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Preface

Fixed point theory is a magnificent blending of analysis, geometry and

topology. It reckons with fixed point existence of a mapping Ψ on a set X,

i.e., the functional equation that depends on the operator may admits a certain

fixed point solution in the form x = Ψx. The basis of fixed point theory

was laid down in the 20th century by celebrated Polish mathematician Stefan

Banach. The maps satisfying various fixed point contractive conditions on the

entire domain play an important role and have a wide range of applications

in functional equations, differential equations and integral equations, which are

used in parametrize estimation problems, recurrent network convergence, adaptive

control systems, nonlinear and fractal image decoding, and computing magneto-

metric fields in a nonlinear medium. Numerous mathematicians have generalized

fixed point theory in different ways. We direct readers to the books for more

information to [87] and [79].

Nevertheless, suppose the presence of a fixed point is assured through the use

of complete or compact space, contraction, or non-expansive mappings. In that

case, then determining the value of that fixed point is a difficult problem, which

is why we compute them using iterative procedures.

It would take a lot of work to discuss all of the numerous iterative procedures

that have been developed over time. The most useful fixed point result which

is known in the literature as a Banach contraction theorem point out the Picard

iteration technique to approximate the fixed point(Throughout this thesis, we will

refer to the ”iteration process” by I.P.). Other well-known iterative processes

include: Ishikawa [63], PicardMann [90], Mann [18], Agarwal [57], Noor [19], SP

[101], S∗ [85], CR [81], Normal-S [94], Abbas [20], Picard-S [25], Thakur New

[69], Vatan, Step two [86] and so forth. We recommend reading the book [80]

to thoroughly describe iteration procedures. An I.P must possess attributes like
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”fastness” and ”stability” to be chosen over another I.P Rhoades said that for

decreasing function, the Mann I.P converges more quickly than the Ishikawa I.P,

but Ishikawa claimed that I.P is superior to the Mann I.P in [69]. Remember

that Mann I.P. is independent of the initial estimate (see [102] for details). The

Agarwal I.P. converges quicker than the Mann I.P. for contraction maps, according

to Agarwal et al.’s claim in [57], and at the same pace as the Picard I.P.

According to Abbas et al., Abbas I.P converges faster than Agarwal I.P in [20].

For quasi-contractive operators in Banach spaces, Chugh et al. shown in [81] that

C.R. I.P. is faster and equivalent to Picard which is basic iteration, Mann which

contains one set of parameter, Ishikawa which contains two set of parameters,

Agarwal which has similar structure as the Ishikawa iteration, Noor which is known

as first three-step fixed point scheme, and S.P. iterative processes. Additionally,

Karakaya et al. demonstrated in [92] that C.R. I.P. converges more quickly than

S∗ I.P. for the class of contraction maps. In [25], Gursoy and Karakaya reported

that for contraction maps, Picard-S I.P converges more quickly than all of Picard,

Mann, Ishikawa, Noor, SP, CR, Agarwal, S∗, Abbas, and Normal-S. In [69], Thakur

and colleagues demonstrated using

Numerical proof shows that Thakur New I.P. converges more quickly than

Picard iteration, the iteration due to Mann, a basic two-step Ishikawa fixed point

scheme, Agarwal two-step iteration, three-step basic Noor iteration, and Abbas

iteration three-step iteration for the class of Suzuki nonlinear nonexpansive maps.

Similarly, Karakaya et al. demonstrated in [86] that the Vatan Two-step I.P. is

quicker for weak contraction maps than the Picard-S, CR, S.P., and Picard-Mann

iteration processes.

In this dissertation, we present several new iteration processes in the context

of CAT(0) and Banach spaces, and we then demonstrate how much faster our

processes are. Our new method is based on the class of mappings with the (KSC)

condition and the M∗-iterative scheme. First, we use a M∗-iterative approach

to obtain various ∆ and strong convergence theorems. In the broad scenario of
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CAT(0) spaces, we show convergence findings on the F iteration technique for

generalized α-nonexpansive mappings.

For the sequence created by some of of the provided modified iteration schemes,

we aimed to establish a different types of results associated with weak, ∆, and

strong convergence in nonlinear settings with supportive and basic examples by

considering large class of nonlinear and nonexpansive maps. We employ Banach

space and CAT(0) as our underlying spaces. Furthermore, we present a brand-new

idea in Banach spaces: extended ϕ-Suzuki nonexpansive mappings. This concept

provides an effective way to approximate common fixed points.

This dissertation consists of five chapters.

Chapter 1 presents basic definitions, a thorough study of CAT(0) spaces and a

concise overview of current iteration procedures, along with several key ideas and

findings employed throughout this thesis.

Chapter 2 Within the context of CAT(0) spaces, we provide a few iterative

constructions of fixed points that demonstrate and discuss an application of these

outcomes to solve a wide range equation relation to fractional derivative.

Our new method is the modification of M∗ scheme and is connected to

nonlinear maps that has a property called in the literature as a (KSC) condition.

First, we use a M∗-iterative approach to obtain various ∆ and strong convergence

theorems. The concept in fixed point and our outcomes of this chapter are combind

and a FDE is solved as an application. Finally, it has been shown by supportive

and basic example which clearly shows the wideness of our results. Eventually, M∗

iteration is seen as a highly accurate numerical method relating and comparing

with some known and faster methods of the current literature in apprxomimation

methods of fixed points. Our findings are novel and extend the scope of several

related findings in fixed point theory and related fields.

Chapter 3 This chapter describes the successful application of an efficient

iterative approximation approach to discover fixed points in the nonlinear setting

of CAT(0) spaces for a general class of operators. Finding solutions through the
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suggestion of fixed-point processes for issues of various kinds (such as differential

and integral) and functional problems is one of the more challenging tasks. This

is particularly true when examining approximation techniques when the domain

of definition lacks linearity.

Several examples are used to demonstrate the results. There are also some

numerical calculations offered. Finally, we demonstrate that our novel findings

can be used to resolve split feasibility issues.

Chapter 4 We provide convergence findings on the F iteration method for gen-

eralized α-nonexpansive mappings in the general case of CAT(0) spaces. To bolster

our findings, we provide examples and numerical data. One implementation of our

primary findings is also given. The results complement the comparable fixed point

iteration findings in the present literature and are new in the literature.

Chapter 5 As an improvement over earlier research, we provide a novel idea

called the A∗-iterative scheme, which broadens our understanding of convergence

rate analysis.

Furthermore, we present a brand-new idea in the category of Banach spaces

extended ϕ-Suzuki nonexpansive mappings. This concept provides an effective

way to approximate common fixed points.

Our theoretical analysis’s dependability is demonstrated by numerical exam-

ples and its application to delay nonlinear fractional differential equations and

basins of attraction. Our study builds on the foundation established by earlier

research in this area by offering a complete and comprehensive analysis of this

expanded iterative strategy.
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Chapter 1

Basic Concepts

Several fundamental ideas and terms that are utilized throughout the dissertation are

covered in this chapter. To keep the chapter within a manageable length, several known

findings that are currently in existence are offered without evidence.

A few definitions, theorems, assertions, and lemmas that are being reviewed in

Section 1.1 will be utilized in the upcoming chapters. We present CAT(0) space and a

few of its fundamental characteristics that are necessary for fixed points in mappings to

exists, in Section 1.2. A brief introduction and history of various iteration systems are

provided in Section 1.3.

1.1 Preliminaries

Definition 1.1.1. [82] A uniform convex Banach space namely X is a complete norm

space having a property that ‖u+v
2 ‖ ≤ 1 − ζ where ζ > 0 whenever ‖u‖, ‖v‖ ≤ 1 and

‖v − u‖ > ξ for some 0 < ξ ≤ 2.

Definition 1.1.2. [3] A Banach space X equipped with Opial condition will have the

property that a sequence {vi} which converge weakly to a weak limit v0 in X in such way

lim
i→∞

sup ‖vi − v0‖ ≤ lim
i→∞

sup ‖vi − a‖

holds, for every a ∈ X with v0 6= a.

The details of Banach’s contraction principle (BCP) which guarantees the existence

1



and as well as the uniqueness of contraction mappings in complete metric space, are as

follows.

Theorem 1.1.1. [13] Suppose a selfmapping defined as Ψ : X → X whose domain

is a certain space (X, d) which is complete. The Banach’s contraction satisfied by the

selfmapping which is defined on a complete metric space (X, d) as Ψ : X → X and

d(Ψu,Ψv) ≤ θd(u, v), ∀ u, v ∈ X

where θ ∈ (0, 1), then the equation u = Ψu must be satisfied by sequence generated by

the Picard iteration will surely converge to a point u.

The set of fixed points of the selfmapping Ψ define over the Banach space X

satisfying the equation u = Ψu will be denoted through out the dissertation by FΨ.

Definition 1.1.3. The mapping Ψ : K → K will be called nonexpansive, if the value of

θ is transformed to unity in Theorem 1.1.1.

It is evident that nonexpansive maps are not covered by Banach’s Contraction

Principle, and this issue has existed for about 40 years. Eventually, this dilemma was

solved by Kirk [96], Browder [93], and Göhde [15] separately in 1965, which followed by

the spate of papers in the literature that gave a new form to the fixed point theory.

Theorem 1.1.2. A closed,bounded convex subset K of uniform convex Banach space

X on which nonexpansive a selfmap Ψ is defined, has a fixed point.

Sometimes as we know, extension of fixed point results needed a larger setting of

nonlinear maps that are not a straightforward research in analysis. As we know, the

condition that a certain map will be nonexpansive is simple and can be easily managed

in existence and in iterative construction results. In 2008, one of the attempts to extend

this idea was provided by Suzuki as follows.

Definition 1.1.4. [68] The map Ψ is called Suzuki mapping (SM) if satisfies Suzuki’s

(C) condition

1

2
d(u,Ψu) ≤ d(u, v) ⇒ d(Ψu,Ψv) ≤ d(u, v),

for all points u, v in the subset K of X.
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Compared to the nonexpansiveness property of any operator Ψ, the (C) condition is

effectively weaker. [68] provides an example.

Author Karapinar [64] proposed an additional requirement for mappings, which was

greatly inspired by Suzuki [68].

Definition 1.1.5. [64] The Kannan-Suzuki condition (KSC) is being satisfied by the

selfmap Ψ which is defined on set K.

1

2
d(u,Ψv) ≤ d(u, v) ⇒ d(Ψu,Ψv) ≤

1

2
d(u,Ψv) + d(v,Ψu), for all u, v ∈ K.

The following are several characteristics of SGN maps.

Proposition 1.1.1. [111] Let Ψ : K → K be any mapping and let ∅ 6= K ⊂ X (a

Banach space).

(i) It can be shown that Ψ is an SGN map if it is a nonexpansive map.

(ii) An SGN map Ψ having a fixed point defined over K is regarded as quasi-

nonexpansive.

(iii) The subsequent inequality satisfies only if Ψ is an SGN map for every u, v ∈ K.

‖u−Ψv‖ ≤ 3 ‖Ψu− u‖+ ‖u− v‖ .

Lemma 1.1.1. [111] An SGN Ψ is defined over the subset K of X which is a Banach

space X having the Opial property and with limi→∞ ‖Ψui − ui‖ = 0. if the sequence

{ui} converges weakly to u after that Ψu = u.

Lemma 1.1.2. [111] Let an SGN map Ψ defined on a domain that is compact in weak

sense denoted by K and is essentially a subset of a uniformly convex Banach space. As

consequent, there exists a point that is fixed for the mapping Ψ.

A new concept regarding mappings of Reich-Suzuki type nonexpansive came into

view in the recent past. The following is the information about such mappings.

Definition 1.1.6. [36] Suppose we have a distance function d over a metric space X

and take K as a subset of a metric space X. On the subset K define a selfmap Ψ ,

provided that for all u, v ∈ K there would be a value c in the interval [0, 1), then Ψ

3



is said to be as a nonexpansive Reich-Suzuki type mapping if the consequent inequality

d(u,Ψu)
2 ≤ d(u, v) implies d(Ψu,Ψv) ≤ cd(u,Ψv) + cd(v,Ψu) + (1− 2c)d(u, v) holds.

It is critical to acknowledge that nonexpansive operators of the Reich-Suzuki type

possess the subsequent characteristics.

Proposition 1.1.2. [37] Assume that K is the subset of a metric space X . Let us take

Ψ be a selfmap defined on subset K. The collection of all fixed points of Ψ is represented

by FΨ = {y1 ∈ K : y1 = Ψy1} 6= ∅. Subsequently, the subsequent qualities are considered

valid.

(a) If Ψ is a Riech-Suzuki type nonexpansive operator, then the condition d(Ψy,Ψy1) ≤

d(y, y1) holds for every y ∈ K and any y1 ∈ FΨ.

(b) If the function Ψ is a Suzuki map, then it can be classified as a nonexpansive

function of Reich-Suzuki type.

Definition 1.1.7. The Ψ mapping is called generalized α-nonexpansive (GAN) provided

that

1

2
d(u,Ψu) ≤ d(u, y) ⇒ d(Ψu,Ψy) ≤ αd(u,Ψy) + αd(y,Ψu) + (1− 2α)d(u, y),

for some α ∈ [0, 1) and for all point u, y in the subset K of X.

Definition 1.1.8. [80] Suppose two convergent sequences are given {ui}
∞

i=0 and {vi}
∞

i=0

with the limits u and v respectively then the comparison of their rate of convergence can

be made in such way that if

lim
i→∞

‖ui − u‖

‖vi − v‖
= 0

then we say that the convergence of {ui}
∞

i=0 is faster than that of {vi}
∞

i=0.

Definition 1.1.9. [80] Suppose we have fixed point iteration scheme for which two

sequences {ui}
∞

i=0 and {vi}
∞

i=0 are generated, which are converging to the fixed point p

also {ai}
∞

i=0 and {bi}
∞

i=0 are two positive real numbers null sequences. This occurs when

‖ui − p‖ ≤ ai and ‖vi − p‖ ≤ bi for all i ≥ 0. If the convergence of {ai}
∞

i=0 is greater

than that of {bi}
∞

i=0, then the convergence of {ui}
∞

i=0 is also greater than {vi}
∞

i=0, with

respect to p.
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Definition 1.1.10. [3] Any Banach space X equipped with the Opial condition will

have the property that a weak convergent sequence {vi} in X that possess a weak limit

v, with the result that.

lim
i→∞

sup ‖vi − v‖ ≤ lim
i→∞

sup ‖vi − a‖

holds, for every a ∈ X with v 6= a.

Lemma 1.1.3. [68] Suppose Ψ which denotes a map having domain a nonempty set K

in a Banach space. If the underlying set admits the Opial property and Ψ is Suzuki map,

then the weak convergence of any {vi} to some point v∗ with limi→∞ ‖Ψvi − vi‖ = 0,

implies that Ψ has a single fixed point i.e I − Ψ is essentially demiclosed on the point

zero.

Lemma 1.1.4. [68] Suppose a selfmap Ψ defined on weakly compact subset K of X,

where X is Banach space which is uniformly convex.Then, let’s assume that Ψ meets

the condition (C). Only one fixed point exists for Ψ when this happens.

Lemma 1.1.5. [5] Let’s consider that a Banach space X that exhibits uniform

convexity and for each i ∈ N there is sequence ai such that 0 < p ≤ ai ≤ q < 1.

Let us consider {ui} and {vi} are two sequences of X that limi→∞ sup ‖ui‖ ≤ γ,

limi→∞ sup ‖vi‖ ≤ γ and limi→∞ sup ‖aiui + (1− ai)vi‖ = γ hold for some γ ≥ 0. Then,

limi→∞ ‖ui − vi‖ = 0.

Proposition 1.1.3. [68] The following hypothesis is true if Ψ : K → K and K 6= ∅ ⊂

X

(a) : Ψ satisfies (C), if Ψ is non-expansive.

(b) : For a mapping Ψ to be considered quasi-non-expensive, it must have a fixed point

and satisfy (C).

(c) : For every u, a ∈ K, ‖u−Ψa‖ ≤ 3 ‖Ψu− u‖+ ‖u− a‖ if Ψ satisfies (C).

Definition 1.1.11. [6] If h is a non-decreasing function and Ψ : K → K is a mapping

being referred to as 1.1 inequality, then h : R+ → R
+ such that h(0) = 0 and h(t) > 0

for any t > 0 in a way that
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h (d (u, F (Ψ))) ≤ d (u,Ψu) ∀ u ∈ K, (1.1)

whereas d (u, F (Ψ)) = infυ∈F (Ψ) d (u, υ) and F (Ψ) stands for the collection of all fixed

points of Ψ.

1.2 CAT(0) space and some of its important

properties

A word geodesic is used common in many area of research that has meaning a shortest

possible between two points. But when a certain metric space, in which we can define a

map that can connect two points will be called a geodesic and the space will be referred

to as a geodesic metric space or simple a geodesic space (see [74]). The concept of such

spaces has a clear impact of science and many ideas related to famous general relativity

heavily rely on such concepts. Notice that in such type of spaces, a geodesic three sided

figure is must be thinner or same in corresponding shapes of complex plane. We also

know that Riemannian manifold is one of the most studied example of such spaces.

Other examples of such spaces can be widely found in the work in [75] and included

Hilbert spaces and R-trees as a special examples.

The fixed point study was only known in Hilbert, Banach and complete metric space

initially. But in such type nonlinear CAT(0) or geodesic spaces, it was challenge problem.

This study was researched by many authors but no effective outcomes was achieved. In

the paper due Kirk [77] eventually got a breakthrough in this setting by establishing a

bridge between fixed points and geodesic spaces. This breakthrough motivated many

new researchers and new fixed point outcomes along with new applications were initiated.

Verifying the similarity between the metric fixed discoveries in Hilbert and CAT(0)

spaces is a relatively simple. The author of the proposed work is motivated by the above

revelation and became interested in investigating the possibility of constructing CAT(0)

spaces, essentially nonlinear equivalents of spaces like lp. This study assumes that the

comparison triangle lies outside the Euclidean plane in a more general Banach space,

extending Gromov’s notion. To the author’s knowledge, no such generalized statement
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has been presented in literature so far. We have obtained some novel results for p more

than two and Banach space being a classical sequence space lp.

1.2.1 Basic Definitions and Properties

Consider a geodesic metric space represented by (X, d). In geodesic metric space, a

path is a continuous map that maps the closed interval [0, 1] to the set of points in X in

a continuous way. Let the map which connects two sets is define as q : [0, 1] → X if we

choose any two points s and r from the interval [0, 1] then their corresponding distance

be measured by the formula d(q(s), q(r)) = |(s − r)|d(q(0), q(1)) in space X. The set

of image points forms a path, which is called a geodesic path. If for any two points in

space, X exists a geodesic path that connects them, it is called geodesic metric space.

If a and b are two points corresponding to points 0 and 1 of the map q in the space

X, then the path which connects a to b is denoted by [a, b] is called a geodesic. if c

is any point from the interval [a, b] then the notation c = ((1 − r)a ⊕ rb) will be used

to determine the value of c where r is a values from (0, 1) . If a unique geodesic exists

between any two points of space X, then such a space is known as uniquely geodesic.

If K is a subset of X, the K is said to be convex if the geodesic [a, b] is contained in set

K if a and b are any two points of K.

A triangle ∆(t1, t2, t3) in geodesic space X is called a geodesic triangle if the three

vertices of it are represented by points t1, t2, t3 and the sides are formed by geodesics

[t1, t2], [t2, t3]and[t3, t1] respectively. A comparison triangle for ∆(t1, t2, t3) is defined as

a triangle ∆(t1, t2, t3) in the plane R
2 if and only if

dR2(t1, t2) = d(t2, t3), dR2(t2, t3) = d(t2, t3) and dR2(t3, t1) = d(t3, t1).

A comparison between the points of the geodesic segment and an interval in a plane

is made in such a way that a point e ∈ [t1, t2] is regarded as comparison point of

e ∈ [t1, t2] if the subsequent condition is satisfied d(t1, e) = dR2(t1, e). Similarly, we can

also compare the points in [t1, t3] and [t3, t2].

Definition 1.2.1. [43] The geodesic triangle ∆(t1, t2, t3) is said to possess the CAT(0)

property in a metric space (X, d) if the comparison is made between the corresponding
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points in the two triangles ∆(t1, t2, t3) and ∆(t1, t2, t3) by choosing two points from each

in such way t, t′ ∈ ∆ and t, t′ ∈ ∆ then the following condition must be obeyed.

d(t, t′) ≤ dR2(t, t′).

The most basic types of geodesic spaces are polyhedral complexes with piecewise

constant curvature, complete Riemannian manifolds, and normed vector spaces. In the

previous two instances where the presence of it is not always clear whether such spaces

are uniquely geodesic, finding such paths is also a difficult task. It is considerably simpler

in the case of normed vector spaces. [74].

In the purview of geodesic metric spaces, if a geodesic triangle lies within metric space

X, then the metric space deemed X to be a CAT(0) space if the said triangle adheres

to the CAT(0) property. To obtain more information regarding the exact definition of

CAT(0) attributes, please consult reference [108]. It is crucial to emphasize that every

CAT(0) space is fundamentally geodesically unique. Pre-Hilbert spaces and metric trees

are commonly cited as instances of CAT(0) spaces. We suggest referring to sources

[43, 91, 107, 108] for a more comprehensive examination of this subject. In addition,

CAT(0) spaces exhibit several fascinating characteristics that merit further exploration.

Suzuki [111] infers that the requirement of non-expansiveness is stronger than the

condition (C). Consequently, the class of the maps that satisfy condition (C) is a

superclass of the non-expansive class. Suzuki generalized non-expansive maps are

frequently referred to as SGN. For mappings of the exact nature, the existence and

convergence of the fixed points are established in the paper [111]. For both uniformly

convex Banach and CAT (0) spaces, Phuengrattana proved the convergence theorems

for SGN mappings using the Ishikawa iterations method [77]. This study focuses on

the fixed point theorems for SGN mappings. For in-depth scrutiny, the readers are

referred to the work of Thakur [69] and the work cited therein. Additional information

on CAT(0) spaces is available in the books [61]. Now, we present some information

from [45].

Lemma 1.2.1. [11] Let us consider a CAT(0) space X, which is complete, and take

a nonempty subset K of X. Then, the following statements are followed due to the
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CAT(0) space properties.

(a) Then according to the geodesic property, there exists a unique representation of

point q in the geodesic [u, v] where u, v ∈ K and θ represents a fixed element in

the interval [0, 1] on the real line. Then

d(u, q) = θd(u, v) and d(v, q) = (1− θ)d(u, v). (1.2)

Any point q in the geodesic [u, v] has a unique representation q = (1 − θ)u ⊕ θv

which satifies (1.2).

(b) If θ ∈ [0, 1] is fixed and u, v.w ∈ K, then one has

d(w, θu⊕ (1− θ)v) ≤ θd(w, u) + (1− θ)d(w, v).

To figure out the primary result, we additionally require certain concepts and

information. In the forthcoming chapters we may denote X as a CAT(0) space and

K is a nonempty convex, closed subset of X

Let us suppose that a bounded sequence {vi} ∈ X and that a subset of a

Banach space X that is K 6= ∅ is convex and closed. We define γ (u, {vi}) =

limi→∞ sup ‖u− vi‖ . Associative to K the asymptotic radius of {vi} is and may be

determined by using

γ (K, {vi}) = inf {γ (u, {vi}) : u ∈ K}

and an asymptotic centre of {vi} associated with K is defined as

Ω (K, {vi}) = {u ∈ K : γ (u, {vi}) = γ (K, {vi})} .

The Ω (K, {vi}) has exactly one point, as observed within the framework of CAT(0)

space. Additionally, this set is convex and nonempty in cases of weak compactness and

convexity of K (see [88, 89]).

Definition 1.2.2. [46] Consider {vi} ⊆ X, and X to be a CAT(0) space. A ∆ limit

of {vi} is defined as the point y0 only if it serves as the sole asymptotic center for {si},
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where {si} represents any subsequence of {vi}.

Strong convergence theorems for iterative sequences are typically proven for specific

types of mappings using condition (I), which is stated as follows and was presented by

Senter and Dotson in.

Definition 1.2.3. [41] Let us have X as CAT(0) space and K as a subset of X on

which the selfmap Ψ is defined then Ψ is said to satisfy condition (I) if the inequality

d(v,Ψv) ≥ µ(dist(v, FΨ)) is true for every point v ∈ K where µ is a function such that

µ(0) = 0 and µ(u) > 0 for every u > 0 and dist(v, FΨ) represents the distance between

the set FΨ and the point v.

The Opial’s property [3] can be expressed in the term of CAT(0) space as follows.

Definition 1.2.4. A space X that represents CAT(0) space Possesses the Opial’s

property if any sequence {vi} ⊆ X which is ∆-convergent to y0 ∈ X, the following

condition holds:

lim sup
i→∞

d(vi, y0) < lim sup
i→∞

d(vi, x0),

∀x0 ∈ X − {y0}.

It has long been known that every CAT(0) space possesses this attribute.

Lemma 1.2.2. [3] Assume that a space X, which is a complete CAT(0) space, and

let {vi} ⊆ X is a bounded sequence. In this scenario, the sequence {vi} possesses a

subsequence that is ∆-convergent.

The deduction of the following Lemma has been made from the definition Reich-

Suzuki type nonexpansive mapping.

Lemma 1.2.3. [37] Suppose we have CAT(0) space X and K is a subset of X, now

define a mapping as Ψ : K → K. If Ψ is a nonexpansive function of Riech–Suzuki type

and y and z are elements of K.

Subsequently d(y,Ψz) ≤ (α+3)
(1−α)d(y,Ψy) + d(y, z).

The idea of a ∆ convergence in CAT(0) space exhibits similarity with the weak

convergence in a Banach space.
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Definition 1.2.5. [107] In a CAT(0) space X which is complete a bounded sequence

{vi} is said to be ∆-convergent if it has a unique asymptotic center z for every sub-

sequence {si} of {vi} and it is denoted by ∆ − limi vi = z where z ∈ X to which {vi}

converges is the only asymptotic centre of it.

Lemma 1.2.4. [108] Assume that X, the CAT(0) space, is complete. Once this is

established, any bounded sequence {vi} ⊆ K admits a subsequence that is ∆-convergent.

Lemma 1.2.5. [110] Let us take a complete CAT(0) space X and select a set K which

is a convex nonempty closed subset of X then for every bounded sequence {vi} in K ,

the asymptotic center is contained in the subset K.

Lemma 1.2.6. [64] Assume that X and ∅ 6= K ⊆ X are any CAT(0) spaces. Assume

that FΨ 6= ∅ and that Ψ is a selfmap of K that satisfies the (KSC) requirement. For any

u ∈ K and v ∈ FΨ, one then possesses the following property:

d(Ψu, v) ≤ d(u, v).

Lemma 1.2.7. [64] Let us take a complete CAT(0) space X and select a set K, which

is a nonempty subset of X. Now choose a selfmap Ψ on the K which satisfies the (KSC)

criterion. Then one has the following property holds for each u, v ∈ K.

d(u,Ψv) ≤ 5d(u,Ψu) + d(u, v).

Lemma 1.2.8. [64] Let us take a complete CAT(0) space X and select a set K, which

is a nonempty subset of X. Now choose a selfmap Ψ on the K which satisfies the (KSC)

criterion. The subsequent property is valid.

{vi} ⊆ K, ∆− lim
i
vi = v, d(vi,Ψvi) → 0 ⇒ Ψv = v.

We require some evidence from [17] on this basis, and the CAT(0) space interpreta-

tion follows.

Proposition 1.2.1. Assume that X is a metric space and any subset K of X. Let Ψ

a map from K to itself. Next, we present the following pieces of information.
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(i) When Ψ is SM then Ψ GAN.

(ii) When Ψ is a GAN map having a fixed point, it follows that d(Ψs, l∗) ≤ d(s, l∗),

where s ∈ K and l∗ is any chosen point which acts as fixed point of Ψ.

(iii) When Ψ is a mapping of GAN and the set of its fixed points FG is nonempty.

Then FΨ is the subset of Ψ that must be closed set.

(iv) When Ψ is a GAN map, then it follows that for all s, r ∈ K,

d(s,Ψr) ≤

(

α+ 3

1− α

)

d(s,Ψs) + d(s, r).

(v) Since the CAT(0) space satisfies the CAT(0) style of Opial condition. So, if Ψ is

a GAN map with {vi} is ∆-convergent sequence to l∗ and limt→∞ d(Ψvi, vi) = 0,

then one has l∗ ∈ FΨ.

1.3 Iteration processes

In the forthcoming chapters we shall use four real sequences {κi}, {λi}, {γi} and {µi}

for (i ≥ 0) all of which are entirely lying in the interval [0, 1]. Furthermore a nonlinear

selfmap Ψ defined on a subset K of X where K is nonempty closed convex subset of

the space X under the consideration.

As for as iterative sequence is concern we shall use {vi} throughout the dissertation

unless and otherwise. In order to demonstrate Banach’s Contraction Principle, the most

fundamental I.P utilized is Picard I.P, which is as follows:











v0 ∈ K

vi+1 = Ψvi.
(1.3)

This technique is also known as the successive substitution method or the Richardson

iteration.
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Hassan et al. have presented the following iterative technique. [38]:



















































v0 ∈ K,

wi = Ψ((1− κi)vi + κiΨvi),

xi = Ψ((1− µi)wi + λiΨwi),

yi = Ψ((1− λi)xi + λiΨxi),

vi+1 = Ψ((1− γi)yi + γiΨyi), i ≥ 1,

(1.4)

where γi, λi, µi, κi ∈ (0, 1).

The initial generalization of Picard’s iterative process, which is defined for a fixed

(λ > 0), is known as Krasnoselskij’s iterative process.











v0 ∈ K

vi+1 = (1− λ)vi + λΨvi.
(1.5)

M∗-iteration is a newly designed iteration by Ullah and Arshad [70]. The following

sequence {vi} is produced by this iteration:















































v1 ∈ K

wi = (1− λi)vi + λiΨvi

xi = Ψ[(1− κi)vi + κiΨwi]

vi+1 = Ψxi.

(1.6)

Halpern in [83] proposed an iteration method that uses a fixed value of u ∈ K and

a single set of parameters that is the first one-step I.P.











v0 ∈ K

vi+1 = (1− κi)u+ κiΨvi.
(1.7)

The following is the one-step Mann iterative process:











v0 ∈ K

vi+1 = (1− κi)vi + κiΨvi.
(1.8)

If we consider κi ∈ [0, 1] For all i, the one-step Mann I.P. reduces to (1.8). The
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one-step mann I.P. also becomes (1.3) for all i when κi = 1, in a similar fashion.

Ishikawa I.P, which is the initial two-step I.P is defined in [63] and provided by:























v0 ∈ K

wi = (1− λi)vi + λiΨvi

vi+1 = (1− κi)vi + κiΨvi.

(1.9)

If we assume that λi = 0, the Ishikawa I.P falls to (1.8). for each of i.























v0 ∈ K

wi = (1− λi)vi + λiΨvi

vi+1 = (1− κi)wi + κiΨwi.

(1.10)

Presented in [57], Agarwal I.P (sometimes called S I.P) is described as follows:























v0 ∈ K

wi = (1− λi)vi + λiΨvi

vi+1 = (1− κi)Ψwi + κiΨwi.

(1.11)

They demonstrated that, for contraction maps, the convergence rate of their novel I.P.

is quicker than (1.8) and equal to that of (1.3).

The initial three-step I.P. was presented in 2000 in [19] and was called Noor I.P. It

was described as follows:



































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)vi + λiΨwi

vi+1 = (1− κi)vi + κiΨxi.

(1.12)

The value of Noor I.P falls to (1.8) when we set λi = µi = 0 for all i, and to (1.9)

when we assume µi = 0 for all i. Subsequently, other authors developed three-step

iteration procedures.
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SP I.P [101] is given by;



































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)wi + λiΨwi

vi+1 = (1− κi)xi + κiΨxi.

(1.13)

The rate of convergence of (1.13) for non-decreasing and continuous functions faster than

that of (1.8), (1.9) , and (1.12) as shown by Phnengrattana and Suantai demonstrated

in [101].

It is evident that (1.13) and (1.9) are instances of (1.12).

The Abbas I.P. was presented by Abbas et al. [20] and is defined as follows:



































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)Ψvi + λiΨwi

vi+1 = (1− κi)Ψxi + κiΨwi.

(1.14)

The process converges more quickly than all of mentioned above, as they demonstrated.

The source of CR I.P, as reported in [81], is:



































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)Ψvi + λiΨwi

vi+1 = (1− κi)xi + κiΨxi.

(1.15)

A subclass of contraction maps known as quasi-contractive maps, the convergence of

(1.13) is faster than that of (1.3), (1.6), (1.7), (1.9), (1.10), and (1.11) as demonstrated

by Chugh et al. [81].

A novel three-step I.P is presented by Thakur et al. [69] and is described as:
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

































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)wi + λiΨwi

vi+1 = (1− κi)Ψxi + κiΨxi.

(1.16)

Additionally, the authors demonstrated both analytically and numerically that their

novel I.P converges more quickly than all of the contraction map (1.3), (1.6), (1.7),

(1.9), (1.10), and (1.12).

The three-step I.P utilized by Karahan and Ozdemir [85] is called S∗ I.P.



































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)Ψvi + λiΨwi

vi+1 = (1− κi)Ψvi + κiΨxi.

(1.17)

Karakaya et al. In [92] shown that (1.13) is converging to the fixed point of

contraction map faster than S∗ I.P.

A three step I.P known as P I.P [102] is presented in the following way.



































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)wi + λiΨwi

vi+1 = (1− κi)Ψwi + κiΨxi.

(1.18)

For continuous and non-decreasing functions, if S-iterations 1.9 converge, then the

P-iteration also converges but at a faster rate than the S-iterations showed by Sainuan

[102].

Introduced by Sintunavavat and Pitea [109], Si I.P is provided by:



































v0 ∈ K

wi = (1− µi)vi + µiΨvi

xi = (1− λi)vi + λiwi

ui+1 = (1− κi)Ψxi + κiΨwi.

(1.19)
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Through a rigorous comparison of the convergence rates of Si I.P with (1.6), (1.7), and

(1.9) using numerical examples, we were able to precisely demonstrate the excellent

convergence rate of Si I.P, solidifying its superiority over other iteration processes.

The definition of a two-step Picard Mann hybrid I.P is:























v0 ∈ K

wi = (1− κi)Ψvi + κiΨxi

ui+1 = Ψwi.

(1.20)

A new I.P named Picard-S I.P was introduced in 2014 by Gursoy and Karakaya [25].

It works as follows:



































v0 ∈ K

wi = (1− λi)vi + λiΨvi

xi = (1− κi)Ψvi + κiΨwi

vi+1 = Ψxi.

(1.21)

The fixed point estimation for contraction maps employing the Picard-S iterative

procedure is rapidly converging as compared to the iteration in the literature that

includes the two-step Mann, Normal-S, S, S∗, (1.12), (1.6), (1.7), (1.10), (1.11), (1.13),

and (1.1) processes. This is proved by providing an example.

Taking into consideration the previous I.P., Yildirim, and Kadioglu [84] introduced

a new I.P.


































v0 ∈ K

wi = (1− λi)vi + λiΨvi

xi = (1− κi)wi + κiΨwi

ui+1 = Ψxi.

(1.22)

It has been shown that their newly introduced I.P is more quicker than all of iteration

process (1.3), (1.6), (1.7) and (1.9).

We shall refer to the two-step I.P. that Karakaya et al. [86] provided as Vatan’s
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two-step I.P, which is defined as:























v0 ∈ K

wi = Ψ((1− λi)vi+ λiΨvi)

vi+1 = Ψ((1− κi)wi + κiΨwi).

(1.23)

In 2015, Thakur et al. [69] employed the subsequent new I.P after this.



































v0 ∈ K

wi = (1− λi)vi + λiΨvi

xi = Ψ((1− κi)vi + κiwi)

vi+1 = Ψxi.

(1.24)

We’ll refer to it as Thakur New I. P. They demonstrated that (1.22) for Suzuki

generalized nonexpansive maps is quicker than (1.3), (1.6), (1.7), (1.9), (1.10), and

(1.12) using numerical examples. The leading I.P., (1.19), is not compared to this I.P.

We will discover their convergence speeds in the upcoming chapters.

The idea of practically finding solutions either in original form directly or in the

transform (for example in fixed point theory) by employing approximation methodolo-

gies in order to effectively estimate their values is highly searched area in analysis. This

area of research mainly focus on the problem when the analytical solutions become

impossible to locate. Notice that, many methods to estimate the accurate and semi

closed form solutions often depends on complicated initial conditions that are not easy

to fulfill in real cases. One of such methods are homology analysis method. The aspect

of this analysis includes conditions under which one can guarantee the existence of

solutions which is also not available widely in other fields of research. However, in fixed

point theory, both the existence and solution approximation is easy to get once the

corresponding operator is constructed. This research will focus on the concept of fixed

point existence and fixed point estimation under weak assertion and conditions with

real-world problems in various linear and CAT(0) nonlinear settings.
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Chapter 2

Approximation of Fixed Points

for Mappings with (KSC)

Conditions in CAT(0) Spaces

Fixed point theory has recently provided numerous effective techniques for addressing

nonlinear problems. For more detailed information, refer to the survey study authored

by Karapinar [?,56]. Studying functional equations and iterative solutions for fractional

differential equations (FDEs) is now a highly active research field. To obtain the solution

of Functional equations or fractional differential equations (FDEs), it is often expressed

in the form of an operator, which may be linear or nonlinear, operating on subsets of

suitable metric spaces under the observation, then the fixed point of operator leads to

the solution of the given problems. For further information, refer to sources such as [55]

and others. It is always preferable for the fixed point of this operator to exist and be

produced iteratively.

As we are aware, finding the fixed point of an operator is not a difficult task,

but evolving an appropriate algorithm to accurately calculate the value of the fixed

point of an operator is challenging (see to, for example, [?, ?] and other relevant

sources). An approach to estimate the values of this distinct fixed point [67] for

contraction is to employ the Picard iteration [60], represented by νi = Ψνi as endorsed

by the Banach Contraction Principle (BCP) [13]. The Browder-Gohde-Kirk have shown
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that a nonexpansive mapping has a fixed point if defined on a convex, closed and

bounded subset of a uniformly convex Banach space (UCBS). These inferences have

been elaborated in their work in Gohde [15], Browder [14] and Kirk [65]. A selfmap Ψ

defined over a subset K of a metric space then the mapping Ψ is said to be contraction

if

d(Ψu,Ψv) ≤ αd(u, v), for all u, v ∈ K (2.1)

wherever α ∈ [0, 1).

The fixed point of mapping Ψ is any point u ∈ K which satisfies u = Ψu, and the

set of all fixed points of mapping Ψ will be represented as FΨ throughout this chapter.

The mapping Ψ will become nonexpansive if (2.1) holds for α = 1.

We present an example of nonexpansive mapping that does not converge for the

sequence of Picard iteration.

Example 2.0.1. Let us define a nonexpansive map like Ψu = 1 − u for each u in

K = [0, 1] and the set of all fixed point i.e FΨ = {0.5} The iteration produced does not

converge for initial values different from 0.5.

Example 2.0.1 presents alternative iterative methods that guarantee convergence for

nonexpansive mappings (or even generalized nonexpansive mappings) as an alternative

to Picard iteration [60]. The (C) criterion 1.1.4 was initially introduced for mappings

by Suzuki [68] in 2008.

The literature contains a large number of iterative schemes that are widely used

to approximate fixed points in various mapping settings (see, for example, Mann [18],

Ishikawa [63], Agarwal et al. [57], S-iteration, Noor [19], abbas [20], Thakur et al. [69]

and others).

In [70], Ullah and Arshad introduced an iteration which is a new version of M -

iteration called M∗-iteration. As compared to the prior iterations in the literature, the

present one is stable and generates more accurate results. The sequence of iteration {vi}

which has been generated is presented as.
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













































v1 ∈ K

wi = (1− λi)vi + λiΨvi

xi = Ψ[(1− κi)vi + κiΨwi]

vi+1 = Ψxi.

(2.2)

In the above scheme (2.2) Ψ is defined as a selfmap on the set set K and the sequences

{κi} and {λi} are taken from the interval (0, 1). Nevertheless, Ullah and Arshad (AKIT)

have shown that the scheme introduced in (2.2) converges in the case of contraction

mappings. In this context, we extend their primary finding to encompass mappings

that satisfy the (KSC)-condition on a wider scale. The convergence of the iteration

indicated above can be proven using the same evidence and procedures. We establish

that the iteration schemeM∗ produces precise results that align with the other iterations

in this novel mapping configuration, as demonstrated by a non-trivial example.

2.1 Introduction

Initially, the CAT(0) space iteration of the M∗ scheme is defined as follows (2.2):















































v1 ∈ K

wi = (1− λi)vi ⊕ λiΨvi

xi = Ψ[(1− κi)vi ⊕ κiΨwi]

vi+1 = Ψxi.

(2.3)

2.2 Main Results

We establish our primary result by utilizing (2.3). An initial lemma is presented, which

will subsequently assume an extremely important position.

Lemma 2.2.1. Let us take a complete CAT(0) space X and select a set K which is

convex nonempty closed subset of X. Now choose a selfmap Ψ on the K with the set
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of fixed points i.e FΨ 6= ∅ which satisfies (KSC) criterion. Then the sequence {vi}

generated from M∗-iteration (2.3) satisfies that lim
i→∞

d(vi, z) exists for each z ∈ FΨ.

Proof. Lemma 1.2.6 can be applied to consider any point z ∈ FΨ. From there, one

has

d(vi+1, z) = d(Ψxi, z)

≤ d(xi, z)

= d(Ψ[(1− κi)vi ⊕ κiΨwi], z)

≤ d((1− κi)vi ⊕ κiΨwi, z)

≤ (1− κi)d(vi, z) + κid(Ψwi, z)

≤ (1− κi)d(vi, z) + κid(wi, z)

= (1− κi)d(vi, z) + κi(d(1− λi)vi + λid(Ψvi, z))

≤ (1− κi)d(vi, z) + κi((1− λi)d(vi, z) + λid(Ψvi, z))

≤ (1− κi)d(vi, z) + κi((1− λi)d(vi, z) + λid(vi, z))

= (1− κi)d(vi, z) + κid(vi, z)

= d(vi, z).

As a consequence of the above calculation we acquired the inequality d(vi+1, z) ≤

d(vi, z) for every z ∈ FΨ which suggest that the set {d(vi, z)} is both bounded and

non-increasing. So we concluded that lim
i→∞

d(vi, z) exists for all z ∈ FΨ.

No numerical method work, until existence of solution is not available. Existence

of solutions and their computation is not an easy task unless several conditions are not

imposed. This chapter includes one existence of fixed point related result, that is based

on the some conditions in nonlinear CAT(0) spaces. We essentially give the proof of the

result by assuming the following criteria.

Theorem 2.2.1. Let us take a complete CAT(0) space X and select a set K which is

convex nonempty closed subset of X. Now choose a selfmap Ψ on the K which satisfies

(KSC) criterion. The sequence {vi} generated from M∗-iteration (2.3). The condition
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that the set of all fixed points i.e FΨ 6= ∅ holds true if and only if the sequence {vi}

generated is bounded and satisfies equation lim
i→∞

d(Ψvi, vi) = 0.

Proof. Initially, we will assume that the set FΨ 6= ∅. We will then demonstrate that

{vi} is bounded and showing that lim
i→∞

d(vi,Ψvi) = 0. Lemma 2.2.1 indicates that {vi}

is bounded and that lim
i→∞

d(vi,Ψvi) exists in this regard.

Put

lim
i→∞

d(vi,Ψvi) = r, (2.4)

assuming that r ∈ R
+. for r > 0, which is the nontivial situation, as assumed. In light

of Lemma 2.2.1’s proof, d(wi, z) ≤ d(vi, z). Consequently,

lim sup
i→∞

d(wi, z) ≤ lim sup
i→∞

d(vi, z) = r. (2.5)

Now d(Ψvi, z) ≤ d(vi, z) from the Lemma 1.2.6. So,

lim sup
i→∞

d(Ψvi, z) ≤ lim sup
i→∞

d(vi, z) = r. (2.6)

From the proof of Lemma 2.2.1, we may observe once more that d(vi+1, z) ≤ (1 −

κi)d(vi, z) + κid(wi, z). Consequently, d(vi+1, z) ≤ d(wi, z). Thus,

r = lim inf
i→∞

d(vi+1, z) ≤ lim inf
i→∞

d(wi, z). (2.7)

Thus from (2.5) and (2.7), we have

lim
i→∞

d(wi, z) = r. (2.8)

From (2.8), we have

r = lim
i→∞

d((1− λi)vi ⊕ λiΨvi, z). (2.9)

Now applying Lemma 1.1.5 on (2.4), (2.6) and (2.9), we get

lim
i→∞

d(Ψvi, vi) = 0.
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Finally, let us assume that the set {vi} is bounded and satisfies the property

lim
i→∞

d(Ψvi, vi) = 0. We will now demonstrate that the set FΨ is not empty. To address

this, we can consider any point, denoted as z, that belongs to the set A(K, {vi}).

According to Lemma 1.2.7, we obtain

R(Ψz, {vi}) = lim
i→∞

sup d(vi,Ψz)

≤ lim
i→∞

sup(5d(Ψνi, vi) + d(vi, z))

≤ 0 + lim
i→∞

sup d(vi, z)

= R(z, {vi}).

This indicates that Ψz ∈ A(K, {vi}). Since the collection A(K, {vi}) has just one

element, it follows that Ψz = z and so FΨ is not empty.

First, we propose a result on ∆ convergence.

Theorem 2.2.2. Let us take a complete CAT(0) space X and select a set K which

is convex nonempty closed subset of X. Now choose a selfmap Ψ on the K with the

set of fixed points i.e FΨ 6= ∅ which satisfies (KSC) criterion. Then the sequence {vi}

generated from M∗-iteration (2.3) will ∆-converges to a fixed point of ψ if the space

under consideration satifies the Opial’s property.

Proof. The sequence of iterates {vi} is bounded in the set K and meets the condition

limi→∞ d(vi,Ψvi) = 0, according to Theorem 2.2.1. With {si} denoting any subsequence

{vi}, set ω∆({vi}) =
⋃

A({si}). ω∆({vi}) ⊆ FΨ is demonstrated. Let s ∈ ω∆({vi})

in order to accomplish the goal. As a result, a subsequence {si} of {vi} may be

found such that A({si}) = {s}. Now applying Lemmas 1.2.4 and 1.2.5 we get a ∆-

convergent subsequence {ri} which converges to to a point r in X of {si}. We now get

limi→∞ d(ri,Ψri) = 0 using Theorem 2.2.1. Additionally, Ψ has the (KSC)-condition,

as a result

d(ri,Ψr) ≤ 5d(ri,Ψri) + d(ri, r). (2.10)

It follows that r ∈ FΨ when the limit is applied to (3.16). Therefore, it is proven that

limi→∞ d(ri, r) exists by use of Lemma 2.2.1. As a second objective, we must ensure
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that s = r. To demonstrate this, we will suppose that s 6= r, which will lead us to a

contradiction. One must bear in mind that asymptotic centers are unique and

lim sup
i→∞

d(ri, r) < lim sup
i→∞

d(ri, s) ≤ lim sup
i→∞

d(si, s)

< lim sup
i→∞

d(si, r) = lim sup
i→∞

d(vi, r)

= lim sup
i→∞

d(ri, r).

Thus we acquire lim supi→∞
d(ri, r) < lim supi→∞

d(ri, r) which is a straightforward

contradiction so we come to the conclusion that s = r ∈ FΨ and that ω∆({vi}) ⊆ FΨ.

Eventually we will demonstrate that the sequence {vi} ∆-converges to a point which is

fixed point of Ψ. We will proceed to our goal by showing that ω∆({vi}) is a singleton

set. Let us take a subsesquence {si} of {vi} now applying Lemmas 1.2.4 and 1.2.5 we

get a ∆-convergent subsequence {ri} which converges to to a point r in X of {si}. It is

assumed that A({si}) = {s} and A({νi}) = {q}. Since s = r and r ∈ FΨ have already

been shown, we may assert that q = r. One obtain limi→∞ d(vi, r) if q 6= r with the

help of uniqueness of asymptotic center.

lim sup
i→∞

d(ri, r) < lim sup
i→∞

d(ri, q) ≤ lim sup
i→∞

d(si, q)

< lim sup
i→∞

d(vi, r) = lim sup
i→∞

d(ri, r).

that blatantly contradicts itself. Hence we deduced that q = r ∈ FΨ so we conclude

that ω∆({νi}) = {q} as result {vi} ∆-converges to a fixed point of Ψ.

The upcoming theorem rests on compactness principles.

Theorem 2.2.3. Let us take a complete CAT(0) space X and select a set K which is

convex nonempty compact subset of X. Now choose a selfmap Ψ on the K with the set

of fixed points i.e FΨ 6= ∅ which satisfies (KSC) criterion. Consequently M∗-iteration

sequence generated from (2.3) strongly converge to fixed point of Ψ.
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Proof. As given that the set K is compact and convex so the sequence of iterates

{vi} lies inside the set K, due to the compactness of set K the sequence {vi} has

subsequence. Strong convergence to v ∈ K is achieved by {vik} of {vi}. Additionally,

we have lim
i→∞

d(Ψvik , vik) = 0 in the context of Theorem 2.2.1. Thus, by combining these

facts with Lemma 1.2.7, we have

d(vik ,Ψv) ≤ 5d(Ψvik , vik) + d(vik , v) → 0 as k → ∞.

Then Ψv = v so according to Lemma 2.2.1 the existence of limi→∞ d(vi, v) follows

hence {vi} is strongly convergent to v.

In the absence of compactness of the domain the strong convergence of the mappings

is the following.

Theorem 2.2.4. Let us take a complete CAT(0) space X and select a set K which

is convex nonempty closed subset of X. Now choose a selfmap Ψ on the K with

the set of fixed points i.e FΨ 6= ∅ which satisfies (KSC) criterion. The M∗-iteration

sequence generated from (2.3) strongly converge some fixed point of Ψ as long as

lim infi→∞ dist(vi, FΨ) = 0.

Proof. We will skip the proof since it is straightforward to demonstrate this result.

Theorem 2.2.5. Let us take a complete CAT(0) space X and select a set K which is

convex nonempty closed subset of X. Now choose a selfmap Ψ on the K with the set

of fixed points FΨ 6= ∅ i.e which satisfies (KSC) criterion. The M∗-iteration sequence

generated from (2.3) strongly converge to fixed point of Ψ if condition (I) is being satisfied

by Ψ.

Proof. According to theorem 2.2.1 that lim infi→∞ d(xi,Ψxi) = 0. lim infi→∞ dist(vi, FΨ) =

0 is the result of Ψ’s condition (I). Hence, {vi} is strongly convergent in FΨ according

to Theorem 2.2.4.
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2.3 Numerical example

The current section begins with the numerical demonstration of the mapping that fulfills

the requirements of (KSC)-condition but fails to obey the (C)-condition. Subsequently,

we establish that the M∗-iteration process produces a sequence {vi} that achieves

convergence at a faster pace compared to many other widely recognized iteration

methods.

Example 2.3.1. Let Ψ be a mapping defined on the interval [−1, 1] in the following

manner:

Ψv =































−v
2 , if v ∈ [−1, 0)/{−1

2} ,

0, if v = {−1
2} ,

−v
4 , if v ∈ [0, 1].

Now, it is evident that the above selfmap Ψ is not enriched with the condition C.

For instance, if v = −1
2 and w = −4

5 are selected then the condition C is not satisfied by

Ψ. We ultimately prove that this mape has (KSC)-condition enrichment. The following

non-trivial circumstances are taken into consideration in order to accomplish the goal,

while certain elementry cases have been left out. C1: When v, w ∈ [−1, 0)/{−1
2}, we

have

d(Ψv,Ψw) = d(
v

2
,
w

2
) ≤

3

4
[d(v, w)] ≤

1

2
[|
3v

2
|+ |

3w

2
|]

=
1

2
[|(

−v

2
)− v|+ |w − (

−w

2
)|] =

1

2
[|v −Ψv|+ |w −Ψw|]

=
1

2
[d(v,Ψv) + d(w,Ψw)].
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C2: When v, w ∈ [0, 1], we have

d(Ψv,Ψw) = d(
v

4
,
w

4
) ≤

1

4
[|v|+ |w|] ≤

3

8
[|v|+ |w|]

=
1

2
[|
3v

4
|+ |

3w

4
|] =

1

2
[|
v

4
− v|+ |w −

w

4
|]

=
1

2
[|v −Ψv|+ |w −Ψw|]

=
1

2
[d(v,Ψv) + d(w,Ψw)].

C3: When v ∈ [−1, 0)/{−1
2} and w ∈ [0, 1] we have

d(Ψv,Ψw) = d(
v

2
,
w

4
) ≤

1

2
|v|+

1

4
|w| ≤

3

4
|v|+

3

8
|w|

=
1

2
[|
3v

2
|+ |

3w

4
|] =

1

2
[|(

−v

2
)− v|+ |w −

w

4
|]

=
1

2
[|v −Ψv|+ |w −Ψw|]

=
1

2
[d(v,Ψv) + d(w,Ψw)].

C4: When v ∈ [−1, 0)/{−1
2} and w ∈ {−1

2}, we have

d(Ψv,Ψw) = d(
v

2
, 0) = |

v

2
| ≤ |

3v

4
| ≤ |

3v

4
|+ |

w

2
|

=
1

2
[|
3v

2
|+ |w|] =

1

2
[|(

−v

2
)− v|+ |w − 0|]

=
1

2
[|v −Ψv|+ |w −Ψw|]

=
1

2
[d(v,Ψv) + d(w,Ψw)].

C5: When v ∈ [0, 1] and w ∈ {−1
2}, we have

d(Ψv,Ψw) = d(
v

4
, 0) = |

v

4
| ≤ |

3v

8
| ≤ |

3v

8
|+ |

w

2
|

=
1

2
[|
3v

4
|+ |w|] =

1

2
[|
v

4
− v‖+ |w − 0|]

=
1

2
[|v −Ψv|+ |w −Ψw|]

=
1

2
[d(v,Ψv) + d(w,Ψw)].

To design a table and graph of the sequence {vi} of M∗-iteration scheme which

demonstrates the more quick convergence to fixed point 0 of Ψ as compared to the

Ishikawa, Abbas, Thukar and Noor and iterative schemes. Let us take the values of
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ai, bi, and ci are 0.70, 0.65, and 0.90, respectively. The results concluded from the

iteration are furnished in Table 2.1 whereas the way of behaving of iterates is drawn in

Figure 2.1. The M∗-iterative scheme efficiency is observable from the table and graph

simultaneously.

We will put an end to this chapter by giving an example that is non-trivial.

Example 2.3.2. Let B1 = {(v, 0) : v ∈ R} and B2 = {(0, w) : w ∈ R}. Put B = B1∪B2.

Clearly, B ⊂ R
2. Define d on B as follows:

d((v1, v2), (w1, w2)) =























|v1 − w1| if v2 = 0 = w2

|v2 − w2| if v1 = 0 = w1

|v1|+ |w2| if v2 = 0 = w1.

The space (B, d) is categorised as a CAT(0) space in the present context, but it does not

qualify the criteria to be thought about as a Banach space [59]. Furthermore, it should

be noted that B possesses the properties of being both closed and convex. Now let Ψ

be the metric projection on B, then by a well-known result (see, p178 in [10]) that Ψ

is nonexpansive and hence it satisfies (KSC)-condition. So according to our principle

results, the sequence generated by (2.3) converges to a point which is the fixed point of

Ψ.

2.4 Application to differential equations

Here, we look at the solution of an FDE using our freshly made mapping configuration.

Several authors have considered this matter concerning nonexpansive mappings [95] and

other spaces [71, 72]. Always remember that our strategy is unique and is based on the

category of mappings with (KSC). The conventional approaches and our approaches

to the problem are fundamentally different, and for our approach, KSC mappings are

not necessarily continuous across domains. In addition, our iterative method uses fewer

iterations to provide highly accurate numerical results, making it more efficient overall.

For the purpose of achieving our goal, we will employ the approach suggested by [73].

The following broad category of fractional calculus boundary value issues is
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Table 2.1: Iterative numerical fixed points of the selfmap in Example 4.3.1.
Value of i M∗ iteration Thakur iteration Abbas Noor iteration Ishikawa

1 0.99200000 0.99200000 0.99200000 0.99200000 0.99200000
2 0.07208438 0.07858126 0.13037101 0.13631063 0.28833801
3 0.00524863 0.00623737 0.01716821 0.01876827 0.08397831
4 0.00038217 0.00049508 0.00226084 0.002584157 0.02445801
5 0.00002783 0.00003928 0.00029773 0.00035581 0.00712358
6 0.00000203 0.00000312 0.00003921 0.00004898 0.00207476
7 0.00000013 0.00000023 0.00000517 0.00000673 0.00060428
8 0 0.00000002 0.00000068 0.00000093 0.00017598
9 0 0 0.00000009 0.00000012 0.00005127
10 0 0 0.00000001 0.00000002 0.00001493
11 0 0 0 0 0.00000433
12 0 0 0 0 0.00000127
13 0 0 0 0 0.00000037
14 0 0 0 0 0.00000011
15 0 0 0 0 0.0000003
16 0 0 0 0 0

Figure 2.1: Graphical illustration of the iterates.

30



examined:

Dγh(t) + Ω(u, h(t)) = 0,

h(0) = h(1) = 0,











(2.11)

where Dγ , (1 < γ < 2), and (0 ≤ t ≤ 1) represent the Caputo fractional derivative with

order γ and Ω : [0, 1]× R, respectively.

where Dγ denote the Caputo fractional derivative of order γ where as γ lies in

(1 < γ < 2),(0 ≤ t ≤ 1) and Ω : [0, 1]× R, respectively.

A certain function connected to 2.11 is now aim to establish wiith the spaces B

= C[0, 1]. Because in the case of BVPs, we need such functions for the purpose to

construct a certain operator equation in way that the fixed point can become same as a

solution of the constructed operator. This function is called Green’s function and now

taken the following form:

G(t, s) =











1
Γ(ξ)(t(1− s)(ξ−1) − (t− s)(ξ−1), if s ≤ t ≤ 1,

t(1−s))(ξ−1)

Γ(ξ) , if t ≤ s ≤ 1.

All setting is now set for the main outcomes of this section. We consider the following

result that completed the research of this section.

Theorem 2.4.1. Construct a selfmap Ψ : B → B given as:

Ψ(v(t)) =

∫ 1

0
G(t, s)Ω(s, v(s))ds, for each v(t) ∈ B.

When

|Ω(v, h(v))− Ω(v, g(v))| ≤
1

2
(|h(v)−Ψ(h(v))|+ |g(v)−Ψ(g(v))|,

if lim infi→∞ dist(vi, S) = 0 such that S is a a set that contains some solutions of (2.11)

and M iteration sequence (2.3). This sequence has a strong limit which is a solution of

this problem.

Proof. The desired answer can be put in the integral form by representing G as Green’s

function in our problem according to [58] follows.

h(u) =

∫ 1

0
G(u, v)Ω(v, h(v))dv.
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As a result it lead to that each selection of h, g ∈ B and 0 ≤ u ≤ 1,

d(Ψ(h(u)),Ψ(g(u))) ≤ d

(
∫ 1

0
G(u, v)Ω(v, h(v)))dv,

∫ 1

0
G(u, v)Υ(v, g(v))dv

)

=

∣

∣

∣

∣

∫ 1

0
G(u, v)[Ω(v, h(v))− Ω(v, g(v))]dv

∣

∣

∣

∣

≤

∫ 1

0
G(u, v) |Ω(v, h(v))− Ω(v, g(v))| dv

≤

∫ 1

0
G(u, v)(

1

2
|h(v))−Ψ(h(v))|+

1

2
|g(v)−Ψ(g(v))|)dv

≤ (
1

2
||h(v))−Ψ(h(v))||+

1

2
||g(v)− J(g(v))||)

(

sup
t∈[0,1]

∫ 1

0
G(u, v)dv

)

≤
1

2
d(h(v)),Ψ(h(v))) +

1

2
d(g(v),Ψ(g(v)))

=
1

2
(d(h(v))),Ψ(h(v))) + d(g(v),Ψ(g(v)))) .

As a consequence, we obtain

d(Ψ(h),Ψ(g)) ≤
1

2
(d(h,Ψ(h)) + d(g,Ψ(g))) .

Therefore, according to the Theorem 2.2.4, Ψ satisfies (KSC) condition, and The

sequence of the M iterates converges to a fixed point of Psi which leads to the solution

of the given equation.

2.5 Conclusions

Under the iterative method M∗ in a CAT(0) space setting, existence as well as iterative

constructional for the class of mappings fulfilling the (KSC)-condition are established.

For these mappings, we established ∆ and strong convergence findings under certain

mild assumptions. The class of mappings meeting the (KSC)-condition differs from

the class of mappings satisfying the (C)-condition, as an example has demonstrated.

In the end, we carried out a comparative numerical experiment and demonstrated the

superiority of the M∗ iterative scheme over the several alternative iterative schemes in

the class of (KSC) mappings. Additionally, one application is completed. Our findings

extend and enhance some of Ullah and Arshad [70]’s primary findings from the (C)-
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condition example to the broader (KSC)-condition situation. Similar to how Abbas [20],

Agarwal [57], Noor [19] Thakur [69], and others’ findings are expanded upon by ours.
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Chapter 3

Approximation of Fixed Points

for Reich-Suzuki type

Nonexpansive Mappings in

CAT(0) Spaces

3.1 Introduction

Let us take X as metric space and consider a nonempty subset K of X. Assume that

Ψ represents a selfmap of K.

Determine y0 ∈ K such that Ψy0 = y0. (3.1)

FΨ will designate the set of all fixed points of Ψ in K.

A highly fruitful area of research in mathematics has been fixed point problems,

which involve the mapping of an element within a set back to itself via a function. This

chapter explores the Problem (3.1). The prime objective of it is to find a fixed point

of Ψ, which is a selfmap on a nonempty subset K of a metric space X. In a recent

study by Sahu et al., [20], the Problem of quasi-expansive mappings was examined,

and its applicability in convex programming and feasibility problems was demonstrated.
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Usurelu et al. [20] examined Problem (3.1) in the context of hybrid mappings, illustrating

its relationship to split equilibrium problems. Similarly, Yao et al. [33] examined the

issue using monotone mappings and established a connection with split equilibrium

problems. Building upon these developments, this chapter further explores the Problem

(3.1) by examining a broader range of nonlinear mappings. We aim to expand the

scope of fixed-point theory by investigating this issue within a wider framework and

showcasing its practicality in the domain of split feasibility problems.

Once a result of a fixed point is established in a linear space (e.g. Hilbert or Banach

space), then its applications are vehemently desirous. In a nonlinear space (e.g. geodesic

metric space) Nonetheless, the principle of convexity is needed for this expansion. A

significant contribution was made by Takahashi [34] that established the concept of

convexity in nonlinear domains, which paved the way for finding fixed points of mappings

in the fixed-point theory and the related subjects in these broader contexts. (For further

information, see [103–106]).

Remark 1. As we know from the literature of fixed point theory, nonexpansive

mappings and Suzuki nonexpansive mappings are two vastly researched categories. As

demonstrated by Suzuki [68], all nonexpansive mappings are Suzuki nonexpansive, but

the converse is not true.

There is an abundance of findings in the scientific literature regarding two categories,

Suzuki nonexpansive and nonexpansive mappings. In a uniform convex Banach

space, the nonexpansive mappings invariably attain fixed points depending upon some

underlying assumptions shown by Gohde [15] and Browder [35]. Suzuki demonstrated

that this result holds true for all Suzuki maps in existence. Kirk demonstrated that the

Browder and Gohde result holds true in nonlinear space.

Hassan et al. [38] introduced the technique described below:



















































v1 ∈ K,

wi = Ψ((1− ξi)vi + ξiΨvi),

xi = Ψ((1− µi)wi + µiΨwi),

yi = Ψ((1− λi)xi + λiΨxi),

vi+1 = Ψ((1− κi)yi + κiΨyi), i ≥ 1,

(3.2)

35



where κi, λi, µi, ξi ∈ (0, 1).

This chapter explores fixed point iteration strategies in the context of CAT(0)

spaces, which are a broader category of nonlinear spaces. Fixed point techniques have

demonstrated their worth in the field of applied analysis, namely in the domains of image

processing and computer science [42]. Our research enhances the outcomes achieved in

prior iterative systems by expanding their application to the wider context of CAT(0)

spaces. In a previous study conducted by Hassan et al. [38], it was demonstrated that

a particular approach was more effective when compared to several other options like

Mann [18], Picard [60], Noor [19], Agarwal [57], Ishikawa [63], Abbas [20], Thakur et

al. [69] Ullah et al. [39] have recently expanded their study to include nonexpansive

mappings of the Reich-Suzuki type. For more information, see to [40, 41].

3.2 Convergence results

We are going ahead to deduce many important convergence results in the term of CAT(0)

spaces. Firstly, we proceed to change the scheme (3.2) into CAT(0) spaces using the

following iteration.



















































v1 ∈ K,

wi = Ψ((1− ξi)vi ⊕ ξiΨvi),

xi = Ψ((1− µi)wi ⊕muiΨwi),

yi = Ψ((1− λi)xi ⊕ λiΨxi),

vi+1 = Ψ((1− κi)yi ⊕ κiΨyi), i ≥ 1,

(3.3)

where κi, λi, µi, ξi ∈ (0, 1). Here, it is essential to highlight that X acts as complete

CAT(0) space in the present context.

With the subsequent Lemma, we commence our principal result.

Lemma 3.2.1. Let us suppose that a selfmap Ψ on a nonempty convex, closed subset

K of X. If the sequence {vi} generated by the use of equation (3.3) and a nonexpansive

mapping Ψ of Reich-Suzuki type with the set of all fixed points, i.e. FΨ 6= ∅. Then for

any choice of y0 ∈ FΨ the existence of limi→∞ d(vi, y0) will follow.

Proof. Suppose that y0 be an element of the set FΨ. By employing (3.3) in conjunction
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with Proposition 1.1.2(i), we obtain

d(wi, y0) = d(Ψ((1− ξi)vi ⊕ diΨvi), y0)

≤ d((1− ξi)vi ⊕ ξiΨvi, y0)

≤ (1− ξi)d(vi, y0) + ξid(Ψvi, y0)

≤ (1− ξi)d(vi, y0) + ξid(vi, y0)

≤ d(vi, y0). (3.4)

Similarly,

d(xi, y0) = d(Ψ((1− µi)wi ⊕ µiΨwi), y0)

≤ d((1− µi)wi ⊕ µiΨwi, y0)

≤ (1− µi)d(wi, y0) + µid(Ψwi, y0)

≤ (1− µi)d(wi, y0) + µid(wi, y0)

≤ d(wi, y0). (3.5)

Also

d(yi, y0) = d(Ψ((1− λi)xi ⊕ λiΨpi), y0)

≤ d((1− λi)xi ⊕ λiΨxi, y0)

≤ (1− λi)d(xi, y0) + λid(Ψxi, y0)

≤ (1− λi)d(xi, y0) + λid(xi, y0)

≤ d(xi, y0). (3.6)

Now (3.4), (3.5) and (3.6) suggest that
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d(vi+1, y0) = d(Ψ((1− κi)yi ⊕ aiΨyi), y0)

≤ d((1− κi)yi ⊕ κiΨyi, y0)

≤ (1− κi)d(yi, y0) + κid(Ψyi, y0)

≤ (1− κi)d(yi, y0) + κid(yi, y0)

≤ d(yi, y0) ≤ d(xi, y0) ≤ d(wi, y0)

≤ d(vi, y0). (3.7)

Therefore, we have demonstrated that for every y0 belonging to FΨ, the inequality

d(vi+1, y0) ≤ d(vi, y0) holds true. The set {d(vi, y0)} is both bounded and nonincreasing.

Hence, the limit of d(vi, y0) as i approaches infinity occurs for every y0 belonging to the

set FΨ.

Now, we are able to present a fundamental theorem in this chapter that will assist

us in proving the convergence theorem in the following part.

Theorem 3.2.1. Let us suppose that a selfmap Ψ on a nonempty convex, closed subset

K of X. If the sequence {vi} is generated by the use of equation (3.3) and a nonexpansive

mapping Ψ of Reich-Suzuki type. The condition FΨ 6= ∅ holds if and only if the set {vi}

is bounded and the limit limi→∞ d(vi,Ψvi) approaches zero.

Proof. Assume that FΨ is not empty and the objective is to prove that the set {vi} is

bounded, with limi→∞ d(vi,Ψvi) = 0. Let y0 ∈ FΨ be any point. According to Lemma

3.2.1, it is known that {vi} is bounded and that limi→∞ d(vi, y0) exists.

The only thing left to do to show that limi→∞ d(vi,Ψvi) = 0. Suppose

lim
i→∞

d(vi, x0) = η, (3.8)

Where η is a constant that can take any value from the interval [0,∞), we only

investigate the scenario where η > 0. Now, in accordance with equation (3.4),

d(wi, y0) ≤ d(vi, y0),
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⇒ lim sup
i→∞

d(wi, y0) ≤ lim sup
i→∞

d(vi, y0) = η. (3.9)

Also by Proposition 1.1.2(a), we have

d(Ψvi, y0) ≤ d(vi, y0),

⇒ lim sup
i→∞

d(Ψvi, y0) ≤ lim sup
i→∞

d(vi, y0) = η. (3.10)

Now from (3.7), we have

d(vi+1, y0) ≤ d(wi, y0).

By utilising this combined with equation (4.3), we deduce

η ≤ lim inf
i→∞

d(wi, y0). (3.11)

By utilising equations (4.4) and (4.6), we derive

lim
i→∞

d(wi, y0) = η. (3.12)

Using (4.7), we get

η = lim
i→∞

d(wi, y0) = lim
i→∞

d(Ψ((1− ξi)vi ⊕ ξiΨvi), y0)

≤ lim
i→∞

d((1− ξi)vi ⊕ ξiΨvi, y0)

≤ lim
i→∞

(1− ξi)d(vi, y0) + lim
i→∞

ξid(Ψvi, y0)

≤ lim
i→∞

(1− ξi)d(vi, y0) + lim
i→∞

ξid(vi, y0))

= lim
i→∞

d(vi, y0)

= η.

Consequently, we have

η = lim
i→∞

ξi((1− ξi)vi ⊕ ξiΨvi, y0)). (3.13)

By utilising equations (4.3), (4.5), and (4.8) and applying Lemma 1.1.5, we derive the

following facts
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lim
i→∞

d(vi,Ψvi) = 0.

In the converse scenario, we assume that {vi} is a bounded sequence with the

limi→∞ d(vi,Ψvi) = 0. Demonstrate that FΨ is not an empty set. In order to accomplish

this, we make the assumption that any y0 ∈ A(X, {vi}), and then we proceed to use

Lemma 1.2.3 in the following manner.

A(Ψy0, {vi}) = lim sup
i→∞

d(vi,Ψy0)

≤
(α+ 3)

(1− α)
lim sup
i→∞

d(vi,Ψvi) + lim sup
i→∞

d(vi, y0)

= lim sup
i→∞

d(vi, y0)

= A(y0, {vi}).

Consequently, we obtain Ψy0 ∈ A(X, {vi} and we know that the set A(X, {vi}

contains only one element, thus we come to the conclusion that the point y0 is an

element of FΨ, as stated by the equation y0 = Ψy0. Thus, the set of fixed points FΨ is

not empty.

In the coming section, we will discuss the introductory convergence theorem.

Theorem 3.2.2. Let us suppose that a selfmap Ψ on a nonempty convex, closed subset

K of X. If the conditions provided in Theorem 3.2.1 are satisfied by Ψ and the sequence

{vi} and the set of all fixed points i.e. FΨ 6= ∅. Then, the strong convergence to the fixed

point of FΨ of the sequence {vi} will occur.

Proof. Given that the sequence {vi} generated by Ψ lies within the compact set K,

so by the compactness property there exists a subsequence {vik} of {vi} and a point

q0 ∈ K such that the d(vik , q0) → 0. It is sufficient to establish that the strong limit of

the sequence {vi} is q0.

In order to accomplish this, we employ Lemma to acquire the desired outcome.

d(vik ,Ψq0) ≤
(α+ 3)

(1− α)
d(vik ,Ψvik) + d(vik , q0) (3.14)
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Since Theorem 3.2.1 suggests that d(vik ,Ψvik) → 0. Hence, (3.14) gives us limk→∞ d(vik ,Ψq0) =

0. It follows that Ψq0 = q0, that is, q0 ∈ FΨ. Lemma 3.2.1 guarantees the existence of

limi→∞ d(vi, q0). Therefore, we may conclude that q0 is the strong limit of {vi}.

Theorem 3.2.3. Let us suppose that a selfmap Ψ on a nonempty convex, closed subset

K of X. If the conditions provided in Theorem 3.2.1 are satisfied by Ψ and the sequence

{vi} and the set of all fixed points i.e. FΨ 6= ∅. Then the strong convergence to the fixed

point of FΨ of the sequence {vi} will be occurred,provided that lim infi→∞ d(vi, FΨ) = 0.

Proof. The specific details of this result are omitted because proving it does not require

much effort.

A convergence theorem is now desired that does not require the domain to be

compact. It is necessary to have the following criterion.

Definition 1. [6] A mapping Ψ is said to satisfy the condition I if Ψ is a selfmap on

a nonempty convex closed subset K of Xif there exists µ with µ(k) > 0 for all k > 0,

µ(0) = 0 and d(u,Ψu) ≥ µ(d(u, FΨ)) for all elements u ∈ K.

Theorem 3.2.4. Let us suppose that a selfmap Ψ on a nonempty convex, closed subset

K of X. If the conditions provided in Theorem 3.2.1 are satisfied by Ψ and the sequence

{vi} and the set of all fixed points i.e. FΨ 6= ∅. If Ψ satisfies condition (I) also, then

the strong convergence to the fixed point of FΨ of the sequence {vi} will occur.

Proof. The results of the theorem 3.2.1 give us

lim inf
i→∞

d(vi,Ψvi) = 0. (3.15)

The condition (I) of Ψ suggests

d(vi,Ψvi) ≥ µd(vi, FΨ)).

By applying condition I and (3.15), one has

lim inf
i→∞

µ(d(vi, FΨ) = 0).
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However, for each option of k > 0, the non-decreasing map µ : [0,∞) → [0,∞), with

µ(k) > 0 and µ(0) = 0 , hence

lim inf
i→∞

d(vi, FΨ) = 0.

All the necessary conditions of Theorem 4.2.4 have been fulfilled. Therefore, based on

its results, the sequence {vi} exhibits strong convergence within the set FΨ.

The following represents the ultimate outcome, which proves the ∆-convergence of

{vi} as produced by (3.3).

Theorem 3.2.5. Let us suppose that a selfmap Ψ on a nonempty convex closed subset

K of X. If the conditions provided in Theorem 3.2.1 are satisfied by Ψ and the sequence

{vi} and the set of all fixed points i.e. FΨ 6= ∅. ∆-converges to the point of FΨ of the

sequence {vi} will occurred.

Proof. As a convex setK , it follows that {vi} is contained inX. By Theorem 3.2.1, {vi}

is both bounded and satisfies limi→∞ d(vi,Ψvi) = 0. Let ω∆({vi}) =
⋃

A({si}), where

{si} is any subsequence of {vi}. The objective is to demonstrate that ω∆({vi}) ⊆ FΨ.

Given s ∈ ω∆({vi}), we can select a sub-sequence, denoted as {si}, from the sequence

{vi} such that A({si}) = {s}. Lemma 2.4 and Lemma 2.5 state that it is possible to

find a sub-sequence {ei} of {si} that has the ∆-limit e in B. However, Theorem 3.2.1

implies that limi→∞ d(ei,Ψei) = 0.

By Lemma 1.2.3,

d(ei,Ψe) ≤
(3 + α)

(1− α)
d(ei,Ψei) + d(ei, e). (3.16)

By applying the limit supremum to both sides of the equation (3.16), we may conclude

that e belongs to the set FΨ. According to Lemma 3.2.1, limi→∞ d(ei, e) exists. We

must demonstrate that the variable s is equal to the variable e. Let us assume, on the

contrary, that s is not equal to e. Therefore, due to the unique nature of asymptotic
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centres, one can conclude

lim sup
i→∞

d(ei, e) < lim sup
i→∞

d(ei, s) ≤ lim sup
i→∞

d(si, s)

< lim sup
i→∞

d(si, e) = lim sup
i→∞

d(vi, e)

= lim sup
i→∞

d(ei, e).

We have demonstrated that lim supi→∞
d(ei, e) < lim supi→∞

d(ei, e). Consequently, we

may deduce that s = e in the set FΨ and that ω∆({ri}) ⊆ FΨ.

We aim to demonstrate that the sequence {vi} fundamentally ∆-converges within

the space FΨ. In order to accomplish the objective, we will demonstrate that ω∆({vi})

is comprised of a single point. Suppose that a given sub-sequence {si} of {vi}, according

to Lemmas 1.2.4 and 1.2.5, we may get the conclusion that there exists a sub-sequence

of {si} which is denoted by {ei} that is ∆-convergent sub-sequence with the ∆ − lim

e ∈ K.Let’s presume thatA({si}) = {s} andA({vi}) = {g}. It is essential to remember

that we previously demonstrated that s and e are equal and that e is an element of the

set FΨ. If that is not the case, then the limi→∞ d(vi, e) exists, and the asymptotic centres

are likewise singletons. In this scenario, we have:

lim sup
i→∞

d(ei, e) < lim sup
i→∞

d(ei, g) ≤ lim sup
i→∞

d(vi, g)

< lim sup
i→∞

d(vi, e) = lim sup
i→∞

d(ei, g).

Therefore, since it is a contradiction, we can conclude that g = e ∈ FΨ. Therefore, the

set ω∆({s}) = {g}. This provides conclusive evidence.

An example is provided to conclude this section.

Example 3.2.1. Let X be the set defined as X = K
3 = {y = (y1, y2, y3, y4) ∈ R

4 :

〈y, y〉 = −1, y4 > 0}. K
3 is a three-dimensional space and R

4, is augmented with the

Lorentz distance, 〈., .〉.

y.z = y1z1 + y2z2 + y3z3 − y4z4, y = (y1, y2, y3, y4), z = (z1, z2, z3, z4) ∈ K
3.
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The geodesic map q, which is deduced from the equation q(r) = cosh(r)y+ sinh(y)v and

v represents a unit vector in this case. Define a mapping Ψ on K using the formula:

Ψ(y1, y2, y3, y4) = (−y1,−y2,−y3, y4).

we have noticed that Ψ has a fixed point y0 = (0, 0, 0, 1) which is nonexpansive Reich-

Suzuki type mapping. Based on our primary findings, the sequence {vi} exhibits

convergence towards the value y0.

3.3 Examples to illustrate

The following cases provide evidence for the theoretical findings:

Example 3.3.1. Let us define a mapping Ψ that correlates the values of K = [7, 9] in

the following way. Ψ9 = 6 and Ψy = y+42
7 for 7 ≤ y < 9. Let c be equal to 1

2 . Now, let’s

examine the several scenarios listed below.

(i): Given that y and z are both in the interval [7, 9), we may define Ψy = y+42
7 and

Ψz = z+42
7 . By applying the triangle inequality, we obtain

c|y −Ψy|+ c|z −Ψz|+ (1− 2c)|y − z| =
1

2
|y − (

y + 42

7
)|+

1

2
|z − (

z + 42

7
)|

=
1

2
|
6y − 42

7
|+

1

2
|
7z − 42

7
|

≥
1

2
|(
6y − 42

7
)− (

6z − 42

7
)|

=
1

2
|
6y − 6z

7
|

=
3

7
|y − z|

≥
1

7
|y − z| = |Ψy −Ψz|.

(ii) When y ∈ [7, 9) and z ∈ {9}. Then Ψy = y+42
7 and Ψz = 6. Accordingly, we
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have

c|y −Ψy|+ c|z −Ψz|+ (1− 2c)|y − z| =
1

2
|y − (

y + 42

7
)|+

1

2
|9− 6|

=
1

2
|
6y − 42

7
|+

1

2
|3|

≥
1

2
|3|

>
9

7

≥ |
y

7
| = |Ψy −Ψz|.

(iii) When z ∈ [7, 9) and y ∈ {9}. Then Ψz = z+42
7 and Ψy = 6. Accordingly, we

have

c|y −Ψy|+ c|z −Ψz|+ (1− 2c)|y − z| =
1

2
|9− 6|+

1

2
|z − (

z + 42

7
)|

=
1

2
|3|+

1

2
|
6z − 42

5
|

≥
1

2
|3|

>
7

5

≥ |
z

5
| = |Ψy −Ψz|.

(iv) When y, z ∈ {9}. Then Ψy = Ψz = 6. Accordingly, we have

c|y −Ψy|+ c|z −Ψz|+ (1− 2c)|y − z| ≥ 0

= |Ψy −Ψz|.

Considering the aforementioned situations, it can be inferred that F is a map of Reich-

Suzuki type with c = 1
2 . However, Ψ does not belong to the Suzuki type. By choosing

the values y = 8 and z = 9, it can be demonstrated that 1
2 |y − Ψy| < 1 = |y − z| and

|Ψy − Ψz| > 1 = |y − z|. For each positive integer i, assign the values ai = 0.95,

bi = 0.65, and ci = 0.85, with an initial value of r1 = 8.91. Upon examining Tables

3.1–3.2 and Figure 3.1, it becomes evident that the current iteration under study exhibits

superior performance when compared to previous iterative systems.

Here, we present a CAT(0) space example, which is not a linear Banach space.
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Table 3.1: The schemes of Ullah, Hassan, and Thakur converge to the fixed point
y0 = 7 of the selfmap Ψ as shown in Example 5.2.1.

i Ullah Hassan Thakur

1 8.91 8.91 8.91
2 7.00553935860057 7.00003282209952 7.038775510204087
3 7.00003691367663 7.00000000106116 7.000621764740881
4 7.00000023061437 7.00000000000003 7.000010272109422
5 7.00000000132067 7 7.000000175943571
6 7.00000000000703 7 7.000000003098253
7 7.00000000000004 7 7.000000000055701
8 7 7 7.000000000001021
9 7 7 7.000000000000021
10 7 7 7

Table 3.2: The Mann, Agarwal, and Ishikawa schemes converge to the selfmap Ψ
fixed point y0 = 7 as shown in Example 5.2.1.

i Mann Agrawal Ishikawa

1 8.91 8.91 8.91
2 7.27142857142858 7.27142857142858 7.27142857142858
3 7.15510204081634 7.03046647230322 7.14679300291546
4 7.11078717201167 7.00352333353167 7.10085777751333
5 7.08704706372346 7.00042244049996 7.07692978437881
6 7.07212470994228 7.00005207225756 7.06223462556686
7 7.06182117995054 7.00000655331131 7.05228555277216
8 7.05425123954841 7.00000083792861 7.04509928354481
9 7.04843860673968 7.00000010848184 7.03966320918896
10 7.04382540609778 7.00000001418546 7.0354060846956
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Figure 3.1: The behaviours of iterates for the schemes proposed by various writers
for Example 5.2.1 are examined for the values r1 = 8.91 and i = 50.
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Subsequently, we demonstrate a nonexpansive mapping of the Reich-Suzuki type, which

illustrates our primary findings.

Example 3.3.2. Let d be the metric induced by the normal norm on R
2, where R

2

be a space. The pair (R2, d) constitutes a metric space that is complete. We will

now substitute d with a different sort of metric, denoted as ρ, which is defined by the

subsequent formula:

ρ((y1, y2), (z1, z2)) =























|y1 − z1| if y2 = 0 = z2

|y2 − z2| if y1 = 0 = z1

|y1|+ |z2| if y2 = 0 = z1.

The mathematical structure of (R2, ρ) is categorized as geodesic CAT(0) space in

this example, but it does not fulfil the requirements to be taken into account as Banach

space. For that reason, we introduce K1 = {(y, 0) : y ∈ R}, and K2 = {(0, z) : z ∈ R}.

Let take K = K1 ∪K2. As a consequence, it can be inferred that K is a closed convex

nonempty subset of (R2, ρ) which is a complete CAT(0) space. Let a metric projection on

K be denoted by Ψ and is known to be nonexpansive, so according to a well-established

result (see page 178 in [108]), it can be categorized as a Reich-Suzuki type nonexpansive

projection. The iterated sequence in equation (3.3) converges to a fixed point of Ψ,

according to our findings.

3.4 Application

We demonstrate the applicability of our novel result in resolving an SFP. As a way to

accomplish our goal, assume that two Hilbert spaces X1 and X2 and take two closed

convex subsets such that C ⊆ X1 and Q ⊆ X2. We make the additional assumption

that there exists a map T which is both bounded and linear, and it maps elements from

X1 to X2. In this instance, we establish the SFP [48] as a problem characterized by the

following:

Compute y0 ∈ C : Ty0 ∈ Q. (3.17)

In this scenario, we make the assumption that the SFP (3.17) has at least one

47



solution. We refer to the collection of all solutions as the set S. If θ is a positive real

integer and PC and PQ are the corresponding nearest point projections (NPP) onto sets

C and Q, respectively, then T∗ effectively serves as the adjoint operator for T.

The point y0 ∈ C can be authenticated that it is a solution of SFP (3.17) if and only

if it is the solution of the equation that follows (refer to [49] and other sources):

y = PC(I − θT∗(I − PQ)T)y.

Due to the Picard iteration limitations for nonexpansive mappings, the author of the

paper [?] proposed a connection between the SFP (3.17) and the class of nonexpansive

mappings. They then developed an iterative approach to obtain the desired solution.

vi+1 = PC(I − θT∗(I − PQ)T)vi.

However, he only achieves weak convergence with the given procedure. Nevertheless,

it is well-established that there is a strong desire to achieve a strong convergence [49]

whenever weak convergence results of an iterative scheme for a peculiar problem is

attained. Contrary to Byrne’s [?] approach, which depends on nonexpansive mappings,

this topic elaborates an analysis of strong convergence employing Reich-Suzuki-type

nonexpansive mappings. Additionally, we employ a more comprehensive iterative

technique to achieve strong convergence. The most important results of this section

are presented below.

Theorem 3.4.1. The solution of the SFP (3.17) with S 6= ∅, 0 < θ < 2
δ
, and PC(I −

θT∗(I − PQ)T) is any nonexpansive selfmap of the Reich-Suzuki type that fulfils the

condition (I), then the sequence {vi} converges strongly to a solution of the SFP (3.17)

induced by (3.3).

Proof. All Hilbert spaces are CAT(0) spaces, as is widely stated in the literature. The

map Ψ is just a nonexpansive selfmap of the Reich-Suzuki type. Thus we can write it

as Ψ = PC(I − θT∗(I − PQ)T). This means that in the set FΨ, the strong convergence

of {vi} can be achieved by using the Theorem 3.2.4. As FΨ = S so we can deduce that

{vi} converges to the solution of the SFP (3.17).

48



3.5 Conclusion

It is also advantageous for any operator whose domain is a subset of a nonlinear domain,

such as CAT(0) space, to have an approximation of a fixed point. Takahashi [34] was

the first to fundamentally propose the concept of convexity in the nonlinear context

of metric space for the study of fixed point theory of nonexpansive operators, as was

previously indicated in the work. In essence, this work presented the CAT(0) space

variant of a recently proposed iterative technique credited to Hassan et al. [38]. In the

CAT(0) context, we looked at a number of convergence theorems for the broader class

of nonlinear operators. New cases finally corroborate the primary result. Ultimately, a

solution for solving SFP within the broader context of mappings is acquired.
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Chapter 4

Fixed point approximations in

the CAT(0) spaces for generalized

nonexpansive mappings with an

application

4.1 Introduction

This chapter’s goal is to examine the class of GAN mapping in CAT(0) spaces, a

nonlinear environment [10, 11]. Even if it is established that an operator equation has

a solution, conventional analytical techniques frequently fail to produce that solution.

Approximating the solution becomes required in these kinds of situations. To achieve

this, the operator equation must be rearranged to take the shape of a fixed point

equation. We employ an iterative approach suitable for fixed point equations to solve

the operator equation. With the assistance of this method, we will attain our objective

fixed point. With contraction maps, the basic Picard iteration vi+1 = Ψvi is given by the

Banach fixed point theorem (BFPT). Picard iterations, while effective in many cases,

may not always converge to a fixed point for nonexpansive mappings. As a result, other

iterative techniques with different parameters and phases are used. The Mann fixed

point method, presented in [18], the Ishikawa fixed point method proposed in [63], the
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three-step Noor iteration introduced in [19], the two-step Normal-S presented in [23], the

Picard-Mann hybrid due to Khan [24], the Krasnoselskii-Mann introduced in [29], the

three-step Abbas and Nazir method, the Thakur fixed point method [69], and Picard-S,

a hybrid of Picard and S iteration [25] are notable approaches. For SMs, Ullah and

Arshad introduced the M iteration procedure [27] in 2018, showing faster convergence

than the previously discussed techniques.

An innovative iterative procedure for generalized contraction has just been demon-

strated by Ali and Ali [112]. We describe the strategy as follows:



































v1 ∈ K,

wi = Ψ((1− κi)vi + κiΨvi),

xi = Ψwi,

vi+1 = Ψxi, t ≥ 1,

(4.1)

where κi ∈ (0, 1). In the context of generalized contractions, they proved that the

F iteration (4.2) has better stability and a faster rate of convergence than other

iterations. This chapter examines the CAT(0) variant of the aforementioned technique

for GAN maps, demonstrating its convergence in both weak and strong convergence

senses, illustrating its convergence in the sense of both strong and weak. We also

bring forth a numerical example along with one of its applications. Fixed points for

nonexpansive maps were shown to exist in uniformly convex Banach spaces (UBS) in

1965 by Browder [14] and Gphde [15], while Kirk [65] established a similar result in

reflexive Banach spaces (RBS). Suzuki [68] thus developed a weaker definition of a map

than that of a nonexpansive map and gave analogous fixed-point theorems in Banach

spaces. They established the existence of the SM class as well. Suzuki’s study prompted

Pant and Shukla [17] to demonstrate in 2017 that the idea behind GAN maps is weaker

than that of SMs. They also examined fixed point results for these maps using the S

iteration [57]. The M iterative technique for GAN in Banach spaces was recently used

by Ullah et al. [28]. This work aims to provide a single appropriate implementation of

the F iteration for GAN maps in CAT(0) space.
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4.2 Main Results

Now, we establish the subsequent CAT(0) version of the F-iteration.

(4.1


































v1 ∈ K,

wi = Ψ((1− κi)vi ⊕ κiΨvi),

xi = Ψwi,

vi+1 = Ψxi, i ≥ 1,

(4.2)

where κi ∈ (0, 1). Consider first the subsequent result.

Lemma 4.2.1. Let a CAT(0) space X and K nonmpty convex closed in X with Ψ :

K → K is a GAN map. If FΨ is nonempty and and {vi} a sequence produced by (4.2).

Then limt→∞ d(vi, l
∗) exists for any l∗ ∈ FΨ.

Proof. Suppose l∗ ∈ FΨ. According to Proposition 1.2.1(ii), one has

d(wi, l
∗) = d(Ψ((1− κi)vi + κiΨvi), l

∗)

≤ d((1− κi)vi + κiΨvi, l
∗)

≤ (1− κi)d(vi, l
∗) + κid(Ψvi, l

∗)

≤ (1− κi)d(vi, l
∗) + κid(vi, l

∗)

≤ d(vi, l
∗).

One has

d(vi+1, l
∗) = d(Ψxi, l

∗)

≤ d(xi, l
∗) = d(Ψwi, l

∗)

≤ d(wi, l
∗) ≤ d(vi, l

∗).

Hence, we obtain that the sequence {d(vi+1, l
∗)} is a real numbers sequence such that it

is bounded and nonincreasing in Ψ. From this, we conclude that limi→∞ d(vi, l
∗) exists

for all choices of l∗ ∈ FΨ.

We also have the helpful results shown below.
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Theorem 4.2.1. Given a CAT(0) space X andK nonmpty convex closed in X with

Ψ : K → K is a GAN map. If a sequence {vi} is generated by (4.2). Then, FΨ 6= ∅ if

and only if limi→∞ d(Ψvi, vi) = 0 and {vi} is bounded in Ψ as well.

Proof. Assume that FΨ is a nonempty set. Then, we can take any point, namely,

l∗, in it. By previous lemma, limi→∞ d(vi, l
∗) exists. Therefore, we may conclude that

this limit is equal to some real number. Hence, we put

lim
i→∞

d(vi, l
∗) = k. (4.3)

In Lemma 4.2.1’s proof, we observe

d(wi, l
∗) ≤ d(vi, l

∗).

Combining this with (4.3), one has

lim sup
i→∞

d(wi, l
∗) ≤ lim sup

i→∞

d(vi, l
∗) = k. (4.4)

Now the point l∗ ∈ FΨ, hence by Proposition 1.2.1(ii), one has

d(Ψvi, l
∗) ≤ d(vi, l

∗),

⇒ lim sup
i→∞

d(Ψvi, l
∗l) ≤ lim sup

i→∞

d(vi, l
∗) = k. (4.5)

In proof of Lemma 4.2.1, one has

d(vi+1, l
∗) ≤ d(wi, l

∗).

⇒ k = lim inf
i→∞

d(vi+1, l
∗) ≤ lim inf

i→∞

d(wi, l
∗). (4.6)

By (4.4) and (4.6), it follows that

k = lim
i→∞

d(wi, l
∗). (4.7)

By (4.7) and (4.2), Consequently, it is as follows:
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k = lim
i→∞

d(wi, l
∗) = lim

i→∞

d(Ψ((1− κi)vi + κiΨvi), l
∗)

≤ lim
i→∞

d((1− κi)vi + κiΨvi, l
∗)

≤ lim
i→∞

[(1− κi)d(vi, l
∗) + κid(Ψvi, l

∗)||

≤ lim
i→∞

(1− κi)d(vi, l
∗)) + lim

i→∞

κid(Ψvi, l
∗)

≤ lim
i→∞

(1− κi)d(vi, l
∗)) + lim

i→∞

κid(vi, l
∗)

= lim
i→∞

d(vi, l
∗)

≤ k.

if and only if

k = lim
i→∞

d((1− κi)vi ⊕ κiΨvi, l
∗)). (4.8)

Hence, we obtain by applying Lemma 1.1.5, the following

lim
t→∞

d(Ψvi, vi) = 0.

Now we assume in converse that limi→∞ d(Ψvi, vi) = 0. and want to establish that

FΨ has one fixed point at least. For this aim, we choose any l∗inA(K, {vi}). Then from

Proposition 1.2.1(iv), we have

r(Ψl∗, {vi}) = lim sup
i→∞

d(vi,Ψl
∗)

≤

(

α+ 3

1− α

)

lim sup
i→∞

d(Ψvi, vi) + lim sup
t→∞

d(vi, l
∗)

= lim sup
i→∞

d(vi, l
∗)

= r(l∗, {vi}).

From the above, we see that Ψl∗ ∈ A(K, {vi}. However, this set in the CAT(0) space

setting has only one element. Hence we may write Ψl∗ = l∗, this shows that FΨ 6=, which

was the required target. This concludes the proof.

Now is presented the ∆-convergence theorem.

Theorem 4.2.2. Let X be a CAT(0) space and K be a convex closed subset of X.
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So let’s presume that Ψ : K → K that represents the GAN map. Assuming {vi} is a

sequence produced by (4.2) and FΨ is not-empty . Then, there is a particular fixed point

of the mapping Ψ to which the sequence {vi} ∆ converges.

Proof. As the proof is rudimentary in nature, it is omitted.

A convergence theorem on a compact set is established as follows.

Theorem 4.2.3. Assume K is a nonmpty convex compact in X with a GAN map

Ψ : K → K and X is a CAT(0) space. If FΨ is not empty, then (4.2) generates a

sequence {vi}. This implies that {vi} converges strongly to a fixed point of Ψ.

Proof. Given that Ψ is compact within K and the sequence {vi} is a subset of

K, the distance between {vik} and some l∗∗ in K approaches zero as k approaches

infinity which is a sub-sequence of {vi} due to the compactness. Considering Theorem

4.2.1, it follows that the limit as k approaches infinity so d(Ψvik ,vik)=0 . By applying

Proposition 1.2.1(iv), we can conclude that

d(vik ,Ψl
∗∗) ≤

(

α+ 3

1− α

)

d(vik ,Ψvik) + d(vik , l
∗∗).

Now in the above estimate, if we consider k → ∞, one get Ψl∗∗ = l∗∗. The required

aim that l∗∗ is a point such that {vi} converges strongly to it now follows from

limt→∞ d(vi, l
∗∗) .

Theorem 4.2.4. A GAN map is Ψ : K → K considering that K is a nonempty

convex closed set in X and that X is a CAT(0) space. A sequence {vi} is generated

by (4.2) if FΨ is nonempty. Strong convergence of {vi} to a fixed point of Ψ occurs if

lim infi→∞ d(vi, FΨ) = 0.

Proof. It is proven in Lemma 4.2.1 that limt→∞ d(vi, l
∗) exists. We conclude that

limi→∞ d(vi, FΨ) exists. Hence

lim
i→∞

d(vi, FΨ) = 0.

From this, one has subsequences namely {vik} and {lk} of {vi} and FΨ with

d(vik , lk) ≤
1

2k
for any choice of k ≥ 1.
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In the proof Lemma 4.2.1, one has {vi} is nonicreasing, hence

d(vik+1
, lk) ≤ d(vik , lk) ≤

1

2k
.

One has

d(lk+1, lk) ≤ d(lk+1, vik+1
) + d(vk+1, lk)

≤
1

2k+1

≤
1

2k−1
→ 0, as k → ∞.

Hence, we have limk→∞ d(lk+1, lk) = 0 so that, therefore, we may say that {lr} is a

Cauchy sequence in FΨ and that it converges to l∗∗. From Proposition 1.2.1(iii), FΨ is

closed, it follows that l∗∗ ∈ FΨ. Now using Lemma 4.2.1, limi→∞ d(li, p
∗∗) exists which

proves that l∗∗ is also the strong limit of for our {vi} sequence.

Theorem 4.2.5. It is assumed that X is a CAT(0) space and K is a closed convex

subset of X. Given a GAN map Ψ : K → K, we may assume the following. FΨ is not

empty, and {vi} is a sequence generated by (4.2). In order for a {vi}, sequence is said

to strongly converge to a fixed point of Ψ if and only if Ψ satisfies condition (I).

Proof. From our main results of Theorem 4.2.1, it follows

lim inf
i→∞

d(Ψvi, vi) = 0. (4.9)

But our selfmap K has a condition (I),

d(vi,Ψvi) ≥ U(d(vi, FΨ)). (4.10)

Combine (4.9) with (4.10), one has

lim inf
i→∞

U(d(vi, FΨ)) = 0.

Therefore,

lim inf
i→∞

d(wi, FΨ) = 0.
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It is shown that the sequence {vi} generated converges strongly to a fixed point of Ψ by

using Theorem 4.2.4.

4.3 Example

To substantiate our main findings, we present an instance of GAN selfmaps that diverges

from an SM. Through this instance, we conduct a numerical comparison of F with

alternative iterations within the framework of GAN mappings. This numerical analysis

serves to bolster our main conclusions.

Example 4.3.1. We use the subsequent rule on the set K = [7, 13] to build a selfmap

on Ψ.

Ψs =











s+8
2 if s < 13

8 if s = 13.

We now select κ = 1
2 and consider the cases as follows.

Case No: A: Assume s = 13 = r, one has

1

2
d(s,Ψr) +

1

2
d(r,Ψs) + (1− 2(

1

2
))d(s, r) ≥ 0 = d(Ψs,Ψr).

Case No:B: Assume s, r < 13, we have

1

2
d(s,Ψr) +

1

2
d(r,Ψs) + (1− 2(

1

2
))d(s, r) =

1

2

∣

∣

∣

∣

s− (
r + 8

2
)

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

r − (
s+ 8

2
)

∣

∣

∣

∣

≥
1

2

∣

∣

∣

∣

(

s− (
r + 8

2
)

)

−

(

r − (
s+ 8

2
)

)∣

∣

∣

∣

≥
1

2
|s− r| = d(Ψs,Ψr).

Case No:C: Assume s = 13 and r < 13, we have

1

2
d(s,Ψr) +

1

2
d(r,Ψs) + (1− 2(

1

2
))d(s, r) =

1

2
|s− 8|+

1

2

∣

∣

∣

∣

r − (
s+ 7

2
)

∣

∣

∣

∣

≥
1

2
|s− 8|

=

∣

∣

∣

∣

s− 8

2

∣

∣

∣

∣

= d(Ψs,Ψr)
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Hence, our map is GAN, but it is easy to see that Ψ is not an SM. We now connect

our fixed point iterations with this example to support of claims and results.

We currently evaluate the effectiveness of the iterative algorithm F [112] in

comparison to the well-known M [27] and Picard [25] methods, as well as the fundamental

S [57], Ishikawa [63], and Mann [18] approximation techniques. Given that κi = 0.85 and

βi = 0.65, and with an initial value of a1 = 8.8, we may see the specific values in Table

4.1. Furthermore, Figure 4.1 visually represents the performance of these prominent

schemes. The superiority of the F iterative scheme over other methods is clearly evident

when considering the broader context of generalized α-nonexpansive maps.

4.4 Applications of Variational Inequalities Prob-

lems

Variational Inequality Problems (VIPs) represent a broad category of mathematical

optimization challenges applicable across various real-world domains like economics,

engineering, and physics. The central aim within a variational inequality problem

involves identifying a solution vector from a predefined set, ensuring that a specific

inequality condition holds true under all conceivable perturbations. This is essentially

about locating a point where a designated functional is minimized while adhering

to a set of inequality constraints. VIPs provide a foundational framework for

depicting and addressing equilibrium problems, crucial in scenarios where different
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Figure 4.1: Grarphical convergence for F, M, Picard-S,S (Agarwal), Ishikawa and
Mann schemes.
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Table 4.1: Using Example 4.3.1 and the convergence of schemes.
F M Picard-S S Ishikawa Mann

1 8.8 8.8 8.8 8.8 8.8 8.8
2 8.06468750 8.12937500 8.16284375 8.3256875 8.3931875 8.51750000
3 8.00464941 8.01859766 8.02946454 8.11785816 8.17177379 8.29756250
4 8.00033418 8.00267341 8.00533124 8.04264992 8.07504367 8.17109844
5 8.00002402 8.00038430 8.00096462 8.01543394 8.03278471 8.09838160
6 8.00000173 8.00005524 8.00017454 8.00558516 8.01432282 8.05656942
7 8.00000012 8.00000794 8.00003158 8.00202113 8.00625728 8.03252742
8 8.00000001 8.00000114 8.00000571 8.0007314 8.00273365 8.01870326
9 8 8.00000016 8.00000103 8.00026467 8.00119426 8.01075438
10 8 8.00000002 8.00000019 8.00009578 8.00052174 8.00618377
11 8 8 8.00000003 8.00003466 8.00022794 8.00355567
12 8 8 8.00000001 8.00001254 8.00009959 8.00204451
13 8 8 8 8.00000454 8.00004350 8.00117559
14 8 8 8 8.00000164 8.00001901 8.00067597
15 8 8 8 8.00000059 8.00000830 8.00038868
16 8 8 8 8.00000022 8.00000363 8.00022349
17 8 8 8 8.00000008 8.00000158 8.00012851
18 8 8 8 8.00000003 8.00000069 8.00007389
19 8 8 8 8.00000001 8.00000030 8.00004249
20 8 8 8 8 8.00000013 8.00002443
21 8 8 8 8 8.00000006 8.00001405
22 8 8 8 8 8.00000003 8.00000808
23 8 8 8 8 8.00000001 8.00000464
24 8 8 8 8 8 8.00000260
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entities or influences interact, necessitating the attainment of a state of equilibrium.

The exploration of variational inequality problems has spurred the development of

robust mathematical methodologies and computational algorithms, underscoring their

indispensable role in optimization theory and their wide-ranging practical applications.

This section aims to explore the category of VIPs within a Hilbert space framework

and achieve a robust convergence outcome by utilizing our principal result. To

accomplish this, we initially posit two Hilbert spaces, denoted as J1 and J2, such that

C ⊆ J1 and Q ⊆ J2 are both convex and compact. Under these conditions, assuming B

is monotonic from J1 to J2, a VIP can be formulated as follows:

Compute θ0 ∈ C : 〈Bθ0, θ − θ0〉 ≥ 0. (4.11)

To achieve our goal, we examine a variational inequality problem (VIP) referenced

as (4.11), with its solution set denoted as S. Let PC represent the closest point

projection onto C and PQ represent the closest point projection onto Q, respectively,

and considering a constant c > 0, prior studies, outlined in [31], establish that any

point θ0 within set C solves (4.11)if and only if the corresponding θ0 is the solution to

subsequent equation:

a = PC(I − cB)a.

The following approximation method is introduced in [30] that converges weakly to

the solutions of VIPs.

vi+1 = PC(I − cB)vi.

For variational inequality problems (VIPs) in Hilbert spaces, the ultimate objective

of this section is to attain strong convergence results. However, transitioning from weak

to strong convergence typically necessitates additional conditions, as observed in [31]

concerning VIPs. This chapter establishes strong convergence based on our primary

outcome for VIPs. Our distinctive approach relies on a more efficient iterative technique

known as F iteration, analogous to the one utilized in [30]. It is noteworthy that

mappings are recognized for their continuity across their entire domains. Furthermore,

our method introduces the notion of GAN mappings, which proves to be broader in scope

than the concept of nonexpansive mappings, as demonstrated in this investigation.
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Theorem 4.4.1. Suppose VIP (4.11) satisfies S 6= ∅, c > 0 and PC(I − cB) is GAN

mapping. Then {vi} produced by (4.2) is strongly convergent to some sought solution of

(4.11).

Proof. Assume that Ψ = PC(I−cB). As assumed, the mapping Ψ is GAN. But FΨ = S,

by Theorem 4.2.3, the sequence {vi} approaches the given problem’s solution θ0 in a

strong sense. (4.11).
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4.5 Conclusions

We suggested the CAT(0) space version of F iteration and proved strong and ∆-

convergence results for a larger class of mappings. We also proved that numerically

our new approach is faster convergent via new examples of GAN maps. We provide one

application of our main outcome. Our results are new and extend the corresponding

results from the linear setting to the nonlinear setting of CAT(0) spaces.

62



Chapter 5

Approximation of Fixed Points

for a Class of Nonlinear

Nonexpansive Mappings in

Banach Spaces

5.1 Introduction

Recent times have seen the iterative codification of fixed points significantly impact

the solutions to many problems related to stability, data dependency, convergence rate

analysis, and related topics.

Control sequences that are seen in different fields of study. Look at a class of Banach

spaces X in which any of these spaces has a nonempty closed convex subset K.

Make sure that for any u, y ∈ K, the given mapping Ψ : K → X is non-expansive by

defining ‖Ψu−Ψy‖ ≤ ‖u− y‖. If the set F (Ψ) is not empty and ‖Ψu− υ ≤ ‖u− υ‖ for

every u ∈ K and υ ∈ F (Ψ), then Ψ is considered quasi-nonexpansive [1]. Based on the

previous understanding, any operator that is nonexpansive with regard to a fixed point

is equivalent to a quasi-nonexpansive operator. Simply put, if X is uniformly convex

and K is a convex closed bounded subset of X, then F (Ψ) 6= ∅ holds for non-expensive

operators.
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An algorithmic approach to determining the possible value of a fixed point is

appealing, provided that beforehand, it is shown that such a mapping exists and is

unique. The Picard iterative codification is the starting point for the examination of

fixed point optimisation algorithms [8,9], which has a considerable amount of literature

on the subject of its structure. The Banach contraction prescript declares that the Picard

iterative system can obtain the contraction mapping fixed point. Here, the sequence vi

is produced from an arbitrarily chosen point v1 ∈ K. Using the following formula:

vi+1 = ξivi + (1− ξi)Ψvi, i ∈ N.

Thereafter, a non-expansive mapping’s consecutive iterative nature is incompatible

with the contraction mapping, and a fixed point will inevitably be reached by the

mapping. In this context, a previous finding for the non-expansive operator’s fixed

point approximation was put forth by Krasnosel’skii [2]. If the self operator Ψ of X

is non-expansive and X is a uniformly convex Banach space, then the function ( I+Ψ
2 )

will reach to a fixed point of Ψ which is the point of convergence of it, according to his

proposal.

Many iteration strategies have been developed to approximate non-expansive

mappings in the years following the failure of this hypothesis. Nearly all non-expansive

mappings have utilised Mann’s iteration approach [18] to get close to the fixed point.

The iterative system is like this: the sequence {vi} is

generated using the following method, starting from any point v1 ∈ K:























v1 ∈ K,

vi+1 = ξivi + (1− ξi)Ψvi,

i ∈ N and ξi ∈ (0, 1) .

(5.1)

Ishikawa conducted further research on the unique iterative approach that has been

extensively employed to estimate the fixed point of non-expansive mappings. The

sequence {vi} is generated iteratively from
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

































v1 ∈ K,

wi = (1− λi) vi + λiΨvi,

vi+1 = (1− ξi) vi + ξiΨwi,

i ∈ N and ξi, λi ∈ (0, 1) .

(5.2)

Further, Noor [19] established an iterative system where for each. fixed value v1 ∈ K,

i ∈ N and ξi, λi, κi ∈ (0, 1) and the sequence {vi} is initiated by



































v1 ∈ K,

wi = (1− κi) vi + κiΨvi,

xi = (1− λi) vi + λiΨwi,

vi+1 = (1− ξi) vi + ξiΨxi.

(5.3)

In the following section, the iteration system was presented by Agrawal et al. [57].

The authors stated that the rate of analysis convergence is the same as that of The

Picard iterative procedure, which is more efficient than the Mann iterative scheme when

dealing with contractions. In this system, {vi}} is the sequence that is produced by



































v1 ∈ K,

wi = (1− λi) vi + λiΨvi,

vi+1 = (1− ξi)Ψvi + ξiΨwi,

i ∈ N and ξi, λi ∈ (0, 1) .

(5.4)

Abbas and Nazir [20] examine the following iterative fashion and declare that this

procedure faster converges than Agrawal et al. [57] iteration process, where for each

fixed value v1 ∈ K, i ∈ N and κi, ξi, λi ∈ (0, 1) and the sequence {vi} is construct by



































v1 ∈ K,

wi = (1− κi) vi + κiΨvi,

xi = (1− λi)Ψvi + λiΨwi,

vi+1 = (1− ξi)Ψxi + ξiΨwi,

(5.5)
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B. S. Thakur et al. [69] suggested a new iterative method for estimating the fixed point

of non-expansive mappings. The operation is applicable to all fixed values v1 ∈ K, i ∈ N

and ξi, λi ∈ (0, 1) and the sequence {vi} is construct by



































v1 ∈ K,

wi = (1− λi) vi + λiΨvi,

xi = Ψ((1− ξi) vi + ξiwi),

vi+1 = Ψxi,

(5.6)

However, Suzuki also proposed the idea of extended non-expansive mappings, which are

defined by a mapping condition (C). Let K be a nonempty subset of X and X be a

Banach space. Condition (C) is met by a mapping Ψ : K → K if

1

2
‖u−Ψu‖ ≤ ‖u− a‖ ⇒ ‖Ψu−Ψa‖ ≤ ‖u− a‖ for each u, a ∈ K.

The mapping that fulfils condition (C) is more effective than quasi-non-expansive and

less robust than non-expansive, as demonstrated by Suzuki [68]. In 2011, Phuengrattana

[4] proved convergence rate theorems for mappings that satisfy condition (C) by utilising

the iterative system of Ishikawa in the category of uniformly convex Banach spaces and

CAT(0) spaces.

Certain researchers have recently looked into common fixed point results and fixed

point results for mappings that meet criterion (C). For further information, please refer

to the following references: [52, 54, 68,69,114].

In this chapter, we derive inspiration from the concept by B. S. Thakura et al.

[69] and present a unique iterative methodology. In addition, we offer a thorough

examination of the rates at which the mapping, which fulfils condition (C), converges

weakly and strongly in the context of uniformly convex Banach spaces. In addition,

we offer specific instances of a mapping that fulfils condition (C) and analyse the

numerical characteristics of the convergence of our suggested iterative system compared

to established models.
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5.2 Main Results

An innovative extended iterative approach (A∗) for estimating the common fixed point of

extended nonexpansive Suzuki mappings meeting condition (C) in the class of uniformly

convex Banach spaces is the goal of the current study. where for each fixed value v1 ∈ K,

i ∈ N and ξi, λi ∈ (0, 1).



































v1 ∈ K,

wi = Ψ1 (1− λi) vi + λiΨ1vi,

xi = Ψ2 (1− ξi) vi + ξiΨ2wi,

vi+1 = Ψ3xi.

(5.7)

This exposition’s first significant basic Lemma is then presented.

Lemma 5.2.1. Assume that a convex closed subset called K of a Banach space X.

Consider a family of mappings of Suzuki-generalized nonexpansive type. Ψ1, Ψ2, and

Ψ3 : K → K, let Fi=1,2,3 = F (Ψ1 ∩ Ψ2 ∩ Ψ3) is nonempty. Let {vi} be the sequence

obtained by the extended iterative technique (A∗) with an arbitrary configuration v1 ∈ K.

Then, implies the existence of limi→∞ ||vi − υ|| for every υ ∈ Fi

Proof. Take υ ∈ Fi and a ∈ K according to the the premise of this relation. Since Ψi

satisfies condition (C), precisely we have

1

2
‖υ −Ψiυ‖ = 0 ≤ ‖x− a‖ ⇒ ‖Ψiυ −Ψia‖ ≤ ‖x− a‖ . (5.8)

In the light of Proposition 1.1.3 (i), we have

||wi − υ|| = ||Ψ1[(1− λi)vi + λiΨ1vi − υ]||

≤ ||(1− λi)vi + λiΨ1xi − υ||

≤ (1− λi)||vi − υ||+ λi||Ψ1ei − υ||

≤ (1− λi)||vi − υ||+ λi||vi − υ||

≤ ||vi − υ|| (5.9)
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and having these precise, one-write

||xi − υ|| = ||Ψ2[(1− ξi)vi + ξiΨ2wi − υ]||

≤ ||(1− ξi)vi + ξiΨ2wi − υ||

≤ (1− ξi)||vi − υ||+ ξi||Ψ2wi − υ||

≤ (1− ξi)||vi − υ||+ ξi||wi − υ||

≤ (1− ξi)||vi − υ||+ ξi||vi − υ||

≤ ||vi − υ|| (5.10)

Using the inequalities 5.9 and 5.10, one gets

||vi+1 − υ|| = ||Ψ3xi − υ||

≤ ||xi − υ||

≤ ||wi − υ||

≤ ||vi − υ||. (5.11)

Ultimately, we deduce from the previous observation that, for each υ ∈ Fi, {||vi − υ||}

is bounded and non-increasing. It follows that the limit limi→∞ ||vi − υ|| exists.

Theorem 5.2.1. Let a closed convex subset K of a uniformly Banach space X.

Consider a family of mappings Ψi=1,2,3 : K → K which are Suzuki-generalized

nonexpansive and each Fi is a nonempty set.

For arbitrary setting v1 ∈ K, let the sequence {vi} is generated by the extended

iterative procedure (A∗) for every i ∈ N. Additionally, where {ξi} and {λi} are the real

numbers sequence in [r1, r2] to some r1, r2 with respect to 0 < r1 ≤ r2 < 1. Then Fi 6= ∅

if and only if limi→∞ ||Ψivi − vi|| = 0 and {vi} is bounded sequence.

Proof. Consider the cases when a ∈ K and υ ∈ Fi 6= ∅. Given that Ψi fulfills condition

(C), we have

1

2
‖υ −Ψiυ‖ = 0 ≤ ‖x− a‖ ⇒ ‖Ψiυ −Ψia‖ ≤ ‖x− a‖ . (5.12)
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Then, owing to Lemma 5.2.1, the fact limi→∞ ||vi − υ|| exists and {vi} is bounded. For

given some ε > 0, setting

lim
i→∞

||vi − υ|| = ε. (5.13)

Based on 5.9 and 5.13, we have

lim sup
i→∞

||wi − υ|| ≤ lim sup
i→∞

||vi − υ|| = ε. (5.14)

In view of Proposition 1.1.3 (i), we have

lim sup
i→∞

||Ψivi − υ|| ≤ lim sup
i→∞

||vi − υ|| = ε. (5.15)

On the other hand,

||vi+1 − υ|| ≤ ||wi − υ||

= ||Ψ1[(1− λi)vi + λiΨ1vi]− υ||

≤ ||(1− λi)vi + λiΨ1xi − υ||

≤ (1− λi)||vi − υ||+ λi||Ψ1vi − υ||

≤ (1− λi)||vi − υ||+ λi||vi − υ||

≤ ||vi − υ|| − λi||vi − υ||+ λi||vi − υ||

≤ ||vi − υ|| (5.16)

By 5.13, we have

ε = lim inf
i→∞

||vi+1 − υ|| ≤ lim inf
i→∞

||wi − υ||. (5.17)

Further, applying (5.13) and (5.17), we obtain

lim
i→∞

||wi − υ|| = ε. (5.18)
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Next, owing to (5.16) and (5.18), we write

ε = lim
i→∞

||wi − υ|| = lim
i→∞

||Ψ1[(1− λi)xi + λiΨ1vi]− υ|| (5.19)

≤ lim
i→∞

||(1− λi)vi + λiΨ1vi − υ||

≤ lim
i→∞

||(1− λi)||vi − υ||+ lim
i→∞

+λi||Ψ1vi − υ||

≤ lim
i→∞

||(1− λi)||vi − υ||+ lim
i→∞

+λi||vi − υ||

= lim
k→∞

||vi − υ||

= ε,

if and only if

ε = lim
i→∞

||(1− λi)vi + λiΨ1vi − υ||. (5.20)

In the light of Lemma 1.1.5, we get

lim
i→∞

||Ψ1vi − vi|| = 0. (5.21)

So, we can easily conclude that limi→∞ ||Ψ2vi − vi|| = 0 and limi→∞ ||Ψ3vi − vi|| = 0.

Further, in the sense of converse, taking bounded sequence {vi} ∈ K and limi→∞ ||Ψ1vi−

xi|| = limi→∞ ||Ψ2vi − xi|| = limi→∞ ||Ψ3vi − xi|| = 0. To prove that Fi 6= ∅. For this,

we take υ ∈ Ω (K, {vi}). Applying Proposition 1.1.3 (c), subsequently the following

inequalities are evident.

r (Ψ1υ, {vi}) = lim sup
i→∞

||vi −Ψ1υ|| (5.22)

≤ lim sup
i→∞

3||Ψ1vi − xi||+ lim sup
i→∞

||vi − υ||

= lim sup
i→∞

||vi − υ||

= r(υ, {vi}).

Similarly, by 5.22 one can prove that

r (Ψ2υ, {vi}) = r(υ, {vi}) (5.23)
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and

r (Ψ3υ, {vi}) = r(υ, {vi}) (5.24)

From equations (5.22), (5.23) and (5.24), we obtain Ψiυ ∈ Ω (K, {vi}). Since K is

uniformly convex, so Ω (K, {vi}) is singleton, we get Ψiυ = υ. Hence Fi 6= ∅.

Weak Convergence Rate Analysis with respect to iterative procedure (A∗).

Theorem 5.2.2. Assume that a uniform Banach space X that is convex and equipped

with Opial property. Let a closed convex subset K of X. Consider a family of mappings

Ψi=1,2,3 : K → K which are Suzuki-generalized nonexpansive and each Fi is a nonempty

set. For arbitrary setting v1 ∈ K, let the sequence {vi} is generated by the extended

iterative procedure (A∗) for every i ∈ N. Additionally, where {ξi} and {λi} are the real

numbers sequence in [r1, r2] to some r1, r2 with respect to 0 < r1 ≤ r2 < 1 in such a way

that Fi 6= ∅. Following that, the sequence {vi} weakly converges at the common fixed

point of Ψi.

Proof. Since Fi 6= ∅, taking into considration of the Theorem 5.2.1, one can prove that

{vi} is bounded and limi→∞ ||Ψivi−vi|| = 0. Based on the given hypothesis, a subset K

of uniformly convex Banach space is closed and convex. Eberlin’s theorem specifies that

there is a subsequence {viw} of {vi} that weakly converges to limw→∞ ||viw −Ψiviw || = 0

because of the reflexive nature of K.

Under Mazur’s theorem, v1 ∈ Λ, given that K is convex and closed, we have v1 ∈ Fi

by Lemma (1.1.3).

Moreover, we demonstrate the weak convergence of {vi} to v1. Specifically, if this

isn’t the case, then there has to be another subsequence of {viν} of {vi} that converges

weakly to v2 ∈ Λ, such that v1 6= v2.

In the sense of Lemma (1.1.3), we have v2 ∈ Fi. Since limi→∞ ||vi − υ|| = 0 exists
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for each υ ∈ Fi. Further, by Theorem 5.2.1 and by Opial’s fashion, we have

lim
i→∞

||vi − v1|| = lim
w→∞

||viw − v1||

< lim
w→∞

||viw − v2||

= lim
i→∞

||vi − v2||

= lim
ν→∞

||viv − v2||

< lim
ν→∞

||viv − v1||

= lim
i→∞

||vi − v1||.

Which is contradiction, so we have v1 = v2. As a result, at the common fixed point of

Ψi, the sequence {vi} converges weakly.

Furthermore, Strong Convergence Rate Analysis with respect to iterative procedure

(A∗).

Theorem 5.2.3. A Banach space X which is a uniformly convex, consider a subset K

of this space which is nonempty compact and convex. Let Ψi=1,2,3 : K → K be a family of

nonexpansive Suzuki-generalized mappings, where Fi is nonempty. For arbitrary setting

v1 ∈ K, let the sequence {vi} is generated by the extended iterative procedure (A∗) for

every i ∈ N. Additionally, where {ξi} and {λi} are the real numbers sequence in [r1, r2]

Considering a set of r1, r2 such that 0 < r1 ≤ r2 < 1. The strong convergence of the

sequence {vi} occurs at the fixed point of Ψi.

Proof. According to Theorem (5.2.3), one may write limi→∞ ||Ψivi − vi|| = 0. Lemma

1.1.4 gives us Fi 6= ∅. As K is compact, {viw} of {vi} is a sub-sequence such that {viw}

strongly converges to υ for some υ ∈ K. Using Proposition 1.1.3 (c), we arrive to

||viw −Ψiυ|| ≤ 3||Ψiviw − viw ||+ ||viw − υ|| ∀ i ≥ 1. (5.25)

Taking the limit as w → ∞, then Ψiυ = υ, that is υ ∈ Fi. In the light of Lemma 5.2.1,

for every υ ∈ Fi, there exists limi→∞ ||vi − υ||. As a result, vi strongly converges to

υ.
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Additionally, Strong Convergence Rate Analysis based on non-compact iterative

procedure (A∗).

Theorem 5.2.4. Consider a convex, nonempty and closed subset K of uniform Banach

space of X. Let Ψi=1,2,3 : K → K be a family of mappings which are non-expansive

Suzuki-generalized type and Fi be a nonempty set. For arbitrary setting v1 ∈ K, let

the sequence {vi} is generated by the extended iterative procedure (A∗) for every i ∈ N.

Additionally, where {ξi} and {λi} are real number sequences in [r1, r2] for some r1, r2

such that Fi 6= ∅ and 0 < r1 ≤ r2 < 1. If Ψi fulfil the subsequent style.

h (d (v, F (Ψi))) ≤ ‖v −Ψiv‖ ∀ v ∈ K, (5.26)

at the common fixed point of Ψi,the sequence {vi} converges strongly.

Proof. Lemma (5.2.1) allows us to conclude that for any υ ∈ F (Ψi), limi→∞ ||vi − υ||

exists and it follows that limi→∞ d(vi, F (Ψi)) exists. Let us assume that limi→∞ ||vi −

υ|| = l for some l ≥ 0, then our proof of Theorem (5.2.4) proceeds as follows. Suppose

that there is l > 0, by appealing the given hypothesis and (5.26) we can write

h (d (vi, F (Ψi))) ≤ ‖Ψivi − vi‖ . (5.27)

Since Fi 6= ∅, in view of Theorem (5.2.2) we find that

lim
i→∞

‖Ψivi − vi‖ = 0. (5.28)

By appealing to (5.27), we can write

lim
i→∞

h (d (vi, F (Ψi))) = 0. (5.29)

Since h is a non-decreasing function, we obtain

lim
i→∞

d (vi, F (Ψi)) = 0. (5.30)

Thus, we find a subsequence
{

vij
}

of {vi} . From this, a sequence {si} ⊂ F (Ψi) and
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together with the equation (5.11) such that

||vij+1 − sj || ≤ ||vij − sj || ≤
1

2j
for all j ≥ 1. (5.31)

Thus, we can clearly write,

||sj+1 − sj || ≤ ||sj+1 − vij+1 ||+ ||vij+1 − sj ||

≤
1

2j+1
+

1

2j

<
1

2j−1
→ 0, as as j → ∞. (5.32)

Hence, the Cauchy sequence {sj} that converges to point υ in F (Ψi).
{

vij
}

is a subsequence that strongly converges to point υ since F (Ψi) is closed.

Consequently, υ ∈ F (Ψi). Since limi→∞ ||vi − υ|| exists, we can write vi → υ ∈ F (Ψi).

From now on, we will provide an intriguing example that showcases the numerical

and graphical behaviour that serves as motivation for the investigations described in

this work.

Example 5.2.1. Define a selfmappings Ψi=1,2,3 on K = [1, 2] by

Ψ1x =











x+16
9 for 1 ≤ x < 10

9 ,

3− x for 10
9 ≤ e ≤ 2,

Ψ2e =











e+32
10 for 1 ≤ e < 10

9 ,

4− e for 10
9 ≤ e ≤ 2,

Ψ3e =











x+64
11 for 1 ≤ x < 10

9 ,

5− e for 10
9 ≤ x ≤ 2.

In this case, Ψi are extended versions of mappings of type Suzuki’s non-expansive as

defined above; yet, Ψi are not non-expansive mappings because

‖Ψ1e1 −Ψ1e2‖ = 0.24 > 0.001 = ‖e1 − e2‖ ,
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‖Ψ2e1 −Ψ2e2‖ = 0.80 > 0.001 = ‖e1 − e2‖ ,

and

‖Ψ3e1 −Ψ3e2‖ = 1.80 > 0.001 = ‖e1 − e2‖

for e1 = 1.11 and e2 = 1.111. Further, we examine that Ψi=1,2,3 are extended Suzuki’s

non-expansive mapping. Now, let’s proceed with the discussion of the following scenarios.

(i) 1
2 ||e1 −Ψ1e1|| ≤ ||x1 − e2|| ⇒ ||Ψ1e1 −Ψ1e2|| ≤ ||e1 − e2||.

(ii) 1
2 ||e1 −Ψ2e1|| ≤ ||e1 − e2|| ⇒ ||Ψ2e1 −Ψ2e2|| ≤ ||e1 − e2||.

(iii) 1
2 ||e1 −Ψ3e1|| ≤ ||e1 − e2|| ⇒ ||Ψ3e1 −Ψ3e2|| ≤ ||e1 − e2||.

Case I: Setting 1 ≤ e1, e1 <
10
9 or 10

9 ≤ e1, e1 ≤ 2, both cases involve Ψi being a non-

expansive mapping, thereby establishing Ψi as an expansion of mappings of type Suzuki’s

non-expansive.

Case II: Take 1 ≤ x < 10
9 , so

1
2 ||x − Ψ1x|| =

1
2 ||

x+16
9 − x|| = ||16−8x

18 || ∈ [0, 64
162 ]. As

1
2 ||x1 −Ψ1e1|| ≤ ||e1 − e2||, one writes 16−8x

18 ≤ e1 − e2. Let us now discuss the following

two cases:

(a): Consider e1 < e2, then
10x+16

18 ≤ e2 this implies e2 ∈ [244162 , 2]. Which yield

||Ψ1e1 −Ψ1e2|| =
1

9
||e1 − e2||.

Hence,

1

2
||e1 −Ψ1e1|| ≤ ||e1 − e2|| ⇒ ||Ψ1e1 −Ψ1e2|| ≤ ||e1 − e2||.

(b): Consider e1 > e2, then x2 ≤
26x−16

18 implies e2 ≤
116
162 , and e2 ≤ 2, so e2 ∈ [1, 2]. As

e2 ∈ [1, 2], and e2 ≤ 26e−16
18 , which implies e1 ≥ 18e2+16

26 . Thus, taking e1 ∈ [3426 , 2] and

e2 ∈ [1, 109 ), so

||Ψ1e1 −Ψ1e2|| <
1

9
,

and

||e1 − e2|| >
1

9
.

Hence,

1

2
||e1 −Ψ1e1|| ≤ ||e1 − e2|| ⇒ ||Ψ1e1 −Ψ1e2|| ≤ ||e1 − e2||.
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Case III: Consider 10
9 ≤ x ≤ 2, then 1

2 ||x−Ψ1x|| =
1
2 ||x−(3−x)|| = ||2e−3|| ∈ ( 7

18 ,
1
2 ].

As 1
2 ||e1 −Ψ1e1|| ≤ ||e1 − e2||, one writes 2e− 3 ≤ e1 − e2. This implies that e2 ≥

3
2 , so

e2 ∈ [32 , 2] and we obtain

||Ψ1e1 −Ψ1e2|| <
1

9

and

||e1 − e2|| >
1

9
.

Hence,

1

2
||e1 −Ψ1e1|| ≤ ||e1 − e2|| ⇒ ||Ψ1e1 −Ψ1e2|| ≤ ||e1 − e2||.

Similarly, we easily obtain the following condition:

(ii) 1
2 ||e1 −Ψ2e1|| ≤ ||e1 − e2|| ⇒ ||Ψ2e1 −Ψ2e2|| ≤ ||e1 − e2||.

(iii) 1
2 ||e1 −Ψ3e1|| ≤ ||e1 − e2|| ⇒ ||Ψ3e1 −Ψ3e2|| ≤ ||e1 − e2||. Thus, Ψi as an extended

Suzuki’s non-expansive mapping

5.3 Analysis Basins of Attraction

The objective of this section is to incorporate Newton’s famous iterative scheme [13]

into the A∗ iterative scheme (5.7), along with various well-known iterative methods from

existing literature. This will result in the visualization of multiple basins of attraction.

Let’s consider P as a complex polynomial. It’s important to highlight that, when starting

with any initial value z0 ∈ C, the iterative process of Newton’s scheme can be expressed

in the following manner:

zi+1 = zi −
P (zi)

P ′(zi)
, for i = 0, 1, 2, ...

The expression P ′(zi) represents the first derivative of the function P . The Newton

iterative scheme can be reformulated into a fixed point iterative scheme in the following

manner:

zi+1 = Tzi
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Table 5.1: A∗-iterative scheme (5.7) for ξi = 0.1 and ζi = 0.2 in Example 5.2.1
k Scheme (5.7) Scheme (5.7) Scheme (5.7)
1 1 1.5 2
2 7.00 6.50 6.00
3 8.00 8.00 8.00
4 8.00 8.00 8.00
5 8.00 8.00 8.00
6 8.00 8.00 8.00
7 8.00 8.00 8.00
8 8.00 8.00 8.00
9 8.00 8.00 8.00
10 8.00 8.00 8.00
11 8.00 8.00 8.00
12 8.00 8.00 8.00

For ξn=0.1, ζn=0.2 and en=1
For ξn=0.1, ζn=0.2 and en=1.5
For ξn=0.1, ζn=0.2 and en=2
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For ξn=0.4, ζn=0.5 and en=1
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Figure 5.1: The scheme (5.7) is analyzed graphically for various parameter and
starting point combinations.
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For ξn=0.8, ζn=0.9 and en=1
For ξn=0.8, ζn=0.9 and en=1.5
For ξn=0.8, ζn=0.9 and en=2
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For ξn=0.1, ζn=0.2 and en=1
For ξn=0.1, ζn=0.2 and en=1.5
For ξn=0.1, ζn=0.2 and en=2
For ξn=0.4, ζn=0.5 and en=1
For ξn=0.4, ζn=0.5 and en=1.5
For ξn=0.4, ζn=0.5 and en=2
For ξn=0.8, ζn=0.9 and en=1
For ξn=0.8, ζn=0.9 and en=1.5
For ξn=0.8, ζn=0.9 and en=2
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Figure 5.2: An illustration of our system (5.7) using several parameter and
beginning points

Table 5.2: A∗-iterative scheme (5.7) for ξi = 0.4 and ζi = 0.4 in Example 5.2.1
k Scheme (5.7) Scheme (5.7) Scheme (5.7)
1 1 1.5 2
2 7.00 6.50 6.00
3 8.00 8.00 8.00
4 8.00 8.00 8.00
5 8.00 8.00 8.00
6 8.00 8.00 8.00
7 8.00 8.00 8.00
8 8.00 8.00 8.00
9 8.00 8.00 8.00
10 8.00 8.00 8.00
11 8.00 8.00 8.00
12 8.00 8.00 8.00
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Table 5.3: A∗-iterative scheme (5.7) for ξi = 0.8 and ζi = 0.9 in Example 5.2.1
k Scheme (5.7) Scheme (5.7) Scheme (5.7)
1 1 1.5 2
2 7.00 6.50 6.00
3 8.00 8.00 8.00
4 8.00 8.00 8.00
5 8.00 8.00 8.00
6 8.00 8.00 8.00
7 8.00 8.00 8.00
8 8.00 8.00 8.00
9 8.00 8.00 8.00
10 8.00 8.00 8.00
11 8.00 8.00 8.00
12 8.00 8.00 8.00

In the event that the preceding iterative process approaches a stable point, denoted as

z within operation T , the following relationship holds:

z = Tz = z −
P (z)

P ′(z)

Consequently, we might conclude the expression P (z)
P ′(z) = 0, leading us to the conclusion

that P (z) = 0 as well. This establishes that z is indeed a root of the function P . Now,

let’s analyze the comparison between the iterative procedure utilizing Newton’s operator

and the utilization of the aforementioned iteration procedure aimed at determining the

roots of a complex polynomial. We can consider the following complex polynomials and

their respective iteration processes:

Polynomial: P1(z) = z4 − 1;

Polynomial: P2(z) = z7 − 1;

Polynomial: P3(z) = z9 + z8 + z7 + · · ·+ z1;

Consider a complex number represented as z = a + ib. To create regions of attraction,

known as basins of attraction, using three specific complex polynomials, various iterative

schemes are employed, including the A∗ iterative scheme (5.7). In this process, the

parameter ̺i is selected with a fixed value of 0.99 for different values of i, specifically

79



when (i = 0, 1, 2). Now, let’s focus on the specified domain depicted below:

D1 = [−2, 2]× [−2, 1], and D2 = D3 = [−2, 2]× [−2, 2]

respectively, where their centers are located at the origin. To proceed, we divide

these regions into grids of size 250 × 250. Using Newton’s operator and employing

the Mann, Khan, and A∗ iterative scheme (5.7), we generate a sequence of complex

values denoted as {ξi}. This sequence originates from each grid point, starting with an

initial guess ξ0. If, during a maximum of iteration i ≤ 12 iterations, the iterates {ξi}

substantially converge to a root with a precision of 10−8, we attribute a specific color to

the corresponding ξ0. In instances where {ξi} does not converge towards any root, we

designate the color white for {ξi}. The collection of ξ0 points that converge to the same

root forms what we refer to as a basin of attraction. Through this process, we generate

various basins of attraction corresponding to the complex polynomials we have defined.

For visual representation, please refer to Figures 5, 6 and 7.

5.4 An Application to Fractional Differential

Equation

In this portion, we employ the A∗ iterative scheme (5.7) to show that Delay Nonlinear

fractional differential equations have solutions(DNFDE). Before proceeding, we review

the notion of solutions’ existence in the context of DNFDE.

cDy(w(q)) = h(q, w(q), w(q − σ)), q ∈ [e,B] (5.33)

with with based on an the initial conditions

w(q) = ψ(q), q ∈ [e− µ, e]. (5.34)
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Figure 5.3: Basins of attraction of different iteration using polynomial P1.

Figure 5.4: Basins of attraction of different iteration using polynomial P2

Figure 5.5: Basins of attraction of different iteration using polynomial P3.
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Where, σ > 0, B > 0, µ > 0, w ∈ R
k, ψ ∈ C([e−σ, e] : Rk), and an continuous mapping

h : [e,B]× R
k × R

k → R
k. Define the integral equation with respect to cDy(w(q) by

w(q) = ψ(e) +
1

Γ(y)

∫ q

e

(q − e)y−1h(µ,w(q), w(q − σ))dµ, ∀ q ∈ [e,B]. (5.35)

Define the norm ‖.‖δL on C([e− σ, e] : Rk) by

‖ψ‖δL =
sup ‖ψ(q)‖

Ey(δLqy)
, for all ψ ∈ C([e− σ, e] : Rk) (5.36)

where Ey consider is Mittag-Leffler function and is defined as follows

Ey(q) =

∞
∑

k=0

qk
Γ(yk+1)

, for all q ∈ R (5.37)

Therefore, the pair (C([e− σ, e] : Rk), ‖.‖δL) forms a Banach space.

Theorem 1. Assume that:

(D1): there exists Lh > 0 such that

‖h(q, š1, ŏ1)− h(q, š2, ŏ2)‖ ≤ Lh(‖š1 − ŏ1‖+ ‖š2 − ŏ2‖), ∀ š1, ŏ1, š2, ŏ2 ∈ R
k. (5.38)

(D2): there exists Lh > 0 with respect to 2L
δL
< 1 such that

m ∈ (C([e− σ, e] : Rk)) ∩ C1([e− σ, e] : Rk) (5.39)

which satisfying (5.33) and (5.34). Then, the sequence of š∗ iterative scheme (5.7) have

a unique solution.

Proof. Define an operator Λ as

Λw(q) =











ψ(e) + 1
Γ(y)

∫ q

e
(q − e)y−1h(µ,w(µ), w(µ− σ))dµ, ∀ q ∈ [e,B];

ψ(q), q ∈ [e− µ, e]
(5.40)

Let us now discuss the following two cases for showing that the sequence xn → m as

n→ ∞:
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Case 1. If q ∈ [e− µ, e], then clearly we have xn → m as n→ ∞.

Case 2. If q ∈ [e,B], then in the light of (5.7), Lemma (5.2.1), and conditions (D1)

and (D2), one writes

‖xn+1 −m‖ = ‖(1− ̺n)Λxn + ̺nΛxn −m‖ (5.41)

≤ (1− ̺n) ‖xn −m‖+ ̺n ‖Λxn −m‖ .

Taking into account supremum, we have

sup
q∈[e−σ,B]

‖xn+1 −m‖ ≤ sup
q∈[e−σ,B]

((1− ̺n) ‖xn −m‖+ ̺n ‖Λxn − Λm‖)

≤ (1− ̺n) sup
q∈[e−σ,B]

‖xn −m‖+ ̺n sup
q∈[e−σ,B]

‖Λxn − Λm‖).

This implies

sup
q∈[e−σ,B]

‖xn+1 −m‖ ≤ (1− ̺n) sup
q∈[e−σ,B]

‖xn −m‖

+̺n sup
q∈[e−σ,B]

∥

∥

∥

∥

∥

∥

∥

ψ(e) + 1
Γ(y)

∫ q

e
(q − e)y−1h(µ, xn(µ), xn(µ− σ))dµ

−ψ(e)− 1
Γ(y)

∫ q

e
(q − e)y−1h(µ,m(µ),m(µ− σ))dµ

∥

∥

∥

∥

∥

∥

∥

≤ (1− ̺n) sup
q∈[e−σ,B]

‖xn −m‖

+̺n sup
q∈[e−σ,B]

1

Γ(y)

∫ q

e

(q − e)y−1

∥

∥

∥

∥

∥

∥

∥

h(µ, xn(µ), xn(µ− σ))

−h(µ,m(µ),m(µ− σ))

∥

∥

∥

∥

∥

∥

∥

dµ.

Which implies

sup
q∈[e−σ,B]

‖xn+1 −m‖ ≤ (1− ̺n) sup
q∈[e−σ,B]

‖xn −m‖+ ̺n sup
q∈[e−σ,B]

1

Γ(y)

∫ q

e

(q − e)y−1dµ

×Lh(‖xn −m(µ)‖+ ‖xn(µ− σ)−m(µ− σ)‖)

≤ (1− ̺n) sup
q∈[e−σ,B]

‖xn −m‖+ ̺n
1

Γ(y)

∫ q

e

(q − e)y−1dµ

×Lh( sup
q∈[e−σ,B]

‖xn −m(µ)‖+ sup
q∈[e−σ,B]

‖xn(µ− σ)−m(µ− σ)‖).
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Dividing by Ey(δLqy),

supq∈[e−σ,B] ‖xn+1 −m‖

Ey(δLqy),
≤

(1− ̺n) supq∈[e−σ,B] ‖xn −m‖

Ey(δLqy)
+ ̺n

1

Γ(y)

∫ q

e

(q − e)y−1dµ

×Lh(
supq∈[e−σ,B] ‖xn −m(µ)‖

Ey(δLqy)

+
supq∈[e−σ,B] ‖xn(µ− σ)−m(µ− σ)‖

Ey(δLqy)
).

By virtue of (5.36), we have

‖xn+1 −m‖δL ≤ (1− ̺n) ‖xn −m‖δL + ̺n
1

Γ(y)

∫ q

e

(q − e)y−1dµ

×Lh(‖xn −m(µ)‖
δL

+ ‖xn(µ− σ)−m(µ− σ)‖δL).

This implies

‖xn+1 −m‖δL ≤ (1− ̺n) ‖xn −m‖δL + ̺n
1

Γ(y)

∫ q

e

(q − e)y−1dµ

×2Lh(‖xn −m(µ)‖
δL

= (1− ̺n) ‖xn −m‖δL +
̺n2Lh

Ey(δLqy)
‖xn −m‖δL

̺n
1

Γ(y)

∫ q

e

(q − e)y−1Ey(δLqy)dµ.

= (1− ̺n) ‖xn −m‖δL +
̺n2Lh

Ey(δLqy)
‖xn −m‖δL

= (1− ̺n) ‖xn −m‖δL +
̺n2Lh

Ey(δLqy)
‖xn −m‖δL

ĉČ(
Ey(δLqy)

δL
)

= (1− ̺n) ‖xn −m‖δL +
̺n2Lh

Ey(δLqy)

Ey(δLqy)

δL
‖xn −m‖δL

= (1− ̺n) ‖xn −m‖δL +
̺n2Lh

δL
‖xn −m‖δL .

Owing to (D2), we have

‖xn+1 −m‖δL ≤ ‖xn −m‖δL .

Setting ∆n = ‖xn −m‖δL , then

∆n+1 ≤ ∆n, n ∈ N.
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Therefore, ∆n is a monotone decreasing sequence with respect to real numbers and is

bounded from below. Hence,

lim
n→∞

∆n = inf{∆n} = 0.

This implies that ‖xn −m‖δL → 0 as n→ ∞.
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5.5 Conclusion

This work put forth an innovative and groundbreaking concept called extended ϕ-Suzuki

nonexpansive mappings. Through this novel approach, we have significantly improved

the understanding of convergence rate analysis in comparison to existing studies in the

field. Additionally, we have introduced a new and efficient technique called A∗-iterative

scheme, which enables the accurate approximation of common fixed points in the realm

of Banach spaces.

Our study’s significance lies in the practical implications and the the soundness

of our theoretical analysis, both of which are demonstrated through concrete numerical

examples and real-world applications. By extending the iterative scheme, we have delved

deeper into this research area, building upon and expanding the scope of prior literature.

Our comprehensive exploration and contributions hold promise for future advance-

ments in the field of nonexpansive mappings and iterative methods. The proposed

extended ϕ-Suzuki approach and A∗-iterative the scheme opens new avenues for more

efficient and reliable techniques in solving problems related to fixed points in Banach

spaces. We analyze that our work will serve as a cornerstone for future research, inspiring

further investigations and innovations in this domain.
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