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Abstract

Cognitive Radio (CR) provides a promising solution to the spectrum

scarcity problem in dense wireless networks, where the sensing abil-

rty of cognitive users helps acquire knowledge of the environment.

Howener, cognitive users are rnrlnerable to different trces of attacks,

due to its shared medium. In particular, ja,mming is considered as

one of the most ctrallenging security threats in CR networks. In jam-

ming, an attacker ja,ms the communication by transmitting a high-

power noise signal in the vicinity of the targeted node. The jammer

could be an intelligent entity capable of exploiting the dynarnics

of the environment. This work presents a mactrinelearning-based

anti-jamming tectrnique for CR networks to avoid a hostile jammer,

where both the ja,rmming and anti-ja,urming processes are formulated

based on the Markorr garne framework. In the proposed fra,rrework,

secondary users avoid the jammer by maximizing its payoff function

using an online, model-free reinforcement lea,rning technique called

QJearning. A realistic mathematical model is proposed, where the

channel conditions a,re timevarying and differ from one subctra,nnel

tx
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to another, as in practical scenarios'

Anti-ja,mming in cognitive radio networks is mainly accom-

plished using machine leanring techniques in frequency, code, power

and rate domains. with the improvement in communication tech-

nologies, the capabilities of adversaries are increased as well' The in-

telligent ja,mmer knours the rate at whie,h users are transmitting data

and is based on the attractiveness factor of each user. The higher

the data rate of a secondary user, the higher its attractiveness to the

rateaware jammer. In the second part of this work, a dummy user

is introduced in the network as a honelryot for jammer to attract

the attention of the jammer. Moreorrer, a norrel gametheoretic anti-

ja,rnming deception method based on rate adjustments is presented

to increase the bandwidth efficiency of the whole cognitive radio

based communication system. A defensive anti-jamming deception

mee,hanism is devised to decoy the attacker to protect the rest of

the network from the impact of the attacker. The simulation results

shon, a significant improvement in performance using the proposed

solution.
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Introduction

1.1 Significance of Wireless Communication

Wirelms communication has gron'n nery fast in the last decade. Con-

sequently, wireless communication systems have become inevitably

related to several applications and a ralrge of devices €.8., smart

phones, laptops, and IPADs. In addition, new wireless applica-

tions like wireless sensor networks (WSN), vehicular ad-hoc networks

(VANETb), smart home appliances, smart grids, remote telemedicine,

and numerous others are materializing from research thoughts to tan-

gible systems. Moreover, wireless communications is advantageors

due to accessibilrty, easy installation, wider reach, flexibility, effi-

ciency and cost effectiveness. Wireless communication is the most

absolute and vital requirement of this present era, and it is the stair-

case for further adrancements in the field of digital communication.

Hovrever, with the implausible growth iu the systems and applica"

tions, the availability of the wireless spectrum, the natural source
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which prorrides all this communication, is limited. Wireless com-

munications have enabled billions of individuals to connect to the

Internet and benefit from today's digitat economy.

L.2 Onerview of Cognitive Radio Networks

This enormous gron'th in applications is inevitable trffi, and limita-

tion is evident from the frequency allocation charts for United States

and frequency allocation drarts for Pakistan. Nevertheless, statistics

taken out by the Federal Communication Commission with the help

of experiments in various countries show that most radio frequency

bands are not used the majority of the time or are underutilized. So

there is a need to address the problem which could solve the under-

utilized or inefficient use of spectrum, i.€., how and when to use it

[3], [4].

As this inadequate natural resource will ultimately get halted

for the users coming in the near future, a solution was required for

the spectnrm scarcity. The solution was proposed by Joseph Mitola

from KTH in his Doctoral Dissertation in 1999 [5], [6]. This disser-

tation presents a conceptual overview of cognitive radio &s an excit-

ing multidisciplinary subject. Federal Communications Commission

(FCC) defines cognitive radio as "A system or radio that sniffs its

functioning Electroma.gnetic atmosphere and capable of vigorously

F
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FrpquencT

Spactrum ured bY

Prirnary llsers
,tl

Opporurniatic
Accett

SpectrumWhlte SPtce

Ftgju,e 1.1: Oppctunistic Acceag of Spectnrn in CRN. The eurpty white (urstrad:a rygg)- 
.horr" the white spaoe arnailable fG CB, users while PU is active iu the shaded

region [6].

and separately regulate its radio working parameters to adapt intru-

sion, smooth the progress of interoperability and access secondary

users." Cognitive radio is aware of its surrounding RF environment

learns, reason, decide and adapt to the external conditions [7]. The

aim is to utilize the spectrum efficiently and carry out reliable and

uninterrupted wireless communication.

CR is practically implemented on the hardware referred to as

Software Defined Radio (SDR). Analysis of the Radio Scene, Recog-

nition and Identification of channel and Power Control of Thans-

mission are three important roles of the cognitive cycle [8]. The

learning and reasoning abilities of cognitive radios are embedded in

the cognitive engine, the core of a CR, as depicted in Figure 1.2.

The task of the cognitive engine is to coordinate the actions of CR
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using machine learning algorithms [9]. A CR node can switeh its op

erational frequency to the dlmamic RF environment. cR nodes can

access spectrum white spaces that are not being utilized by primary

users, as depicted in Figrue 1.1. TWo t5pes of users in cognitive

Radio Networks are Primary user (PU) *d secondary user (su).

When the primary user is not available, the cognitive user can use

its resources, i.e., the un-utilized spectrum. Competition takes place

amotrB secondary users to access the available spectrum for primary

users. The absence of a primary user in certain time and space results

in the unoccupied frequency tenned as White space [10]. Wireless

microphones a,nd TV towers contribute to the most significant pre

portion of white space [11]. Federal Communication Commission

(FCC) in the USA has adapted the rule for unlicensed use of Tele

vision White spaces due to its underutilized spectrum [3]. Spectrum

sensing plays an essential role for dyna,mic spectrum &ccess in CRs

[12]. The task of spectrum sensing comprises two significant factors.

One is to protect the rights of the licensed user, for this objective

CR continuously observes the frequency environment and identifies

the spectrurn holes, that is, it enables the SUs to exploit the unused

PU spectrum.

It is very important to understand the activity of primary

user so that SU can make a decision accordingly. The performance

of coguitive radio networks is highly dependent upon the activity of

i
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Figure 1.2: Cognitirrc Engine, the leafi of.TFltirrc radic, comprises three interactive modulee

U"ttf"ag" b;, i"t-i"g module aud reasoning module'

primary radio uters [13]. In literature, PR user activity is modeled

based on Markorr process, queuing theory time series, a'nd ON/OFF

periods. other models are the Bayesian model, Event-based random

walk mod,el, PR user presence probability from historical statistics,

Partial periodic pattern mining (PPPM), First-difference filter clus'

ter[rg. There are three paradigms of cognitive radio networks, e'g',

Underlay Overlay and Interweave paradigms'

l.SsecuritylssuesinCognitiveRadioNetworks

Cognitine radio networks are incredibly rnrlnerable to malicious at-

tacks, partly because secondary users do not own the spectrum, and

hence their opportunistic access cannot be protected from adver-

saries. Moreorrer, highly dpa.nric spectrum availability and often

distributed network structures make it challenglng to implement ad-

equate security counterrreaslues [14]. In addition, as cognitive radio

networks benefit from technology evolution to be capable of utilizing

Reqsoning ModuleLeorning Module

!
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spectrum adaptively and intelligently, the sa,me technologies can also

be exploited by malicious attackers to launch more complicated and

unpredictable atta,cks with more significant damage [15, 16]. There

fore, ensruing secruity is paramount to the successful deplgment of

cognitive radio networks. More explicitlS jamming attadrs, Denial

of service (Dos) attadrs [17, 18], Primary User Emulation Attarck

(PUEA) [19-21], spectnrm sensing Data FaJsification Attae.k (ss-

DFA) [22], exploitation of common control cha,nnel security [23] and

collaborative jamming l2al arcwell-known attacks in cognitive radio

networks. Hourever, the major concern of this research work is to

combat jamming attarhs in cognitive radio networks'

L.4 Introduction to Game Theory

Ga,me theory is widely used in the literatue to model the competi-

tive environment between jammer and secondary user. A game is a

mathematical model for interactive situation where players have to

make decisions based on the payoffs. It prorrides the formal fra,me

work that helps generate useful inforrnation for analysis purposes. It

is the situation in whictr players make strategic decisions that take

into account each other actions and responses [25].
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Ftsure 1.g: Key eleuentc of a non-cooperatirrc frequency hopping ga,me, aiming is to reach

Nastr equilibrium'

L.4.L Key Elements

The key elements of the garne axe players, strategies, payoffs, infor-

mation and rationality as depicted in Figure 1.3. These terms are

defined below.

Players: Those who are interacting. In this case, two players a,re

SU and ja,rrmer.

strategies: Rules or plan of action of eae,h player for playing galne

hop, stay.

Payoffs: What are the players gaining after adapting certain strate

gles? And the optimal stratery is the one that ma:rimizes the player's

payoff.

Information: What do the players knou'? Completer information

is in which each player know every aspect of the game while in per-

fect information, the player only knows the previous actions taken

by atl other players.

Rationality: Players axe assumed rational to take the best alterna-

tive in the set of possible options. It helps na,rrow dourn the possible

k
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Anti#mmingSames

Perfrd lnfonmtion lE Complete lnformatlon

Figurc 1.4: Ihe ganethecetical anti.jnmming tree describes the zepsum nm coorperative

stocrhastic gane betreen SU and ja,mmer.

decisions.

Nash Equilibrium: It is an action vector from which no player

can profitably unilaterally deviate. N players interact to take a set

of actions A; for each player. Each action has a certain outcome

described as utility function Ui. An action ,4 is Nash Equilibrium

if for every i player out of N players satisfy the following inequality

tl,(o;,a(- i)) > 4(h,ot - i)) YhA.. (1.4.1)

Plalrers exhibit rational behavior and adapt the strategy to

malrimize their pa)toffs. Rational choice theory is an economic prin-

ciple whieh states that indMduals always make prudent and logical

decisions. These decisions prwide people with the greatest bene

fit or satisfaction, gnren the choices available, and are also in their

highest self-interest. Ga;ne theory reduces the complexity of adap
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I,DE
PIaYels:Slngfe

strEsMuhlph

'Mrtt€rs::
Ptryaburrilbtr
St&* s*qle

MarkovGame:

Playerc: MuhiPle

States: Multiple

rigure 1.5: Rclationship bfircco MDR Markov ga,mes aud matrix 8ame8.

tation algorithms in large cognitive networks [9]. Figure l'4 shown

e gaJne-theoretical anti-jamming tree describing the zeresum non

cooperatine stochastic garne between su and ja,rmrner.

1.4.2 Rel,ationship BeGrveen Stochastic Gane and Markorr Decision

Process

A Stoeihastic Game (SG) is the naturat extension and generaliza-

tion of the Markov Decision Process (MDP) to multi-agent systems

[9, 26].1 The relationship between Markov gem€sr matrix galnes

and MDP is shouru in Figrue 1.5. SG provides a fra,rrework for

multi-agents in multi-agent reinforcement Iearning (MARL). In this

contribution, a stochastic anti-jamming game is developed between

two players of conflicting interests. [See Appendix A for the details

about game theory.]

@ called Markov ga,mes, which ess€utially are n-agent MDP [24.

L I
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1.5 Reinforcement Learning

The Qlearning is a value-based reinforcement learning algorithm,

whie.h uses a Q table to ma:rimize the utility [28]. It is a mechanism

learn the subchannel selection stratery effectively. The Q function

e@h,ae) at stage Ic, is the expected discounted payoff when the SU

takes the action ah at the state sh. More specifically, the Q value

is the estimation of the expected sum of the discounted payoff [29]'

Hence, an SU can consider the Q rnalue in a bimatrix ga,me at stage

/c as the expected sum of the discounted payoffs gnren in Equation

(4.1.3). Given the Q function Q?h,ae), the su can find the value

of the game from:

Y(ch1= 
11*Q(ct,ar).

(1.5.1)

After an action ae is talrcn, the SU would receive an immediate payoff

R(r*, aft), which is then gsed to update the Q table. Specifically, the

Q function can be appro:rirnated as:

Q('k, ot) = 8(st, at) * 
,Er'",'t+r, 

o&+llst, oh;I21"*+1;' (1'5'2)

where Pr(sft+l,a&+llsk,ae) is the transition probability from state

se to shtl. Qlearning is a model free learning algorithm adapted to

learn the optimal policy without ocplicitly knowing the model. The

intuition behind Qlearning is to approrimate the unknown transi-

tion probability in Equatiou (1.5.2) by the empirical distribution of

t
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states that have been visited as the game proceed [30]'

1.5.1 Multi-Agent Reinf6rcement Learning (MARL)

The study of how numer-bus agents interact in a common envi-

ronment is knovrn as multi-agent reinforcement learning (MARL)'

MARL is a subfield of reinforcement lea ring and is becoming popu-

lar. When these agents engage with the environment and eae,h other,

they can collaborate, coordinate, compete, or learn to complete a job

collectively.

L.6.2 1lpes of Learners in MARL System

A multi-agent reinforcement learning (MARL) algorithm is the in-

dependent learning (IL) algorithm where the learner can take action

individually and do not cousider the actions taken by other agents.

There a,re two tlpes of lea,rners in the MARL setting, na,mely the

independent learner (IL) and the joint action learner (JAL) [31]. IL

uses Q-Iearning in a classical setting, ignoring the other agents. More

specifically, it assumes that the other agents are part of the environ-

ment. A MARL algorithm is an IL algorithm if the learner would

take action individually and would not consider the actions taken by

other agents. The IL flsorithm is an appropriate learning method

if the agent is unaware of the other agents in the system and their

actions [32]. If the above condition does not hold, an agent can still

E
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ignorethepresenceofotheragentstojustifytheapplicationofthe

IL algorithm. Learning is relatively simple for IL, as it only learns

its actions B1].

The total number of entries that an IL agent needs to learn is

given W mx I A' I for an n-agent system, which has nT' states of the

game, where I A, l,is the size of the action space of player 1. since

the IL ignores the actions of other agents, the complexity of the IL

agent is linear as given bY mx I A l'

A JAL is an agent that learns the environment in the presence

of other agents and thdn updates its Q ralues based on the joint

actions of aII the agents in the system. This infers that the agent

knours the rewards of aII other agents, and its enperience is of the

form ( 8, f > where a: &l X a2 Y ... \ @n is the joint action of all

the agents and r is the reward, of the joint action a. The complority

of the JAL is exponentid, N it has to learn all possible actions of

all the agents iu the system. A toy example of a bi-matrix zero-sun

geme is represented in Table 1.1. If player A is a JAL it has to learn

all joint actions, i.e., (os, h), (ao, br), (or, bo), (or, b1), while if player

A is an IL, then it needs to lea,rn its oum actions only, i'e', as and

Ay

thble 1.1: Toy ora,mple of a gane for the cmrparison of IL and JAL

Player B

bo br

Aao
al

50
05

t2
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In[26],LittmanconsidersaJALintheminma:rsettings.The

states S, action set A, and the opponent action set o are the rlari.

ablesfromtheenvironment.In[27],HuandWellrnangiveamore

generalformofaJALforthegeneralsumgalne(GSG)inwhich

eachJALplayerassumesthoseotherplayersarerationalandthat

other agents will take actions according to their own believes about

other agents. More explicitly, each agent maintains a belief about all

other players in the network and this belief is maintained in the form

of a separate Q table, whieih results in increased complexity for the

learning system. The total nutnber of entries that a JAL agent needs

to learn is given by mx I A' I x I A2 | for a tweagent system having

nn, states of the galne, where l A' l is the size of the actiou sparce

of player 1. Assuming equal action space for each of the n-agents,

the orponential complexity of the JAL agent is rzx I A l"' In fact,

even though JALs have much more information at their disposal'

they do not perform much diffenent from ILs in the straightforward

applicationofQJearningtomulti.agentsystems[31].BoththeSU

and jammer players are taken as ILs, where earch IL would apply

the QJearning algorithm in the classical setting while ignoring the

action of the other agent. More specificallS each agent assumes that

the other agents are part of the environment. IL algorithm is an

appropriate method of learning if the agent is unaware of the other

agent in the system, hence do not know the actions of other agents'

=
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Learning is relatively simple for IL, as it only has to learn its actions

[31].Amulti-agentreinforcementlearningalgorithm(MARL)isthe

IL atgorithm where the learner can take action individually and do

not consider the actions taken by other agents [32]'

Theoremr[ss]:AnlLagentinaMARLsetting,following

theQlearningupdateruIe,willconvergetotheoptimalQ-function

with unit ProbabilitY.

1.6 Motination

CRI{isapromisingtechnologytocopewiththescarcityissueof

theelectromagneticspectrum,whichisanatualresource.Tladi-

tional wireless radio communication works on fixed frequency slots'

resulting in orrercrourding in certain portions of the electromagnetic

spectrum while other portions are underutilized. cR is awa're of its

surround,ing Radio Flequency (RF) environment. It learns, reasons,

decides, and adapts to external conditions to efficiently utilizing the

radio spectrum and carry out reliable and uninterrupted wireless

communication [7, 8]. F\rrthermore, cR could provide opportunis-

tic access to spectrum holes to solve the intermittent use of radio

spectrum using marchine learning algorithms [9, 34-37]. Therefore,

eusuring security is of paramount importance to the successfuI de

ployrrent of coguitive radio networks'

t4
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Intraditionalwirelesscomrrrunicationsystems,F}equencyHoP

ingSprea,dSpectrrrm(FHSS)andDirectSequenceSpreadSpectrum

(DSSS) are widely used to thwaxt jammers [18, 38]. Due to dyna'rric

spectrurn mobility [39], it is impossible to directly epply these tech-

niques in cognitive radio technology to combat the hostile ja'mmers'

Since ja,mming attacks drastically degra'de the performance of cog-

nitive radio, some effective meeihanism is required to mitigate the

effects of ja^rnmen by avoiding and deceiving the ja'mmer'

1.6.1 Jamming Attadr

Ja,rnming is a major threat to cRN [40-43]. Jammers disrupt wire

Iess communication by genenating high-power noise across the entire

bandwidth near the transmitting receiving nodes' As a result, the

communication channels either cannot be accessed or the signal-te

noise ratio (sNR) in these ehannels heavily deteriorates' The jammer

model in a cRN is shosrn in Figure 1.6, where the ja'nrmer disrupts

the wireless communication by generating high-power noise, causing

na,rrow-band interference on a single subehannel at a time near the

tra,nsmitting and receiving nod,es [44]. Intersive ja,mming could re

sult in either total disruption of the wireless communication or a very

low sNR that does not allow secondary users (sus) to communicate

successfully. Since ja,mming attacks drastically degrade the perfor-

manoe of cognitive rad,io, some effective mechanisms a're required to
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detect their presence and avoid them. More specifically, this resear&

focuses on anti-ja,rrrming techrriques rrsing frequency hopping (FH).

The interested readers may refer to [48, 46] for details concerning

ja,mrring detection.

Ftgure 1.6: The model of the ja'rmler in a cognitine radio netrork

L.6.2 Intelligent Jamming Attaclcs

Existing naive ja,nrmers mostly rely on high power and frequent

transmission of iarnming sigmls which is not practical for power

constraint ja^nrmers. Moreorren, this kind of high power and frequent

ja,rrrmersalsoeasejammingdetection.Thea,daptabilityofCRcou]d

provide intelligence to spectrum sensing and spectrum decision [36]'

'd\
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on the other hand, the adnersary can also maneuner the same fea-

tures intelligently to create more harm to the underlying cR Network

(CRN)l2g,4T,4Sl.Amorepowerfulintelligentjammerisconsid-

ered which targets the users based on the attraction factor of eaeh

user. The attraction factor is proportional to the rate at whidr the

communication is ca,rried out. Hence targeting the highest impact

commrurications in the cognitive radio network [49]' Here are the

other reasons to consider rate-aware jammers'

. It is easier for the ra,tea,ware intelligent ja,mmer to target a fem'

symbols of higher data rates resulting in very efficient selective

jamming.

. A targeted, efficient atta,ck will force the secondary user to

communicate a! a lower rate by jamming all communication

at highen rates as shonrn in [a9]'

.Thelourdatarateswillresultinnetworksaturation,which

causes higher collision probabiliff [a9]'

1.6.3 trtequencY HoPPing

The most widely considered method for reducing the effects of jam-

ming attarJrs is frequency hopping' Flequency hopping is a technique

forquicklyswitctringbetweenma,nyfrequencychannelswhensending

radio communications. The ease of implementation and robustness

! 17
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against interference and ja,mming attaclrs have made proactive fre

quency hopping more popular' Flequency hopping is particularly

effective when the nunrber of orthogonal channels supported is sub

stantially larger [50].

1.6.4 Rate AdaPtation

Rate adaptation sehemes in the litterater,u usually adjust the physi-

cal layer transmission rate according to the ehannel conditions' ide-

allyc}roosinghighdataratebyadaptingmorerobrrstmodulationand

codiug schemes (MCS) for good sNR e,hannels and lou' transmission

rates for poor ctrannel conditious [51, 52]. T]ansmitting at the mod-

ulation sctreme with a higher data rate wiII increase the probability

of getting jammed due to rateaware jammers in the network' On

the other hand, tra,nsmitting at low rates increases the robustness

and reliability against ja,mming but will reduce the througlput of

the system [53]. Therefore, an a,dequate data transmission rate is re

quired for effective transmission while avoiding the ja,mmer [49, 54]'

1E
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Figure 1.7: Anti-ja,mming t8lne8 are widely claasified iuto traditional aud deceptiou-bosed

88m€8.

L.7 Problem Statement

Problem statement of this reseaxeh is divided into two parts' The

first part is to devise a ga,metheoretic an anti-jamming scheme

against intelligent ja,rrmer. The second part is e,dended further

againstamorehostilerateawareintelligentjammer.Thedetails

are given below.

1.7.1 Problem-I: Adrrcrrsarial Anti-Jamming Game

The above discussion shows that the research community has con-

tributed much research tonards anti-jamming for cRI{ in the fre

quency domain. However, most literature has assumed a fixed strat'

egy for the jammer, which is not cha'nging with time' With the

development and technological advancement in the cognitive radio

networks, it is highly conceivable that a jammer will also manoeuwe

F 19
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itsattackingstrategiesintelligently.Ilence,thereisaneedforan

intelligent anti-jamming strategy for cRN. An intelligent jammer is

cognitiveinnature,havingtheabilitytolearn,reason'andadjust

its strategies against SU for ma:rimum damage to the CRN'

L.7.2 Problem.Il: Deception.based Anti.Jamming Game

Deception empowers network administrators by thoroughly defend-

ing against atta,cks from both external parties and hostile insid-

ers, properly warning when something is wrong' and offering pre

cise threat intelligence for quick remediation. when an intrusion is

detected, they can observe how the intruder moves around the in-

frastructureandwhatresourcestheyappeartobetargeting.They

can then investigate specific network para,meter which was targeted

to deceive the attarcker. Therefore, there is a need for a deception

strategyagainstanintelligentja,mmertowasteitsresourceshence

protecting the onerall network'

1.8 Objectines of R'esearctr

Thejammeriscognitive,italsolooksforwhitespace.Thereis

a competition for spectrum occupancy between the secondary user

and cognitive jammer. The two objectives of the research are listed

below.

F 20
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1. The objective is to derrise an optimal hopping scheme to pick

theoptimalctrannelbeforetheja,rrmercatejhesuptoit.

2.Thesecondobjectiveoftheresearehistoderlelopadeceiving

mechanismforja'rrmers,sothatthejammerwastesitsenergies

whilecognitiveusersenjoyitstransmissiontherebydecreasing

the ProbabilitY of being ja'mmed'

ThetwoobjectivesoftheresearchareshowninFigurel.T.The

following perforurance criterion will be used to evaluate the perfor-

mance of the proposed anti-jamming scheme'

. Jamming Probability under cognitive attacks'

. The a\rerage payoff of different strategies

Gametheoreticanalysisisrrsedtodeviseananti.jamming

meejhanismtocombatagainstavarietyofjamminglevels.Game

theory is widely used in wireless communications to solve commu-

nication problerns like resoruce allocation [55-57], pae,ket relaying

[36], and anti-jamrning communication [29' 48' 58-60] 
' 

as shown in

Figrue L.8.

Intra,ditionalwirelesscommunicationsystems,F}equencyHoP

ingSpreadSpectrrrm(FIISS)andDirectSequenceSpreadSpectrum

(DSSS)arewidelyusedtothwartjammers.Duetodyrramicspec-

trum mobility, it is impossible to directly epply these techniques
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in cognitive radio teehnology to combat hostile ja,rrmers' There

fore, this researeh focuses on marchine learning based algorithms to

prorride safety of the network in the presence of hostile ja'mmers'

Moreorren, Deception in cyber security of wireless corrmunication is

largely adapted for the follon'ing three reasons. (1) For the detection

of the attarcker, (2) for information about the intelligence of the at-

tareker, (3) for confusing the adversarial user to waste its resources on

the sweetener. since detection is not the focus of this article, and the

intelligence of the jammer is assurned to be a posteriori knowledge

of the usetr, therefore, the focus of this research work is to confirse

the attarcker between a legitimate target and deceptive sweetener by

rrsingadeceptionstrategyintheCRN.Thescopeofthethesisis

timited to machine learning-based anti-jamming teelniques to com-

bat and deceive the ja,rrmer, hence providing enhanced protection

against intelligent ja,rrmers in cognitive radio networks'

1.9 Organization

The rest of the thesis is organized as follows. chapter 2 provides a

detailed and state-of-the.art literatrue sunrey on anti-jamming teeh-

niques in cRN. Moreover, this ctrapter provides a review of the pre

viogs resea,rejh on deception-based defense strategies' It also pro-

vides the comparison table as evidence of the novelty presented in

this reseaxch work. chapter 3 orplains the system and adversary
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Resource

allocation

t5sFt57I

#+*.i;:#jti!*'!:":t', "'''
H Gametheory in

E wireless

H conrmunicatioas

)

Anti-jamming
commtrnications

[29], [48], t58Ft60l

Ftgurel.E:lbronoqlofganetheoreticapplicotiorsinwirelesscmrrrrrnications.

modelsindetail.Thesystemanda,dversarialmodelaredivided

into two parts in this chapter, parGl and part-Il' Chapter 4 pre

videsananti-jamminggalneformulrationagainstarandomandan

intelligent jammers, respectively. Moreover results and discr:ssions

are provided based on the simulation results' chapter 5 prorrides a

deception based anti-jamming mechanism to combat intelligent iam-

mers.Moreorlerresultsanddiscussionsareprwidedbasedonthe

simulation results. Finally, etrapter 6 concludes the thesis with the

futrue works iu the light of limitations'
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Literature Review

After presenting an introduction of the research work in previous

Chapter, this chapter presents a comprehensive literature review of

the state of the art literatrue. The chapter begins with the gen-

eral literature rerriew of anti-jamming communications in cognitive

radio networks followed by gametheoretic literatrue review on anti-

ja,mming communications in CRN' Finally' deception based anti-

jammingtectrniquesarediscrrssedattheendtoconcludetheehaP

ter. Moreorrer, two tables present the comparison of the literature

discussed in this draPter'

2.L Anti-Jamming in CRN

The cR is more vulnerable to security threats than other networks'

such as cellular networks, due to its large scale and diversified envi-

ronment. As a result, the cR's security requirements will be more

restrictine than those of traditional wireless systems' Indeed, in the

r



CulPtsR 2: LrrtnerunP Rsvtsw

absence of robust secruity solutions, attacks and cR malfunctions

mayoutweighanybenefits.ThesectuityofaCRsystemisrnrlnera'

ble to a wide range of attacks due to its large attack surface' includ-

ing malignant radio ja,mming and denial of service (DoS)' Different

tlpes of ja,rrmers discussed in the literatrue [61], namely, random

ja,mmer[62],constantjammer[18],reactiveja'rrmer[63'64]'sweep

ja,nrmer [65, 66] and intelligent ja'nrmer [29] [67]'

2.2 Anti-Jamming Games in CRI'[

In wireless communications, ga,me theory is often utilised to tarkle

communication challenges sueh as resource allocation [55-57], pa'cket

relaying [36], and anti-ja,mming communication l2g' 48' 58-{0]'

Thedpa,micinteractionbetweenlegitimateusersandthe

ja,rrmer has been ortensively modeled and analysed using galnF

theoreticapproaches.Theseanti.jamminggalnescouldbebased

onposrerdomain[64,68-74],codedomain[18'75]'frequencydo-

main[29,30,65,66,lffi2l,andspacedomain[83-86]'asshoumin

Figrue 2.1.

25
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Space donain

ts3H86l

Flgure 2.1: Dimemsiols of t'he auti-ja'mming ga'me in copitive radio uertcorks'

2.2.LDifferentTbchniquesofAntl-JammingGames

Powerr Coutrol Games

Anti-ja,rrrmingpowercontrol(PC)communicationhasbeendoneex-

tensively using ga,rretheoretic analysis [64' 68-74]'

Forinstance'in[68],"posTercontrolsta,ckelberggamewas

presented as a leader follonrer game for jamming defence in cogni-

tine radio networks. The problem is divided into sequential sub

problerns,followersubga'rre,mdlea'der-subgame'AnotherStarck-

elberg game was used in B9] for relay selection for the security of

physicallayersincognitivera.dionetworks.Morespecifically,the

one Leader one Forlower sta,ckelberg Game (oLoFS) was modelled

to actrierre optimal pricrng strategy and power allocation in the pres-
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ence of two eavesdroppers. F\rrthennore, the Primary user (PU) *d

the selected relay simultaneously archierre a Nash Equilibrium (NE)'

In[70],theauthorspresentedanadaptiveapproarchtodefend

the ja,rrming attarks in cRN by controlling transmission pou'ers of

the nodes, where the network topology is adaptively updated to nul-

lify the effects of the ja,rrmer. The tradeoffbetween ja,rrming immu-

nity and network coverage is seen as an optimization problem, which

!
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can be solned by scalable decomposition strategies' The authors also

present a continuous nersion of the game by considering continuous

action space for both players. The authors in [71] study PC ga'mes for

multi-user communicatiou to combat jamming' stackelberg's relay

selection is used in [96] for physical layer security in cognitive radio

networks. The stackelberg single-player Follower Game (oLoFS)

kdesignedtoa,chierreoptimalpricingstrateryandenerryallocation

inthepresenceoftwoeavesdroppers.Theprima,rysorrrceandthe

selected relay operate simultaneously to ae,hieve a Nash Equilibrium

(NE). For the class of two person zero sum games' the staeikelberg

equilibriun (SE) is also a NE'

IlequencY HoPPtng Games

Ga,ure theory has also been used to investigate the frequency hop

ping anti-ja,mrning commtrnication in wireless commtrnication net-

works. For instance, anti-jamming conrmunication in cRltls with

,nknoum ctrannel statistics has been studied in [97]. The authors for-

mulated the problem of anti-ja,mming multi-channel a'ccess in cRN

as a non-stochastic multLarmed bandit problem, where both sec-

ondary sender and receiver choose their common operating ctrannels

by minimizing the probability of being jammed. Another interfer-

ence avoidance-based channel-hopping stochastic galne was investi-

gated in a multi-agent environment in [65], where gametheoretic
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based reinforcement learning meehanism is used to avoid jamming'

The authors in [L] recently presented a bandwidth-efficient

frequencyhoppinggalneinwirelesssensornetworks.Theauthorsin

[gg] presented a brief overview of anti-ja,nrming communication in the

conte:rt of dpa,mic spectrum access. Two tlryical ways of thwarting

ja,mmers are adaptation of transmission rate and Frequency Hopping

(FH). These two are jointly adapted by [2] to improrre the average

throughput and prwide better ja,mming resiliency against reactive

sweep ja,mmer. specifically, the interaction between the jammer and

the legitimate user is modelled i" [2] as a Zeresum Markov Game

(zsMG), and a constrained NE is derived. The authors in [78] uti-

lized a garne theoretic fra,mework to access an optimal channel in the

presence of attarcker, hence maximizing the channel payoff'

The chanuel Hopping (cH) based rendezvous scheme is adapted

for the sU to meet and make the connection for further communi-

cations [77, 99]. This bounded time rendezvot'ls se,heme neither uses

pre-shared secrets nor is role pre-assignment needed for bringing the

SUs on a commonly arailable channel'

In [79], the authors presented a mobility-based single Leader

and Multiple Follourer stackelberg galne (SLMFSG) to avoid ja,m-

ming for increasing the network life in the wsN. Anti-jamming

games in multi-channel cognitive radio networks were presented in

[30], where the su hops to another ctrannel to avoid the ja,mming'
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A zerosum game is played between the attarcker and the su based

onaMarkor,DecisionProcess(MDP).MaximumLikelihoodEsti-

mation (MLE) and Q learning are used for SU to learn from their

euvironment.

In [76], the authors proposed a Hierarchical Lea,rnring Alge

rithm (HLA) for anti-jamming channel selection strategies in the

presence of cochannel interference as a stackelberg galne. They

considered jammer and users as independent learners (ILs), which

choose their strategies independently and selfishly'

In [80], anti-jamming FH ga,nre is constructed using a bi-

matrix garne between the ja,mmer and the legitimate user. In [81],

ga,metheoretic stochastic lea,rning approach is gsed for anti-ja'mming

com.munication in dense wireless networks. In [66], the authors

have considered joint multi-agent learners in stochastic ga,me settings

against a sweep jarnner. They presented a collaborative multiagent

anti-jamming algorithm based on reinforcement learning in wireless

networks. Markov ga,me is formulated to model and analyze the anti-

ja,nrming problem in multi-user environment. Moreover, A Novel

Distributed Multi-Agent Reinforcement Learning Algorithm against

Jammirrg Attadrs are presented in [100, 101].

Time domain countermeasure against random pulse jamming

using MDP and reinforcement learning was preseuted in [62]. In [65]'

MARI is used as independent Q learning for eadr agent against a
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sweep jammer as a, common Practice'

Another gametheoretic anti-jamming scheme for cRN is pre

sented, in [67], where the su used Q learning to Iearn the dynamics of

the jammer and red,uce the complexity of value iteration-based learn-

ing. This se,heme is considered as the beuehmark scheme' However,

they only consider the anti-ja,mning iu ideal channel conditious with

no noise present. secondly, they did not consider the time variations

in the wireless channel. The framework presented in [67] is improved

by considering timernarying rmriable channels, a more realistic cRN

approarch. F\rrthermore, in present situation, both players, utility

is reliant on channel quality; the better the e,hannel, the bigger the

reward, and vice versa. The subchannels are differentiated based

on the received sNR, which results in the varying ma;rimum dhannel

capacities.

Evolutionary game theory (EGT) has captured the attention

of resea,reihers in DSA because of its impressive ability to model het-

erogeneous envirorunents 1s 
an evolving galne. Evolutiona,ry game

theory is also lucrative because it rela:res the traditional rational-

ity assumptions of ga,me theory which require all players to have

complete knowledge of the geme. Yet another advantage of EGT is

that its fra,rrework of replicator dyna,mics can provide commutable

rates of convergence to an Evolutionary Stable Strategy (ESS), thus

generating concrete predictions of the distribution of the deployed
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strategies and a pictrue of the adaptation of users orrer time [102]'

Flgue 2.2: Dimemsiors of the auti-ja,nming ga,me with an ermpbasis on deception-bosed tec'h-

niquea.

2.3 Deception-based Anti-Jamming Games

Deception empowers network administrators by thoroughly defend-

ing against attarls from both external parties and hostile insiders,

properly wa,rning when something is wrong, and offering precise

threat intelligence for quick remediation. When compared to tra-

ditional anti-ja,mrning schemes, deception give more protection by

making the jammer waste its resources as shown in Figrue 2.2'

Ahmed et. aln prorrides. in [60] used staekelberg game based

deception strategy against a deceiving jammer in cRN. The authors

have used honelryots to detect deceiving jammers and used the ja'm-

mers direction of arrival to piace the ja,nrmer's direction in the nulls

of the anterura. Howener, the proposed, work is different from [60], be

cause a deception strategy is gsed not only to detect the intruder but

Lirryn=:-t
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also to deceine the jammer. The authors of [103] presented decep

tive attach and defence game in honelryot-enabled networks for the

Internet of Things (IoT). The authors analysed the deceptive attarck

and defence mechanism using game theory as a dlma,rric Bayesian

game for singleshot and repeated games'

Recently, Nan et. aI. [104] presented a leader-follon'er stack-

elberg deception game based on power allocation. They considered

two pairs of transmitter-receiver. The objective of the defender

transmitter-receiver pair is to maximize the throughput of legiti-

mate transmitter-receiver pair |yr deceiving the ja,mmer with another

trnnsmitten-receiver pair. The ja,mmer divide its limited power bud-

get into two communication elannels, hence reduces the power in-

jected to the legitimate transmitter-receiver pair that transmit the

real information. They also presented the subgame perfect Nash

Equilibrium (SPNE) of the deception ga,me. The authors in [86]

proposed a defensive defence against reactive jamming attacks in

a communication channel. The tranceiver node adjusts its power

lerrels hence modifying the real-time information intentionally, re

sllting in asymnretric lncertainty to decoy the adversary' Similarly,

Hoang et. aI. [105] presented a deception strategy against a reactive

ja,rrmer uslng enerry harvesting and ba,ckscatter tee'hnologies' The

authors in [106] uses a deception strategy in which the transmitter

uses an intelligent deception method in which it emits fake signals
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Ihble 2.2: ComParison of the lit,erature as €"idenP of nortclW rye'td 
in this 

T1

in order to attract the ja,nrmer. The transmitter then has the option

of harrresting energy from the ja,rrming signals or backscattering the

ja,mming signats to broadcast data. As a result, jamming signals can

help increase a\rerage througlput and decrease packet loss' F\rrther-

more, defensive deception using game theory and ma"chine learning

is thoroughly revieu'ed and summarized in [107]'

Moreover, the proposed work is diffenent from [60] in the sense

that a deception strategy is used not to detect the intruder but to

deceive the rateaware intelligent ja,mmer. In contrast to what is

suggested by the authors in [108], which proposed a queuing-based

deception mechanism in cRN, we suggest a norrel physical layer-

based deception technique with the freedom to adapt the rate to

the target parameter in cRN. The novelty of proposed approach is

errident from the comparison as shourn in Tbble 2'2'

Rd. Deception TS FH RA PC EH/Bs Throughput
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Game-Theoretic SYstem and

Adversary Models

After presenting literature review in previous chapter, this e,hapter

presents a geme-theoretic system and adversary models to be used

ftrrther in the next chapters for gametheoretic analysis. Three ja'm-

mers with different lerrels of intelligence a,re discussed followed by

system and jammer model for problem I and II, respectively.

The objective of the secondary user is to carefully swite,h the

e,hannels to ma:rimize the spectrum utilization while avoiding the

potential ja,mming. on the other hand, the jammer aims to for-

bid secoudary users to fonn effective channel utilization by strategic

ja,mming as shonrn in Figrue 3.1. The objectives of the two players,

ja.rnmer and secondary user, of the g&Ine, axe opposite and there is

no question of coordination. Therefore the dyna,mic interaction be

tween them is well formulated as a non-cooperative zerGsum galne'

.-
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Figtre g.1: su and ja,mmer continuously hq their subcharD€ts to meet their objectives' su

worrldliketohoptootheraraailablesubcha,n!€lstoarroidja,mmer.

where the gain of one pla)'er is the loss of other players'

It is noteworthy to mention that all secondary and pseudo

secondary users coordinate to maximize their payoff therefore, all

secondary users calr be deemed as one player, and on the other

hand, aII attarckers are considered to be as another player' spec-

trum ayailability, channel quality and strategies of both secondary

users and ja,mmers axe assumes time-varying. Players of the galne

are intelligent and hop heterogeneous in seare,h of optimal space to

avoid jamming. cooperation cannot be taken for granted as the two

participating players axe opponents to eaeih other and a gain of one

pla)rer is the loss of other players'

3.1 Jammer Model With Different Levels of Intelligence

Jamming is a hostile attack in the cRN, where it disrupts the wire-

less communication by generating high-power noise at the targeted

subchannel as shoqm in Figure 3.2. A jammer with multiple intel-

tr

t
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ligence le\rels is considered'

I Jarnrner

Isu

Freque'ncY

Figurc 8.2: Deliberate radio jnmmss $"Try wilel€s8 coumunicatim by generatins high-

powr noise at the ta'rgeted $rbchaonel'

3.1.1 Level-O Intelligence: Random/ Infant Jammen

In level-O intelligence, the jammer is considered as random in decid-

ing which channel to jam.

3.1.2 Level-I Intelligence: Reactive / BaW Jarnmer

In level-I intelligence, it is anticipated that an intelligent jammer

with cognitine skius will choose the optimal approarch in response to

&annel dynamics and sU strategies. It scans its RF environment

and transmit the ja,mming signats only if it finds the su, hence saving

its pourer.

t
0l

o
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3.1.3 Level-II Intelligence: Smart / Iben Jammer

In level-Il intelligence, an intelligent jammer targets the highest im-

pact communication (HIC) eihannels by targeting specific transmis-

sion characteristics of su e.g., it can target the highest transmission

rate'l?,,,which may be the case in multimedia communications, hish-

est transmission power P, thechannel with the highest bandwidth B,

pa,cket inter-arrival time, and frequency shift, etc. [108]. The highest

impact communication is quantitatively measured by ja,rrmer using

attraction factors in Equation (3.3.1). The jammer perceives high-

est impact communication as the communication with the highest

transmission rate B, whiel is the case for multimedia comrrrunica-

tions.

9.2 System Model of Problem-I

The interweave paradigm for the timeslotted system is assumed in

cRN, where sU can access the spectrum only if it is not gsed by

the PU [12]. Every user scans the available subchannels and staxts

transmission after white space is found.

We assume the network contains ?I PUs,.A/ SUs, wd Mja'm-

mers. The channel's total used bandwidth is W, and the whole band-

width is split into E independent subdrannels of equal bandwidth

w lL. However, the channel capacity ct(a",cfl of eactr subchannel
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may differ, depending on the sNR of the received signal strength'

Itisassumedthattheja,mmingattackistheonlysoruceof

ejhannel deterioration in the network and any other source of interfer-

ence, including the effects of multipath fading is neglected' F\rrther-

more, perfect time and frequency slme;hronization between all sus

is assumed as in [110, 111]. Eaetr subchannel can be in two states,

namely the idle state and the busy state. The relationship between

the pu and an sU can be described by one of the two possible states

of the subchannel as follou':

. IDLE STATE: The ctrannel is idle if any PU is not using it' The

su and the ja,mmer are allovred to utilize an idle channel' The

idle state of the sube.hannel is represented by P : t

. BUSY STATE: The ehannel is considered brrsy if any PU is

using it. Both su and ja,mmer are not allowed to transmit over

a busy eihannel. This state is represented by P :0'

The cha,nnel states (idle or uusy) are not known before the sensing

action is taken place. In this work, f, sube,hannels are considered ,

where the quality of each subchannel is different. Each subchannel

has its manimum capacity limit based on its received sNR, given by:

c\r(on,€) =!bsr(t+ sN{t(c" ,ci\)' Yn e N'Ym e M (3'2'1)

where Ct,r(an,cf) renresents the capacity of the lth subchannel for

lhe nth SU at time slot t, where a' and Cf u" the actions of the

!
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nrh SU and the rn,h 5a,mmer, respectively. Moreover, WIL is the

bandwidth in Hz for each of the 4 sube.hannels and SNR[,(4"' cf)

is the received, SNR of the lth channel for the rzth SU' Let us first

consider the case where there is no ja,mmer present in the system

and the SNR is defined as:

sttRli(a",f)=ffi, vn€ N'Y*€M @'2'2)

where 4,, i, the average signal power received by the nth SU at

the Fh sube,har'rel at time slot t and ltr, is the power spectral den-

sity (PSD) of the Additive white Gaussian Noise (AWGN). A high

SNR[r(4",c].") would give a high channel capacity Ct,t(an,ci) ana

hence a higher channel quality. The e,hannel capacity of the nth SU

at the lth subchannel can be computed as:

Qr,. ,€) =lver{'* ffil' vn € N'Ym e M' (3'2'3)

Moreoven, the Signat to Interference plus Noise Ration (SINR) in

the presence of a jammer can be calculated as sINRfr(r",Cf) :

*".-rfu, Yn e N,Ym € rV{ where ffi,r is PSD of the jamming

signal andBiis the bandwidth of the ja,mmed eha,nnel. Since all sub

channels have identical bandwidth of Bi:fr,the SNR becomes:

sN fis-*,{l : ffi,Yn e N,Ym e M' (3.2.4)

The equation Equation (3.2.4) is true only when an : cf, i.e., both

the SU and the jammer a,re on the sa,me ehannel. This results in se

vere degradation of the SNR for the SU. The objective of the SU is to
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FtgrrreS.S:TbronoryofdefencetechniquesassinstahostilejanmerinCRN.

carefully switch to the available high-capacity channel to maximize

the spectrum utilization, while siraultaueously avoiding the potential

jamming.

3.2.1 SecondarY User Model-I

The SU senses its environment during its sensing period' before ini-

tiating any data transmission. contention-based channel selection

algorithm uses a structure called'Preferable channel List (PCL) to

initiate data transmission. The algorithm avoids collision and per-

forms Request To Send / clear To send (Rr$cTs) contention for
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data transmission. Moreorrer, sensing-assisted access (SAA) protocol

may be used, as a complete random access mechanism for cRN to

initiate data transmission. In this meehanism, the contention-based

access is designed based on integrating the backoff process and spec-

trurn sensing [112, 113]. Howerrer, in this contribution, this aspect

is not investigated. During the sensing period, each su would try

to sense for the presence of any PU in the available subehannels'

However, the su can not detect the presence of a jammer at the

begrnning of the time slot. Nonetheless, the su can realize the pres-

ence of the ja,nrmer at the end of eae,h time slot. More specifically'

at the end of each time slot, the su would know if its transmission

was successful or was jammed by a malicious ja,mmer. The inter-

ested readers may refer to [45, 46] for details concerning ja,mrning

detection. A successful tra,nsmission yield a positive payoff to the

su, while a jammed transmission would yield a negative payoff to

the SU. The utility of the n'h SU in the lth subchannel based on

the actions of su (represented as a") and the arction of the jammer

(denoted u Cn at time slot t can be derived as:

tfr(a", Cfl : Qp(a", Ci)@ur@, Cf)(Ti - gf)-

(t - x:p(a",Cn)Vf + 8n), (3.2.5)

where t" is the cost of transmission of the nth SU, 7f is the SU

gain factor for successfirl communication, Jf is the loss factor for
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SU when the SU transmission in the lth subcha,nnel is jammed. The

impact of the subetrannel sNR and the decision of each player on the

utilities of both players are shoum in Figure 3.4. The received sNR

at earch subchannel increases from subchannel I' to subchannel 10'

The utilities earned by eactr player are opposite to each other' The

missing utility at subcharurel 4 in Figure 3.4 indicates that the PU

is transmitting in this subchannel, and neither su nor ja,mmer can

use this subchannel. F\rrthermore, sube,hannel 9 was ja,rnmed in

the previous time slot, if the jammer stays there, the su would bave

negative utility to use subchannel 9. similarly, for the jammer, if

su was at sub&annel g and if it stays there, then the ja,mmer would

have positive utility at subchannel 9. Additionally, the PU could

ehange to a different subctrannel in each time slot, but it is assumed

that both the su and the ja,mmer can detect the subchannel used

by the PU.

The utility of the proposed system in Equation (3.2.5) can be

compared with the utility firnctiou in of the benchmark system [67]

given by G(s, a) : D!=1G1(s,a), where the gain of the SU at the

Ith subchannel is comPuted as:

G1@, o) : st(s, a) x U - g1(e, o) x C, (3.2.6)

while r1(s,a) and g2(s, a) are binary switching functions. F\rrther-

more, u and c denote the utility earned by the su and the ja,mming

cost of su, respectively. The authors iu [67] assume that the values
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for the utility and the cost in every subeha,nnel are identical, since

their subchannels have the sa,me quatity. The left-hand side of both

Equation (3.2.5) and Equation (3.2.6) denotes the utility function

of the su, although diffefent uotations were used. The right'hand

side of Equation (3.2.5) and Equation (3.2.6) h* the following dif-

ferences:

. The factor Cf,t(a",Cf) b introduced in Equation (3.2'5) to dif-

ferentiate the subctrannels based on the subchannel capacities'

Hence,successfuItransmissioninagoodqualltysube,harrrrel

would yield better utility for the su. This quality factor is miss-

ing in [67] and Equation (3'2'6)'

. The factors Ei and, €ii ate also considered to account for the

transmission costs for su and for the jammer, respectively, in

terms of the battery utilization and the power transmitted'

. The two binary switctring functions r1(s,a) and y1(s, o) in Equa-

tion (3.2.6), are used in [67] sue'h that r1(s' a) + y1(s'a) : l'

To simplify the mathematical notation, the only one binary

switching function xt,t(an,,i) i. used instead of two, sue,h that

n\t(an, cf) + (l - r71(a", cf)) : t'

. F\rrthermore, a more detailed utility function for the ja'rrmer is

considered compared to that of [67], as will be orplained later

in Equation (3.2.11) *d Equation (4.1.2). combining Equation
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Flgure 8.4: Tbe inpact of esngp ir SDIR aud the deciFion of cach player ou the utilities of

other PlaYers.

(3.2.5) and Equation (3.2.3) grro Equation (3'2'7)'

fir(an, cil : ! bs,r1r . #*)(*ur(on, 
ci)(T - en -

(L - x41(a",qDUf + gil), Yn e N,vrn € M, (3'2'7)

where r\t(an,Cn e {1,0} is a binary switching function used to
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indicate successfuIfiammed SU cornmunication:

a\ lt, aofCf,yneN,YmeM, 
(8.2.8)aLt(a",€): I- 

[0, sln = {,Yn e N,Ym e M'

Note that c1,6(o",ci) is L for successful su transmission and is 0 for

ja,nrmed SU transmission. Specifically, Clr(a",Ci) :0 if the SNR is

below a certain threshold value SN&l i.e., SNRfl,(o",Ci) < SNRtt

and the ralue of the switctring function n\t(an,cfl) would also become

0. Equations (3.2.2), (3.2.4) and (3.2.8) are related in the sense that:

Ir, sNfir(a",cf) > sIV&r,
a\t(o",4): I

[0, sNtrry{r,ci) < sr&r,,

and

sNfi/o^,€r=[fu 
al'1(an's):r

l#"'E' x1'1(at'$):o'

(3.2.e)

(3.2.10)

In other words, the su utility function in Equation (3.3.3) incorpo

rates the practical channel condition in terrns of both the ehannel

capacity and the ja,mming conditions. The goal of the su is to man-

imize the eurpected, sum of the discounted payoff by choosing a good

quality eihannel that is not ja,mmed by the jammer'

3.2.2 Jammer Model-I

Ja,nrming is a hostile attark in the CRN, where it disrupts the wire

less communication by generating high-power noise at the targeted

subchannel as shown in Figrue 3.2. This research considers two

46
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$rpes of ja,mmers, i.€., random ja,mmer (level-O ja,mmer) and intelli-

gent ja,mmer (level-l jammer). A random ja,mmen would randomly

ja,rn a subchannel in a different time slot. Inspired by [67] and [29],

when an intelligent jammer with cognitive capabilities is assumed,

it adapts the best stratery to observe the channel dynamics and the

SU strategies. The ja,rrmer senses the RF environment for a given

sensing duration and then transmits its jamming signals based on

the channel conditions and the strategy of the SU. If a PU is de-

tected in a subchannel, the jammer would switctr to other arrailable

subchannels to avoid the hearry penalty imposed by law-enforcement

agencies and start sensing again [29]. The utility function of the jam-

mer in the l'r subchannel is based on the actions of the SU and of

the jammer, whictr is represented by:

llff,t(a", cf) : fi(a",ri) t(t - x\t(an , 
"TDOii - 

q)-

x,,t(an,$@eV1],Vrz € N,Ym e M, (3.2'11)

where Cfi(a",cf) is the channel capacity of the Fh subchannel and

W i, the ja,mmer gain factor when a SU wes successfully ja,rrmed,

while 8ff is the cost of transmitting the ja,mming signals. F\rther-

more, 0 is the ja.mmer regret factor wheu the ja,mming was not

successful, which is the negative reward ea,rned by the jammer when

the ja,mmer sends a jamming signal to a subctrannel that the SU did

not use. As mentioned in Equation (3.2.8), rt,t(an,4|.l) i. a switching
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function having r\t(an,cf):0, when the jammer successfully ia'ms

a ctrannel (zero regrets), while xt,t(an,Cfl : L when the jammer

fails to jam the su. Hence, an intelligent jammer is more inclined to

jam a sU that operates in a high-capacity subchannel than a low

capacrty subchannel. The objective of the jammer is to ma:rimize

the probability of successfuI ja,mming'

3.3 System Model of Problem-Il

The system model for the first portion of the work described in this

thesis was presented in the prwious section. The second portion of

the system model for the deception-based anti-ja,mming mechanism

is shown here. Let's look at the ja,nrmer features as defined by the

ja,mmer model before discussing the system model to deceive the

intelligent ja,mmer.

3.3.1 Jammen Model-II

The objective of the Jammer: Jammer tries to minimize the

average bandwidth efficiency of the cBS by injecting noise to those

users having the highest impact commtrnication. The impact of jam-

ming attaeik on the com:nunication subdtannel is to reduce the SNR

at the receiver and hence reducing the capacrty of the e,hannel' A

powerfirl ja,rnmer with the follouting ctraracteristics is assumed'

t-
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. Level I: Reactive ja,mmer

. Level II: Intelligent ja,nrmer: Rate-aware

Thebasicassrrmptionsaboutthejammermodelare:

Jamming at the physical la)'er is assumed' in whieh a jammer

hinders wireless communication by producing high-power noise

at the targeted subchannel.

similar to other secondary users, an intelligent ja,nrmer is in

essence a secondary user with sensing, perception, and adaptive

capabilities as assuned by [67, 11a] and [30]' As we already

know that the secondary user has the lower priorities to access

the spectrum as compared to the primary users, therefore a sec-

ondary user has to gse its sensing ability to sense its environment

for the arailability of free spectrum to continue its transmission

and to avoid interference to the primary user. In a very similar

fashion, a ja,mmer needs to sense its RF environment for the

presence of a primary user. Then the ja,rrmer will avoid the

primary user if detected as the primary user due to the risk of

a high penalty. on the other hand, the jammer targets users

other than primary users.

we are combating against intelligent ja,mmer in cRN in inter-

view paradigm, where the spectrum hole is accessed by sec-

ondary user on opportunistic spectrum access (osA) bases. The
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intelligent jammer has the cognitive capabilities, means that it

is capable of sensing the presence of primary user in the net-

work. The intelligent ja,nrmer is deemed as a secondary users

with negative intentions to disrupt the communication of other

secondary users. In the initiat sensing time of a time slotted sys'

tem, intelligent jammer do also listen to the presence/ absence

of primary user just as the other secondary users do. so, the

intelligent jammer is capable of seusing the RF environment and

based on the sensing results it transmit the noise signals on the

frequencies vacated by a primary user and utilized by secondary

user to jam the communication of secondary users. The ja,mmer

can not jam the primary user due to heavy penalty imposed by

the law-enforcement agencies'

Due to the prospect of a, severe penalty, the jammer does not

target the PU communication [29, 108]. The jammer monitors

the RF environment for a predetermined amount of time before

transmitting its ja,mming signals in accordance with subchannel

circumstances and the SU's strategy. If a PU is identified in

one of the subchannels, the jammer will switch to another sub

channel and begin detecting another SU'

Ja,mmer is constrained by the J,ornumber of lsers it can target'

For the cause of simPlicit! J*"r: l'
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. The ja,mmer aim at ja,rrming the users with Highest Impact

communication (HIC) [10S]. In multimedia communication, the

HIC is the one having higher data rates. Therefore, high data

rates for SU increases the risk of getting ja,nrmed by intelligent

jammer.

. Ja,mmer use attraction factor 6, 0 S di S 1, Yi e N to target

(HIC), whictr is defined as

6r: rfu, vi e.Iv'l'fe, : r

where Ri is the data rate adapted by the i'h SU/PSUs. The

intelligent ja,runer may acquire the rate/code/modulation in-

forrration of su/PSU using one of the follou'ing three ways: e,(-

plicit rate information, modulation guessing and code guessing

[52].

. Jamner calculates d,0 ( d < 1 for wery detected signal in his

environnent according to Equation (3.3.1) and target the su

with the highest attraction factor'

using lerrel-I intelligence, the jammer will scan the environ-

ment and knou, the channel qualities and the transmitting sus. us-

ing level-Il intelligence, the jammer will determine the highest im-

pact communication of the secondary network using attraction factor

in Equation (3.3.1).

A triangular anti-jamming deception game is presented be-

(3.3.1)
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InectivePU
P--0

lrl \\
E:T3I

Flggre g.5: A triangulg auti-jamuirlg deceptim gAme is presented betreeu SU, PSU, and the

jaumer in the absence of PU'

tween su, PSU and the ja,mmer in the absence of PU as shourn in

Figrue 3.5, indicating a cooperation in the form of light green a,rrorv

between all SUs and the PSUs.

3.3.2 Cognitirrc Base Station (CBS)

The secondary network consists of one central unit called fusion cen-

ter (FC) / Cognitive Base Station (CBS), several SUs and a PSU.

objective of cBS: The goal of cBS is to imprwe the overall

system,s average throughput bJr successfully deploying a deception

mechanism using PSU in the presence of an intelligent ja,mmer'

3.3.3 Secondar5r User Model-II

. SUs are enforced by dyna,mic spectrum access (DSA) imple

mented in CBS to periodically pause its transmission and sense

for PU activity, to protect PU incumbent services.
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. The su senses its environment duriug its sensing time before

commencing any data transfer. Throughout the sensing time,

each su would try to detect the sristence of any PU in the

accessible subehannels. On the other hand, the SU would be

unable to identify the existence of an adversary at the start of

a time slot. concerning ja,mming detection, interested readers

may see [46]. Despite this, the su is able to detect the existence

of the jammer at the endiug of each time slot [45]. After earch

time slot, an su would know if its communication was successfuI

or was jammed by a malignant jammer'

. The SU would receive a positive reward if the transmission was

successful, while a jammed transmission, on the other band,

would result in a negative payoff. The utility of the su denoted

w (Ii in the 'ith subeihannel can be derived as:

l.t,: C,((r - 6r)Q - 6iJ), (3'3'2)

where ci and, d are defined in Equation (3.2.3) and Equation

(3.3.1), respectively. Moreover, G and J we the gain of the

secondary user and gain of the jammer, respectively. Combining

Equation (3.3.2) with Equation (3.2.3) yields Equation (3.3.3).

ui: (wl)) log2(1+ ffirUL - 6,)9 - 6{l' (3'3'3)

In another way, the SU utility function in Equation (3'3'3) allows us

to incorporate the practical eihannel condition both in terms of dran-

nel capacity and jamming situations. In the presence of a ja'rrmer,
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the SU's objective is to achiwe the expected sum of the discounted

payoff by selecting a good quality drannel'

g.g.4 Pseudo Secondary User (PSU) Model

A dummy user called pseudo secondary user (PSU) is assumed to

mimic the characteristics of a legitimate SU to lure the jammer' PSU

lures the jammer by transmitting at a higher modulation s&eme to

invite the ja,urmer to attarck the PSU. A group of sus takes the

senrrices of a PSU to decoy the intelligent jammer'

. A PSU does not send a legitimate signal; rather, it transmits

garbage data at a ra,te greater than the other su to deceive the

jammer. That is why the utility of PSU is not counted in the

calculations of throughput of the CBS.

. The wireless communication system is designed to achieve a spee

cific BER line in a BER-SNR(dB) mrve. one has to follour

this line for reliable communication. Moreorrer, according to the

Shannon capacity theorem, a specific data rate can tolerate a

certain level of ja,mming power (received SNR) to achieve reli-

able communication. If the jamming power is greater than the

threshold, the correspondrng data rate of transmission may ex-

ceed the ctrannel capacity. The pa,ckets a,re lost, which results in

lower throughput of the system. However, this does not apply
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to the proposed PSU-based deception mechanism, as the PSU

is transmitting garbage rnalues with a rate higher than the rate

of sus in the vicinity. since a PSU is transmitting garbage

data, it is not interested in the loss of packets' Hence, the data

rate/capacity of PSU is not calculated towards the throughput

of the sYstem.

. A rnariable catled attraction factor d e (0,1) is introduced to

lrue the ja,mmer by attracting the rateaware ja,mmer towards

itself. The proposed scheme is implemented so that the jammer

gets the false impression of PSU as the highest impact commu-

nication. It becomes Achilles heel for the jammer.

9.4 SummarY

The norrel contributions of the research work can be summarized as

follows:

1. A cognitine adversarial ja,nrmer is considered, whieih is an intel-

ligent attaeiker that adapts to the dynamics of the subchannels

and the strategies of SU.

2. A mathematical modelling of the system is developed to satisfy

the requirement, incorporating intelligence in the su to cope

with an intelligeut jammer.

3. A more realistic and practical channel model is fra'med here,
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which assumes that aII subchannels may have the varying qual-

iW of serrrice. More specifically, the channel conditions may

change oner time and differ from one subchannel to another.

4. The proposed framework considers various factors and parame

ters that capture the near practical channel dynamics, i.e., sNR,

variable ctrannel capacity, jamming gain, transmission cost and

ja,mrning cost of earch player in the game.
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Part-I: ProPosed Anti-Jamming

Game to Combat Intelligent

Jamming for Cognitive Radio

Networks

The system model was presented in the previous chapter. This chaP

ter describes the optimal solution stratery to combat intelligent iam-

mers.

4.L Game Theoretic Anti-Jamming Mechanit'i'-f

Here the ga,me-theoretic anti-ja,mming meelanism is presented. Aa

anti-ja,mming game is preseuted after having a brief section of pre

liminaries of the galne theory.
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4.L.L Prellminaries

A Stochastic Game (SG) is the natural extension a;ld generaliza-

tion of the Markov Decision Process (MDP) to multi-agent systerns

[9, 26].1 SG prorrides a framework for multi-agents in multiagent

reinforcement learning (MARI). In this contribution, a stochastic

anti-jamming ga,me is dweloped between two players of conflicting

interests.

Definition L l27l: A tweplayer stochastic garne is defined as

9: (X,S,,A4,lti), where 2t: {L,2} it the index of the players, S

is the discrete strategy space of the game, h is the discrete action

space of player i, while tA : S x .4a is the utility lpayoff' of player i,

vieN.

Definition 2[115]: A pair of strategies (i*, i.) {i for the row

player, and 7 for the column player) yrelds a non-cooperative Nash

equilibrium solution to a bimatrix garne ('4 : {Ari} B : {B;i}),

where ,,4 and B arc pa)'off matrices for eactr player if the following

two inequalities are satisfied:

fi.r. /A,ii., Yirj - lr2,3r...rP,

B;.i. I B;11 Yirj -Lrzrilr...,P,

(4.1.1)

where P is the total number of pure strategies, earch stage of a

stochastic galne can be viewed as a bimatrix ga,nre.

The basic assumption of a stoctrastic game between two inter-

rstoe,hastic 
tame. a,1re 8l5p c8llcd Msrbv gamer, which csEcntidly are n ageot MDP [24,
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acting players is that the actions of each player will have an impact

on the utility of other player. The sa,me assumption is valid here in

this researctr work. The SU obtained its utility based on the past

actions of the jammer in the previous time slot. If the subchannel

to be accessed by the SU receives an SNR lower than a threshold, it

implies that the jammer successfully jammed the subehannel, and

su wiu get lourer utility at that subchannel at time slot t.

4.1.2 Game Forrrrulation

Based on the knourledge about the &annel, the system and the at-

tacker, the objective of the SU is to carefully choose a subchannel

to maximize its spectrum utilization while avoiding jamming. on

the other hand, the ja,rrmer aims to forbid the SU from effective

ehannel utilization by a strategic jamming approach. The objectives

of the two players, namely the ja,mmer and the su, axe opposite to

ea,ch other. Therefore, the dyna,rric interaction between them is well

formulated as a non-cooperative game' where the gain of one player

is the loss of another player. F\rrthermore, spectrum availability,

quality of the channel, and strategies of both su and jammer can be

time.varying. Players are assumed to be intelligent and would ex-

hibit rational behaviour to maximize their payoffs according to their

objectives.

A tweplayer sG is formulated betu,een the su and the jam-

:
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mer as described belont:

Players: There axe turo non-oooperative players in the g4me namely

the SU and the jammer.

States: Every subehannel occupation is considered as the state 5

of the game. For exa,nrple, if there are L subeihannels, then there

are L states. The number of available states to the SU and ja,rrmer

is given by L -?1, where E is the total number of subchannels and

?l is the number of PUs in the network.

Actions: An action A(s) at each state has 4 - 7l hopping possi-

bilities. For ea,ch L - ?t available states, the possible action set is

,,{(s) : {orrorrasr...,&it...taL-?t}, where a; is the action to hop to

the ith subchannel in the L-?t available subchannels. Both players

ehoose actions to hop to any of the available subchannels, whieh are

not occupied by the PU. Since the available frequency slots are the

sarne for both players, the action set ",4(s) 
is the same. Every action

results in a change of state. Both ja,mmer and su sense the channel

during the sensing period and hence the channel states and channel

quality are assumed to be aourmon knourledge in the galne.

Payoff: The irnmediate payoffs of both players in a bimatrix ga,me

at eactr stage are given by Equation (3.3.3) *d Equation (3.2.11),

respectively. The total utility of the whole secondary network is

given by N E

1,17,1(o,ri) : E lttp(p",Cf),
7=! t=!

(4.1.2)
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where ttfr(a",f) it given by Equation (3'3'3)' The long term ob

jectiye of su is to ma:rimize the expected sum of discounted payoff,

which can be written as [26, 29]:

rnax .E 

{i^+,na",.r)},
(4.1.3)

where 7' is a time decaying discount factor, 0 < "1' < 1, that deter-

mines the significance of future payoffs atdllTp(a, q) is the utility of

the secondary network at time t, which is given by Equation (4'1'2)'

The frequency hopping strategy of the su is to maximize its utility

by taking an optimal action that is given by:

(4.1.4)

similarly, the frequency hopping strategy of an il,telligent jam-

mer is to maximize its expected utility of DEo 1tlli4T,t'@, c5) by tak-

ing an optimal action of:

a* = usog6 ,e{L+urrt*ri)}.

"i 
: *8"8ff" 

,e{L+u,,,c,(o,ri)}.
(4.1.5)

The pair (o*,cj)is said to be an equilibrium pair, if Equation (4'1'4)

and Equation (4.1.5) follou, the folloning inequalities:

oo
e 1f ^fw,t(a', ci) ) 2 e{\^fur,1 (4, ci) },

t=0 t=0
oo

e 1f ^fu1ur,r 1a', ci ) )'- e {\^fui\t,t(o" ci)I'
t=O t=0

4.1.S Cllearning-based Anti-Jrmming

(4.1.6)

In the prwious section, the anti-ja,mming galne formulation was

mentioned. This section describes the defense stratery of the su, i.e.,
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,11 -'d ? e [0'1]' Vse € 5' ah e "'{(a) 
and

C: e.t1"1.

z,Ik,QGk,c[)=0.
3: while tc -l K do

;, 
"ffi"JiJo 

o*, get imrediate remnrd R(c, cfr) according to (3'3'3) and observe

sh+I.

E: Choose ct+r ftom ,t*1 ""i", policy defircd from Q(8ft'ck) as gt'e'in (a'1'9)'

;, Updste Q!h,ok) for SU accoraing to (a'1'7)'

7z ,r * ,mr-"o6 ct F cttl.
8: end while
9: lf o = ci then
l0: The channel is ja'mmed.

U: else

L2: The SU transmission is succesEful'

13: end if

how to defend the su from being jammed by the jammer. A multi-

agent reinforcement learning (MARL) agent as independent learner

(IL) in QJearning is rlsed to combat ja,rrming attarcks in cRN. see

section L.5 for details of reinforcement learning algorithm called Q-

Iearning to be used here for solving the optimal stratery. The rnalue

of e(st, @ft) in Equation (1.5.2) can be updated recusively without

having to estimate the transition probabilities [116]' as follovrs:

e(rt, oh) = q1c*, ct)(t - ot) + at[E(s[, ae) + r mg1{Q1s}+t, o}+1)}], (4'1'7)

where ok is the linear learning rate satisfy'ng 0 < o* < 1' For

oF to be time decaying it must satisfy the conditions DPo oft : oo

and DEio @r)' < oo. Note that 7 is the disco,nt factor satisfy-

ing 0 < 1 < L. similarly, the intelligent jammer can also adapt

the QJearning algorithm to learn the dyna,mics of the su and the

subchannels [117]. E:rplicitly, the ja,rnmer maintains a separate Q

learning table for its onrn rational decisions. After updating the Q
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2

k:0,r:100,o*€[0J]-are[0,t],Vste5,a}e.,{(s)and
4 e -A(e)

z, tk, qi@h,4) =o.
3: whlle lc -r K do

1: Brecute action $, Srtimmediate reward Riu,,$) accuding to (3'2'11) and ob

serve st*l.
E: A; 

"f+t 
fro- Et+l using policy derived from Q,'(sfr,4) u" S,t'* in (4'1'10)'

6: Update QrG*,4) fc ja,mmer according to (a'1'8)'

7z sr ts Er+1 *d 4 * 4*r.
E: end wblle
9: lf cj : c then
1o: The ianrmer is successfrrl

U: else

L2: The SU transmission is succeggful'

r3: end lf

table, an intelligent ja,mmer could decide based on its updated Q

table. The update rule for the jammer's Q value is given by:

eib*,$) = er1"h,4ltr - a*; + oI14 @*,4)+ ?T?I{ar1st+1, {+1)}1, (4'1's)

where QGk,ak) and Qibh,4) u"the estimates of the expected sums

of the discounted payoffs for both the su and the ja,mmer, respec-

tively, whieih could e\rolve. The rewards of the su and the ja,m-

mer after choosing their respectine actions at state sk are grven by

R(rk, oe) and Ej(r*, {), rop.ctively. These immediate rewa,rds axe

calculated using Equation (3.3.3) and Equation (3.2.11) for the su

and the ja,mnen, respectively. The su would stay on the crurent

subchannel if its reward on the culrent subchannel is good enough

to contribute to Q value update positively. A negative instant re-

ward in a certain subcha,nnel indicates that the subchannel has

been ja,mmed and the su should avoid that subchannel by hopping
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to another available subehannel in the next round' The su's oP

timalfrequencyhoppirrgstrategytoavoidthejammeristheaction

that maximizes its Qvalue in state s and is given by:

c* = E8oeTt:,Q(s'c)' (4.1.e)

Algorithm 1 summarizes the ga,nretheoretic frequency hopping algo-

rithm for su. The ja,m:ner's optimal frequency hopping strategy to

ja,rn the su is a greedy policy that chooses the action with maximum

Qvalue in state s and is given bY

c] = ars"ffi rQi@,ci. 
(4'1'10)

For ja,mmer, the procedure is summarized in Algorithm 2'

4.L.4 ComPloritY AnalYsis

Inspired by [64, the computational comple:rity of Algorithm 1 and

Algorithm 2, in this subsection is derived. Inside while loop line 5 of

bothAlgorithrnsrepresentthepolicyderivedfromQlearning,and

line 6 represent the update equation of Q learning. The computa-

tional comple>rity in ea,ch iteration of the policy phase comes from

solving linear equations. The complexity of the policy phase is given

uy o(lsl). on the other hand, the complexity of Q learning phase is

calculated as o(lAl.lsl). combing both will result o(lsl.(l + lAl))'

As the algorithms run for K number of iterations, hence the overall

complexity may be represented by O(llfl'lSl'(1+ lAl))' where 'S 
and

A represent states and actions, respectively'
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Ibble 4.1: Parameters used itr the siEulsti@s, a,nd difierent sNR values 6on sll sub-ahennels

in case I.

I sl[fuB

-other 

Para,meters

1

2

3

4

5

6

7

8

I
10

0

10

13

14

15

16

tt
18

19

20

Sffi:16.2

L10
?t1
N1
M2
Tt -100

&10
Eil 10

7i 100

a 0'f
p -100
,t 0.8

After presenting the system and adversa,ry model and then

the solution mechanism itr the previous section, this section presents

the res'lts and discussions. problem-I presented the results against

random and reactive ja,mmers while Problem-Il provided deception-

based anti-jamming results against rate-awa,re intelligent jammers'

4.2 Rcsults and Discussions

This simulation study ccnsiders N : 1.0 subchannels, one su, one

PU,anduptofourjn'mmers'WhenthePUoccupiesasubehannel'

neither the su nor the ja;nmers can access that channel. The su

chooses a high-capacity subchannel that is potentially jamming-free,

while the ja,mmers predict and choose the subchannel gsed by the

SU.
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4.2.lTheEffectofUsingDifferentCharrnelI|pes:

The capacrw of a subetrannel is a measure of the highest information

rate that can be achierred with a very small error rate'The eihannel

capacrty Cl,r(o",f) i. represented by Equation (3'2'1) and Equation

(3.2.10), while the bandwidth efficiency in bits per second per Hertz

(bps/Hz) can be comPuted as:

(4.2.1)

In each epoch the simulations axe run A : 2000 times to get the

average bandwidth efficiency for eae'h SU:

,r --ry-= ro'z (r. ffi)' vn €.r/

n=lirt (4.2.2)

ThIo cases are considered, where case I refers to the situation

when all the,c subchannels have different sNRs, and hence, different

e,hannel capacities as given by Table 4.1. By contrast, all 4 sub

channels have the same SNR in case II. More specifically, case II

is related to the idealistic scenario [67]. The mean sNR in dB is

calculated bv: 
sffi = l,ro'ro (itro+*) , g-z-s)

where sNfus,r : 10tog1s(sNR{p) is the sNR of.lth subchannel. The

sNR for each subchannel in case II is the salne as the average sNR

ofcasel(SNfua:16'2dB)'Forafaircomparison'themeans

sNRs for both cases are equal, which is sNRaa :16.2 dB as shown

in Tbble 4.1.
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Here, the proposed and benehmark scheme referred in Sec.

tiot2.2.Lin case I are compared, where the subeihannels have vary-

ing qualities. Howerrer, the benetrmark scheme assumes that all sub

chanuels have a fixed quatity Equation (3.2.6). As seen in Figure 4'1',

the proposed system outperforms the benchmark scheme in terms of

jamming probabilities and bandwidth efficiency. Please note that

when the channel qualities of all subehannels are fixed, the pre

posed scherne will perform similarly to the beneihmark scheme' In

other words, the proposed s&eme is the generalization of the bene'h-

mark scheme to the general case, where the subctrannel qualities

\naxy.

Figure 4.2 shows the probability of successful ja,nrming by the

jammer and the bandwidth efficiency of the su, for both cases I and

II, when one or two random ja,mmers are considered. with increasing

epochs, the intelligent su could learn the environment in a better

way and the probability of successfuI jamming is expected to be

reduced, while the bandwidth efficiency would increase. The proba-

bility of successful jamming for the twoja,mmer scenaxio is slightly

higher than that of the singldammer scenario, but the probabilities

converge to zero after 60 epochs, as shown in Figure 4.2a. F\rrther-

more, in the more challenging case I, where the cha,nnel quality raries

across the subchannels, the proposed algorithm still works well de-

spite requiring a more extended training period (or epochs) to reach
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the convergence point, as seen in Figure 4'2b'

The proposed algorithm ailows su to intelligently choose sub

ehannels with higher channel capacities when the channels are \xa'ry-

ing as in the case I. Hence, the average bandwidth efficiency of the

system is improved. It can also be seen from Figure 4.2b that the

alrerage bandwidth efficiency in the singlejalnmer scenario of the

case I (solid line) is higher than that of the single-jalnmer scenario

of the case II (dotted line) after 40 epochs. A similar pattern can

be seen for the two-ja,mmer scenario in Figure 4.2b, after 45 epochs'

In other words, the proposed algorithm works better for the case I

after a sufrcient training period. Hence, the proposed scheme that

operates in variablequalrty ctrannels (in case II) outperforms the

benehmark scheme of B7] that works in fixed-quality channels (in

case I). F\rrthermore, the average bandwidth efficiency of the su in

the two-ja,mmer scenario is a,lmost equat to that of the singlejammer

scena,rio for both case I and case II. This indicates that the proposed

algorithm performs equally well when working against two random

jammers.

4.2.2TheEffectofHavirrgDifferent$pesofAttaclts

In this scena,rio, the impact of having an intelligent jammer in the

system is investigated. Keep in mind that the intelligent ja'mmer

also learns from its Q values gl\Ien in Equation (a.1.8) based on the
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parameters given in Table 4'1'

Figrue 4.3a shovrs the ja,m:rring probabilities of the random

and intelligent ja,mmers for both case I and case II. In particular,

the ja,rnming probability converges to zero after 30 epoctrs when a

random ja,mmer is invoked. The successful jamming probability in

case I (dashed dot line) is around t}To at the 30th epoch when an

intelligent ja,rrmer is present. Hence, the successful ja,mming prob

ability is greater for an intelligent jammer compared to that of a

random jammer as expected. The two curves (case I and case II)

are a,hnost the s&rne for the random ja,rrmer case (not the intelligent

ja,mmer case). The proposed scheme (case I) in solid blue is similar

to the benchmark scheme (.r"t il) in dotted yellow because of the

non-intelligent behavior of the random ja,mmer. Flom a random jam-

mer perspective, the subchaanel qualities do not matter. Therefore

the successful jamming probabilities against a random ja,mmer for

case I and case II are almost similar. In contrast, the two cluves a're

different for the intelligent jammer case. The focus of this research

is to combat against an intelligent jammer. The intelligent ja,m-

mer looks for subeihannels with good subchannel attributes' The

proposed scheme works better against intelligen; jammer in variable

subchannels case (case I, dash-dot red) as conrpared to the bench-

mark scheme (case II, dash indigo). The proposed scheme (case I,

dash-dot red) reduces the successful jamming probability to zero af-

tt

I
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ter 70 epo&s, while the benctrmark scheme (case II, dash indigo) is

not capable of doing so.

As seen in Figure 4.3b, the corresponding average su band-

width efficieucy in the presence of an intelligent ja,mmer (solid line)

is almost equal to that when having a random jammer (dashed line)

after 40 epochs. Hence, the proposed intelligent SU can avoid the

intelligent jammer after a certain training period' Furthermore, the

su bandwidth efficiency in case I is higher than in case II. Hence,

the su can also choose intelligently subchannels with higher capac-

rty, in case I, for increasing the average bandwidth efficiency of the

system while successfully avoiding the intelligent ja,mmer.

4.2.STheEffectofUaingDifferrentDefenceStrategies

Here, all four possible intelligent/random SU against intelligent/random

ja,mmer scenarios are discussed, based on case I. As seen in Fig-

ure 4.4, when a su chooses a random subchannel stratery in the

presence of a random jammer, then both the successful ja,mming

probability and the average bandwidth efficiency of SU remain al-

most constant (dotted lines). The performance of SU improves re-

markably when it behaves intelligently against the random jammer

(dashed lines). It is visible that a su using a random strategy against

an intelligent ja,mmer will result in severe jamming and the SU band-

width efficiency degrades drastically (dashed dotted lines)' Hence,
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the su must be intelligent to combat against an intelligent jammer to

reduce the successfuI jamming probability and increase the average

SU bandwidth efficiency (solid lines)'

4.2.4 The Efiect of Multiple Intelligent sus against Intelligent Jamner

In Figrue 4.5 the performances axe compared when increasing the

nnmber of intelligent sUs in the secondary network. In Figure 4'5a,

it is shoum that the ja,mming probability is higher for two intelligent

sus in the presence of a single intelligent jammer compared with

the situation when only one intelligent su is transmitting. The huge

impact of an increase in bandwidth efficiency is shourn in Figure 4'5b'

The bandwidth efficiency of the secondary network is almost doubled

when there are two intelligent sus against an intelligent ja,mmer'

4.2.6 Performance Eraluation of Intelligent su against Intelligent Jam-

mer in Time Slotted Vien'

In Figure 4.6, Figure 4.7 and Figrue 4.8, the x-anis shows the time

slot index and the height of the bar shou's the utility earned based

on the decision of each player after a training period of 100 epochs'

As already described in the proposed model, eactr subchannel has

different quality based on the received sNR. Without loss of gener-

ru-r (SNRrv, i e N i.e., the SNR is increasing from subchannel 1

78
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ja,mmers ;; pr**iil case I, for a different ot -bo of a'ailable sub"chrnnels.

to sube,hannel 10. The impact of changes in sNR and the decision

of each pla]rer on the utilities are shosrn in Figrue 3'4' where the

utilities earned by earch player a,re opposite to each other.

when the players hane trained adequately, then the corre

sponding Q tables would be appropriately updated, which would

result in good decisions for all players. The intelligent SU has more

choices in terms of choosing an optimal sube,hannel' More explic-

itly, the su can choose any of the available subdrannels, while there

is only one subchannel that the jammer can choose 'correctly' for

successful jamming. Hence, it is less probable for the intelligent SU
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to get jammed based on the updated Q table ralues' Both intelli-

gent SU and intelligent ja,mmer would opt for high-quality channels

as depicted by the height of each bar in Figure 4.6. As seen in Fig-

ure 4.6, the sU chooses subeihannel 10, while the ja,mmer ehooses

subctrannel 4 at time slot 1. Hence the su has a positive utility'

while the jammer has a negative utility. Also shown in Figrue 4'6,

the ja,rrmer only manages to ja,m the SU at time slot 10, over the

lFtime slots considered. Hence, the intelligent SU manages to avoid

the ja,nrmer, while choosing high-capacity subchannels'

4.2.6 Performance Enaluation of Intelligent SU against Ranrdom Jam-

mer in Time Slotted View

Figure 4.7 shours the decision patterns for the case when intelligent

su adapts the Q learning for strategy update, while the ja,rmmer uses

random strategy. As seen in Figure 4.T,theintelligent SU manages to

avoid the random ja,mmer in all of the lFtime slots considered, while

at the sr.me time capable of ehoosing high-capacity subchannels'

4.2.7 Performance Evaluation of Random SU againet Intelligent Jam-

mer in Time Slotted View

Figr:re 4.8 depicts the decision patterns for the case when the SU uses

a ra,ndom strategy against an intelligeut jammer that invokes the Q

learning for stratery update. As depicted in Figure 4.8, the ja,mming

80
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rate is high, which is 11 successfuI ja,mming out of the l5.time slots

considered.

4.2.E Performance Evaluation When

State:

the Last Action is the Initial

Decision Pa,ttern in first LFtime

ligent jammer when the Previotls

state in Figrue 4.9.

slots for intelligent SU and intel-

action is considered as an initial

4.2.gTheEffectoflncreasirrgtheNumbenofSubchannelsandJan.

mers:

Figrue 4.10 shours the impact of increasing the number of subchannels

and the number of ja,mmem. As the subchannel increases, the in-

telligent su will have a higler chances of avoiding the ja'mmer' It

is shown that the bandwidth efficiency of su increases as the num-

ber of subchannels increases due to the increase of the choices in the

subchannel space. It is found that increasing the number of random

ja,mmers does not significantly a,ffect the bandwidth efficiency of the

intelligent SU. It seeurs that frequency hopping is a very good strat'

egy for the su to avoid the jammers, especially when the nunrber of

subdtannels is high.
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4.3 SummarY

The major contributions of this ehapter are summarized below:

1. For discrete problems like the selection of frequencies in anti-

ja,mnring problems, it is dfficult to manage using convex opti-

mization [68]. Hence, learniug theory is needed in the decision

process. The lea,rning algorithm should cope with uncertain dy-

na,mics and incomplete inforrration, whereas game theory can

adequately model and analpe the mutual interactions alnong

adversarial users. Therefore, it is promising to incorporate the

learning algorithm into ga,rre theory'

2. Against this ba,ckdrop, a ga,metheoretic optimal frequency hop

ping scheme is devised between su and intelligent jammer in a

dlma,rric environrnent using the Q-learning approa,ch to pick the

optimal subchannel as shovm in Figure 3'1'

3. A ga,me model with both players as Independent Learners (ILs)

is developed, where they selfishly and independently select their

optimal subchannels in a MultiAgent Reinforcement Learning

(MARL) setting to increase their utilities'

4. The proposed game theoretic model in conjunction with learn-

ing based FH algorithm helps SU avoid the attacker a,nd hence

reduce the probability of ia,mming and increase the bandwidth
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efficiency of the cognitive systern'

5. Moreover, the complexity analysis and the results and discus-

sions are presented to conclude the &apter'

6. The simulation results shou, improvement in the performance

and onerall bandwidth efficiency of the cognitive radio network'
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Part-II: Enhanced Protection

Against a Rate-Aware Intelligent

Jammer in Cognitive Radio

Networks

This ctrapter presents the second part of the researctr work presented

in this thesis. This chapter is dedicated to the deception based

anti-jamming techniques to combat against a rate-aware jammer in

cognitive radio network. As discussed in chapter 3, a PSU is used to

deceive the intelligent ja,runer. The utility of the system is derived

for two cases of with and without PSU'

Definition r[rrr]: If the following two inequalities are fuI-

filled, a set of strategies (i*, n {i for row player, and , for column

plryer) result in a non-cooperativel Nash equilibriurn solution to a

,[th" 
"g"ou 

i@e renra,rds, then the ga,me ia called uqr'ooorperatirrc while if

.u tu" rg*L receirrc the sa,ue rc*a,rd, the ga,rc is csued a firlly cooperative ga,me.
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bimatrix game ("4: {AriI,B -- {Bii}), where -'{ and B are reward

matrices for each player, for all i: lr2r3r...rN and i :1r2,3, "'' N

states.

4.i. 2 4t , Yi,! - 1,2,3, "', N

Br.r. I Bii.t Yi,i = 1,2t3, "', IV

Fbrthermore, the pair (dni',Bi'i') is regarded as the bima-

trix ga,me,s non-cooperative Nash equilibrium outcome. Where A;,

represent the payoff matrix for player I and Bu b the payoff ma-

trix for player II. The payoff matrix of standard matrix game should

represent the objective of ea,ch player'

5.0.1 UtiliW without PSU:

The utility firnction of su network can be written as the orrerall gain

of the secondary network, which is being controlled by the cogni-

tive base station (cBS) having a number of sus in the network, is

deterrrined bY il
llcss =|U' (5'0'2)

whereA- q((1 -6t)9-6iJ)' Vl <i3 NandC;:

w I Llog2(L + P',il(N.-w I L))' Vl < i < N which satisfv

6i= fu/fl=r?."r, vl e.l/

E[r 6i:1

0<4<1

where & is the data rate based on the modulation schemes adapted

by the ith SU/PSUg. The intelligent ja^mmer may acquire the rate/code/modulati

(5.0.1)

(5.0.3)
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information of su/PSU either usrng explicit rate information or

modulation and code guessing [52]. Moreover, the rate information

of a transmission is vulnerable in many communication protocols' In

IEEE 802.11 networks, for o(ample, the rate is specified explicitly

in the SIGNAL field of the physical layer's frames. An intruder calr

easily coordinate with two parties' commtutication, ernaluate data

fra,mes, and derive the rate. As demonstrated in [49], this attack

is quite practical. The adnensary can eraluate the receined signal

in complicated I/Q form erren if the rate information is not explic-

itly supplied inside the packet header. The attacker can trace the

received constellation pattern and determine the modulation in use

after performing carrien synchronization, frequency, and phase off-

set correction. The fra,rre structure of the protocol is not required

for this method. The guessing stratery on usRP can be shown by

creating a modulation detector that can identify the modulation of

a transmission in real time. It may readily be modified to create a

practical rateaware jammer that jams high-rate packets selectively'

An attaclrer could employ more sophisticated techniques to deter-

mine not only the modulation of the message, but also the codes

,sed. One such method is to follow the sequence of received symbols

in ord,er to predict the codes based on the fact that various codes

cause distinct transitions from one coded symbol to the next' For

the attaclcer, guessing through rnatctring and trial-and-error is effi-
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cient since most communication protocols specify a finite rnariety of

modulations and codes [52]'

5.0.2 Utility with PSU:

The utility function of secondary network in the presence of PsU

can be written as the orrerall gain of the secondary network, which

is being controlled by the cognitive base station (CBS) having few

SUs and a PSU, is determined by trrr: Dilrt4+t tu' Since

the PSU does not take part in useful communication, so the utility

of pSU is not counted for the calculations of throughput. Therefore,

the ultimate utility of CBS is giveu by

ttbas =Y*,, (5'o'4)

i=1

where tli:G((1 - dr)g - drT), Vl < i I N, and satisfies'

t, : n"tt>!:l Ri + h), vi e N

dr=ht(D!:|Ri +4),

Dl!l'd,+dr:1

o<ei,drsr

(5.0.5)

where ,{ is tt e attraction factor for il.ruser in the preseuce of PSU in

the network and Rp is the data rate of deceptive PSU transmission'

The attraction factor d, of a PSU is kept slightly hrgher than all other

legitimate sus in the network. i.e., di I 6o, so that the jammer

is more attracted towards PSU as compared to legitimate SU' In

general, the probability of the atta,cker falling in the trap of PSU is
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gnrenbyd,:1->iL;'6l'

Theobjectiveofthesecondarynetworkistoma:rimizethe

network utility by successfully deploying PSU to deceive the jammer

while increasing the throughput of the system. The throughput of

the system is calculated w adding the throughput of every successful

individual usetr, i.e.,

dcas = t/, + t/, + t/s +''' t (40 -' (5.0.6)

using the rnalues from Equation (3.3.3) and rearrangrng will give

drr, = gy, a - $ + JD6:Lcr + g + iqdrcz
d=1

+(9 + AtsCs+ "'+ (9 + J)dx-tCn-t

which further reduces to

,rI-1 lI-1

drrr:gfq-@+rllEd,q.

The problem can be formulated as an optimization problem'

The optimal stratery of the cBS is the maximizq of, the following

problem

i=1

Vl e.A/

vi e./\/

(5.0.7)

(5.0.8)

(5.0.e)

(5.0.10)

subject to

il-l N-1

^otlsss:g EG- $ + 0D d;A.

r=l

d,=n t(D!--'&*n),

dr=hl(*'&*n),

DjI;'di,+tr:1

osd,4s1
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5.0.3 Cost of Implementing PSU-based Deception

The cost is paid in terms of bandwidth loss incurred by adapting

a dummy user narned as a pseudo secondary user (PSU). The loss

is higher when the PSU occupies a subchannel with higler sNR

ralues, resglting in more throgghput reduction as depicted in Figue

5.6 Figrue 5.5 and the discussion hereafter. since the PSU does not

take part in the bandwidth efficiency of the cBs, therefore, as the

PSU hops to the higher quality subetrannel, the data rate that could

be utilised otherwise is wasted by adapting the PSU to deceive the

ja,mmer.

5.1 Results and Discussions

The simulation results are shoum in baudwidth efficiency. The band-

width efficiency can be calculated in bits per second per Hertz (bps/Hz)

as follows:

," -ry-= ro'z (,. ffi), vn €.4/ (5.1.1)

The proposed results are compared with and without the PSU in

the network. i.e., the comparison is made for N SUs agaiust N - 1

SUs plus 1 PSU. for simplicity, the eihannel conditions are considered

a,mong all.
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0 500 lom 15m 20m 25m

Data Rate of PSU (bPs)

Ftgure 5.l: [npact of increasing PSU dsts rate against a rate wa're janmer'

S.l.lThelmpactofthelncreasingDataRateofPSUagainstaRate

aware Intelligent Jammer

Figrue 5.1 depicts the impact of the increasing data rate of Psu

against a ratsawa,re intelligent ja,mmer. It is shoutn that increasing

the data rate of a PSU increases its attraction factor and become a

more attractive target for a,r intelligent ja,nrmer. Hence protects the

other SUs from being jammed. The successful communication of rest

of N - 1 sus increase the orrerall utility of the systern. specifically,

it is shoum that the utility almost remains constant after the data

rate erceeds 1000 bps. Moreover, the data rate of PSU should be

at least great than 15 bps to get higher utility as oompa,red to the
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rEure 5.2: Impact of increasing PSU data rate and attrac'tiotr factor a'g8itrEt a rate ware

ja,mrer.

system without PSU.

6.1.2 The Impact of Increasing Jamming Probabilities of PSU against

a Rate'aware Intelligent Jarnmer

Iu Figure 5.2 impact of increasing jamming probabilities of PSU is

studied against a rateaaaxe intelligent jammer. It is shown that

increasing the ja,mming probability of PSU will secure the overall

system by increasing the overall utility of the CBS. More precisely,

it is evident that the jamming probability of PSU should be at least

0.18 to benefit from deploying PSU in the system. It should be kept

in mind that the culYe with PSU is considered for N - 1 users' The
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Figure 5.8: comparison of tlre dsta rate of Psu in terms of svErsEe bandwidth efficieucy fur

different valueg of N'

N11 user excluded being PSU itself' because it does not tra,rrsmit

legitimate signal and does not take part in overall throughput of the

system as mentioned in Equation (5.0.4). It is to be noted that the

straight line of the utility of the CBS without PSU (blue rectangles)

is due to the fact that it is independent of PSU probabilities' If equal

resouroe utilization for SU/PSU is assumed, then the network with

one su and one PSU consume 50To ofits resources to protect one su.

similarly, when there a,re seven sus and one PSU, the 1/8 - 12.5%

resources axe wastd. It is better to use PSU for a bigger network of

SUs.
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5.1.3 Performance Enaluation for Different Values of N

InFigureS.3thecrrnlesfordiffererrtrraluesofNareshown.Ithas

beendemonstratedthatwhenNincreases,bandwidthefficiencyim-

proves.Similarly,thecurvesinFigureS.4showtheimprovement

in bandwidth efficiency as N increases from 3 to 5 against the at'

traction factor of Psu. A similar behaviour can be observed for N

greater than 5.
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5.L.4 The Effect of Changing PSU Positions

The e.hange in the position of PSU is portrayed in Figures 5.5 and 5'6'

Figrue 5.5 shows the curves for ba,ndwidth efficiency when the po-

sition of PSU is changed from I to Lth subchannel'2. The orrerall

bandwidth efficiency of the cBs is highest when PSU is deployed

at the subchannel with the lowest channel quatity, as shoum by the

solid line for I : 1. F\rrthermore, from Figure 5.6 it is evident that

for I : 1 the PSU is effectine only after the attraction factor en-

ceeds 0.15 probability. Howwer, from both Figures 5'5 a'nd 5'6 it

the aseu,ptio thot the SNRr of subchennel I is minimurn

*hile SNBz is Eardmum'
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is visible that when the PSU morres to the nqrt subdrannel with

higher channel qualities, it may waste its resources to deceive the

ja,nrmer resulting in less bandwidth efficiency. For a total of. L:5

subchannels, when PSU is at I : 3, the bandwidth efficiency cgrye

of PSU crosses the curve without PSU at around 0.43 probability

with the lovrest productive bandwidth efficiency. The PSU at l:4

and I : 5, the bandwidth efficiency gets even vrorst, which decreases

with increase in data rate.

The proposed mod,el results axe compared with [1] and [2] to

show the bandwidth efficiency of the proposed approach as shoum in
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Tabre 8.1. since the work presented in [1] and [2] use FH and FH

+ RA, respectively, using reinforcement learning to maximize band-

width efficiency of the system, therefore, for the fair analysis' the

results are tabulated for the better comparison of the three papers'

Ihble5.1:Conpa,risonofperforruanoeev8lu8tiotrsofoupropooedschemewiththeworkpre.
s€Bted in tll ad [2].

AsdepictedinTableS.l.,allotherparametensarethesalne

except for ja,rrmer tlpe. The ja'mmer ffie used in [1] and [2] is a

reactive ja,mmer, which commences its tra,nsmission upon detecting

su activity in the cognitive radio enabled network. This t1rye of

ja,mmer is named as Lerrel-I ja,mmer in section 3.3.1. In the proposed

work, a more chatlenging ja,rrmer is considered, which is a reactive

ja,rnmer and targets the su based on each u,ser's attraction factor,

making it more harmful to the highest impact communication'

Moreover, the bandwidth efficiency comparison results demon-

strate that employing the deception-based anti-jamming tedrnique

proposed in this study has an advantage orrer the work in [1]' The

bandwidth efficiency of the proposed approadr is more than 3 times

that of [1]. The bandwidth efficiency of the proposed approach is

1

1

1

5

N: No of SU

M: No. of ja,nmers

L: No. of subdra,nnels
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more than 4 times that of [2]. To be very accurate, the results in [2]

shours the bandwidth of 21bps for 5 subeihannels (see Figr:re 7 in [2])'

To get bandwidth efficiency for each subehannel 21 is divided by 5

to get the bandwidth efficiency equal to 4'2 bps/Hz' F\rrthenmore'

all results were obtained with the help of the MATLAB simulation

environment.

5.2 Summary

The major contributions of this chapter a,re summarized below'

1. The focus of this ctrapter was on combating smart rateaware

ja,mming attarcks by adjusting transmission rate in cognitive ra-

dio networks. An intelligent reactive jammer was considered,

which was called an infant ja,rrmer in section 3.3.1.

2. A cognitive adnersarial rate aware jammer, whidr is an intelli-

gent attacker awaxe of the com:nunication parameters i.e., tranr

mission rate and can adapt the dyna,nrics of the subchannels

and the strategies of SU.

3. A unique utility firnction is introduced, where the ehanuel con-

ditions may change from one zubchannel to another with near

practical ehannel conditions.

4. The rnathernatical model of a norrel deception-strategic pseudo

seconda,ry user (PSU) is proposed by introducing an attraction
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factor d of each user based on the actual transmission rate to

decoy intelligent rate aware jarrmer'

5. The simulation results shou, imprwement in the performalrce

and orrerall bandwidth efficiency of the cognitive radio network'
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Conclusions and E\rture

Suggestions

Conclgsion and the futrue dimensions in the light of limitations axe

presented subsequentlY.

6.1 Conclusions

This research investigates an anti-ja,mming stoetrastic ga,me in con-

junction with a multi-agent reinforcement learning algorithm' Both

random and intelligent ja,rrmers wiere @nsidered' The anti-jamming

game was designed as a Markov game based on the QJearning al-

gorithm. A ga,me-theoretic optimal frequency hopping scheme in

a dyna^nric environment is devised in the presence of adversarial

jammers by using Qlearning approactr to pidr high-capacity sub

channels while avoiding the ja,rnmer. A game model with both

players as independent lea,rners is developed, where sU and jam-
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mer selfishly and independently select their optimal subchannels in

a multi-agent reinforcement learning setting to increase their indi-

vidual utilities. The proposed ga,me theoretic model in conjunction

with learning based frequency hopping atgorithm' helps the SU to

a,oid the attacker, hence reducirg the probability of jamming and

increasing bandwidth efficiency of su. It was shovrn in the simula-

tion results that the proposed method outperform^s the benchmark

system in terms of both the bandwidth utilization and the jamming

probability. More specifically, the average bandwidth efficiency im-

pro\res from a.9 (bps/Hz) to almost 5.7 (bps/Hz) as compaxed to the

benchmark scheme. while the jamming probability is reduced to

less than 0.1 using the proposed approarch. Futhermore, when the

ctrannel orhibits variable chnnnel quality (as in case I), the intelli-

gent sU can intelligently choose subchannels with higher capacity

while anoiding the intelligent ja,nrmer. Moreover, the bandwidth ef-

ficiency of the su does not decrease significantly when the number

of random jammers increases.

In the second part of the study, a unique ga,metheoretic

anti-ja,rrming deception strategy is introduced to imprwe the orrer-

all bandwidth efficiency of a cognitive radiebased communication

system. A defensive deception anti-jamming method based on rate

modifications is used to deceine the attarcker and safeguard the re

mainder of the network from adversarial effects. To lure the jammer,
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a counterfeit user inside the network is introduced as a trap for adver-

sary.Thehigherasecondaryuser'sdatarateis,themoreattractive

to a rateasra,re intelligent ja,mmer. The simulation findings sug-

gest that utilising the recomrnended deception-based tee'hnique has

improved performance significantly. simulation results show that

bandwidth efficiency of the network adapting the proposed decep

tion strategr crosses the bandwidth efficiency cluve of the network

without PSU at around the attraction factor of 0.16, which conform

to the claim that the cBs with the PSU performs well even with

the attraction factor of 0.20 compared to the system without de

ception strategy. F\rrthermore, compa,red to a system that does not

use the deception method, the proposed solution can increase band-

width efficiency by up to 1..7 times. similarly, since the PSU does

not take part in legitimate cornrnunication, assigning PSU the high-

est quality subchamel will reduce the bandwidth efficiency hence

demandiug an optimal subeihannel selection for better bandwidth

efficiency, evident from the results shown'

6.2 E\rture Suggestions

The research presented in this thesis can be extended firrther in the

light of limitations as follou':

L. The proposed anti-ja,rmming research is done with the assumP
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tionofperfecttimeandfrequencysynchronization.Thesame

canbeextendedforimperfectionsintimeandfrequencysyn.

ctuonizations, in the presence of a jammer'

2.KeepingtheroleconstantofSUcanmakethejammerconscious

about the PSU, and can easily result in the counter-deception

stratery by the intelligent jammer. The deception strategy can

be orteuded further if the role of a su is changed dyna'mically'

3. Inspired by the ctrange of guard ceremony with transitions

between su and PSU may lead to further confusion for the

jammer.

4. A dyna,mic assignmeut of PSU based on the current dpamics

of the environment for the optimized selection of PSU can lead

to more complexity in the deception mechanism'

5. Moreover, a PSU with a highe. attraction factor can also be

used to detect the ja,mmer and predict the intelligence level by

guessing its fingerPrints.

6. FinallS Using FH with RA for the decoy meeihanism may en-

hance the deception firrther. Enabling PSUg to hop to other

available subeihannels and rate adaption can give the PSU free-

dom of efficient spectrum utilization while deceiving jammer.
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Apppnox A

Elements of Game Theory

The game theory began as ar application of mathematics. It was

employed druing the Cold War to model and forecast Russian nuclear

weapon motions. Howwer, it later eurpanded into a discipline with

a wide range of applications. Game theory is now widely applied in

economics, sociolory, politics, and engineering.

A.1 Preliminaries

Game theory simulates multi-agent interactions in which one agent's

actions influence the outcomes of all other agents. In ga,me theory

these agents are referred to as players. Set of Z represents all players

of the garne. In N-player game, the set Z;-1 represent all opponents

of the it[ plalrer, where

T:Lr2rlr...,JV (A.1.1)
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Each player has a collection of pure strategies that he can use to

counteract his opponents. When you play against other players, it

doesn't alunays imply you're hruting them. It's also possible to play

cooperatinely, in which each player help their opponents. The game's

stratery space is the Cartesian product of all players' stratery spaces.

5:Erx&xSsx"'xSr (A.1.2)

Players choose their strategies at errery turn of the ga,nre, md

a stratery profile s € ,S is played. In ga,me theory if a player has a

stratery of si € s, the opponent's strategy is indicated as s-, : s/sr.

As a result of the stratery profile s, eactr player is assigned a utility

(payoff) ui(s;,s-r e U;. All possible utilities U from all possible

stratery profiles are collected in this set. U is another fundamental

element of game theory.

U :Ur xU2 xUg x "' xUN

A.1.1 Mixed Stratery

(A.1.3)

A mixed stratery space Di is a probability distribution over the prue

strategies 5; for every player i in the geme. Therefore payoff of the

player is the expected ralue of the pure strategres payoffs. And mixed

stratery space of the game is the Cartesian product of individual
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mixed stratery spaoes similar to pure stratery space,

E-DrrEr*Drr...xEr

player i's payoff to mixed stratery profiIe o is,

(A.1.4)

(A.1.5)

As a result, any pure strategy profile is a mixed strategy profile,

with each player's probability urcight accumulating on a single pure

strategy. A ga,rne G is represented by

g:<T,ErUrD> (A.1.6)

A.1.2 Pure Stratery

A thorouglr eurplanation of hou, a player will play a galne is provided

by a prue strategy. It determines the course of action a player will

take in any given situation. The set of prue strategies available to a

player is referred to as that player's strateg'y set'

A.2 Classification of Games

One shot game: This is a garne that can only be played once'

Thepay-offcouldbesuchthatagame,suchasmutuallyassured

nuclear destruction, would be impossible to repeat. People a're

u;(oi,o-,) :,8 
E 

rr(rr)) ni(si, s-i)
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often enticed to act opportunistically or selfishly in one-shot

interactions.

Repeated games: is the simplest kind of game in which each

stage is repeated and usually these repetitions are indefinite, in

infinite time horizon. Let N denote the number of secondary

users in a game and a& represents the set of actions taken by

those N SUs in kth stage of the game. The action in each stage

k is to ma>cimize utility by taking into account the history of

the actions taken in prwious stages. The expected stratery

is discorurted by the factor 0 < d < 1, which means that the

pal'off of the current stage is worth greater than trailing payoffs.

The simple example, in this case, may be taken as a ja,mming

scenario. Where N secondary users are the players of the game.

Among these /V players J are ja,mmers and K are legitimate

secondary users such that N : K + J. Their respective actions

are to choose the C available channel by avoiding the jammer

and to choose C3 channels to ja,m the channels to reduce the

payoff of the legitimate users.

Stochastic game: A stoe,hastic ga.nre is a recuring ga,rne with

probabilist'c transitions performed by one or more players, first

introduced by Lloyd Shapley in the early 1950s. The game is

divided into seneral stages. The ganre is in some state at the

start of each stqge. The players choose actions, and each receines
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a reward based on the current condition and the acts taken.

The ga,me then shifts to a new random state, the distribution

of which is determined by the previous state and the players'

activities. Play continues for a finite or infinite stages after the

method is repeated in the new state.

A.3 EquilibriumConcepts

A solution concept in game theory is a formal rule for predicting how

a garne will be playd. These predictions are known as 'solutions,'

and they describe which strategies players will use and, as a result,

the ga,rre's outcome. Most fa,rnously Nash equilibrium, Equilibrium

notions are the most *idely employed solution concepts.

A.3.1 Nash Equilibrium

The Nash equilibrium is a concept in ga,me theory that states that

the best outcome of a ga,me is one in which no player has an incentive

to dadate from their chosen stratery after considering the stratery

of an opponent. According to Nash equilibrium, the ideal conclusion

of a game occurs where there is no incentive to depart from the

beginning stratery, a notion in game theory.
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A.3.2 Staclrclberg Equilibrir""

The Staclelberg equilibrium model is a strategic game in which the

leader plafrer mo\Ies first, followed by the follower pla)rer. It was

na,med after the German economist Heinrictr Fteiherr von Sta,ckel-

b*g, who presented the concept in his 1934 book Market Structure

and Equilibrium (Marktform und Gleichgewidrt). In tenns of game

theory the game's players are leaders and follon'ers who compete on

quantrty.
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