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Abstract

Cognitive Radio (CR) provides a promising solution to the spectrum

scarcity problem in dense wireless networks, where the sensing abil-

ity of cognitive users helps acquire knowledge of the environment.

However, cognitirrc users are urlnerable to ffierent t)ryes of attarks,

due to its sha,red mediurn. In particular, ja,mrning is considered as

one of the most challenging secruity threats in CR networls. In ja,m-

ming, an attacker jams the communication by transmitting a high-

pourer noise sipal in the vicinity of the targeted node. The ja,mmer

could be an intelligent entity capable of exploiting the dyna,mics

of the environment. This work presents a machinelearning-based

anti-jamming technique for CR networks to avoid a hostile jammer,

where both the jamming and anti-jamming processes a,re fonnulated

based on the Markorr game fra,mework. In the proposed framework,

secondary users anoid the ja,mmer by maximizing its payoff function

using an online, model-free reinforcement learning technique called

Qlearning. A realistic mathematical model is proposed, where the

channel conditions are timevarying and differ from one subcha,nnel



to anothen, as iu practical scenarios.

Anti-ja,mming iu coguitine radio uetworks is mainly accom-

plished using machine learning techniques in frequency, code, power

and rate domains. With the improvement in communication tech-

nologies, the capabilities of adversaries are increased as well. The in-

telligent ja,m:ner knows the rate at which users are transmitting data

and is based on the attractirreness factor of eactr user. The higher

the data rate ofa secondary user, the higher its attractiveness to the

rateaware ja,rnmer. In the second part of this urork, a dummy user

is introduced in the network as a honelpot for ja,mmer to attract

the attention of the ja,rrmer. Moreoner, a norrel ga,metheoretic anti-

jamming deception method based on rate adjustments is presented

to increase the bandwidth efficiency of the whole cognitive radio

based communication system. A defensive anti-ja,mrning deception

medranism is denised to decoy the attacker to protect the rest of

the network from the impact of the attacker. The simulation results

shof,r a significant impronement in perforrrance using the proposed

solution.
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CHeprpn 1

Introduction

1.1 Significance of Wireless Communication

wireless communication has grown very fast in the last decade. Con-

sequently, wireless communication systerns harre become inevitably

related to several applications and a range of devices e.g., smart

phones, laptops, and IPADs. In addition, new wireless applica-

tions like wireless sensor networks (wsN), rrehicular ad-hoc networks

(vANErb), smart home appliances, smart grids, remote telemedicine,

and nurnerous others are matsializing from research thoughts to tan-

gible systems. Moreover, wireress communications is advantageous

due to accessibility, easy installation, wider reach, flexibility, effi-

ciency and cost effectiveness. wireless comrnunication is the most

absolute and vitat requirement of this present era, and it is the stair-

case for firrther adrancements in the field of digital communication.

Howe,er, with the impla,sible growth in the systems and applica-

tions, the arailability of the wireless spectrum, the natural source
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whieh prorrides all this communication, is limited. wireless com-

munications have enabled billions of individuals to connect to the

Internet and benefit from today's digltat economy'

L.2 Oven'iew of Cognitine Radio Networks

This enormous grourth in applications is inevitable now, and limita-

tion is evident from the frequency allocation charts for United States

and frequency allocation drarts for Pakistan. Nevertheless, statistics

taken out by the Federal Communication Commission with the help

of orperiments in various countries shou, that most radio frequency

bands are not used the majority of the time or are underutilized. So

there is a need to address the problem whietr could solve the under-

utilized or inefficielrt use of spectrum, i.€., how and when to use it

[3], [4].

As this inadequate natural resource will ultimately get halted

for the users coming in the near future, a solution was required for

the spectrum scarcity. The solutiou was proposed by Joseph Mitola

from KTH in his Doctoral Dissertation in 1999 [5], [6]. This disser-

tation presents a conceptual overview of cognitive radio as an excit-

ing multidisciplinary subject. Federal Communications Commission

(FCC) defines cognitive radio as "A system or radio that sniffs its

functioning Electromagnetic atmosphere and capable of vigorously
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Frrqurncf

Spcctrum urrd by
Pltnary Ueers

,tl

Opporunhtic
Accerr

EpectnunyUHr" Space

Flgure 1.1: Oppmtunisti-e Aom of Spectrum in_CRN. The ernpty white (unshaded regim)
shmE the white apace available fu CR users whilqPU imctirre in the sh;dd
rcaion [6].

and separately regulate its radio working pararneters to adapt intru-

sion, smooth the progress of interoperability, and access seconda,ry

users." cognitine radio is aware of its surrounding RF environment

learns, reason, decide and adapt to the srternal conditions [z]. The

aim is to utilize the spectn,n efficiently a,nd carry out reliable and

unintemrpted wireless comrnunication.

cR is practically implemented on the hardware referred to as

software Defined Radio (sDR). Analysis of the Radio scene, R *g-
nition and Identification of channel and power control of rhans
mission are three important roles of the cognitive cycle [g]. The

learning and reasoning abilities of cognitive radios are embedded in
the cognitive engine, the core of a cR, as depicted in Figu re L.2.

The task of the cognitive engine is to coordinate the actions of cR
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using rnachine lea,rming algorithms [9]. A CR node can switdr its op

erational frequency to the dpamic RF environment. CR nodes can

access spectrum white spaces that are not being utilized by primary

users, as depicted in Figure 1.1. T\wo tlpes of users in Cognitive

Radio Networks are Prima,ry user (pu) *d secondary user (su).

When the primary user is not arailable, the cognitive user can use

its resources, i.€., the un-utilized spectrum. Competition takes place

among secondary rrcers to access the available spectrum for primary

users. The absence of a primary user in certain time and space results

in the unoccupied frequency termed as white space [10]. wireless

microphones and rv towers contribute to the most significant pro
portion of white space [11]. Federal communication commission

(FCC) in the usA has adapted the rule for unlicensed use of Tele
vision white spaces due to its underutilized spectrum [B]. spectrum

sensing pla)rs an essential role for dynamic spectrum access in cRs

[12]' The taslc of spectrum seusing comprises two significant factors.

one is to protect the rights of the Iicensed user, for this objective

cR continuo,sly obserrres the frequency environment and identifies

the spectrum holes, that is, it enables the sus to exploit the un,sed
PU spectrum.

It is rrcry important to understand the activity of primary
,ser so that su can make a decision accordingly. The performance

of cognitine radio networks is highly dependent upon the activity of
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I'lgue 1.2: Cognitirrc Eugine, the heart of oognitive radic, oomprises thee iEt€ractive modules
Lnowledge bose, leaming nodule and rcasoning module.

primary radio users [13]. In literature, PR user activity is modeled

based on Markov process, queuing theory time series, ffid oN/oFF
periods. Other models are the Bayesian model, Event-based random

walk model, PR user presence probability from historical statistics,

Partial periodic pattern mining (pppM), First-difference filter clus

tering. There are three paradigrns of cognitive radio networks, e.g.,

Underlay, Overlay and Interweave paradigms.

1.3 sec.rity rssues in cognitine Radio Networks

cognitirrc radio networks are incredibly rnrlnerable to malicious at-

tacl$, partly because secondary users do not ourn the spectrum, ffid
hence their opportunistic access cannot be protected from adver-

saries. Moreover, highly dyna,rric spectrum availability and often

distributed network structures make it challenging to implement ad-

equate security countermeasures [1a]. In addition, as cognitive radio

networks benefit from technology evolution to be capable of utilizing

Leorning Module Reosoning Module
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spectnrm adaptinely and intelligently, the sa,me technologies can also

be orploited w malicious attarckers to launch more complicated and

unpredictable attacks with more significant da,mage [15, 16]' There

fore, ensruing security is para,morurt to the successful deployment of

cognitive radio networks. More explicitly, jamming attacks, Denial

of service (DoS) attarls [17, 18], Primary User Emulation Attaf]

(PUEA) [19!21], spectrum sens[rg Data Fhlsification Atta* (ss-

DFA) [22], exploitation of common control ehannel security [23] and

collaborative jamming [24] are well-known attacks in cognitive radio

networls. However, the major concern of this research work is to

combat jamming attadrs in cognitive radio networks'

L.4 Introduction to Game TheorY

Ga,me theory is widely used in the literature to model the competi-

tine environment between ja,mmer and secondary rrcer. A ganre is a

mathematical model for interactive situation where players have to

malrc decisions based on the payoffs. It prorrides the formal fra,rne

work that helps geuerate useful inforrnation for analysis purposes. It

is the situation in whie,h players malre strategic decisions that talce

into account each othen actions and responses [25].
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Ftgure 1.g: Key eleuemts of a noncooperetive frequeucy hopping ga,m€, rivning is to reach

Nash equilibdun.

1,.4.L Key Elements

The key elernents of the game a,re players, strategies, payoffs, infor-

mation and rationality as depicted in Figrue 1.3. These terms are

defined belou'.

Players: Those who are interacting. In this case, two players are

SU and jammen.

Strategies: Rules or plan of action of each player for playing galne

hop, stay.

Payoffs: What are the players gaining after adapting certain strate

gtes? And the optimal stratery is the one that maximizes the player's

payoff.

Information: What do the players knon? Completer information

is in which eae,h player knon, every aspect of the game while in per-

fect information, the player only knows the previous actions taken

by all other players.

Rationality: Players axe assumed rational to talre the best alterna-

tine in the set of possible options. It helps narrow dovm the possible
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Ftgure 1.4: The ga,me'theoretical anti-jam-i"g tree describes the zero-gun non cooperative
stoe.hastic gane between SU ard ja,nmer.

decisions.

Nash Equilibrium: It is an action vector from which no player

can profitably unilatenally deviate. N players interact to talre a set

of actions A; for each player. Each action has a certain outcome

described as utility function IIi. An action 4 is Nash Equilibrinrn

if for every i player out of N players satisfy the following inequality

Ur(a,,o(- d)) > Ui(b,,at- i)) VUA, (1.4.1)

Players erftibit rational behavior and adapt the stratery to

maximize their pa)'oft. Rational choice theory is an economic prin-

ciple whictr states that individuals always make prudent and logical

decisions. These decisions provide peopre with the greatest bene

fit or satisfaction, given the choices arairable, and are also in their

highest self-interest. Game theory reduces the complexity of adap

Tun Player



Cxrmsn 1: Iurnoougnox

MarkovGame:
Players: Muftiple
States: Multiple

Dlgure l.E: Relationship betreen MDR l{8rkov games and matrix ga,Ees.

tation algorittrms in large cognitive networks [gJ. Figure 1.4 shovrn

a ga,metheoretical anti-ja,mmurg tree describing the zerosum non

cooperati'e stochastic ga,me between su and jammer.

l-4.2 Relationship Bertrueen gfscharfis Game and Martrov Decision
Process

A stochastic Game (sG) is the natural extension and generaliza-

tion of the Marko, Decision process (MDp) to multi-agent systems

[9, 26J.1 The relationship between Markov games, matrix gdmes

and MDP is shou'n in Figure 1.8. sG prorrides a framework for

multi-a,gents in multi-agent reinforcement learning (MARL). In this

contribution, a stochastic anti-ja,nrming game is developed between

two players of conflicting interests. [see Appendix A for the details

about game theory.]
lgtocDastic ga-"u 

"n" 
a"o 

""[a u"troo, gansr, rhich essertialry a,r€ Eqgeft MDp [24.

I
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1.5 Reinforcement Learning

The Qlearning is a ralue-based reinforcement learning algorithm,

which uses a Q table to ma:rimize the utility [28]. It is a medranism

learn the subcihannel selection strategy effecti,ely. The Q function

Q(rfr, oft) at stage Ic, is the expected discounted payoff when the SU

takes the action ak at the state sk. More specifically, the Q value

is the estimation of the expected sum of the discounted payoff [29]'

Hence, an su can consider the Q value in a bimatrix game at stage

Ic as the expected sum of the discounted payoffs given in Equation

(4.1.8). Given the Q firnction Q@k,at), the SU can find the rnalue

of the geme from:

v(ct1 = 11*Q(ch,oh).
(1.5.r)

After an action ot is taken, the SU would receive an immediate payoff

E(rF, o&), which is then used to update the Q table. Specifically, the

Q firnction can be apProximated as:

Qbh,ok)=R(at,at)*"8r"",'r+r'ot+r;st'oh;v1st+l;' (1'5'2)

where Pr(sfr+l,at*lls*,at) is the transition probability from state

se to s&+1. Qlearning is a model free lea,rning algorithm adapted to

learn the optimal policy without explicitly knowing the model. The

intuition behind Qlearning is to approrimate the unknown transi-

tiou probability in Equation (1.5.2) by the empirical distribution of
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states that have been visited as the game proceed [30]'

1.5.1 Multi-Agent Reinforcement Learning (MARL)

The study of hou, nrunerous agents interact in a comnon envi-

ronment is knoum as multi-agent reinforcement leaming (MARL)'

MARIi is a subfield of reinforcement lea ring and is becoming popu-

lar. when these agents engage with the environment and eaeh other,

they can collaborate, coordinate, compete, or learn to complete a job

collectively.

L.6.2 1lpee of Learnerrs in MARL System

A multi-agent reinforcement leaming (MARL) algorithm is the in-

dependent lea,rning (IL) algorithm where the learner can take action

iudividually and do not consider the actions taken by other agents.

There are two tlrpes of lea,rners in the MARL setting, namely the

independent learner (IL) and the joint action learner (JAL) [31]. IL

uses Q-learning in a classical setting, ignoring the other agents. More

specifically, it assumes that the other agents are part of the environ-

ment. A MARII algorithm is an IL algorithm if the learner would

take action individually and would not consider the actions taken by

other agents. The IL algorithm is an appropriate learning method

if the agent is unawaxe of the other agents in the system and their

actions [32]. If the aborre condition does not hold, an agent can still
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ignore the presence of other agents to justify the application of the

IL algorithm. Learning is relatively simple for IL, as it only learns

its actions [31].

The total number of entries that an IL agent needs to learn is

girrcn by mx I A, I for an n-agent system, which has rn states of the

game, where I A, I is the size of the action space of player 1. Since

the IL ignores the actions of other agents, the complerdty of the IL

agent is linear as given bY nzx I A l.

A JAL is an agent that learns the environment in the presence

of other agents and then updates its Q values based on the joint

actions of all the agents in the system. This infers that the agent

knows the rewards of all other agents, and its experience is of the

form ( O,r > where a : aL x tuz x ... X anis the joint action of all

the agents and r is the reward of the joint action a. The complexity

of the JAL is orponentid, ffi it has to learn all possible actions of

all the agents in the system. A toy exa,rrple of a bi-matrix zerosum

game is represented in Tbble 1.1. If player A is a JAL it has to learn

all joint actions, i.e., (as, h), (ao, br), (ar, h), (ar, b1), while if player

A is an IL, then it needs to learn its own actions onlS i.e., as and

Ay

thble 1.1: lby ora,nple of a garue for the comPsrison of IL aud JAL

L2
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In [26], Littman considers a JAL in the minmarc settings. The

states ,S, action set A, and the opponent action set O are the vari-

ables from the environment. Iu [27], Hu and Wellman grve a more

general form of a JAL for the general sum game (GSG) in which

each JAL player assumes those other players are rational and that

other agents will tatrc actions according to their ourn believes about

other agents. More explicitly, each agent maintains a belief about all

other players in the network and this belief is maintained in the form

of a separate Q table, whie,h results in increased complexity for the

learning system. The total number of entries that a JAL agent needs

to leam is given W mx I A' I x I A'I for a twoagent system having

nz states of the g&rne, where I A' I is the size of the action space

of player 1. flssuming equal action space for ea,ch of the n-agents,

the exponential complexity of the JAL agent is mx I A 1". In fact,

weu though JALs have mudr more information at their disposal,

they do not perform much different from ILs in the straightforward

application of QJea,rning to multi-agent systems [31]. Both the SU

and ja.rrmer players are taken as ILs, where each IL would apply

the $learning algorithm in the classical setting while ignoring the

action of the other agent. More specifically, each agent assumes that

the other agents are part of the environment. IL algorithm is an

appropriate method of learning if the agent is unaware of the other

ageut in the s5rstem, hence do not know the actions of other agents.

13



={

Culprtn 1: InrnouusrloN

Learning is relatively simple for IL, as it only has to learn its actions

[31]. A multi-agent reinforcement learning algorithm (MARI) is the

IL algorithm where the learner can take action individually and do

not consider the actions talcen by other agents [32].

Theorem 1[33]: An IL agent in a MARL setting, follon'ing

the Q-lea,rning update rule, will converge to the optimal Qfunction

with unit probability.

1.6 Motiration

CRN is a promising technolory to cope with the scarcity issue of

the electromagnetic spectrum, which is a natural resource. Thadi-

tional wireless radio comrnunication works on fixed frequency slots,

resulting in onercrowding iu certain portions of the electromagnetic

spectnrm while other portions are underutilized. CR is awa,re of its

surrounding Radio Flequency (RF) environment. It learns, re&sons,

decides, and adapts to extenral conditions to efficiently utilizing the

radio spectrum and carry out reliable and uninterrupted wireless

communication [7, 8]. F\rrthermore, CR could provide opportuni*

tic access to spectrum holes to solve the intermittent use of radio

spectrum using mactrine learning algorithms [9, 34-37]. Therefore,

ensuring security is of paramount importance to the successful de

ployment of cognitive radio networks.

{-

L4
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In traditional wireless commgnication systems, Flequency Hopr

ing spread spectn[n (FHSS) and Direct sequence spread spectrum

(DSSS) are widely used to thwart ja,mmers [18, 38]. Due to dyna,mic

spectnln mobility [39], it is impossible to directly apply these tech-

niques in cognitive radio tedrnolory to combat the hostile jammers'

Since ja,rnming attar}s drastically degrade the perforlnance of cog-

nitive radio, some effective mechanism is required to mitigate the

effects of jammer by avoiding and deceiving the jammer.

1.6.1 Jamming Attack

Ja,rrming is a major threat to CRN [4G-43]. Ja,rmmers disnrpt wire-

less communication by generating high-power noise across the entire

bandwidth near the transmitting receiving nodes. As a result, the

communication channels either ca,nnot be accessed or the signal-te

uoise ratio (SNR) in these channels heavily deteriorates. The ja,mmer

model in a CRN is shoum in Figrue 1.6, where the jammer disnrpts

the wireless communication by generating high-power noise, causing

na,ron-band interference on a single subdrannel at a time near the

transnitting and receiving nodes [a4]. Intensive jamming could re

sult in either total disruption of the wireless communication or a \rery

low SNR that does not allon, secondary users (SUs) to communicate

successfully. Since ja.mming attadrs drastically degrade the perfor-

manoe of cognitive radio, some effective medranisnrs axe required to
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detect their presence and avoid them. More specifically, this researdr

focuses on anti-ja,mming teehniques using frequency hopp[rg (FH).

The interested readens may refer to [45, 46] for details concerning

ja,mming detection.

flgrrre 1.6: The model of the ja,uner in a copitive radio network

L.6.2 Intettigetrt Jammlng Attac}s

Bcisting naive ja,rrmers mostly rely on high povrer and frequent

transmission of ja,mming signals which is not practical for power

constraint jammers. Moreover, this kind of high power and frequent

ja,mmers also ease jamming detection. The adaptability of CR could

prorride intelligence to spectrum sensing and spectrum decision [36].
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On the other hand, the adversary can also maneuver the same fea-

tures intelligently to create more harm to the underlying CR Network

(cRI{) l2g, 47,481. A more powerfrrl intelligent ja,mmer is consid-

ered which targets the users based on the attraction factor of each

user. The attraction factor is proportional to the rate at whieih the

cornmunication is caxried out. Hence targeting the hig[est impact

communications in the cognitive radio network [a9]. Hene are the

other reasons to consider rateaware ja,mme,rs.

. It is easier for the rateawaxe intelligent ja,rnmer to target a few

symbols of higher data rates resulting in very efficient selective

ja,mming.

. A targeted, efficient attar,h will force the secondary user to

comnunicate at a lower rate by jamming all communication

at higher rates as shonrn in [a9].

. The low data rates will result in network saturation, which

causes higher collision probability [49].

1.6.3 fbequency Hopplng

The most widely considered method for reducing the effects of jam-

ming attacks is frequency hopping. Flequency hopping is a technique

for quickly switching between malxy frequency cha,nnels when sending

radio communications. The ease of implementation and robustness

t7
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against interference and iamning attacks have made proactive fre

quency hopping more popular. Flequency hopping is particularly

effectine when the nurnber of orthogonal channels supported is sub

stantially larger [50].

1.6.4 Rate Adaptation

Rate adaptation schemes in the litterateur usually adjust the physi-

cal layer transmission rate according to the channel conditions, ide

ally choosing high data rate by adapting more robust modulation and

coding schemes (MCS) for good SNR channels and lon, transmission

rates for poor channel conditious [51, 52]. Thansmitting at the mod-

ulation scheme with a higher data rate will increase the probability

of getting ja,m:ned due to rateaware ja,mmers in the network. On

the other hand, transmitting at low rates increases the robustness

and reliability against ja,mming but will reduce the throughput of

the system [53]. Therefore, a,n adequate data transmission rate is re

quired for effective transmission while avoiding the jammer [49, 54].

1E
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I.tggre 1.7: Anti-jonyning ggm6 gle Bidely classified into traditiod a,ud deception-based

8aEEE.

1.7 Problem Statement

Problem statement of this reseaxch is divided into two parts. The

first part is to devise a ga,metheoretic an anti-ja,nrming scheme

against intelligent ja,nrmer. The second part is extended further

against a more hostile rateewa,re intelligent jammer. The details

are ginen below.

1.7.t Problem-I: Adversarial Anti-Jamming Game

The abone discussion shows that the resea,rch community has con-

tributed muctr resea,rch towards anti-ja,mming for CRN in the fre-

quency dornain. However, most literature has assumed a fixed strat-

ery for the jammer, which is not e.hanging with time. With the

darelopment and tedrnological adrancement in the cognitive radio

networks, it is highly conceirable that a jammer will also manoeuvre

19
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its attarcking strategies intelligently. Hence, there is a need for an

intelligent anti-jnmming stratery for CRN. An intelligent ja,mmer is

cognitive in nature, having the ability to lea,rn, reason, and adjust

its strategies against SU for manimum da,rnage to the CRN.

L.7.2 Problem-Il: Deception-based Anti'Jamming Game

Deception empowers network administrators by thoroughly defend-

ing against attadrs from both extennal parties and hostile insid-

ers, properly warning when something is wrong, and offering pre

cise threat intelligence for quidr remediation. When an intrusion is

detected, they can obserye how the intruder moves around the in-

frastructure and what resources they appear to be targeting. They

can then investigate specific network parameter which was targeted

to deceine the attacker. Therefore, there is a need for a deception

stratery against an iutelligent ja,mmer to waste its resources hence

protecting the orrerall network.

l.E Objectines of Research

The jammer is cognitive, it also looks for white space. There is

a competition for spectrum occupancy between the secondary user

and cognitive ja,mmer. The two objectives of the research are listed

below.

20
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1. The objective is to devise an optimal hopping scheme to pick

the optimal cha,trnel before the ja,mmer catches up to it'

2. The second objective of the research is to develop a deceiving

mechanism for ja,mmers, so that the ja,mmer wastes its energies

while cognitine uselt enjoy its tra,nsmission thereby decreasing

the probability of being ja,mmed.

The two objectives of the research are shorvn in Figure 1.7. The

follon'ing performance criterion will be used to evaluate the perfor-

mance of the proposed anti-ja,rnming scheme.

Ja,mming Probability under cognitive attadrs.

The average pa)roff of different strategies

Game theoretic analysis is used to devise an anti-jamming

mechanism to combat against a variety of ja,rrming levels. Game

theory is widely used in wireless communications to solve commu-

nication problems like resource allocation [55-57], packet relayrng

[36], and anti-ja,mming communication 129,48,58-601 , as shown in

Figure 1.8.

In traditional wireless communication systems, Flequency HoP

ing Spread Spectnun (FHSS) and Direct Sequence Spread Spectrurn

(DSSS) are widely used to thwart ja,nrmers. Due to dynamic spec-

trum mobility, it is impossible to directly apply these techniques
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in cognitive radio te&nolory to combat hostile jammers. There

fore, this research focuses on machine learning based algorithms to

provide safety of the network in the presence of hostile ja,rrmers.

Moreover, Deception in cyber security of wireless communication is

largely adapted for the following three reasons. (1) For the detection

of the attaclrer, (2) for information about the intelligence of the at-

tacken, (3) for confusingthe adversarial user to waste its resouroes on

the sweetener. Since detection is not the focus of this article, and the

intelligence of the ja,rrmer is assumed to be a posteriori knowledge

of the user, therefore, the focus of this research work is to confirse

the attad<er between a legitimate target and deceptive sweetener by

using a deception stratery in the CRN. The scope of the thesis is

Hmited to marchine learning-based anti-ja,mming techniques to com-

bat and deceine the ja,mmer, hence prorriding enhanced protection

against intelligent ja,mmers in cognitirrc radio networks.

1.9 Organization

The rest of the thesis is organized as follows. Chapter 2 provides a

detailed and stateof-the-art literature survey on anti-jamming tech-

niques in CRN. Moreoner, this chapter provides a review of the pre

vious research on deception-based defense strategies. It also pro

vides the comparison table as erridence of the norrelty presented in

this research work. Chapter 3 explains the system a,nd adversary
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Resource
allocation

[55Hs7]

Game theory in
wireless

communications

J

tr6i-jnmming
communications

[29], [48], tssl-t601

f'E111€ l.t: lbxonmy of ga,metheuetic applications in wireless cmmrnications.

models in detail. The systenr and adversarial model are divided

into two parts in this chapter, part-I and part-Il. Chapter 4 pro

vides an anti-ja,mming garne formulation against a random and an

intelligent ja,mmers, respectirrely. Moreover results and discussions

are prwided based on the simulation results. Chapter 5 provides a

deception based anti-jamming mechanism to combat intelligent jam-

mers. Moreover results and discussions are prwided based on the

simutratiou results. Finally, e,hapter 6 concludes the thesis with the

futrue works in the light of limitations.

23
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Literature Review

After presenting an introduction of the research work in previous

Chapter, this chapter presents a comprehensive literatrue rwiew of

the state of the art literature. The chapter begins with the gen-

eral literattue rerriew of anti-ja,rmrning communications in cognitive

radio networks follovred by ga,rnetheoretic literature review on anti-

ja,mming communications in CRN. Finally, deception based anti-

ja,rrming techniques are discussed at the end to conclude the chaP

ter. Moreoner, two tables present the comparison of the literature

discussed in this chapter.

2.L Anti-Jamming in CRN

The CR is more vulnerable to secruity threats than other networks,

such as cellular networks, due to its large scale and diversified envi-

ronment. As a result, the CR's security requirements will be more

restrictive than those of traditional wireless systems. Indeed, in the
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absence of robust securiff solutions, attacks and CR malfunctions

rnay outweigh any benefits. The secturty of a CR system is rnrlnera-

ble to a wide range of attacks due to its large attadr surface, includ-

ing malignant radio ja,rmrning and denial of service (DoS). Different

t]ryes of ja,mmers discussed in the literature [61], namely, random

ja,rrmer [62], constant ja,rmmer [18], reactive ja,rrmer [63, 64]' sweep

ja,nrmer [65, 66] and intelligent jammer [29] [64.

2.2 Anti-Jamming Games in CRN

In wireless communications, geme theory is often utilised to tackle

communication challenges such as resource allocation [55-54, packet

relaying [36], and anti-ja,mming communication 129, 48, 58-{01.

The dynamic iuteraction betweeu legitimate users and the

ja,rnrner has been ortensively modeled and analysed using game

theoretic approactres. These anti-jammrng games could be based

on power domain [64, 68-74], code domain [18, 75], frequency do

main [29, 30, 65, 66, 7H21, and space domain [83-86], as shourn in

Figure 2.1.

25
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Ftgue 2.1: Dimersi@s of the auti-jnr"-irg ga,ue in copitive radio networks.

2.2.L Diffenent lbchniques of Anti-Jamming Games

Power Control Games

Auti-ja,rrming power control (PC) communication has been done erc-

tensively using ga,metheoretic analysis [64, 68-74].

For instance, in [68], a power control Star,lrelberg game was

presented as a leader follovrer game for jamming defence in cogni-

tive radio networks. The problem is divided into sequential sub

problems, follower subga,rre, ffid leader-sub garne. Another Stack-

elberg game was used in [69] for relay selection for the security of

physical layers in cognitive radio networks. More specifically, the

One Leader One Follou,er Stackelberg Game (OLOFS) was modelled

to adrierre optimal pricing strategy and power allocation in the pres-
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thbte 2.1: Surruary of litereture regadirg types of anti'jmrnipg g8D6, ia'urmer t}'pe, alge
rithn usd, their de&noe tecbdques aud equiliMum soluti@s'
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ence of two eavesdroppers. Fhrthennore, the Primary User (PU) *d

the selected relay simultaneously achieve a Nash Equilibrium (NE).

In [70], the authors presented an adaptive approarch to defend

the jamming attacks in CRN by controlling transmission powers of

the nodes, where the network topolory is adaptively updated to nul-

Iify the effects of the jammer. The trade-off between jamming immu-

nity and network coverage is seen as an optimization problem' which

27
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can be solved by scalable decomposition strategles. The authors also

present a continuous nersion of the galne by considering continuous

action space for both players. The authors in [71] study PC ga,mes for

multi-user communication to combat ja,mming. Stackelberg's relay

selection is used in [96] for physical layer security in cognitive radio

networks. The Starkelberg Singleplayer Follourer Game (OLOFS)

is designed to achierrc optimal pricing stratery and enerry allocation

in the presence of two eartesdroppers. The primary source and the

selected relay operate simultaneously to achiene a Nash Equilibrium

(NE). For the class of two person zero sunn galnes, the Stackelberg

equilibrium (SE) is also a NE.

Eequemcy Hopping Games

Ga,rne theory has also been used to investigate the frequency hop

ping anti-ja,mming communication in wireless commruxication net-

works. For instance, anti-ja,mming comnunication in CRNs with

unknourn chanlrel statistics has been studied in [97]. The authors for-

mulated the problem of anti-ja,nrming multi-e,hamnel access in CRN

as a non-stochastic multi-armed bandit problem, where both sec-

ondary sender and receiver choose their coilrmon operating channels

by minimizing the probability of being ja,mmed. Another interfer-

ence avoidancebased channel-hopping stochastic game was investi-

gated in a multi-agent environnent in [65], where ga,rnetheoretic
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based reinforcement leamrng mechanism is used to avoid ja,rrming'

The authors in [1] recently presented a bandwidth-efficient

frequency hopprng game in wireless sensor networks. The authors in

[98] presented a brief overviemr of anti-jamming communication in the

context of dyramic spectrum access. TWo typical vrays of thwarting

jammers are adaptation of transmission rate and Flequency Hopping

(FH). These two are jointly adapted bV [Z] to imprwe the average

throughput and provide better ja,mming resiliency against reactive

sweep ja,rnmer. Specifically the interaction between the jammer and

the legitimate user is modelled in [2] u a Zer.olSum Markov Game

(ZSMG), and a constrained NE is derived. The authors in [78] uti-

lized a game theoretic fra,mework to access an optimal ctrannel in the

presence of attarcker, hence maximizing the channel payoff.

The channel Hopping (CH) based rendezvous scheme is adapted

for the SU to meet and malrc the connection for further communi-

cations 177,991. This bounded time rendezvous sctreme neither uses

preshared secrets nor is role preassignment needed for bringing the

SUs on a commonly available channel.

In [79], the authors presented a mobility-based Single Leader

and Multiple Follower Stackelberg game (SLMFSG) to avoid ja,m-

ming for increasing the network life in the WSN. Anti-ja,mming

games iu multi-channel cognitive radio networls were presented in

[30], where the SU hops to another ctrannel to avoid the jamming.
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A zero-sum game is plal'ed between the attacker and the SU based

on a Markorr Decision Process (MDP). Maximum Likelihood Esti-

mation (MLE) and Q lea,rning are used for SU to learn from their

environment.

In [76], the authors proposed a Hierarctrical Learning Also

rithm (HLA) for anti-jnmming channel selection strategies in the

presence of cochannel interference as a Sta,ckelberg game. They

considered ja,mmer and users as independent learners (ILs), which

choose their strategies independently and selfishly.

In [80], anti-jamming FH ga,nre is constructed using a bi

matrix garne between the ja,mmer and the legitimate user. In [af],

gametheoretic stochastic lea,rning approach is used for anti-ja,mming

communication in dense wireless networks. In [66], the authors

have considered joint multi-agent learners in stochastic game settings

against a sweep ja,mmer. They presented a collaboratine multi-agent

anti-ja,mming algorithm based on reinforceurent learning in wireless

networks. Markorr game is forrrulated to model and analyze the anti-

ja,mming problem in multi-user environment. Moreorrer, A Novel

Distributed Multi-Agent Reinforcement Learning Algorithm against

Ja,mming Attads are presented in [100, 101].

Time domain counterureasure against random pulse jamming

using MDP and reinforcement lea,rming was presented in [62]. In [65],

MARL is used as independent Q learning for each agent against a
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sweep ja,mmer as a coilrmon practice'

Another ga,me-theoretic anti-ja,rrming scherne for cRN is pre

sented, in [67], where the su used Q learning to learn the dpamics of

the ja,mmer and reduce the complexity of ralue iteration-based learn-

ing. This scheme is considered as the benchmark scheme. However,

they only consider the anti-ja,mrring in ideal channel conditions with

no noise present. Secondly, they did not consider the time variations

in the wireless eihannel. The fra,mework presented in [67] is improved

by considering timevarying variable channels, a more realistic CRN

approach. F\rrthermore, in present situation, both players' utility

is reliant on channel quality; the better the channel, the bigger the

reward, and vice versa. The sube,hannels are differentiated based

on the received SNR, which results in the varying rnanimum drannel

capacities.

Evolutionary galne theory (EGT) has captured the attention

of researchers in DSA because of its impressive ability to model het

erogeneous environments as an enolving game. Evolutionaxy game

theory is also lucrative because it rela:res the traditional rational-

ity assumptions of ga,rre theory which require all players to have

complete knowledge of the garne. Yet another advantage of EGT is

that its framework of replicator dyna,rnics can provide commutable

rates of connergence to an Evolutionary Stable Stratery (ESS), thus

generating concrete predictions of the distribution of the deployed
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strategies and a pictrue of the adaptation of users over time [102]'

Ftgrrre 2.2: Dimeosiou of the anti-jnrnmi'8 gane

niques.

with an emphasie on deception-bascd tech-

2.9 Deception-based Anti-Jamming Games

Deception empowers network administrators by thorougtrly defend-

ing against attacks from both external parties and hostile insiders,

properly warning when something is wrong, and offering precise

threat intelligence for quick remediation. When compa,rd to tra-

ditional anti-jamming sctremes, deception give more protection by

making the jammer waste its resources as shoum in Figrue 2.2.

Ahmed et. aln prorrides. in [60] used Stackelberg game based

deception stratery against a deceiving ja.mmer in CRN. The authors

have used honelryots to detect deceiving ja,nrmers and used the jam-

mers direction of arrival to place the jnmmer's direction in the nulls

of the antenna. Howener, the proposed work is different from [60], be

cause a deception strategy is used not only to detect the intruder but
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also to deceine the ja,mmen. The authors of [103] presented decep

tive attarck and defence game in honelryot-enabled networks for the

Internet of Thir$ (IoT). The authors analysed the deceptive atta'ck

and defence mee,hanism using game theory as a dpa,rric Bayesian

game for single-shot and repeated games.

Recently, Nan et. al. [104] presented a leader-follourer Stack-

elberg deception game based on power allocation. They considered

two pairs of transmitter-receiver. The objective of the defender

transmitter-receiver pair is to rnaximize the throughput of legiti-

mate transmitter-receiver pair by deceiving the jammer with another

transmitten-receiver pair. The jammer divide its limited pourer bud-

get into two communicatiou channels, hence reduces the power in-

jected to the legitirnate transnitter-receiven pair that transmit the

real informatiou. They also presented the subga.me perfect Nash

F,quilibrium (SPNE) of the deception game. The authors in [86]

proposed a defensive defence against reactive ja,nrming attacks in

a commrrnication ctrannel. The tranceiver node adjusts its power

levels hence modifying the real-time information intentionally, re

sulting in asymmetric uncertainty to decoy the adversary. Similarly,

Hoang et. aI. [105] presented a deception stratery against a reactive

jammer using enerry harvesting and badrscatter technologies. The

authors in [106] uses a deception stratery in which the transmitter

uses arr intelligent deception method in whictr it emits fake signals

.l
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in order to attract the ja,mmer. The transmitter then has the option

of harvesting enerry from the jamming signals or barkscattering the

ja,mming siguals to broadcast data. As a result, ja.rrming signals can

help increase average throughput and decrease packet loss. F\rrther-

more, defensive deception using game theory and machine learning

is thoroughly reviewed and summarized in [104.

Moreoner, the proposed work is different from [60] in the sense

that a deception stratery is used not to detect the intruder but to

deceive the rateaware intelligent jammer. In contrast to what is

suggested by the authors in [108], which proposed a queuing-based

deception mechanism in CRN, we suggest a novel physical layer-

based deception teehnique with the freedom to adapt the rate to

the target parameter in CRN. The norrelty of proposed approactr is

evident from the comparison as shos'n in Tbble 2.2.

u



Cneprpn 3

Game-Theoretic SYstem and

Adversary Models

After presenting literature rerriew in previous chapter, this chapter

presents a geme-theoretic system and adversary models to be used

firrther in the nort chapters for gametheoretic analysis. Three ja,m-

mers with different lenels of intelligence are discussed followed by

system and ja,mmer model for problem I and II, respectively.

The objective of the secondary user is to carefully switctr the

chan''els to ma:rimize the spectrum utilization while avoiding the

potential ja,mming. On the other hand, the jammer aims to for-

bid secondary usem to form effective channel utilization by strategic

je-mmiag as shown in Figure 3.1. The objectives of the two players,

ja;nmer and secondary user, of the game, are opposite and there is

no question of coordination. Therefore the dynamic interaction be

tween them is well formulated as a non-cooperative zerosum garne,

:t5
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I.tEUre 8.1: su and ja,mmer cmtimrouly hop thefu eube,hmrcls to meet their objectirrcg' su

rould Uke to hoP to otiher avtilable subchsrDcls to avoid jrrnmer'

where the gain of one player is the loss of other players.

It is noteworthy to mention that atl secondary and pseudo

secondary users coordinate to maximize their payoff therefore, all

secondary users can be deemed as one player, and on the other

hand, all attackers are considered to be as another player. Spec-

trum arailability, channel quatity and strategles of both secondary

nsers and ja,nrmers a,re assumes timerarying. Players of the game

are intelligent and hop heterogeneous in sea,rch of optimal space to

avoid ja,mrning. Cooperation cannot be taken for granted as the two

participating players a,re opponents to eactr other and a gain of one

pla)'er is the loss of other players.

3.1 Jammer Model with Different Levels of Intelligence

Jamming is a hostile attack in the CRN, where it disrupts the wire

less comnunication by generating high-power noise at the targeted

subchannel as shon'n in Figure 3.2. A jammer with multiple intel-

tr

h

t
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Iigence lerrels is considered.

I Jammer

Isu

FrequencY

f,Eure 8.2: Deliberate radio ja,mmcr dirupts wircless cmrmunication by gememting hiSh-

pomn uoiee at the targeted nrbe.hannel.

3.1.1 Level-0 Intelligence: Random/ hf"nt Jammer

In lerrel-O intelligence, the ja,mmer is considered as random in decid-

ing which cha,nnel to ja,m.

3.L.2 Lev€l-I Intelligence: R.eactive / BabV Jo"'mer

In level-I intelligence, it is anticipated that an intelligent jammer

with cognitive skills will choose the optimal approach in response to

channel dyna,nrics and SU strategies. It scans its RF environrnent

and transmit the jamming signaJs only if it finds the SU, hence saving

its pourer.

b
E

O{

37
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3.1.3 Levet-II Iutelligence: Smart / Iben Jammer

In lenel-Il intelligence, a,n intelligent ja,mmer targets the highest im-

pact communication (HIC) eihannels by targeting specific tra'nsmis-

sion eharacteristics of su e.g., it can target the highest transmission

rate R rwhich may be the case in multimedia communications, high-

est transmission pourer P, theeihannel with the higlest bandwidth B,

packet inter-arrival time, and frequency shift, etc. [108]. The highest

impact communication is quantitatively measurd' by ja,rrmer using

attraction factors in Equation (3.3.1). The jammer perceives high-

est impact communication as the communication with the highest

transmission rate R, which is the case for multimedia communica-

tions.

g.2 System Model of Problem-I

The interweave paradigm for the timeslotted system is assumed in

cRN, where su can access the spectrum only if it is not used by

the PU [f2]. Every user scans the available subchannels and starts

transmission after white space is found'

we assume the network contains ?l PUs, .A/ SUs, and Mjam-

mers. The channel's total used bandwidth is W, and the whole band-

width is split into 4 indepeudent subctrannels of equal bandwidth

wlE. Howarer, the ctrannel capacity Q(a",t) oteach subcharunel
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may differ, depending on the sNR of the received signal strength.

It is assurned that the ja,rnming attack is the only soruce of

chenneil deterioration in the network and any other source of interfer-

etrce, including the effects of multipath fading is neglected' F\uther-

more, perfect time and frequency synchronization betwern all SUs

is assumed as in [110, 111]. Earh subchannel can be in two states,

namely the idle state and the busy state. The relationship between

the PU and an SU can be described by one of the two possible states

of the sube,hannel as follow:

. IDLE STATE: The channel is idle if any PU is not qsing it. The

su and the jammer are allowed to utilize an idle channel. The

idle state of the subchannel is represented by P : L

. BUSY STATE: The channel is considered busy if any PU is

using it. Both SU and ja.mmer are not allowed to transmit over

a busy channel. This state is represented by P :0.

The drannel states (idle or busy) are not knoum before the sensing

action is taken place. In this work, 4 subctrannels are considered ,

where the quality of eactr subchannel is different. Each subchannel

has its mar<imum capacrty limit based on its received SNR, given by:

Q,t(on,Cf):!bg2!+ Silfif,s(c" ,CfD, Yn e N,Ym € M (3.2.1)

where Ct,t(an,cf) represemts the capacity of the lth subchanrel for

the nt[ SU at time slot t, where a' and t u" the actions of the
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nth SU and the rzth jammer, respectively. Moreover, W lL is the

bandwidth in Hz for ea,ch of the 4 subeihannels and sNRir@",cf)

is the received SNR of the I'h channel for the nth SU. Let us first

consider the case where there is no jammer present in the system

and the SNR is defined as:

sIvq"s(a',f):ffi, VnG N'YmeM @'2'2)

where 4, i, the anerage signal porrer received by the zth SU at

the I'h subchannel at time slot t and I/, is the power spectral den-

sity (PSD) of the Additive white Gaussian Noise (AWGN). A high

SNRfr(a",c!") would Srrc a high channel capacity Ct,r(an,qf) ana

hence a higher channel quality. The channel capacity of the rzth SU

at the lth subchannel can be computed as:

Qt,.n,€) --Y^rrr'* ffil' vn € N'Ym e M' (3'2'3)

Moreover, the Signal to Interference plus Noise Ration (SINR) in

the presence of a ja,rrmer can be calculated as slNRir(o",cf) :

W,, , Yn e N,Ym e M where i/i,l is PSD of the ja'mming

signal ead,Biis the bandwidth of the ja,rrmed channel. Since all sub

e.hannels have identical bandwidth of Bi :1, the SNR becomes:

sN {op@',{, : ffi,Yn e N,Ym e M' (3.2.4)

The equation Equation (3.2.4) is true only when oin - cf, i.e., both

the SU and the jammer are on the sa,me channel. This results in se

vere degradation of the SNR for the SU. The objective of the SU is to
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rElrt'e 8.8: lbxonomy of deftuae techniquea agsirst a hostile ja,mmer in cRN.

carefirlly switch to the available high-capacity channel to manimize

the spectrum utilization, while simultaneor,rsly avoiding the potential

jamming.

3.2.L Secondar5r User ModeI-I

The SU senses its environment during its sensing period, before ini-

tiating any data transmission. Contention-based drannel selection

algorithm uses a structure called Preferable Channel List (PCL) to

initiate data tra,nsmission. The algorithm avoids collision and per-

forms Request To Send / Clear To Send (R[S-CTS) contention for
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data transmission. Moreover, sensfurg-assisted access (SAA) protocol

may be used as a complete random access mechanism for CRN to

initiate data transmission. In this mee,hanism, the contention-based

access is designed based on integrating the backoff process and spec-

trrun sensing [112, 113]. However, in this contribution, this aspect

is not investigated. Druing the sensing period, each SU would try

to sense for the presence of any PU in the arnailable subchannels.

Howwer, the SU can not detect the presence of a ja,mmer at the

beginning of the time slot. Nonetheless, the SU can realize the pres'

ence of the ja,mmer at the end of each time slot. More specifically,

at the end of each time slot, the SU would know if its transmission

was successful or was ja,mmed by a malicious jammer. The inter-

ested readens may refer to [45, 46] for details concerning ja,mming

detection. A successful transmission yield a positive payoff to the

SU, while a ja,rnmed transmission would yreld a negative payoff to

the SU. The utility of the rz'h SU in the I'h subchannel based on

the a,ctions of SU (represented as a") a,nd the action of the jammer

(denoted u q) at time slot t can be derived as:

tff (a",Cil : ffp(a",€)(aw(a",q)07 - ef)-

(t - x41(a",qDVi + erD, (3.2.5)

where ti is the cost of transmission of the nth SU, T is the SU

gain factor for successful communication, ff i, the loss factor for
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SU when the SU transmission in the I'h subeihannel is jammed' The

impact of the subehannel sNR and the decision of each player on the

utilities of both players are shoum in Figure 3.4. The received sNR

at earch subchannel increases from subehannel 1 to subchannel 10'

The utilities earned by eactr player are opposite to eae,h other' The

missing utility at subchannel 4 in Figrue 3.4 indicates that the PU

is transmitting in this subchannel, ild neither su nor ja,mmer can

use this sube,hannel. F\rrthernrore, subehannel 9 was jammed in

the prwious time slot, if the jammer stays there, the su would have

negative utility to use subchannel 9. Similarly, for the jammer, if

SU was at subeihannel g and if it stays there, then the ja,mmer would

have positive utility at subchannel 9. Additionally, the PU could

change to a different subcha,nnel in earch time slot, but it is assumed

that both the SU and the jammer can detect the subchannel used

by the PU.

The utility of the proposed system in Equation (3.2.5) can be

compared with the utility firnction in of the benchmark system [67]

grven by G(s, a) : E!=tG{s,a), whene the gain of the SU at the

Ith subchannel is computed as:

G{a,o) : q(s,o) x U - g1(a,a) x C, (3.2.6)

while r1(s,a) and y;(s,a) are binary switching functions. F\rrther-

more, U and C denote the utility earned by the SU and the jamming

cost of SU, respectively. The authors in [67] assume that the values
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for the utility and the cost in e\rery subctrannel are identical, since

their sube,hannels have the sa,me quality. The left-hand side of both

Equation (3.2.5) and Equation (3.2.6) denotes the utility function

of the SU, althoug! different notations were used. The right-hand

side of Equation (3.2.5) and Equation (3.2.6) h* the following dif-

ferences:

. The factor Ctr(o",f) i. introduced in Equation (3.2.5) to dif-

ferentiate the sube,hannels based on the subeihannel capacities.

Hence, successful transmission in a good quality subchannel

would yield better utility for the SU. This quality factor is miss.

rng in [67] and F,quation (3.2.6).

. The factors tt *d €fr are also considered to account for the

transmission costs for SU and for the ja,mmer, respectinely, in

terms of the battery utilization and the power transmitted.

. The two binary switdring functions rl(s,a) and yl(s, a) in Equa-

tion (3.2.6), are used in [67] such that cs(s, a) + y1(s,@) : L.

To simplify the mathematical uotation, the only one binary

switctring function xLt(an,f) i* used instead of two, sudr that

r\t(a', Cfl + (L - a1p(a", t)) : t.

. Fbrthermore, a more detailed utility firnction for the ja,rnmer is

considerefl sempa,red to that of [67], as will be explained later

in F,quation (3.2.11) ,,rrd Equation (4.1.2). Combining Equation
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rg113e 8l: Ite ippoct of chauge i! SIYR ard th€ decisior of ea,ch plarm m th,e utilities of

other Pls]ters.

(3.2.5) and Equation (3.2.3) Srr* Equation (3'2'7)'

t,fr(an, cil : ! bs,r1t . ffi)(q,r(on, 
ctr)(T - en -

(! - r41(an,cn)vr + ti')), Yn e N,Ym € M' (3'2'7)

where x\t(an,Cil e {1,0} is a binary switching function gsed to

o!
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indicate successfulfia,mmed SU communication:

lr, on f cf ,yn e N,ym e M, 
(8.2.8)ot,t(oo,Cf) = |

[0, at = cf,Yn €, N ,Ym € M.

Note thal x1p(an,q) b 1 for successful su tra,nsmission and is 0 for

ja,rrmed su transmission. specifically, clr(a",t) :0 if the sNR is

belour a certain threshold value SNRtt i.e., SNRflr(o",t) S SN&t

and the ralue of the switching function x\t(an,cf) would also become

0. Equations (3.2.2), (3.2.4) and (3.2.8) are related in the sense that:

lr, sNtr4r,,cf) >,siv&r,
q,r(o"rCl):{-, r,r,t, (9.2.9)

[0, sNfir(an,E) < sNR,a,,

and

sNfi/o*,cfr:[fu a2p(on'cf)-t 
(s.2.ro)

lffi 
'frN'E' a41(an' cf) : o'

In other words, the SU utility firnction in Equation (3.3.3) incorpo

rates the practical ehannel condition in terms of both the channel

capacity and the ja,nrmins conditions. The goal of the SU is to max-

imize the expected sum of the discounted payoff by choosing a good

quality channel that is not jammed by the ja,mmer.

3.2.2 Jam,mer Model-I

Ja,mrning is a hostile attack in the CRN, where it disrupts the wire

less communication by generating high-power noise at the targeted

subchannel as shovrn in Figrue 3.2. This research considers two
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types of ja,mmers, i.e., random ja'mmer (1"*'l-0 ja'rrmer) and intelli-

gent ja,nrmer (lwel-l ja,rrmer)' A random jammer would randomly

jam a subchannel in a different time slot. Inspired by [67] and [29],

when an intelligent ja,mmer with cognitive capabilities is assumed,

it adapts the best strategy to obserrre the channel dyna,rrics and the

sU strategies. The ja,mmer senses the RF environment for a given

senslng druation and then transmits its ja,rrming signals based on

the channel conditions and the stratery of the su. If a PU is de

tected in a subchannel, the ja,mmer would switch to other arailable

subctrannels to avoid the hearry penalty imposed by law-enforcement

agencies and start sensing agein [29]. The utility function of the jam-

mer in the lth subchannel is based on the actions of the SU and of

the jammer, which is rePresented bY:

tlff,t(a", cf) : cfr(a!',4') t(t - rt,t(an, cfl)1if - efr)-

r\t(an,Cfl(0e['1l,Vn € N,Ym c M, (3'2'11)

where Cfi(a",qf) i. the channel capacity of the lth subchannel and

Tf isthe ja,mmer gain factor when a SU was successfully ja,mmed,

while tff is the cost of transmitting the jamming sigals. F\rrther-

more, f is the ja,mmer regret factor when the jamming was not

successfuI, which is the negative reward earned by the ja,rrmer when

the ja,mmer sends a ja,mming signal to a subctrannel that the SU did

not use. As mentioned in Equation (3.2.8), u\t(an,cf) is a switching
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function having r\t(an,t) :0, when the jammer sucoessfully ja,ms

a clrannel (zero regrets), while t\t(an,t) : 1 when the jammer

fails to ja,rr the su. Hence, an intelligent ja,mmer is more inclined to

ja,rn a sU that operates in a high-capacity subchannel ttran a low-

capacrty subchannel. The objective of the jammer is to maximize

the probability of successful ja,mming.

3.3 System Model of Problem-Il

The system model for the first portion of the work described in this

thesis was presented in the previous section. The second portion of

the system model for the deception-based anti-jamming mechanism

is shown here. Let's look at the jammer featues as defined by the

ja,rrmer model before discussing the system model to deceive the

intelligent jammer.

3.3.1 JarnrnerModel-II

The objective of the Jammer: Jamrner tries to minimize the

average bandwidth efficiency of the CBS by injecting noise to those

rrcers having the highest impact communication. The impact of jam-

ming attarlc on the communication subdrannel is to reduce the SNR

at the receiver and hence reducing the capacity of the channel. A

pourerfirl ja,rrmer with the following draracteristics is assumed.
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. Level I: Reactive ja,mmen

. Level II: Intelligent jammer: Rateaware

Thebasicassumptionsaboutthejammermodelare:

Ja,mming at the physical layer is assumed, in which a jammer

hinders wireless communication by producing high-power noise

at the targeted subchaillel.

similar to other secondary users, an iutelligent ja,mmer is in

essence a secondary user with sensing, perception, and adaptive

capabilities as assumed by [07, 114] and [30]. As we already

knon, that the secondary user has the lon'er priorities to access

the spectnrm as compa,red to the primary usersr therefore a sec-

ondary usen has to use its sensing ability to sense its environment

for the anailability of free spectrum to continue its transmission

and to avoid interference to the primary user. In a very similar

fashion, a ja,rrmer needs to sense its RF environment for the

presence of a primary user. Then the ja,mmer will avoid the

primary user if detected as the primary user due to the risk of

a high penalw. On the other hand, the jammer targets users

other than primary users.

we are combating against intelligent jammer in cRN in inter-

view paradigm, where the spectrum hole is accessed by sec-

ondary user on opportunistic spectrum access (osA) bases. The
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intelligent ja,mmen has the cognitive capabilities' mea,ns that it

is capable of sensing the presence of primary user in the net-

work. The intelligent ja,rmmer is deemed as a secondary users

with negative intentions to disrupt the cornmunication of other

secondary users. In the initial sensing time of a time slotted sys"

tem, intelligent ja,rrmer do also listen to the presence/ absence

of primary user just as the other secondary users do. so, the

intelligent ja,rrmer is capable of sensiug the RF environment and

based on the sensing results it transmit the noise signals on the

frequencies \Ecated by a primary user and utilized by secondary

user to jam the communication of secondary users. The jammer

can not jam the primary user due to heavy penalty imposed by

the laur-enforcement agencies.

Due to the prospect of a severe penalty, the jammer does not

target the PU communication [29, 108]. The jammen monitors

the RF environnent for a predetennined a,mount of time before

transmitting its jnmming signals in accordance with subchannel

circumstances and the SU's stratery. If a PU is identified in

one of the subchannels, the jammer will switch to another sub

channel and begin detecting another SU.

Jammer is constrnined by the J^" number of users it can target.

For the cause of simplicity J^*: L.
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. The ja,rrmer aim at ja,n[ning the users with Highest Impact

communication (HIC) [108]. In multimedia communication, the

HIC is the one having higher data rates. Therefore, high data

rates for su increases the risk of getting jammed by intelligent

ja,mmer.

. Ja,m:ner use attraction factor 6, 0 ( d; ( 1, Yi e N to target

(HIC), which is defined as

6r= rfu, vi e.iv''t'fo, : r

where & is the data rate adapted by the ith SU/PSUs. The

iutelligent ja,mmen rnay acquire the rate/code/modulation in-

formation of SU/PSU usrng one of the following three waJrs: eK-

plicit rate information, modulation guessing and code guessing

[52].

. Ja,rrmer calculates d,0 ( d < 1 for every detected signal in his

environnent according to F,quation (3.3.1) and target the su

with the highest attraction factor.

Ustng level-I intelligence, the jammer will scan the environ-

ment and lmow the channel qualities and the transmitting SUs. Us-

ing lerrcl-Il intelligence, the ja,mmer will determine the highest im-

pact communication of the secondary network using attraction factor

in Equation (3.3.1).

A triangular anti-ja,mming deception garne is presented be-

(3.3.1)
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Figure S.5: A trigngul$ auti-ia,urning deception ga,me is preaented betq,Een SU, PSU, and the

ja,muer in the absence of PU.

tween su, PSU and the ja,urmer in the absence of PU as shown in

Figure 3.5, indicating a cooperation in the form of light green alronr

between all SUs and the PSUs.

3.8.2 Cognitirrc Base Station (CBS)

The secondary network consists of one central unit called fusion cen-

ter (FC) / Coguitive Base Station (CBS), several SUs and a PSU.

Objective of CBS: The goal of CBS is to improve the orrerall

system's average throughput by successfully deploying a deception

medranism using PSU in the presence of an intelligent ja,mmer.

3.3.3 Secondar5r User Model-II

. SUs are enforced by dlma,nric spectrum access (DSA) imple

mented in CBS to periodically pause its transmission and sense

for PU activity, to protect PU incumbent senrices.
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. The su senses its envirorunent druing its sensing time before

commencing any data transfer. Throughout the sensing time,

each su would try to detect the existence of any PU in the

accessible subchannels. on the other hand, the su would be

unable to identify the oristence of an adversary at the start of

a time slot. Concerning ja,nrming detection, interested readers

may see [a6]. Despite this, the SU is able to detect the existence

of the jammer at the endiug of each time slot [45]. After each

time slot, an SU would knou' if its communication was successful

or was ja,mmed by a malignant ja,mmer.

. The SU would receive a positine remrard if the transmission was

successful, while a ja,mrned transmission, on the other hand,

would result in a negative payoff. The utility of the SU denoted

us Ui in the ith subdrannel can be derived as:

t[:G($-6r)9-6il), (3.3.2)

where G md d are defined in Equation (3.2.3) and Equation

(3.3.1), respectively. Moreorrer, G and J are the gain of the

secondary user and gain of the j'-mer, respectively' Combining

Equation (3.3.2) with Equation (3.2.3) yields Equation (3'3'3)'

v,= (w/E) log2(1r ffirUL- 6,)9 -6,11. (3.3.3)

In another way, the SU utility function in Equation (3.3.3) allows us

to incorporate the practical channel condition both in terms of chan-

nel capaciry and jnmmilg situations. In the presence of a ja'mmer,
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the su,s objective is to achieve the expected sum of the discounted

payoff by selecting a good quality drannel'

3.3.4 Pseudo Secondary Userr (PSU) Model

A dummy usen called pseudo secondary user (PSU) is assumed to

mimic the characteristics of a legitimate SU to lgre the jammer' PSU

lures the ja,mner by transmitting at a higher modulation seheme to

invite the jammer to attack the PSU. A group of sus takes the

services of a PSU to decoy the intelligent ja'mmer'

. A PSU does not send a legitimate srggal; rather, it transmits

garbage data at a rate greater than the other SU to deceive the

ja,mmer. That is why the utility of PSU is not counted in the

calculations of throughput of the CBS.

. The wireless communication system is designed to achieve a sper

cific BER line in a BER-SNR(dB) qrnre. one has to follon,

this line for reliable communication. Moreorrer, according to the

Shannon capacity theorem, a specffic data rate can tolerate a

certain lerrel of ja,mmirU power (received SNR) to achieve reli-

able communication. If the jamming power is greater than the

threshold, the corresponding data rate of transmission may er(-

ceed the channel capacity. The packets axe lost, whidr results in

lourer throughput of the system. Howerrer, this does not apply
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totheproposedPSU.baseddeceptionmechanisil,sthePSU

istransrrittinggarbagevalueswitharatehigherthantherate

of sus in the vicinity. since a PSU is transmitting garbage

data, it is not interested in the loss of packets. Hence, the data

rate/capaciw of PSU is not calculated towards the throughput

of the system.

. A rnariable called attraction factor 6 e (0,1) is introduced to

h:re the ja,mmer by attracting the rate-aware ja,mmer towards

itself. The proposed scheme is implemented so that the jammer

gets the false impression of PSU as the highest impact coilrmu-

nication. It becomes Achiles heel for the ja'mmer'

9.4 SummarY

The norrel contributions of the resea,reh work can be summarized as

follows:

t. A cognitine adversarial ja,rnmer is considered, which is an intel-

ligent attarcker that adapts to the dpa,mics of the subchannels

and the strategies of SU.

2. A mathematical modelling of the system is developed to satisfy

the requirement, incorporating intelligence in the su to cope

with an intelligent ja.rnmer.

3. A more realistic and practical ctrannel model is fra,med here,
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which assumes thst all subehannels may have the rarying qual-

iw of service. More specifically, the ctrannel conditions may

ellange over time and diffen from one subchannel to anothen.

4. The proposed fra,memrork considers rnarious factors and para,me

ters that capture the near practical channel dynamics, i.e., sNR,

variable eihannel capacity, jamming gain, tra,nsmission cost and

ja,mmins cost of each player in the garne.
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Part-I: ProPosed Anti-Jamming

Game to Combat Intelligent

Jamming for Cognitive Radio

Networks

The system model was presented in the previous chapter. This chaP

ter describes the optimal solution stratery to combat intelligent ja'rr

mers.

4.! Game Theoretic Anti-Jamming Mechanism-I

Here the ga,rnetheoretic anti-jamming mechanism is presented' An

anti-ja,runing game is presented after having a brief section of pre

liminaries of the game theory.

5l
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4.1.1 Preliminarles

A Stoe.hastic Ga,me (sG) is the natural extension and generaliza-

tion of the Markorr Decision Process (MDP) to multi-agent systems

[g, 26].1 SG prwides a fra,meurcrk for multi-agents in multiagent

reinforcement learning (MARI,I). In this contribution, a stochastic

anti-jamming game is dweloped between two players of conflicting

interests.

Definition 1 [27]: A tweplayer stochastic game is defined as

9 : (X,E,A4,\A), where X : {1,2} it the indor of the players' 5

is the discrete stratery space of the galne' -4 is the discrete action

space of player i, while 14 , s x A; is the utility lpayofr. of player i,

Yi e 2t.

Definition 2[115]: A pair of strategies (i*, r) {i for the rou'

player, and j for the column player) yields a non-cooperative Nash

equilibrium solution to a bimatrix ga,me ('4: {Ari},B -- {Bril),

where.,4andBwepe)'offmatricesforea'chplayerifthefollouting

two inequalities are satisfied:

4.r.2 A;5., Vi,i --1,2,3,...,P,

B;,i. I Byi, Viri =1,2r3r...rP,

(4.1.1)

where P is the total number of pure strategies, each stage of a

stochastic game can be viewed as a bimatrix ga,me.

The basic assumption of a stochastic game between two inter-

gunes, vhid esoeutisUy are rrageut MDP [24'
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acting players is that the actions of each player will have an impact

on the utility of other playen. The same assumption is valid here in

this resea,rch work. The SU obtained its utility based on the past

actions of the ja,mmer in the previous time slot. If the subeihannel

to be accessed by the SU receines an SNR lower than a threshold, it

implies that the ja,mmer successfully jammed the subchannel, and

SU will get lourer utility at that subchannel at time slot t.

4.L.2 Game trbmulatlon

Based on the knowledge about the channel, the system and the at

tacker, the objective of the SU is to carefully ehoose a subchannel

to maximize its spectrum utilization while avoiding ja,mming. On

the other hand, the ja,mmer airns to forbid the SU from effective

ctrannel utilization by a strategic ja,mming approach. The objectives

of the two playens, namely the ja,rnmer and the SU, axe opposite to

eactr other. Therefore, the dlma,mic interaction between them is well

formulated as a non-cooperatine game, where the gain of one player

is the loss of another player. F\rrthermore, spectrum arailability,

quallty of the channel, and strategies of both SU and jammer can be

timerarying. Players are assumed to be intelligent and would ex-

hibit rational behaviour to maximize their payoffs according to their

objectives.

A twoplayer SG is formulated between the SU and the jam-



Cglprgn,4: Pmr.I: PnopossD Arrrr.J.luulxc Grurrp ro co}rs.Ar lrrrHlrcpxr

Jluutxo ron CocxIrnrs naDIo Nsrwonxs

mer as described belon':

Players: There are two non-cooperative players in the game namely

the SU and the jartmer.

states: Enery subchaflrel occupation is considered as the state 5

of the geme. For exa,mple, if there arc L subchannels, then there

arc L states. The number of available states to the su and jammer

is given w L -?l,where .c is the total ntynber of subchannels and

?l is the nutrrber of PUs in the network'

Actions: An action A(s) at eactr state hx L - ?I hopping possi-

bilities. For eactr L - ?t available states, the possible action set is

.,4(s) : {orrorr@6t...tait...taL-?t}, where o; is the action to hop to

the ith subeihannel in the E-llarailable subchannels. Both players

choose actions to hop to any of the anailable subdtannels, whidr are

not occupied by the PU. Since the available frequency slots are the

same for both players, the action set ",{(s) is the salne. Every action

results in a change of state. Both ja,mmer and SU sense the channel

during the sensing period and hence the channel states and channel

quality are assruned to be common knonrledge in the garne.

Payoff: The immediate p&)'offs of both players in a bimatrix ga'me

at each stage are given by Equation (3.3.3) *d Equation (3.2.11),

respectively. The total utility of the whole secondary network is

gven by N E

hr(o,ri) : E ll,fft@",cf),
n5[ l=!

(4.1.2)
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where Ul,r(rn,f) i. given by Equation (3'3'3)' The long term ob

jective of su is to maximize the orpected sum of discounted payoff,

which can be written as [26, 29]:

ma:r .E{Er*,","r)}, (4.1.3)

where 7t is a time decaying discount factor, 0 < ?' < 1, that deter-

mines the signfficance of futrue payoffs andll7,1(o, ci) b the utility of

the secondary network at time t, whieh is given by Equation (4.1.2)'

The frequency hopping strategy of the su is to maximize its utility

by taking an optimal action that is given by:

c* = ars.p1i!) '{i*+w'(''"')}'
(4.1.4)

similarly, the frequency hopping strategy of an intelligent jam-

mer is to ma:cimize its expected utility of DEo 1tlliry,t(a, q) by tak-

ing an optimal action of:

'1 = arsffi,r '{fi+','*'(o'")}'
(4.1.5)

The pair (o*,4) is said to be an equilibrium pair, if Equation (4.1.a)

and Equation (4.1.5) follon, the following inequalities:

n 1itt *r,r1c', ci) ) > Etf ^fitr,s@, $)\,
t=1l t=0

OO

n {l ^ftfi ,r,, 1c', ci ) } > E {E ^fu4\r $(o', ci)\.
(4.1.6)

,=O t:()

4.1.3 Cllearning-based Anti-Jammtng

In the prwious section, the anti-jqmmiug game formulation was

mentioned. This section describes the defense stratery of the SU, i.e.,
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1: Initialize Ic = 0,-;6 : 1gg, oe e [o,tt and ? € [0,U, vst e 5, o] e /(g) a'!d

4 e.L(a)-
z,li,erQ(al,c*):g.
3: while lc -r K do
4: Execute astion at, get immediate remard ft(e, cft) according to (3'3'3) and obsen'e

st+l.
E: Choce ct+r from ,t+1 *;og policy derived from Q(ct,cft) as 6tem in (4.1.9).

6: Update Q(*,oh) for SU according to (a.1.7).

7-. ct F cHl and ct F ct+l.
t: etrd while
g: lf c = cj then
1o: Ite channel is ja,mmed.

11: else
L2: The SU transnissi@ is successful.

13: end lf

how to defend the SU from being ja,rrmed by the jammer. A multi-

agent reinforcement learning (MARL) agent as independent learner

(IL) in QJearning is used to combat ja,mming attad<s in CRN. See

Section 1.5 for details of reinforcement learning algorithm called Q

learning to be used here for solving the optimal strategy. The value

of Q(sr, ah) in Equation (1.5.2) can be updated recursively without

having to estimate the transition probabilities [116], as follours:

e(rt, oh) : q1ee, ct)(t - ,t) + ol[E(Et, afr) + r4g5{q(rH', o}+')}], (4.1.7)

where oft is the linear learning rate satisfying 0 < oft < 1. For

at to be time decaying it must satisfy the conditions DB-10 ot : oo

and DEio @\' ( oo. Note that 7 is the discount factor satisfy-

ing 0 < 7 < 1. Similarly, the intelligent jammer can also adapt

the Qlearning algorithm to learn the dyra,mics of the SU and the

subchannels [114. Brplicitly, the jammer maintains a separate Q
learning table for its own rational decisions. After updating the Q
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zG t[eoretic alsodthm for ja'mmer'

r: Initialize Ic =0, K = 100, "I € [0,1] ard? € [0,1],Vst e E ' ot e 
"{(s) 

and

di e.a@)
z, i,ertQi@k,4\=O.
3: while Ic -r K do
4:, Brecute actiou $, S*immediste remlard kb,4) accoding to (3'2'11) and ob

senrc sHl.
E: Ch;4+1 no- 

"t*1 
uring policy derived from Q3(sI,{) ," gl,* in (4'l'10)'

6: Update Qi,ur,4) for ja,urmer according to (a'1'8)'

7= sft F sh+l *d 4 * 4*r.
t: end whlle
9: lf c3 : c then
10: The jamner is successful.

1l: else
t2: the SU transrrission is succeEgfiil.

l3: end lf

table, an intelligent jammer could decide based on its updated Q

table. The update rule for the ja,rrmer's Q rnalue is given by:

e1d,4) = gi@h,$)(l - oI) + a&[&(8t,4) + rqgtQ("H1, d+1)]1, (4'1'8)

where Q@k,ak) and Qibr,4) r*. the estimates of the g)(pected surns

of the discounted payoft for both the SU and the ja,rnmer, respec-

tively, which could evolve. The rewards of the su and the ja,m-

mer after choosing their respective actions at state sft are glven by

R(ro, ar) and Ri(r*, {), respectively. These immediate rewards a,re

calculated using F,quation (3.3.3) and F,quation (3.2.11) for the SU

and the ja,rrmer, respectively. The SU would stay on the current

subctrannel if its reward on the current subchannel is good enough

to contribute to Q vatue update positively. A negative instant re

ward in a certain subchannel indicates that the subchannel has

been ja,mmed and the SU should avoid that subchannel by hopping
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to another available subchannel in the next round' The su's op

timalfrequencyhoppingstraterytoavoidthejarrmeristheaction

that rna:rimizes its Qvalue in state s and is given by:

c* : argoffi; Q@,o).
(4.1.e)

Algorithm 1 summarizes the ga,me-theoretic frequency hopping algo-

rithm for su. The ja,mmer's optimal frequency hopp[rg stratery to

ja,rn the su is a greedy policy that chooses the action with ma>rimum

Qvalue in state s and is ginen bY

"1: 
arg*ffi") Qi@,"i. (4'1'10)

For ja,mmer, the procedure is sunmarized in Algorithm 2'

4.L.4 ComPlotitY AnalPis

Inspired by [64, the computational complority of Algorithm 1 and

Algorithm 2, in this subsection is derived. Inside while loop line 5 of

both Algorithms represent the policy derived from Q lea'rning' ffid

Iine 6 represent the update equation of Q learning. The computa-

tional complexity in earch iteration of the policy phase comes from

solving linear equations. The complexity of the policy phase is given

by o(lsl). on the other hand, the complexity of Q learning phase is

calculated as o(lAl.lsl). combing both will result o(lsl.(l + lAl)).

As the algorithrns run for K number of iterations, heuce the overall

complexity may be represented by O(lKl'lSl'(1+ lAl)), where 'S and

A represent states and actions, respectively'
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rbble 4.1: pare,meters used in the siEul,uti@8, ard different sNR valuea frr all gubchannelr
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After presenting the system and adversa,ry model and then

the solution mechanism in the previous section' this section presents

the results and discrrssions. Problem-I presented the results against

random and reactive ja,mmers while Problem-Il prorrided deception-

based anti-ja,rrming results against rate-awa,re intelligent ja'mmers'

4.2 Results and Discussions

This simulation study considers N - 10 subchannels' one SU, one

PU, and up to four ja,mmers. when the PU occupies a sube,hannel,

neither the SU nor the jn'mmsls can access that ctrannel' The SU

chooses a high-capaciff subchsrnel that is potentially ja'mming-free,

while the jammers predict and c,hoose the subchannel used by the

su.
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4.2.t The Effect of Using Diffenent Chanuel Types:

The capacity of a sube,hannel is a measure of the highest information

rate that can be archiened with a very small elror rate'The channel

capacrty Cl,r(r",f) i. represented by F'quation (3'2'1) *d Equation

(3.2.10), while the bandwidth efficiency in bits per second per Hertz

(bps/Hz) can be comPuted as:

(4.2.1)

In each epoch the simulations a,re run A - 2000 times to get the

average bandwidth efficiency for eactr SU:

,"-ry-=*z(r*#-*u),va€.^/

F=iio (4.2.2)

TWo cases are cousidered, where case I refers to the situation

when all the 4 subchannels have different SNRs, and hence, different

channel capacities as given by Table 4.1. By contrast, all 4 sub

e,hannels have the same SNR in case II. More specifically, case II

is related to the idealistic sceuario [67]. The mean SNR in dB is

calcnlated bv: 
sNffi: r0ro.ro (ipr*), G,-s)

where sNfua,r : 10log1s(sNR{,1) is the sNR of.lth subchannel. The

SNR for each subchamel in case II is the salne as the average SNR

of case I (SNfuB : L6.2 dB). For a fair comparison, the mealrs

sNRs for both cases are equal, which i8 SNfuB : 16'2 dB as shovm

in Tbble 4.1.
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Here,theproposedandbene,hmarkschemereferredinSec-

tion 2.2.1 in case I are compared, where the subchannels have vary-

ins quatities. Howeven, the bendmark scheme assumes that all sub

channels have a fixed quality Fquation (3.2.6). As seen in Figure 4'1,

the proposed system outperforms the beneihmark sdeme in terms of

jamming probabilities and bandwidth efficiency. Please note that

when the channel qualities of all subchaillels are fixed, the pro-

posed scherne will perform similarly to the benchmark scheme' In

other words, the proposed scheme is the generalization of the bene'h-

mark scheme to the general case, where the subchannel qualities

vary.

Figure 4.2 shows the probability of successful ja,urming by the

ja,rnmer. and the bandwidth efficiency of the su, for both cases I and

II, when one or two random jammers are considered' With increasing

epochs, the intelligent su could learn the environment in a better

way and the probability of successful jamming is expected to be

reduced, while the bandwidth efficiency would increase. The proba-

bility of successful ja,mming for the two-ja,mmer scenario is slightly

higher than that of the singlejammer scenario, but the probabilities

converge to zero after 60 epochs, as shov,rn in Figure 4'2a' F\rrther-

more, in the more chatlenging case I, where the eihannel quality varies

across the subchannels, the proposed algorithm still works well de

spite requiring a more ortended training period (or epodrs) to reactr
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the convergence point, as seen in Figure 4'2b'

The proposed algorithm afloIrs su to intelligently e;hoose sub

eihannels with higher channel capacities when the channels are vary-

ing as in the case I. Hence, the average bandwidth efficiency of the

system is improrred. It can aJso be seen from Figure 4.2b that the

average bandwidth efficiency in the single-jammer scenario of the

case I (solid line) is higher than that of the single-ja^mmer scenaxio

of the case II (dotted line) after 40 epochs. A similar pattern can

be seen for the twojanmer scenario in Figure 4.2b, after 45 epochs.

In other words, the proposed algorithm works better for the case I

after a sufrcient training period. Hence, the proposed sctreme that

operates in variable-quality channels (in case II) outperforms the

bene,hmark seheme of [6fl that works in fixed-quality chal]nels (in

case I). F\rrthermore, the a\rerage bandwidth efficiency of the SU in

the tweja,mmer scenario is almost equal to that of the singleja,rrmer

scenario for both case I and case II. This indicates that the proposed

algorithm performs equally well when working against two random

jammers.

4.2.2 The Effect of Ilarring Different Q'pes of Attadcs

In this scenario, the impact of having an intelligeut jammer in the

system is inrrcstigated. Keep in mind that the intelligent ja.rnmen

aJso learns from its Q ralues giveu in Equation (a.1.8) based on the



,.:l

,rl
o.7l

0.6

0.5

0.4

0.3

o.2

0.1

0

rlal.

ta-- \ I \rta
-t\'irr-olrr't--trrt

Fandomlammorin caso I

lnHllgentlammer ln casa I (Prcposed)

^'--'-- Random lammer in case ll

- - .lrrrcliaant iammer In case ll

Cs.lprtn4:Plnr-I:PnopospoAur-JauurcGAMEToCoMBATlxrpr'LIcsur
Jlumnc FoR CoGNrflvE R"loro Nprwonr<s

30 40 50 60 70

No. of Epochs

(a) Probability of nrcceasful iarming'

o 10 20 30 /O 50 60 70 80 90 loo

No. of EPochs

(b) Bandvidth emciersY.

FtEUre 4.3: Coupariaon of the probability of sgcceosfrrt ja,mming and baodwidth efficiencl' fur
- 

SU, when considering randm or-t$eltigent JamDsEs for both case I aad case tr.

Othrr para,meters a,re ginen in Iffie 4'l'

l
CI'

o

=lt6
.ct
e
o.
CD
E
E
E6?

66
b
CL9s
otr
.9
8+
o
EE^
-otttr
d
.cI
o2
ED6
o
<1

- - 'Random jammer in case I

Inblllgenfl jammer In case I (p]oposod)

Radom iammer in case ll



,.:l

o.8l

o.? I

I

0.6

0.5

0.4

0.3

0.2

0.1

0

Random SU agnlnst Random Jammer

- - lnblllgont SU agalrct Random Jammer

-'--- Random SU against [rrligent Jammer

SU Jammer

Cu.lprtn4:Pmr.I:PnoposroArrr.J.lurrncGAMErocoMBATlxreElcpxr
Jluutre FoR CoGMrwE R-ADIo Nprwonxs

20 30 40 50 60 70

No. of EPochs

(a) hobability of nrcceafiI ja'mming'

30 /+0 50 60 70

No. of EPochs

(b) Badsidth efficieocY

E
ll(!
ll
e
o.
CDc.E
E
.lt?

7

66Eb
CL9s
otro
.Ea
o

!

!t
E3trdlt
o2
ED
Eo
(t

- --'^-::^-: 
- :-:^---' 

'

Random SU agalnst Random Jammer

- - - lnblllgont SU against Random Jammer

-'--- Fandom SU agalnst lnblligent Jammo

Flstrl,e 4.4: Probabiliry of succesftl jsEEinS and bandwidth efficiency of the ffiem havins

intelligsuth-d* $[I rgnin*t 
til[ssnVraadom 

ja'umer in case I'



CrrlpreR 4: Plnr-I: Pnopospo Axrr.JNr{ruNc Gnup to Cotuslr ItttgLl,tcsNr

Jluutxc FoR CoGNmvs R-loro Nsnronns

para,meters given in Tbble 4'1'

Figure 4.3a shovrs the ja,mming probabilities of the random

and intelligent ja,rnmers for both case I and case II. In particular,

the ja,m:rring probability converges to zero after 30 epochs when a

random jammer is invoked. The successful ja,mming probability in

case I (dashed dot line) is around L}To at the 30th epoch when an

intelligent ja,mmer is present. Hence, the successful ja,mming prob

ability is greater for an intelligent ja,nlner compared to that of a

random ja,mmen as orpected. The two cunres (case I and case II)

are almost the salne for the random ja,mmer case (not the intelligent

ja,mmer case). The proposed serheme (case I) in solid blue is similar

to the benchmark se.heme (.r". il) i" dotted yellou' because of the

non-intelligent behavior of the random ja,mmer. Flom a random ja'm-

mer perspective, the subchannel qualities do not matter' Therefore

the successful jamming probabilities against a random jammer for

case I and case II are almost similar. In contrast, the two curves a,re

different for the intelligent ja,rnmer case. The focus of this researeh

is to combat against an iutelligent ja,rnmer. The intelligeut jam-

mer looks for subchannels with good subchannel attributes' The

proposed scheme works better against intelligent jammer in variable

subchaillels case (case I, dash-dot red) as compared to the bench-

mark scheme (case II, dash indigo). The proposed scheme (case I,

dash-dot red) reduces the successful jamming probability to zero af-
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ter 70 epochs, while the benchmark scheme (case II, dash indigo) is

not capable of doing so.

AsseeninFigtue4.Sb,thecorrespondingaveragesUband.

width efficiency in the presence of an intelligent jammer (solid line)

is almost equal to that when having a random jammer (dashed line)

#ter 40 epochs. Hence, the proposed intelligeut su can avoid the

intelligent jammer after a certain training period. F\rrthermore, the

su bandwidth efficiency in case I is higher than in case II. Hence,

the SU can aJso choose intelligently subehannels with higher capac-

ity, in case I, for increasing the a\rerage bandwidth efficiency of the

system while successfully avoiding the intelligent ja,mmer.

4,2.gTheEffectofUsingDifferentDefenceStrategiea

Here, all four possible intelligent/random SU against intelligent/random

ja,mmer scenarios are discussed, based on case I. As seen in Fig-

we 4.4, when a SU chooses a random subchannel strategy in the

presence of a random jammer, then both the successful jamming

probability and the average bandwidth efficiency of SU remain al-

most constant (dotted lines). The perforunllce of SU improrres re-

markably when it behanes intelligently against the random ja,mmer

(dashed lines). It is visible that a SU r:sing a random stratery against

an intelligent jammer will result in severe jamming and the SU band-

width efficiency degrades drastically (da.shed dotted lines). Hence,
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lhe su must be intelligent to combat against an intelligent ja'nrmer to

reduce the successful ja,mming probabiliw and increase the average

SU bandwidth efficiency (solid lines)'

4.2.4 The Effect of Multiple Intelligent sus against Intelligerrt Jammer

In Figure 4.5 the performances are compared when increasing the

number of intelligent sus in the secondary network. In Figrue 4'5a,

it is shoum that the jamming probability is higher for two intelligent

sus in the presence of a single intelligent jammer compared with

the situation when only one intelligent su is transmitting. The huge

impact of an increase in bandwidth efficiency is shourn in Figrue 4'5b'

The bandwidth efficiency of the secondary network is almost doubled

when there are two intelligent sus against an intelligent jammer'

4.2.6 Performance Eraluation of Intelligent SU against Intelligent Jam-

mer in Thne Slotted View

In Figrue 4.6, Figure 4.7 and Figure 4.8, the x-anis shows the time

slot inden and the height of the bar shovrs the utility earned based

on the decision of each pla)'er after a training period of 100 epoctrs'

As already described in the proposed model, each subdrannel has

different quality based on the received SNR. Without loss of gener-

iv_r SSNRrv, i €.^tr i.e., the SNR is increasing from subchannel 1
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ja,mmerr Jr" pn u*t in case I, fu a differcnt number of availebte qft'chnnneh'

to subchannel 10. The impact of changes in sNR and the decision

of each player on the utilities axe shown in Figure 3.4, where the

utilities eaflred by each player a're opposite to ea& other'

When the players have trained adequatel$ then the corre

sponding Q tables would be appropriately updated, which would

result in good decisions for all players. The intelligent SU has more

choices in terrns of ctroosing an optimal subchannel. More explic-

itly, the SU can choose any of the arailable subcha^nnels, while there

is only one subchannel that the jammer can choose 'correctly' for

successful ja,mming. Hence, it is less probable for the intelligent SU
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to get jammed based on the updated Q table values. Both intelli-

gent SU and intelligent jammer would opt for high-quality channels

as depicted by the height of each bar in Figure 4.6. As seen in Fig-

rue 4.6, the SU chooses subchannel 10, while the ja,mrner chooses

subchannel 4 at time slot 1. Hence the SU has a positive utility,

while the ja,rrmer has a negative utility. Also shown in Figrue 4.6,

the janrmer only manages to ja,nr the SU at time slot 10, over the

lFtime slots considered. Hence, the intelligent SU malrages to avoid

the ja,mmer, while choosing high-capacity subchannels.

4.2.6 Performance Eraluation of Intelligelrt SU against Random Jam-

mer in Time Slotted View

Figure 4.7 shows the decision patterns for the case when intelligent

SU adapts the Q lea,rnring for strategy update, while the ja,mmer uses

random stratery. As seen in Figrue 4.T,theintelligent SU manages to

avoid the random jammer in all of the lFtime slots considered, while

at the snme time capable of ejhoosing high-capacity subcha,nnels.

4.2.7 Performance Evaluation of Random SU against Intelligent Jam-

mer in Time Slotted View

Figure 4.8 depicts the decision patterns for the case when the SU uses

a random stratery against an intelligent jammer that invokes the Q

lea,rniug for strategy update. As depicted in Frgure 4.8, the jamming

EO
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rate is high, which is 11 successful jamming out of the lFtime slots

considered.

4.2.8 Performance Evaluation When the Last Action is the Initial

State:

Decision pattern in first lFtime slots for intelligent SU and intel-

Iigent jammer when the prwious action is considered as an initial

state in Figrue 4.9.

4.2.g The Effect of Increasing the Number of Subchannels and Jam-

mers:

Figure 4.10 shourc the impact of increasing the number of subchannels

and the number of ja,rrmers. As the subchannel increases, the in-

telligent SU will have a higher chances of avoiding the jammer. It

is shourn that the bandwidth efficiency of SU increases as the num-

ber of subctrannels increases due to the increase of the choices in the

subchannel space. It is found that increasing the number of random

ja,mmers does not signfficantly a,ffect the bandwidth efficiency of the

intelligent SU. It seenrs that frequency hopping is a very good strat-

ery for the SU to avoid the ja,mmers, especially when the number of

subdrannels is high.
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4.3 Summar5r

The major contributions of this chapter a,re summarized below:

1. For discrete problems like the selection of frequencies in anti-

ja,runing problems, it is difficult to manage using convet( opti-

mization [63]. Hence, Iearning theory is needed in the decision

process. The learning algorithm should cope with uncertain dy-

namics and incomplete infonnation, whereas game theory can

adequately model and analyze the mutual interactions among

adversarial users. Therefore, it is promising to incorporate the

learning algorithm into ga,me theory'

2. Against this ba,ckdrop, a ga,metheoretic optimal frequency hop

ping scheme is devised between su and intelligent jammer in a

dyna.rric environment using the QJea,rning approadr to pick the

optimat subchannel as shovrn in Figure 3'1'

3. A ga,me model with both players as Independent Learners (ILs)

is dweloped, where they selfishly and independently select their

optimal subchannels in a Mglti-Agent Reinforcement Learning

(MARI) setting to increase their utilities.

4. The proposed game theoretic model in conjunction with learn-

ing based FH atgorithm helps SU avoid the attacker and hence

reduce the probability of ia,rrming and increase the bandwidth
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efficiencY of the cognitive sYstem'

5. More,over, the complexity analysis and the results and discus'

sious are presented to conclude the chapter'

6. The simulration results shotr, imprwement in the performance

andoverallbandwidthefficiencyofthecognitiveradionetwork.

83



Cntprpn 5

Part-II: Enhanced Protection

Against a Rate-Aware Intelligent

Jammer in Cognitive Radio

Networks

This chapter presents the second part of the researeh work presented

in this thesis. This chapter is dedicated to the deception based

anti-ja,rrming techniques to combat against a rateaware ja'mmer in

cognitive radio network. As discussed in chapter 3, a PSU is used to

deceive the intelligent ja,mmer. The utility of the system is derived

for two cases of with and without PSU'

Deffnition 1[115]: If the following two inequalities are fuI-

filled, a set of strategies (i*, n {i for row player' and 
' 

for column

player) result iu a non-cooperativel Nash equilibrium solution to a

rrthe agente ro ft" gfu-.*"irr" oprpaite rerra,tds, t,leln u: ga'me is called non-co@eretine while if

ar til" "g;;,-oirr" 
tuJ *-",*"rt, tu" ga,c lE called e fullv cooperative ga,me'
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bimatrix game (A: {/!i,},g: {Bii}), where;4 and B are reward

matrices for each player, for all i: lr2r3r "'rN and i : l'2' 3' "'' N

states.

4.i. 2 Arr., Yir! - 1,2,3, "',N

B;.i.)-Bq', Yiri - 1,2,3,"''N

(5.0.1)

F\rrthermore, the pair (4'i',Bi'i') is regarded as the bima-

trix ga,me,s non-cooperative Nash equilibrium outcome' where '4a1

represent the payoff matrix for player I and Bti b the payoff ma-

trix for pla]'er II. The payoff rnatrix of standard matrix game should

rqrresent the objective of earch player'

5.0.1 Utility without PSU:

The utility function of su network can be written as the overall gain

of the secondary network, whieh is being controlled by the cogni-

tive base station (cBs) having a number of sus in the network' is

detenmined bY il
urr, =tth, (5'o'2)

where lrt- G((1 -tr)7-6iJ)' Vl <i3 Nand Ci:

WlLlog2(L+P,,il(N''wlL)), Vl < i S Nwhichsatisfv

[tn=r'rlD!=rn, vd e -l/

l*r', = ' 
(5'o'3)

I

[o<6i<1

where & is the data rate based on the modulation schemes adapted

by the ith SU/PSUs. The intelligent ja,rrmer may acquire the rate/code/modulati
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informationofSU/PSUeitherrrsingexplicitrateinforrrationor

modulationandcodeguessing[52].Moreover'therateinforrration

of a transmission is rnrlnerable in many communication protocols' In

IEEE 802.11 networks, for exa,rrple, the rate is specified explicitly

intheslGNALfieldofthephysicallayer,sframes.Anintruderca,n

easily coordinate with two parties' communication, ernaluate data

frames, and derive the rate. As demonstrated in [49], this attack

is quite practical. The adversaxy can ernaluate the receined signal

in complicated I/Q forrr enen if the rate infonnation is not explic-

itly supplied inside the parcket hea,der. The attacker can trace the

received constellation pattern and determine the modulation in use

after perforrring carrier synchronization, frequency, and phase ofi-

set correction. The fra,me stnrcture of the protocol is not required

forthismethod.TheguessingstrateryonUSRPcanbeshownby

creating a modulation detector that can identify the modulation of

a transmission in real time. It may readily be modified to create a

practicalrate-awareja,rrmerthatjamshigh-ratepacketsselectively.

An attar}er could employ more sophisticated te&niques to deter-

minenotonlythemodrrlationofthemessage'butaJsothecodes

used. one such method is to follow the sequence of received symbols

in order to predict the codes based on the fact that various codes

c&usedistincttransitionsfromonecodedsymboltothenext.For

the attacker, guessing througb matching and trial-and-error is effi-
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cielrt since most communication protocols specify a finite rnariety of

modulations and codes [52].

5.0.2 Utiliff with PSU:

The utility function of secondary network in the presence of Psu

can be written as the orrerall gain of the secondary neturork, whie'h

is being controlled by the coguitive base statiou (CBS) having few

SUs and a PSU, is determined by trrr: Diljt tlr+t ,u' Since

the PSU does not ta,ke part in useful communication, so the utility

of pSU is not counted for the calculations of througlrput. Therefore,

the ultimate utility of CBS is given by

ttbas=Y,rl, (5'o'4)

d:1

where L1:G((1 - dr)Q - drJ), Vl < i < N, and satisfies'

(5.0.5)

where { is tle attraction factor for illruser in the presence of PSU in

the network tlfld?'pis the data rate of deceptive PSU transmission'

The attraction factor d, of a PSU is kept slightly higher than all other

legitimate SUs in the network. i.e., 6i < 6o, so that the ja,mmer

is more attracted tourards PSU as compared to legitimate su' In

general, the probability of the attacker falling in the trap of PSU is

[4=*tt>!:]Ri +4), vi e.lr/

lr,=*,rry=|Ri +h),

lrg' t,+t,=r

[o<4,r,<r



Crur:rn 5: Penr-II: Exn'lncto Pnmpsrrox Acensr I Rrrr-Awanp

txreu.lcrwr Jruuupn nv Gocnttnre Rloto Npmronr<s

giveubY6p:1->il;'dl'

Theobjectiveofthesecondarynetworkistomaximizethe

network utility by successfuIly deploylng PSU to deceive the ja,mmer

while increasing the throughput of the system. The througlput of

the system is calculated by addins the throughput of every successful

individual user, i.e.,

ttbas=tlr+4+4+ "'*dr-, (5'0'6)

using the values from Equation (3.3.3) and rearrangtng wiII give

d""r-'nEu-tr +!)61h+g+otzcz 
(8.0.7)

d=1

+(g + J)dsCs+ "'+ (9 + 'ildx-rCrt-t

whidr firrther reduces to

^I-1 
r'-r

dcas=n'Eo- $ + l)n l,e. (5'o'8)

Theproblemcanbeformulatedasanoptimizationproblem.

The optimal strategr of the CBS k the maximizer of the following

problem

^*tlsss=sBq-$+LHdq' 
(5'o'e)

d=l r=1

subject to

[r,=n"tt>[i'a +r-p), vi e .,^/

I

Itr=n t(D[i'a,l +R"), vie.l/
{ 

- 
-7 r>fltt 

(5.0.10)

l>iI;' di+do=t
I

[os4,d,sr
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5.0.3 Cost of Implementing Psu-based Deception

The cost is paid in terrns of bandwidth loss incurred by adapttng

adummyusernamedasapseudosecondaryuser(PSU).Theloss

is higher when the PSU ocorpies a subchannel with higher sNR

values, resulting in more throgglput reduction as depicted in Figrue

5.6 Figrue 5.5 and the discussion hereafter. since the PSU does not

talce part in the bandwidth efficiency of the CBS, therefore, as the

PSU hops to the higher quality subehannel, the data rate that could

be utilised otherwise is wasted by adapting the PSU to deceive the

ja,mmer.

5.1 Results and Discussions

The simulation results are shourn in bandwidth efficiency. The band-

width efficiency can be calculated in bits per second per Hertz (bps/Hz)

as follows:

r,-ry.=krsz (r.ffi), YneN (5.1.1)

The proposed results axe compared with and without the PSU in

the network. i.e., the comparison is made for N SUs against N - 1

sus plus 1 PSU. for simplicity, the channel conditions are considered

a,mong all.
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rigure5.1:ImpactdincreasingPsUdstsrateagainstaratega,reja,umer.

S.l.lThelmpactofthelncreasingDataRateofPSUagainstaRate
axrare Intelligent Jnrnrner

Figure 5.1 depicts the impact of the increasing data rate of PsU

against a rateaware intelligent jammer. It is shourn that increasing

the data rate of a PSU increases its attraction factor and become a

more attractive target for an intelligent ja,mmen. Hence protects the

other sus from being ja,mmed. The successful communication of rest

of N - 1 sUs increase the overall utility of the system. specifically,

it is shown that the utility almost remains constant after the data

rate exceeds 1000 bps. Moreover, the data rate of PSU should be

at least great than 15 bps to get higher utility as compared to the
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Frgure 6.2: Impact of increasing PSU dsts rate and attraction factc agBiEt a rate ware

iammer'

system without PSU.

6.l.2ThelmpactoflncleasingJammingProbabilitiesofPSUagainst

a Rateaware IntelligPnt Jammen

InFigureS.2impactofincreasirrgjammirrgprobabilitiesofPSUis

studiedagainstarateawaxeintelligentjammer.Itisshoumthat

increasing the jamming probability of Psu will secure the overall

system by increasing the overall utility of the cBs' More precisely'

it is evident that the ja,mming probability of Psu should be at least

0.18 to benefit from deploying PSU in the system. It should be kept

in mind that the curvie with PSU is considered for N - 1 users' The
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Frgure 6.8: cmparism of tbe data rate of PSU in tems of sveraSe baldwidth efficiensy for

diftrent rlraluea of N'

Ntn nser excluded being PSU itself, because it does not transmit

legitimate signal and does not ta.ke part in overall throughput of the

system as mentioned in Equation (5.0.4). It is to be noted that the

straight line of the utility of the cBs without PSU (blue rectangles)

is due to the fact that it is independent of PSU probabilities' If equal

resource utilization for su/PSU is assumed, then the network with

one su and, one PSU consume 50Yo ofits resoruces to protect one su'

similarly, when there axe seven sus and one PSU, the 1/8 : L2'5To

resouroes axe wastd. It is better to use PSU for a bigger network of

SUs.

g2
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5.1.8 Performance Evaluation for Different Vdues of N

In Figrue 5.3 the curyes for different values of N are shourn' It has

been demonstrated that when N increases, bandwidth efficiency im-

pro\res.similarly,thecurvesinFigrueS'4showtheimprorrement

in bandwidth efficiency ut /v increases from 3 to 5 against the at-

traction factor of Psu. A similar behaviour ca,n be observed for N

greater than 5.
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5.1.4 The Effect of Changing PSU Poeitions

The change in the position of PSU is portrayed in Figrues 5'5 and 5'6'

Figrue 5.5 shows the curves for bandwidth efficiency when the po-

sition of PSU is changed from L to Lth subchannel 2' The overall

bandwidth efficiency of the cBS is highest when PSU is deployed

at the subctrannel with the lowest channel quality, as shoum by the

solid line for I : 1. F\:rthermore, from Figure 5.6 it is evident that

for I : 1 the PSU is effective only after the attraction factor ex-

ceeds 0.15 probability. Howeven, from both Figures 5.5 and 5'6 it

the arerrmptio thst the SNRr of nrbchannel 1 is EilimllE

wbile SNRz ls Eaximulr.
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is visible that when the PSU moves to the next subchannel with

higlrer eihannel qualities, it may waste its resources to deceive the

ja,rrmer resulting in less bandwidth efficiency' For a total of' L :5

subchamrels, when PSU is at I :3, the bandwidth efficiency curve

of Psu crosses the curve without PSU at around 0'43 probability

withthelourestproductivebandwidthefficiency.ThePSUatl:4

and I : 5, the bandwidth efficiency gets even worst, whieih decreases

with increase in data rate'

Theproposedmodelresultsa.recomparedwith[1]and[2]to

show the bandwidth efficiency of the proposed approach as shovrn in

- -PSUrtl4
-'-'-FSU !t l=3

PSU tt l=t

"l
n

18

16

ltl

95



Csrpmn 5: Pmr-II: Exnmrcpo Pnmpcrrox Acarrsr I Rltr-Awenp

Inrroro^r JarrrupR ur Cocrurryp R'ruto NsrwoRl<s

Tabre b.1. since the work presented in [1] and [2] use FH and FH

+RA,respectively,usingreinforcementlearningtomaximizeband-

width efficiency of the system, therefore, for the fair a'rnalysis' the

results are tabulated for the better comparisou of the three papers'

lhbleE.1:c@psliso!ofperforrrrauceevalrratiosoforuproposedschemewiththeworkpre
seoted in I1l ard

Parasretens trl l2l Ibe ProPoseq Er;rltiruE

-H: 

No. of PU
N: No of SU

M: No. of ia'mmers
L: No. of subrchnnnels

SNfuB

1

I
1

l0
[o ro:2ol

1

1

1

:

I
1

5

[0 10:20]

Ja,rmer fi'Pe Lerel-I tewl-I
-tevet-il4.2 17.24

-Bandwidth.ffi 

,*"v-(teu/ro1 o;(

As depicted in Table 5.1, aII other para,meters axe the sa,me

except for ja,mmer type. The ja'mmer t1rye used in [1] and [2] is a

reactive jammer, which @uunences its transmission upon detecting

su activity in the cognitive radio enabled network. This type of

ja,rnmer is named as Lenel-I ja,rmmer in section 3.3.1. In the proposed

work, a more e,hallenging ja'mmer is considered, whidr is a reactirre

ja,rnmer and targets the su based on each user's attrarction factor,

making it more hamful to the highest impact communication'

Moreover, the bandwidth efficiency comparison results demon-

strate that employins the deception-based anti-ja,rrming technique

proposed in this study has an adrnantage orrer the work in [1]' The

bandwidth efficiency of the proposed approarch is more than 3 times

that of [1]. The bandwidth efficieucy of the proposed approa,ch is
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more than 4 times that of [2]. To be very accurate, the results in [2]

shows the bandwidth of 21bps for 5 subeihannels (see Figure 7 in [2])'

Togetbandwidthefficiencyforeacrrsubcharulel2I.isdividedbyS

to get the bandwidth efficiency equal to 4'2 bps/Hz' F\[thermore'

all res,lts were obtained with the help of the MATLAB simulation

environment.

6.2 Summary

The major contributions of this e}rapter a,re summarized below.

1. The focus of this chapter was on combating smart rateaware

ja,mrrring attarcks by adjrrstirrg transmission rate in cognitive ra-

dio networks. An intelligent reactive ja,rnmer was considered'

whichwascalledaninfantja,rrmerinsectionS.S.l.

2. A cognitive adnersarial rate awa,re jammer, whieih is an intelli-

gent attarlrer &waxe of the communication parameters i'e', tra'ns-

mission rate and can adapt the dynamics of the subchannels

and the strategies of SU'

3. A rrnique utility firnction is introduced, where the &annel con.

ditions may change from one subeihannel to another with near

practicat channel conditions'

4. The mathematical model of a novel deception-strategic pseudo

secondary user (PSU) is proposed by introducing an attraction
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factor d of earch user based on the actual transmission rate to

decoy intelligent rate aware ja'mmer'

5. The simulation results shos, imprwement in the performance

andoverallbandwidthefficiencyofthecognitiveradionetwork.
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Conclusions and E\rture

Suggestions

conclusion and the future dimensions in the light of limitations are

presented subsequentlY.

6.1 Conclusions

This research investigates an anti-ja,mming stochastic ga'me in con-

jr:nction with a multi-agent reinforcement learning algorithm' Both

random and intelligent ja,mmers were considered. The anti-ja'mming

gamewasdesignedasaMarkovgamebasedontheQlearningal.

gorithm. A ga,nre-theoretic optimal frequency hopping scheme in

a dynamic environment is derrised in the presence of adversarial

jammers by using Qlea,rning approa& to pick high-capacrty sub

e,hannels while avoiding the ja'mmer' A ga'me model with both

players as independent lea,rmers is dweloped, where sU and ja,m-
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merselfishlyandindependentlyselecttheiroptimalsub&annelsin

amulti.agentreinforcementlearningsettingtoincreasetheirindi.

vidusl utilities. The proposed game theoretic model in conjunction

withlea,rningbasedfrequencyhoppingalgorithm,helpsthesUto

avoid the atta,cker, hence reducing the probability of ja,rmming and

increasing bandwidth efficiency of su. It was shoum in the simula-

tion results that the proposed method outperforms the benchmark

system in terrns of both the bandwidth utilization and the jamming

probability. More specifically, the average bandwidth efficiency im-

proves from 4.9 (bps/Hz) to almost 5'7 (bps/Hz) as compared to the

benchmark scheme. while the ja,urming probability is reduced to

less than 0.1 using the proposed approarch. Fbrtherrrore, when the

channel eurhibits variable channel quality (as in case I), the intelli-

gent su can intelligently choose sube,hannels with higher capactty

while anoiding the intelligent ja;nmer. Moreover, the bandwidth ef-

ficiencyoftheSUdoesnotdecreasesignificantlywhenthenumber

of random ja,rrmers increases'

Inthesecondpartofthestudy'auniquegametheoretic

anti-ja,rrrringdeceptionstrategyisintroducedtoimprovetheover.

all bandwidth efficiency of a cognitive radiebased communication

system. A defensive deception anti-ja,nrming method based on rate

modiflcations is used to deceine the attarcker and safeguard the re

mainder of the network from adyersarial effects. To lgre the jammer'
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a counterfeit user inside the network is introduced as a trap for adver-

sary.Thehigherasecondaryusetr,sdatarateis,themoreattractive

toarateawa,reintelligentja'rrmer'Thesimulationfindingssug-

gestthatutilisingtherecommendeddeception-basedtedrniquehas

improredperforrnarrcesignfficantly.Simulationresultsshowthat

bandwidthefficiencyofthenetworkadaptingtheproposeddecep

tionstrateg.ycrossesthebandwidthefficiencycurveofthenetwork

without PSU at around the attraction factor of 0'16, whieih conform

to the claim that the cBs with the psU performs well even with

the attraction factor of 0.20 compared to the system without de

ceptionstrategy.F\rrthermore'compa'redtoasystemthatdoesnot

use the deception method, the proposed solution can increase band-

widthefficiencybyuptol.Ttimes.Similarly,sincethePSUdoes

not take part in legitimate communication, assigning PSU the high-

est quality subeihannel will reduce the bandwidth efficiency hence

demanding an optimal sube,hannel selection for better bandwidth

efficiency, evident from the results shoum'

6.2 f\rture Suggestions

The research presented in this thesis can be extended further in the

light of limitations as follon':

1. The proposed anti.ja,mrrring researc,h is done with the assump
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tionofperfecttimeandfrequencyspchronization.Thesa,me

canbeextendedforimperfectionsintimeandfrequencysyn.

chronizations, in the presence of a ja'mmer'

2.KeepingtherolecorrstantofSUcanmakethejammerconscious

about the PSU, and can easily result in the counter-deception

strategy by the intelligent ja,mmer. The deception strategr csJr

be extended further if the role of a SU is changed dyna'rnically'

S.Inspiredbythec,harrgeofguardceremonywithtransitions

between su and PSU may lead to further confirsion for the

jammer.

a. A dyna,mic assignment of PSU based on the current dpa,mics

of the environment for the optimized selection of PSU can lead

to more complexity in the deception me&anism'

5. Moreoner, a PSU with a higher attraction factor can also be

r:sed to detect the jammer and predict the intelligence level by

guessing its fingerPrints.

6. Finally, using FH with RA for the decoy medranism may en-

hance the deception fi[ther. Enabling PSUs to hop to other

available subchannels and rate adaption can give the PSU free-

dom of efficient spectnrm utilization while deceiving ja,mmer.
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Apppxorx A

Elements of Game TheorY

The game theory began as arr application of mathematics. It was

employed durius the cold war to model and forecast Russian nuclear

weapon motions. However, it later expanded into a discipline with

a wide range of applications. Ga,me theory is now widely applied in

economics, sociology, politics, and engineering'

A.1 Preliminaries

Game theory simulates multi-Ogent interactions in which one agent's

actions influence the outcomes of all other agents. In game theory

these agents are referred to as playens. Set ofZrepresents all players

of the galne. In il-player galne, the set [-1 represent all opponents

of the i'h player, where

T:tr2rIr...,N (A.1.1)
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Earch player has a collection of pure strategies that he can use to

counteract his opponents. when you play against other players, it

doesn,t alurays imply you're hurting them. It's also possible to play

cooperatively, in which each player help their opponents. The ga'me's

stratery space is the cartesian product of all players' stratery spaces'

6:5rx$2xSsx"'xSrv (A.1.2)

Plalrers choose their strategies at every turn of the ga,rre, ffid

a stratery profile s € ,s is played. In game theory if a player has a

stratery of si G s, the opponent's strategy is indicated as s-; : slsi.

As a result of the stratery profile s, earch player is assigned a utility

(p"1.tr) u;(s;,s-r € Ui. All possible utilities U from all possible

strategy profiIes are collected in this set. u is auother firnda,rrental

element of ga,me theory.

ll :llt xU2 xUt x "' xUx

A.1.1 Mixed Strategr

(A.1.3)

A mixed stratery space Di is a probability distribution over the pure

strategies ^9; 
for every player i in the game. Therefore payoff of the

player is the expected value of the pure strategles payoffs. And mixed

stratery space of the game is the Cartesian product of individual

t25
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mixed strategy spaces similar to pure stratery space,

D:DrxEr"Erx"'xErv

player i's payoff to mixed stratery profile o is,

(A.1.4)

(A.1.5)

As a result, any pure stratery profiIe is a mixed strategy profile,

with each player's probability weight accumulating on a single pure

stratery. A ga,me G is rePresented bY

g:<XrSrUrE > (A.1.6)

A.1.2 Pure Stratery

A thorough explanation of how a player will play a game is provided

by a pure stratery. It deterrriues the course of action a player will

talce in any ginen situation. The set of pure strategies arailable to a

player is referred to as that player's stratery set'

A.2 Classification of Games

. One shot game: This is I galne that can only be played once.

The pay-offcould be suetr that a game, suerh as mutually assured

nuclear destruction, would be impossible to repeat. People are

ui(oi,o-,) :,e 
[I, 

rrtrr)) ui(si, s-i)

t%i
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often enticed to act opportunistically or selfishly in oneshot

interactions.

.Repeatedgames:isthesimplestkindofgalneinwhichea'ch

stage is repeated and usually these repetitions are indefinite, in

infinite time horizon. Let N denote the number of secondary

r*ers in a game and a* represents the set of actions taken by

those N SUs in kth stage of the game. The action in eadr stage

k is to marcimize utility by taking into account the history of

the actions taken in previous stages. The expected strategy

is discounted byr the factor 0 < d < 1, which means that the

pa)roff of the current stage is worth greater than trailing payoffs'

Thesimpleora,mple,inthiscase'maybetakenasajamming

scenario. where N secondary users are the players of the game'

Among these /V players J arcja,mmers and K are legitimate

secondary users such that N : K .'r- J. Their respective actions

are to choose the c available drannel by avoiding the ja,mmer

and to e,hoose c, charuels to ja,rr the channels to reduce the

payoff of the legitimate users.

. Stochastic game: A stochastic ga,rme is a recurring game with

probabilistic transitions performed by one or more players, first

introduced by Lloyd shapley in the early 1950s. The game is

divided into sweral stages. The game is in some state at the

start of each stage. The players choose actions, and earch receives
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a reward based on the current condition and the acts taken'

Thegamethenshiftstoanewrandomstate,thedistribution

of whictr is determined by the previous state and the players'

activities. Play continues for a finite or infinite stages after the

method is repeated in the new state'

A.3 Equilibrium ConcePts

A solution concept in ga,rre theory isa fonnal ruIe for predicting honr

a garne will be played. These predictions are knoum as 'solutions,'

and they describe whie,h strategies players will use and, as a result,

the ga,me,s outcome. Most fa,mously Nash equilibrium, Equilibrium

notions are the most widely employed solution concepts.

A.3.1 Nash Equilibrium

The Nash equilibrium is a concept in ga,me theory that states that

the best outcome of a game is one in whidh no player has an incentive

to deviate from their chosen strategy after considering the stratery

of an opponent. According to Nash equilibrium, the ideal conclusion

of a ga,me occurs whene there is no incentive to depart from the

beginning stratery, a notion in ga'rne theory'
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A.3.2 Stackelberg Equilibrtun

The Stackelberg equilibrium model is a strategic $qms in whie'h the

Ieader player mo\res first, folloured by the follower player. It was

na,med after the Gerrnan economist Heinrie,h Fleiherr von stackel-

beng, who presented the concept in his 1934 book Market Structure

and Equilibrium (Marktform und Gleiehgewicht). In terms of game

theory the ga,me,s players are leadens and folloners who compete on

quantity.


