
2 , ε

pri
2 ,

ε
pri
3 , and ε

pri
4 , Equation (4.44), against the iteration numbers. The subplots

show that the stopping criteria are satisfied within just a few iterations.

Similarly, Figure 4.3 shows the plots of the norms of dual residuals drs1, and

drs2, Equation (4.43), and the stopping criteria limits εdual, last subequation in

Equation (4.45), against the iteration numbers. The subplots too show that the

stopping conditions are satisfied within the first few iterations.

The objective function, represented by the first line of Equation (4.31), was

designed to minimize the power transmission in undesired direction. Figure

4.4 depicts a plot of the objective function values across various iterations. As

evident from the figure, the objective function stabilizes within 20 iterations.
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Figure 4.2: Gradual settling of the norms of primary residuals

Figure 4.3: Gradual settling of the norms of dual residuals
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Figure 4.4: Settling of the Objective function, i.e, first line of Eq. (4.31)

4.4.4 Beampattern Analysis

Utilizing beamspace processing enhances the precision of the beampattern,

enabling targeted signal detection and suppression in spatial domains. Figure

4.5 illustrates the beampattern at the transmitter produced by the beamspace

matrix W using the proposed ADMM-based approach for a DFRC system fea-

turing 32 antenna elements.

Figure 4.6 shows how the constant modulus constraint is satisfied. The plots

in the figure indicate the maximum and the minimum values of u, which was

another representation for the real version of the beamspace matrix W, and the

desired uni-modular samples. As depicted in the graphs, both the maximum

and minimum values stabilize around 10 by approximately the 20th iteration.
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Figure 4.5: The transmit beampattern achieved through the proposed method

4.4.5 Radar Performance Analysis

An evaluation of radar performance through two key metrics is presented in

this subsection. First, an analysis of the detection probability (pD) relative to

SNR is provided. Then, probability of target resolution counterpart vs SNR is

explored.

Figure 4.7 illustrates the graph of detection probability plotted against SNR,

with the probability of false alarm set at 10−4. Additionally, for comparison, pD

versus SNR graphs of other methods are provided. As depicted in the figure, the

proposed ADMM based method and FFRED-40% [85] exhibits the good pD,

with ADMM slightly outperforming FFRED-40%. However, the graph of di-

rectly normalized method [86] closely follows, however its lower performance

as compared with the other methods is obvious in the plot.

Moreover, we assess the performance of the proposed system under condi-

tions where both the target and the communication receiver are in close prox-
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Figure 4.6: The moduli of beamspace weights approaching unity

imity. Specifically, the radar target is positioned at θr = 0o, while the commu-

nication receiver is located at θc = 3o. As depicted in Figure 4.8, the results

demonstrate the superior performance of the ADMM-based approach proposed

herein compared to the FFRED-40 % scheme previously introduced in[85].

4.4.6 Communication Performance Analysis

Communication performance is assessed using a comparison between the

ADMM-based method and the FFRED, using the symbol error rate (SER) as a

function of the signal-to-noise ratio (SNR) as a metric. Figure 4.9 displays the

SER plotted against SNR. As is obvious in the plots, ADMM-based proposed

methods exhibit best performance. FFRED-40% [85] has the next best perfor-

mance. While the directly normalized waveform method [86] has the worst

word performance.
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Figure 4.7: Comparison of different methods: detection probability vs SNR
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Figure 4.9: Comparison of different methods: SER vs SNR

4.5 Summary

This chapter has introduced an ADMM based design method of constant

modulus beamspace transformation matrix design DFRC systems within a MIMO

framework. Through formulating a non-convex optimization problem, the ob-

jective was to minimize power emission in undesired locations while main-

taining desired power levels in target areas, all while adhering to a constant

modulus constraint. To address this, an ADMM algorithm was utilized to solve

the formulated optimization problem iteratively. Notably, the resultant wave-

forms approximate a desired beampattern, incorporating high-gain radar beams

and slightly elevated gain communication beams, while also maintaining low

sidelobe levels. The resulting beamspace matrix has shown promise in improv-

ing detection probability for radar functions and reducing bit error rates (BER)

for communication tasks. The effectiveness of our proposed method has been
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demonstrated through simulation results, affirming its potential for enhancing

the performance of DFRC systems.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Future Directions

This dissertation investigated the convergence of radar and communication

functionalities within a unified system, with a focus on optimizing system per-

formance through waveform design and beamspace processing. The research

was structured into four chapters, briefly introduced as follows.

Chapter 1 provided an overview of the thesis, discussing the background

of joint radar-communication and the motivation for addressing research chal-

lenges such as waveform design and beamspace processing in this domain. It

defined the research problem, outlined research objectives, and discussed the

contributions of the study.

Chapter 2 presented a thorough review of the relevant literature on radar,

communication, and joint radar-communication, encompassing historical de-

velopments and contemporary trends. Additionally, it analyzed literature per-

taining to waveform design and beamspace processing, supported by citations

from various reports and articles detailing different techniques and methodolo-

gies.

Chapter 3 delved into detailed discussions on two waveform design meth-
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ods for joint radar-communication. Both methods utilized ADMM-based op-

timization techniques to achieve specific objectives while adhering to various

constraints. The first method focused on designing constant-modulus wave-

forms for MIMO-based dual-function radar-communication systems. Mean-

while, the second method was dedicated to designing constant-power wave-

forms for similar integrated systems.

Chapter 4 explored a beamspace design method for joint radar-communication.

This approach employed ADMM-based optimization techniques to achieve de-

fined objectives while addressing multiple constraints. Specifically, the method

concentrated on designing a constant-modulus beamspace transformation ma-

trix for MIMO-based dual-function radar-communication systems.

Chapter 5 concluded the thesis by presenting the outcomes of the research

and evaluating the extent to which the research objectives had been achieved.

It compared these results with contemporary research findings, highlighting

the significant contributions made. The chapter also proposed future research

directions in the field, emphasizing opportunities for further advancements in

dual-function radar and communication systems. Additionally, it included a list

of publications resulting from this work.

The dissertation concludes with a discussion on future research directions

and a summary of key findings. The potential for further advancements in

dual-function radar and communication systems is highlighted, emphasizing

the importance of continued research in this rapidly evolving field.

Overall, this thesis advances the field of DFRC systems by proposing inno-

vative methods in waveform design and beamspace processing. By employing

optimization techniques such as ADMM, the research addresses challenges re-

lated to constant modulus and constant power waveform designs, enhancing the
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performance of MIMO-based dual-function systems. Additionally, the work on

beamspace processing provides efficient solutions for reducing computational

complexity while maintaining high performance standards. These contributions

pave the way for more efficient, adaptive, and robust multifunctional systems,

capable of meeting the growing demands of contemporary radar and commu-

nication applications.

5.2 Future Directions

Despite the extensive research being conducted, new challenges continu-

ously emerge, necessitating future work to address these evolving challenges.

Some of the challenges in the field include the following.

5.2.1 AI based Approaches

Constraint-based multi-objective optimization problems in waveform design

and beamspace processing for DFRC systems often struggle with high compu-

tational complexity and slow convergence. Some solutions, like using recurrent

neural networks, have been proposed to speed up waveform design. However,

there is still considerable potential in using advanced machine learning and

deep learning techniques to address computational challenges in both wave-

form optimization and beamspace design. Moreover, there are significant im-

provements needed in receiver signal classification. A key challenge is distin-

guishing between target echoes and communication signals in the presence of

interference, noise, and clutter. Methods such as independent component analy-

sis (ICA) or deep learning-based techniques could provide effective solutions to

these problems, improving system performance. With the rapid advancements
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in artificial intelligence, particularly deep learning, exploring new technical ap-

proaches is highly promising. These approaches could lead to breakthroughs in

both beamspace design and waveform optimization for RadCom systems.

5.2.2 Compressive Sensing based Approaches

Compressive sensing methods have been applied to address key challenges

in DFRC systems. A primary challenge in DFRC is the accurate extraction of

critical information from sparse and noisy signals. Compressive sensing tech-

niques tackle this by exploiting signal sparsity, enabling accurate reconstruc-

tion with fewer measurements. This reduces data sampling requirements and

computational burden, which are significant challenges in waveform design.

Additionally, in beamspace processing, compressive sensing aids in precisely

determining parameters such as range, velocity, and angle, even amidst noise

and interference. By enhancing the efficiency and accuracy of both waveform

design and beamspace processing, compressive sensing methods play a crucial

role in overcoming the inherent challenges in DFRC systems.

5.2.3 Cognitive Radar-Communication

Cognitive radar-communication face several challenges that must be ad-

dressed to achieve optimal performance. One significant challenge is the dy-

namic adaptation of waveforms and beam patterns in real-time to varying en-

vironmental conditions and operational requirements, requiring advanced al-

gorithms capable of quickly and accurately sensing the spectrum, detecting

changes, and adjusting parameters without causing significant delays or errors.

Another challenge lies in managing the trade-off between radar and communi-

cation functionalities, necessitating sophisticated resource management strate-
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gies and decision-making algorithms to balance the competing demands. Inter-

ference management is also critical, as cognitive systems and beamspace pro-

cessing must distinguish between useful signals and noise in high-interference

environments, requiring advanced signal processing techniques and robust al-

gorithms for interference mitigation. Security is another concern, as dynamic

adaptation can make CRC systems vulnerable to spoofing and jamming attacks,

thus requiring robust encryption methods, authentication protocols, and strate-

gies to detect and counteract malicious activities. Additionally, the computa-

tional complexity associated with cognitive processing and beamspace trans-

formation can be significant, demanding powerful computing resources and

efficient algorithms to process large volumes of data rapidly. Addressing these

challenges is essential for the successful deployment of cognitive radar-communication

systems and beamspace processing, paving the way for more intelligent and

adaptive solutions in modern wireless communication and radar applications.

5.2.4 Security Challenges

Security challenges in DFRC systems are significant and multifaceted, de-

manding robust solutions to ensure reliable and secure operations. One primary

concern is the vulnerability to jamming and spoofing attacks, where adversaries

deliberately interfere with radar and communication signals to degrade system

performance or mislead operations. This dual functionality increases the at-

tack surface, as both radar and communication components can be targeted.

Additionally, the dynamic nature of DFRC systems, which adapt in real-time

to changing environments, presents opportunities for attackers to exploit these

adaptive mechanisms. Ensuring secure data transmission and reception in such

a scenario requires advanced encryption techniques and robust authentication
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protocols to prevent unauthorized access and data breaches. Furthermore, the

integration of radar and communication functions necessitates the protection of

sensitive information related to both domains, which can be challenging given

the shared use of spectrum and hardware. Addressing these security challenges

is critical for the development of resilient DFRC systems capable of withstand-

ing and counteracting sophisticated threats in diverse and hostile environments.

5.2.5 Quantum technologies and DFRC

Quantum technologies are revolutionizing various fields, including commu-

nication and sensing. Quantum communication leverages principles of quan-

tum mechanics, such as superposition and entanglement, to enhance secure data

transmission. Quantum sensing, on the other hand, exploits quantum states to

achieve unprecedented sensitivity and precision in measuring physical quan-

tities. The convergence of these technologies leads to the emerging field of

quantum DFRC, which aims to integrate quantum communication and quantum

sensing capabilities into a single framework. This integration promises signifi-

cant improvements in performance, security, and efficiency for next-generation

radar and communication systems.

The advancement of quantum DFRC faces several challenges, particularly in

the areas of waveform design and beamspace processing. Designing waveforms

for quantum DFRC systems involves a higher level of complexity compared to

classical systems. Quantum waveforms must maintain coherence and entangle-

ment properties, which are essential for leveraging quantum advantages. En-

suring these properties while meeting practical constraints such as bandwidth,

power, and robustness to noise requires advanced optimization techniques and a

deep understanding of quantum mechanics. Beamspace processing in quantum
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DFRC systems involves manipulating quantum states to direct and shape the

radar beams. This process must account for the quantum nature of the signals,

ensuring that entanglement and superposition states are preserved. Achieving

precise beamforming and beam steering while maintaining quantum coherence

presents significant technical challenges.

5.2.6 Intelligent Reflecting Surfaces Aided DFRC

Intelligent Reflecting Surfaces (IRS) are revolutionizing integrated radar-

communication systems by enabling dynamic control over electromagnetic waves.

These surfaces consist of passive elements that manipulate incoming signals to

enhance transmission efficiency and coverage. In IRS-aided integrated radar-

communication, challenges in waveform design arise from optimizing signals

to interact effectively with IRS for improved radar detection and communica-

tion throughput. Beamforming and beamspace processing must adapt to IRS

characteristics, ensuring coherent phase alignment and efficient wave reflection

to achieve desired radar beam patterns and communication links. Overcoming

these challenges involves developing sophisticated algorithms that can harness

the full potential of IRS while mitigating complexities associated with signal

interference and environmental variations.

5.2.7 mmWave Technology and DFRC

Millimeter-wave (mmWave) technology is transforming integrated radar-

communication systems by leveraging high-frequency electromagnetic waves.

In mmWave-based integrated radar-communication, challenges in waveform

design emerge from optimizing signals to exploit the unique propagation char-

acteristics of mmWave frequencies. Beamspace processing must be tailored
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to efficiently form and steer beams in dense environments with potentially high

path loss and atmospheric absorption. Designing waveforms that mitigate these

challenges while ensuring robust radar detection and reliable communication

links requires innovative approaches in signal processing, antenna design, and

modulation techniques. Successful implementation hinges on overcoming ob-

stacles such as beamforming limitations, signal interference, and complex en-

vironmental interactions inherent to mmWave frequencies.
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