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Preface

Fixed point theory is a magnificent blending of analysis, geometry and
topology. It reckons with fixed point existence of a mapping ¥ on a set X,
i.e., the functional equation that depends on the operator may admits a certain
fixed point solution in the form x = Wz. The basis of fixed point theory
was laid down in the 20th century by celebrated Polish mathematician Stefan
Banach. The maps satisfying various fixed point contractive conditions on the
entire domain play an important role and have a wide range of applications
in functional equations, differential equations and integral equations, which are
used in parametrize estimation problems, recurrent network convergence, adaptive
control systems, nonlinear and fractal image decoding, and computing magneto-
metric fields in a nonlinear medium. Numerous mathematicians have generalized
fixed point theory in different ways. We direct readers to the books for more
information to [87] and [79].

Nevertheless, suppose the presence of a fixed point is assured through the use
of complete or compact space, contraction, or non-expansive mappings. In that
case, then determining the value of that fixed point is a difficult problem, which
is why we compute them using iterative procedures.

It would take a lot of work to discuss all of the numerous iterative procedures
that have been developed over time. The most useful fixed point result which
is known in the literature as a Banach contraction theorem point out the Picard
iteration technique to approximate the fixed point(Throughout this thesis, we will
refer to the "iteration process” by L.P.). Other well-known iterative processes
include: Ishikawa [63], PicardMann [90], Mann [18], Agarwal [57], Noor [19], SP
[101], S* [85], CR [81], Normal-S [94], Abbas [20], Picard-S [25], Thakur New
[69], Vatan, Step two [86] and so forth. We recommend reading the book [80]

to thoroughly describe iteration procedures. An I.P must possess attributes like



"fastness” and ”stability” to be chosen over another I.P Rhoades said that for
decreasing function, the Mann [.P converges more quickly than the Ishikawa I.P,
but Ishikawa claimed that LP is superior to the Mann LP in [69]. Remember
that Mann LP. is independent of the initial estimate (see [102] for details). The
Agarwal [.P. converges quicker than the Mann I.P. for contraction maps, according
to Agarwal et al.’s claim in [57], and at the same pace as the Picard I.P.

According to Abbas et al., Abbas I.P converges faster than Agarwal I.P in [20].
For quasi-contractive operators in Banach spaces, Chugh et al. shown in [81] that
C.R. L.P. is faster and equivalent to Picard which is basic iteration, Mann which
contains one set of parameter, Ishikawa which contains two set of parameters,
Agarwal which has similar structure as the Ishikawa iteration, Noor which is known
as first three-step fixed point scheme, and S.P. iterative processes. Additionally,
Karakaya et al. demonstrated in [92] that C.R. I.P. converges more quickly than
S* I.P. for the class of contraction maps. In [25], Gursoy and Karakaya reported
that for contraction maps, Picard-S I.P converges more quickly than all of Picard,
Mann, Ishikawa, Noor, SP, CR, Agarwal, S*, Abbas, and Normal-S. In [69], Thakur
and colleagues demonstrated using

Numerical proof shows that Thakur New I.P. converges more quickly than
Picard iteration, the iteration due to Mann, a basic two-step Ishikawa fixed point
scheme, Agarwal two-step iteration, three-step basic Noor iteration, and Abbas
iteration three-step iteration for the class of Suzuki nonlinear nonexpansive maps.
Similarly, Karakaya et al. demonstrated in [86] that the Vatan Two-step L.P. is
quicker for weak contraction maps than the Picard-S, CR, S.P., and Picard-Mann
iteration processes.

In this dissertation, we present several new iteration processes in the context
of CAT(0) and Banach spaces, and we then demonstrate how much faster our
processes are. Our new method is based on the class of mappings with the (KSC)
condition and the M*-iterative scheme. First, we use a M*-iterative approach

to obtain various A and strong convergence theorems. In the broad scenario of

i



CAT(0) spaces, we show convergence findings on the F iteration technique for
generalized a-nonexpansive mappings.

For the sequence created by some of of the provided modified iteration schemes,
we aimed to establish a different types of results associated with weak, A, and
strong convergence in nonlinear settings with supportive and basic examples by
considering large class of nonlinear and nonexpansive maps. We employ Banach
space and CAT(0) as our underlying spaces. Furthermore, we present a brand-new
idea in Banach spaces: extended -Suzuki nonexpansive mappings. This concept
provides an effective way to approximate common fixed points.

This dissertation consists of five chapters.

Chapter 1 presents basic definitions, a thorough study of CAT(0) spaces and a
concise overview of current iteration procedures, along with several key ideas and
findings employed throughout this thesis.

Chapter 2 Within the context of CAT(0) spaces, we provide a few iterative
constructions of fixed points that demonstrate and discuss an application of these
outcomes to solve a wide range equation relation to fractional derivative.

Our new method is the modification of M* scheme and is connected to
nonlinear maps that has a property called in the literature as a (KSC) condition.
First, we use a M*-iterative approach to obtain various A and strong convergence
theorems. The concept in fixed point and our outcomes of this chapter are combind
and a FDE is solved as an application. Finally, it has been shown by supportive
and basic example which clearly shows the wideness of our results. Eventually, M*
iteration is seen as a highly accurate numerical method relating and comparing
with some known and faster methods of the current literature in apprxomimation
methods of fixed points. Our findings are novel and extend the scope of several
related findings in fixed point theory and related fields.

Chapter 3 This chapter describes the successful application of an efficient
iterative approximation approach to discover fixed points in the nonlinear setting

of CAT(0) spaces for a general class of operators. Finding solutions through the
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suggestion of fixed-point processes for issues of various kinds (such as differential
and integral) and functional problems is one of the more challenging tasks. This
is particularly true when examining approximation techniques when the domain
of definition lacks linearity.

Several examples are used to demonstrate the results. There are also some
numerical calculations offered. Finally, we demonstrate that our novel findings
can be used to resolve split feasibility issues.

Chapter 4 We provide convergence findings on the F iteration method for gen-
eralized a-nonexpansive mappings in the general case of CAT(0) spaces. To bolster
our findings, we provide examples and numerical data. One implementation of our
primary findings is also given. The results complement the comparable fixed point
iteration findings in the present literature and are new in the literature.

Chapter 5 As an improvement over earlier research, we provide a novel idea
called the A*-iterative scheme, which broadens our understanding of convergence
rate analysis.

Furthermore, we present a brand-new idea in the category of Banach spaces
extended ¢-Suzuki nonexpansive mappings. This concept provides an effective
way to approximate common fixed points.

Our theoretical analysis’s dependability is demonstrated by numerical exam-
ples and its application to delay nonlinear fractional differential equations and
basins of attraction. Our study builds on the foundation established by earlier
research in this area by offering a complete and comprehensive analysis of this

expanded iterative strategy.

v
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Chapter 1

Basic Concepts

Several fundamental ideas and terms that are utilized throughout the dissertation are
covered in this chapter. To keep the chapter within a manageable length, several known
findings that are currently in existence are offered without evidence.

A few definitions, theorems, assertions, and lemmas that are being reviewed in
Section 1.1 will be utilized in the upcoming chapters. We present CAT(0) space and a
few of its fundamental characteristics that are necessary for fixed points in mappings to
exists, in Section 1.2. A brief introduction and history of various iteration systems are

provided in Section 1.3.

1.1 Preliminaries

Definition 1.1.1. [82] A uniform convex Banach space namely X is a complete norm
space having a property that ||“£2| < 1 — ¢ where ¢ > 0 whenever ||u|, [|v]] < 1 and

|lv —ul| > & for some 0 < & < 2.

Definition 1.1.2. [3/ A Banach space X equipped with Opial condition will have the
property that a sequence {v;} which converge weakly to a weak limit vy in X in such way
lim sup ||v; — vo|| < lim sup ||v; — al|

1—00 1—00
holds, for every a € X with vy # a.

The details of Banach’s contraction principle (BCP) which guarantees the existence



and as well as the uniqueness of contraction mappings in complete metric space, are as

follows.

Theorem 1.1.1. [13] Suppose a selfmapping defined as ¥ : X' — X whose domain
is a certain space (X,d) which is complete. The Banach’s contraction satisfied by the

selfmapping which is defined on a complete metric space (X,d) as ¥ : X — X and
d(Yu, ¥v) < 0d(u,v),V u,v € X

where 6 € (0,1), then the equation u = Vu must be satisfied by sequence generated by

the Picard iteration will surely converge to a point w.

The set of fixed points of the selfmapping ¥ define over the Banach space X

satisfying the equation u = Wu will be denoted through out the dissertation by Fy.

Definition 1.1.3. The mapping V : K — K will be called nonerpansive, if the value of

0 is transformed to unity in Theorem 1.1.1.

It is evident that nonexpansive maps are not covered by Banach’s Contraction
Principle, and this issue has existed for about 40 years. Eventually, this dilemma was
solved by Kirk [96], Browder [93], and G&hde [15] separately in 1965, which followed by

the spate of papers in the literature that gave a new form to the fixed point theory.

Theorem 1.1.2. A closed,bounded convexr subset K of uniform convexr Banach space

X on which nonexpansive a selfmap ¥ is defined, has a fixed point.

Sometimes as we know, extension of fixed point results needed a larger setting of
nonlinear maps that are not a straightforward research in analysis. As we know, the
condition that a certain map will be nonexpansive is simple and can be easily managed
in existence and in iterative construction results. In 2008, one of the attempts to extend

this idea was provided by Suzuki as follows.

Definition 1.1.4. [68] The map V¥ is called Suzuki mapping (SM) if satisfies Suzuki’s
(C) condition

1

id(u, Vu) < d(u,v) = d(Vu, Vv) < d(u,v),

for all points u,v in the subset K of X .



Compared to the nonexpansiveness property of any operator ¥, the (C) condition is
effectively weaker. [68] provides an example.
Author Karapinar [64] proposed an additional requirement for mappings, which was

greatly inspired by Suzuki [68].

Definition 1.1.5. [64] The Kannan-Suzuki condition (KSC) is being satisfied by the

selfmap VU which is defined on set K.

—

1
id(u, Vo) < d(u,v) = d(Yu, Yv) < id(u, Vo) + d(v, Yu), for all u,v € K.

The following are several characteristics of SGN maps.

Proposition 1.1.1. [111] Let ¥ : K — K be any mapping and let ) # K C X (a
Banach space).

(i) It can be shown that ¥ is an SGN map if it is a nonexpansive map.

(ii) An SGN map ¥ having a fized point defined over K is regarded as quasi-
NONETPANSIVE.

(iii) The subsequent inequality satisfies only if ¥ is an SGN map for every u,v € K.
lu = Wol} <3|V —ull + flu— v

Lemma 1.1.1. [111] An SGN VU is defined over the subset K of I which is a Banach
space X having the Opial property and with lim; o |WYu; — u;|| = 0. if the sequence

{u;} converges weakly to u after that Vu = u.

Lemma 1.1.2. [111] Let an SGN map ¥ defined on a domain that is compact in weak
sense denoted by K and is essentially a subset of a uniformly convexr Banach space. As

consequent, there exists a point that is fized for the mapping V.

A new concept regarding mappings of Reich-Suzuki type nonexpansive came into

view in the recent past. The following is the information about such mappings.

Definition 1.1.6. [36] Suppose we have a distance function d over a metric space X
and take K as a subset of a metric space X. On the subset K define a selfmap ¥ ,

provided that for all u,v € K there would be a value ¢ in the interval [0, 1), then U



is said to be as a nonexpansive Reich-Suzuki type mapping if the consequent inequality

w < d(u,v) implies d(Vu, ¥v) < cd(u, Yv) + cd(v, Yu) + (1 — 2¢)d(u, v) holds.

It is critical to acknowledge that nonexpansive operators of the Reich-Suzuki type

possess the subsequent characteristics.

Proposition 1.1.2. [37] Assume that K is the subset of a metric space X . Let us take
W be a selfmap defined on subset K. The collection of all fized points of W is represented
by Fy = {y1 € K :y1 = Yy1} # 0. Subsequently, the subsequent qualities are considered

valid.

(a) IfV is a Riech-Suzuki type nonexpansive operator, then the condition d(¥y, Py;) <

d(y,y1) holds for every y € K and any y1 € Fy.

(b) If the function ¥ is a Suzuki map, then it can be classified as a nonexpansive

function of Reich-Suzuki type.

Definition 1.1.7. The ¥ mapping is called generalized a-nonexpansive (GAN) provided

that
1
id(u, Vu) < d(u,y) = d(Vu, Vy) < ad(u, Yy) + ad(y, Yu) + (1 — 2a)d(u, y),

for some o € [0,1) and for all point u,y in the subset K of X.

Definition 1.1.8. [80] Suppose two convergent sequences are given {u;}3°, and {v;}32,
with the limits u and v respectively then the comparison of their rate of convergence can
be made in such way that if

[[ui — ull

lim =0
i—00 ||Uz — UH

then we say that the convergence of {u;}5°, is faster than that of {v;}52.

Definition 1.1.9. [80] Suppose we have fized point iteration scheme for which two
sequences {u; 152, and {v;}2, are generated, which are converging to the fized point p
also {a;}32, and {b;}3°, are two positive real numbers null sequences. This occurs when
|lui — p|l < a; and ||v; —p|| < b; for all i > 0. If the convergence of {a;}52, is greater
than that of {b;}22,, then the convergence of {u;}2, is also greater than {v;}2,, with

respect to p.



Definition 1.1.10. [3]/ Any Banach space X equipped with the Opial condition will
have the property that a weak convergent sequence {v;} in X that possess a weak limit

v, with the result that.

lim sup ||v; — v|| < lim sup ||v; — all
1—00 1—00
holds, for every a € X with v # a.

Lemma 1.1.3. [68] Suppose U which denotes a map having domain a nonempty set K
in a Banach space. If the underlying set admits the Opial property and V is Suzuki map,
then the weak convergence of any {v;} to some point v* with lim;_, || Pv; — v;|| = 0,
implies that U has a single fixed point i.e I — ¥ is essentially demiclosed on the point

ZET0.

Lemma 1.1.4. [68] Suppose a selfmap V defined on weakly compact subset K of X,
where X is Banach space which is uniformly convex.Then, let’s assume that W meets

the condition (C). Only one fized point exists for ¥ when this happens.

Lemma 1.1.5. [5] Let’s consider that a Banach space X that exhibits uniform
convexity and for each i € N there is sequence a; such that 0 < p < a; < g < 1.
Let us consider {u;} and {v;} are two sequences of X that lim;_,.csup ||u;]] < 7,
lim; 00 sup [Jvi|| < 7 and lim;_,o sup ||a;u; + (1 — a;)v;|| = v hold for some v > 0. Then,

Proposition 1.1.3. [68] The following hypothesis is true if ¥ : K — K and K # 0 C
X

(a) : ¥ satisfies (C), if U is non-expansive.

(b) : For a mapping ¥ to be considered quasi-non-expensive, it must have a fized point
and satisfy (C).

(¢c) : For every u,a € K, |[u — Va| < 3||[u — ul|| + [[u — a|| if ¥ satisfies (C).

Definition 1.1.11. [6] If h is a non-decreasing function and V : K — K is a mapping
being referred to as 1.1 inequality, then h : RT — RY such that h(0) = 0 and h(t) > 0

for any t > 0 in a way that



h(d(u, F(¥))) <d(u,Vu) VuelX, (1.1)

whereas d (u, F (¥)) = inf,cpep) d (u,v) and F' (V) stands for the collection of all fized

points of V.

1.2 CAT(0) space and some of its important
properties

A word geodesic is used common in many area of research that has meaning a shortest
possible between two points. But when a certain metric space, in which we can define a
map that can connect two points will be called a geodesic and the space will be referred
to as a geodesic metric space or simple a geodesic space (see [74]). The concept of such
spaces has a clear impact of science and many ideas related to famous general relativity
heavily rely on such concepts. Notice that in such type of spaces, a geodesic three sided
figure is must be thinner or same in corresponding shapes of complex plane. We also
know that Riemannian manifold is one of the most studied example of such spaces.
Other examples of such spaces can be widely found in the work in [75] and included
Hilbert spaces and R-trees as a special examples.

The fixed point study was only known in Hilbert, Banach and complete metric space
initially. But in such type nonlinear CAT(0) or geodesic spaces, it was challenge problem.
This study was researched by many authors but no effective outcomes was achieved. In
the paper due Kirk [77] eventually got a breakthrough in this setting by establishing a
bridge between fixed points and geodesic spaces. This breakthrough motivated many
new researchers and new fixed point outcomes along with new applications were initiated.

Verifying the similarity between the metric fixed discoveries in Hilbert and CAT(0)
spaces is a relatively simple. The author of the proposed work is motivated by the above
revelation and became interested in investigating the possibility of constructing CAT(0)
spaces, essentially nonlinear equivalents of spaces like /,. This study assumes that the
comparison triangle lies outside the Euclidean plane in a more general Banach space,

extending Gromov’s notion. To the author’s knowledge, no such generalized statement



has been presented in literature so far. We have obtained some novel results for p more

than two and Banach space being a classical sequence space ,.

1.2.1 Basic Definitions and Properties

Consider a geodesic metric space represented by (X,d). In geodesic metric space, a
path is a continuous map that maps the closed interval [0, 1] to the set of points in X in
a continuous way. Let the map which connects two sets is define as ¢ : [0, 1] — X if we
choose any two points s and r from the interval [0, 1] then their corresponding distance
be measured by the formula d(q(s),q(r)) = |(s — 7)|d(q(0),q(1)) in space X. The set
of image points forms a path, which is called a geodesic path. If for any two points in
space, X exists a geodesic path that connects them, it is called geodesic metric space.
If @ and b are two points corresponding to points 0 and 1 of the map ¢ in the space
X, then the path which connects a to b is denoted by [a,b] is called a geodesic. if ¢
is any point from the interval [a, b] then the notation ¢ = ((1 — r)a @ rb) will be used
to determine the value of ¢ where r is a values from (0,1) . If a unique geodesic exists
between any two points of space X, then such a space is known as uniquely geodesic.
If K is a subset of X, the K is said to be convex if the geodesic [a, b] is contained in set
K if a and b are any two points of K.

A triangle A(t1,t2,t3) in geodesic space X is called a geodesic triangle if the three
vertices of it are represented by points 1, %o, t3 and the sides are formed by geodesics
[t1, ta], [ta, ts]and[ts, t1] respectively. A comparison triangle for A(t1,te,t3) is defined as

a triangle A(%1,7s,%3) in the plane R? if and only if

dRQ (E, 5) = d(tQ, tg), dRz (E, E) = d(tQ, t3) and d]R2 (E, H) = Cl(tg, tl).

A comparison between the points of the geodesic segment and an interval in a plane
is made in such a way that a point € € [t1,%2] is regarded as comparison point of
e € [t1,t2] if the subsequent condition is satisfied d(t1,€) = dg2(f1,€). Similarly, we can

also compare the points in [t1, 3] and [t3, t2].

Definition 1.2.1. [/3] The geodesic triangle A(t1,ta,t3) is said to possess the CAT(0)

property in a metric space (X, d) if the comparison is made between the corresponding



points in the two triangles A(t1,t2,t3) and A(t1,12,t3) by choosing two points from each

in such way t,t' € A and t,t' € A then the following condition must be obeyed.

d(t,t') < dga(t,1).

The most basic types of geodesic spaces are polyhedral complexes with piecewise
constant curvature, complete Riemannian manifolds, and normed vector spaces. In the
previous two instances where the presence of it is not always clear whether such spaces
are uniquely geodesic, finding such paths is also a difficult task. It is considerably simpler
in the case of normed vector spaces. [74].

In the purview of geodesic metric spaces, if a geodesic triangle lies within metric space
X, then the metric space deemed X' to be a CAT(0) space if the said triangle adheres
to the CAT(0) property. To obtain more information regarding the exact definition of
CAT(0) attributes, please consult reference [108]. It is crucial to emphasize that every
CAT(0) space is fundamentally geodesically unique. Pre-Hilbert spaces and metric trees
are commonly cited as instances of CAT(0) spaces. We suggest referring to sources
[43,91,107,108] for a more comprehensive examination of this subject. In addition,
CAT(0) spaces exhibit several fascinating characteristics that merit further exploration.

Suzuki [111] infers that the requirement of non-expansiveness is stronger than the
condition (C'). Consequently, the class of the maps that satisfy condition (C) is a
superclass of the non-expansive class. Suzuki generalized non-expansive maps are
frequently referred to as SGN. For mappings of the exact nature, the existence and
convergence of the fixed points are established in the paper [111]. For both uniformly
convex Banach and CAT(0) spaces, Phuengrattana proved the convergence theorems
for SGN mappings using the Ishikawa iterations method [77]. This study focuses on
the fixed point theorems for SGN mappings. For in-depth scrutiny, the readers are
referred to the work of Thakur [69] and the work cited therein. Additional information
on CAT(0) spaces is available in the books [61]. Now, we present some information

from [45].

Lemma 1.2.1. [11] Let us consider a CAT(0) space X, which is complete, and take

a nonempty subset K of X. Then, the following statements are followed due to the



CAT(0) space properties.

(a) Then according to the geodesic property, there exists a unique representation of
point q in the geodesic [u,v] where u,v € K and 0 represents a fized element in

the interval [0,1] on the real line. Then
d(u,q) = 6d(u,v) and d(v,q) = (1 — 0)d(u,v). (1.2)
Any point q in the geodesic [u,v] has a unique representation ¢ = (1 — 0)u & Qv

which satifies (1.2).

(b) If 6 € [0,1] is fized and u,v.w € K, then one has

d(w,0u @ (1 —0)v) < Od(w,u) + (1 — 0)d(w,v).

To figure out the primary result, we additionally require certain concepts and
information. In the forthcoming chapters we may denote X as a CAT(0) space and
K is a nonempty convex, closed subset of X

Let us suppose that a bounded sequence {v;} € X and that a subset of a
Banach space X that is K # 0 is convex and closed. We define v (u,{v;}) =
lim;_, o sup |Ju — v;|| . Associative to K the asymptotic radius of {v;} is and may be

determined by using

v (K {vi}) = inf {7y (u, {vi}) : v € K}

and an asymptotic centre of {v;} associated with K is defined as

QK {vi}) ={u e K2y (u,{vi}) =7 (K, {vi})}.

The Q (K, {v;}) has exactly one point, as observed within the framework of CAT(0)
space. Additionally, this set is convex and nonempty in cases of weak compactness and

convexity of K (see [88,89]).

Definition 1.2.2. [46] Consider {v;} C X, and X to be a CAT(0) space. A A limit

of {v;} is defined as the point yo only if it serves as the sole asymptotic center for {s;},

9



where {s;} represents any subsequence of {v;}.

Strong convergence theorems for iterative sequences are typically proven for specific
types of mappings using condition (I), which is stated as follows and was presented by

Senter and Dotson in.

Definition 1.2.3. [41] Let us have X' as CAT(0) space and K as a subset of X on
which the selfmap V is defined then ¥ is said to satisfy condition (I) if the inequality
d(v,Yv) > p(dist(v, Fy)) is true for every point v € K where p is a function such that
1(0) =0 and p(u) > 0 for every u > 0 and dist(v, Fy) represents the distance between

the set Fig and the point v.
The Opial’s property [3] can be expressed in the term of CAT(0) space as follows.

Definition 1.2.4. A space X that represents CAT(0) space Possesses the Opial’s
property if any sequence {v;} C X which is A-convergent to yy € X, the following
condition holds:

lim sup d(v;, yo) < limsup d(v;, xo),

1—00 1—00

Vage X — {yo}
It has long been known that every CAT(0) space possesses this attribute.

Lemma 1.2.2. [3] Assume that a space X, which is a complete CAT(0) space, and
let {v;} C X is a bounded sequence. In this scenario, the sequence {v;} possesses a

subsequence that is A-convergent.

The deduction of the following Lemma has been made from the definition Reich-

Suzuki type nonexpansive mapping.

Lemma 1.2.3. [37] Suppose we have CAT(0) space X and K is a subset of X', now
define a mapping as V¥ : K — K. If U is a nonexpansive function of Riech—Suzuki type

and y and z are elements of K.

Subsequently d(y,Vz) < E?jj; d(y, Vy) + d(y, 2).

The idea of a A convergence in CAT(0) space exhibits similarity with the weak

convergence in a Banach space.
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Definition 1.2.5. [107] In a CAT(0) space X which is complete a bounded sequence
{v;i} is said to be A-convergent if it has a unique asymptotic center z for every sub-
sequence {s;} of {v;} and it is denoted by A — lim; v; = z where z € X to which {v;}

converges is the only asymptotic centre of it.

Lemma 1.2.4. [108] Assume that X, the CAT(0) space, is complete. Once this is

established, any bounded sequence {v;} C K admits a subsequence that is A-convergent.

Lemma 1.2.5. [110] Let us take a complete CAT(0) space X and select a set K which
is a convex nonempty closed subset of X then for every bounded sequence {v;} in K ,

the asymptotic center is contained in the subset K.

Lemma 1.2.6. [64] Assume that X and 0 # K C X are any CAT(0) spaces. Assume
that Fy # 0 and that ¥ is a selfmap of K that satisfies the (KSC) requirement. For any

u € K and v € Fy, one then possesses the following property:

d(Yu,v) < d(u,v).

Lemma 1.2.7. [64] Let us take a complete CAT(0) space X and select a set K, which
is a nonempty subset of . Now choose a selfmap VU on the K which satisfies the (KSC)

criterion. Then one has the following property holds for each u,v € K.
d(u, Uv) < 5d(u, Vu) + d(u,v).

Lemma 1.2.8. [64] Let us take a complete CAT(0) space X and select a set K, which
is a nonempty subset of . Now choose a selfmap VU on the K which satisfies the (KSC)

criterion. The subsequent property is valid.

{vi} CK, A-limv;,=v, dv;,%v)—0= Tv=n0.
(2

We require some evidence from [17] on this basis, and the CAT(0) space interpreta-

tion follows.

Proposition 1.2.1. Assume that X is a metric space and any subset K of X. Let ¥

a map from K to itself. Next, we present the following pieces of information.
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(i) When ¥ is SM then ¥ GAN.

(i) When VU is a GAN map having a fized point, it follows that d(Us,l*) < d(s,l*),

where s € K and I* is any chosen point which acts as fized point of V.

(iii) When ¥ is a mapping of GAN and the set of its fixed points Fg is nonempty.

Then Fy is the subset of W that must be closed set.

(iv) When VU is a GAN map, then it follows that for all s,r € K,

d(s, Ur) < <(f+3

) d(s,¥s)+d(s,r).

(v) Since the CAT(0) space satisfies the CAT(0) style of Opial condition. So, if ¥ is
a GAN map with {v;} is A-convergent sequence to I* and lim;_,oo d(Pv;,v;) = 0,

then one has I* € Fy.

1.3 Iteration processes

In the forthcoming chapters we shall use four real sequences {x;},{\:}, {7} and {u;}
for (i > 0) all of which are entirely lying in the interval [0, 1]. Furthermore a nonlinear
selfmap ¥ defined on a subset K of X' where K is nonempty closed convex subset of
the space X' under the consideration.

As for as iterative sequence is concern we shall use {v;} throughout the dissertation
unless and otherwise. In order to demonstrate Banach’s Contraction Principle, the most

fundamental I.P utilized is Picard I.P, which is as follows:

vg € K
(1.3)
viy1 = Yo;.

This technique is also known as the successive substitution method or the Richardson

iteration.
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Hassan et al. have presented the following iterative technique. [38]:

v € K,
w; = \I’((l — /{i)vi + IQZ‘\I”UZ'),
XT; = \I/((l — ui)wi + )\i\Ilwi), (1'4)

Yi = \IJ((l — )\Z)l‘l + )\illlxi),

viy1 = V(1 =)y +7%Vyi),i > 1,

where 7, A\, pi, ki € (0,1).
The initial generalization of Picard’s iterative process, which is defined for a fixed

(A > 0), is known as Krasnoselskij’s iterative process.

vg €K
(1.5)

Vig1 = (1 — )\)'UZ' + AWwv;.

M*-iteration is a newly designed iteration by Ullah and Arshad [70]. The following

sequence {v;} is produced by this iteration:

;

v €K
w; = (1 — )\i)vi + X\ W,

T; = \IJ[(l — K,i)’Ui + /@Z-\Iiwl-]

| Vi+1 = Vr;.

Halpern in [83] proposed an iteration method that uses a fixed value of u € K and

a single set of parameters that is the first one-step I.P.

vg €K

Vi+1 = (1 — /ﬁ:z‘)u + RZ‘\IM)Z‘.

The following is the one-step Mann iterative process:

vg €K
(1.8)

Viy1 = (1 — /ii)'l)i + rk; Y.

If we consider x; € [0,1] For all i, the one-step Mann I.P. reduces to (1.8). The
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one-step mann I.P. also becomes (1.3) for all i« when x; = 1, in a similar fashion.

Ishikawa I.P, which is the initial two-step I.P is defined in [63] and provided by:

vg €K
Vit1 = (1 — Hz’)vi + k;Wv;.

If we assume that A\; = 0, the Ishikawa I.P falls to (1.8). for each of 1.

vg €K
w; = (1 — )\Z)Ul + \;V; (1'10)

Vi1l = (1 — mi)wi + r; Yw;.
Presented in [57], Agarwal L.P (sometimes called S I.P) is described as follows:

vg €K
w; = (1 = A)vi + AW, (1.11)

Vi+1 = (1 — ni)\llwi + Iii\lfwi.

They demonstrated that, for contraction maps, the convergence rate of their novel I.P.
is quicker than (1.8) and equal to that of (1.3).
The initial three-step I.P. was presented in 2000 in [19] and was called Noor L.P. It

was described as follows:

vg € K

w; = (1 — ,U,Z')Ui + ,uZ'\I”Ui (1 12)

€XT; = (1 — )\Z‘)Uz‘ + N Yw;

[ vit1 = (1= Ki)v; + w; W
The value of Noor I.P falls to (1.8) when we set \; = y; = 0 for all 4, and to (1.9)

when we assume p; = 0 for all ¢. Subsequently, other authors developed three-step

iteration procedures.
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SP I.P [101] is given by;

vg € K

w; = (1= pi)vi + i Po; (1.13)

€T = (1 — )\i)wi + A\ Pw;

Vi4+1 = (1 — Iﬁ;i)xi + /ﬁi\Iin.

The rate of convergence of (1.13) for non-decreasing and continuous functions faster than
that of (1.8), (1.9) , and (1.12) as shown by Phnengrattana and Suantai demonstrated
in [101].

It is evident that (1.13) and (1.9) are instances of (1.12).

The Abbas I.P. was presented by Abbas et al. [20] and is defined as follows:

vg €K

w; = (1 — pi)vy + pi oy (1.14)

T, = (1 — )\i)\IJvi + N Pw;

Vit1 = (1 — /@i)\Pxi + k; Yw;.

The process converges more quickly than all of mentioned above, as they demonstrated.

The source of CR L.P, as reported in [81], is:

vg €K

w; = (1= pi)vi + Yo, (1.15)

€T, = (1 — )\i)‘I/’UZ' + X\ Pw;

[ Vit1 = (1 — Ky)x; + kP,

A subclass of contraction maps known as quasi-contractive maps, the convergence of
(1.13) is faster than that of (1.3), (1.6), (1.7), (1.9), (1.10), and (1.11) as demonstrated
by Chugh et al. [81].

A novel three-step I.P is presented by Thakur et al. [69] and is described as:
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vg €K

w; = (1 — pa)vy + pi oy (1.16)

€T = (1 — )\i)wi + A\ Pw;

| vit1 = (1 — ki)W, + K Wy

Additionally, the authors demonstrated both analytically and numerically that their
novel I.P converges more quickly than all of the contraction map (1.3), (1.6), (1.7),
(1.9), (1.10), and (1.12).

The three-step I.P utilized by Karahan and Ozdemir [85] is called S* I.P.

vg €K

w; = (1 — pi)vy + pi Wy (1.17)

€T, = (1 - /\i)\IJ’UZ‘ + X\ Pw;

[ Vit1 = (1 — Iii)‘llvi + rk;Wx;.
Karakaya et al. In [92] shown that (1.13) is converging to the fixed point of

contraction map faster than S* L.P.

A three step I.P known as P I.P [102] is presented in the following way.

vg €K

wi = (1 — pg)vi + piPo;
( ) (1.18)

Vgl = (1 — /€i>\I/wi + k;Vx;.

For continuous and non-decreasing functions, if S-iterations 1.9 converge, then the
P-iteration also converges but at a faster rate than the S-iterations showed by Sainuan
[102].

Introduced by Sintunavavat and Pitea [109], S; I.P is provided by:

vg €K

w; = (1 — pi)v; + pi Wy
( ) (1.19)

Uit1 = (1 — /iz')\I/xi + k; Yw;.
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Through a rigorous comparison of the convergence rates of S; I.P with (1.6), (1.7), and
(1.9) using numerical examples, we were able to precisely demonstrate the excellent
convergence rate of S; I.P, solidifying its superiority over other iteration processes.

The definition of a two-step Picard Mann hybrid L.P is:

vg €K
w; = (1 — mi)\llvi + fii\lfxi (1'20)

Ui+1 = \I/wi.

A new I.P named Picard-S I.P was introduced in 2014 by Gursoy and Karakaya [25].

It works as follows:

vg € K

T; = (1 — /ﬁi)‘I/’UZ' + ki Yw;

vip1 = Y.

The fixed point estimation for contraction maps employing the Picard-S iterative
procedure is rapidly converging as compared to the iteration in the literature that
includes the two-step Mann, Normal-S, S, S*, (1.12), (1.6), (1.7), (1.10), (1.11), (1.13),
and (1.1) processes. This is proved by providing an example.

Taking into consideration the previous I.P., Yildirim, and Kadioglu [84] introduced

a new LP.
vg €K
w; = (1 — )\Z')Ui + AP

(1.22)
xT; = (1 — mi)wi + Ei\lfwi

L uip1 = Y.
It has been shown that their newly introduced I.P is more quicker than all of iteration
process (1.3), (1.6), (1.7) and (1.9).

We shall refer to the two-step I.P. that Karakaya et al. [86] provided as Vatan’s
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two-step I.P, which is defined as:

vg €K
w; = \I/(<1 — /\i)yi =+ )\i\I/’Ui) (1-23)

Vit1 = ‘1’((1 — Iii)wi + Iil\Ifwl)

In 2015, Thakur et al. [69] employed the subsequent new I.P after this.

vg €K

w; = (1 — )\Z)Ul + \; P,
(1.24)

xT; = \I/((l — /ﬁ:i)'l)z‘ + /@iwi)

vip1 = V.

We'll refer to it as Thakur New I. P. They demonstrated that (1.22) for Suzuki
generalized nonexpansive maps is quicker than (1.3), (1.6), (1.7), (1.9), (1.10), and
(1.12) using numerical examples. The leading I.P., (1.19), is not compared to this I.P.
We will discover their convergence speeds in the upcoming chapters.

The idea of practically finding solutions either in original form directly or in the
transform (for example in fixed point theory) by employing approximation methodolo-
gies in order to effectively estimate their values is highly searched area in analysis. This
area of research mainly focus on the problem when the analytical solutions become
impossible to locate. Notice that, many methods to estimate the accurate and semi
closed form solutions often depends on complicated initial conditions that are not easy
to fulfill in real cases. One of such methods are homology analysis method. The aspect
of this analysis includes conditions under which one can guarantee the existence of
solutions which is also not available widely in other fields of research. However, in fixed
point theory, both the existence and solution approximation is easy to get once the
corresponding operator is constructed. This research will focus on the concept of fixed
point existence and fixed point estimation under weak assertion and conditions with

real-world problems in various linear and CAT(0) nonlinear settings.
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Chapter 2

Approximation of Fixed Points
for Mappings with (KSC)
Conditions in CAT(0) Spaces

Fixed point theory has recently provided numerous effective techniques for addressing
nonlinear problems. For more detailed information, refer to the survey study authored
by Karapinar [?,56]. Studying functional equations and iterative solutions for fractional
differential equations (FDESs) is now a highly active research field. To obtain the solution
of Functional equations or fractional differential equations (FDEs), it is often expressed
in the form of an operator, which may be linear or nonlinear, operating on subsets of
suitable metric spaces under the observation, then the fixed point of operator leads to
the solution of the given problems. For further information, refer to sources such as [55]
and others. It is always preferable for the fixed point of this operator to exist and be
produced iteratively.

As we are aware, finding the fixed point of an operator is not a difficult task,
but evolving an appropriate algorithm to accurately calculate the value of the fixed
point of an operator is challenging (see to, for example, [?,?] and other relevant
sources). An approach to estimate the values of this distinct fixed point [67] for
contraction is to employ the Picard iteration [60], represented by v; = Wr; as endorsed

by the Banach Contraction Principle (BCP) [13]. The Browder-Gohde-Kirk have shown
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that a nonexpansive mapping has a fixed point if defined on a convex, closed and
bounded subset of a uniformly convex Banach space (UCBS). These inferences have
been elaborated in their work in Gohde [15], Browder [14] and Kirk [65]. A selfmap ¥
defined over a subset K of a metric space then the mapping ¥ is said to be contraction

if

d(Yu,¥v) < ad(u,v), forall u,v e K (2.1)

wherever a € [0,1).

The fixed point of mapping V¥ is any point u € K which satisfies u = Wu, and the
set of all fixed points of mapping ¥ will be represented as Fy throughout this chapter.
The mapping ¥ will become nonexpansive if (2.1) holds for o = 1.

We present an example of nonexpansive mapping that does not converge for the

sequence of Picard iteration.

Example 2.0.1. Let us define a nonexpansive map like Yu = 1 — u for each u in
K =10,1] and the set of all fized point i.e Fy = {0.5} The iteration produced does not

converge for initial values different from 0.5.

Example 2.0.1 presents alternative iterative methods that guarantee convergence for
nonexpansive mappings (or even generalized nonexpansive mappings) as an alternative
to Picard iteration [60]. The (C) criterion 1.1.4 was initially introduced for mappings
by Suzuki [68] in 2008.

The literature contains a large number of iterative schemes that are widely used
to approximate fixed points in various mapping settings (see, for example, Mann [18],
Ishikawa [63], Agarwal et al. [57], S-iteration, Noor [19], abbas [20], Thakur et al. [69]
and others).

In [70], Ullah and Arshad introduced an iteration which is a new version of M-
iteration called M*-iteration. As compared to the prior iterations in the literature, the
present one is stable and generates more accurate results. The sequence of iteration {v;}

which has been generated is presented as.
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v €K

w; = (1 — )\i)vi + )\i\I/Ui
(2.2)

xTr; = \If[(l — mi)vi + Iii‘lfwi]

| Vi+1 = V;.

In the above scheme (2.2) ¥ is defined as a selfmap on the set set K and the sequences
{ki} and {\;} are taken from the interval (0, 1). Nevertheless, Ullah and Arshad (AKIT)
have shown that the scheme introduced in (2.2) converges in the case of contraction
mappings. In this context, we extend their primary finding to encompass mappings
that satisfy the (KSC)-condition on a wider scale. The convergence of the iteration
indicated above can be proven using the same evidence and procedures. We establish
that the iteration scheme M™* produces precise results that align with the other iterations

in this novel mapping configuration, as demonstrated by a non-trivial example.

2.1 Introduction
Initially, the CAT(0) space iteration of the M* scheme is defined as follows (2.2):
v €K

w; = (1 = X\)v; & AP,

x; = V[(1 — Kki)v; B ki Vw;]

viy1 = V.

2.2 Main Results

We establish our primary result by utilizing (2.3). An initial lemma is presented, which

will subsequently assume an extremely important position.

Lemma 2.2.1. Let us take a complete CAT(0) space X and select a set K which is

convexr nonempty closed subset of X'. Now choose a selfmap ¥V on the K with the set
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of fixed points i.e Fy # () which satisfies (KSC) criterion. Then the sequence {v;}

generated from M*-iteration (2.3) satisfies that lim d(v;, z) exists for each z € Fy.
1— 00

Proof. Lemma 1.2.6 can be applied to consider any point z € Fy. From there, one

has

d(vit1,2) = d(Vxz;, 2)

< d(zi,2)

= d(U[(1 - k)i @ kU], 2)
< d((1 - k)i @ ki wy, 2)

< (1 - k)d(vi, 2) + red(Tw;, 2)
< (1= k)d(vi, 2) + red(wi, 2)

= (1 —ky)d(vi, 2) + £i(d(1 — Xp)vi + Xid(Toy, 2))

< (1= ky)d(vi, 2) + ki (1 — Xi)d(vi, 2) + Xid(Po;, 2))
< (1= k)d(vi, 2) + ki (1 = Xi)d(vg, 2) + Nid(vi, 2))
= (1 —kKy)d(vi, 2) + Kid(v;, 2)

= d(v;, 2).

As a consequence of the above calculation we acquired the inequality d(vii1,2) <
d(vi, z) for every z € Fy which suggest that the set {d(v;,2)} is both bounded and

non-increasing. So we concluded that lim d(v;, z) exists for all z € Fy.
1—00

No numerical method work, until existence of solution is not available. Existence
of solutions and their computation is not an easy task unless several conditions are not
imposed. This chapter includes one existence of fixed point related result, that is based
on the some conditions in nonlinear CAT(0) spaces. We essentially give the proof of the

result by assuming the following criteria.

Theorem 2.2.1. Let us take a complete CAT(0) space X and select a set K which is
convex nonempty closed subset of X'. Now choose a selfmap ¥ on the K which satisfies

(KSC) criterion. The sequence {v;} generated from M*-iteration (2.3). The condition
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that the set of all fixed points i.e Fy # 0 holds true if and only if the sequence {v;}

generated is bounded and satisfies equation lim d(Pv;, v;) = 0.
71— 00

Proof. Initially, we will assume that the set Fy # (. We will then demonstrate that
{v;} is bounded and showing that lim d(v;, ¥v;) = 0. Lemma 2.2.1 indicates that {v;}
1—00

is bounded and that lim d(v;, Uv;) exists in this regard.

1—00

Put

lim d(v;, Yv;) =7, (2.4)

i—00
assuming that » € RT. for r > 0, which is the nontivial situation, as assumed. In light

of Lemma 2.2.1’s proof, d(wj, z) < d(v;, z). Consequently,

lim supd(w;, z) < limsupd(v;, z) = r. (2.5)

i—00 1—00
Now d(Vwv;, z) < d(vj, z) from the Lemma 1.2.6. So,

lim supd(¥Yv;, z) < limsupd(v;, z) = 7. (2.6)

1—00 i—00

From the proof of Lemma 2.2.1, we may observe once more that d(vi11,2) < (1 —

ki)d(vi, z) + kid(w;, z). Consequently, d(viy1,2) < d(w;, z). Thus,

r = liminfd(vit1, 2) < liminfd(w;, 2). (2.7)

1—00 1—00

Thus from (2.5) and (2.7), we have

lim d(w;, z) = r. (2.8)
1—00
From (2.8), we have
r= limd((1—X\)v; & \Vu;, 2). (2.9)
1—00

Now applying Lemma 1.1.5 on (2.4), (2.6) and (2.9), we get

lim d(Yv;,v;) = 0.

1—00
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Finally, let us assume that the set {v;} is bounded and satisfies the property
lim d(Pv;, v;) = 0. We will now demonstrate that the set Fy is not empty. To address
1—00

this, we can consider any point, denoted as z, that belongs to the set A(K,{v;}).

According to Lemma 1.2.7, we obtain

R(Vz,{v;}) = lim supd(v;, ¥z)

1—00

IN

lim sup(5d(Yv;,v;) + d(v;, 2))

1—00

IN

0+ lim supd(v;, 2)

1—>00

= R(z,{vi}).

This indicates that ¥z € A(K,{v;}). Since the collection A (K, {v;}) has just one

element, it follows that Uz = 2z and so Fy is not empty. O

First, we propose a result on A convergence.

Theorem 2.2.2. Let us take a complete CAT(0) space X and select a set K which
18 convexr nonempty closed subset of X. Now choose a selfmap W on the K with the
set of fixed points i.e Fy # 0 which satisfies (KSC) criterion. Then the sequence {v;}
generated from M*-iteration (2.3) will A-converges to a fized point of v if the space

under consideration satifies the Opial’s property.

Proof. The sequence of iterates {v;} is bounded in the set K and meets the condition
lim; 0 d(v;, Pv;) = 0, according to Theorem 2.2.1. With {s;} denoting any subsequence
{vi}, set wa({vi}) = UA{si}). wa({vi}) € Fy is demonstrated. Let s € wa({v;})
in order to accomplish the goal. As a result, a subsequence {s;} of {v;} may be
found such that A({s;}) = {s}. Now applying Lemmas 1.2.4 and 1.2.5 we get a A-
convergent subsequence {r;} which converges to to a point r in X of {s;}. We now get
lim; 00 d(73, ¥7;) = 0 using Theorem 2.2.1. Additionally, ¥ has the (KSC)-condition,
as a result

d(ri, Or) < 5d(ry, Ury) + d(ri, 7). (2.10)

It follows that r € Fyy when the limit is applied to (3.16). Therefore, it is proven that

lim; o0 d(r,7) exists by use of Lemma 2.2.1. As a second objective, we must ensure
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that s = r. To demonstrate this, we will suppose that s % r, which will lead us to a

contradiction. One must bear in mind that asymptotic centers are unique and

limsupd(r;,7) < limsupd(ri,s) < limsupd(s;,s)

i—00 i—00 17— 00

< limsupd(s;,r) = limsup d(v;,r)

500 i—500
= limsupd(r;, 7).
500
Thus we acquire limsup;_, . d(r;,r) < limsup,_, d(r;,r) which is a straightforward
contradiction so we come to the conclusion that s = r € Fy and that wa({v;}) C Fy.
Eventually we will demonstrate that the sequence {v;} A-converges to a point which is
fixed point of ¥. We will proceed to our goal by showing that wa ({v;}) is a singleton
set. Let us take a subsesquence {s;} of {v;} now applying Lemmas 1.2.4 and 1.2.5 we
get a A-convergent subsequence {r;} which converges to to a point r in X of {s;}. It is
assumed that A ({s;}) = {s} and A({v;}) = {¢}. Since s = r and r € Fy have already
been shown, we may assert that ¢ = r. One obtain lim; ,. d(v;,7) if ¢ # r with the

help of uniqueness of asymptotic center.

limsupd(r;,r) < limsupd(r;, q) < limsupd(s;,q)

< limsupd(v;,r) = limsup d(r;, 7).

1—00 1—00

that blatantly contradicts itself. Hence we deduced that ¢ = r € Fy so we conclude

that wa ({v;}) = {q} as result {v;} A-converges to a fixed point of W.

The upcoming theorem rests on compactness principles.

Theorem 2.2.3. Let us take a complete CAT(0) space X and select a set K which is
convex nonempty compact subset of X'. Now choose a selfmap ¥ on the K with the set
of fized points i.e Fy # () which satisfies (KSC) criterion. Consequently M*-iteration

sequence generated from (2.3) strongly converge to fized point of V.
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Proof. As given that the set K is compact and convex so the sequence of iterates
{v;} lies inside the set K, due to the compactness of set K the sequence {v;} has
subsequence. Strong convergence to v € K is achieved by {v;, } of {v;}. Additionally,
we have lim d(Wv;, ,v;,) = 0 in the context of Theorem 2.2.1. Thus, by combining these

1—00

facts with Lemma 1.2.7, we have

d(vi,, Yv) < 5d(Yv;,, vi, ) + d(vg,,v) — 0 as k — oo.

Then Wv = v so according to Lemma 2.2.1 the existence of lim;_,~ d(v;,v) follows

hence {v;} is strongly convergent to v. O

In the absence of compactness of the domain the strong convergence of the mappings

is the following.

Theorem 2.2.4. Let us take a complete CAT(0) space X and select a set K which
is conver monempty closed subset of X'. Now choose a selfmap ¥ on the K with
the set of fixed points i.e Fy # O which satisfies (KSC) criterion. The M*-iteration
sequence generated from (2.3) strongly converge some fized point of ¥ as long as

lim inf;_, dist(v;, Fy) = 0.
Proof. We will skip the proof since it is straightforward to demonstrate this result. [J

Theorem 2.2.5. Let us take a complete CAT(0) space X and select a set K which is
convex nonempty closed subset of J'. Now choose a selfmap ¥ on the K with the set
of fixed points Fy # 0 i.e which satisfies (KSC) criterion. The M*-iteration sequence
generated from (2.3) strongly converge to fized point of V if condition (I) is being satisfied
by W.

Proof. According to theorem 2.2.1 that lim inf; o d(z;, ¥Yx;) = 0. iminf; , dist(v;, Fy) =
0 is the result of ¥’s condition (I). Hence, {v;} is strongly convergent in Fy according

to Theorem 2.2.4.
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2.3 Numerical example

The current section begins with the numerical demonstration of the mapping that fulfills
the requirements of (K SC)-condition but fails to obey the (C)-condition. Subsequently,
we establish that the M*-iteration process produces a sequence {v;} that achieves
convergence at a faster pace compared to many other widely recognized iteration

methods.

Example 2.3.1. Let U be a mapping defined on the interval [—1,1] in the following

manner:

-3, ifve[-1,0/{-3},
ifv= {—%} ;

-4, ifvel0,1].

S

<

Il
o

Now, it is evident that the above selfmap W is not enriched with the condition C.
For instance, if v = —% and w = —% are selected then the condition C is not satisfied by
V. We ultimately prove that this mape has (KSC)-condition enrichment. The following
non-trivial circumstances are taken into consideration in order to accomplish the goal,

while certain elementry cases have been left out. Cl: When v,w € [—1,0)/{—1}, we

have

Ao, ww) = A5, 5) < Sl w)] < 5151+ 5
1. —v —w 1
= %[\(2)—U’+”w—(2)|]:2[\U—‘I’U|+\w—‘l’w”

= Sl ¥v) + d(w, Yw)].
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C2: When v,w € [0,1], we have

vow 1 3
AW, W) = d(5, %) < Il + ful] < 2ol + ]
= = = )
= ol g Wl ~vimiv =y
1
= Sllo— Wol + jw — ]

—_

= Z[d(v, Uv) 4 d(w, Tw)].

[\

C3: Whenv € [-1,0)/{—3} and w € [0,1] we have

vow 1 1 3 3
d(Pv, Yw) d(2, 4) < 2|v\—|—4\wl < 4’U|+8|w|

1,3v 3w 1, —v w

= 5”3’+’ZH—§[|(7 )—UH‘\’U}—ZH
1

= i[lv—‘llv\—i—]w—lllw]]
1

= 5[, 90) + d(w, Vw)]

C4: When v € [—1,0)/{—3} and w € {—3}, we have

v v 3v 3v w
1. 3v 1. —v
S0+ el = 5050 = vl +w = 0]
1
S0 = o] + o — ]
1
= §[d(v,\IJU)—|—d(w,\Ilw)].

C5: When v € [0,1] and w € {—3}, we have

v v 3v 3v w
d(o,Vw) = d(3,0) =7 <|gl<Igl+]5]

[ ) Y 1
= — || — wll = —||—
27 4 274

1
= §[|v — V| + |w — Yw|]

— || + [w — 0[]

—_

= Z[d(v, Uv) + d(w, Pw)].

\]

To design a table and graph of the sequence {v;} of M*-iteration scheme which
demonstrates the more quick convergence to fixed point 0 of ¥ as compared to the

Ishikawa, Abbas, Thukar and Noor and iterative schemes. Let us take the values of
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a;, b;, and ¢; are 0.70, 0.65, and 0.90, respectively. The results concluded from the
iteration are furnished in Table 2.1 whereas the way of behaving of iterates is drawn in
Figure 2.1. The M*-iterative scheme efficiency is observable from the table and graph
simultaneously.

We will put an end to this chapter by giving an example that is non-trivial.

Example 2.3.2. Let By = {(v,0) : v € R} and By = {(0,w) : w € R}. Put B = B1UBs.

Clearly, B C R%. Define d on B as follows:

]vl—w1| Zf U2:0:w2
d((v1,v2), (w1, w2)) = |vg — wa| if v1=0=uw;
[v1] + |we] if v2=0=w.

The space (B, d) is categorised as a CAT(0) space in the present context, but it does not
qualify the criteria to be thought about as a Banach space [59]. Furthermore, it should
be noted that B possesses the properties of being both closed and convexr. Now let W
be the metric projection on B, then by a well-known result (see, p178 in [10]) that ¥
is nonexpansive and hence it satisfies (KSC)-condition. So according to our principle
results, the sequence generated by (2.3) converges to a point which is the fized point of

.

2.4 Application to differential equations

Here, we look at the solution of an FDE using our freshly made mapping configuration.
Several authors have considered this matter concerning nonexpansive mappings [95] and
other spaces [71,72]. Always remember that our strategy is unique and is based on the
category of mappings with (KSC). The conventional approaches and our approaches
to the problem are fundamentally different, and for our approach, KSC mappings are
not necessarily continuous across domains. In addition, our iterative method uses fewer
iterations to provide highly accurate numerical results, making it more efficient overall.
For the purpose of achieving our goal, we will employ the approach suggested by [73].

The following broad category of fractional calculus boundary value issues is
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Table 2.1: Iterative numerical fixed points of the selfmap in Example 4.3.1.

Value of ¢ M* iteration Thakur iteration Abbas Noor iteration Ishikawa

1 0.99200000 0.99200000 0.99200000 0.99200000 0.99200000
2 0.07208438 0.07858126 0.13037101 0.13631063 0.28833801
3 0.00524863 0.00623737 0.01716821 0.01876827 0.08397831
4 0.00038217 0.00049508 0.00226084 0.002584157 0.02445801
5 0.00002783 0.00003928 0.00029773 0.00035581 0.00712358
6 0.00000203 0.00000312 0.00003921  0.00004898 0.00207476
7 0.00000013 0.00000023 0.00000517  0.00000673 0.00060428
8 0 0.00000002 0.00000068  0.00000093 0.00017598
9 0 0 0.00000009 0.00000012 0.00005127
10 0 0 0.00000001  0.00000002 0.00001493
11 0 0 0 0 0.00000433
12 0 0 0 0 0.00000127
13 0 0 0 0 0.00000037
14 0 0 0 0 0.00000011
15 0 0 0 0 0.0000003
16 0 0 0 0 0

0.0006 -

0.0004 +

Value of iterative sequence

0.0002 |

0.0000 |,

0

M*

Thakur
M Abbas

15

Number of iteration

M Ishikawa

Figure 2.1: Graphical illustration of the iterates.



examined:

DYh(t) + Q(u, h(t)) =0, (2.11)

where D7, (1 <~ < 2), and (0 <t < 1) represent the Caputo fractional derivative with
order v and € : [0,1] x R, respectively.

where D7 denote the Caputo fractional derivative of order ~ where as v lies in
(I1<y<2),(0<t<1)and Q:][0,1] x R, respectively.

A certain function connected to 2.11 is now aim to establish wiith the spaces B
= CJ0, 1]. Because in the case of BVPs, we need such functions for the purpose to
construct a certain operator equation in way that the fixed point can become same as a
solution of the constructed operator. This function is called Green’s function and now
taken the following form:

L (t(1—8)ED — (t—5)ED ) if s <t <1,

_ NG
G(t,s) = t(1—s))E=D)

T —, ift<s<L

All setting is now set for the main outcomes of this section. We consider the following

result that completed the research of this section.

Theorem 2.4.1. Construct a selfmap ¥ : B — B given as:
1
U(v(t)) :/ G(t, s)Q(s,v(s))ds, for each v(t) € B.
0

When

(0, h(v)) = (v, g(v))] < S([h(v) = ¥ (A(V)] + |g(v) = ¥(g(v))],

N | =

if iminf; o dist(v;, S) = 0 such that S is a a set that contains some solutions of (2.11)
and M iteration sequence (2.3). This sequence has a strong limit which is a solution of

this problem.

Proof. The desired answer can be put in the integral form by representing G' as Green’s

function in our problem according to [58] follows.

1
h(u) = /O G, v) v, h(v))dv.
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As a result it lead to that each selection of h,g € B and 0 < u < 1,

1 1
AW (h(u)), T(g(u)) < d( | oo bona, [ G(u,vmv,g(v))dv)

1
- /0 G, 0) [, h(v)) — (v, g(v))]dv

1
< | Gtu)aw.n(w) - 2. o)) o

1
< /0 G, v) (G () ~ B(W)] + 1 lg(v) — ¥a(w)) o
< (1) ~ TR + 5llaw) — I

1
(;}(1&/0 G(u,v)dv)

< (), W(h(v))) + Fd(g(v), ¥(g(v)))

= 5 (@A), () + d(g(v), Tlg(w))
As a consequence, we obtain

d(¥(h), ¥(g)) < 5 (d(h, U(h)) + d(g, ¥(g)))-

N | =

Therefore, according to the Theorem 2.2.4, ¥ satisfies (K SC') condition, and The
sequence of the M iterates converges to a fixed point of Psi which leads to the solution

of the given equation. O

2.5 Conclusions

Under the iterative method M* in a CAT(0) space setting, existence as well as iterative
constructional for the class of mappings fulfilling the (KSC)-condition are established.
For these mappings, we established A and strong convergence findings under certain
mild assumptions. The class of mappings meeting the (KSC)-condition differs from
the class of mappings satisfying the (C')-condition, as an example has demonstrated.
In the end, we carried out a comparative numerical experiment and demonstrated the
superiority of the M™ iterative scheme over the several alternative iterative schemes in
the class of (KSC) mappings. Additionally, one application is completed. Our findings

extend and enhance some of Ullah and Arshad [70]’s primary findings from the (C)-
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condition example to the broader (KSC)-condition situation. Similar to how Abbas [20],

Agarwal [57], Noor [19] Thakur [69], and others’ findings are expanded upon by ours.
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Chapter 3

Approximation of Fixed Points
for Reich-Suzuki type
Nonexpansive Mappings in

CAT(0) Spaces

3.1 Introduction

Let us take X as metric space and consider a nonempty subset K of ). Assume that

W represents a selfmap of K.
Determine yg € K such that Uyg = yo. (3.1)

Fyg will designate the set of all fixed points of ¥ in K.

A highly fruitful area of research in mathematics has been fixed point problems,
which involve the mapping of an element within a set back to itself via a function. This
chapter explores the Problem (3.1). The prime objective of it is to find a fixed point
of W, which is a selfmap on a nonempty subset K of a metric space X'. In a recent
study by Sahu et al., [20], the Problem of quasi-expansive mappings was examined,

and its applicability in convex programming and feasibility problems was demonstrated.
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Usurelu et al. [20] examined Problem (3.1) in the context of hybrid mappings, illustrating
its relationship to split equilibrium problems. Similarly, Yao et al. [33] examined the
issue using monotone mappings and established a connection with split equilibrium
problems. Building upon these developments, this chapter further explores the Problem
(3.1) by examining a broader range of nonlinear mappings. We aim to expand the
scope of fixed-point theory by investigating this issue within a wider framework and
showcasing its practicality in the domain of split feasibility problems.

Once a result of a fixed point is established in a linear space (e.g. Hilbert or Banach
space), then its applications are vehemently desirous. In a nonlinear space (e.g. geodesic
metric space) Nonetheless, the principle of convexity is needed for this expansion. A
significant contribution was made by Takahashi [34] that established the concept of
convexity in nonlinear domains, which paved the way for finding fixed points of mappings
in the fixed-point theory and the related subjects in these broader contexts. (For further

information, see [103—-106]).

Remark 1. As we know from the literature of fixed point theory, nonexpansive
mappings and Suzuki nonexpansive mappings are two vastly researched categories. As
demonstrated by Suzuki [68], all nonexpansive mappings are Suzuki nonexpansive, but

the converse is not true.

There is an abundance of findings in the scientific literature regarding two categories,
Suzuki nonexpansive and nonexpansive mappings. In a uniform convex Banach
space, the nonexpansive mappings invariably attain fixed points depending upon some
underlying assumptions shown by Gohde [15] and Browder [35]. Suzuki demonstrated
that this result holds true for all Suzuki maps in existence. Kirk demonstrated that the
Browder and Gohde result holds true in nonlinear space.

Hassan et al. [38] introduced the technique described below:

V1 € g{,
w; = \I’((l — fz)vz + fi\lfvi),
zi = V((1 — p)w; + piYw;), (3.2)

Y = \I/((l — )\Z)HZZ -+ )\i\I/{L'Z'),

Vit = V((1 = ki)yi + miWPy;),i > 1,
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where £, \j, 113, & € (0,1).

This chapter explores fixed point iteration strategies in the context of CAT(0)
spaces, which are a broader category of nonlinear spaces. Fixed point techniques have
demonstrated their worth in the field of applied analysis, namely in the domains of image
processing and computer science [42]. Our research enhances the outcomes achieved in
prior iterative systems by expanding their application to the wider context of CAT(0)
spaces. In a previous study conducted by Hassan et al. [38], it was demonstrated that
a particular approach was more effective when compared to several other options like
Mann [18], Picard [60], Noor [19], Agarwal [57], Ishikawa [63], Abbas [20], Thakur et
al. [69] Ullah et al. [39] have recently expanded their study to include nonexpansive

mappings of the Reich-Suzuki type. For more information, see to [40,41].

3.2 Convergence results

We are going ahead to deduce many important convergence results in the term of CAT(0)
spaces. Firstly, we proceed to change the scheme (3.2) into CAT(0) spaces using the

following iteration.

v € K,
w; = V((1 = &)v; © &W;),
x; = V(1 — pi)w; ® mu;Yw;), (3.3)

Y; = \I/((l — )\z)xl %) )\@\Ifl‘l),

Vir1 = V(1 — ki) yi ® KkiVYy;),0 > 1,

where ki, \j, 13, & € (0,1). Here, it is essential to highlight that X acts as complete
CAT(0) space in the present context.

With the subsequent Lemma, we commence our principal result.

Lemma 3.2.1. Let us suppose that a selfmap ¥ on a nonempty convex, closed subset
K of X. If the sequence {v;} generated by the use of equation (3.3) and a nonexpansive
mapping ¥ of Reich-Suzuki type with the set of all fized points, i.e. Fy # (. Then for

any choice of yo € Fy the existence of lim;_,oc d(v;, yo) will follow.

Proof. Suppose that yy be an element of the set Fyy. By employing (3.3) in conjunction
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with Proposition 1.1.2(i), we obtain

d(wi,yo) = d(P((1 —&)vi © di%v;i),yo)

IN

d((1 = &)vi @ §Vvi,90)
(1 = &)d(vi, yo) + &d(Yvi, yo)
(1 = &)d(vi, yo) + &d(vi, yo)

d(vi, Yo)- (3.4)

IN

IN

IN

Similarly,
d(zi,y0) = d(W((1 — p)w; ® piPw;), yo)
< d((1 = pi)wi & psYwi, yo)
< (1 — ui)d(wi,yo) + Mz‘d(quiayﬂ)
< (1= py)d(wi, yo) + pad(wi, yo)
< d(wi, yo)- (3.5)
Also

d(yi,yo) = d(W((1 = Ai)z: © A\i¥pi),yo)

IN

d((1 = Xo)zi @ AV, yo)

IN

(1 = X)d(xs,y0) + Nid(Yxi, yo)

IN

(1 = X)d(zs,y0) + Nid(z4, yo)

< d(xi,y0)- (3.6)

Now (3.4), (3.5) and (3.6) suggest that
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d(vir1,y0) = d(V((1 - Ki)ys © aiVyi), vo)

< d((1 = Ki)yi @ KiVYi, Yo)

< (1= ri)d(Yi,y0) + x:id(Yyi, yo)

< (1= &i)d(yi, yo) + rid(Yi, Yo)

< d(yi,yo) < d(wi,yo) < d(wi, yo)

< d(vi, yo)- (3.7)

Therefore, we have demonstrated that for every yg belonging to Fy, the inequality
d(vi+1,Y0) < d(vi,yo) holds true. The set {d(v;, yo)} is both bounded and nonincreasing.
Hence, the limit of d(v;,y0) as i approaches infinity occurs for every gy belonging to the

set Fy. ]

Now, we are able to present a fundamental theorem in this chapter that will assist

us in proving the convergence theorem in the following part.

Theorem 3.2.1. Let us suppose that a selfmap ¥ on a nonempty convezx, closed subset
K of X . If the sequence {v;} is generated by the use of equation (3.3) and a nonexpansive
mapping ¥ of Reich-Suzuki type. The condition Fy # () holds if and only if the set {v;}

is bounded and the limit lim;_,o d(v;, Vv;) approaches zero.

Proof. Assume that Fy is not empty and the objective is to prove that the set {v;} is
bounded, with lim;_, d(v;, ¥v;) = 0. Let yp € Fy be any point. According to Lemma
3.2.1, it is known that {v;} is bounded and that lim; o d(v;,yo) exists.

The only thing left to do to show that lim;_, d(v;, Yv;) = 0. Suppose

lim d(v;, z9) = n, (3.8)

1—>00

Where 7 is a constant that can take any value from the interval [0, 00), we only

investigate the scenario where > 0. Now, in accordance with equation (3.4),

d(wi7 yO) S d(v’iv y0)7

38



= lim sup d(w;, yo) < limsup d(v;, yo) = 7.

i—00 i—00

Also by Proposition 1.1.2(a), we have

d(\P’Ui? yO) < d('Ui, yO)a

= limsup d(Pv;, yo) < limsup d(vi, yo) = 7.

1—00 1—00
Now from (3.7), we have

d(vit1,y0) < d(wi, yo)-

By utilising this combined with equation (4.3), we deduce
n < lim inf d(w;, yo).
1— 00
By utilising equations (4.4) and (4.6), we derive

lim d(w;, y0) = 7.

1—00
Using (4.7), we get
n = .11>H1 d(wi, yo) = E}m d(W((1—=&)vi ®&EYvs),90)
< lim d((1 = &)v; @ &V, y0)
12— 00
< lim (1 = &)d(vi, yo) + lim &d(Wv;, o)
71— 00 71— 00
< lim (1 = &)d(vi, yo) + lim &d(vi, y0))
1— 00 71— 00

= lim d(’Ui, Z/O)

1—00

Consequently, we have

n= llgélo &((1 = &)vi @ &Wvi,90))-

(3.10)

(3.11)

(3.12)

(3.13)

By utilising equations (4.3), (4.5), and (4.8) and applying Lemma 1.1.5, we derive the

following facts
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lim d(v;, Pv;) = 0.

i—00
In the converse scenario, we assume that {v;} is a bounded sequence with the
lim; o0 d(v;, Pv;) = 0. Demonstrate that Fy is not an empty set. In order to accomplish
this, we make the assumption that any yo € A(X,{v;}), and then we proceed to use

Lemma 1.2.3 in the following manner.

A(Pyo,{vi}) = limsupd(v;, Yyo)

1—00
< (a+3) limsup d(v;, Yv;) + lim sup d(v;, yo)
(1 — a) i—00 =00

= limsupd(v;, yo)

1—00

= A(yo, {vi})-

Consequently, we obtain Wy, € A(X,{v;} and we know that the set A (X, {v;}
contains only one element, thus we come to the conclusion that the point 7 is an
element of Fy, as stated by the equation yg = Wyy. Thus, the set of fixed points Fy is

not empty.

In the coming section, we will discuss the introductory convergence theorem.

Theorem 3.2.2. Let us suppose that a selfmap ¥ on a nonempty convezx, closed subset
K of X. If the conditions provided in Theorem 3.2.1 are satisfied by ¥ and the sequence
{vi} and the set of all fized points i.e. Fy # (). Then, the strong convergence to the fixed

point of Fy of the sequence {v;} will occur.

Proof. Given that the sequence {v;} generated by V¥ lies within the compact set K,
so by the compactness property there exists a subsequence {v;, } of {v;} and a point
go € K such that the d(v;,,qo) — 0. It is sufficient to establish that the strong limit of
the sequence {v;} is qo.

In order to accomplish this, we employ Lemma to acquire the desired outcome.

(a+3)
(1-a)
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Since Theorem 3.2.1 suggests that d(v;,, Vv;, ) — 0. Hence, (3.14) gives us limy_, o d(vj, , ¥qo) =
0. It follows that Wqy = qo, that is, ¢o € Fy. Lemma 3.2.1 guarantees the existence of

lim; o0 d(vi, qo). Therefore, we may conclude that gg is the strong limit of {v;}. O

Theorem 3.2.3. Let us suppose that a selfmap ¥ on a nonempty convezx, closed subset
K of X. If the conditions provided in Theorem 3.2.1 are satisfied by ¥ and the sequence
{vi} and the set of all fized points i.e. Fy # (). Then the strong convergence to the fixed

point of Fy of the sequence {v;} will be occurred,provided that liminf;_,~ d(v;, Fy) = 0.

Proof. The specific details of this result are omitted because proving it does not require
much effort.

d

A convergence theorem is now desired that does not require the domain to be

compact. It is necessary to have the following criterion.

Definition 1. [6/ A mapping ¥ is said to satisfy the condition I if VU is a selfmap on
a nonempty convex closed subset K of X if there exists p with p(k) > 0 for all k > 0,

1(0) =0 and d(u, Yu) > p(d(u, Fy)) for all elements u € K.

Theorem 3.2.4. Let us suppose that a selfmap ¥ on a nonempty convezx, closed subset
K of X. If the conditions provided in Theorem 8.2.1 are satisfied by ¥ and the sequence
{vi} and the set of all fixed points i.e. Fy # 0. If U satisfies condition (I) also, then

the strong convergence to the fixed point of Fy of the sequence {v;} will occur.

Proof. The results of the theorem 3.2.1 give us

lim inf d(v;, Pv;) = 0. (3.15)

11— 00

The condition (I) of ¥ suggests

d(Ui, ‘IJUZ‘) 2 ,ud(vi, F\p))

By applying condition I and (3.15), one has

liminf p(d(vs, Fg) = 0).

11— 00
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However, for each option of k& > 0, the non-decreasing map g : [0,00) — [0,00), with

wu(k) >0 and u(0) =0, hence

liminf d(v;, Fy) = 0.

1—00

All the necessary conditions of Theorem 4.2.4 have been fulfilled. Therefore, based on
its results, the sequence {v;} exhibits strong convergence within the set Fy.

O]

The following represents the ultimate outcome, which proves the A-convergence of

{vi} as produced by (3.3).

Theorem 3.2.5. Let us suppose that a selfmap ¥ on a nonempty convex closed subset
K of X. If the conditions provided in Theorem 3.2.1 are satisfied by ¥ and the sequence
{vi} and the set of all fized points i.e. Fy # (). A-converges to the point of Fy of the

sequence {v;} will occurred.

Proof. As a convex set K , it follows that {v;} is contained in X’. By Theorem 3.2.1, {v;}
is both bounded and satisfies lim;_, o d(v;, Pv;) = 0. Let wa({v;}) = J A({si}), where
{s;} is any subsequence of {v;}. The objective is to demonstrate that wa({v;}) C Fy.
Given s € wa({vi}), we can select a sub-sequence, denoted as {s;}, from the sequence
{v;} such that A({s;}) = {s}. Lemma 2.4 and Lemma 2.5 state that it is possible to
find a sub-sequence {e;} of {s;} that has the A-limit e in B. However, Theorem 3.2.1
implies that lim;_,~ d(e;, Pe;) = 0.

By Lemma 1.2.3,

3+ )
(1-a)

d(e;, Ve) < d(e;, Ve;) + d(e;, €). (3.16)

By applying the limit supremum to both sides of the equation (3.16), we may conclude
that e belongs to the set Fy. According to Lemma 3.2.1, lim; o d(e;, e) exists. We
must demonstrate that the variable s is equal to the variable e. Let us assume, on the

contrary, that s is not equal to e. Therefore, due to the unique nature of asymptotic

42



centres, one can conclude

limsupd(e;,e) < limsupd(e;,s) < limsupd(s;,s)

< limsupd(s;,e) = limsupd(v;,e)

1—00 1—00
= limsupd(e;,e).
i—00
We have demonstrated that limsup,_,. d(e;, e) < limsup,_,. d(e;, e). Consequently, we
may deduce that s = e in the set Fy and that wa({r;}) C Fy.

We aim to demonstrate that the sequence {v;} fundamentally A-converges within
the space Fy. In order to accomplish the objective, we will demonstrate that wa ({v;})
is comprised of a single point. Suppose that a given sub-sequence {s;} of {v;}, according
to Lemmas 1.2.4 and 1.2.5, we may get the conclusion that there exists a sub-sequence
of {s;} which is denoted by {e;} that is A-convergent sub-sequence with the A — lim
e € K .Let’s presume that A ({s;}) = {s} and A({v;}) = {g}. It is essential to remember
that we previously demonstrated that s and e are equal and that e is an element of the
set Fg. If that is not the case, then the lim;_,~ d(v;, €) exists, and the asymptotic centres

are likewise singletons. In this scenario, we have:

limsupd(e;,e) < limsupd(e;, g) < limsupd(v;,g)
< limsupd(v;, e) = limsupd(e;, g).

i—00 i—00

Therefore, since it is a contradiction, we can conclude that g = e € Fy. Therefore, the

set wa({s}) = {g}. This provides conclusive evidence. O
An example is provided to conclude this section.

Example 3.2.1. Let X be the set defined as X' = K> = {y = (y1,vy2,¥3,54) € R* :
(y,y) = —1, y4 > 0}. K3 is a three-dimensional space and R*, is augmented with the

Lorentz distance, (.,.).

Y.z = Y121 + Y222 + Y32z — Ya24, Y = (y1,y2,y373/4), = (21,2’2,23724) c K3,
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The geodesic map q, which is deduced from the equation q(r) = cosh(r)y + sinh(y)v and

v represents a unit vector in this case. Define a mapping ¥ on K using the formula:

U(y1,y2,y3,ya) = (—y1, —Y2, —¥3, Y4)-

we have noticed that U has a fized point yo = (0,0,0,1) which is nonexpansive Reich-
Suzuki type mapping. Based on our primary findings, the sequence {v;} exhibits

convergence towards the value yg.

3.3 Examples to illustrate

The following cases provide evidence for the theoretical findings:

Example 3.3.1. Let us define a mapping V that correlates the values of K = [7,9] in
the following way. V9 = 6 and Yy = g;u for 7 <y <9. Let c be equal to % Now, let’s
examine the several scenarios listed below.

i): Given that y and z are both in the interval [7,9), we may define Wy = v42 ond
(i) y y y ="

Uy — z+42

—=. By applying the triangle inequality, we obtain

cly =Wyl +clz = Vz[+ (1 -20)ly—2] = Sly—(

_ 1.6y 6z|
o2t 7
= §|y*2|
1
> ;Iy—ZIZI‘I'y—‘I’Z\

(ii) When y € [7,9) and z € {9}. Then Yy = # and Uz = 6. Accordingly, we
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have

1 Y+ 42
cly =Wyl +clz = Ve[ + (1 = 2)ly — 2] = Sly— ("
16y—42 1
= alm 145k
1
Z|3
513!
9
7
y
2| = |Wy — Wz|.
|71 =Ty — 2|

1
-19—-6
I+ 5196

\Y

v

iii) When z € [7,9) and y € {9}. Then Uz = 222 gnd Uy = 6. Accordingly, we
7

have

1 1 z+ 42
cly — Wyl +clz — V2| + (1 - 2)ly — 2| = 5\9—6|+§|Z—( 7 )
1 1,6z —42
= 5\3|+§| 5 |
1
> -3
> 2\|
5 7
5
z
> 2| = |y - 0.
> ’5\ Wy — We|

(iv) When y,z € {9}. Then Yy = Uz = 6. Accordingly, we have

cly—Vyl+clz —Vz|+ (1 —-2¢)ly—2 >0

= |Yy— Uz

Considering the aforementioned situations, it can be inferred that F' is a map of Reich-
Suzuki type with ¢ = % However, U does not belong to the Suzuki type. By choosing
the values y = 8 and z = 9, it can be demonstrated that %]y — Uyl <1=|y—z| and
|y — Wz| > 1 = |y — z|. For each positive integer i, assign the values a; = 0.95,
b; = 0.65, and ¢; = 0.85, with an initial value of ri = 8.91. Upon examining Tables

3.1-8.2 and Figure 3.1, it becomes evident that the current iteration under study exhibits

superior performance when compared to previous iterative systems.

Here, we present a CAT(0) space example, which is not a linear Banach space.
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Table 3.1: The schemes of Ullah, Hassan, and Thakur converge to the fixed point

Yo = 7 of the selfmap ¥ as shown in Example 5.2.1.

) Ullah Hassan Thakur

1 891 8.91 8.91

2 7.00553935860057 7.00003282209952 7.038775510204087
3 7.00003691367663 7.00000000106116 7.000621764740881
4 7.00000023061437 7.00000000000003 7.000010272109422
5 7.00000000132067 7 7.000000175943571
6  7.00000000000703 7 7.000000003098253
7 7.00000000000004 7 7.000000000055701
8§ 7 7 7.000000000001021
9 7 7 7.000000000000021
10 7 7 7

Table 3.2: The Mann, Agarwal, and Ishikawa schemes converge to the selfmap ¥

fixed point yg = 7 as shown in Example 5.2.1.

1

Mann

Agrawal

Ishikawa

1
2
3
4
)
6
7
8
9
1

0

8.91

7.27142857142858
7.15510204081634
7.11078717201167
7.08704706372346
7.07212470994228
7.06182117995054
7.05425123954841
7.04843860673968
7.04382540609778

8.91

7.27142857142858
7.03046647230322
7.00352333353167
7.00042244049996
7.00005207225756
7.00000655331131
7.00000083792861
7.00000010848184
7.00000001418546

8.91
7.27142857142858
7.14679300291546
7.10085777751333
7.07692978437881
7.06223462556686
7.05228555277216
7.04509928354481
7.03966320918896
7.0354060846956

7.04L
7.02

7.00 [

6.98

Value of r;

6.96

6.94

6.92

6.90 -

Figure 3.1: The behaviours of iterates for the schemes proposed by various writers

Hassan
—— Ullah
Thakur

= Agarwal

Ishikawa

Mann

20 30
Numberof iterates

40 50

for Example 5.2.1 are examined for the values r; = 8.91 and ¢ = 50.
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Subsequently, we demonstrate a nonexpansive mapping of the Reich-Suzuki type, which

illustrates our primary findings.

Example 3.3.2. Let d be the metric induced by the normal norm on R2%, where R?
be a space. The pair (R?,d) constitutes a metric space that is complete. We will
now substitute d with a different sort of metric, denoted as p, which is defined by the

subsequent formula:

ly1 — 21| if y2=0=2
p((ybyQ)? (21, 2:2)) = \y2 - 22’ ’Lf y1=0=2
y1| + | 22] if y2=0= 2.

The mathematical structure of (R2,p) is categorized as geodesic CAT(0) space in
this example, but it does not fulfil the requirements to be taken into account as Banach
space. For that reason, we introduce K1 = {(y,0) : y € R}, and K2 = {(0,2) : z € R}.
Let take K = K1 UKy. As a consequence, it can be inferred that K is a closed convex
nonempty subset of (R?, p) which is a complete CAT(0) space. Let a metric projection on
K be denoted by ¥ and is known to be nonexpansive, so according to a well-established
result (see page 178 in [108]), it can be categorized as a Reich-Suzuki type nonexpansive
projection. The iterated sequence in equation (3.3) converges to a fized point of ¥,

according to our findings.

3.4 Application

We demonstrate the applicability of our novel result in resolving an SFP. As a way to
accomplish our goal, assume that two Hilbert spaces X3 and X2 and take two closed
convex subsets such that C' C X7 and Q C X5. We make the additional assumption
that there exists a map J which is both bounded and linear, and it maps elements from
X1 to Xa. In this instance, we establish the SFP [48] as a problem characterized by the

following:

Compute yp € C': Typ € Q. (3.17)

In this scenario, we make the assumption that the SFP (3.17) has at least one
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solution. We refer to the collection of all solutions as the set S. If 6 is a positive real
integer and P¢ and P are the corresponding nearest point projections (NPP) onto sets
C and @, respectively, then T effectively serves as the adjoint operator for 7.

The point yg € C can be authenticated that it is a solution of SFP (3.17) if and only

if it is the solution of the equation that follows (refer to [49] and other sources):
y=PC(I—0T*(I — P?)T)y.

Due to the Picard iteration limitations for nonexpansive mappings, the author of the
paper [?] proposed a connection between the SFP (3.17) and the class of nonexpansive

mappings. They then developed an iterative approach to obtain the desired solution.

v = PY(I = 0T*(I — P9)T ).

However, he only achieves weak convergence with the given procedure. Nevertheless,
it is well-established that there is a strong desire to achieve a strong convergence [49]
whenever weak convergence results of an iterative scheme for a peculiar problem is
attained. Contrary to Byrne’s [?] approach, which depends on nonexpansive mappings,
this topic elaborates an analysis of strong convergence employing Reich-Suzuki-type
nonexpansive mappings. Additionally, we employ a more comprehensive iterative
technique to achieve strong convergence. The most important results of this section

are presented below.

Theorem 3.4.1. The solution of the SFP (3.17) with S # 0, 0 < 6 < %, and P (I —
0T *(I — PR)T) is any nonexpansive selfmap of the Reich-Suzuki type that fulfils the
condition (I), then the sequence {v;} converges strongly to a solution of the SFP (3.17)
induced by (3.3).

Proof. All Hilbert spaces are CAT(0) spaces, as is widely stated in the literature. The
map V¥ is just a nonexpansive selfmap of the Reich-Suzuki type. Thus we can write it
as W = PY(I — T*(I — P?)T). This means that in the set Fy, the strong convergence
of {v;} can be achieved by using the Theorem 3.2.4. As Fy = S so we can deduce that

{v;} converges to the solution of the SFP (3.17). O
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3.5 Conclusion

It is also advantageous for any operator whose domain is a subset of a nonlinear domain,
such as CAT(0) space, to have an approximation of a fixed point. Takahashi [34] was
the first to fundamentally propose the concept of convexity in the nonlinear context
of metric space for the study of fixed point theory of nonexpansive operators, as was
previously indicated in the work. In essence, this work presented the CAT(0) space
variant of a recently proposed iterative technique credited to Hassan et al. [38]. In the
CAT(0) context, we looked at a number of convergence theorems for the broader class
of nonlinear operators. New cases finally corroborate the primary result. Ultimately, a

solution for solving SFP within the broader context of mappings is acquired.
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Chapter 4

Fixed point approximations in
the CAT(0) spaces for generalized
nonexpansive mappings with an

application

4.1 Introduction

This chapter’s goal is to examine the class of GAN mapping in CAT(0) spaces, a
nonlinear environment [10,11]. Even if it is established that an operator equation has
a solution, conventional analytical techniques frequently fail to produce that solution.
Approximating the solution becomes required in these kinds of situations. To achieve
this, the operator equation must be rearranged to take the shape of a fixed point
equation. We employ an iterative approach suitable for fixed point equations to solve
the operator equation. With the assistance of this method, we will attain our objective
fixed point. With contraction maps, the basic Picard iteration v; 11 = Wu; is given by the
Banach fixed point theorem (BFPT). Picard iterations, while effective in many cases,
may not always converge to a fixed point for nonexpansive mappings. As a result, other
iterative techniques with different parameters and phases are used. The Mann fixed

point method, presented in [18], the Ishikawa fixed point method proposed in [63], the
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three-step Noor iteration introduced in [19], the two-step Normal-S presented in [23], the
Picard-Mann hybrid due to Khan [24], the Krasnoselskii-Mann introduced in [29], the
three-step Abbas and Nazir method, the Thakur fixed point method [69], and Picard-S,
a hybrid of Picard and S iteration [25] are notable approaches. For SMs, Ullah and
Arshad introduced the M iteration procedure [27] in 2018, showing faster convergence
than the previously discussed techniques.

An innovative iterative procedure for generalized contraction has just been demon-

strated by Ali and Ali [112]. We describe the strategy as follows:

v € K,

w; = \I/(<1 — ni)vi + /ii\I/Ui), (4 1)

x; = Yw;,

vip1 = Vg, t > 1,

where x; € (0,1). In the context of generalized contractions, they proved that the
F iteration (4.2) has better stability and a faster rate of convergence than other
iterations. This chapter examines the CAT(0) variant of the aforementioned technique
for GAN maps, demonstrating its convergence in both weak and strong convergence
senses, illustrating its convergence in the sense of both strong and weak. We also
bring forth a numerical example along with one of its applications. Fixed points for
nonexpansive maps were shown to exist in uniformly convex Banach spaces (UBS) in
1965 by Browder [14] and Gphde [15], while Kirk [65] established a similar result in
reflexive Banach spaces (RBS). Suzuki [68] thus developed a weaker definition of a map
than that of a nonexpansive map and gave analogous fixed-point theorems in Banach
spaces. They established the existence of the SM class as well. Suzuki’s study prompted
Pant and Shukla [17] to demonstrate in 2017 that the idea behind GAN maps is weaker
than that of SMs. They also examined fixed point results for these maps using the S
iteration [57]. The M iterative technique for GAN in Banach spaces was recently used
by Ullah et al. [28]. This work aims to provide a single appropriate implementation of

the F iteration for GAN maps in CAT(0) space.
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4.2 Main Results

Now, we establish the subsequent CAT(0) version of the F-iteration.
(4.1
v € K,
w; = V(1 — Kki)v; Kk Yv;),
(( ) ) (42)

x; = Yw;,

vip1 = Va1 > 1,

where r; € (0,1). Consider first the subsequent result.

Lemma 4.2.1. Let a CAT(0) space X and K nonmpty convex closed in X with ¥ :
K — K is a GAN map. If Fy is nonempty and and {v;} a sequence produced by (4.2).

Then limy_,o d(v;, I*) exists for any I* € Fy.

Proof. Suppose [* € Fy. According to Proposition 1.2.1(ii), one has

d(w;, I*) = d(V((1 — ky)v; + Kk Pv;), 1)
< d((1 = ky)v + kW, IF)
< (1= mg)d(vg, 1) + kid (W, %)

< (1= ki)d(vi, %) + rid(vi, I7)

IN

d(v, I7).

One has

d(vi+1,l*) = d(\IJJZZ,l*)

IN

d(xi, l*) = d(\Ilw,-, l*)

IN

d(wi, l*) S d(’l),‘, l*)

Hence, we obtain that the sequence {d(vit+1,(*)} is a real numbers sequence such that it
is bounded and nonincreasing in ¥. From this, we conclude that lim;_, d(v;,(*) exists

for all choices of [* € Fy.
We also have the helpful results shown below.
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Theorem 4.2.1. Given a CAT(0) space X' andK nonmpty convex closed in X with

U: K — K is a GAN map. If a sequence {v;} is generated by (4.2). Then, Fy # 0 if

and only if lim;_,oo d(Yv;,v;) = 0 and {v;} is bounded in ¥ as well.

Proof. Assume that Fy is a nonempty set. Then, we can take any point, namely,

[*, in it. By previous lemma, lim;_, d(v;,[*) exists. Therefore, we may conclude that

this limit is equal to some real number. Hence, we put

lim d(v;, %) = k.

i—00
In Lemma 4.2.1’s proof, we observe
d(w;, I*) < d(v, I7).
Combining this with (4.3), one has
lim sup d(w;, I*) < limsupd(v;, ") = k.
i—500 i—500

Now the point [* € Fy, hence by Proposition 1.2.1(ii), one has

d(Wvy, 1) < d(vi, 1),

= limsup d(Vv;, 1*l) < limsupd(v;, [*) = k.

1—+00 i—00
In proof of Lemma 4.2.1, one has
d(Ui_;,_l, l*) S d(w,, l*)
= k = liminf d(vit1,1") < liminf d(w;, [*).

i—00 i—00

By (4.4) and (4.6), it follows that

k= lim d(w;,[").

11— 00

By (4.7) and (4.2), Consequently, it is as follows:
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k= lim d(w;, ") = lm d(V((1 — K;)v; + k;Pv;), 1)

1—00 1— Q0
< lim d((1 — &)vi + £ Yoy, 1F)
1—00
< lim [(1 — kq)d(vs, 1) + wid(Wo;, 1)
1—00
< lim (1 — K;)d(v;, 17)) + lim k;d(Po;, 17)
1— 00 1—00
< lim (1 — k;)d(v;, I%)) + lim k;d(v;, 1)
1—00 1—00
= lim d(v;,1*)
1—00
< k.
if and only if
k= lim d((1 — k;)v; ® ki Pv;,17)). (4.8)
1—00

Hence, we obtain by applying Lemma 1.1.5, the following

lim d(Yv;,v;) = 0.

t—o00

Now we assume in converse that lim;_, o, d(Vv;,v;) = 0. and want to establish that
Fy has one fixed point at least. For this aim, we choose any [*inA(K,{v;}). Then from

Proposition 1.2.1(iv), we have

r(Ul*, {v;}) = limsupd(v;, ¥I*)

1—00

IN

1—« i—00 t—00

3
(a + ) lim sup d(¥v;, v;) + lim sup d(v;, [*)

= limsupd(v;,1¥)

i—00

= r(l*,{v}).

From the above, we see that UI* € A(K,{v;}. However, this set in the CAT(0) space
setting has only one element. Hence we may write WI* = [*, this shows that Fiy #, which

was the required target. This concludes the proof.

Now is presented the A-convergence theorem.
Theorem 4.2.2. Let X be a CAT(0) space and K be a convex closed subset of X .
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So let’s presume that ¥ : K — K that represents the GAN map. Assuming {v;} is a
sequence produced by (4.2) and Fy is not-empty . Then, there is a particular fized point

of the mapping ¥ to which the sequence {v;} A converges.
Proof. As the proof is rudimentary in nature, it is omitted.
A convergence theorem on a compact set is established as follows.

Theorem 4.2.3. Assume K is a nonmpty conver compact in X with a GAN map
UK — K and X is a CAT(0) space. If Fy is not empty, then (4.2) generates a

sequence {v;}. This implies that {v;} converges strongly to a fized point of V.

Proof. Given that ¥ is compact within K and the sequence {v;} is a subset of
K, the distance between {v;, } and some I** in K approaches zero as k approaches
infinity which is a sub-sequence of {v;} due to the compactness. Considering Theorem
4.2.1, it follows that the limit as k approaches infinity so d(¥v;, ,v;, )=0 . By applying

Proposition 1.2.1(iv), we can conclude that

> d(”ik; \I/'Uik) + d(vik,l**).

Now in the above estimate, if we consider k — oo, one get W[** = [**. The required
aim that [** is a point such that {v;} converges strongly to it now follows from

Theorem 4.2.4. A GAN map is ¥V : K — K considering that K is a nonempty
convex closed set in X and that X is a CAT(0) space. A sequence {v;} is generated
by (4.2) if Fy is nonempty. Strong convergence of {v;} to a fized point of ¥ occurs if

lim infi_mo d(vi, qu) =0.

Proof. It is proven in Lemma 4.2.1 that lim;_,~ d(v;,*) exists. We conclude that

lim; o0 d(vi, Fy) exists. Hence

lim d(v;, Fg) = 0.

i—00

From this, one has subsequences namely {v;, } and {/;} of {v;} and Fy with

1
d(vi,, ) < oF for any choice of k£ > 1.
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In the proof Lemma 4.2.1, one has {v;} is nonicreasing, hence

1
d(vik+17l/€) < d(vilm lk) < 2?
One has
d(lgs1,lk) < d(lgg1,vi ) + d(Vigt, k)
1

< 9k+1

< 1 k

<S F — O, as — OQ.

Hence, we have limg_ o0 d(lg+1,lx) = 0 so that, therefore, we may say that {/,} is a
Cauchy sequence in Fyy and that it converges to [**. From Proposition 1.2.1(iii), Fy is
closed, it follows that [** € Fy. Now using Lemma 4.2.1, lim;_,~ d(l;, p**) exists which

proves that [** is also the strong limit of for our {v;} sequence.

Theorem 4.2.5. It is assumed that X is a CAT(0) space and K is a closed convex
subset of X. Given a GAN map ¥V : K — K, we may assume the following. Fyg is not
empty, and {v;} is a sequence generated by (4.2). In order for a {v;}, sequence is said

to strongly converge to a fixed point of W if and only if ¥ satisfies condition (I).

Proof. From our main results of Theorem 4.2.1, it follows

lim inf d(¥v;, v;) = 0. (4.9)

1—00

But our selfmap K has a condition (I),

d(vi,\IIUi) Z U(d(vz,F\y)) (4.10)

Combine (4.9) with (4.10), one has

liminf U(d(v;, Fiy)) = 0.
1— 00
Therefore,

lim inf d(w;, Fy) = 0.

11— 00
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It is shown that the sequence {v;} generated converges strongly to a fixed point of ¥ by

using Theorem 4.2.4.

4.3 Example

To substantiate our main findings, we present an instance of GAN selfmaps that diverges
from an SM. Through this instance, we conduct a numerical comparison of F with
alternative iterations within the framework of GAN mappings. This numerical analysis

serves to bolster our main conclusions.

Example 4.3.1. We use the subsequent rule on the set K = [7,13] to build a selfmap

on W.
518 if s<13

8 if s=13.

We now select k = % and consider the cases as follows.

Case No: A: Assume s =13 =r, one has
1 1 1
§d(s, Ur) + id(r, Us)+ (1 — 2(5))d(s,r) >0=d(Us,¥r).

Case No:B: Assume s,r < 13, we have

%d(s,\llr)—l—%d(r,\lfs)%—(1—2(%))d(s,r) _ ;s—(ng)'+;’r—(S;8)’
> 3| (-9) - (-59))
> s | = d(Ws, wr).

Case No:C: Assume s =13 and r < 13, we have

36 r) + 30 8) + (1= 2A(s.r) = gl =81+ 3| = (C3 )
> 1|5—8\
- 2
_|s—8
S s ’
= d(VUs,¥r)
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Hence, our map is GAN, but it is easy to see that ¥ is not an SM. We now connect

our fized point iterations with this example to support of claims and results.

We currently evaluate the effectiveness of the iterative algorithm F [112] in
comparison to the well-known M [27] and Picard [25] methods, as well as the fundamental
S [57], Ishikawa [63], and Mann [18] approximation techniques. Given that x; = 0.85 and
B; = 0.65, and with an initial value of a; = 8.8, we may see the specific values in Table
4.1. Furthermore, Figure 4.1 visually represents the performance of these prominent
schemes. The superiority of the F iterative scheme over other methods is clearly evident

when considering the broader context of generalized a-nonexpansive maps.

4.4 Applications of Variational Inequalities Prob-

lems

Variational Inequality Problems (VIPs) represent a broad category of mathematical
optimization challenges applicable across various real-world domains like economics,
engineering, and physics. The central aim within a variational inequality problem
involves identifying a solution vector from a predefined set, ensuring that a specific
inequality condition holds true under all conceivable perturbations. This is essentially
about locating a point where a designated functional is minimized while adhering
to a set of inequality constraints. VIPs provide a foundational framework for

depicting and addressing equilibrium problems, crucial in scenarios where different
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Figure 4.1: Grarphical convergence for F, M, Picard-S,S (Agarwal), Ishikawa and
Mann schemes.
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Table 4.1: Using Example 4.3.1 and the convergence of schemes.

F M Picard-S S Ishikawa Mann

1 88 8.8 8.8 8.8 8.8 8.8

2 8.06468750 8.12937500 8.16284375 8.3256875  8.3931875  8.51750000
3 8.00464941 8.01859766 8.02946454 8.11785816 &.17177379 8.29756250
4 8.00033418 8.00267341 8.00533124 8.04264992 8.07504367 8.17109844
5 8.00002402 8.00038430 8.00096462 8.01543394 8.03278471 8.09838160
6  8.00000173 8.00005524 8.00017454 8.00558516 8.01432282 8.05656942
7 8.00000012 8.00000794 8.00003158 8.00202113 8.00625728 8.03252742
8  8.00000001 8&8.00000114 8.00000571 8.0007314  8.00273365 &8.01870326
9 8 8.00000016 8.00000103 8.00026467 8.00119426 8.01075438
10 8 8.00000002 8.00000019 8.00009578 8.00052174 8.00618377
11 8 8 8.00000003 8.00003466 8.00022794 8.00355567
12 8 8 8.00000001 8.00001254 8.00009959 8.00204451
13 8 8 8 8.00000454 8.00004350 8.00117559
14 8 8 8 8.00000164 8.00001901 8.00067597
15 8 8 8 8.00000059 8.00000830 8.00038868
16 8 8 8 8.00000022 8.00000363 8.00022349
17 8 8 8 8.00000008 8.00000158 8.00012851
18 8 8 8 8.00000003 8.00000069 8.00007389
19 8 8 8 8.00000001  8.00000030 8.00004249
20 8 8 8 8 8.00000013 8.00002443
21 8 8 8 8 8.00000006 8.00001405
22 8 8 8 8 8.00000003  8.00000808
23 8 8 8 8 8.00000001  8.00000464
24 8 8 8 8 8 8.00000260
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entities or influences interact, necessitating the attainment of a state of equilibrium.
The exploration of variational inequality problems has spurred the development of
robust mathematical methodologies and computational algorithms, underscoring their
indispensable role in optimization theory and their wide-ranging practical applications.

This section aims to explore the category of VIPs within a Hilbert space framework
and achieve a robust convergence outcome by utilizing our principal result. To
accomplish this, we initially posit two Hilbert spaces, denoted as J; and Js, such that
C C Jy and @ C Js are both convex and compact. Under these conditions, assuming B

is monotonic from J; to Js, a VIP can be formulated as follows:

Compute 6y € C : (Bby, 0 — 6y) > 0. (4.11)

To achieve our goal, we examine a variational inequality problem (VIP) referenced
as (4.11), with its solution set denoted as &. Let P® represent the closest point
projection onto C' and P< represent the closest point projection onto @, respectively,
and considering a constant ¢ > 0, prior studies, outlined in [31], establish that any
point 0y within set C' solves (4.11)if and only if the corresponding 6 is the solution to
subsequent equation:

a = PY(I — ¢B)a.

The following approximation method is introduced in [30] that converges weakly to
the solutions of VIPs.

Vip1 = PC(I — cB)v;.

For variational inequality problems (VIPs) in Hilbert spaces, the ultimate objective
of this section is to attain strong convergence results. However, transitioning from weak
to strong convergence typically necessitates additional conditions, as observed in [31]
concerning VIPs. This chapter establishes strong convergence based on our primary
outcome for VIPs. Our distinctive approach relies on a more efficient iterative technique
known as F iteration, analogous to the one utilized in [30]. It is noteworthy that
mappings are recognized for their continuity across their entire domains. Furthermore,
our method introduces the notion of GAN mappings, which proves to be broader in scope

than the concept of nonexpansive mappings, as demonstrated in this investigation.
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Theorem 4.4.1. Suppose VIP (4.11) satisfies S # 0, ¢ > 0 and P°(I — ¢B) is GAN

mapping. Then {v;} produced by (4.2) is strongly convergent to some sought solution of

(4.11).

Proof. Assume that U = PY(I—c®B). As assumed, the mapping ¥ is GAN. But Fg = §,
by Theorem 4.2.3, the sequence {v;} approaches the given problem’s solution 6y in a

strong sense. (4.11). O
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4.5 Conclusions

We suggested the CAT(0) space version of F iteration and proved strong and A-
convergence results for a larger class of mappings. We also proved that numerically
our new approach is faster convergent via new examples of GAN maps. We provide one
application of our main outcome. Our results are new and extend the corresponding

results from the linear setting to the nonlinear setting of CAT(0) spaces.
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Chapter 5

Approximation of Fixed Points
for a Class of Nonlinear
Nonexpansive Mappings in

Banach Spaces

5.1 Introduction

Recent times have seen the iterative codification of fixed points significantly impact
the solutions to many problems related to stability, data dependency, convergence rate
analysis, and related topics.

Control sequences that are seen in different fields of study. Look at a class of Banach
spaces X in which any of these spaces has a nonempty closed convex subset K.

Make sure that for any u,y € K, the given mapping ¥ : K — X is non-expansive by
defining [|[Vu — Yy|| < ||Ju —y||. If the set F(¥) is not empty and ||Yu —v < |ju — v|| for
every u € K and v € F(¥), then ¥ is considered quasi-nonexpansive [1]. Based on the
previous understanding, any operator that is nonexpansive with regard to a fixed point
is equivalent to a quasi-nonexpansive operator. Simply put, if X is uniformly convex
and K is a convex closed bounded subset of X', then F(¥) # () holds for non-expensive

operators.
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An algorithmic approach to determining the possible value of a fixed point is
appealing, provided that beforehand, it is shown that such a mapping exists and is
unique. The Picard iterative codification is the starting point for the examination of
fixed point optimisation algorithms [8,9], which has a considerable amount of literature
on the subject of its structure. The Banach contraction prescript declares that the Picard
iterative system can obtain the contraction mapping fixed point. Here, the sequence v;
is produced from an arbitrarily chosen point v; € K. Using the following formula:
Vig1 = & + (1 — &) Pu;,1 € N.

Thereafter, a non-expansive mapping’s consecutive iterative nature is incompatible
with the contraction mapping, and a fixed point will inevitably be reached by the
mapping. In this context, a previous finding for the non-expansive operator’s fixed
point approximation was put forth by Krasnosel’skii [2]. If the self operator ¥ of X
is non-expansive and X is a uniformly convex Banach space, then the function (%)
will reach to a fixed point of ¥ which is the point of convergence of it, according to his
proposal.

Many iteration strategies have been developed to approximate non-expansive
mappings in the years following the failure of this hypothesis. Nearly all non-expansive
mappings have utilised Mann’s iteration approach [18] to get close to the fixed point.
The iterative system is like this: the sequence {v;} is

generated using the following method, starting from any point v; € K:

V1 € g(,
vit1 = & + (1 = &) Yy, (5.1)
ie€Nand¢ €(0,1).

Ishikawa conducted further research on the unique iterative approach that has been

extensively employed to estimate the fixed point of non-expansive mappings. The

sequence {v;} is generated iteratively from
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¢

v € K,
w; = (1 — )\1) v; + AV,
(5.2)

vit1 = (1 — &) vi + &Vwy,

i € Nand &, \; € (0,1).

Further, Noor [19] established an iterative system where for each. fixed value v; € K,

i € N and &, \;, k; € (0,1) and the sequence {v;} is initiated by

v €K,
w; = (1 — Iiz') v; + ki Y,

(5.3)
xTr; = (1 — )\1) U; + )\i\Ifwi,

Vigr = (1= &) vy + &Py,

In the following section, the iteration system was presented by Agrawal et al. [57].
The authors stated that the rate of analysis convergence is the same as that of The
Picard iterative procedure, which is more efficient than the Mann iterative scheme when

dealing with contractions. In this system, {v;}} is the sequence that is produced by

v € K,
w; = (1 — )\z) v; + )\i\If’Ui,

(5.4)
Vi1 = (1 = &) Yo; + & Yw;,

i€ Nand &, )\ € (0,1).

Abbas and Nazir [20] examine the following iterative fashion and declare that this
procedure faster converges than Agrawal et al. [57] iteration process, where for each

fixed value v1 € K, i € N and k;,&;, \; € (0,1) and the sequence {v;} is construct by

v €K,
w; = (1 — K,i) v; + ki Vv, (55)
= (1 — AZ) Yo, + A Pw;,

Vi+1 = (1 - 5@) \I/a:i + fi\lfwi,
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B. S. Thakur et al. [69] suggested a new iterative method for estimating the fixed point

of non-expansive mappings. The operation is applicable to all fixed values v; € K,i € N

and &, A; € (0,1) and the sequence {v;} is construct by

V] € g{,
w; = (1 — )\1) v; + NV,

rp = V(1 = &) v + §wy),

Vi+1 = \I’.CCZ',

However, Suzuki also proposed the idea of extended non-expansive mappings, which are

defined by a mapping condition (C). Let K be a nonempty subset of X' and X be a

Banach space. Condition (C) is met by a mapping ¥ : K — K if
1
3 lu—Yu|| < ||lu—al] = ||Yu—Ta| <|lu—a| for each u,a € K.

The mapping that fulfils condition (C) is more effective than quasi-non-expansive and
less robust than non-expansive, as demonstrated by Suzuki [68]. In 2011, Phuengrattana
[4] proved convergence rate theorems for mappings that satisfy condition (C') by utilising
the iterative system of Ishikawa in the category of uniformly convex Banach spaces and
CAT(0) spaces.

Certain researchers have recently looked into common fixed point results and fixed
point results for mappings that meet criterion (C'). For further information, please refer
to the following references: [52,54,68,69,114].

In this chapter, we derive inspiration from the concept by B. S. Thakura et al.
[69] and present a unique iterative methodology. In addition, we offer a thorough
examination of the rates at which the mapping, which fulfils condition (C'), converges
weakly and strongly in the context of uniformly convex Banach spaces. In addition,
we offer specific instances of a mapping that fulfils condition (C') and analyse the
numerical characteristics of the convergence of our suggested iterative system compared

to established models.
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5.2 Main Results

An innovative extended iterative approach (A*) for estimating the common fixed point of
extended nonexpansive Suzuki mappings meeting condition (C') in the class of uniformly
convex Banach spaces is the goal of the current study. where for each fixed value v; € K,

i €Nand &, )\ € (O, 1).

v € K,
w; =Wy (1— X)) v + NP,

x; = Vo (1 = &) v + & Vawy,

viy1 = Vg,

This exposition’s first significant basic Lemma is then presented.

Lemma 5.2.1. Assume that a convex closed subset called K of a Banach space X.
Consider a family of mappings of Suzuki-generalized nonexpansive type. V1, Vs, and
U3 : K — K, let Fi—123 = F(V1 N WaN W3) is nonempty. Let {v;} be the sequence
obtained by the extended iterative technique (A*) with an arbitrary configuration vy € K.

Then, implies the existence of lim;_, ||v; — v|| for every v € F;

Proof. Take v € F; and a € K according to the the premise of this relation. Since W¥;

satisfies condition (C'), precisely we have

1
glv=Ywl|=0<llz—a| = [[Yiv-Tial <z ~af. (5-8)

In the light of Proposition 1.1.3 (i), we have

lwi = vl = [|P1[(1 = A)vi + AiWrv; — 0[]
< (1= XN)vi + NV — v
< (L= 2)[|vi = vl + Al [Pre; — o]
< (1= 2)[lvi = vl + Ailjvi — 0]
< v — | (5.9)
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and having these precise, one-write

l|zi — vl = [[W2l(1 = &)vi + &Vaw; — v|

IN

[[(1—&)vi + &Waw; — v

< (1T =&)lvi — vl + & Waw; — |

< (T =&)lvi — vl + &l |lwi — |

< (1= &)l — vl + &llvi — |

< i =l (5.10)

Using the inequalities 5.9 and 5.10, one gets

|[vig1 — | [ W32; — o]

< s = o]
< lwi =]

< v — |- (5.11)

Ultimately, we deduce from the previous observation that, for each v € F;, {||v; — v||}

is bounded and non-increasing. It follows that the limit lim; o ||v; — v]|| exists. O

Theorem 5.2.1. Let a closed convexr subset K of a uniformly Banach space X .
Consider a family of mappings Yi—123 : K — K which are Suzuki-generalized
nonexpansive and each F; is a nonempty set.

For arbitrary setting v € K, let the sequence {v;} is generated by the extended
iterative procedure (A*) for every i € N. Additionally, where {&;} and {\;} are the real
numbers sequence in [r1,r9] to some ri,ry with respect to 0 < ry <1y < 1. Then F; # ()

if and only if lim;_oo ||Wiv; — v;|| = 0 and {v;} is bounded sequence.

Proof. Consider the cases when a € K and v € F; # (). Given that ¥; fulfills condition

(C), we have

1
3 lv=UY|=0<||z—al| = ||¥v—Yal <|z—al. (5.12)
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Then, owing to Lemma 5.2.1, the fact lim;_, ||v; — v|| exists and {v;} is bounded. For

given some € > 0, setting

lim ||v; —v|| =e.
1—00
Based on 5.9 and 5.13, we have
limsup ||w; — v|| < limsup ||v; — v|| = €.
1—00 1—00

In view of Proposition 1.1.3 (i), we have

limsup ||¥;v; — v|| < limsup ||v; —v|| = €.
1—00 i—00

On the other hand,

ligr =l < fJwi — o]

= ||\I’1[(1 — )\Z)Ul + )\Z’\I’ﬂ}i] — U||

< (X = N)vi + NV — vl

< (@ =)l = oll + N [¥rv; — o]
< (@ =)l = vl + Ailfvi — v

< i = ol] = Ailfvi = vl + Ail[v; — |
< v — |

By 5.13, we have

e = liminf ||v;41 — v|| < liminf ||Jw; — v]|.
1—00 1—00

Further, applying (5.13) and (5.17), we obtain

lim ||w; —v|| = €.
1—00

69

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



Next, owing to (5.16) and (5.18), we write

E = hm ||w1 - U|| == hm ||\I/1[(1 - )\z)mz + )\Z'\Ifl’()i] - U|| (519)

i—00 i—00

< lim H(l — )\z)vz + \Vqv; — U||
i—00

< lim [|(1 = X)||vi — o] + Hm + || Y10, — v]]
i—00 i—00

< lim [[(1 = A9)[[vi — vl + lim +Aql[v; — |
i—00 i—00

- 1 o
kggollvz V||

= {-_j’

if and only if

e = lim [|(1 — X\)vi + N\ Vv — vl]. (5.20)

1—00

In the light of Lemma 1.1.5, we get

71— 00
So, we can easily conclude that lim; o ||Vov; — v;|| = 0 and lim;_, ||Vsv; — v;|| = 0.

Further, in the sense of converse, taking bounded sequence {v;} € K and lim;_, ||¥1v;,—
x| = im0 [|[Pov; — || = limy o0 ||Wsv; — ;|| = 0. To prove that F; # (). For this,
we take v € Q(K,{v;}). Applying Proposition 1.1.3 (c), subsequently the following

inequalities are evident.

r(Viv, {vi}) = limsup||v; — Vo] (5.22)
1— 00
< limsup 3||¥1v; — ;|| + limsup |[v; — ||

1—00 1—00

= limsup ||v; — V||
1—00

= r(v, {v}).

Similarly, by 5.22 one can prove that

r(Vav, {v;}) = r(v,{vi}) (5.23)
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and

r (Vsv, {v;}) = r(v,{vi}) (5.24)

From equations (5.22), (5.23) and (5.24), we obtain ¥,u € Q(K,{v;}). Since K is

uniformly convex, so Q (K, {v;}) is singleton, we get ¥;v = v. Hence F; # (). O
Weak Convergence Rate Analysis with respect to iterative procedure (A*).

Theorem 5.2.2. Assume that a uniform Banach space X that is convexr and equipped
with Opial property. Let a closed convex subset K of X. Consider a family of mappings
Ui_123: K — K which are Suzuki-generalized nonexpansive and each F; is a nonempty
set. For arbitrary setting vi € K, let the sequence {v;} is generated by the extended
iterative procedure (A*) for every i € N. Additionally, where {&;} and {\;} are the real
numbers sequence in [r1,ra] to some r1,r9 with respect to 0 < r1 < re < 1 in such a way
that F; # (. Following that, the sequence {v;} weakly converges at the common fixed

point of W,.

Proof. Since F; # (), taking into considration of the Theorem 5.2.1, one can prove that
{v;} is bounded and lim;_, » |[|¥;v; — v;|| = 0. Based on the given hypothesis, a subset K
of uniformly convex Banach space is closed and convex. Eberlin’s theorem specifies that
there is a subsequence {v;, } of {v;} that weakly converges to lim,, o ||vi,, — Vivi, || =0
because of the reflexive nature of K.

Under Mazur’s theorem, v1 € A, given that K is convex and closed, we have vy € F;
by Lemma (1.1.3).

Moreover, we demonstrate the weak convergence of {v;} to v;. Specifically, if this
isn’t the case, then there has to be another subsequence of {v;,} of {v;} that converges
weakly to vy € A, such that v # vs.

In the sense of Lemma (1.1.3), we have v € F;. Since lim;_, |[v; — v|| = 0 exists
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for each v € F;. Further, by Theorem 5.2.1 and by Opial’s fashion, we have

lim [[v; —wn]| = l[vi,, —v1]|
71— 00

lim
wW—r00

< Jlim v, — el

= lim ||Jv; — vo|
71— 00
= lim [Jvj, — vl

< lim flvg, — o]

= lim ||v; —vq]|.
12— 00

Which is contradiction, so we have v1 = vo. As a result, at the common fixed point of

U;, the sequence {v;} converges weakly. O

Furthermore, Strong Convergence Rate Analysis with respect to iterative procedure

(4%).

Theorem 5.2.3. A Banach space X which is a uniformly convex, consider a subset K
of this space which is nonempty compact and convex. Let W;—1 93 : K — K be a family of
nonexpansive Suzuki-generalized mappings, where F; is nonempty. For arbitrary setting
vy € K, let the sequence {v;} is generated by the extended iterative procedure (A*) for
every i € N. Additionally, where {&;} and {\;} are the real numbers sequence in [ri,r2]
Considering a set of r1,r2 such that 0 < r; < ro < 1. The strong convergence of the

sequence {v;} occurs at the fized point of V;.

Proof. According to Theorem (5.2.3), one may write lim;_, ||W;v; — v;|| = 0. Lemma
1.1.4 gives us F; # (). As K is compact, {v;,} of {v;} is a sub-sequence such that {v;, }

strongly converges to v for some v € K. Using Proposition 1.1.3 (c), we arrive to
Hviw — \I/ZUH < 3H\Ilﬂ)zw — in” + H’Uzw — UH Vi>1. (525)

Taking the limit as w — oo, then V,u = v, that is v € F;. In the light of Lemma 5.2.1,

for every v € Fj, there exists lim; ,o ||v; — v||. As a result, v; strongly converges to

V. O
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Additionally, Strong Convergence Rate Analysis based on non-compact iterative

procedure (A*).

Theorem 5.2.4. Consider a convex, nonempty and closed subset K of uniform Banach
space of X'. Let Wi—123 : K — K be a family of mappings which are non-expansive
Suzuki-generalized type and F; be a nonempty set. For arbitrary setting v1 € K, let
the sequence {v;} is generated by the extended iterative procedure (A*) for every i € N.
Additionally, where {&} and {\;} are real number sequences in [ri,r2] for some r1,r9

such that F; #0 and 0 < r1 < ro < 1. If U; fulfil the subsequent style.
B (d (v, F(9,)) < [[o - o] ¥ o€ &, (5.26)

at the common fized point of ¥;,the sequence {v;} converges strongly.

Proof. Lemma (5.2.1) allows us to conclude that for any v € F(¥;), lim;_ o ||v; — v
exists and it follows that lim; o d(v;, F(V;)) exists. Let us assume that lim; , ||v; —
v|| =1 for some [ > 0, then our proof of Theorem (5.2.4) proceeds as follows. Suppose

that there is [ > 0, by appealing the given hypothesis and (5.26) we can write
h(d (vi, F' (¥5))) < [[Wiv; — vi|. (5.27)
Since F; # 0, in view of Theorem (5.2.2) we find that
lim [[W0; — vi]| = 0. (5.28)
i—00
By appealing to (5.27), we can write
il_igloh(d(UnF (¥;))) = 0. (5.29)

Since h is a non-decreasing function, we obtain

1—00

Thus, we find a subsequence {v;;} of {v;}. From this, a sequence {s;} C F (¥;) and
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together with the equation (5.11) such that
1 ,
Vi — 8511 < i, — 84l §§ for all j > 1. (5.31)

Thus, we can clearly write,

[sj+1 = sl < lsjr1 — vij |l + vy — 85l
< 1 1
= gmty
! 0 ] 5.32
< g 70 as asj— oo (5.32)

Hence, the Cauchy sequence {s;} that converges to point v in F (;).
{vij} is a subsequence that strongly converges to point v since F (¥;) is closed.
Consequently, v € F (¥;). Since lim; , ||v; — v|| exists, we can write v; — v € F (;).

O]

From now on, we will provide an intriguing example that showcases the numerical
and graphical behaviour that serves as motivation for the investigations described in

this work.

Example 5.2.1. Define a selfmappings ¥;—1 23 on K = [1,2] by

2416 10
57 for 1 <x < 7,

\Ill.%':
3 —x for 1@0§e§2,
32 10
%for 1<e< 7y,

\1/262
4 —e for %§e§2,
64 10
“”‘fl for 1<z <3,

Yse =

5—e for %gxgz

In this case, W; are extended versions of mappings of type Suzuki’s non-expansive as

defined above; yet, W; are not non-expansive mappings because

||\I’1€1 — \11162” =0.24 > 0.001 = ||€1 — 62” s
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||\I’2€1 — \IJQ«S’QH = 0.80 > 0.001 = ||€1 — 62” ,

and

H\Ilgel — \I/3€2H = 1.80 > 0.001 = H€1 — €2H

for e = 1.11 and ex = 1.111. Further, we examine that W;—1 23 are extended Suzuki’s
non-expansive mapping. Now, let’s proceed with the discussion of the following scenarios.
(i) 3ller — Trer]| < [lz1 — eof| = [[Trer — Tiea|| < [ler — |-

(i) 3ller — Waer]| < [ler — eal| = ||Waer — Paes|| < [ler — eal.

(iti) 3ller — Wser|| < [ler — eal| = [[¥ze1 — Uzea|| < [le1 — eal|-

Case I: Setting 1 < ej,e; < 1@0 or %O < e1,e; <2, both cases involve V; being a non-

expansive mapping, thereby establishing V; as an expansion of mappings of type Suzuki’s

non-expansive.

Case II: Take 1 < z < 3 s0 %||z — || = §|[ZH0 — of| = |[258]| € [0, &5, As

%Hml —Wie|| < |ler — eal], one writes % < ey — eg. Let us now discuss the following

two cases:
(a): Consider ey < ey, then % < eq this implies eq € [%, |. Which yield
1
[T1e1 = Wrea| = Gller — ezl.
Hence,

1
gller = Trer]l < Jlex — eaf| = [[Prer — Preaf| < [ler — ea]].

(b): Consider e; > ey, then xg < % implies eg < %g, and ey < 2, s0 eg € [1,2]. As

e2 € [1,2], and ex < %, which implies eq > 186573'16. Thus, taking e; € [%,2} and
e2 € [1, %), s0

1
[T1e1 — Tres| < 9
and

1
||€1 — €2|| > §

Hence,

1
§\|61 —Vie|| < ler —eaf| = |[W1e1 — rea|| < |ler — e2].
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Case III: Consider ¥ < x < 2, then ||z —V1z|| = ||z — (3—2)|| = [|2e—3|| € (&, 3].
As 3|ler — Uqe|| < |ler — ea||, one writes 2¢ — 3 < ey — ea. This implies that e > 3, so
ez € [3,2] and we obtain

1
H\I’lel — \IflegH < §

and

1
Hel — 62|| > §

Hence,

1
§||€1 —Vie|| < ler —eaf| = |[W1e1 — Prea|| < |ler — e2f.

Similarly, we easily obtain the following condition:
(i) 3ller — Waer]| < [ler — eal| = ||Wae1 — Waea|| < [ler — ea].
(iii) L|ler — ger]] < |ler — ea|| = || Vse1 — Ugea|| < ||er —ea||. Thus, ¥; as an extended

Suzuki’s non-expansive mapping

5.3 Analysis Basins of Attraction

The objective of this section is to incorporate Newton’s famous iterative scheme [13]
into the A* iterative scheme (5.7), along with various well-known iterative methods from
existing literature. This will result in the visualization of multiple basins of attraction.
Let’s consider P as a complex polynomial. It’s important to highlight that, when starting
with any initial value zg € C, the iterative process of Newton’s scheme can be expressed

in the following manner:

P(z)
P/(Zi) ’

Zitl = 2 — fori=0,1,2,...

The expression P/(z;) represents the first derivative of the function P . The Newton
iterative scheme can be reformulated into a fixed point iterative scheme in the following
manner:

ziy1 = Tz
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Table 5.1: A*-iterative scheme (5.7) for {; = 0.1 and (; = 0.2 in Example 5.2.1
k Scheme (5.7) Scheme (5.7) Scheme (5.7)

1 1 1.5 2
2 7.00 6.50 6.00
3 8.00 8.00 8.00
4 8.00 8.00 8.00
5 8.00 8.00 8.00
6 8.00 8.00 8.00
7 8.00 8.00 8.00
8 8.00 8.00 8.00
9 8.00 8.00 8.00
10 8.00 8.00 8.00
11 8.00 8.00 8.00
12 8.00 8.00 8.00

8.0} - . ,—_———— e - - . —
For §,=0.1, {,=0.2 and e,=1
7.8} For §,=0.1, {,=0.2 and e,=1.5

For §,=0.1, {,=0.2 and e,=2

Absolute error

7.2

7.0t

0] 2 4 6 8 10 12 14

Number of iterates

8.0} - ]
For £,=0.4, {,=0.5 and e,=1
For £,=0.4, £,=0.5 and e,=1.5

For £,=0.4, ,=0.5 and e,=2

7.5

Absolute error

7.0

6.5F

0 2 4 6 8 10 12 14

Number of iterates

Figure 5.1: The scheme (5.7) is analyzed graphically for various parameter and
starting point combinations.
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8.0f
For £,=0.8, ,=0.9 and e,=1
===- For £,=0.8, {,=0.9 and e,=1.5
7.5} For §{,=0.8, ,=0.9 and e,=2
S
)
£ 7.0t
o
3
<
6.5F
6.0
0 2 4 6 8 10 12 14
Number of iterates
8.0f
For £,=0.1, {,=0.2 and e,=1
For £,=0.1, ,=0.2 and e,=1.5
757 = For £,=0.1, {,=0.2 and e,=2
For £,=0.4, {,=0.5 and e,=1
S For £,=0.4, ,=0.5 and e,=1.5
2 7.0f For £,=0.4, £,=0.5 and e,=2
Tg” R S For £,=0.8, £,=0.9 and e,=1
< For §,=0.8, {,=0.9 and e,=1.5
For §,=0.8, ,=0.9 and e,=2
6.5}
6.0
0 2 4 6 8 10 12 14

Number of iterates

Figure 5.2: An illustration of our system (5.7) using several parameter and
beginning points

Table 5.2: A*-iterative scheme (5.7) for {; = 0.4 and (; = 0.4 in Example 5.2.1
k Scheme (5.7) Scheme (5.7) Scheme (5.7)

1 1 1.5 2

2 7.00 6.50 6.00
3 8.00 8.00 8.00
4 8.00 8.00 8.00
) 8.00 8.00 8.00
6 8.00 8.00 8.00
7 8.00 8.00 8.00
8 8.00 8.00 8.00
9 8.00 8.00 8.00
10 8.00 8.00 8.00
11 8.00 8.00 8.00
12 8.00 8.00 8.00
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Table 5.3: A*-iterative scheme (5.7) for ¢, = 0.8 and ¢; = 0.9 in Example 5.2.1
k Scheme (5.7) Scheme (5.7) Scheme (5.7)

1 1 1.5 2

2 7.00 6.50 6.00
3 8.00 8.00 8.00
4 8.00 8.00 8.00
) 8.00 8.00 8.00
6 8.00 8.00 8.00
7 8.00 8.00 8.00
8 8.00 8.00 8.00
9 8.00 8.00 8.00
10 8.00 8.00 8.00
11 8.00 8.00 8.00
12 8.00 8.00 8.00

In the event that the preceding iterative process approaches a stable point, denoted as

z within operation T', the following relationship holds:

Consequently, we might conclude the expression 5,((’?) = 0, leading us to the conclusion

that P(z) = 0 as well. This establishes that z is indeed a root of the function P. Now,
let’s analyze the comparison between the iterative procedure utilizing Newton’s operator
and the utilization of the aforementioned iteration procedure aimed at determining the
roots of a complex polynomial. We can consider the following complex polynomials and

their respective iteration processes:

Polynomial: Py(z) = 2' —1;
Polynomial: Py(z) = 2" — 1;

Polynomial: Py(z) =22+ 284 2T 4+ 4 2h

Consider a complex number represented as z = a + ib. To create regions of attraction,
known as basins of attraction, using three specific complex polynomials, various iterative
schemes are employed, including the A* iterative scheme (5.7). In this process, the

parameter g; is selected with a fixed value of 0.99 for different values of ¢, specifically
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when (i = 0,1,2). Now, let’s focus on the specified domain depicted below:
Dy =[-2,2] x [-2,1], and Dy = D3 = [-2,2] x [-2,2]

respectively, where their centers are located at the origin. To proceed, we divide
these regions into grids of size 250 x 250. Using Newton’s operator and employing
the Mann, Khan, and A* iterative scheme (5.7), we generate a sequence of complex
values denoted as {{;}. This sequence originates from each grid point, starting with an
initial guess &y. If, during a maximum of iteration ¢ < 12 iterations, the iterates {;}
substantially converge to a root with a precision of 1078, we attribute a specific color to
the corresponding &p. In instances where {;} does not converge towards any root, we
designate the color white for {£;}. The collection of &, points that converge to the same
root forms what we refer to as a basin of attraction. Through this process, we generate
various basins of attraction corresponding to the complex polynomials we have defined.

For visual representation, please refer to Figures 5, 6 and 7.

5.4 An Application to Fractional Differential
Equation

In this portion, we employ the A* iterative scheme (5.7) to show that Delay Nonlinear
fractional differential equations have solutions(DNFDE). Before proceeding, we review

the notion of solutions’ existence in the context of DNFDE.

‘DY(w(q)) = Mg, w(q), wlqg —0)), q € [e, B] (5.33)

with with based on an the initial conditions

w(q) =¥(q), q € [e — ,e]. (5.34)
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o Eubepf. 2

Figure 5.5: Basins of attraction of different iteration using polynomial P3.
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Where, 0 >0, B> 0, 4> 0, w € R¥, ¢ € C([e—0,¢] : R¥), and an continuous mapping

h:[e, B] x R¥ x R¥ — R¥. Define the integral equation with respect to “@¥(w(q) by

w(g) = ¥(e) + ij) / (g — P w(g)wlg — o))du, ¥ g € e B (5.35)

Define the norm |.||s; on C([e — o, €] : R¥) by

sup || (q) |

.k
B, (o00,) " for all ¢ € C([e — o,€] : RY) (5.36)

WH(SL =

where E; consider is Mittag-Leffler function and is defined as follows

o0
qdk
E = f lgeR 5.37
y(q) gzor(ykﬂ), or all g (5.37)

Therefore, the pair (C([e — o, ¢] : R¥),||.||s;) forms a Banach space.

Theorem 1. Assume that:

(D1): there exists Ly, > 0 such that

1h(q, 51,061) — h(q, 32, 62)|| < L(||51 — 61| + ||52 — G2]), V 51,01, 52,02 € R, (5.38)

(D2): there exists Ly, > 0 with respect to (25% < 1 such that
m e (C(le —a,¢] : RF)) N C*([e — 0, €] : R) (5.39)
which satisfying (5.33) and (5.34). Then, the sequence of §* iterative scheme (5.7) have

a unique solution.

Proof. Define an operator A as

L [9g— eyl w w(pu —o e :
rog) = | VO T = = o Va e lenBl

w(Q)a qc [6 - K 6]

Let us now discuss the following two cases for showing that the sequence z,, — m as

n — o0:
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Case 1. If g € [e — p, €], then clearly we have z, — m as n — oo.
Case 2. If ¢ € [e, B], then in the light of (5.7), Lemma (5.2.1), and conditions (D1)

and (D2), one writes

H(l - Qn)Axn + onAzy — m” (5.41)

[2ns1 —ml

< (I—on) |lzn —m| + on [|Azn — m]| .

Taking into account supremum, we have

sp lemss—ml < sup (1= 0a) llon — mll + on | Adn — A
q€[e—ao,B] q€le—ao,B]

(1—o0n) sup |z —m|+on sup |Az, —Am]|).
g€le—o,B] q€le—0o,B]

IN

This implies
sup |lzpp1 —mf < (1—on) sup [z, —m]
q€le—0o,B] q€le—o,B]

o s || V0O 1 Ja = @ w0, o = o))
a€le=aBl || —yp(e) — 55 S (@ =€)V R, m(p), m(p — o) du

< (I-0n) sup |zn —m|
g€le—o,B]
1[4 h(ps 2 (1), Tn(p — o))
+on sup / (g—e)¥ ! du.
octe=.5] T} Je ~h(ja,m(e), m(p ~ )
Which implies
sup ||znr —mfl < (1—eon) sup Jon—mll+on sup w5 (g —e)' du
g€le—o,B] q€le—o,B] q€le—o,B] (y) e
XLp([|zn = m(p)|| + |lzn(p — o) = m(p — o))
1 q
< W0 sw e ml o [ a0
g€le—o,B] F(y) e
XLp( sup  |lzn —m(p)||+ sup [zn(p— o) —m(p—o)l]).

qe[efa':B} qE[er,B]
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Dividing by F,(614y),

SUPg¢le—o0,B] H:L‘nJrl - m” < (1 - Qn) SUPge[e—o,B] ”l'n - m” /q y—1
< + 0n q—e)’ du
B, (000). E,(014,) ORI
SUPgele—o,B] [1Tn — m ()|
x L
n Ey(514,)

SUPgele—o,B] [|Zn (1t — o) —m(p — o)l )

Ey<5LQy) .

By virtue of (5.36), we have

1 q _
st — mlly, §<1—%m%—mmL+%/Xmﬂwlw
L(y) Je
% Ly (ll2n — m(u)]

6L

+lan(p — o) =m(p = o)lsL)-

This implies

IN

1 q
1—on)||lzn —m +Qn/ q_ey_ld
( )H ”6L F(y) . ( ) 1

Tt — m||5L

X2Ln(|lzn —m(p)|

6L

=ue%m%—wm+éﬁ2ﬂ%—mm
Qnr(ly) /eq(q - e)y_lEy(éLQy)dH‘

=ue%m%—mm+éﬁ2ﬂ%—mm

=ue%m%—mm+éﬁ2ﬂ%—mm
o(Bim),

on2L, Ey(0rgy)
Ey(dray) oL
on2Lp,

oL

= (1—on)llzn — mHaL + |zn — m”(SL

= (1-on) ||33n_mH5L+ |Zn _mHéL’

Owing to (D2), we have

|Tn1 — mH(SL < lzn — mHéL‘

Setting A, = ||z, — m||5, , then

An+1 SAn, n € N.
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Therefore, A, is a monotone decreasing sequence with respect to real numbers and is

bounded from below. Hence,
nlggl() A, =inf{A,} =0.

This implies that ||z, —m|s;, — 0 as n — oo. O
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5.5 Conclusion

This work put forth an innovative and groundbreaking concept called extended ¢-Suzuki
nonexpansive mappings. Through this novel approach, we have significantly improved
the understanding of convergence rate analysis in comparison to existing studies in the
field. Additionally, we have introduced a new and efficient technique called A*-iterative
scheme, which enables the accurate approximation of common fixed points in the realm
of Banach spaces.

Our study’s significance lies in the practical implications and the the soundness
of our theoretical analysis, both of which are demonstrated through concrete numerical
examples and real-world applications. By extending the iterative scheme, we have delved
deeper into this research area, building upon and expanding the scope of prior literature.

Our comprehensive exploration and contributions hold promise for future advance-
ments in the field of nonexpansive mappings and iterative methods. The proposed
extended p-Suzuki approach and A*-iterative the scheme opens new avenues for more
efficient and reliable techniques in solving problems related to fixed points in Banach
spaces. We analyze that our work will serve as a cornerstone for future research, inspiring

further investigations and innovations in this domain.

86



Bibliography

1]

J.B.Diaz and F.T.Metcalf, On the structure of the set of subsequential limit points

of successive approximations’,Bull. Amer.Math.Soc.15(1968),149-150.

M.A. Krasnoselskij, Two observations about the method of successive approxima-

tions, Usp. Mat. Nauk 10 (1955) 123-127 (in Russian).

Z. Opial, Weak convergence of the sequence of successive approximations for

nonexpansive mappings, Bull. Am. Math. Soc.73(1967)595-597.

W. Phuengrattana, Approximating fixed points of Suzuki-generalized nonexpansive

mappings, Nonlinear Anal.Hybrid Syst.5(3) (2011)583-590.

J. Schu, Weakand strong convergence to fixed points of a symptotically

nonexpansive mappings, Bull. Aust. Math. Soc.

H.F. Senter,W.G. Dotson, Approximating fixed points of nonexpansive mappings,

Proc. Am. Math. Soc. 44 (2) (1974) 375-380

I.A. Rus and S. Muresan, Data dependence of the fixed points set of weakly Picard

operators, Stud. Univ. Babes-Bolyai Math., 43 (1998) 79-83.

M.A. Khamsi and W.A. Kirk, An Introduction to Metric Spaces and fixed point

Theory, John Wiley, New York, 2001.

S. Almezel, Q.H. Ansari and M.A. Khamsi, Topics in Fixed Point Theory, Springer

(2013).

M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-
Verlag, Berlin, Heidelberg, 1999.

87



[11]

D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies

in Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 2001.

J. Schu Weak and strong convergence to fixed points of asymptotically nonexpansive

mappings. Bull. Austral. Math. Soc. 1991, 43, 153—159.

S. Banach, Sur les operations dans les ensembles abstraits et leur application aux

equations integrales, Fund. Math. 3 (19922) 133-181.

F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat.

Acad. Sci. USA. 54 (1965) 1041—1044.

D. Gohde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30 (1965)

251-258.

W. A. Kirk, A fixed point theorem for mappings which do not increase distance,

Amer. Math. Monthly 72 (1965) 1004—1006.

R. Pant and R. Shukla, Approximating fixed points of generalized a-nonexpansive

mappings in Banach spaces, Numer. Funct. Anal. Optim. 38(2) (2017) 248—266.

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953)

506—510. 506—510.

M. A. Noor, New approximation schemes for general variational inequalities, J.

Math. Anal. Appl. 251(1) (2000) 217—229.

M. Abbas and T. Nazir, A new faster iteration process applied to constrained

minimization and feasibility problems, Mat. Vesnik 66 (2014) 223—234.

W. Phuengrattana and S. Suantai, On the rate of convergence of Mann, Ishikawa,
Noor and SP-iterations for continuous functions on an arbitrary interval, J.

Comput. Appl. Math. 235 (2011) 3006—3014.

I. Karahan and M. Ozdemir, A general iterative method for approximation of fixed

points and their applications, Adv. fixed point Theory 3(3) (2013) 510—526.

88



23]

[24]

[25]

[34]

D. R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly
pseudo-contractive mappings in Banach spaces, Nonlinear Anal. Theory Methods

Appl. 74(17) (2011) 6012—6023.

S. H. Khan, A Picard-Mann hybrid iterative process, fixed point Theory Appl.

2013, 2013:69, 10 pages.

F. Gursoy and V. Karakaya, A Picard-S hybrid type iteration method for solving a

differential equation with retarded argument, preprint (2014), arXiv: 1403.2546v2.

B. E. Rhoades, Some fixed point iteration procedures, Int. J. Math. Math. Sci. 14

(1991) 1—16.

K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki’s generalized

nonexpansive mappings via new iteration process, Filomat 32(1) (2018) 187—196

K. Ullah, F. Ayaz, J. Ahmad, Some convergence results of M iterative process in

Banach spaces, Asian-European J. Math. 14 (2021) 2150017.

H. Afsharia, H. Aydi, Some results about Krasnoselskii-Mann iteration process, J.

Non-linear Sci. Appl. 9 (2016) 4852—4859.

C. Byrne, A unified treatment of some iterative algorithms in signal processing and

image reconstruction, Inverse Prob. 2004, 20, 103—120.

G. Lpez, V. Martn-M Themrquez, H. K. Xu, Halpern’s iteration for nonexpansive
mappings, in: Nonlinear Analysis and Optimization I. Nonlinear Analysis, AMS

Bar-Ilan Univ., Haifa, Israel, 2010, pp. 211-231.

G. I. Usurelu, M. Postolache, Algorithm for generalized hybrid operators with

numerical analysis and applications, J. Nonlinear Var. Anal. 2022, 6, 255-277.

Y. Yao, H. Li, M. Postolache, Iterative algorithms for split equilibrium problems of
monotone operators and fixed point problems of pseudo-contractions, Optimization

2022, 71, 2451-2469.

W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai

Math. Sem. Rep. 1970, 22, 142-149.

89



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl.

Acad. Sci. USA 1965, 5/, 1041-1044.

R. Pandey, R. Pant, V. Rakoevi, R. Shukla, Approximating fixed points of a general
class of nonexpansive mappings in Banach spaces with applications, Results Math.

2019, 7/, Article 64.

K. Ullah, J. Ahmad, M. Arshad, Z. Ma, Approximating fixed points using a faster
iterative method and application to split feasibility problems, Computation 2021,

9, 1-12.

S. Hassan, M. De la Sen, P. Agarwal, Q. Ali, A. Hussain, A new faster iterative
scheme for numerical fixed points estimation of Suzukis generalized nonexpansive

mappings, Math. Probl. Eng. 2020, Article ID 38638.

K. Ullah, M. Arshad, New iteration process and numerical reckoning fixed point in

Banach spaces, U.P.B. Sci. Bull., Ser. A 2017, 79, 113-122.

H. A. Hammad, H. U. Rehman, M. Zayed, Applying faster algorithm for obtaining
convergence, stability, and data dependence results with application to functional-

integral equations, AIMS Math. 2022, 7, 19026-19056.

H. A. Hammad, H. U. Rehman, M. De la Sen, A novel four-step iterative scheme for
approximating the fixed point with a supportive application, Inf. Sci. Lett. 2021,

10, 333-339.

K. Panigrahy, D. Mishra, A note on a faster fixed point iterative method, J. Anal.

2023, 31, 831-854.

W. Lawaong, B. Panyanak, Approximating fixed points of nonexpansive non-self
mappings in CAT(0) spaces, Fized Point Theory Appl. Sci. Eng. 2010, Article ID

367274.

D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies
in Math., Vol. 33, Amer. Math. Soc., Providence, RI, 2001.

S. Dhompongsa, B. Panyanak, On A-convergence theorems in CAT(0) spaces,

Comput. Math. Appl. 2008, 56, 2572-2579.

90



[46]

[52]

[53]

S. Dhompongsa, W. A. Kirk, B. Sims, Fixed point of uniformly Lipschitzian

mappings, Nonlinear Anal. 2006, 65, 762—-774.

B. Panyanak, W. A. Kirk, A concept of convergence in geodesic spaces, Nonlinear

Anal. 2008, 68, 3689-3696.

Y. Censor, T. Elfving, A multi-projection algorithm using Bregman projections in

a product space, Numer. Algor. 1994, 8, 221-2309.

H. A. Hammad, H. U. Rehman, M. De la Sen, Shrinking projection methods for
accelerating relaxed inertial Tseng-type algorithm with applications, Math. Probl.

Eng. 2020, Article ID 7487383, 1-14.

B. Mohammadi, M. Paunovi, V. Parvaneh, M. Mursaleen, Existence of solution for
some @-Caputo fractional differential inclusions via WardowskiMizoguchiTakahashi

multivalued contractions, Filomat 2023, 37(12), 3777-3789.

D. Thakur, B. S. Thakur, M. Postolache, New iteration scheme for numerical
reckoning fixed points of nonexpansive mappings, J. Inequal. Appl. 2014, Article
328. https://doi.org/10.1186/1029-242X-2014-328

Z. Zuo, Y. Cui, Iterative approximations for generalized multivalued mappings in

Banach spaces, Thai J. Math. 2011, 9(2), 333-342.

B. E. Rhoades, Some fixed point iteration procedures, Int. J. Math. Math. Sci.

1991, 14(1), 1-16.

F. Grsoy, A. R. Khan, M. Ertrk, V. Karakaya, Convergence and data dependency
of normal-S iterative method for discontinuous operators on Banach space, Numer.

Funct. Anal. Optim. 2018, 39, 322—-345.

M. Paunovi, B. Mohammadi, V. Parvaneh, On weak Wardowski contractions and
solvability of p-Caputo implicit fractional pantograph differential equation with
generalized anti-periodic boundary conditions, J. Nonlinear Conver Anal. 2022,

23(6), 1261-1274.

91



[56]

[65]

[66]

A. Das, B. Hazarika, V. Parvaneh, M. Mursaleen, Solvability of generalized
fractional order integral equations via measures of noncompactness, Math. Sci.

2021. https://doi.org/10.1007 /s40096-020-00359-0

R. P. Agarwal, D. O’Regan, D. R. Sahu, Iterative construction of fixed points of
nearly asymptotically non-expansive mappings, J. Nonlinear Conver Anal. 2007,

8, 61-79.
S. Bayin, Mathematical Methods in Science and Engineering, Wiley, 2006.

M. Bridson, A. Haiger, Metric Spaces of Non-Positive Curvature, Springer-Verlag,
Berlin, Heidelberg, 1999.

E. Picard, Mmoire sur la thorie des quations aux drives partielles et la mthode des

approximations successives, J. Math. Pures Appl. 1880, 6, 145-210.

D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies

in Mathematics, Vol. 33, Amer. Math. Soc., Providence, RI, 2001.

S. Dhompongsa, B. Panyanak, On A-convergence theorems in CAT(0) spaces,

Comput. Math. Appl. 2008, 56, 2572-2579.

S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 1974,

44, 147-150.

E. Karapnar, K. Ta, Generalized (C)-conditions and related fixed point theorems,

Comput. Math. Appl. 2011, 61, 3370-3380.

W. A. Kirk, A fixed point theorem for mappings which do not increase distance,

Am. Math. Mon. 1965, 72, 1004-1006.

H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings,

Proc. Am. Math. Soc. 1974, /4, 375-380.

H. M. Srivastava, A. Ali, A. Hussain, M. Arshad, H. Al-Sulami, A certain class
of Ar-type non-linear operators and some related fixed point results, J. Nonlinear

Var. Anal. 2022, 6, 69-87.

92



[68]

[69]

[74]

[75]

[76]

[77]

[78]

[79]

T. Suzuki, Fixed point theorems and convergence theorems for some generalized

non-expansive mapping, J. Math. Anal. Appl. 2008, 340, 1088-1095.

B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical
reckoning fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math.

Comput. 2016, 275, 147-155.

K. Ullah, M. Arshad, On different results for new three step iteration process in

Banach spaces, SpringerPlus 2016, 5, 1-15.

T. M. Sabri, M. B. Dhakne, On nonlinear fractional integro-differential equations

with two boundary conditions, Adv. Stud. Contemp. Math. 2016, 26(3), 513-526.

M. I. Abbas, M. Ghaderi, S. Rezapour, T. M. Sabri, On a coupled system
of fractional differential equations via the generalized proportional fractional

derivatives, J. Funct. Spaces 2022, Article ID 4779213, 1-10.

K. Ullah, T. M. Sabri, A. Kamal, J. Ahmad, F. Ahmad, Convergence analysis of an
iteration process for a class of generalized nonexpansive mappings with application

to fractional differential equations, Discrete Dyn. Nat. Soc. 2023.

M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-

Verlag, Berlin, Heidelberg, New York, 1999.
K. S. Brown, Buildings, Springer-Verlag, New York, 1989.

K. Goebel, and S. Reich Uniform Convexity, Hyperbolic Geometry, and Non-
expansive Mappings, Series of Monographs and Textbooks in Pure and Applied
Mathematics, Vol. 83, Dekker, New York, 1984.

W. A. Kirk, A fixed point theorem in CAT(0) spaces and R-trees, fixed point

Theory Appl. 4 (2004), 309-316.

S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Non-linear

Anal. 15 (1990), 537-558.

S. Almezel, Q.H. Ansari and M.A. Khamsi, Topics in Fixed Point Theory, Springer

(2013).

93



[80] V. Berinde, Iterative Approximation of fixed points, Springer, Berlin, (2007).

[81] R. Chugh, V. Kumar and S. Kumar, Strong convergence of a new three step iterative

scheme in Banach spaces, Amer. J. Comp. Math., 2 (2012) 345-357.

[82] K. Goebel and W.A. Kirk, Topic in Metric fixed point Theory, Cambridge

University Press, 1990.

[83] B. Halpern, fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967)

957-961.

[84] N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings

by a faster iteration process, arXiv:1402.6530v1 (2014).

[85] 1. Karahan, M. Ozdemir, A general iterative method for approximation of fixed
points and their applications, Advances in Fixed Point Theory, 3 (3) (2013) 510-

526.

[86] V. Karakaya, N.E.H. Bouzara, K. Dogan, and Y. Atalan, On different results for a
new two-step iteration method under weak-contraction mapping in Banach spaces,

arXiv:1507.00200v1, (2015).

[87] M.A. Khamsi and W.A. Kirk, An Introduction to Metric Spaces and fixed point

Theory, John Wiley, New York, 2001.

[88] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma
(2000)

[89] R. P. Agarwal, D. O'Regan and D. R. Sahu, fixed point Theory for Lipschitzian-
type Mappings with Applications Series. Topological fixed point Theory and Its

Applications, vol. 6. Springer, New York (2009).

[90] S.H. Khan, A Picard-Mann hybrid iterative process, fixed point Theory Appl.,

2013 (2013), Article ID 69.

[91] E. Karapnar, H. Salahifard, S. M. Vaezpour, Demiclosedness principle for total
asymptotically nonexpansive mappings in CAT(0) spaces, J. Appl. Math. 2013,
Article ID 738150, 1-10.

94



[92]

[97]

[98]

[99]

V. Karakaya, F. Gursoy and M. Erturk, Some convergence and data dependence
results for various fixed point iterative methods, Kuwait J. Sci. 43 (1) (2016) 112-

128.

F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat.

Acad. Sci. USA., 53 (1965) 1041-1044.

D.R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly
pseudocontractive mappings in Banach spaces, Nonlinear Anal: Theo. Meth. Appl.,

74(17) (2011) 6012-6023.

Ali, J.; Jubair, M.; Ali, F. Stability and convergence of F' iterative scheme with
an application tot the fractional differential equation. Engineering with Computers

2020. https://doi.org/10.1007/s00366-020-01172-y.

W.A. Kirk, A fixed point theorem for mappings which do not increase distances,

Amer. Math. Monthly, 72 (1965) 1004-1006.

W. Phuengrattana, Approximating fixed points of Suzuki-generalized nonexpansive

mappings, Nonlinear Anal. Hybrid Syst. 5 (3) (2011) 583-590.

B.E. Rhoades, Some fixed point iteration procedures, Int. J. Math. Math. Sci., 14

(1) (1991) 1-16.

ILA. Rus and S. Muresan, Data dependence of the fixed points set of weakly Picard

operators, Stud. Univ. Babes-Bolyai Math., 43 (1998) 79-83.

[100] I.A. Rus, A. Petrusel and A. Sutamarian, Data dependence of the fixed points set

of multivalued weakly Picard operators, Stud. Univ. Babes-Bolyai Math., 46 (2001)

111-121.

[101] W. Phuengrattana and S. Suantai, On the rate of convergence of Mann, Ishikawa,

Noor and SP-iterations for continuous functions on an arbitrary interval, J.

Comput. Appl. Math., 235 (2011) 3006-3014.

[102] B.E. Rhoades, fixed point iterations using infinite matrices, III, fixed points,

Algorithms and Applications, Academic Press Inc., New York 1977, pp. 337-347.

95



[103] P. Debnath, N. Konwar, S. Radenovi, Metric Fized Point Theory: Applications in

Science, Engineering and Behavioral Sciences, Springer Verlag, Singapore, 2021.

[104] V. Pragadeeswarar, R. Gopi, M. De la Sen, S. Radenovi, Proximally compatible

mappings and common best proximity points, Symmetry 2020, 12, 353.

[105] T. M. Tuyen, H. A. Hammad, Effect of shrinking projection and CQ-methods on
two inertial forwardbackward algorithms for solving variational inclusion problems,

Rend. Circ. Mat. Palermo, II. Ser. 2021, 70, 1669-1683.

[106] H. A. Hammad, W. Cholamjiak, D. Yambangwai, H. Dutta, A modified shrinking
projection method for numerically reckoning fixed points of G-nonexpansive

mappings in Hilbert spaces with graph, Miskolc Math. Notes 2019, 20, 941-956.

[107] W. A. Kirk, Geodesic geometry and fixed point theory, in: Seminar of
Mathematical Analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, Univ. Sevilla

Secr. Publ., Seville, 2003, 64, 195-225.

[108] W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear

Anal. TMA 2008, 68, 3689-3696.

[109] W. Sintunavarat and A. Pitea, On a new iteration scheme for numerical reckoning
fixed points of Berinde mappings with convergence analysis, J. Nonlinear Sci. Appl.,

9 (2016), 2553-2562.

when dealing with contractive like operators, fixed point Theory Appl., 2008

(2008), Article ID 242916.

[110] S. Dhompongsa, Kirk, W.A.; Panyanak, B. Nonexpansive set-valued mappings in

metric and Banach spaces. J. Nonlinear Convex Anal. 2007, 8, 35-45.

[111] T. Suzuki, fixed point theorems and convergence theorems for some generalized

nonexpansive mappings, J. Math. Anal. Appl., 340 (2) (2008) 1088-1095.

[112] F. Ali, J. Ali, A new iterative scheme to approximating fixed points and the
solution of a delay differential equation, J. Nonlinear Convex Anal. 21 (2020)

2151-2163.

96



[113] A.M. Harder, T.L. Hicks, Stability results for fixed point iteration procedures,

Math. Jpn. 33 (1988) 693-706.

[114] A. Abkar, M. Eslamian, fixed point theorems for Suzuki generalized nonexpansive

multivalued mappings in Banach spaces, fixed point Theory Appl. 2010 (2010) 10.

[115] W. Kumam, K. Khammahawong, P. Kumam, Error estimate of data dependence
for discontinuous operators by new iteration process with convergence analysis,

Numer. Funct. Anal. Optim. 40 (2019) 1644-167

[116] S. Thianwan, Common fixed points of new iterations for two asymptotically
nonexpansive nonself mappings in a Banach space, J. Comput. Appl. Math., 224

(2009) 688-695.

97



