Comparative Study of Randomized PARTITION
with CMA

’)‘;\4034

Developed by
Fakhra Razi
Samina Kausar

Supervised by
Prof. Dr. Malik Sikander Hayat Khiyal
Mr. Muhammad Imran Saeed

Department of Computer Science
Faculty of Basic and Applied Sciences

International Islamic University, Islamabad.
(2007)

o[y 1 0

MS
0063
SAC

In The Name of

ALLAH ALMIGHTY
The Most Merciful, The Most Beneficent

Department of Computer Science

International Islamic University, Islamabad.

22" Sept, 2007

Final Approval
It is certified that we have read this project report submitted by Miss Fakhra Razi

and Miss Samina Kausar. It is our Judgment that this report is sufficient standard to

warrant its acceptance by International Islamic University, Islamabad for the MS

Degree in Computer Science.

Committee

1. External Examiner

L——-—-M,wczw\
Dr. Tasneem Shah @

Prof., Computer Science Department,

Air University, Rawalpindi.

2. Internal Examiners ﬂ/
Mr. Asim Munir _gb’"‘"

Assistant Professor,

Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

3. Supervisors @ \
o~ s
Prof. Dr. Sikander Hayat Khiyal =
Fatima Jinnah University, Rawalpindi.
N\,
Mr. Muhammad Imran Saeed

Assistant Professor,
Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

Comparative Study of Randomized PARTITION with CMA i

Dissertation

A dissertation submitted to the
Department of Computer Science,

Faculty of Basic and Applied Sciences
International Islamic University, Islamabad, Pakistan,

as a partial fulfillment of the requirements for the award of the degree of

MS in Computer Science

Comparative Study of Randomized PARTITION with CMA ii

Dedication

To
The Holiest Man Ever Born,
Prophet Muhammad (alwgdscdl La)
&

To
Our Parents and Families
We are most indebted to our parents and families, whose affection has always been the
source of encouragement for us, and whose prayers have always been a key to our
success.
&
7o
Those Holy Seekers
Who give away their lives to make the stream of life flow
Smoothly and with Justice.
&
To
Our Honorable Teachers
Who have been a beacon of knowledge and a constant source of inspiration,
Jfor our whole life span.

Comparative Study of Randomized PARTITION with CMA

i

fr

Declaration

Declaration

We hereby declare and affirm that this software neither as a whole nor as a part thereof
has been copied out from any source. It is further declared that we have developed this
software and accompanied report entirely on the basis of our personal efforts, made under
the sincere guidance of our teachers. If any part of this project is proven to be copied out

or found to be a reproduction of some other, we shall stand by the consequences.

No portion of the work presented in this report has been submitted in support of an
application for other degree or qualification of this or any other University or Institute of

learning.

Fakhra Razi

Samina Kausar

Comparative Study of Randomized PARTITION with CMA v

Acknowledgment

Acknowledgment

We bestow all praises to, acclamation and appreciation to Almighty Allah, The Most
Merciful and Compassionate, The Most Gracious and Beneficent, Whose bounteous
blessings enabled us to pursue and perceive higher ideals of life, Who bestowed us good
health, courage, and knowledge to carry out and complete our work. Special thanks to our
Holy Prophet Muhammad (SAW) who enabled us to recognize our Lord and Creator and
brought us the real source of knowledge from Allah (SWT), the Qur’an, and who is the

role model for us in every aspect of life.

We consider it a proud privileged to express our deepest gratitude and deep sense
obligation to our reverend supervisor Prof. Dr. Malik Sikander Hayat Khiyal who kept
our morale high by his suggestions and appreciation.

It will not be out of place to express our profound admiration and gratitude for our
supervisor Mr. Muhammad Imran Saeed for his dedication, inspiring attitude, untiring
help and kind behavior throughout the project efforts and presentation of this manuscript. He
did a lot of effort for our success.

Finally we must mention that it was mainly due to our parents’ moral support and financial
help during our entire academic career that enabled us to complete our work dedicatedly. We
owe all our achievements to our most loving parents and family, who mean most to us, for
their prayers and support and are more precious before any treasure on the earth.

We are also thankful to Mr, Kashif Jamil and Mr. Hafiz Abdurraheem who mean the
most to us, and whose prayers have always been a source of determination for us, for their
moral support and help at every step. Without which we were unable to complete our

project.

Fakhra Razi

Samina Kausar

Comparative Study of Randomized PARTITION with CMA v

Project In Brief

Project Title

Organization

Undertaken By

Supervised By:

Operating System:

Tools used:

System Used

Starting Date

End Date

Project In Brief

Comparative Study of Randomized PARTITION with CMA

International Islamic University, Islamabad.

Fakhra Razi

Samina Kausar

Prof. Dr. Malik Sikander Hayat Khiyal
Asst. Prof. Mr. Muhammad Imran Saeed

Windows XP

Matlab 7, MS Excel 2000

Pentium 1V

February, 2007.

July, 2007.

Comparative Study of Randomized PARTITION with CMA vi

Abstract

Abstract

Recently the environment that enterprises face has become more and more competitive.
The proliferation of computer in today's dynamic business environment has increased the
demand and urgency of successful business organization to be able to react rapidly to the
changing market demands both locally and globally, by utilizing the Information
technology such as the latest data mining techniques of extracting previously unknown
and potentially useful information from vast resources of raw data. Data Mining and
Knowledge Discovery in transactional and relational databases has been of great interest

in recent years for customer-based applications.

Association Rule Mining is one of the core tasks of Data Mining. It refers to the mining
of interesting associations between different data items which can’t be found out with
traditional data models. Association Rule Algorithms find these associations between the
frequently sold items, so that the user could put such associated items with in close
proximity.

The Randomized PARTITION algorithm implemented in this study is more efficient
than CMA due to its efficient partitioning technique. This version of Randomized
PARTITION algorithm is also more efficient than previously implemented PARTITION
algorithm as it reduces the memory usage by simply storing counts for each large itemset
instead of storing the TIDs in hash tree. By using counts the time efficiency of
Randomized PARTITION algorithm is also increased than previously implemented
PARTITION algorithm. The experiments are performed over synthetic database, created

exclusively for this project.

Comparative Study of Randomized PARTITION with CMA vii

Table of Contents

TABLE OF CONTENTS

Chapter No Contents Page No
1. Introduction 2
1.1 Data MINING.....cccvveeerrmienniceeneoniesieenniiesssnessesessesaessesseessessoneassssssssesacssasssssssssssssassses 3
1.2 Foundations of Data Mining.........c...ccecveeernerrensrrcennssnissnsnienssesissssesiscssessssesssseses 4
1.3 Potential Applications of Data Mining..........coeeerveerrceerensressnssessersesssssnssessssssssesssnes 5
1.3.1 Market SEgmENtation.........cccervevernerirssnesnierssnesimssossosssssnssssssssssssssassessasssesessessasaes 5
1.3.2 Interactive Marketing..........ccoceeurcerrereerrnsenresnssenresessesssonssesnssnssessessssussossossssssseneas 6
1.3.3 Market Basket ANAlLYSiS.......ccccoreerenreriereernreseersecesecsassessnssnssnssssessssnensensestosssones 6
1.3.4 BANKING....ccoverecireennecrinieessrnsnenssnsassessssssessesssssssssssesssssssssessessessestssasssssssssssasnes 8
1.3.5 Insurance and Health Care...........cccoverrevenecniennininnsentnnincesissssesssssssssssesesanse 8
1.3.6 TranSpOTtation........cc.ceereenmereeerumsussnencensensasmsisstsssssiessossessssssssssssesessessesssssessesssones 8
1.3.7 MEAICINE ...uevenririrerereciinieennincnnsensesacsasssesessnsssesesssssssasssensonsenessissssssensessessenasnes 8
1.3.8 Knowledge ACQUISItIONccoermeeierininiincnieniiinninicniniisesiestsnessssssasssseseesesessesssnens 9
1.4 Data Mining Models.........ccouvviiinnniniinininiiinisnncntncssesssssessssc s sessssens 9
1.4.1 Verification MOdEl........c..ccivereerrinnenrenencnneceisessinensnessssssssnsssssesssssnssnsssssessassess 10
1.4.2 DiSCOVETY MOMELccuverireiericnrncnnennessenncnnnstenesnesnssssssesssssessssssessssnsssessesassses 10
1.5 Scope of Data Mining..........c.cceernrrreeneeneneennsnnennnneninniieensesessnissesnssnssissssees 10
1.5.1 Automated Prediction of Trends and Behaviors...........ccoccoennininnncensinnnennens 10
1.5.2 Automated Discovery of Previously Unknown Patterns........cccoovvevvennvnernennes 11
1.6 Data Mining FUNCLIONScccoiviivirininininininnctictinctii e ssesssssssessnis 11
1.6.1 ClasSifiCationcccovecrrerrercinriiennenmsnminssisiescsesesesssisieisssiseensesesssssssssssesesaes 11
1.6.2 ASSOCTALIONS ..c..vecriniesnrernernsrmsnsssosssrssusssssessiesesssstesssssstssassnssssssssnsesusssessasssanases 12
1.6.3 Sequential/Temporal Patterns.........cccoceverniinininseisnncnineninennsenninnene 12
1.6.4 Clustering/Segmentation.........cocuereierissiscsesisesiesnsessssienaisimsesssssessosenes 12
1.7 Association Rules MININGccvcervererceienrccniensscrecnsencnnsnsscnssssnsosssessassanssssssssssasss 13
1.7.1 How Association Rules WOrk?.........ccccoueenecrnennienicnnenineincsccsinecnsnisussessssssens 13
1.7.2 BaSIiC COMNCEPLcoerurrrnriiricnnrtiinsessisisstescsisessississtssscsssssesssssnsseesessssssesenseness 14
1.8 Association Rule Mining Environments........c.cooeveererniencricnsniinnnnecsnsnnnncneseens 17
1.8.1 Centralized EnVIronmentccccvvvevceirirnncenneninisrssennniensnsessosisissessssessssssens 17
1.8.2 Distributed ENvVironmentccccocevivirveninicnnninmnnennsenesnsesiieneossncine 17
1.9 Existing TeChNIQUES......ccoerveeriiereinriticrnciciciitciinnicsinenise s seessesscssessesessaene 17
1.9.1 AIS AlGOTIIMeererieeeeecreeenneneentcenee s st ssssesesstsssssentsacssssssrssssnsssess 17
1.9.2 SETM AIOTIthMcviiiiiicciiicnenietsiensnn e stsscesaensssssse s sessesssssasnsassns 18
1.9.3 Apriori AIGOTIthMm.........c.cocveriririeeee et estnes 18
1.9.4 DHP (Direct Hashing and Pruning) Algorithmccecceveveerenecnsensassssnsannees 18
1.9.5 DMA (Distributed Mining of Association Rules) Algorithmc.cccorvurunnee. 19
1.9.6 PARTITION AIOTithIM.......ccecevenireveieneerioenenieesenreeesesesesnesessssesassesessssnseseons 19
1.9.7 Comparison of Sequential and Parallel Algorithmsc.cccecvvervreververrerceeseennne 19
1.9.8 Count Distribution, Data Distribution & Candidate Distribution............c........ 19
1.9.9 Survey of Parallel and Distributed Association Rule Mining Algorithms....... 20
1.9.10 CMA (Centralized Mining of Association-Rules) Algorithm...........cccco....... 20
1.10 CONCIUSION ..cuviuiviiiiieiinieineccctnie et rarsee st seesaeeesesseseessssesnssesnssasosssessssassasassen 20
2. Literature Survey. 22
2.1 Centralized Architecture of Association Rule Miningcccveevererernreneceneneseennns 24
2.1.1 Fast Algorithms for Mining Association Rules...........ccoeveenriicrienenenenceenennee 24
2.1.2 An Effective Hash-Based Algorithm for Mining Association Rules................ 25
2.1.3 An Efficient Algorithm for Mining Association Rules in Large Databases.....26

Comparative Study of Randomized PARTITION with CMA viii

Table of Contents

2.2 Distributed Architecture of Association Rule Mining..........c.ccceeeevevveevvrvceneerecvennens 26
2.2.1 Fast Sequential and Parallel Algorithms for Association Rule Mining: A
COMPATISON.....covererreerrreriisissisrerrsasesesresasesasessestssesienesssnsssssssessessessossssessenmanssnsssssssases 27
2.2.2 Efficient Mining of Association Rules in Distributed Databases..................... 28
2.2.3 Parallel Mining of Association Rules..........ccccceverrrerenrinirvenrencesenscnnncnesansennns 29
2.2.4 Parallel and Distributed Association Mining: A Surveyccceeeevveeveecerveene 29
2.2.5 Association Rule Mining in Centralized Databasesc.cccceccevevivenervenrnnnenene 30

2.3 Problem Statement.........coocvuiieuercriicrenmninsrsnsririsesiessssest st sessessssnsssssessessosessessossses 30

3. Problem Domain and Proposed Solution 33

3.1 Problem DOmaiN........ccoeiieennnnnininiernninisesesnicsssessestsessessescsssssssssssssssssesesssnsssonsas 34
3.1.1 Size Of Data Sets......cccvuverrireenieeenrerisnernresesessensstssessseesentsssssnsessssssssesesssassnsassoses 34
3.1.2 Contaminated Datacoeververrenursenreeriesesansrnsressessessassuessassassessessessressssssasnses 35
3.1.3 Data QUALILYccceerierierueneeinrerrrnceseererssssssississesssesssnssessenssensarssessssssssossossesassons 36
3.1.4 INterOPerabilityc.ccceervurrirrerrrrerierrenrinrecesseesuensssessuessessssnesneessssessnssassessssssassonsss 36
3.1.5 Multiple Database Scans.........cc.coccivcnreniinrnninmeiniiiiiisssssss 36
3.1.6 Large Candidate Set Size........ccccvurreerierenninninrerireerenseesseesseessneseessenssssnesssesseen 37
3.1.7 Data for AssocCiation MOEIScoeuererererierrsenenrisenisensenesnesnnscssessssssessssesssasns 37
3.1.8 Algorithm EXecution Time........c.cccecveerecereernerseesnresensessensesessssssnssesssssssessssanes 38
3.1.9 Accurate Number of Partitions..........cccceeeverueserercnnnenesessenenenssinsenssnsssessasessanns 38
3.1.10 Data SKEWcoiiininminriciiirencccnnercsessnssesiessesstststsseesasssessessesssssesssenassasaes 39

3.2 Proposed SOIULION......cccevirirerrieeneririreenenressscssinssneeesessnessaesnessessssossossassesssssssasns 40
3.2.1 RaNdOMIZatioN.......covuiinuiiniiiisisesiienretsniiesisnestssississssssssssnsssesssesssasssssonsans 41
3.2.3 PARTITION AIOTithmM....ccocueuerierreirriiinniicntiesenrnseteeennnsetsseesssenssnssesencs 42
3.2.2 CMA AIZOTItRIM c.oveuvieeiinciriieernencncsrcenncsiessti st sessessssessesessessessenes 42

4. Research Methodology 45

4.1 Architectural DIagramccocouivcerinnrcnssinnenniiiessiessssseesssssssessessssesesenes 45

4.2 Man MOUIEScovrreniiiriiniiisiiincsencie st srestssesssssessssisasssssssssssssssnes 45
4.2.1 Database ACQUISILION.......cceverrecenrerrereesssreninneisessnrersessnseessnssnssssssessessssassssseses 46
4.2.2 Database Randomizationccccoeveevermmseneesiscninsissnsnnessesnssessessesssssssssesssssesens 46
4.2.3 Partition Creation.........oceveererernreeseereresenscssesinessnsnssessasssorssessassassssssssssssessssossonass 47
4.2.4 Local Large Itemset Generationceceeverieriisirsienenseneseecssosssessesssssesosessasas 47
4.2.5 Global Large Itemset GEneration...........c..covvecvirerrecerrersessncassesssseessescsssssssssennens 48
4.2.6 Comparison of Large Itemsets of Sequential and Randomized Partitions....... 49
4.2.7 Comparison of Randomized PARTITION with Previously Implemented
PARTITION AIGOTthmM....cc.ovinmiiiniiiiiiirecniieniesininiensc st scsresesesessssssnsans 49
4.2.8 Comparison of Randomized PARTITION with CMA Algorithm. 50

4.3 AIZOTIHIIN.....cveoteeereeticereesersieeesrsaeseeressenessssenssesessssssesnonssssssessasesasstsanssssnssssassassases 50
4.3.1 Notations USEd.......ccceruiiieecreimesnenninsanstissseeneiensiesnssssssesssessesmssesssssssssessssssesses 51

S. Implementation 53

S I MES EXCEl .ttt sesssss st b e ssesesassaenine 53

S2MATLAB 7.0 .coreiiieticnnieenenneesessesneassessestsssssesessenssnsnsensssssassessossessesssssossosen 54

5.3 Working of Randomized PARTITION Algorithm.......ccccccocrivrrnrnicinenccninnnunnens 54
5.3.1 Read Databasecccouceirereerenererenrisensisssiseennnesesesessessessessessssssssnessesassasessenns 55
5.3.2 Create Partitions..........ccccvveerrenerennsensensesissssessssnsasecsarsesssssessesssssssssessssnssssassenss 56
5.3.3 Calculate User Defined Local min_Sup........cccoccevereerrerecenenseessssssersnssssessesssenns 57
5.3.4 Calculate User Defined Global min_Supc.ccceeveeenrererrnvenenrerecussnreneenesesrsnenes 57
5.3.5 Finding Locally Large 1-itemSetcccccvurererrerrerssesssrerereeesessssssesssesersssnenes 58
5.3.6 Finding Locally Large 2-Itemsetcccocoeriurrrururininerucesnsrsesascscssencncsnsssasaeses 58
5.3.7 Finding Locally Large 3-Itemsetc.ccoveruruirccnrierierisereeesnenicerisscersocssssssens 59
5.3.8 Finding Locally Large 4-Itemsetc.cccouevemrininririricnnennrnnnnesesencessssssssessiens 61

Comparative Study of Randomized PARTITION with CMA ix

Table of Contents

5.3.9 Finding Locally Large K-ItEmSetcccrvrrrrereeerrennseerenseesnerernsessessssassssessssees 63
5.3.10 Finding Global Large ItemSet...........ccovererenreririnersnscerssesensenienrsensssesessessaessess 64
5.3.11 Call_Back Function of Sequential Button...........ccceceeerrenvenvencrerrenrennsieceernnne 65
5.3.12 Call_Back Function of Randomized Button...........cc.ccceeiruerriernscrenerncreenseenee 65
5.3.13 Call_Back Function of Create Large Itemsets Button..........cccccoveervecrecerneens 66

6. Results 77
6.1 Explanation of Randomized PARTITION Algorithm with Exampleccccc.u.... 77
6.2 Comparison of Large Itemsets of Randomized and Non Randomized Partitions ... 80
6.3 Comparison of No. of Large Itemsets with Varying Size of Data............ccecceevrunee 81
6.4 Comparison of Randomized PARTITION with CMAcccoccviininmnrnccrnennnenene 82
6.4.1 Computational Complexity COMPAriSOnccceveeereriisiresssniscsesisnesssssssesins 82
6.4.2 Comparison of Time Efficiency of Database Partitioningc..ccceerrvcccruracs 82
6.4.3 Comparison of Time Efficiency of Large Itemset Creation..........cceceuevcereuenes 83

6.5 Comparison of Randomized PARTITION with Previous PARTITION Algorithm 84

7. Conclusion & Future Enhancements 87
Appendix A. References 89
Appendix B. Publication . 92

Comparative Study of Randomized PARTITION with CMA x

Chapter 1
—

Introduction

-

Chapter 1 Introduction

1. Introduction

The past two decades has seen a dramatic increase in the amount of information or data
being stored in electronic format. This accumulation of data has taken place at an
explosive rate. It has been estimated that the amount of information in the world doubles
every 20 months and the size and number of databases are increasing even faster. The
amount of raw data stored in corporate databases is exploding. From trillions of point-of-
sale transactions and credit card purchases to pixel-by-pixel images of galaxies, databases
are now measured in gigabytes and terabytes. Raw data by itself, however, does not
provide much information. In today's fiercely competitive business environment,
companies need to rapidly turn these terabytes of raw data into significant insights into
their customers and markets to guide their marketing, investment, and management
strategies. The increase in use of electronic data gathering devices such as point-of-sale or
remote sensing devices has contributed to this explosion of available data. Data storage
became easier as the availability of large amounts of computing power at low cost i.e. the
cost of processing power and storage is falling, made data cheap. There was also the
introduction of new machine learning methods for knowledge representation based on
logic programming etc. in addition to traditional statistical analysis of data. The new
methods tend to be computationally intensive hence a demand for more processing
power. Having concentrated so much attention on the accumulation of data the problem
was what to do with this valuable resource? It was recognized that information is at the
heart of business operations and that decision-makers could make use of the data stored to
gain valuable insight into the business. Database Management systems gave access to the
data stored but this was only a small part of what could be gained from the data. The drop
in price of data storage has given companies willing to make the investment a tremendous
resource: Data about their customers and potential customers stored in "Data
Warehouses."

Data warehouses are becoming part of the technology. They are used to consolidate data
located in disparate databases. A data warehouse stores large quantities of data by specific
categories so it can be more easily retrieved, interpreted, and sorted by users. Warehouses
enable executives and managers to work with vast stores of transactional or other data to
respond faster to markets and make more informed business decisions. It has been

predicted that every business will have a data warehouse within ten years, but merely

Comparative Study of Randomized PARTITION with CMA 2

[N

Chapter 1) Introduction

storing data in a data warehouse does a company little good. Companies will want to
learn more about that data to improve knowledge of customers and markets. Traditional
on-line transaction processing systems, OLTPs, are good at putting data into databases
quickly, safely and efficiently but are not good at delivering meaningful analysis in
return. Analyzing data can provide further knowledge about a business by going beyond
the data explicitly stored to derive knowledge about the business. This is where Data
Mining or Knowledge Discovery in Databases (KDD) has obvious benefits for any

enterprise.

1.1 Data Mining

Data Mining grew as a direct consequence of the availability of large reservoirs of data.
Data collection in digital form was already underway by the 1960s, allowing for
retrospective data analysis via computers. Relational Databases arose in the 1980s along
with Structured Query Languages (SQL), allowing for dynamic, on-demand analysis of
data. The 1990s saw an explosion in growth of data. Data warehouses were beginning to
be used for storage of data. Data Mining thus arose as a response to challenges faced by
the database community in dealing with massive amounts of data, application of
statistical analysis to data and application of search techniques from Artificial Intelligence
to these problems.
Generally, data mining (sometimes called data or knowledge discovery) is the process of
analyzing data from different perspectives and summarizing it into useful information that
can be used to increase revenue, cuts costs, or both. . Seeking knowledge from massive
data is one of the most desired attributes of data mining. Data could be large in two
senses.

e Interms of size, e.g. image data

¢ In terms of dimensionality, e.g. gene expression data.
Technically, data mining is the process of finding correlations or patterns among dozens
of fields in large relational databases.
It is the art and science of discovering and exploiting new, useful, and profitable
relationships in data. It is a powerful new technology with great potential to help
companies focus on the most important information in the data they have collected about
the behavior of their customers and potential customers. It discovers information within

the data that queries and reports can't effectively reveal. Data mining derives its name

Comparative Study of Randomized PARTITION with CMA 3

Chapter 1 Introduction

from the similarities between searching for valuable information in a large database and
mining a mountain for a vein of valuable ore. Both processes require either sifting
through an immense amount of material, or intelligently probing it to find where the value
resides. Data mining is the process of extracting knowledge hidden from large volumes of
raw data. It automates the process of finding relationships and patterns in raw data and
delivers results that can be either utilized in an automated decision support system or
assessed by a human analyst. Data mining techniques can be implemented rapidly on
existing software and hardware platforms to enhance the value of existing information
resources, and can be integrated with new products and systems as they are brought on-
line. When data mining tools are implemented on high performance parallel processing
systems, they can analyze massive databases in minutes. Faster processing means that
users can automatically experiment with more models to understand complex data. High
speed makes it practical for users to analyze huge quantities of data. Larger databases, in
turn, yield improved predictions.

With limited amount of data, and information to be retrieved, simple SQL queries are
used to retrieve and present the demanded information to the user, but with the huge
amount of data and user’s increasing demand for sophisticated information retrieval out
of this data, the SQL queries can no longer fulfill the demands. However, the use of SQL
is not always adequate to meet the end user requirements of specialized and sophisticated
information from an unorganized large data bank. This necessitates looking for certain
alternative technique to retrieve information from large and unorganized source of data.
So, data mining is the technique of extracting meaningful information from large and
mostly unorganized data banks. It is the process of performing automated extraction and

generating predictive information from large data banks [1].

1.2 Foundations of Data Mining

Data mining techniques are the result of a long process of research and product
development. This evolution began when business data was first stored on computers,
continued with improvements in data access, and more recently, generated technologies
that allow users to navigate through their data in real time. Data mining takes this
evolutionary process beyond retrospective data access and navigation to prospective and
proactive information delivery. Data mining is ready for application in the business

community because it is supported by three technologies that are now sufficiently mature:

Comparative Study of Randomized PARTITION with CMA 4

Chapter 1 Introduction

e Massive data collection
e Powerful multiprocessor computers

¢ Data mining algorithms

1.3 Potential Applications of Data Mining

Although data mining is still in its infancy, companies in a wide range of industries
including retail, finance, heath care, manufacturing transportation, and aerospace are
already using data mining tools and techniques to take advantage of historical data. By
using pattern recognition technologies and statistical and mathematical techniques to sift
through warehouse information, data mining helps analysts recognize significant facts,
relationships, trends, patterns, exceptions and anomalies that might otherwise go
unnoticed.

For businesses, data mining is used to discover patterns and relationships in the data in
order to help make better business decisions. A wide range of companies have deployed
successful applications of data mining. While early adopters of this technology have
tended to be in information-intensive industries such as financial services and direct mail
marketing, the technology is applicable to any company looking to leverage a large data
warehouse to better manage their customer relationships. Two critical factors for success
with data mining are: a large, well-integrated data warehouse and a well-defined
understanding of the business process within which data mining is to be applied (such as
customer prospecting, retention, campaign management, and so on). Data mining can
help spot sales trends, develop smarter marketing campaigns, and accurately predict

customer loyalty. Specific uses of data mining include:

1.3.1 Market Segmentation

Identify the common characteristics of customers who buy the same products from the
company, €.g. large consumer package goods, company, can apply data mining to
improve its sales process to retailers. Data from consumer panels, shipments, and
competitor activity can be applied to understand the reasons for brand and store
switching. Through this analysis, the manufacturer can select promotional strategies that

best reach their target customer segments.

Comparative Study of Randomized PARTITION with CMA 5

Chapter | Introduction

1.3.2 Interactive Marketing

Predict what each individual accessing a website is most likely interested in seeing. A
credit card company can leverage its vast warehouse of customer transaction data to
identify customers most likely to be interested in a new credit product. Using a small test
mailing, the attributes of customers with an affinity for the product can be identified.
Recent projects have indicated more than a 20-fold decrease in costs for targeted mailing

campaigns over conventional approaches.

1.3.3 Market Basket Analysis

Market basket analysis is an algorithm that examines a long list of transactions in order to
determine which items are most frequently purchased together. It takes its name from the
idea of a person in a supermarket throwing all of their items into a shopping cart (a
"market basket"). The results can be useful to any company that sells products, whether
it's in a store, a catalog, or directly to the customer.

Market basket analysis is used to determine which products sell together. As such, the
input to a market basket analysis is normally a list of sales transactions, where each
column represents a product and each row represents either a sale or a customer,
depending on whether the goal of the analysis is to find which items sell together at the
same time, or to the same person. [2].

In retailing, most purchases are bought on impulse according to models of consumer
behavior. Market basket analysis gives clues as to what a customer might have bought if
the idea had occurred to them. It can be used as a first step in deciding the location and
promotion of goods inside a store.

Example

If, as has been observed, purchasers of Barbie dolls are more likely to buy candy, then
high-margin candy can be placed near to the Barbie doll display. Customers who would
have bought candy with their Barbie dolls had they thought of it will now be suitably
tempted. This, however, is only the first level of analysis.

Consider sitting in bar and buying a coke not a bar meal. While servicing the request, the
barkeep asks if one is interested in a bag of chips as well. Why would the keep ask such a
question? Because it is the goal of the barkeep, in some regards, to be profitable and
maximize the amount of revenue per transaction. By asking if one wanted chips, the

barkeep may make a bigger tip or the bar may make more revenue. The barkeep knew to

Comparative Study of Randomized PARTITION with CMA 6

Chapter 1 Introduction

ask this question, and knew there was a good chance (a high probability) that one would
also take the chips. The barkeep had this knowledge from experience, specifically from
previous interactions with customers.
Similarly, the association rule finding algorithm is trained on historical data, i.e. past
transactions. The data contains checkout information and a list of products that were
purchased in each transaction, perhaps along with other information (volume, sale
amount, although in many cases just the presence or absence of a product in a transaction
is sufficient). While training, the algorithm may identify a relationship (a form of an
association) between coke and no bar meals, and predict the customers are more likely to
buy crisps over someone not identified with that relationship.
Typically the relationship will be in the form of a rule such as:
IF {coke, no bar meal} THEN {crisps}
Knowledge Extraction from Market Basket Analysis
In market basket analysis, extracting knowledge means constructing models of purchase
behavior, e.g. from supermarket sales data. In market-basket data mining, a critical step is
finding of frequent itemsets (sets of items that are frequently bought in a single market
basket). An efficient method for finding such itemsets along with their frequencies
(number of occurrences in the dataset) is essential for enabling subsequent analysis of the
data. Most data mining methods are sensitive to input parameters that must be carefully
selected for each dataset (e.g., the support threshold for market-basket analysis). The
market-basket problem assumes there are some large number of items, e.g., “bread,"
"milk" Customers fill their market baskets with some subset of the items, and the
shopkeeper get to know that what items people buy together, even if he don't know who
they are. Shopkeeper uses this information to position items, and control the way a typical
customer traverses the store. In addition to the marketing application, the same sort of
question has the following uses:
e Baskets = documents; items = words.
Words appearing frequently together in documents may represent phrases or
linked concepts, can be used for intelligence gathering.
o Baskets = sentences, items = documents.
Two documents with many of the same sentences could represent plagiarism or

mirror sites on the web.

Comparative Study of Randomized PARTITION with CMA 7

Chapter 1 Introduction

News Filtering and Document Classification

Market basket analysis can also be used in the news filtering and document classification
problems. Instead of just dealing with individual words, it is useful to identify ‘word
phrases’ like "Los Angeles" which should be treated as a unit. If each pair of adjacent
words is considered a "basket", then market basket analysis tells us which words occur
together more often than would be expected by chance. Incorporating word phrases in this
way can improve retrieval performance. This idea has also been applied to automatic
transcription and indexing of medical reports, so that the computer can identify salient
technical phrases used by doctors. Association rules identify collections of data attributes

that are statistically related in the underlying data.

1.3.4 Banking

Detect patterns of fraudulent credit card use, Identify “loyal' customers, Predict customers
likely to change their credit card affiliation, determine credit card spending by customer
groups, find hidden correlations between different financial indicators and identify stock

trading rules from historical market data.

1.3.5 Insurance and Health Care

Claims analysis, i.e., which medical procedures are claimed together, predict which
customers will buy new policies, identify behavior patterns of risky customers, identify

fraudulent behavior.

1.3.6 Transportation

Determine the distribution schedules among outlets, analyse loading patterns e.g. a
diversified transportation company with a large direct sales force can apply data mining
to identify the best prospects for its services. Using data mining to analyze its own
customer experience, this company can build a unique segmentation identifying the

attributes of high-value prospects.

1.3.7 Medicine

Characterize patient behavior to predict office visits, identify successful medical therapies
for different illnesses, drug side effects, hospital cost analysis, genetic sequence analysis,
prediction etc. A pharmaceutical company can analyze its recent sales force activity and

their results to improve targeting of high-value physicians and determine which

Comparative Study of Randomized PARTITION with CMA 8

Chapter 1 Introduction

marketing activities will have the greatest impact in the next few months. The data needs
to include competitor market activity as well as information about the local health care
systems. The results can be distributed to the sales force via a wide-area network that
enables the representatives to review the recommendations from the perspective of the
key attributes in the decision process. The ongoing, dynamic analysis of the data
warehouse allows best practices from throughout the organization to be applied in

specific sales situations.

1.3.8 Knowledge Acquisition

Expert systems are models of real world processes so much of the information is available
straight from the process e.g. in production systems, data is collected for monitoring the
system, knowledge can be extracted using data mining tools, experts can verify the
knowledge.

In the short-term, the results of data mining will be in profitable in ordinarily business
related areas. Micro-marketing campaigns will explore new niches. Advertising will
target potential customers with new precision. In the medium term, data mining may be as
common and easy to use as e-mail. We may use these tools to find the best airfare to New
York, root out a phone number of a long-lost classmate, or find the best prices on lawn
mowers. The long-term prospects are truly exciting. Computers may reveal new

treatments for diseases or new insights into the nature of the universe.

1.4 Data Mining Models

Modeling is simply the act of building a model (a set of examples or a mathematical
relationship) based on data from situations where the answer is known and then applying
the model to other situations where the answers aren't known. Data mining is the
discovery of structures and patterns in large data sets. There are two aspects to data
mining: model building and pattern detection. Model building in data mining is very
similar to statistical modeling, although new problems do arise because of the large sizes
of the data sets and the fact that data mining is secondary data analysis. Pattern detection
seeks anomalies or small local structures in data, with the vast mass of the data being

irrelevant.

Comparative Study of Randomized PARTITION with CMA 9

Chapter | Introduction

1.4.1 Verification Model

The verification model takes a hypothesis from the user and tests the validity of it against
the data. The emphasis is with the user who is responsible for formulating the hypothesis
and issuing the query on the data to affirm or negate the hypothesis. The problem with
this model is the fact that no new information is created in the retrieval process but rather

the queries will always return records to verify or negate the hypothesis.

1.4.2 Discovery Model

The discovery model differs in its emphasis in that it is the system automatically
discovering important information hidden in the data. The data is sifted in search of
frequently occurring patterns, trends and generalizations about the data without
intervention or guidance from the user. The discovery or data mining tools aim to reveal a
large number of facts about the data in as short a time as possible.

An example of such a model is a bank database which is mined to discover many groups
of customers to target for a mailing campaign. The data is searched with no hypothesis in
mind other than for the system to group the customers according to the common

characteristics found.

1.5 Scope of Data Mining

Data mining derives its name from the similarities between searching for valuable
business information in a large database for example, finding linked products in gigabytes
of store scanner data and mining a mountain for a vein of valuable ore. Both processes
require either sifting through an immense amount of material, or intelligently probing it to
find exactly where the value resides. Given databases of sufficient size and quality, data

mining technology can generate new business opportunities by providing these

capabilities:

1.5.1 Automated Prediction of Trends and Behaviors

Data mining automates the process of finding predictive information in large databases.
Questions that traditionally required extensive hands-on analysis can now be answered
directly from the data quickly. A typical example of a predictive problem is targeted
marketing. Data mining uses data on past promotional mailings to identify the targets

most likely to maximize return on investment in future mailings. Other predictive

Comparative Study of Randomized PARTITION with CMA 10

Chapter 1 Introduction

problems include forecasting bankruptcy and other forms of default, and identifying

segments of a population likely to respond similarly to given events.

1.5.2 Automated Discovery of Previously Unknown Patterns

Data mining tools sweep through databases and identify previously hidden patterns in
one step. An example of pattern discovery is the analysis of retail sales data to identify
seemingly unrelated products that are often purchased together. Other pattern discovery
problems include detecting fraudulent credit card transactions and identifying anomalous
data that could represent data entry keying errors.

Data mining techniques can yield the benefits of automation on existing software and
hardware platforms, and can be implemented on new systems as existing platforms are
upgraded and new products developed. When data mining tools are implemented on high
performance parallel processing systems, they can analyze massive databases in minutes.
Faster processing means that users can automatically experiment with more models to
understand complex data. High speed makes it practical for users to analyze huge

quantities of data. Larger databases, in turn, yield improved predictions.

1.6 Data Mining Functions

Data mining methods may be classified by the function they perform or according to the

class of application they can be used in. Some of the main techniques used in data mining

are as follows:

1.6.1 Classification

Data mine tools have to infer a model from the database, and in the case of supervised
learning this requires the user to define one or more classes. The database contains one or
more attributes that denote the class of a tuple and these are known as predicted attributes
whereas the remaining attributes are called predicting attributes. A combination of values
for the predicted attributes defines a class.

Once classes are defined the system should infer rules that govern the classification
therefore the system should be able to find the description of each class. The descriptions
should only refer to the predicting attributes of the training set so that the positive
examples should satisfy the description and none of the negative. A rule said to be correct
if its description covers all the positive examples and none of the negative examples of a

class.

Comparative Study of Randomized PARTITION with CMA 1

Chapter 1 Introduction

1.6.2 Associations

Given a collection of items and a set of records, each of which contain some number of
items from the given collection, an association function is an operation against this set of
records which return affinities or patterns that exist among the collection of items. These
patterns can be expressed by rules such as "72% of all the records that contain items A, B
and C also contain items D and E." The specific percentage of occurrences (in this case
72) is called the confidence factor of the rule. Also, in this rule, A,B and C are said to be
on an opposite side of the rule to D and E. Associations can involve any number of items
on either side of the rule.

A typical application, identified by IBM that can be built using an association function is
Market Basket Analysis. This is where a retailer runs an association operator over the
point of sales transaction log, which contains among other information, transaction
identifiers and product identifiers. The set of products identifiers listed under the same
transaction identifier constitutes a record. The output of the association function is, in this
case, a list of product affinities. Thus, by invoking an association function, the market
basket analysis application can determine affinities such as "20% of the time that a

specific brand toaster is sold, customers also buy a set of kitchen gloves and matching

cover sets."

1.6.3 Sequential/Temporal Patterns

Sequential pattern mining functions are quite powerful and can be used to detect the set of
customers associated with some frequent buying patterns. Use of these functions on for
example a set of insurance claims can lead to the identification of frequently occurring
sequences of medical procedures applied to patients which can help identify good medical

practices as well as to potentially detect some medical insurance fraud.

1.6.4 Clustering/Segmentation

Clustering according to similarity is a very powerful technique. When learning is
unsupervised then the system has to discover its own classes i.e. the system clusters the
data in the database. The system has to discover subsets of related objects in the training
set and then it has to find descriptions that describe each of these subsets. A task of

identifying groups of records those are similar between themselves but different from the

rest of the data.

Comparative Study of Randomized PARTITION with CMA 12

Chapter | Introduction

1.7 Association Rules Mining

One of the reasons behind maintaining any database is to enable the user to find
interesting patterns and trends in the data. For example, in a supermarket, the user can
figure out which items are being sold most frequently, but this is not the only type of
trend which one can possibly think of. The goal of database mining is to automate this
process of finding interesting patterns and trends. Once this information is available, one
can perhaps get rid of the original database. The output of the data-mining process should
be a "summary" of the database. This goal is difficult to achieve due to the vagueness
associated with the term interesting. The solution is to define various types of trends and
to look for only those trends in the database. One such type constitutes the association
rule.

Association rule mining finds interesting associations and/or correlation relationships
among large set of data items. Association rules show attributes value conditions that
occur frequently together in a given dataset. A typical and widely-used example of
association rule mining is Market Basket Analysis.

For example, data are collected using bar-code scanners in supermarkets. Such ‘market
basket’ databases consist of a large number of transaction records. Each record lists all
items bought by a customer on a single purchase transaction. Managers would be
interested to know if certain groups of items are consistently purchased together. They
could use this data for adjusting store layouts (placing items optimally with respect to
each other), for cross-selling, for promotions, for catalog design and to identify customer

segments based on buying patterns.

1.7.1 How Association Rules Work?

The usefulness of this technique to address unique data mining problems is best
illustrated in a simple example. Suppose the data is to be collected at the check-out cash
registers at a large book store. Each customer transaction is logged in a database, and
consists of the titles of the books purchased by the respective customer, perhaps
additional magazine titles and other gift items that were purchased, and so on. Hence,
each record in the database will represent one customer (transaction), and may consist of
a single book purchased by that customer, or it may consist of many (perhaps hundreds
of) different items that were purchased, arranged in an arbitrary order depending on the

order in which the different items (books, magazines, and so on) came down the conveyor

Comparative Study of Randomized PARTITION with CMA 13

Chapter 1 Introduction

belt at the cash register. The purpose of the analysis is to find associations between the
items that were purchased together, i.e., to derive association rules that identify the items
and co-occurrences of different items that appear with the greatest (co-frequencies). For
example, to learn which books are likely to be purchased by a customer who is already
known to purchase (or is about to purchase) a particular book. This type of information
could then quickly be used to suggest to the customer those additional titles. One may
already be "familiar" with the results of these types of analyses, if he is a customer of
various on-line (Web-based) retail businesses; many times when making a purchase on-
line, the vendor will suggest similar items (to the ones purchased) at the time of "check-
out", based on some rules such as "customers who buy book title 4 are also likely to
purchase book title B," and so on.
In the present context, an association rule tells us about the association between two or
more items. For example: In 80% of the cases when people buy bread, they also buy milk.
This tells us of the association between bread and milk. It is represented as -
Bread => milk | 80%

This should be read as - "Bread means or implies milk, 80% of the time." Here 80% is the
"confidence factor” of the rule.
Association rules can be between more than 2 items. For example -

Bread, milk => jam | 60%

Bread => milk, jam | 40%
Given any rule, its confidence can easily be found. For example, for the rule

Bread, milk => jam

Count the number say n;, of records that contain bread and milk. Of these, how many

contain jam as well? Let this be n,. Then required confidence is ny/n;.

1.7.2 Basic Concept

Let I = {i}, iz,..., im} be the set of items. Let D, the task-relevant data, is a set of database
transactions where each transaction T is a set of items such that T c I. each transaction is
associated with an identifier TID. Let A be a set of items. A transaction T is said to
contain A if and only if Ac T. An association rule is an implication of the form A=B,
where Acl, Bel, and ANB = ¢. The rule A=B holds in the transaction set D with
support s, where s is the percentage of transactions in D that contain A U B (i.e., both A
and B). This is taken to be the probability, PCAUB). The rule A=B has confidence ¢ in

Comparative Study of Randomized PARTITION with CMA 14

Chapter 1 Introduction

the transaction set D if ¢ is a percentage of transactions in D containing A that also
contain B. This is taken to be the conditional probability, P(BJA). That is,
Support (A=>B) = P(AUB).
Confidence (A=B) = P(BJA).
Rules that satisfy both a minimum support threshold (min_sup) and a minimum
confidence threshold (min_conf) are called stromg. By convention, support and
confidence value are written so as to occur between 0% and 100%, rather than 0 to 1.0.
A set of items is referred to as an itemset. An itemset that contains k items is a k-itemset.
The set {bread, butter} is a 2-itemset. The occurrence frequency of an itemset is the
number of transactions that contain the itemset. This is also known, simply, as the
frequency, support count, or count of the itemset. An itemset satisfies minimum
support if the occurrence frequency of the itemset is greater than or equal to the product
of min_sup and the total number of transactions in D. The number of transactions
required for the itemset satisfying minimum support is therefore referred to as the
minimum support count. If an itemset satisfies minimum support, then it is a frequent
itemset.
Association rule mining is a two-step process:
e Find all frequent itemsets: By definition, each of those itemsets will occur at
least as frequently as a pre-determined minimum support count.
e Generate strong association rules from the frequent itemsets: By definition
these rules must satisfy minimum support and minimum confidence [3].
The association rules are generated simply using the following formula:
If
(Support ({Y, X})) > min_conf

Support ({X})
Then X=>Y is a valid rule.

Here X is called the antecedent of the rule, whereas Y makes the consequent of the rule.
Strength of a rule is measured by using support/confidence as shown in the following
example:

Support shows the frequency of the patterns in the rule; it is the percentage of
transactions that contain both A and B, i.e.

Support = Probability (A and B)

Support = (# of transactions involving A and B) / (total number of transactions).

Comparative Study of Randomized PARTITION with CMA 15

Chapter 1 Introduction

Confidence is the strength of implication of a rule; it is the percentage of transactions that
contain B if they contain A, i.e.
Confidence = Probability (B if A) =P (B/A)
Confidence = (# of transactions involving A and B) / (total number of transactions that
have A).
Example:
Customer Item Item

purchased purchased

1 pizza juice
2 salad soda
3 pizza soda
4 salad tea

If A is “purchased pizza” and B is “purchased soda” then

Support=P (A and B) =V

Confidence=P (B/A)=%
Confidence does not measure if the association between A and B is random or not.
For example, if milk occurs in 30% of all baskets, information that milk occurs in 30% of
all baskets with bread is useless, but if milk is present in 50% of all baskets that contain
coffee, that is significant information.
Support allows to weed out most infrequent combinations — but sometimes they should
not be ignored, for example, if the transaction is valuable and generates a large revenue,
or if the products repel each other.
Example: Measure the following:

P (Coke in a basket) = 50%

P (Pepsi in a basket) = 50%

P (coke and peps in a basket) =0.001%

What does this mean? If Coke and Pepsi were independent, it would be expected that
P (coke and Pepsi in a basket) = .5%0.5 = 0.25.
The fact that the joint probability is much smaller says that the products are dependent
and that they repel each other.

Comparative Study of Randomized PARTITION with CMA 16

Chapter | Introduction

1.8 Association Rule Mining Environments

The problem of association rule mining falls in two broad categories: Centralized

Environment, and the Distributed Environment.

1.8.1 Centralized Environment

In Centralized Environment, there is one, large centralized database, from which the task
is to identify the most frequently occurring item sets. To generate association rules in
such an environment, not only the data to be examined is important, but also the size and
amount of data has also an important impact. It requires large memories, for scanning the
data, candidate set generation and support count calculation. Also, the efficiency of

algorithm to be designed for centralized environment is very crucial.

1.8.2 Distributed Environment

In Distributed Environment, the data is either horizontally or vertically distributed across
different nodes of a network, so the problem of one single huge database is solved to
some extent, but it gives rise to another problem, i.e., the itemset found to be large at one
node, need not be so in the entire network. Such problems are faced because of data
skewness property. So, in order to determine whether the locally large itemset is also
globally large or not, all the nodes broadcast their large itemsets across the network, but

this result in increased communication cost.

1.9 Existing Techniques

A lot of work has been done to overcome the association rule mining problem.
Researchers introduced many techniques to handle this particular task. The basic purpose
of each technique is to minimize the database scans and generate more and more true-

positives. The techniques are as follows:

1.9.1 AIS Algorithm

Many algorithms have been discovered in this area .The earliest work for mining of
association rules is presented in paper [4]. In this paper an algorithm AIS is introduced. It
takes a separate database scan for almost every step, like candidate itemsets creation,

large 1-itemset generation, support count, etc. The problem with this algorithm is that, it

Comparative Study of Randomized PARTITION with CMA 17

Chapter 1 Introduction

is confined to only the single consequent rule generation. Secondly the generation of

larger candidate itemsets is its major drawback.

1.9.2 SETM Algorithm

SETM algorithm is presented in paper [5]. The working of this algorithm is same as AIS;
the only difference is that it uses SQL to compute large itemsets. Its disadvantage is due
to the larger size of candidate set generated. For each candidate itemset, the candidate
generated has many entries as the number of transactions in which the candidates are

present.

1.9.3 Apriori Algorithm

Apriori algorithm is presented in paper [6]. It is called the pioneer work in this area. All
other subsequent algorithms are the adaptation of Apriori to some extents. Due to some
shortcomings in Apriori algorithm another version of Apriori called AprioriTid is
presented. It works in the same way as Apriori, but does not use the database for counting
support after the first scan, instead it uses the pair of itemset and its TIDs for this purpose.
Working of this algorithm is efficient in later passes. Another variant of the same
algorithm i.e. AprioriHybrid is also presented in the same paper. It combines the best
features of both algorithms i.e. Apriori and AprioriTid. In Apriori, the problem is that the
database of transactions is scanned entirely for each pass. For AprioriTid algorithm, the
database is not scanned after the 1% pass. Rather, the transaction ID & candidate large k-
itemsets present in each transaction are generated in every pass. The AprioriHybrid
algorithm is presented as a solution comprising of the best features of Apriori and
AprioriTid, but the challenge is to determine the switch over point between the two

algorithms.

1.9.4 DHP (Direct Hashing and Pruning) Algorithm

The algorithm DHP (Direct Hashing and Pruning) is presented in [7], which is an
extension of Apriori. It is confined to the generation of large itemsets only. It also uses

the Apriori_gen () and Subset () function as were used in the Apriori.

Comparative Study of Randomized PARTITION with CMA 18

Chapter [Introduction

1.9.9 Survey of Parallel and Distributed Association Rule Mining
Algorithms

The survey of parallel and distributed association rule mining algorithms is presented in
[12]. These algorithms are divided into groups according to the techniques utilized.
Existing mining methods are described according to the database structure, search,
techniques used complexity and either they are specified on all or maximal patterns. The
aim of this paper is to provide a reference and describes the challenges and problems in

the fields of association rule mining.

1.9.10 CMA (Centralized Mining of Association-Rules) Algorithm

CMA (Centralized Mining of Association-Rules) Algorithm for mining of association
rules is presented in [13]. The technique of PARTITION algorithm [3] of centralized
database area is taken for partitioning the huge database and then, the DMA algorithm [4]
of distributed database environment is applied on each partition. This technique improves
the database scans as it takes just a single database scan over each partition.

The study of above techniques shows that the generation of large itemsets is the main
problem in generating the association rules in large databases. Further it involves many
problems like generation of large candidate itemsets and database involving multi scans
to create candidate sets and to generate their support counts. Pruning of the item set is

also a problem.

1.10 Conclusion

The Association Rule Mining is an important research area, which helps not only solving
the retail industry problems by discovering hidden association between different itemsets,
but also in different other areas like insurance and health care, medicine,
telecommunications, effective advertising, targeted marketing, and inventory control,
knowledge acquisition and finance.

When association rule mining algorithms are applied in centralized environment, they
cannot be easily handled due to large database. Secondly, the extra database scans in that
case are also a big problem in both the cases of time and space complexities. In this case
huge memory is required to scan the entire database, either it is in partitions or a single

large database.

Comparative Study of Randomized PARTITION with CMA 20

Chapter 2
—

Literature Survey

Chapter 2 Literature Survey

2. Literature Survey

Algorithms for finding rules or affinities between items in a database are well known and
well documented in the knowledge discovery community. The algorithms for performing
market basket analysis are fairly straightforward. The complexities mainly arise in
exploiting taxonomies, avoiding combinatorial explosions (a supermarket may stock

10,000 or more line items), and dealing with the large amounts of transaction data that
may be available. A prototypical application of such affinity algorithms is in "market
basket analysis” — the application of affinity rules to analyzing consumer purchases. Such
analyses are of particular importance to the retail and consumer packaged goods industry.
Maintenance of an existing customer base is more important than growing entirely new
customers. This new phase of retail growth is based upon selling more and a greater
variety of products to pre-existing consumers. The most profitable retailers are those that
are able to maintain or reduce their operating costs. Economics of scope, not scale,
determine profitability.

Data warehousing is one of the foremost technological means of increasing operational
efficiency. Efficient consumer response systems, based upon data warehouses, are
expected to save the industry $30 billion a year. A class of applications, based on
intensive analysis of large amounts of data, is becoming of uttermost importance. The
strong demand for intelligent data analysis comes from the increasing availability of
massive information sources produced by organizations and stored in databases and/or
made available through the Internet. The database technology, which is nowadays mature,
easily and efficiently supports data warehousing and data aggregation/reporting, but
hardly supports intelligent data analysis and knowledge extraction.

Data mining is an important application of the above mentioned class. A simple example
of data mining is its use in a retail sales department. If a store tracks the purchases of a
customer and notices that a customer buys a lot of silk shirts, the data mining system will
make a correlation between that customer and silk shirts. The sales department will look
at that information and begin direct mail marketing of silk shirts to that customer. In this
case, the data mining system used by the retail store discovered new information about
the customer that was previously unknown to the company.

Market basket analysis (also known as association-rule mining) is a useful method of

discovering customer purchasing patterns by extracting associations or co-occurrences

Comparative Study of Randomized PARTITION with CMA 22

Chapter 2 Literature Survey

from stores' transactional databases. Because the information obtained from the analysis
can be used in forming marketing, sales, service, and operation strategies, it has drawn
increased research interest.

Current business processes often use data from several sources. Data is characterized to
be heterogeneous, incomplete and usually involves a huge amount of records. This
implies that data must be transformed in a set of patterns, rules or some kind of
formalism, which helps to understand the underlying information. The participation of
several organizations in this process makes the assimilation of data more difficult. Data
mining is a widely used approach for the transformation of data to useful patterns, aiding
the comprehensive knowledge of the concrete domain information. Data mining is
emerging as one of the key features of many homeland security initiatives. Often used as
a means for detecting fraud, assessing risk, and product retailing, data mining involves the
use of data analysis tools to discover previously unknown, valid patterns and relationships
in large data sets. In the context of homeland security, data mining is often viewed as a
potential means to identify terrorist activities, such as money transfers and
communications, and to identify and track individual terrorists themselves, such as
through travel and immigration records.

The general goal of data mining is to extract interesting correlated information from large
collection of data. A key computationally intensive sub problem of data mining involves
finding frequent sets in order to help mine association rules for market basket analysis.
Given a bag of sets and a probability, the frequent set problem is to determine which
subsets occur in the bag with some minimum probability.

Association rule mining finds interesting association or correlation relationships among a
large set of data items. With massive amounts of data continuously being collected and
stored, many industries have become interested in mining association rules from their
databases. The discovery of interesting relationships among huge amounts of business
transaction records helps in many business decision making processes, such as catalog
design, cross-marketing, and loss-leader analysis.

Association rule discovery techniques are generally applied to databases of transactions
where each transaction consists of a set of items. In such a framework the problem is to
discover all associations and correlations among data items where the presence of one set
of items in a transaction implies (with a certain degree of confidence) the presence of

other items.

Comparative Study of Randomized PARTITION with CMA 23

Chapter 2 Literature Survey

2.1 Centralized Architecture of Association Rule Mining

Today, the data warehouses are mostly developed on centralized architecture, as they
contain massive amount of data of the tens of years, so the organizations often dedicate
one big machine with huge memory and fastest processing capabilities and RAM for the
data warehouse at a single node. Association rule mining, too, is mostly done in
centralized environment. Different techniques of centralized mining of association rules
are devised so far, like Apriori, Sampling, Partitioning, Data parallelism, Task parallelism
etc. Today there are several efficient algorithms that cope with the popular and
computationally expensive task of association rule mining. Actually, these algorithms are
more or less described on their own. The study of few research papers of the centralized

architecture of the association rule mining is given below:

2.1.1 Fast Algorithms for Mining Association Rules

Agarawal and Srikant; (1994) discussed Apriori algorithm [6] in this paper. It is termed as
the pioneer work. All other subsequent algorithms are the adaptation of Apriori to some
extent. This algorithm counts item occurrences from the database to determine large 1-
itemset in first pass. In the next pass, the algorithm generates candidate itemsets and
checks the support count.

This algorithm uses a special function, apriori-gen () and candidate itemsets of previous
pass to generate large itemsets. It joins the previously determined large itemsets to make
the candidate itemsets. It stores the candidate itemsets in a Hash tree. The node of Hash
tree consists of either a list of itemsets i.e. a leaf node or a hash table i.e. an interior node
.All initially created nodes are in the form of leaf nodes. Itemsets are stored in leaves. In a
leaf node when the number of itemsets increases a predefined threshold then the leaf node
is changed into an interior node Also, it generates multiple consequent association rules.
It works efficient in earlier passes.

Another version of Apriori, AprioriTid, is also discussed in this paper, which works in the
same way as Apriori, but does not use the database for counting support after the first
pass. Instead it uses the pair of itemset and their TIDs for this purpose. Two additional
fields are maintained for each candidate itemsets i.e. generators and extensions. It works
efficiently in later passes. When Apriori switches to AprioriTid, it involves a cost.
AprioriHybrid is another variant of the same algorithms, which combines the best

features of both Apriori and AprioriTid, i.e., using Apriori in earlier iterations and

Comparative Study of Randomized PARTITION with CMA 24

Chapter 2 Literature Survey

AprioriTid in later ones, to enjoy more benefits from both algorithms. Basically in
AprioriHybrid, it switches to AprioiTid when it expects that the set of candidate itemsets
at the end of the pass will fit in memory. Experimental results show that AprioriHybrid
has excellent performance and good linearly scale-up properties over large databases in
real applications. In addition the execution time decreases a little as the number of items
in the database increases. As the average transaction size increases (while keeping the
database size constant), the execution time increases only gradually. The experiments
showed the feasibility of using AprioriHybrid in real applications involving very large

databases.

2.1.2 An Effective Hash-Based Algorithm for Mining Association Rules

Park et al; (1995) presented DHP (Direct Hashing and Pruning) algorithm [7], which is an
extension of Apriori. It is confined to the generation of large itemsets, the step one of the
mining association rules. It deals with the itemsets generation up to 2-itemsets. It also
uses the Apriori_gen () and Subset () function as used in the base algorithm, Apriori.
Efficient generation of large itemsets more efficiently and reduction of the transaction
database are the major features of this algorithm.

It uses hashing technique for generation of candidate itemsets, especially for 2-itemsets
and for reducing the database size. This technique filters out unnecessary itemsets for
next candidate itemset generation. When the support of candidate k-itemsets is counted
by database scanning, DHP accumulates information about candidate (k+1) itemsets in
advance. After some pruning all possible (k+1) itemsets of each transaction are hashed to
a hash table. Hash table building is a unique feature of DHP that is used by the next pass.
It uses the effective pruning techniques to progressively shrink the size of transaction
database. The candidate itemsets generated by previous algorithms was very large so
tracking of k-itemsets in each transaction was not easy. Whereas DHP trims the database
right after generation of large 2-itemsets, so the cost of computation is reduced for the
subsequent iterations. As DHP generates Hash table in its first pass for storage of
candidate sets, it takes a bit longer time in first pass than Apriori, but its execution time
for later iterations is much faster than Apriori.DHP is particularly powerful to determine

large itemsets more efficiently in early stages to improve performance bottleneck.

Comparative Study of Randomized PARTITION with CMA 25

(\

Chapter 2 Literature Survey

2.1.3 An Efficient Algorithm for Mining Association Rules in Large

Databases

Savasere et al., (1995) presented PARTITION algorithm [8] in this paper. This algorithm
takes two database scans. Firstly, for generation of all potentially large itemsets and store
it as a set, this set is the superset of all the large itemsets. Secondly, to measure the
support of these itemsets and storing them in their respective counters created.

The working of this algorithm is divided in two phases. In phase I, PARTITION
algorithm divides database into non-overlapping partitions. At the end all itemsets are
merged to form the set of all potentially large itemsets. The phase II generates the actual
support of these itemsets, to identify large itemsets. The partition sizes are chosen such
that each partition can be accommodated in the main memory so that the partitions are
read only once in each phase.

The database is read once in phase I and once in phase II. The small itemsets are pruned
out. For each itemset, is associated its sorted TID list. A TID list for itemset | contains the
TIDs of all transactions that contain the itemset 1 within a given partition. To count the
support of all itemsets in a partition, this algorithm divides the cardinality of TID list by
the total number of transactions in that partition. Initially, the tidlists for 1-itemsets are
generated directly by reading the partition. The tidlist for a candidate k-itemset, is
generated by joining the tidlists of the two (k-1)-itemsets that were used to generate the
candidate k-itemset.

In phase I the algorithm takes partitions one by one and applies the function
gen_large itemsets () to generate local large item sets as the output. All the local itemsets
of the same length from the partitions are combined to generate the global candidate
itemsets in the merge phase. In phase II the algorithm sets up counters for each global
candidate itemset and counts their support for the entire database and generates the global
large itemsets. The algorithm reads the entire database once during phase I and once

during phase II.

2.2 Distributed Architecture of Association Rule Mining

In distributed environment, the data distribution is done either homogeneously
(horizontally partitioned) or heterogeneously (vertically partitioned) across the different
nodes of a network, so the problem that arises in a single huge database is solved to some

extent. But due to data skewness property it gives rise to another problem, i.e. the itemset

Comparative Study of Randomized PARTITION with CMA 26

Chapter 2 Literature Survey

found to be large at one node, need not be so in the entire network. So in order to
determine that whether the locally large itemset is also globally large or not, all the nodes
broadcast their large itemsets across the network. This process results in increased
message passing which increases the cost factor. Typically communication is a
bottleneck. It is commonly assumed that each site stores its data in tables. Both
assumptions i.. homogenous and heterogeneous adopt the conceptual viewpoint that
tables at each site are partitions of a single global table. In the homogeneous case the
global table is horizontally partitioned. The tables at each site are subsets of the global
table. They have exactly the same attributes. In the heterogeneous case, the table
vertically partitioned, each site contains a collection of columns (sites do not have the
same attributes).however each tuple at each site is assumed to contain a unique identifier
to facilitate matching across sites. Matched tuples contain the same identifiers.
Distributed/parallel ARM algorithms may entail much exchange of data (messaging) as
the algorithm proceeds. Messaging represents a significant computational overhead (in
some cases out weighing any other advantage gained). Usually, the number of messages
sent is a much more significant performance factor than the size of the content of the
message. It is therefore expedient, in the context of the techniques described, to minimize
the number of messages that are required to be sent.

In distributed data warehouses, the data mining techniques for association rule mining are
mostly adapted from centralized environment, and modified in order to meet the needs of
the distributed architecture. Although a little, but the comprehensive work done so far in
the distributed environment is also considered in this research. The literature surveyed for

distributed association rule mining is as follows:

2.2.1 Fast Sequential and Parallel Algorithms for Association Rule
Mining: A Comparison

Andreas Mueller (1995) presented a comparison of sequential and parallel algorithms [9]
of association rule mining. In the first part of this research work a non_partitioning
algorithm SEAR (Sequential Efficient Association Rules) having a new prefix-data
structure is compared with a TID-list and partitioning based algorithm called SPTID
(Sequential Partitioning with TID).According to this research partitioning algorithms
reduces the /O cost but when the number partitions is increased CPU overhead is also

increased. As most algorithms are CPU bound, they make the performance slower as a

Comparative Study of Randomized PARTITION with CMA 27

Chapter 2 Literature Survey

result an increase in execution time. TID-list algorithm performs efficiently with
partitioning, but partitioning overhead makes the performance slower. As compared to
TID-lists, ITEM-lists by using pass bundling can minimize I/O and CPU overhead. They
implemented parallel algorithms PPAR and SPEAR. They showed that these algorithms
are not only easier to parallelize but obtained good speed-ups and scale up results, further
when parallel version of SEAR is compared with SPEAR, SEAR performed better than

parallel SPEAR at the expense of communication cost.

2.2.2 Efficient Mining of Association Rules in Distributed Databases

Cheung et al. (1996) enhanced their previous work discussed in [10] in this paper. DMA
(Distributed Mining of Association Rules) algorithm is presented to cope with the
previous problem. The performance of DMA is compared with CD algorithm. In DMA,
to generate candidate itemsets, apriori-gen () is not applied directly, rather it is applied in
such a way that it minimizes the candidate set to a greater extend than in the case of direct
application of apriori-gen().

In DMA, polling site technique is used to determine heavy itemsets. After local pruning,
each site computes candidate set itemsets along with their support counts and sends it to
their corresponding polling site. After receiving it, polling site sends polling request to the
rest of sites to send the support count for that itemsets. As all the sites are already having
the support counts of all itemsets so reply to polling request is sent by those remaining
sites as well. The polling site then computes the global count, determines the heavy
itemsets and broadcasts those heavy itemsets along with their global support counts to all
the sites. In the whole procedure, the database partition at each site is scanned only once
for calculating the support count and then those counts are stored in hash tree. This hash
tree contains the support counts of both the heavy itemsets at that site and heavy itemsets
at some other site. The later are stored in order to entertain the polling requests made by
the remote sites so one database scan is done to compute the support counts of itemsets
and are stored in the hash tree and retrieved from that hash tree when required. This
optimizes the database scanning required for count exchange, which is equivalent as that
done in the sequential algorithms.

Performance of DMA is tested in two ways i.e.

1) With fixed number of sites and varying support threshold and the size of database.

2) With different number of sites and fixed support threshold and database size.

In both cases DMA performs better than CD.

Comparative Study of Randomized PARTITION with CMA 28

G032

/'1.

Chapter 2 Literature Survey

2.2.3 Parallel Mining of Association Rules

Agrawal and Shafer;(1996) described association rule-mining problem on a shared-
nothing multiprocessor in this paper [11]. Three parallel algorithms were studied for
experiments based upon the best sequential algorithm called Apriori for experiments.
These algorithms are the Count distribution, the Data distribution and the Candidate
distribution. These algorithms were compared according to communication, computation,
memory usage, synchronization and problem specific information usage. Count
distribution uses replication, as a result-of replication communication cost is reduced.
Data distribution algorithm takes a specific portion of the candidate set by using the
counter approach. This makes the aggregate-memory usage high but at the expense of
high communication cost. Candidate distribution algorithm increases aggregate memory
usage, decreases high communication cost and removes the synchronization costs
completely. These three algorithms were implemented on 32-node SP2 parallel machine.
In performance results the Count distribution showed the linear scale up, good size up and
speed-up behavior, this makes it as the best choice as compared to other two parallel

algorithms.

2.2.4 Parallel and Distributed Association Mining: A Survey

J.Zaki; (1999) presented the survey of parallel and distributed association rule mining
algorithms [12] in this paper. After detail study these algorithms are divided into groups
according to the techniques utilized. Existing mining methods are described according to
the database structure, search, techniques used complexity and either they are specified on
all or maximal patterns. Further this paper provides the design space of parallel and
distributed algorithms either they are implemented on distributed or shared-memory
architecture, parallelism applied i.e. task or data and the load balancing strategy either it
is static or dynamic. Shared memory architecture gives programming simplicity, but at
the expense of scalability. A distributed memory, message-passing architecture removes
the scalability problem, but at the cost of programming simplicity. The aim of this paper
is to provide a reference and describes the challenges and problems in the fields of

association rule mining.

Comparative Study of Randomized PARTITION with CMA 29

Chapter 2 Literature Survey

2.2.5 Association Rule Mining in Centralized Databases

Jamshaid et al; (2007) presented CMA (Centralized Mining of Association-Rules)
Algorithm [13] in this paper. The technique of PARTITION algorithm [9] of centralized
database area is taken for partitioning the huge database and then, the DMA algorithm
[10] of distributed database environment is applied on each partition. This technique

improves the database scans as it takes just a single database scan over each partition.

2.3 Problem Statement

Association rule mining is decomposed into two steps:
All the itemsets that have support above the user specified minimum support are
generated. These itemsets are called large itemsets. All the others are said to be small.

From these large itemsets, generate the association rules as follows:

For a large itemset X, and any YcX, if support(X)/support(X-Y) >minimum_confidence

then the rule X-Y=>Y is a valid rule.

From the literature surveyed, it is obvious that the first step dominates the efficiency of
the whole algorithm. If the number of candidate itemset is small and to-the-point, the
rules generated on the basis of these itemsets would be the exact ones. There will be a
little effort spent on pruning the small itemsets during the iteration of algorithm in k steps.
After the creation of large itemsets, it is straightforward to generate rule out of it, using
the above-mentioned formula.

Firstly, the items are extracted from the database, then their support is counted from the
database, then 2-itemsets are created, and upto k itemset creation the database is scanned
again and again, i.e., the same is done for every iteration. As it is obvious that the mining
of association rules is not done on a small database rather it could be on a huge database,
or a Data warehouse, or some distributed database with multiple nodes. So this multiple
scan of database physically means a lot.

For Apriori discussed in [6], the database of transactions is scanned entirely for each pass,
as in first pass database is scanned twice, so it means for 10 iterations, 10 +1 scans of the
entire database are done.

AprioriTid algorithm which is the variant of Apriori does not scan the database after the

1% pass. Rather, the transaction id & candidate large k-itemsets present in each transaction

Comparative Study of Randomized PARTITION with CMA 30

Chapter 2 Literature Survey

are generated in every pass, but AprioriTid’s performance is not better than Apriori’s in
initial stages, as there are too many candidate k-itermsets to be tracked during the early
stages of the process.

Apriori Hybrid algorithm combines the best features of both Apriori and AprioriTid i.e.
Apriori in early iterations and AprioriTid in later ones, but still the challenge is to
determine the switch over point between the two algorithms.

The problem of efficient itemset generation is tackled up to 2-itemset generation only in
(71.

According to literature surveyed for n iterations Apriori algorithm takes n+1 database
scans, PARTITION algorithm takes two database scans and CMA does only one database
scan over each partition.

In literature survey it is proved that large itemsets generation is the main problem in
generation of the association rules in large databases. It involves many problems like the
candidate sets created for generation of large itemsets are very large; the database is
supposed to be scanned again and again in order to create candidate sets and to generate

their support counts.

Comparative Study of Randomized PARTITION with CMA 31

Chapter 3
m

Problem Domain and Proposed Solution

Chapter 3 Problem Domain and Proposed Solution

3. Problem Domain and Proposed Solution

In data mining and treatment learning, association rules are used to discover elements that
co-occur frequently within a data set consisting of multiple independent selections of
elements (such as purchasing transactions), and to discover rules, such as implication or
correlation, which relate co-occurring elements. Questions such as "if a customer
purchases product A, how likely is he to purchase product B?" and "What products will a
customer buy if he buys products C and D?" are answered by association-finding
algorithms. This application of association rule learners is also known as market basket
analysis. As with most data mining techniques, the task is to reduce a potentially huge
amount of information to a small, understandable set of statistically supported statements.

Association rules are "if-then rules" with two measures which quantify the support and
confidence of the rule for a given data set.

Association analysis has been broadly used in many application domains. One of the best
known is the business field where the discovering of purchase patterns or associations
between products is very useful for decision making and for effective marketing. In the
last few years the application areas have increased significantly.

The market-basket problem represents an attempt by a retail store to learn what items its
customers frequently purchase together. The goal is an understanding of the behavior of
typical customers as they navigate the aisles of the store. For instance, if customers
frequently buy hamburgers and ketchup together, then it might be supposed that many
customers will walk from onto the other. If the store owner puts high-prot items tempting
to such customers, e.g., relish, between, and then they might induce more impulse buying
and thus increase ports.

Market basket analysis (MBA) is a tool used in data mining to find non-obvious statistical
relationships between items by looking at how often two or more items appear in the
same context or were interacted with during the same browsing or shopping session.

In market basket analysis, there is a collection of sets ("baskets") and the elements which
often occur together in these sets is to be found. For example, grocery stores want to
know what items a person is likely to buy within the same trip. They can put these items
closer together in the store or in some cases farther apart so that more of the store is seen.
They can put certain items on sale, with the expectation that people will buy certain other

items which are not on sale. If the store has a way of identifying, such as with an

Comparative Study of Randomized PARTITION with CMA 33

Chapter 3 Problem Domain and Proposed Solution

advantage card, a market basket could extend over multiple purchases. These associations
are used to trigger coupon suggestions. In e-commerce, the store always knows who you
are, so this data is easy to gather. They can dynamically modify their web site to suggest
other items which are likely to be bought.

By definition, association rule mining discovers frequent patterns with frequency above
the minimum support threshold. Therefore, in order to find associations involving rare
events, the algorithm must run with very low minimum support values. However, doing
so could potentially explode the number of enumerated item sets, especially in cases with
large number of items. That could increase the execution time significantly. Therefore,
association rule mining is not recommended for finding associations involving "rare"
events in problem domains with large number of items. However, there are ways to
restrict the item set enumeration to a smaller set if the "rare" events of interest are known.

One could also use association rules to perform "partial classification" of the rare events.

3.1 Problem Domain

There are some important issues in association rule mining those should be considered
while devising an efficient association rule mining algorithm as the performance of the

algorithm may affect .Some of the issues are:

3.1.1 Size of Data Sets

A large data set might contain a few hundred points. Certainly a data set of a few
thousand would be large. Modern databases often contain millions of records. Indeed,
nowadays gigabyte or terabyte databases are by no means uncommon. Human genome
project has already collected gigabytes of data.

Numbers like these clearly put into context the futility of standard statistical techniques.
Something new is called for. Data sets of these sorts of sizes lead to problems with which
statisticians have not typically had to concern themselves in the past. An obvious one is
that the data will not at all fit into the main memory of the computer, despite the recent
dramatic increases in capacity. This means that, if all of the data is to be processed during
an analysis, adaptive or sequential techniques have to be developed. Adaptive and
sequential estimation methods have been of more central concern to non statistical
communities. Especially to those working in pattern recognition and machine learning.
Data sets may be large because the number of records is large or because the number of

variables is large. (Of course, what is a record in one situation may be a variable in

Comparative Study of Randomized PARTITION with CMA 34

Chapter 3 Problem Domain and Proposed Solution

another, depending on the objectives of the analysis.) When the number of variables is
large, the curse of dimensionality really begins to bite- with 1,000 binary variables. The
problem of limited computer memory is just the beginning of the difficulties that follow
from large data sets. Perhaps the data are stored not as the single flat file as beloved of
statisticians, but as multiple interrelated flat files.
Since association rule algorithms work by iterative enumeration, they work best for
sparse data sets, that is, data sets where each record contains only a small fraction of the
total number of possible items (if the total number of items is very large). Algorithm
performance degrades exponentially with increasing number of frequent items per record.
Therefore, to get good runtime performance, one of the following conditions should hold:
o If the data set is dense, the number of possible items is small.
¢ If the number of possible items is large, the data set is sparse.
The data set becomes progressively sparser with increasing item set length due to the
application of the minimum support threshold. The last condition holds for higher

minimum support values.

3.1.2 Contaminated Data

Clean data is a necessary prerequisite for most statistical analysis. Entire books, not to
mention careers, have been created around the issues of outlier detection and missing
data. An ideal solution, when questionable data items arise, is to go back and check the
source. In the data mining context, however, when the analysis is necessarily secondary,
this is impossible. Moreover, when the data sets are large, it is practically certain that
some of the data will be invalid in some way. This is especially true when the data
describe human interactions of some kind, such as marketing data, financial transaction
data, or human resource data. Contamination is also an important problem when large
data sets, in which seeking weak relationships, are involved. Suppose, for example, that
one in a thousand records have been drawn from some distribution other than that which
has been drawn from. One-tenth of 1% of the data from another source would have little
impact in conventional statistical problems, but in the context of a billion records this
means that a million are drawn from this distribution. This is sufficient that they cannot

be ignored in the analysis.

Comparative Study of Randomized PARTITION with CMA 35

Chapter 3 Problem Domain and Proposed Solution

another, depending on the objectives of the analysis.) When the number of variables is
large, the curse of dimensionality really begins to bite- with 1,000 binary variables. The
problem of limited computer memory is just the beginning of the difficulties that follow
from large data sets. Perhaps the data are stored not as the single flat file as beloved of
statisticians, but as multiple interrelated flat files.
Since association rule algorithms work by iterative enumeration, they work best for
sparse data sets, that is, data sets where each record contains only a small fraction of the
total number of possible items (if the total number of items is very large). Algorithm
performance degrades exponentially with increasing number of frequent items per record.
Therefore, to get good runtime performance, one of the following conditions should hold:
o If the data set is dense, the number of possible items is small.
o If the number of possible items is large, the data set is sparse.
The data set becomes progressively sparser with increasing item set length due to the
application of the minimum support threshold. The last condition holds for higher

minimum support values.

3.1.2 Contaminated Data

Clean data is a necessary prerequisite for most statistical analysis. Entire books, not to
mention careers, have been created around the issues of outlier detection and missing
data. An ideal solution, when questionable data items arise, is to go back and check the
source. In the data mining context, however, when the analysis is necessarily secondary,
this is impossible. Moreover, when the data sets are large, it is practically certain that
some of the data will be invalid in some way. This is especially true when the data
describe human interactions of some kind, such as marketing data, financial transaction
data, or human resource data. Contamination is also an important problem when large
data sets, in which seeking weak relationships, are involved. Suppose, for example, that
one in a thousand records have been drawn from some distribution other than that which
has been drawn from. One-tenth of 1% of the data from another source would have little
impact in conventional statistical problems, but in the context of a billion records this
means that a million are drawn from this distribution. This is sufficient that they cannot

be ignored in the analysis.

Comparative Study of Randomized PARTITION with CMA 35

Chapter 3 Problem Domain and Proposed Solution

3.1.3 Data Quality

Data quality is a multifaceted issue that represents one of the biggest challenges for
association rule mining. Data quality refers to the accuracy and completeness of the data.
It can also be affected by the structure and consistency of the data being analyzed. The
presence of duplicate records, the lack of data standards, the timeliness of updates, and
human error can significantly impact the effectiveness of the more complex data mining
techniques, which are sensitive to subtle differences that may exist in the data. To
improve data quality, it is sometimes necessary to “clean” the data, which can involve the
removal of duplicate records, normalizing the values used to represent information in the
database (e.g., ensuring that “no” is represented as a 0 throughout the database, and not
sometimes as a 0, sometimes as a N, etc.), accounting for missing data points, removing

unneeded data fields, identifying anomalous data and standardizing data formats.

3.1.4 Interoperability

Related to data quality, is the issue of interoperability of different databases and data
mining software. Interoperability refers to the ability of a computer system and/or data to
work with other systems or data using common standards or processes. Interoperability is
a critical part of the larger efforts to improve interagency collaboration and information
sharing through e-government and homeland security initiatives. For data mining,
interoperability of databases and software is important to enable the search and analysis
of multiple databases simultaneously, and to help ensure the compatibility of data mining
activities of different agencies. Data mining projects that are trying to take advantage of
existing legacy databases or that are initiating first-time collaborative efforts with other
agencies or levels of government (e.g., police departments in different states) may
experience interoperability problems. Similarly, as agencies move forward with the
creation of new databases and information sharing efforts, they will need to address
interoperability issues during their planning stages to better ensure the effectiveness of

their data mining projects.

3.1.5 Multiple Database Scans

As association rule mining helps to find the hidden associations between items and
generate association rules. Firstly different items are examined as whether they are

frequently sold items or not. Then the frequently sold items are examined together to find

Comparative Study of Randomized PARTITION with CMA 36

Chapter 3 Problem Domain and Proposed Solution

out the confidence between two large itemsets. For the large 2-itemsets, confidence level
is measured, and then large 3-itemsets are found, and so on, up till large k-itemsets.
Before generating a particular large itemset, its respective candidate itemset is generated
first. During all this process, the database is scanned again and again. Multiple disk I/Os
are never appreciated in the computing world; no matter how much smaller is the size of
that file. As in data mining, data is extracted from a huge database so the primary task
should always be to minimize the database scans, the disk 1/Os, and not the query

execution time.

3.1.6 Large Candidate Set Size

Generation of large itemsets is found on the basis of their respective candidate sets. For
example, in order to generate large 3-itemset, its candidate 3-itemset is considered, which
is created from large 2-itemset. This shows that candidate set plays a vital role in
calculating the efficiency of the algorithm. In order to have an efficient algorithm for
association rule mining, efforts should be made to generate accurate and smaller

candidate sets, having almost all the candidate items that should be the large items as

well.

3.1.7 Data for Association Models

Association models are designed to use sparse data. Sparse data is the data for which only
a small fraction of the attributes are non-zero or non-null in any given row. Examples of
sparse data include market basket and text mining data. For example, a market basket
problem, there might be 1,000 products in the company's catalog, and the average size of
a basket (the collection of items that a customer purchases in a typical transaction) is 20
products. In this example, a transaction/case/record has on average 20 out of 1000
attributes that are not null. This implies that the fraction of non-zero attributes on the table
(or the density) is 20/1000, or 2%. This density is typical for market basket and text
processing problems. Data that has a significantly higher density can require extremely
large amounts of temporary space to build associations.

Association models treat NULL values an indication of sparse data. The algorithm doesn't
handle missing values. If the data is not sparse and the NULL values are indeed missing
at random, it is necessary to perform missing data imputation (that is, "treat" the missing

values) and substitute the NULL values for a non-null value.

Comparative Study of Randomized PARTITION with CMA 37

Chapter 3 Problem Domain and Proposed Solution

3.1.8 Algorithm Execution Time

As the data warehouse contains the huge data gluts more than of twenty years so the
algorithm execution time is not an issue. As the data mining queries are helpful in
decision making. A decision whether it is good or bad can change the over all shape of
the business, hence has a long lasting effect on it. When a company wants to invest its
products in a foreign country, the businessmen want to know whether it will be a
profitable decision or not? To answer such type of queries, they need to consider few
factors. Like, what is the annual sale of those products there and what is their standard?
To get such queries answered, a huge database needs to be considered; having records of
some 10-20 years, and such queries would take at least a month to be answered. Whereas,
using some data mining algorithm, results could be efficiently and quickly generated. The
algorithm will tell them the required details quickly which will finally help the
businessmen to decide whether to invest there or not, in a very short time as compared to

manual calculation.

3.1.9 Accurate Number of Partitions

Partition splits the database, whereas this optimization helps to cope with large databases
it adds the additional overhead of an extra pass to determine the globally frequent
itemsets. In other words partitioning is the technique of dividing the dense centralized
database into a number of partitions, and then executing the algorithm on each partition
by bringing the partitions one by one in the memory. A partition once brought into the
memory for execution must not be brought again. Also care must be taken while making
partitions so that the made partition should fit well in to the memory, and hence the need
for bringing a partition rapidly into the memory is minimized. In the case of partitions
that can hold many possible data values analysis is more complex, because query
predicate values are not guaranteed to coincide with partition boundary values. Thus in
the first case, in order to determine an appropriate number of partitions for a column one

is led to analyze how the average scan time of a set of range queries of a given size varies

with number of partitions.

Comparative Study of Randomized PARTITION with CMA 38

Chapter 3 Problem Domain and Proposed Solution

3.1.10 Data Skew

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A
distribution, or data set, is symmetric if it looks the same to the left and right of the center
point. One of the major problems of the PARTITION algorithm is data skew, which
refers to the irregularity of data distribution over the entire database.

3.1.10.1 Outliers

An outlier is an observation that lies outside the overall pattern of a distribution. Usually,
the presence of an outlier indicates some sort of problem. This can be a case which does
not fit the model under study or an error in measurement. Qutliers are uncommon
observations that are clearly separated from the bulk of the data. Outliers in the data may
be due to recording errors or system noise of various kinds, and as such need to be
cleaned as part of the extract, transform, clean and load (ETCL) phase of the data
mining/KDD process. On the other hand an outlier or small group of outliers may be quite
error-free recordings that represent the most important part of the data that deserve further
careful inspection, e.g., an outlier might represent an unusually high response to a
particular advertising campaign, or an unusually effective dose-response combination in a
drug therapy. Either way, it is quite important in data mining to detect outliers in large
amounts of highly multi-dimensional data. The multidimensional aspect of the data makes
this task particularly challenging. This is because highly important and influential outliers
can be completely hidden in one-dimensional views of the data, which renders ineffective
one-dimensional outlier detection based on scanning one field (variable, attribute) at a
time. Furthermore, classical statistical methods and most traditional data mining methods
lack robustness toward outliers, and have very little power to detect outliers.

3.1.10.2 How to Overcome Data Skew?

Data skew can cause the algorithm to generate many false candidate itemsets. One way to
overcome the data skew is the randomization of data across all partitions. However, this
conflicts with the goal of exploiting sequential I/O to speed up reading the database. Even
without data skew, unless each item is distributed rather uniformly over database, and the
size of each partition is large enough to capture this uniformness, the chance of a local
large itemset being a global large itemset can be small, and the number of candidate
itemset generated can be very large. However, this conflicts with the main idea of

partitioning: processing one partition in memory at a time to avoid multiple scans over
database from disk.

Comparative Study of Randomized PARTITION with CMA 39

Chapter 3 Problem Domain and Proposed Solution

The skewness for a normal distribution is zero, and any symmetric data should have
skewness near zero. Negative values for the skewness indicate data that are skewed left
and positive values for the skewness indicate data that are skewed right. By skewed left, it
means that the left tail is long relative to the right tail. Similarly, skewed right means that
the right tail is long relative to the left tail. Some measurements have a lower bound and

are skewed right. For example, in reliability studies, failure times cannot be negative.

3.2 Proposed Solution

In this study, it is desired to be investigated that although the database scans are reduced
to half by CMA algorithm, but do it also perform efficiently like the previous work in the
field, i.e., the PARTITION algorithm. It means, it is aimed in this study to find out that
whether the computational efficiency of the CMA algorithm is better than that of
PARTITION algorithm or not.
PARTITION algorithm [8] was previously implemented on a Silicon Graphics Indy
R4400SC workstation with a clock rate of 150 MHz and 32 Mbytes of main memory. The
data resided on 1GB SCSI disk. Whereas CMA algorithm [13] was implemented on
Pentium IV system with 256 MB main memory, 40 GB disk capacity and in an
environment of Windows XP and MATLAB 7 and VB.NET.
In this study, Randomized PARTITION algorithm is implemented in the same
environment as CMA for comparison purpose. The same synthetic database is used as
was used for the implementation of CMA by Jamshaid et. al; (2007).
Following modules are the basic parts of this study:

¢ Implementation of Randomized PARTITION Algorithm

e Comparison of No. of Large Itemsets of Sequential PARTITIONS with No. of

Large Itemsets of Randomized Partitions
e Comparison of previously implemented PARTITION Algorithm with
Randomized PARTITION Algorithm

e Comparison of Randomized PARTITION Algorithm with CMA
In this study, the basic aim is to figure out the best work in the research area of
Association Rule Mining. It is one of the most interesting research area in Data Mining,
because it targets the problems of the retail industry directly, so the research should be
made in such a way that most benefits could be gained within little time span, but the

problem is that, association rule mining is done for searching the interesting patterns and

Comparative Study of Randomized PARTITION with CMA 40

Chapter 3 Problem Domain and Proposed Solution

associations among different data items. Apparently or through the use of some CASE
tool, these data items might not seem associated with each other. At the same time, these
data associations could not be over looked as these can cause a handsome increment in
the sales of the retail store for example. So it is to be searched for these patterns in the
entire data warehouse, containing the data of decades of the years. In this way, by
analyzing the conceptual resources, these data associations can be generated and can be
implemented for the good of the business. But the problem arises here that these
association finding techniques, or the association rule algorithms, take a lot of time and
resources for execution. So it requires a handsome financing for its execution, which
every retailer cannot afford. So the aim must always be to minimize the resource and time
consumption from these algorithms. For example, the AIS algorithm presented by R.
Agarwal et al. (1993) [4] takes n+1 database scans for n iterations in the execution of the
algorithm for the large itemsets generation. This requires larger RAM and disk space to
accommodate the data in the RAM for processing. As the large disks are unavoidable in
this scenario, so the efforts remain focus on minimizing the database scans taken by the
algorithm. Then comes Partitioning technique presented by Savasere et al. (1995), which
divides the entire large database in the number of partitions to find the large itemsets from
each partition one after another. So the requirement for the larger RAM capacities was
thus excluded.

The limitation with the PARTITION algorithm is that, although the authors have
discussed the importance of randomization of the database to avoid the data skewness, but
it is not mentioned in algorithm. Also in PARTITION algorithm hash structures are used

which are much time consuming and requires more memory for storage.

3.2.1 Randomization

Randomization of the database means to randomize the database from its original
sequential order. It means that, as the items purchased from a retail store are recorded in
the sequence of their actual sale transactions, so are available for analysis purposes in the
sequential order. There might come some severe conditions in which the sales of some
particular items boost, which are not heavily bought items in the normal circumstances.
By taking sequential partitions, we might get such items as large itemsets of that
particular partition, whereas in other partitions these items do not qualify to be the large
itemsets. So these large itemsets of one partition, produced as a result of abnormal

conditions, are termed as Outliers, which results in data skewness.

Comparative Study of Randomized PARTITION with CMA 4]

Chapter 3 Problem Domain and Proposed Solution

To avoid such outliers, the database needs to be randomized. By randomization of the
database, the entire database containing the data of decades of years, is shuffled so that
the records containing some abnormal data is randomized all around the database, and

hence eliminating the chance of data skewness.

3.2.3 PARTITION Algorithm

The idea behind PARTITION algorithm is as follows. Recall that the reason the database
needs to be scanned multiple number of times is because the number of possible itemsets
to be tested for support is exponentially large if it must be done in a single scan of the
database. PARTITION algorithm accomplishes this in two scans of the database. In one
scan it generates a set of all potentially large itemsets by scanning the database once. This
set is a superset of all large itemsets, i.e., it, may contain false positives. But no false
negatives are reported. During the second scan, counters for each of these itemsets are set
up and their actual support is measured in one scan of the database. The algorithm
executes in two phases. In the first phase, the PARTITION algorithm logically divides the
database into a number of non-overlapping partitions. The partitions are considered one at
a time and all large itemsets for that partition are generated. At the end of phase I, these
large itemsets are merged to generate a set of all potential large itemsets. In phase II, the
actual support for these itemsets is generated and the large itemsets are identified. The
partition sizes are chosen such that each partition can be accommodated in the main
memory so that the partitions are read only once in each phase. The algorithm reads the

entire database once during phase I and once during phase II.

3.2.2 CMA Algorithm

The CMA algorithm presented by Jamshaid et al; (2007) also divides the database into a
number of partitions after the randomization of the database. The large itemsets creation
and support count calculation, both are done in the single scan of the database in each
partition. The globally large itemsets are then calculated from those locally large itemsets.
This minimizes the database scans to the half, i.e., 50% database scans are decreased as

compared to the previous work done in this field.

Comparative Study of Randomized PARTITION with CMA 42

Chapter 3 Problem Domain and Proposed Solution

CMA’s Partitioning Algorithm’s Flow

greseeseees reereerens cresanens ceeenes Phase I
: e - i
: DB] DB ¢
: Randomization I Partitioning |
T T
: I Large Local ! :
; | | Itemsets ' H
: i Generation [
: Partition : | i :
: Creation : i i :
I Merging Large l
: : | Local Itemsets & |
: : i Generating Global P
Y : . Candidate Itemsets Sl

Large Itemsets : : | [
: Calculation along : i TETET -
: with support :
Count : Phase 11 :
: : P q i
: : [v I i
: : ! Count Supports 1
: A 4 : HE for Entire DB] ¢
: Global large . R |
: Itemsets : : i & I :
: : i Generation of P i
: i Global Itemsets P
4
f Result /
feesssecosccsersrriboncectcsarsarnnvens

Figure 1.1 Flow Charts of PARTITION, CMA, and Proposed Algorithms

Comparative Study of Randomized PARTITION with CMA 43

Chapter 4
—

Research Methodology

Chapter 4 Research Methodology

4. Research Methodology

Association rule mining is a two-step process:
o Finding all frequent itemsets: By definition, each of those itemsets will
occur at least as frequently as a pre-determined minimum support count.
e Generating strong association rules from the frequent itemsets: By
definition, these rules must satisfy minimum support and minimum

confidence.

4.1 Architectural Diagram

Architectural diagram of this study is given below:

Figure 4.1 Architectural Diagram

4.2 Main Modules

The main modules are as follows:
» Database Acquisition
Database Randomization

Partition Creation

Local Large Itemset Generation

vV V V V¥V

Global Large Itemset Generation

Comparative Study of Randomized PARTITION with CMA $

Chapter 4 Research Methodology

» Comparison of Randomized PARTITION Algorithm with Previously
Implemented PARTITION Algorithm
» Comparison of Randomized PARTITION Algorithm with CMA Algorithm

4.2.1 Database Acquisition

Synthetic database is used for this study. This is the same database as was used by CMA
algorithm. The database is created in MS Excel. The size of the database is 100,000
tuples. Records are in the form of <TID> <list of items>, where TID is the transaction
identifier of each record for its unique identification in the database, the primary key. The
synthetic database is actually the representative of the transaction database because it
represents the items that are purchased together in a single transaction, in the form of
literals. Instead of representing those transactions in the form of the actual items (like
Bread, Milk, and Butter etc.), synthetic database represents these items in the form of
literals. So a transaction of the Transaction database will be represented in the following
way in the Synthetic database:

Transaction database record= <T10056><Burger, Amrat, French Fries, Shashlik>.
Corresponding Synthetic database record= <T10056><A, B, D, E>.

So throughout the database, A, B, D, and E will be used to represent Milk, Butter, Bread,

and Corn Flakes, respectively.

4.2.2 Database Randomization

As transactions in a database are stored as the transactions physically occur, so this means
a page from the database is the snapshot of the transactions of some specific time period.
For example, during winters it is observed that the sales of blankets are much higher than
summer. So transactions occurred during winters will obviously demonstrate this
observation. This is not recommended for analysis. In this study, the database is going to
be randomized before analysis as sequential reading of database will render with the
items which might be frequently purchased during some specific time period, but actually
are not the frequently purchased items. To avoid such outliers, the database is
randomized. By randomization of the database, the entire database containing the data of
decades of years, is shuffled so that the records containing some abnormal data is
randomized all around the database, and hence eliminating the chance of data skewness.

This randomization of the records results in a database, having the records of same

Comparative Study of Randomized PARTITION with CMA 46

Chapter 4 Research Methodology

climatic conditions scattered over the database, so only the true frequently sold items of

the database are marked as frequent items.

4.2.3 Partition Creation

Partitioning is the technique of dividing the dense centralized database into a number of
partitions, and then executing the algorithm on each partition by bringing the partitions
one by one in the memory. In other words partitioning is the technique of dividing the
huge centralized database into a number of partitions in order to speed up the specified
processing. A partition once brought into the memory for execution must not be brought
again. Also care must be taken while making partitions so that the made partition should
fit well in to the memory, and hence the need for bringing a partition rapidly into the
memory is minimized. It is basically to help in memory management in case of having
huge data to be processed with low minimum primary memory. So, the huge data will be
processed in that memory.

The algorithm divides the database into four, non-overlapping, logical partitions. The
partition creation module stores its output in four different columns of a separate MS

Excel sheet.

4.2.4 Local Large Itemset Generation

This module creates the frequently occurred itemsets of the loaded partition. All the
itemsets, for which the condition X. Support > min_support holds, are marked as large
itemsets of the loaded partition. Major steps involved in the generation of local large
itemsets are:
4.2.4.1 Database Scan
In this step, the database is scanned for the first time in the course of execution of the
algorithm. Here, the database is the partition, just loaded into the memory. Database scan
performs the following two major tasks:
e Support Count
In this step, the algorithm counts the occurrences of each item in the loaded partition.
These occurrences are actually the supports of these items. On the basis of these

supports, the items are qualified as whether the large or the small itemsets.

Comparative Study of Randomized PARTITION with CMA 47

Chapter 4 Research Methodology

e Candidate Set Generation

Large itemsets are created on the basis of their respective candidate sets. Candidate

set is composed of the items that might possibly be the actually large itemsets. The

candidate set generation and the support count is done during the single database scan.
4.2.4.2 Large Items Computation
For the creation of large-1 itemsets, the candidate set is matched against the supports of
the items. If support of the item is greater than the minimum support specified by the
user, then the item is marked as large 1-itemset. All the rest of the items are pruned away,
hence minimizing the chance for the false candidates. The large items and their counts are
then stored in a structure.
For large 2-itemset calculation, candidate 2-itemset is created first. Candidate 2-itemset is
created by joining large 1-itemset with itself. It is denoted with I; * 1;. This joining will
result into a set of 2-items. E.g. if items {A, B, D, E} is a set of large 1-itemset then
candidate 2-itemset is {AB, AD, AE, BD, BE, DE}. Then their confidence is measured,
and qualifying items are marked as large 2-itemsets. Suppose itemset {AB, BD, DE} is
large 2-itemset. Then for the creation of large-3itemset, candidate 3-itemset will be
generated as {ABD, ADE, BDE}. From this candidate 3-itemset, large 3-itemset will be

generated and so on till k-itemset generation.

4.2.5 Global Large Itemset Generation

The large itemsets of all lengths from each partition are then considered globally, i.e.,
whether the locally large itemsets are also globally large or not? This module helps in
finding the most accurate itemsets so that the association rules could only be found
between those itemsets only.

4.2.5.1 Global Candidate Set Generation

In this step the large itemsets of same lengths for each partition, are merged together to
form global candidate itemsets of all lengths. If there are same large itemset in more than
one partition then their counts are added, making sure that each large itemset is stored
only once in each global candidate itemset. e.g. in partition 1 the large 1 itemset contains
A=50, partition 2 contains A=55,D=70 as large 1-itemsets, partition 3 contains B=60 as
large 1-itemset, partition 4 contains B=65, E=85. Then the global candidate large 1-
itemset will be {A=105, B=125, D=70, E=85}. Similarly global candidate 2-itemset is -

generated by merging the large 2-itemsets of all partitions then global candidate 3-itemset

Comparative Study of Randomized PARTITION with CMA 138

Chapter 4 Research Methodology

is generated by merging large 3-itemsets of all partitions and so on till global candidate k-
itemset generation.

4.2.5.2 Global Large Itemset Computation

All the items of candidate 1-itemset are then considered for the globally large 1-itemset.
The supports of all the items are merged from their respective supports, from each
partition. Then the items are matched against the condition X. Support > min_support,
where support is now the support of the item in the entire database. For all the items for
which the condition holds true are marked as globally large 1-itemsets. Same is done for

all lengths of itemset, till globally large k-itemset generation.

4.2.6 Comparison of Large Itemsets of Sequential and Randomized

Partitions

The large itemsets of sequential partitions are compared with large itemsets of
randomized partitions by randomizing database again and again and creating large
itemsets for different randomized partitions to see the effect of randomization on large

itemsets.

4.2.7 Comparison of Randomized PARTITION with Previously
Implemented PARTITION Algorithm

In this study, an improved version of PARTITION algorithm is implemented hence
improving the efficiency of previously implemented PARTITION algorithm and
minimizing the memory usage. In previous PARTITION algorithm the benefits of
randomization of database were discussed in detail but the algorithm was not doing
randomization of database. One more drawback was that previously implemented
PARTITION algorithm was using hash trees. i.c. if item A is large 1-itemset of partition 1
then the TIDs of all transactions containing item A in partition 1 will be stored against A
in a hash tree. Same process is done with all the large 1-itemsets of all other partitions and
then for all lengths of itemsets of all partitions. This consumes much memory. Time
efficiency of algorithm also reduces due to this large storage. To avoid this memory usage
count structure is used in the improved version of PARTITION algorithm. i.e. instead of
storing all the TIDs of each large itemsets their count is stored in a structure, reducing the

memory usage and increasing time efficiency for better performance and efficient results.

Comparative Study of Randomized PARTITION with CMA 49

Chapter 4 Research Methodology

In this study, Randomized PARTITION algorithm has been implemented. Logical non
overlapping partitions are created with both random and non random data. Results of both
randomized and non randomized partitions are compared to see the effect of data skew on

both locally and globally large itemsets.

4.2.8 Comparison of Randomized PARTITION with CMA Algorithm

The efficiency of Randomized PARTITION algorithm is compared with CMA.
PARTITION algorithm was previously implemented in Silicon Graphics Indy R4400SC
workstation with a clock rate of 150 MHz and 32 Mbytes of main memory. The data
resided on 1GB SCSI disk.

In this study Randomized PARTITION algorithm has been implemented in the same
environment as CMA except the partitioning of database that has been done in different
tool (i.e. CMA used DOTNET while Randomized PARTITION algorithm is using
MATLAB) for achievement of better performance and efficient results. This change in
partitioning technique increases the time efficiency of algorithm as compared to CMA. In
today’s world, time is an important factor. Along with the need of accurate results, time
efficiency matters a lot. It is important to have better results in less time and minimum cost.

Synthetic database is used for this study which is the same database as was used by CMA.

4.3 Algorithm

//Read database sequentially
Read_Database
Function [P]=Create_Partitions (rand)
Forx=1toP
Begin
Function Generate_Candidate Itemsets Ci for p«
Fori=l1tok
Begin
//Generate local large itemsets Li for pi from Ci and store item and its
count in structure Si
Function [Si]=Gen_Local Large Itemset Li
End
End

//Merge local large itemsets to form global candidate itemsets Gi_C

Comparative Study of Randomized PARTITION with CMA 50

Chapter 4

Research Methodology

Function [Gi_C]=Merge large_itemsets(Li)
//Generate globally large itemsets Gi from Gi_C
Gi=Gen_Global_Large_itemset (Gi_C)
Algorithm for Database Partitioning
If rand=0

Create logical sequential partitions
Else

Randomize database

Create logical non-overlapping randomized partitions
End

4.3.1 Notations Used

Notation Definition

Px Partitions (x=1 to 4)

Ci L Local Candidate itemset

Li Local large itemset

in particular partition pi

Si Structure for storing local large itemsets along with their counts

itemsets alonowith their counts

Gj_ C Global candidate itemset containing local large

Gi Globally large itemsets

Comparative Study of Randomized PARTITION with CMA

51

Chapter 5
—

Implementation

Chapter 5 Implementation

S. Implementation

Implementation includes all the details that were required to make the system operational.
The development tools and technologies used to implement the system and also reasons
for selecting particular tool are discussed. The modules being translated into the
implementation tool will also be described.

Software selection is very important step in developing a computer based system.
PARTITION algorithm was previously implemented in Silicon Graphics Indy R4400SC
workstation with a clock rate of 150 MHz and 32 Mbytes of main memory. The data
resided on 1GB SCSI disk.

As this is the comparative study so comparison could only be done if both algorithms run
on same environment. For this purpose the Randomized PARTITION algorithm is
implemented in the same environment as CMA to check the efficiency of both
algorithms. MS Excel and MATLAB 7 were chosen for implementation. The only
difference in environment of CMA and Randomized PARTITION algorithm was in the
partitioning technique used for partitioning the database. CMA used VB.Net for
partitioning while Randomized PARTITION algorithm has used MATLAB 7 for

partitioning in order to achieve efficient results.

5.1 MS Excel

Microsoft Excel (full name Microsoft Office Excel) is a spreadsheet program written and
distributed by Microsoft for computers using the Microsoft Windows operating system
and for Apple Macintosh computers. It features an intuitive interface and capable
calculation and graphing tools which, along with aggressive marketing, have made Excel
one of the most popular microcomputer applications to date. It is overwhelmingly the
dominant spreadsheet application available for these platforms and has been so since
version 5 in 1993 and its bundling as part of Microsoft Office.

MS Excel provides its built-in workbooks for storage of huge data in any or all of the
worksheets of workbook, as well as provides the facility to add more worksheet in a
workbook to fulfill the requirement of data. Then the mathematical, statistical or
accounting functions can be performed. The dataset that was used in this study for finding

large itemsets is in two excel sheets, as it consists of 1 lac records. After randomizing the

Comparative Study of Randomized PARTITION with CMA 33

Chapter 5 Implementation

data and creating partitions the final data is stored in sheet 3, this data set is then provided

to MATLAB for large itemset creation.

5.2 MATLAB 7.0

MATLAB integrates mathematical computing, visualization, and a powerful language to
provide a flexible environment for technical computing. The open architecture makes it
easy to use MATLAB and its companion products to explore data, create algorithms, and
create custom tools that provide early insights and competitive advantages.

MATLAB has evolved over a period of years with input from many users. In industry,
MATLARB is the tool of choice for high-productivity research, development, and analysis.
MATLAB features a family of add-on application-specific solutions called foolboxes.
Moreover toolboxes in MATLAB, allow one to learn and apply specialized technology.
These are comprehensive collections of MATLAB functions (M-files) that extend the
MATLAB environment to solve particular classes of problems. Areas in which toolboxes
are available include signal processing, image processing, image acquisition, control
systems, neural networks, fuzzy logic, wavelets, simulation, and many others.

MATLAB works best with arrays so it makes it much easier to deal with database records

from Excel sheet.

5.3 Working of Randomized PARTITION Algorithm

The number of records to be read is taken from user. Then local minimum support and
global minimum support is taken from user in percentage and actual local and global
minimum support is calculated on the basis of number of records to be read. For example
if the user wants 100,000 records to be read and gives the local minimum support as 50%
and global minimum support as 50%. The database is read in sequential order first. After
this actual local and global minimum support is calculated. That makes local minimum
support as 12500 and global minimum support as 50000. Then logical non overlapping
randomized or non randomized partitions are created depending upon user’s choice.
Partition size is chosen in such a way that for a specific time a whole partition can easily
reside in memory. Partition size should not be very small or very large, as small partitions
are negatively affected by data skew and in large partitions for intermediate results
processing buffer requirements can exceed the available space, so risk is involved in both

cases. In this study, the number of partitions is fixed i.e. four partitions are created. Then

Comparative Study of Randomized PARTITION with CMA 54

Chapter 5 Implementation

candidate large 1 itemsets are generated for all partitions. Then local large 1 itemsets are
generated containing items having their support greater than user defined minimum
support within each partition and the candidate itemsets whose minimum support is less
than user defined minimum support are pruned away. i.e. Itemsets whose transations are
greater than 12500 within an individual partition are considered as local large itemsets.
Here a count structure is used for large itemsets rather than storing TIDs in a Hash tree.
Storage of TIDs in hash tree is wastage of time and memory that’s why count structure is
used for finding large itemsets directly. Large 1 itemsets of all partitions are then merged
and stored in global candidate 1 itemset along with their counts for the generation of
globally large itemsets. The counts of same itemsets are added. From large 1 itemsets,
candidate large 2 itemsets are generated from which local large 2 itemsets are generated
for each partition. The process continues upto locally large k itemset generation. Finally
globally large itemsets are generated and global candidate itemsets having minimum
support less than user defined minimum support are pruned away. The database used for
this study is the one that was used by CMA(Centralized Mining of Association Rules)
presented by Jamshaid et. al (2007) for comparison purpose. The database contains 5
items and 100,000 records.

The code and its description is given below.

5.3.1 Read Database

This function reads the entire database sequentially and returns the transactions in an

array T. Code of this function is as follows:

function [T]=read_database(no_of records)
global T

="

% Read data from excel

if (no_of records>0) & (no_of records<=65536)
range=strcat("A1:B',num2str(no_of records));
[n,T]=xlIsread('dataset1.xls',1,range);

else
no_of records=no_of records-65536;
range=strcat('A1:B',num2str(no_of records));
[n,T1]=xIsread('Dataset1.xls',1,'’A1:B65536");
[n,T2]=xIsread('Dataset1.xIs',2,range);

Comparative Study of Randomized PARTITION with CMA 35

Chapter 5 Implementation

T=vertcat(T1,T2);
End

5.3.2 Create Partitions

This function takes rand as argument. If rand=0 then sequential, non overlapping
partitions are created otherwise T is first randomized and then logical non overlapping
partitions are created and an array of partition P is returned. Code of this function is given
as follows:
function [partitions |=create_partitions(rand_partition)
global T
global partitions
if rand_partition=—=0
% data not randomized

B=T;
else
% randomize data

B=random_array(T);
end
x=max(size(B));
partition_size=x/4;
%Create Partitions
range=strcat('A1:B',num2str(partition_size));
xIswrite('Dataset2 . xls',partitions{1,1},1,range);
range=strcat('C1:D',num2str(partition_size));
xIswrite('Dataset2.xls',partitions{2,1},1,range);
range=strcat('E1:F',num2str(partition_size));
xIswrite('Dataset2.xIs',partitions{3,1},1,range);
range=strcat('G1:H',num2str(partition_size));

xIswrite('Dataset2 xIs',partitions{4,1},1,range);

Comparative Study of Randomized PARTITION with CMA 56

Chapter 5

Implementation

5.3.3 Calculate User Defined Local min_sup

function txt_minsup_Callback(hObject, eventdata, handles)
global no_of records;

global min_sup;

user_entry = str2double(get(hObject,'string"));
if isnan(user_entry) |(user_entry<l) |(user_entry>100)
errordlg('Please enter a number b/w 1 and 100','Bad Input','modal’)
set(handles.txt minsup, 'String',");
else
min_sup=(user_entry/100)*(no_of records/4);

end

5.3.4 Calculate User Defined Global min_sup

function txt_g_minsup_Callback(hObject, eventdata, handles)
global no_of records;

global g_min_sup;

set(handles.btn_read, 'Enable’ ,'off);
user_entry = str2double(get(hObject,'string"));
if isnan(user_entry) |(user_entry<1) |(user_entry>100)
errordlg('Please enter a number b/w 1 and 100','Bad Input','modal’)
set(handles.txt_g_minsup, 'String' ,");
else
g_min_sup=(user_entry/100)*(no_of records);
set(handles.btn_read, 'Enable' ,'on");

end

Comparative Study of Randomized PARTITION with CMA

57

Chapter 5 Implementation

5.3.5 Finding Locally Large 1-itemset

This function takes partition as argument and creates large 1-itemset for that partition.

Code for this function is given as follows:

function [struct_largel | = large_litemset(p;)
s_cand_item=struct('it,{'A",B','C',/D",'E'});
struct_largel=find_item(pl,s_cand_item,1);

5.3.6 Finding Locally Large 2-Itemset

This function takes the partition, and large-1 itemset as argument and creates large 2-
itemset for that partition. Code for this function is given as follows:
function [struct_large2] = large_2itemset(p1,large_1)

%creates large 2-itemset

s_cand_item=struct('it',{});

struct_large2=struct('it, {},'cnt',{});

k=0;
Isize =max(size(large_1));
if (Isize >1)
% Create candidate itemset
for i=1: Isize -1
for j=i+1:indx
1_itemset=strcat(large_1(i).it,",’, large_1(j).it);
k=k+1;
s_cand_item(k).it=l_itemset;
|_itemset=",
end
end
%(Create large 2 itemset
struct_large2=find_item(p;,s_cand_item,2);
end

Comparative Study of Randomized PARTITION with CMA 58

Chapter 5 Implementation

5.3.7 Finding Locally Large 3-Itemset

This function takes partition and large 2-itemset as an argument and creates large 3-
itemset for that partition. Code for this function is given below:
function [struct_large3 | = large_3itemset(p1,large_2)
%creates large 3-itemset
s_cand_3item=struct('it',{});
struct_large3=struct('it',{},'cnt',{});
n=0;
Isize=max(size(large 2));
if Isize>1
chkflag=1;
for i=1:Isize-1
for j=i+1:lsize
strl=strcat(large_2(i).it,large_2(j).it);
strl=sort(strl);
strl=strrep(strl,’,",");
for k=1:max(size(str1))-1
if (strl(k)==str1(k+1))
strtemp=str1(k);
strl=strrep(strl,strl(k),");
str1=strcat(str1,strtemp);
strl=sort(strl);

=1
break;
else
p=0;
continue;
end
end
if (p==0)

str2=strcat(strl(1),',',str1(2),",',str1(3));
chkmerge=merge in_global(s_cand_3item,str2);

if chkmerge =1

Comparative Study of Randomized PARTITION with CMA 59

Chapter 5 Implementation

n=n+1;

s_cand_3item(n).it=str2;
end
str2=strcat(str1(1),",',str1(2),",',str1(4));
chkmerge=merge_in_global(s_cand_3item,str2);
if chkmerge =1

n=n+1;

s_cand_3item(n).it=str2;
end
str2=strcat(str1(1),',',str1(3),',',str1(4));
chkmerge=merge_in_global(s_cand_3item,str2);
if chkmerge =1

n=n+1;

s_cand_3item(n).it=str2;

end
else
str2=strcat(str1(1),',,str1(2),",',str1(3));
chkmerge=merge in_global(s_cand_3item,str2);
if chkmerge ==
n=n+1;
s_cand_3item(n).it=str2;
end
end

end
end
struct_large3=find_item(p1,s_cand_3item,3);

end

Comparative Study of Randomized PARTITION with CMA 60

Chapter 5 Implementation

5.3.8 Finding Locally Large 4-Itemset

This function takes partition and large 3-itemset as an argument and creates large 4-
itemset. Code for this function is given below:
function [struct_larged4 | = large_ditemset(p1,large_3)
% creates large 4-itemset
s_cand_4item=struct('it,{});
struct_larged4=struct('it',{},'cnt’,{});
n=0;
Isize=max(size(large 3));
if Isize>1
chkflag=1;
for i=1:1size-1
for j=i+1:Isize
str4=strcat(large 3(i).it,large 3(j).it);
str4=sort(str4);
str4=strrep(str4,',',");
k=1;
while k<max(size(str4))
if (stra(k)==strd(k+1))
strtemp=str4(k);
str4=strrep(str4,strd(k),");
strd=strcat(str4,strtemp);
str4=sort(str4);

end
k=k+1;
end
if (max(size(str4))>4)

str2=strcat(str4(1),',',str4(2),',',str4(3),',",str4(4));
chkmerge=merge_in_global(s_cand_4item,str2);
if chkmerge =1

n=n+l1;

s_cand_4item(n).it=str2;

end

Comparative Study of Randomized PARTITION with CMA 61

Chapter 5

Implementation

end

end

str2=strcat(strd(1),',’,str4(2),",',str4(3),',",str4(5));
chkmerge=merge in_global(s_cand_4item,str2);
if chkmerge =1

n=n+1;

s_cand_4item(n).it=str2;
end
str2=strcat(strd(1),',",str4(2),',',str4(4),',,strd(5));
chkmerge=merge_in_global(s_cand_4item,str2);
if chkmerge ==1

n=n+1;

s_cand_4item(n).it=str2;
end
str2=strcat(str4(1),',",str4(3),",',str4(4),',",str4(5));
chkmerge=merge _in_global(s_cand_4item,str2);
if chkmerge =1

n=n+1;

s_cand_4item(n).it=str2;
end
str2=strcat(str4(2),',,str4(3),',",str4(4),',",str4(5));
chkmerge=merge_in_global(s_cand_4item,str2);
if chkmerge ==

n=n+1;

s_cand_4item(n).it=str2;
end

elseif (max(size(str4))=—4)

str2=strcat(str4(1),',',str4(2),",',str4(3),',",str4(4));
chkmerge=merge_in_global(s_cand_4item,str2);
if chkmerge ==

n=n+l;

s_cand_4item(n).it=str2;
end

end

Comparative Study of Randomized PARTITION with CMA 62

Chapter 5 Implementation

struct_large4=find_item(p1,s_cand_4item,4);

end

5.3.9 Finding Locally Large k-Itemset

This function takes partition and large 4-itemset as an argument and creates large k-
itemset. Code for this function is given below:

function [struct_largek] = large_kitemset(T,large_4)

% creates large k-itemset

s_cand_kitem=struct('it',{});

struct_largek=struct('it',{},'cnt',{});

Isize=max(size(large 4));
if Isize>1
chkflag=1;
for i=1:1size-1
for j=i+1:1size
strS=strcat(large_4(i).it,large_4(j).it);
str3=strrep(strs,’,",");
k=1;
while k<max(size(str5))
if (strS(k)==str5(k+1))
strtemp=str5(k);
str5=strrep(str5,str5(k),");
stri=strcat(strs,strtemp);
str3=sort(str5);
end
k=k+1;
end
if (max(size(str5))==5)
strS=strcat(str5(1),',,str5(2),',",str5(3),",',str5(4),",',str5(5));
s_cand_kitem(1).it=strS5;
end
end

end

Comparative Study of Randomized PARTITION with CMA 63

Chapter 5 Implementation

struct_largek=find item(T,s_cand_kitem,5);

end

5.3.10 Finding Global Large Itemset

This function is used to create globally large itemsets. It takes global candidate itemset as
an argument and creates globally large itemset. The global candidate itemset was created
by merging the large itemsets of same lengths of all partitions.

function [g_large | = global_itemsets(g_cand)

% generates globally large itemsets

global g_min_sup;

g_large=struct('it',{});
n=0;
for i=1:max(size(g_cand))
if g_cand(i).cnt>g_min_sup
n=n+1;
g_large(n).it=g_cand(i).it;
end

end

Comparative Study of Randomized PARTITION with CMA 64

Chapter 5 Implementation

5.3.11 Call_Back Function of Sequential Button

This function calls the function to create sequential partitions and show them in list boxes
on the form. Code for the call back function of Sequential button is as follows:
function btn_sequential_Callback(hObject, eventdata, handles)
set(handles.txtStatus, 'String' ,'Creating non-randomized partitions, please wait...");
tic;

partitions=create partitions(0);

partition1=partitions{1,1};

set(handles.Ist_p1, 'String' ,strcat((partition1(:,1))," : ',(partition1(:,2))));
partition2=partitions{2,1};

set(handles.Ist_p2, 'String' ,strcat((partition2(:,1)),' : ',(partition2(:,2))));
partition3=partitions{3,1};

set(handles.lst_p3, 'String' ,strcat((partition3(:,1))," : ',(partition3(:,2))));
partition4=partitions{4,1};

set(handles.lst_p4, 'String' ,strcat((partitiond(:,1)),’ : ',(partition4(:,2))));

t=toc;

set(handles.txtStatus, 'String' ,'Sequential partitions created! Time taken to create
sequential partitions:');

set(handles.txt_time, 'String' ,t);

set(handles.txt_sec, 'String','Secs');

set(handles.btn_large, 'Enable' ,'on");

5.3.12 Call_Back Function of Randomized Button

This function calls the function to create randomized partitions and show them in list
boxes on the form. Code for the call back function of Randomized button is as follows:
set(handles.txtStatus, 'String’ ,'Creating randomized partitions...");

tic

partitions=create_partitions(1);

partitionl=partitions{1,1};

set(handles.Ist_p1, 'String' ,strcat((partition1(;,1))," : ',(partition1(:,2))));
partition2=partitions{2,1};

set(handles.Ist_p2, 'String' ,strcat((partition2(:,1)),' : ',(partition2(:,2))));
partition3=partitions{3,1};

Comparative Study of Randomized PARTITION with CMA 65

™~

Chapter 5 Implementation

set(handles.Ist_p3, 'String' ,strcat((partition3(:,1))," : ',(partition3(:,2))));
partition4=partitions{4,1};

set(handles.Ist_p4, 'String' ,strcat((partition4(:,1)),' : ',(partition4(:,2))));

t=toc;

set(handles.txtStatus, 'String' ,/Randomized partitions created! Time taken to create
randomized partitions:");

set(handles.txt_time, 'String’ ,t);

set(handles.txt_sec, 'String' ,'Secs");

set(handles.btn_large, 'Enable' ,'on");

5.3.13 Call_Back Function of Create Large Itemsets Button

When this button is pressed the local and global large itemsets are created and shown in
list boxes on the form.

function btn_large_Callback(hObject, eventdata, handles)
set(handles.txtStatus, 'String' ,'Creating large itemsets, Please wait...");
global partitions;

% global no_of records;

s_gcand_largel=struct('it',{},'cnt',{});
s_gcand_large2=struct('it',{},'cnt',{});
s_gcand_large3=struct('it',{},'cnt",{});
s_gcand_large4=struct('it',{},'cnt',{});
s_gcand_largek=struct('it',{},'cnt',{});

tic
% Local Large 1 itemset for partition 1
pl=partitions{1,1};
struct_largel _pl=large litemset(pl);
if isempty(struct_largel pl)
s1="No largel Itemsets';
else
s_gcand largel=struct_largel pl;
sl=rmfield(struct_largel pl,'cnt');
sl=struct2cell(s1);

end

Comparative Study of Randomized PARTITION with CMA 66

Chapter 5 Implementation

set(handles.Ist_11_pl, 'String' ,s1);

s1=";

% Local Large 2 itemset for partition 1

struct_large2 pl=large 2itemset(pl,struct_largel pl);

if issmpty(struct_large2 pl)
s2='No large2 Itemsets';

else
s_gcand_large2=struct_large2 pl;
s2=rmfield(struct_large2 pl,'cnt’);
s2=struct2cell(s2);

end

setthandles.lst_12_pl, 'String' ,s2);

s2=";

% Local Large 3 itemset for partition 1
struct_large3_pl=large 3itemset(pl,struct_large2 pl);
if isempty(struct_large3 pl)

s3="No large3 Itemsets';

else

s_gcand_large3=struct_large3_pl;
s3=rmfield(struct_large3 pl,'cnt’);
s3=struct2cell(s3);

end

set(handles.Ist_13_pl, 'String' ,s3);

s3=";

% Local Large 4 itemset for partition 1
struct_large4 pl=large 4itemset(pl,struct large3 pl);
if isempty(struct_large4 pl)
s4='No large4 Itemsets';
else

s_gcand larged4=struct_large4 pl;

Comparative Study of Randomized PARTITION with CMA 67

I~

Chapter 5

Implementation

s4=rmfield(struct_large4_ pl,'cnt');
s4=struct2cell(s4);

end

set(handles.Ist_14 p1, 'String' ,s4);

s4=";

% Local Large k itemset for partition 1
struct_largek pl=large_kitemset(p1,struct_large4_p1);
if isempty(struct_largek_p1)
sk="No large k Itemsets';
else
s_gcand_largek=struct_largek_pl;
sk=rmfield(struct_largek pl,'cnt");
sk=struct2cell(sk);
end
set(handles.Ist_lk_pl1, 'String' ,sk);

sk=";

% Local Large itemset for partition 2

p2=partitions{2,1};

struct_largel p2=large_litemset(p2);

if isempty(struct_large1l_p2)
s1="No largel Itemsets';

else
s_gcand_largel=global_candidate(s_gcand_largel,struct_largel_p2);
s1=rmfield(struct_largel_p2,'cnt");
sl=struct2cell(s1);

end

set(handles.Ist_11_p2, 'String' ,s1);

s1=";

struct_large2_p2=large 2itemset(p2,struct_largel p2);
if isempty(struct_large2_p2)

Comparative Study of Randomized PARTITION with CMA

68

Chapter 5 Implementation

s2="No large2 Itemsets';
else
s_gcand_large2=global_candidate(s_gcand_large2,struct_large2 p2);
s2=rmfield(struct_large2 p2,'cnt");
s2=struct2cell(s2);
end
set(handles.Ist_ 12 p2, 'String' ,s2);

s2=";

struct large3 p2=large 3itemset(p2,struct large2 p2);
if isempty(struct_large3 p2)
s3="No large3 Itemsets';

else

s _gcand large3=global_candidate(s_gcand_large3,struct_large3 p2);
s3=rmfield(struct_large3 p2,'cnt');
s3=struct2cell(s3);

end

set(handles.Ist_13 p2, 'String' ,s3);

s3=";

struct_large4 p2=large 4itemset(p2,struct_large3 p2);
if isempty(struct_large4 _p2)
s4="No large4 Itemsets';
else
s_gcand_larged=global_candidate(s_gcand_large4,struct_large4 p2);
s4=rmfield(struct_large4 p2,'cnt');
s4=struct2cell(s4);
end
set(handles.Ist_14_p2, 'String' ,s4);

s4=";

% Local Large k itemset for partition 2
struct_largek_p2=large_kitemset(p2,struct_large4 p2);

Comparative Study of Randomized PARTITION with CMA 69

Chapter 5 Implementation

if isempty(struct_largek p2)
sk="No large k Itemsets';
else
s gecand_largek=global candidate(s_gcand_largek,struct_largek_p2);
sk=rmfield(struct_largek p2,'cnt’);
sk=struct2cell(sk);
end
set(handles.Ist_lk_p2, 'String' ,sk);

sk=";

% Local Large itemset for partition 3

p3=partitions{3,1};

struct_largel_p3=large litemset(p3);
if isempty(struct_largel p3)
s1="No large] Itemsets'’;
else
s_gcand largel=global_candidate(s_gcand_largel,struct_largel_p3);
sl=rmfield(struct_largel p3,'cnt");
sl=struct2cell(sl);
end
set(handles.Ist_11 p3, 'String' ,s1);

sl=";

struct_large2 p3=large 2itemset(p3,struct_largel_p3);
if isempty(struct_large2 p3)
s2="No large2 Itemsets';
else
s_gcand_large2=global_candidate(s_gcand_large2,struct_large2 p3);
s2=rmfield(struct_large2 p3,'cnt');
s2=struct2cell(s2);
end
set(handles.Ist_12 p3, 'String' ,s2);

$2=";

Comparative Study of Randomized PARTITION with CMA 70

Chapter 5 Implementation

struct_large3 p3=large 3itemset(p3,struct_large2 p3);
if isempty(struct_large3 p3)
s3="No large3 Itemsets';
else
s_gcand_large3=global candidate(s_gcand_large3,struct large3 p3);
s3=rmfield(struct_large3 p3,'cnt');
s3=struct2cell(s3);
end
set(handles.Ist_I3_p3, 'String' ,s3);

s3=";

struct_large4 p3=large 4itemset(p3,struct _large3 _p3);
if isempty(struct_large4 p3)
s4="No large4 Itemsets';
else
s_gcand_larged=global_candidate(s_gcand_large4,struct_large4 p3)
s4=rmfield(struct_large4_p3,'cnt’);
sd=struct2cell(s4);
end
set(handles.Ist_14 p3, 'String' ,s4);

s4=";

% Local Large k itemset for partition 3
struct_largek p3=large_ kitemset(p3,struct_large4 p3);
if isempty(struct_largek p3)
sk="No large k Itemsets';
else
s_gcand_largek=global_candidate(s_gcand_largek,struct_largek p3);
sk=rmfield(struct_largek p3,'cnt');
sk=struct2cell(sk);
end
set(handles.Ist_lk p3, 'String’ ,sk);

sk=";

Comparative Study of Randomized PARTITION with CMA 71

Chapter 5 Implementation

% Local Large itemset for partition 4

p4=partitions{4,1};

struct largel p4=large litemset(p4);
if isempty(struct_largel p4)
s1='No largel Itemsets';
else
s_gcand largel=global candidate(s_gcand_largel,struct_largel p4);
sl=rmfield(struct_largel p4,'cnt’);
s1=struct2cell(s1);
end
set(handles.Ist_11_p4, 'String' ,s1);

s1=";

struct_large2 p4=large 2itemset(p4,struct_largel p4);
if isempty(struct_large2 p4)
s2="No large2 Itemsets';
else
s_gcand large2=global_candidate(s_gcand_large2,struct_large2 p4);
s2=rmfield(struct_large2 p4,'cnt);
s2=struct2cell(s2);
end
set(handles.Ist_12_p4, 'String' ,s2);

s2=";

struct_large3_p4=large_3itemset(p4,struct_large2 p4);
if isempty(struct_large3 p4)
s3='No large3 Itemsets';
else
s_gcand_large3=global candidate(s_gcand_large3,struct_large3 p4);
s3=rmfield(struct large3 p4,'cnt");
s3=struct2cell(s3);
end

set(handles.lst_13_p4, 'String' ,s3);

Comparative Study of Randomized PARTITION with CMA 72

Chapter 5 Implementation

s3=";

struct_large4 p4=large_4itemset(p4,struct_large3 p4);

if isempty(struct_large4_p4)
s4=No large4 Itemsets';

else
s_gcand_large4=global_candidate(s_gcand_large4,struct_large4_p4);
s4=rmfield(struct_large4 p4,'cnt’);
sd=struct2cell(s4);

end

set(handles.Ist_14_p4, 'String' ,s4);

s4=";

% Local Large k itemset for partition 4
struct_largek p4=large kitemset(p4,struct large4 p4);
if isempty(struct_largek_p4)
sk="No large k Itemsets';
else
s_gcand_largek=global candidate(s_gcand_largek,struct_largek_p4);
sk=rmfield(struct_largek p4,'cnt');
sk=struct2cell(sk);
end
set(handles.Ist_lk_p4, 'String' ,sk);

sk=";

%Adding local large itemsets to make global large itemset

g_large=global_itemsets(s_gcand_largel);
if isempty(g_large)

g large='"No Global Largel Itemsets';
else

g_large=struct2cell(g_large);
end

set(handles.Ist_gl, 'String',g_large);

Comparative Study of Randomized PARTITION with CMA 73

Chapter 5

Implementation

g large=";

g large=global_itemsets(s_gcand_large2);
if isempty(g_large)

g _large="No Global Large2 Itemsets';
else

g _large=struct2cell(g_large);
end
set(handles.Ist_g2, 'String',g_large);

g large=";

g_large=global_itemsets(s_gcand_large3);
if isempty(g_large)

g _large="No Global Large3 Itemsets';
else

g _large=struct2cell(g_large);
end
set(handles.Ist_g3, 'String',g large);
g large=";

g large=global_itemsets(s_gcand_large4);
if isempty(g_large)

g large='"No Global Large4 Itemsets';
else

g large=struct2cell(g_large);

end

set(handles.Ist_g4, 'String',g_large);
g large=";

g large=global_itemsets(s_gcand_largek);
if isempty(g_large)
g_large="No Global Large k Itemsets';

else

Comparative Study of Randomized PARTITION with CMA

74

Chapter 5 Implementation

g large=struct2cell(g_large);
end
set(handles.Ist_gk, 'String',g_large);
g large=";

t=toc;

set(handles.txtStatus, 'String' ,'Large itemsets created! Time taken to create large
itemsets:");

set(handles.txt_time, 'String' ,t);

set(handles.txt_sec, 'String' ,'Secs');

set(handles.btn_large, 'Enable' ,'off");

Comparative Study of Randomized PARTITION with CMA 75

Chapter 6
—

Results

Chapter 6 Results

6. Results
To illustrate the efficiency of Randomized PARTITION algorithm different experiments

were performed. First of all the working of Randomized PARTITION algorithm is
explained by an example and then number of large itemsets of randomized and non
randomized partitions were compared. After that the number of large itemsets with
varying size of data was compared. Then Randomized PARTITION algorithm was
compared with previously implemented PARTITION algorithm and in the end the
efficiency comparison of Randomized PARTITION algorithm with CMA was done.

6.1 Explanation of Randomized PARTITION Algorithm with Example

Performance of Randomized PARTITION algorithm can be best demonstrated by the
case study. For testing the algorithm, many experiments were performed by taking both
random and non random data. At initial stage the database is read sequentially. And its
local and global itemsets are calculated. Then the database is randomized and various
results are observed after doing randomization again and again. In the current example
after randomization the algorithm creates four non_overlapping partitions (P, P2, P3, Ps)
each containing 25 records. Total number of items is 5. After partition creation, the
Randomized PARTITION algorithm is applied in such away that it finds local candidate
itemsets for the generation of locally largel- itemsets in each partition. Then candidate
itemset for locally large 2-itemset is generated from which locally large 2-itemset is
generated for each partition. This process continues unless up to k large itemsets are
found. The algorithm stores counts of the locally large itemsets in a structure rather using
a hash tree for this process. This change reduces the high memory usage as compared to
previously implemented PARTITION algorithm. Then global candidate itemsets are
found and finally the globally large itemsets are generated from the candidate sets. Table
6.6 shows the detailed results. In this example it calculated up to 2-large itemsets. Many
experiments have been done with different datasets in which algorithm calculates 3-large
itemsets, 4-large itemsets and up to k item sets.

The dataset used for this study is shown in table 6.1.1

Comparative Study of Randomized PARTITION with CMA 77

Chapter 6 Results

PARTITIONS

Py P, Py P,
T: A,B,C Ta: AD,E Tsi: A,E Tz A,C,D,E
T,: AB,D T»: ABCDE | Ts;: ABE T;: B,C.E
T;:B,D,E Tz CDE Ts3: B,D,E Ts: C,D,E
T4 ABE Ty: B,C,D,E Ts4: B,C.E Tys: B,C,D,E
Ts: A,C,D Ts0: AD,E Tss: C,D Tso: A,D,E
Te: A,C,E Ts: ABE Tse: A,D,E Ts: C,D,E
Ty A,CD T;s2: D,E Tsy: AD.E Tsy: B,D,E
Ts: B,D,E T A Tss: A,C Tss: AB,CE
Ty: C,D Ts4: CD Tso: AB,CE | Tg4: B,C,E
Tye: C,DE Tss: C,D,E Teo: AB,CD | Tgs: B,C,D
Ti:ACD Ts6: B,C Tei: ALCD Tge: C,D,E
T2 ABE Ts1: A,C Tez: AACDE | Te: BE
Ti3: B,D,E Tss: A,C,D,E Tes: D,E Tss: ABE
T4 D,E Ts: D,E Tes: C,D,E Tse: A,B,C
Tis: C,DE Ty: B,.D,E Tes: A,B,D Tog: A,C.E
Ty A,D,E Ty: AB Tes: B,D,E To: B,C,E
T, AB,CD Ty AC Ter: C,D,E To: B,D,E
Tys: B,C,E Tya:ABC Tes: ADE Toz: A,C,E
Tie:t A,CE Tw:B,CD Teo: B,.D,E Tosa: B,C.E
Ty: B,C,D Tss: DE T A,C Tss: D.E
T, AB,D,E T4: B,C,D,E T;: AB,C Tee: C.E
Ty: C.DE T4: CDE Tyt ACDE | Tor: B,D,E
Tas: B,E T4s: DE Ty B,C,D,E | Tos: A,B,D,E
T, ACD Te: C,D Ts: ADE Toge: D,E
T,s: B,D,E Tso: AD Ts: B,C,D,E | Tieo: A,C,D,E

Table 6.1.1 Sequential Dataset

The above dataset was randomized as shown in table 6.1.2 and then was used for the case
study.

Comparative Study of Randomized PARTITION with CMA 78

Chapter 6 Results
PARTITIONS
P, P, P; P,
T A,C,D Tos: D,E Tqo: A,C Tgi: A,C,D
Tee: B,D,E Ts: B,D,E Tsa: B,C.E Tas: B,E
Ts1: AB,E Ty: C,D Tsy: B,C,.E Tes: A,B,D
Ty: B,D,E T: A CDE | Ty ADE Ty: C,D
Ts: A,C Teo: B,D,E Teo: A,B,C,D Te: D,E
T, A,B,D,E Te: C,D,E T,s: C,D,E Tas: DE
Toe: D,E Ty: C,D,E T;: B,D,E Ty:AB
Toi: B,C,E Ts5:B,C,D,E | T): A,CD Ts;: B,C,D,E
T,s: B,D,E Tsy: ADE Tgo: A,D,E Ty AC
Tss: C,.D Ty: B.CD Teq: C,D,E Tse: AB,C.E
Tys: B,C,D Tis: AD,E Tes: B,D,E Tss: A,C
Tis: C,D,E Ti: A,C.E Tee: C.E Tee: AB,C
Tso: A,D Ts6: B,C T4: B,D,E Tgs: B,C,E
Tsi: AE Tas: D,E Tas: AB,C Ts: A,C,D
Ty AB,CD,E | T): CD,E Tsy: A,B,E Ty B,C,D
Tiy: A,D,E Ts: C,D,E Ts: B,C,D,E Tes: A,C.E
Tss: B,C,E Tyt A Tse: A,D,E Te: A,CDE
Tye: D,E Ty ACD Ts6: A,C,D,E Tys: B,C,E
T ADE Tss: C.D,E T4 C,DE Ti5: B.D,E
Ty A,B,D Tos: A.BDE | Ty:AB,C T3: C,D
Tes: ABE Ty ABE Top: A,C.E T2 AB,C.D
Tgy: B,E Te: ACD Ti: D,E T;: AB,C
T, B,C,.D,E T4:B.CDE | T3 D.E Tg: B,D,E
Tor: B.D,E Te: AB,CE | Ts: AB,C Tss: C,D,E
Tes: ADE T ACDE | T\t ABE Tio0: A,C,D.E

Table 6.1.2 Randomized Dataset
The number of local and global large itemsets generated from above randomized data are

given below in table 6.1.3

LOCAL LARGE ITEMSETS (L;) GLOBAL
LARGE
ITEMSET (Gy)
P, P, P; P, G;
Item=Count Item=Count Item=Count Item=Count Item=Count

L,;:B=14, L,:C=16, L;:C=15,D=15, | L,:C=18,D=15E=14 G:D=52, E=72

D=18, E=19 | D=19,E=19 E=20 Ly* Gy:*

L,* L,:DE=17 Ly:* Ly:* Gy:*

L;* Ly:* Ly:* Ly* Gg:*

L,* Ls* Lq* Ls* Gg*

L;* Ls:* Ls:*

Table 6.1.3 Results of Local and Global Large Itemset Generation

Comparative Study of Randomized PARTITION with CMA

79

Chapter 6 Results

6.2 Comparison of Large Itemsets of Randomized and Non Randomized
Partitions
Table 6.2 shows the experimental results of randomized and non-randomized partitions

with 100 transactions having Mininmum_Support=50% of total records in each partition

and Global_Support=50 % of all records of entire database.

Non Randomized Randomized 1 Randomized 2 | Randomized 3
(Sequential)

JL; P G; XL; P G; IL;iP | G; ILiP | Gy
Li=14 G=3 Li=12 Gi=2 Li=12 | G=2 Li=11 | G=
L,=1 G,=* L,=1 G,=* L,= G,=* L,=2 | G,=*
L3= * G3=* L3= * G3=* L3= * G3=* L3= * G3=*
L4= * G4=* L4= * G4=* L4= * G4=* L4= * G4=*
L5= * (}5=’.l L5= * C}5=’.l L5=" * (}5="l L5= * (}5—_".l

Table 6.2 Comparison of Randomized and Non Randomized Data sets
The comparison of results show that in non randomized or sequential partitions, there is
data skew involved which causes outliers. While randomization of partitions removes

these outliers.

Comparative Study of Randomized PARTITION with CMA 80

Chapter 6 Results

6.3 Comparison of No. of Large Itemsets with Varying Size of Data

Many experiments were performed using varying size of datasets. Table 6.3 shows some
of the experimental results with 20, 100, 1000, 10,000 transactions. Number of locally

large and globally large itemsets are given in the table.

DATASETS NO. OF LOCAL LARGE { SUM | NO. OF
ITEMSETS GLOBAL
ITEMSETS
Transactions | m_sup | P, P, P, P, ZL; m_sup |G
L=2 | Li=5 L=3 L= 14 G;=2
L= L,=1 L= L,=5 9 Gr=1
20 3 Ly=* | L,=* Ly=* | Ly=2 2 10 Gy=*
Lo=* L=* L,=* L&=* * G=*
L5=* L5=# L5=# L5=# * G5=#
Li=3 |L=3 L=4 |L=4 |14 G;=3
L=* | L,= L= L,= 3 G=*
100 13 Ly=* | Ly=* Ly=* | Ly=* | * 50 Gy=*
L=* Ls=* L&=* L,=* * G=*
Ls=* Ls=* Ls=* Ls=* * Gs=*
L=4 |L;= L= L=4 |16 G=4
L=1 | L,=1 L,= L= 4 Gy=1
1000 250 Ly=* | Ly=* Ly=* |L;=* |* 500 Gy=*
L=* Ls&=* L&=* L=* * Gy=*
Ls=* | Ly;=* Ls=* Ls=* * Gs=*
L=4 |L=4 L=4 | L= 15 G,;=3
L,= L=1 L=1 | L= 4 G=1
1,0000 2500 | Ly=* | Ly=* Ly=* | Ly=* |* 5000 | Gy=*
Lq=* | Ly=* L=* Le=* * G=*
Ls=* Ls=* Ls=* Ls=* * Gs=*

Table 6.3 Comparison with Varying Size of Data Sets

Comparative Study of Randomized PARTITION with CMA 81

Chapter 6 Results

6.4 Comparison of Randomized PARTITION with CMA
Comparison of CMA with randomized PARTITION algorithm was done on the basis of

computational complexity as well as time efficiency. Results of comparisons are given

below

6.4.1 Computational Complexity Comparison

Result of comparison on the basis of computational complexity of both algorithms are

shown in table 6.4.1

CMA Randomized PARTITION |

Computational complexity of | Computational complexity of
Partitioning database=O(n’) Partitioning database=0(n)
Computational complexity of | Computational complexity

algorithm after partitioning=O(n®) | after partitioning=0(n?)

Table 6.4.1 Comparison of Computational Complexity of Randomized PARTITION with CMA

6.4.2 Comparison of Time Efficiency of Database Partitioning

Both algorithms were run on the same system one by one and their running time was
observed to see which one is more efficient and gives results in less time. Results of this

comparison are shown below

No. of Database Partitioning (time in sec)
Records CMA Randomized
PARTITION
20 3.875 23.645
100 6.54 27.545
1,000 29.102 31.335
10,000 338.622 38.305
25,000 921.646 104.34
50,000 1364.73 304.839
75,000 1752.67 503.227
100,000 2195.42 658.307

Table 6.4.2 Comparison of Time Efficiency of Randomized PARTITION with CMA
Table 6.4.2 shows that although CMA performs better with more efficiency with less
number of records but as the number of records is increased, its efficiency decreases to a
greater extent. While Randomized PARTITION performs much better than CMA as the

number of records is increased. The time variation in partitioning technique of

Comparative Study of Randomized PARTITION with CMA 82

Chapter 6 Results

Randomized PARTITION is much less than that of CMA which proves that larger
number of records, Randomized PARTITION is much better than CMA.

Threshold

The threshold here is 10,000. As the performance of CMA is much better than
Randomized PARTITION with number of records less than 10,000. The efficiency of
CMA is best with less number of records but as the number of records is increased its
efficiency decreases. While the efficiency of randomized PARTITION algorithm is much
better than CMA as the number of records is increased. jn

Graphical representation of the above table is given in figure 6.4.2(a)

Figure 6.4.2a Time Efficiency Comparison of Partitioning of
Randomized PARTITION with CMA

2500
2000
o R
..E, 1500 Partitioning (sec) CMA
&
S 1000 Partitioning (sec)
2’ Randomized Partition
500
0

Time (sec)

6.4.3 Comparison of Time Efficiency of Large Itemset Creation

The time taken by Randomized PARTITION to create large itemsets for varying size of
data was compared with the time taken by CMA. The results of this comparison are
shown in table 6.4.3.

No. of Records Large Itemset Creation (sec)
CMA Randomized PARTITION
20 700.12 1.192
100 860 1.332
1000 866 4,045
10000 904 4213
25000 963 101.8126
50000 1068 206.1212
75000 1165 303.102
100000 1260 398.342

Table 6.4.2 Comparison of Time Efficiency of Large Itemset Creation of Randomized PARTITION with
CMA

Comparative Study of Randomized PARTITION with CMA 83

Chapter 6 Results

The above table shows that Randomized PARTITION algorithm creates large itemsets
more efficiently than CMA in much less time than CMA.

The graphical representation is shown in figure 6.4.3 (a)

Figure 6.4.3 Time efficiency Comparison of Large Itemset

Creation

1400

1200
5 1000 —
s —— Large Itemset Creation
g (sec) CMA
s —— Large Itemset Creation
2’ (sec) Randomized Partition

-8 3888

Time (sec)

6.5 Comparison of Randomized PARTITION with Previous
PARTITION

Algorithm
Previous PARTITION Randomized PARTITION
Memory usage=increased Memory usage=decreased
Hash tree storage Structure with count

Table 6.5 Comparison of Randomized PARTITION with Previous PARTITION Algorithm

Experiments proved that Randomized PARTITION algorithm is more efficient than CMA
due to its efficient partitioning. Its time complexity is O (n®) much better than the time
complexity of CMA that is O (n°).

This version of Randomized PARTITION algorithm is also more efficient than
previously implemented PARTITION algorithm as it reduces the memory usage by

simply storing counts for each large itemset instead of storing the TIDs in hash tree. By

Comparative Study of Randomized PARTITION with CMA 84

Chapter 6 Results

using counts the time efficiency of Randomized PARTITION algorithm is also increased

than previously implemented PARTITION algorithm.

Comparative Study of Randomized PARTITION with CMA 85

Chapter 7
—

Conclusion
&

Future Enhancements

Chapter 7 Conclusion & Future Enhancements

7. Conclusion & Future Enhancements

This improved version of Randomized PARTITION algorithm is more efficient than
CMA as its partitioning technique takes much less time than the one used by CMA. The
computational complexity is O (n) which is much better than the computational
complexity of CMA that is O (n°). Its time efficiency of database partitioning as well as
large itemset creation is greater than CMA. Randomized PARTITION algorithm works in

a much better way as the number of records is increased as compared to CMA.

This version of Randomized PARTITION algorithm is also more efficient than
previously implemented PARTITION algorithm as it reduces the memory usage by
simply storing counts for each large itemset instead of storing the TIDs in hash tree. This
has also increased the time efficiency of Randomized PARTITION algorithm as compare

to previously implemented PARTITION algorithm.

During this study, Randomized PARTITION algorithm has been implemented with
synthetic database, as was used by CMA, for comparison purpose. The size of the
database was 100,000 tuples. In future it is planned to test the same algorithm with the
database size exceeding lmillion transactions, further it is planned to implement this

algorithm in parallel environment for better efficiency.

Comparative Study of Randomized PARTITION with CMA 87

Appendix A
—

References

Appendix A References

Appendix A. References

[1]. “Data Mining: Typical Data Mining Process for Predictive Modelling”. By BPB
Publication. Pg 3, S.

[2].Data Mining by Doug Alexander dea@tracor.com .

[3]. “Data Mining: Concepts and Techniques”. By Jiawei Han, Micheline Kamber. Pg
15, 226, 227.

[4]. Rakesh Agarawal, Tomasz, Imielinski, and Arun Swami. “Mining Association Rules
between Sets of Item in Large Databases”. Proceedings of the ACM International

Conference on Management of Data, 1993.

[5]- Maurice Houtsma, Arun Swami.”Set-Oriented Mining for Association Rules in
Relational Databases”. Proceedings of the IEEE International Conference on Data

Engineering, 1995.

[6]. Rakesh Agarawal, Ramakrishnan Srikant. “Fast Algorithms for Mining Association

Rules”. Proceedings of the International Very large Databases Conference, 1994.

[7]. Jong Soo Park, Ming-Syan Chen and Philip S. Yu. “An Effective Hash-Based
algorithm for Mining Association Rules”. Proceedings of the ACM International

Conference on Management of Data, 1995.

[8]. Ashoke Savasere, Edward Omiecinski and Shamkant Navathe. “An Efficient
Algorithm for Mining Association Rules in Large Databases”. Proceedings of the

21s VLDB Conference, Zurich, Switzerland,1995.

Comparative Study of Randomized PARTITION with CMA 89

Appendix A References

[9]. David W. Cheung, Vincent T. Ng, Ada W. Fu, and Yongjian Fu. “Efficient Mining
of Association Rules in Distributed Databases”. IEEE Transactions on

Knowledge and Data Engineering, 1996

[10] Andreas Mueller. “Fast Sequential and Parallel Algorithms for Association

Rule Mining: A Comparison”. Department of Computer Science University of

Maryland-College Park. College Park ,MD 20742.

[11] Rakesh Agrawal John C. Shafer. “Parallel Mining of Association Rules”. IBM
Almaden Research Center 650 Harry Rd., San Jose,CA 95120
ragrawal,shafer} @almaden.IBM.com Tel: (408) 927-1734 Fax: (408) 927-3215.

[12] Mohammed J. Zaki. “ Parallel and Distributed Association Mining: A Survey”.

Department of Computer Science Rensselaer Polytechnic Institute Troy, NY 12180-
3590 zaki@cs.rpi.edu

[13] Saleha Jamshaid, Zakia Jalil, Malik Sikander Hayat Khiyal and Muhammad Imran
Saeed. “Association Rule Mining in Centralized Databases”.Information
Technology Journal 6(2) 2007.

Comparative Study of Randomized PARTITION with CMA 920

Appendix B
»

Publication

Appendix B. Publication

Paper PARTITION vs CMA Research 4 thesis.pdf

Appendix B
_

Publication

Comparative Study of Randomized PARTITION Al-
gorithm with CMA Algorithm

Fakhra Razi', Samina Kausar', Malik Sikander Hayat Khiyal' and Muhammad Imran Saeed'.

Dept. of Computer Sciences, Faculty of Applied and Basic Sciences, International Islamic University, H-10 Islamabad, Pakistan'.

Abstract-Association Rule Mining is an important research area
in the field of Data Mining especially in case of ‘Sales transac-
tions’. A number of algorithms have been presented in this re-
gard. In this paper a comparison of PARTITION algorithm with
CMA algorithm is presented after improving the PARTITION
algorithm. In this study, randomized partitioning of database is
done. The database is randomized so that real random data is
available for better results. The randomized partitioning of da-
tabase has been implemented in different tool, i.e., MATLAB, as
compared to CMA, which uses VB.Net for randomization so as to
achieve better performance and efficient results. In the end it
has been proved with extensive experiments that although Ran-
domized PARTITION algorithm takes two database scans as
compared to CMA that takes single database scan, still it gives
better results with more efficiency than CMA.

Keywords: Data Mining, Association Rule Mining, Randomized
PARTITION Algorithm, CMA Algorithm.

I. INTRODUCTION

In the past few years the amount of data in business organi-
zations has been increased to a greater extent, so the extraction
of useful information from such databases is an up hill and
challenging task. Data mining techniques can be applied in
various fields like sales transaction, marketing, finance, insur-
ance, medicine and fraud detection etc. Interesting association
relationships are much helpful in taking good business deci-
sions like how to increase sales or purchases process. Its basic
aim is to analyze entire huge database to find the frequently
occurring itemsets together. For the rule generation it takes
one or multiple scans of the whole database. Association rule
mining can be best explained by a simple example of market
basket analysis that basically determines which groups of
products or items are sold or purchased together most fre-
quently at the same time. Customer buying behavior can be
best analyzed by this process, as it helps in finding association
among different itemsets. For example if customers buy soft
drink and chips together mostly with in the same visit to the
superstore then using this information for the next time the
shop keeper will place the soft drink and chips in the nearer
shelves. Such shelf arrangement of these items will increase
the sales process in future visits to the store. Similarly if a
person orders a birthday cake to some bakery, then he is likely
to be purchasing some birthday candles as well, Ifthe baker is
aware of the association between candles and the birthday
cake then he must be offering his customers to purchase can-

dles from him, hence supporting his candle business as well.
Market basket analysis is helpful for the retailers in the best
adjustments of catalogue design and store layouts etc.

In this study an improved version of PARTITION algo-
rithm is presented and it has been proved through various ex-
periments that its performance is much better than previously
implemented PARTITION algorithm as it reduces the memory
usage as well as time. Its efficiency is also compared with
previously implemented CMA algorithm and it has been
proved that due to its efficient partitioning technique of data-
base it gives better results than CMA in terms of time effi-
ciency.

II. ASSOCIATION RULE MINING

Association rule mining searches for the interesting rela-
tionships among the items in a given dataset {1]. For example,
if the support = 5%, confidence=70%. Association rule for
the last discussed example of birthday cake and candle is:

Birthday cake => candles

Rule interestingness can be measured well by support and
confidence. Support=5% shows that for the above discussed
rule, the birthday cake and candles are bought together in all
transactions. Confidence=70% means that 70% of the cus-
tomers who buy a birthday cake also purchased birthday can-
dles.

III. BASIC CONCEPT

Association rule mining basic concept is as illustrated in
f1]. LetI= {i,is...,ia} be the set of items. Let D, the task-
relevant data, is a set of database transactions where each
transaction T is a set of items such that T — I. Each transac-
tion is associated with an identifier TID. Let A be a set of
items. A transaction T is said to contain A if and only if Ac
T. An association rule is an implication of the form A=>B,
where Ac 1, B c 1, and ANB = ¢. The rule A=B holds in
the transaction set D with support s, where s is the percentage
of transactions in D that contain A U B (i.e., both A and B).
This is taken to be the probability, P (AUB). The rule A=>B
has confidence c in the transaction set D if ¢ is a percentage of
transactions in D containing A that also contain B. This is
taken to be the conditional probability, P (B|A). That is,

Support (A=>B) = P (AUB). (8))]
Confidence (A=>B) =P (BJA). 2)

Rules that satisfy both a minimum support threshold
(min_sup) and a minimum confidence threshold (min_conf)
are called strong. By convention, we write support and confi-
dence value so as to occur between 0% and 100%, rather than
0to1.0.

Association rule mining is a two-step process. Firstly, find
all frequent itemsets: by definition, each of those itemsets will
occur at least as frequently as a pre-determined minimum sup-
port count. Secondly, generate strong association rules from
the frequent itemsets: by definition, these rules must satisfy
minimum support and minimum confidence. The association
rules are generated simply using the following formula:

If (support ({Y,X})
support ({X})

> min_conf. 3)

Then X=Y is a valid rule.
Here X is called the antecedent of the rule, whereas Y
makes the consequent of the rule.

IV. PREVIOUS WORK

Association rule mining for the first time was introduced by
[2]. It has remained highly in use by the pundits and practi-
tioners of the data mining for more research since its incep-
tion. Many algorithms have been discovered in this field. The
pioneer work in this area was presented by [3]. They dis-
cussed Apriori algorithm. Apriori is termed as the best base
algorithm for all other subsequent algorithms. Apriori was an
iterative algorithm which used complete bottom search to find
out large 1-itemset in first pass. Next pass generated candi-
date itemsets and checked the support. The process repeated
until all large itemsets were found. Other variants of Apriori,
AprioriTid and AprioriHybrid were also discussed by them in
the same paper. In Apriori for n iterations, »n scans of the en-
tire database were done. AprioriTid overcame this problem in
later iterations, as it did not use the whole database for count-
ing support after the first pass. Best features of both Apriori
and AprioriTid were combined in AprioriHybrid which
showed good performance than the other two in real applica-
tions.

DHP (Direct Hashing and Pruning) algorithm was presented
by [4] in 1995, which was an extension of Apriori algorithm.
It was confined to the generation of large itemsets, the step
one of the mining association rules. The problem with this
algorithm was that database pruning benefit was quite am-
biguous,

Reference [5] presented the survey of parallel and distrib-
uted association rule mining algorithms. These algorithms
were divided into groups according to the techniques utilized,
database structure and search techniques etc. This paper also
provided the design space of parallel and distributed algo-
rithms either implemented on distributed or shared—memory
architecture. The aim of this paper was to provide a reference
for more research. It also described the challenges and prob-
lems in the field of association rule mining.

Reference [6] presented PARTITION algorithm that
worked in two phases. Logical division of horizontal database
into non-overlapping partitions was done. Then locally large
itemsets were found for each partition. For each locally large
itemset, the TIDs were stored in hash tree. Further potentially
large itemsets were obtained by merging the locally large
itemsets at the end of phase I. To find the globally large item-
sets actual support of these itemsets was measured in phase II.
For the available memory to uncover accurate no. of partitions
was unsolvable by this algorithm.

Reference [7] implements CMA (Centralized Mining of As-
sociation-Rules) algorithm for association rule mining. In this
algorithm the database was divided into logical non overlap-
ping partitions and then DMA algorithm was applied on each
partition to find local and global large itemsets. This algo-
rithm took just a single database scan over each partition for
the creation of large itemsets.

From the literature review it is concluded that despite the
recent advances in association rule mining algorithms, there
are still some problems like in large databases, scanning is
much expensive and the resulting candidate itemsets are too
large to fit in the aggregate memory. Data skew, data size,
multiple scans and pruning techniques needs further study.

V. RANDOMIZED PARTITION ALGORITHM

In this paper, Randomized PARTITION algorithm has been
implemented. Logical non overlapping partitions are created
with both random and non random data. Results of both ran-
domized and non randomized partitions are compared to see
the effect of data skew on both locally and globally large
itemsets. Then the efficiency of Randomized PARTITION
algorithm is compared with CMA.

PARTITION algorithm was previously implemented in Sil-
icon Graphics Indy R4400SC workstation with a clock rate of
150 MHz and 32 Mbytes of main memory. The data resided
on 1GB SCSI presented by [6].

In this study Randomized PARTITION algorithm has been
implemented in the same environment as CMA except the
partitioning of database that has been done in a different tool
(i.e. CMA has used .NET while Randomized PARTITION
algorithm is using MATLAB) for achievement of better per-
formance and efficient results. This change in partitioning
technique increases the time efficiency of algorithm as com-
pared to CMA. In today’s world, time is an important factor.
Along with the need of accurate results, time efficiency mat-
ters a lot. It is important to have better results in less time and
minimum cost. Randomized PARTITION algorithm has also
been improved by using count structure rather storing TIDs in
Hash tree as was done in previously implemented
PARTITION algorithm. This change reduces the high mem-
ory usage and time as compared to previously implemented
PARTITION algorithm.

Synthetic database is used for this study which is the same
database as was used by CMA. It is also assumed that trans-
actions are in the form (TID, iy, i, i3). The items are assumed
to be kept sorted in lexicographic order. Similar assumption is
also made in [1].

A. Algorithm

//Read database sequentially
Read_Database
P=Create_Partitions (rand)
Forx=1to P
Begin
Generate_Candidate_Itemsets C; for p,
Fori=1tok
Begin
//Generate local large itemsets L; for p; from
C; and store items and their count in struc-
ture S,
Si=Gen_Local_Large_Itemset L,
End
/fstore value in global candidate structure
Merge local large itemsets to form global candidate
itemsets G;_C
End
//Generate globally large itemsets G; from G;_C
Gi=Gen_Global_Large_itemset (G;_C)

TABLE1
NoOTATIONS USED
Notation Definition
Py Partitions (x=1 to 4)
C L Local candidate itemsets
Li Local large itemsets
Si Structure for storing local large itemsets along with their
counts in particular partition p;
GiC Global candidate itemsets containing local large itemsets
along with their counts
Gi Globally large itemsets
* Not possible

B. Working of Randomized Partition Algorithm

Working of Randomized PARTITION algorithm is ex-
plained as follows:

First of all database is read in sequential order. Then logi-
cal non overlapping randomized or non randomized partitions
are created. Partition size is chosen in such a way that for a
specific time a whole partition can easily reside in memory.
Partition size should not be very small or very large, as small
partitions are negatively affected by data skew and in large
partitions for intermediate results processing buffer require-
ments can exceed the available space, so risk is involved in
both cases. Candidate large 1 itemsets are generated for all
partitions. Then local large 1 itemsets are generated contain-
ing items having their support greater than user defined
minimum support within each partition and the candidate
itemsets whose minimum support is less than user defined
minimum support are pruned away. Here a count structure is
used for large itemsets rather than storing TIDs in a Hash tree.
Storage of TIDs in hash tree is wastage of time and memory
that’s why count structure is used for finding large itemsets
directly. These large itemsets are then merged and stored in
global candidate 1 itemset along with their counts for the gen-
eration of globally large itemsets. From large 1 itemsets, can-
didate large 2 itemsets are generated from which local large 2
itemsets are generated for each partition. The process contin-

ues upto locally large k itemset generation. Finally globally
large itemsets are generated and global candidate itemsets
having minimum support less than user defined minimum
support are pruned away. Randomized PARTITION algo-
rithm reduces the time complexity up to O (n) as compared to
CMA whose time complexity is O (n®). Experimental results
proved that Randomized PARTITION is 3 times more effi-
cient than CMA.

C. Functions of Randomized PARTITION Algorithm

Function [T] = Read_Database

Reads the entire database sequentially and returns the trans-
actions in an array.

Function [P] = Create_Partitions (rand)

This function takes rand as argument. If rand=0 then se-
quential (non randomized) non overlapping partitions are cre-
ated otherwise T is first randomized and then logical non over-
lapping partitions are created and an array of partition P is
returned.

Function [LocalLargeltemset] = Generate Large Itemsets
)

This function creates candidate itemsets for all partitions
and then from these candidate itemsets local large itemsets are
generated for each partition. This function returns locally
large itemsets for each partition.

Function [GlobalCandidate] = Generate_Global_Candidate
(LocalLargeltemsets)

This function takes LocalLargeltemsets as an argument,
merge them and generates global candidate itemset.
Function [GlobalLargeltemset] =

ate_Global_Itemsets (GlobalCandidate)

This function takes GlobalCandidate as an argument and
generates globally large itemsets RIP.

D. Explanation of Randomized PARTITION Algorithm with
Example

Performance of Randomized PARTITION algorithm can be
best demonstrated by the case study. Following dataset was
used for the case study:

The dataset shown in Table II was randomized as shown in
Table III to find out large itemsets. The results generated by
this dataset are shown in Table IV.

For testing the algorithm, many experiments were per-
formed by taking both random and non random data. Number
of items in the given dataset was 5. Initially, the database was
read sequentially and four logical non overlapping partitions
were created. Then local and global itemsets for sequential
database partitions were generated. In the second step, the
database was randomized and again logical non overlapping
partitions (P, P, P;, P;) were created. Afier partition crea-
tion, the Randomized PARTITION algorithm was applied to
find locally large l-itemsets for each partition. From this,
candidate 2-itemset was generated and then locally large 2-
itemset for each partition was created. This process continued
unless up to k large itemsets were found. The algorithm
stored counts of the locally large itemsets in a structure rather
than using a hash tree for this process.

Gener-

TABLE I
SEQUENTIAL DATASET

TABLEIV
RESULTS OF LoCAL AND GLOBAL ITEMSET GENERATION

Partitions
Pl Pz P3 p4
Tli A,B,C Tz(,i A,D,E Tsl'. A,E T761 A,C,D,E
T, AB,D Tor: AB,CDE Tsy: A,B,E T B,C,E
T;Z B,D,E Tos: C,D,E T533 B,D,E T732 C,D,E
Tsa ABE Ty: B,C,D,E Tsq: B,C.E Ts: B,CD,E
Ts: ACD Ts: ADE Tss: C,D Tso: A,D.E
Ts: A,C,E T3 ABE Tse: ADE Tm: C,D,E
Ty A,C,.D Ti: D.E Tsr: ADE Te: B.D,E
Ts: B,D,E T33I A Tss: A,C ng: A,B,C,E
To: C,D T3: C,D Tso: ABCE | T B.CE
Ty: C,D,E Tss: C.D,E Tee: ABLC.D | Tgs: BC,D
Tuw:ACD Ts: B,C Tei: ACD Ts: C,D.E
Tia: A,B,E Ty A,C Toz: A,C,D,E Ts72 B,E
T];Z B,D,E T;si A,C,D,E Tc;: D,E Tgsi A,B,E
T DE Ts9: D.E Tes: C,D,E Tso: AB,C
T|5I C,D,E Twl B,D,E T65: A,B,D Tgo: A,C,E
T]si A,D,E T41: A,B Tee: B,D,E Tg]l B,C,E
Tz A,B,C,D Tay: A,C Tez: C,D,E T92: B,D,E
Tlg: B,C,E T43: A,B,C Tes: A,D,E T93I A,C,E
T]gi A,C,E Tu: B,C,D T692 B,D,E Tsa: B,C,E
Tao: B,C,D T452 D,E T1o: A,C Tos: D,E
Ty: AB.DE | Ts: B,C,D,E Tn: ABC To: C.E
Ty: CDE Ty: CDE Tn: ACDE | To: BDE
Tyx: BE Ts: D.E T7: B.C.D.E | Tos: ABDE
Ta: A,C,D Tao: C,D T AD.E Too: D.E
Tzs? B,D,E Tso? A,D T752 B,C,D,E TmoZ A,C,D,E
TABLE Il
RANDOMIZED DATASET
Partitions
P, P, 1) Py
T ACD Tos: D.E T AC Ty ACD
Te: B,D.E Tsy: B.D,E Tsq: B,C.E Ty B,E
T3|Z A,B,E T49: C,D T B,C,E T652 A,B,D
Tg: B.D.E Ty ACDE Tq: AD,E T,: C,D
T421 A,C T692 B,D,E Tml A,B,C,D T53Z D,E
T21I A,B,D,E T67Z C,D,E ng: C,D,E T4§Z D,E
T991 D,E Tzz: C,D,E T;I B,D,E T4|I A,B
T911 B,C,E T75Z B,C,D,E T“Z A,C,D T73I B,C,D,E
Tst B,D,E T57Z A,D,E TsoZ A,D,E T37Z A,C
Tss: C,D T44Z B.CD T64: C,D,E Tspl A,B,CE
Tgs: B,C,D T]sl A,D,E T“Z B,D,E ng: A,C
T;s: C,D,E T|91 A,C,E T%Z C,E ngl A,B,C
Tso: A,D Ta: B,C Ta: B,D.E Tse: B,C.E
T51Z A,E qu,’ D,E T43: A,B,C Ts: A,C,D
T,7.A,B,CD.E | Tie: C,D,E Tsy: ABE Ty: B,C,D
Tio: A,D,E T7sZ C,D,E T79: B,C,D,E T932 A,C,E
Tos: B,C,E T33: A T562 A,D,E Tszi A,C,D,E
T;g: D,E T7Z A,C,D T762 A,C,D,E T]si B,C,E
Ty ADE Tis: C,D,E T4 CDE T);: B,D,E
T ABD Tes: AB,D,.E Tn: ABC T:: CD
Tss: AB,E T4+ ABE Too: A,C.E Ti: ABCD
Tsy. B,E Te: A,C,D Tw: D,E Ti: ABC
Tz: B,C,D.E T4: B.C.D.E T32.D.E Tg: B,.D.E
Ter: B.D,E Tss: AB,CE Te: ABC Ts: C,D,E
Tes: AD,E Ty ACD,E T, ABE. Ti00:A,C,D.E

Local Large itemsets (L;) Global
Large Item-
set (Gi)

Pl Pz P; P4 Gi

Item=Count | Item=Count | Item=Count | Item=Count | Item=Count
L|:B=I4 L|ZC=16 L|ZC=15 L|ZC=18 Gl:lFSZ
D=18, D=19,E=19 | D=15E=20 | D=15 E=72
E=I9 L,:DE=17 L:* E=14 Gy*
Lz;. L;Z‘ L]I‘ Lz:‘ G;'..
L;;‘ L4Z‘ L4Z‘ L;:‘ G4I‘
L4;‘ Ls:‘ Ls!‘ L4I‘ Gsl‘
Ls;‘ Ls:‘

This change reduced the high memory usage as compared
to previously implemented PARTITION algorithm. Then
large itemsets of all lengths were merged to produce global
candidate itemsets from which the globally large itemsets of
all lengths were generated.

Table V shows the experimental results of randomized and
non-randomized partitions with 100 transactions. The com-
parison of results show that in non randomized or sequential
partitions, there was data skew involved which caused outliers
while randomization of partitions removed the outliers.

TABLEV

COMPARISON OF NO. OF L ARGE ITEMSETS OF RANDOMIZED AND NON
RANDOMIZED DATASETS

Sequential Randomized 1 Randomized 2 Randomized 3
ILiP | G; ILiP | G ILiP | G;i IL;P G;
L|=l4 G|= L|=12 G|=2 L|=‘2 G|=2 L|=11 G|=
L=1 [G~ | Ls=1 | G=* L= G=* | L=2 | G=*
L3= . Gg=‘ L;= * G;=. L3= hd G3=‘ L3= * G3=‘
Le=* Gy~ L=* G&=* L="* Gs=* L&=* G&*
L5= - G5=‘ L5= * GS=‘ L5= * G5=‘ L5= * GS=‘

TABLE VI
COMPARISON OF RANDOMIZED PARTITION WITH CMA
CMA Randomized PARTITION

Time complexity of Partitioning
database=O(n’)

Time complexity of algorithm after
partitioning=0(n")

Time complexity of Partition-
ing database=0O(n)

Time complexity of algorithm
after partitioning=O(n)

Table VI shows the results of comparison of Randomized
PARTITION algorithm with CMA. Experimental results
show that although Randomized PARTITION algorithm takes
two database scans for large itemset creation still its efficiency
is better than CMA which takes one database scan for large
itemset creation. The time complexity of partitioning tech-
nique as well as the rest of the algorithm is much better than
CMA.

TABLE VII

COMPARISON OF NO. OF LARGE ITEMSETS WITH VARYING SIZE OF DATA

Datasets No. of Local Large itemsets Sum Gi
Trans m_sup P, P, P P, L m_ sup G;
L1= L|= L(= L1=4 14 G,=
Lz= Lz= Lz'—- Lz=5 9 Gz=1
20 3 Ly=* L;=* Ly=* Ls=2 2 10 Gy=*
L4=l L4=l L4=l L4=l L] G4=l
L5=t L5=‘ LS=* Ls=# * GS=.
L= L,=3 Li=4 Li=4 14 G=
L=* L~=1 Ly=1 L:=1 3 G=*
100 13 Ly=* L;=* L,=* L;=* * 50 Gy=*
Ls=* L&* L&* L&* * Gs~=*
Ls=* Ls=* Ls=* Ls=* * Gs=*
L,=4 L,=4 L,=4 L;=4 16 Gy=4
Lz=1 Lz=1 Lz=l Lz=] 4 Gz=1
1000 250 Ly=* Ly=* Ly=* L;=* * 500 Gy=*
L4=‘ L4=l L4=l L4=l L] 4=‘
L5=‘ L5=‘ Lszt Lszt L] Gszt
L|=4 L|= L|=4 L|= 15 G|=
L= L=1 L=1 L=1 4 G=1
1,0000 2500 L,=* L,=* Ly=* Ly=* * 5000 Giy=*
L&=* L&=* L&=* Le&=* . =*
Ls=* Ls=* Ls=* Ls=* * Gs=*

Many experiments were performed using varying size of
datasets. Table VII shows some of the experimental results
with 20, 100, 1000, 10,000 transactions. Given dataset calcu-
lates upto large 3-itemsets. Randomized PARTITION algo-
rithm can calculate upto k itemsets with other datasets.

TABLE VIII

CoMPARISON OF PREVIOUS PARTITION WITH RANDOMIZED PARTITION
ALGORITHM

Previous PARTITION Randomized PARTITION

Memory usage=increased
Hash tree storage

Memory usage=decreased
Structure with count

Randomized PARTITION algorithm was also compared
with previously implemented PARTITION algorithm and it
was observed that its efficiency is better in terms of memory
usage and time as shown in Table VIII. Extensive experi-
ments were performed with different datasets for large itemset
generation upto k itemset to check the efficiency of algorithm.

VI. CONCLUSION

This improved version of Randomized PARTITION algo-
rithm is more efficient than CMA as its partitioning technique
takes much less time than the one used by CMA. Its time
complexity is O (n) much better than the time complexity of
CMA that is O (n°). Its efficiency is greater than CMA due to
its changed partitioning technique.

This version of Randomized PARTITION algorithm is also
more efficient than previously implemented PARTITION al-
gorithm as it reduces the memory usage by simply storing
counts for each large itemset instead of storing the TIDs in

hash tree. This has also increased the time efficiency of Ran-
domized PARTITION algorithm as compare to previously
implemented PARTITION algorithm.

In future we have a plan to implement this algorithm in par-
allel environment for better efficiency.

ACKNOWLEDGMENT

We wish to thank Mr. Muhammad Imran Saeed and Mr.
Abdussalam for their sincere guidance and help throughout
our research.

REFERENCES

[1] J. Han, M. Kamber, “Data Mining: Concepts and Techniques,” Kauf-
mann Publishers, San Francisco, California, USA, 2001.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules
between Sets of ltems in Large Databases,” In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Washing-
ton, D.C. USA, May 1993, pp.207 - 216.

[3] R. Agarawal and R. Srikant, “Fast Algorithms For Mining Association
Rules,” In Proceedings of the 20th International Conference on Very
Large Data Bases, Santiago de Chile, Chile, September 1994, edited by
J. B. Bocca, M. Jarke, and C. Zaniolo, “Very Large Data Bases.” Mor-
gan Kaufmann Publishers, San Francisco, CA, USA, pp. 487 — 499,

[4] J. Soo Park, M. Chen and P.S. Yu, “An Effective Hash-Based Algorithm
for Mining Association Rules,” In Proceedings of the ACM SIGMOD
International Conference on Management of Data, May 1995, pp. 175 -
186.

[5] M. . Zaki, ‘Parallel and Distributed Association Mining: A Survey,” In
IEEE Concurrency Journal, Special issue on Parallel Mechanisms for
Data Mining, Vol. 7, No. 4, December 1999, pp. 14 - 25.

[6] A. Savasere, E. Omiecinski and S. Navathe, “An Efficient Algorithm for
Mining Association Rules in Large Databases,” In Proc. of the 21st Int’l
VLDB Conference, Zurich, Switzerland, September 1995, pp. 432 — 444.

[7] S. Jamshaid, Z. Jalil, M. Khiyal and M. Saeed, “Association Rule Min-
ing in Centralized Databases,” Information Technology Journal, Vol. 6,
Tssue 2, 2007, pp. 174 — 181.

