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Abstract

Magnetic Resonance Imaging (MRI) is used to produce detailed images of body
tissues and organs using strong magnets and radio waves, but with a very slow
acquisition process. In multi-slice MRI hundreds of slices are acquired for just a single
scan. Compressed Sensing (CS) has efficiently accelerated the MRI acquisition process
by employing different reconstruction strategies using a fraction of the random Nyquist
samples. The interpolated Compressed Sensing (iCS) techniques have further reduced
this scan time by exploiting the strong inter-slice correlation of multi-slice MRI through

interpolation.

The primary objective of this thesis is to propose several efficient interpolated
Compressed Sensing MRI (iCSMRI) techniques based on highly under-sampled data and
the most efficient, novel interpolation approaches. These novel interpolation techniques
exploit the sampling trajectories of different under-sampling pattems and their
combinations. The proposed techniques show improvement in terms of image quality and

information content along with reduced scan time and lower computational complexity.

The first contribution is a novel Fast interpolated Compressed Sensing (FiCS)
technique based on a 2D Variable Density Under-Sampling (2D-VRDU) scheme. The
novel interpolation technique of FiCS takes two consecutive slices and estimates the
missing samples of each target slice (T slice) from its corresponding left slice (L slice).
Compared to the previous iCS methods, slices recovered with the proposed FiCS
technique have a maximum correlation with their corresponding original slices using

even half of their under-sampling ratio.



The second contribution is an improved Efficient interpolated Compressed Sensing
(EiCS) technique using a non-Cartesian Radial under-sampling approach. The novel
interpolation technique of EiCS uses three consecutive slices to estimate the missing
samples of the central target slice from its two neighboring slices. The EiCS technique
has improved image quality and performance compared to FiCS using both Golden-
Angle (GA) and Uniform-Angle (UA) Radial under-sampling patterns, with sharper

details and more improved results.

In the last part of this thesis, the previously proposed techniques have been
combined to overcome their shortcoming, termed as Modified Fast interpolated
Compressed Sensing (Mod-FiCS) technique. This technique has a three-step interpolation
approach like EiCS and uses the Gaussian-Radial under-sampling scheme. This under-
sampling has an edge that, it neither shows any streaking artifacts like Radial nor any
blurred edges like 2D-VRDU. The Mod-FiCS technique shows even more improved
results and performance compared to the previous techniques using the same

computational cost and under-sampling ratio.

In this thesis, the Non-linear Conjugate Gradient (NCG) algorithm has been used as
a CS reconstruction approach for the proposed iCSMRI techniques. The evaluation has
been performed using MATLAB simulation with different Vivo knee and brain multi-
slice MRI datasets, all available online. The assessment has been performed using seven
state-of-the-art evaluation parameters and compared with recent iCS techniques and CS

for computing both qualitative and quantitative analysis.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a highly useful medical imaging technique for
clinical diagnosis and research because it generates a very detailed picture of an inside
body organ and soft tissues without using any damaging ionizing radiation like X-rays.
The scan time of an MRI acquisition mainly depends on the raw k-space or Fourier data
that are to be acquired to fulfill the Nyquist criteria [1]. Multiple lines of k-space are
acquired to generate a single slice and Multi-slice MRI needs hundreds of such slices for
just one MRI scan [2]. The speed of the data acquisition in MRI is fundamentally slow
which heightens the feelings of claustrophobia due to being in an enclosed and
uncomfortable space for prolonged durations, especially for pediatric patients. Secondly,
it is very difficult for a patient to remain motionless and even hold their breath for
abdominal and cardiac scans, for that long [2, 3].

To speed up the MRI acquisition process, the data collection has been accelerated using
efficient sampling trajectories. Compressed Sensing (CS) is an emerging technique that
enables the reconstruction of an image from even 10% of the random Nyquist samples,
provided the basic constraints of CS are fulfilled [4-8]. MRI is a good candidate for the
application of CS due to implicit sparsity in MR images, and inherently slow data
acquisition process [9]. With the edge of this reduced scan time, Compressed Sensing

MRI (CSMRI) requires some slow non-linear reconstruction techniques [10-14], which



are an additional computational overhead. But this computational load is just a post-
acquisition process and takes lesser time for MRI scan.
A single multi-slice MRI scan acquires hundreds of slices. Therefore their consecutive
slices have a very strong inter-slice correlation, because of having very narrow inter-slice
gaps [15]. This correlation has been exploited to reduce the under-sampling ratios of
CSMRI through interpolation called interpolated Compressed Sensing (iCS) in the
literature [15, 16]. An efficient interpolated Compressed Sensing MRI (iCSMRI)
technique mainly depends on a good under-sampling scheme with minimum samples, an
efficient interpolation approach to collect enough samples, and a fast CS reconstructed
technique to reconstruct a sharper and clear image with minimum processing time. Such
efficient iCSMRI reconstruction techniques are essential due to the following reasons
which are addressed in this thesis:
e To enable higher resolution MR imaging in clinically acceptable scan times to be
applicable in emergency and accidental cases.
o To have an MRI scan with real-time monitoring
e To improve patient care by minimizing the scan time and claustrophobic feeling,
especially for pediatric patients.
e The reduced scan time will be helpful for telemedicine and save battery power
and storage sizes.
e The reduced scan time will be helpful in dynamic cardiac MR scans as it will help

to reduce the motion artifacts due to respiratory motions and cardiac cycles.

1.1 Dissertation contribution

The primary contributions of this thesis are to reduce the scan time of multi-slice CSMRI

acquisition, with even improved image quality, and lower computational complexity.
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The proposed novel interpolation techniques along with CS exploit different under-
sampling trajectories for multi-slice MRI reconstruction. Thus, preserving the original
information in every reconstructed slice along with consistency in the slice-wise image

quality, and improved results.

The under-sampled k-space data of multi-slice MRI are acquired with only 3% and 5% of
the total Nyquist samples from each slice using different under-sampling trajectories,
each having its benefits. The uniformity of the under-sampling ratio for consecutive
slices results in consistent slice-wise image quality and therefore, helps to preserve

maximum samples and information of the original slices.

The proposed novel interpolation techniques are computationally efficient with only a set
difference and addition operation and interpolate the slices by exploiting the strong, inter-
slice correlation between them. These interpolated slices are then CS reconstructed to
have improved image quality and performance with even reduced scan time, lower

computational complexity, and maximum information content.
Contributions of this dissertation can be summarized as follows

1. This thesis proposes a novel FiCS technique for efficient reconstruction of multi-
slice MRI datasets using 2D-VRDU under-sampling, and a fast interpolation
scheme. The FiCS technique has the highest under-sampling ratio and the most
efficient two-step interpolation approach for CSMRI Reconstruction. The
evaluation reveals that FiCS has improved performance with maximum
information content and the lowest under-sampling ratio.

2. This thesis also proposes a novel EiCS technique based on a Radial under-
sampling scheme and a novel three-step interpolation approach for improved

3



CSMRI Reconstruction. The EiCS technique is computationally efficient like
FiCS with only set a difference and addition operation and with a more practical
non-Cartesian Radial under-sampling scheme. The proposed EiCS technique has
more improved results compared to FiCS using an even lower under-sampling
ratio.

3. This dissertation also proposes a Modified FiCS (Mod-FiCS) technique. This
technique combines the 2D-VRDU and Radial under-sampling schemes of FiCS
and EiCS called Gaussian-Radial under-sampling. The efficient three-step
interpolation approach of Mod-FiCS has improved results compared to the
previous techniques. The Mod-FiCS technique has the benefits of both the
previous schemes as it neither shows blurring like FiCS nor any streaking artifacts
like EiCS with improved results along with consistency in slice-wise image

quality and information content.

1.2 Thesis organization

This thesis has been organized as follows

Chapter 2 describes the MRI acquisition process and the physics involved in it. The
reconstruction of MR images from the acquired k-space data is also discussed. Many
advanced MR reconstruction methods along with the CS techniques related to this thesis
are elaborated followed by the assessment parameters and datasets used.

Chapter 3 discusses an efficient 2D-VRDU under-sampling strategy and the novel two-
step interpolation technique for Multi-slice CSMRI reconstruction. This new technique is
termed as FiCS, exploiting the correlation among consecutive slices of multi-slice

CSMRI reconstruction.



Chapter 4 provides an improved three-step interpolation approach using Radial under-
sampling schemes for iCS reconstruction. This technique is termed as Efficient iCS
(EiCS). The proposed EiCS technique is a practical scheme from the current hardware
point of view with even more improved results from FiCS and a reduced under-sampling
ratio.

Chapter 5 discusses a modified FiCS (Mod-FiCS) technique using the Gaussian-Radial
Under-Sampling scheme. The Mod-FiCS technique gathers the benefits of both the
previous techniques with improved reconstruction results.

Chapter 6 provides the concluding remarks about the current research followed by some

future directions of this research.



Chapter 2

MRI Acquisition and Reconstruction

This chapter discusses the fundamentals of MRI acquisition. It also provides a brief
description of CS reconstruction techniques in the context of MRI acquisition. The
background works related to the recent trends of CSMRI along with iCSMRI are also
presented. Finally, the multi-slice MRI datasets and different assessment parameters used

for simulation are elaborated.

2.1 Introduction

Magnetic Resonance Imaging (MRI) is used to produce detailed images of body tissues
and organs using strong magnets and radio waves [17, 18]. Different types of MRI scans
help doctors to diagnose various diseases. The MRI scan is useful for the detection of

multiple diseases occurring in different parts of the body, some of which are mentioned

in Fig. 2-1.

oBlood vessel
problems
brain and spinal *Braln damage
cord MRI «Cancer
oSpinal problems
oStroke

sCancer
MRI of Bone eBreakags to joints
*Disc injuries

oBlocked vessels
eDameaged by a
heart attack
Cardiac MRI sHeort disease
sProblems In the
structure of the
heart

Fig. 2-1 MRI Applications
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Sagittal (midsagittal) plane
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or axial,
plane

Fig. 2-2 Planes used in modern imaging procedures [19].

MRI is itself a non-ionizing and non-invasive multi-planar imaging modality generating
images to visualize anatomy along the three different planes called sagittal, axial, and
coronal [19] as shown in Fig. 2-2. Therefore, it is a very valuable tool in medical

diagnosis and treatment monitoring.

2.2 MRI Acquisition

MRI scanners use radio waves and strong superconducting magnets of 1.5-3.0 Tesla (T)
flux density, for acquisition. Most of the Human body is comprising of water, having
hydrogen and oxygen atoms [20]. In the absence of any magnetic field, all the protons of
the hydrogen atoms have random orientation and therefore have zero magnetic
movements. When an external magnetic field is applied, most of them align themselves
in the direction of the applied field resulting in a net magnetic movement called
longitudinal magnetization. Next, a brief RF pulse is applied which systematically alters
this magnetization alignment. When this RF pulse is removed, a signal is generated in the
RF coils due to the change in the magnetic moments of the hydrogen nuclei. The process
of generating RF waves during MRI acquisition is shown in Fig. 2-3. The
multidimensional spatially encoded data matrix, generated by RF receiving coils, is

called k-space data which consists of Fourier coefficients.
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Fig. 2-3 Generation of RF waves in MRI acquisition [21]

In MRI, the important part is the spatial encoding, which is the connection of the
produced signal with its spatial locations. This spatial localization depends upon the
differences in frequency, phase, timing, and location on the receiving coil. MRI is a slow

imaging method because it requires multiple scans to generate a single slice and multi-



slice MRI has hundreds of such slices. This process is also slow due to nerve stimulation
and the limited slew rate of the gradient fields. The complete process of generating an
MR image is shown in Fig. 24

{¢) RF Coil receives
the signal (lincar

(b) ,f,i‘,"‘j‘-';‘.'“"" combination of voxels) () Pscudo random
the pl':.lic samples of
of voxels spatial frequency

(a) User
controlls
gradient  ~§
and RF ~
waveforms

Fig. 2-4 Complete process of MRI scan [22]

The technician varies the gradient and radio frequencies to control the pixels/voxels
phase of the image. An RF coil receives the signal in an encoded form (samples in k-
space) as shown in Fig. 2-4. Finally using a relevant reconstruction technique, an MRI

image can be recovered [22].



The traditional MRI scanner acquires the k-space data in the form of Fourier coefficients
and thus requires only inverse Fourier transform to get the MRI slices in the spatial

domain.

2.3 MRI Reconstruction Techniques

In MR], the three spatial encodings generated are frequency encoding, phase encoding,
and slice selection [23]. The acquisition time of MRI is mainly dependent on the number

of phase encoding steps because the frequency encoding steps are fast.

During the acquisition of a single slice, other slices cannot be selected as they have
different frequencies because of the gradient fields. The slice thickness mainly depends
on the bandwidth of the applied RF pulse. The generated radio frequencies of a single
slice are originated from the transverse magnetization [22]. This acquisition is sampled in
k-space following the Nyquist criteria and adopted on the Cartesian grid on straight lines.
Traditional MRI takes fully sampled Fourier encoded data points and reconstructs the

MR image using only inverse Fourier Transform as shown in Fig. 2-5.

IFFY

K-space MR Image

Fig. 2-5 Magnetic Resonance Image of a single slice
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2.3.1 Parallel MRI (pMRI)

The speed of the data acquisition in MRI is fundamentally slow because of physical
(gradient amplitude and slew-rate) and physiological (nerve stimulation) constraints. This
slow imaging process can be accelerated using multiple coils that work in parallel called
Parallel MRI (pMRI) [24-32]. But multiple coils require parallel imaging techniques, like
sensitivity encoding (SENSE) [33] and generalized auto-calibrating partial parallel
acquisition (GRAPPA) [34] for the reconstruction of artifact-free images [16]. pMRI is a
robust technique to reduce the acquisition time of MRI scans [35] and has opened new
ways for MRI applications. In pMRI, an array of multiple coils is used and thus
accelerates the acquisition time of the k-space data [26]. Thus the main advantage of
pMRI is the reduction of the scan time which provides comfort for patients of all ages
because they have lesser interaction with the claustrophobic design of the MRI machine
[24]. Moreover, the difficulty of breath-holding for a long time is also reduced especially
in abdominal and cardiac MRI scans [25].

The acquisition of pMRI needs a phased array that consists of multiple independent
receiver coils. The sensitivity of the coils with magnetization depends upon the distance
from the magnetizing part. A coil closer to the magnetizing part will receive a strong RF
signal as compared to the coil farther from the targeted part [25, 27, 28). The idea is
shown in Fig. 2-6. Finally, the knowledge of the individual coil sensitivities is used to
combine the data from each of the coils using some special algorithms to get a

reconstructed image with a full Field Of View (FOV) [26].
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Fig. 2-6 pMRI [25].

2.3.2 CSMRI

Shannon Nyquist theorem states that to reconstruct a signal we have to initially sample it
through a rate that is twice the highest frequency component in that signal [1]. This
acquired signal when converted into a particular transform domain, like Discrete Cosine
Transform (DCT), DFT (Discrete Fourier Transform), or Wavelet Transform, will have
few of its coefficients with larger values, and most of them with smaller values that are
near to zero. Hence a signal is said to be sparse if it has numerous zero and some nonzero
coefficients. But most of the real-world signals are not sparse although they can be
compressible. Thus compressible signals can be sparse by enforcing its smaller valued

coefficient to be zero [36, 37]. Therefore, this signal can be compressed in its particular
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transform domain by discarding the smaller value coefficients, called transform coding.
Now, this compressed signal can be reconstructed from those fewer coefficients by taking
the inverse transform. But there are three main drawbacks with transform coding which

arc:

o All the Nyquist samples are to be acquired even if the signal is sparse

e All the transform coefficients have to be calculated even if most of them are to be
discarded.

e All the locations of the coefficients to be kept should be stored which is an

overhead.

Therefore, the compression through transformed coding is always done as a post-
processing step. Recently a new data acquisition technique called compressed sensing
(CS) has emerged which made enormous progress and attention in various fields of
multidimensional signal processing, and many other areas. The CS theory has been
introduced by Donoho [4] and Candes [6] and has been successfully implemented by
Lustig et al [11] in MRI. The CS theory breaks the Nyquist criteria under some special
conditions [4, 8, 38] and enables the recovery of a sparse signal from far fewer
measurements of the Nyquist rate. Therefore, CS exploits the non-linear methods to
recover the original data from a small number of sparse coefficients [39, 40]. Thus, CS
makes the encoding process efficient by combining the acquisition and compression steps
and therefore avoids capturing all the unnecessary information, which is later to be
discarded. For the implementation of CS, the three fundamental conditions are that the
data must be sparse itself or in some transform domain, under-sampling must be done

randomly, and the reconstruction must be performed using some nonlinear techniques

13



[11, 39, 41, 42). In CS the random under-sampling transforms the CS reconstruction
problem to de-noising because random under-sampling generates noise-like effects rather

than aliasing [11, 43, 44] as shown in Fig. 2-7.

k-space

sparse transform partial k-space
Fig. 2-7 CS Reconstruction Scheme [11].
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Instead of using uniform under-sampling, CS exploits different random under-sampling
techniques like Radial, Variable Density Under-Sampling (VRDU) [45], Spiral, etc.
These under-sampling techniques have different artifacts in the reconstructed images.
Fig. 2-8 shows some sampling strategies along with their effect on the reconstruction

images.

It is shown that the low-resolution under-sampling causes blurring, Cartesian under-
sampling generates image replicas, structured angular under-sampling generates more
incoherent “streaking” artifacts, random under-sampling generates “cloud-like” artifacts,

while Variable Density Under-Sampling (VRDU) produces noise-like aliasing. [46].

CS has been successfully applied to different biomedical imaging modalities to speed up
the slow acquisition process. MRI is the most suitable candidate for the application of CS
because of its inheritably slow data acquisition process and also MRI satisfies its basic
requirements [9]. Thus, CSMRI has an edge to improve patient care by reducing MRI
acquisition times by enabling higher resolution imaging in clinically acceptable scan
times. With the edge of this reduced scan time, CSMRI has additional computational
overhead compared to standard MRI where only inverse Fourier transform is sufficient

[38].

The CSMRI trends can be broadly categorized as methods focused on improving the
reconstruction strategies [47, 48], and parallel CSMRI techniques [25, 30, 49-54]. For
successful CSMRI, the sparse regularization can be achieved in a specific transform
domain [55, 56] such as the wavelet [11, 57], curvelet [58-60], or using some dictionary
learning techniques [61-67]. The traditional CSMRI uses fixed sparsifying transforms

like total variation (TV) [68], discrete cosine transforms (DCT) and discrete wavelet
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transforms (DWT) [69]. Similarly, with the recent development, many CNN-based deep

learning methods [70-76] have also evolved.

Fully sampled Low resolution sampling Cartesian undersamp

Reconstructed image Sampling pattern

Reconstructed image Sampling pattern

Fig. 2-8 Reconstructed MRI images produced from different under-sampling patterns
in k-space. [46]
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Unlike the single-step Fourier reconstruction of conventional MRI, CS MRI requires non-
linear iterative optimization algorithms that are repeated a number of times for the
reconstruction of a single MR image [11].
Some commonly used non-linear reconstruction algorithms for CS are:

¢ Non-linear Conjugate Gradient (NCG) [77]

o Iterative Shrinkage-Thresholding Algorithm (ISTA) [78]

e Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [79, 80]

e Alternating directions of multiple multipliers (ADMM) [81]

¢ Bregman iterative algorithm [82, 83]

¢ Limited-memory Broyden-Fletcher-Goldfarb-Shanno (I-BFGS) [84]

o Projection Onto Convex Sets (POCS) [85, 86]
These algorithms vary in ease of implementation and computational complexity [87, 88].
In CSMRI all slices should be equally under-sampled and are then recovered using one of
the non-linear reconstruction algorithms [2, 4, 89].
For an efficient reconstruction, the number of k-space samples should be roughly two to
five times the number of sparse coefficients [11]. Thus, for a good CSMRI scan, at least
10% of the samples should be acquired from each slice for efficient reconstruction. In
this thesis Non-Linear Conjugate Gradient (NCG) [77] technique is used as a CS
reconstruction approach.
For clinical applications, CSMRI is just in its beginning to be offered as commercial
product with the limitations of longer reconstruction times and some CS-related artifacts

[90, 91].
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2.3.3 iCSMRI

Interpolated Compressed Sensing MRI (iCSMRI) is an emerging technique to lower the
under-sampling ratio of multi-slice CSMRUI. It has been introduced by Pang et al. [15, 16]
and has thus reduced the scan time beyond the CS limit.

In Multi-slice MRI there is a very narrow inter-slice gap and therefore has a very strong
inter-slice correlation. This correlation has been exploited in iCSMRI to reduce the
average samples per slice resulting in reduced scan time. Thus, the multi-slice MRI
datasets are to be reconstructed from highly under-sampled k-space data initially acquired
from the MRI scanners. There are three fundamental steps of iCSMRI for multi-slice
datasets. The first step is the under-sampling, the next is an interpolation and the last step

is the CS reconstruction. The complete three-step process of iCSMRI is shown in Fig.2-9.

2.4 Literature Review

Interpolated Compressed Sensing MRI (iCSMRI), works in three steps; in the first step
some of the CS samples in MRI acquisition are acquired and others and intentionally
missed to reduce the average sampling rate. This under-sampling can be performed using
different sampling patterns like Cartesian, Radial, Spiral, and their combinations [92-97].
In the second step, the intentionally missed samples are estimated using interpolation
from the samples of the neighboring slices. The interpolation for the missing samples in
the under-sampled slices can be accomplished using different interpolation techniques

[15, 16, 98-103].
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Fig. 2-9 Three steps of iCSMRI
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The last step is the CS reconstruction which can be carried out using one of the CS
reconstruction algorithms like Non-linear Conjugate Gradient (NCG) [11], Wavelet Tree
Sparsity (WaTMRI) [104-106], Fast Composite Splitting Algorithm (FCSA) [107], and
Iteratively weighted Wavelet Tree sparsity MRI (TWTMRI) [100]. The CS reconstruction
techniques vary in computational complexity, convergence time, and reconstructed image
quality.

The concept of iCS was introduced by Pang et al. [15, 16] in 2012. Pang [16], utilizes 9%
average samples. He reduced the average sampling rate by acquiring some slices as
lightly under-sampled (L slices) and others as highly under-sampled (H-slices). Their
under-sampling pattern acquires adjacent slices with different under-sampling ratios and
therefore has non-uniformity in their reconstruction results. Secondly, their interpolation
technique is computationally inefficient along with inconsistency in slice-wise
reconstructed image quality.

Hirabayashi et al. [108] use iCS by taking a different under-sampled slices sequence
using fully sampled and CS slices (F and C slices). Although they have good quality
reconstructed images, but their technique has rather increased the average under-
sampling ratio and scan time.

The work of Pang [16] has later been explored by Datta and Deka [99, 100] but their
under-sampling approaches do not produce clinically acceptable results by causing
information loss in most (67%) of their reconstructed slices [109]. Secondly, their
interpolation techniques are computationally inefficient with redundant Fourier steps.
Although their results look visually better but the information content is not indigenous

due to their non-uniform and a biased under-sampling scheme [100]. They used the same
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under-sampling strategy in their work [100] as proposed by pang [16] but using a 1D
Cartesian mask. Their adopted under-sampling pattern is shown in Fig. 2-10. They also

explored iCS for pMRI in [30, 51].

&l 2D multi-stice k-space

auw il ISP B, a3 R o

H-Slice L-Slice H-Slice H-Slice

e S

L-Slice H-Slice H-Slice L-Slice H-Slice

Fig. 2-10 Under-sampling of 2D multi-slice sequence using 1D-VRDU masks [100].

Datta and Deka [30, 51, 99, 100, 110, 111] further explored iCSMRI with different
interpolation and reconstruction strategies. Although they reduced the computational cost
of their interpolation algorithms [99, 100] but they neither work on reducing the average
sampling ratios nor on the consistency of their slice-wise reconstruction results.

The sampling and interpolation strategy adopted in [16, 100] takes three consecutive
slices with a specific under-sampling pattern of different sampling ratios and repeats that
pattern after every three slices. Their under-sampling pattern of the three consecutive
slices, which repeats after every three slices, is shown in Fig. 2-11. It is clear from the
figure that, in three consecutive slices, the first one is highly under-sampled (H slice), the
second is lightly under-sampled (L slice) and the third is again H slice, for both 1D and

2D-VRDU schemes. Each H and L slice has 1 % and 25% of the total samples
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respectively. Therefore, the average sampling ratio for this scheme is 9%. The H slice
missed samples are interpolated from the neighboring L slice to get H interpolated slice
with 25 % samples. Finally, CS reconstruction is applied to all the H interpolated and L
slices.

The main drawback of this non-uniform sampling strategy is that H slice 1% samples are
insufficient to be called an original image after interpolation and reconstruction. Thus, in
every three consecutive slices, the L slice will always dominate their two neighboring H
slices. This results in almost the same imaging information in every three consecutive
reconstructed slices and thus has information loss in two out of the three slices.

Pang et al. [16] have worked on 2D-VRDU whereas Datta and Deka [100] on 1D-
VRDU. The interpolation technique of both the sampling schemes (1D and 2D) has
complex computational steps of Fourier, Inverse Fourier, mafrix division, and
convolution resulting in increased computational cost along with inaccuracy in their
reconstruction results, Different sampling strategies [89, 92, 94] have also been explored

in iCS, but they neither reduced the scan time nor the average sampling ratio.

2.5 Data Sets

Different data sets of knee and brain are used in this thesis. The knee data sets are taken
from a free online database, http://mridata.org. This is a fully sampled data set acquired
from a GE HD 3T scanner with 160x160x153.6 mm Field Of View (FOV), number of
channels: 8, matrix size: 320x320 with 256 slices, slice thickness 0.6mm, zero inter-slice
gaps, TR/TE: 1150/25 msec, flip angle 90, and bandwidth 50kHz. The brain data set is of
a normal aging coronal plane with 123 slices, matrix size: 256x256, and is publicly
available on the AANLIB database of Harvard medical school at

http://www.med.harvard.edu/AANLIB/home.html [112].
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Fig. 2-11 (a) 1D (b) 2D-VRDU Sampling patterns for three consecutive slices used
in [16, 100]

2.6 Evaluation Criteria and Simulation Environment

To assess the quality of the reconstructed images two methods are used: subjective and
objective. The subjective method is based on the perceptual assessment of radiologists
about the attributes of the reconstructed data sets, while objective methods are based on

computational models that can predict perceptual image quality.

2.6.1 Subjective Assessment
For subjective assessment, we asked some expert radiologists to assess the reconstructed

datasets. The rating is based on the overall quality and information content of the images.

2.6.2 Objective Assessment
For Objective assessment two approaches are used, Full Reference (FR) and Non-

Reference (NR). In the FR approach, the quality of the reconstructed images is evaluated
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with the original images where for the NR approach, no original image is required. For
the FR approach, five assessment parameters are used which are Structural Similarity
Index Measurement (SSIM) [113], Feature Similarity Index Measurement (FSIM) [114]
Mean Square Error (MSE) [115], Peak Signal to Noise Ratio (PSNR) [115], and
correlation (CORR) [116]. For the NR approach, two assessment parameters are used
which are Sharpness Index (SI) [117] and Perceptual Image Quality Evaluator (PIQE)

[118].

SSIM and FSIM gives normalized mean values of structural similarity and feature

similarity between the original and reconstructed images as represented in (2.1) and (2.2).

(2pxpy + €1) (20, + €2)
(M2 + 13 +c1)(02 + 03 + c3)

SSIM(x,y) = (2.1)

Where x and y are the original and reconstructed images with size m x n. Similarly u,
and u, are the mean, 02 and a§ are the variances and oy, is the covariance of x and y.
Similarly, ¢; = (k4L)? and ¢; = (kzL)? are the variables used to stabilize the division,
L represents the dynamic range of the image and k4 and k; are small constants.

_ Zyy[Spc-S¢l- [max(PC,, PC,)]
FSIM(x' y) a z” max(PC,, PC,)

(2.2)

Where PC, and PC, are the Phase Congruency of original and reconstructed images and
Spc is the similarity measure for PC, and PC, . Similarly, S¢ is the similarity measure

for Gradient Magnitude values for original and reconstructed images.
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MSE is the most common FR estimator of image quality with values near to zero are
better. The MSE between the original and reconstructed images can be calculated as in

23)

m-1 n-1

1
MsE=2 ) ,-Zo[x(i'j) ~ Y @3)

PSNR is the ratio between the maximum possible power of the original image with
MSE and because of the dynamic range of the signals it is calculated as the logarithm
term of the decibel scale [119] as given in (2.4).

(MAX,)?

PSNR (indB) = 1010g10W

2.4

CORR between the original and reconstructed images is defined in (2.5), having a

normalized value, and is better when close to one.

TiAlx(@D — pdly@D — uyl}

= (2.5
JEulx@D - I Ey 6D - ')

CORR =

SI is the NR, Image Quality (IQ) assessment parameter and is derived from the intensity

distribution in an image, its mathematical description is given in (2.6)

Brv(x) — TV (x)

SI (x) = —10910[ Pe— (2.6)

Where Mryxy and a%-v(,) are the mean and variance of TV(x). TV(x) is the total

variance of the input image as shown in (2.7).
Iy =) (732" + oz @.7)
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PIQE is also a NR image quality score, as shown in (2.8), lies in the range (0-100) and
is inversely related to the perceptual quality of an image, which means lower the value
higher the quality of the image.

(Zr4 D) + €4

Ns‘ + C1 (2.8)

PIQE =

Where N, indicated the number of spatially active blocks in a given image, Dy, is the

amount of distortion in a given block and C} is a positive constant.

2.6.3 Simulation Environment
The simulation results are obtained using MATLAB 2016-a, with a 2.6 GHz Intel Core i7

processor, a 64-bit operating system, and 16 GB RAM.

2.7 Summary

This chapter briefly discusses the conventional MRI acquisition process and how the
slow acquisition process can be accelerated using CS theory. The related work of iCS in
multi-slice MRI is also reviewed. Finally, the simulation environment, assessment

parameters, and datasets used are discussed.
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Chapter 3

Fast Interpolated Compressed Sensing Technique using 2D

Sampling Scheme for Multi-Slice CSMRI Reconstruction.

3.1 Introduction

In this chapter, a novel fast interpolated compressed sensing (FiCS) technique is
discussed based on a 2D Variable Density Under-Sampling (VRDU) scheme [109]. The
2D-VRDU scheme has improved results because it takes maximum samples from the
high-energy central part of the k-space slices and minimum samples from its periphery.
The FiCS technique takes two consecutive under-sample slices and estimates the missing
samples using the proposed interpolation approach. Compared to the previous methods
[100], slices recovered with the FiCS technique have a maximum correlation with their
corresponding original slices along with consistency in slice-wise image quality. The
FiCS technique is evaluated by using both subjective and objective assessment

techniques and compared with existing interpolation techniques [100] and CS.

3.2 Related Work

The traditional MRI acquisition process is slow because of the number of samples it has
to acquire to fulfill the Shannon-Nyquist theorem [1]. But CS [2, 10] breaks this criterion
by reconstructing the same signal from even 10% of random Nyquist samples, provided
that the basic conditions of CS are fulfilled. In Multi-slice MRI, there is a very narrow
inter-slice gap and therefore has a very strong inter-slice correlation. This correlation has

been used to reduce the average samples per slice. Pang et al. {15, 16] exploits this
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correlation and introduced a new concept called interpolated Compressed Sensing (iCS)
in multi-slice MR Pang [16], utilizes 9% average samples and has reduced the average
under-sampling ratio. Later Datta and Deka [99, 100] further explored the work of Pang
using the 1D-VRDU under-sampling scheme. The interpolation approaches of both the
researchers are computationally inefficient with multiple redundant steps. Secondly, both
adopted a biased under-sampling approach causing information loss in their
reconstruction results [109]. Datta and Deka have also worked [30, 51, 110, 111] on
reducing the computational cost of their initial work [99, 100] by increasing the under-

sampling ratios [111].

In interpolated Compressed Sensing MRI (iCSMRI), some of the CS samples of MRI are
acquired while others and intentionally missed reducing the average sampling rate, next
the missed samples are estimated from the samples of the neighboring slices which are
later CS reconstructed. Datta in his recent work [100] claims improved results, therefore
we have compared the novel FiCS technique with their work for both 1D and 2D
sampling schemes. The main contributions of this chapter are a reduction in scan time by
employing the highest under-sampling rates while improving image quality and

consistency by applying a more uniform under-sampling strategy on every slice.

3.3 The FiCS Technique

This section introduces a novel Fast interpolated Compressed Sensing (FiCS) technique
using 2D-VRDU under-sampling and a fast interpolation scheme [109]. The FiCS
technique reduces the average under-sampling ratio, thus decreasing the acquisition time.
This technique also shows improved results with even 5% average samples thus reducing

the under-sampling ratio and scan time. Secondly, the interpolation technique of FiCS is
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computationally efficient with only a set difference and addition operation. The main
advantage of the novel FiCS technique is that for reconstruction, consecutive under-
sampled slices retain maximum samples of the original slices and rest from the
neighboring slices. Thus, the resulting reconstructed images have a maximum correlation
with the original images. In the previous iCS techniques [16, 100] most of the slices are
more correlated to their neighboring slices, rather than their original ones. The novel
FiCS algorithm works in three steps, (i) under-sampling, (ii) interpolation, and (iii) CS

reconstruction. Each step is discussed separately in subsections.

3.3.1 2D-VRDU Under-Sampling Scheme

The original k-space or Fourier data of the multi-slice MRI sequence has maximum
energy points at the center which resembles a 2D-VRDU pattern, as shown in Fig. 3-1.
Therefore, the same 2D under-sampling pattern is adopted in FiCS because it can
efficiently under-sample the original k-space data of a multi-slice MRI sequence with a
much lower under-sampling ratio. It is also clear from the figure that the 2D-VRDU mask

takes maximum samples from the k-space center and minimum from its periphery.

a b

Fig. 3-1 (a) Full k-space data and (b) under-sampled k-space data acquired using a
2D-VRDU mask
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The under-sampling strategy of FiCS takes only 5%, 2D-VRDU samples, from each slice
of a multi-slice MRI sequence, and therefore its average under-sampling ratio is also 5%.
First, two such masks with 5%, samples are generated using 2D Gaussian PDF. Then
these masks are used for under-sampling of two consecutive slices and repeated after
every two slices for the whole multi-slice MRI sequence. Two such masks are shown in
Fig. 3-2. A detailed examination of the figure reveals that the 2D-VRDU pattern always

takes different sampling locations with the same sampling ratios.

Two fully sampled original multi-slice MRI data sets are used to evaluate FiCS, but
before applying the novel FiCS technique, the multi-slice MRI sequence is first under-
sampled into k-space data. For the under-sampling of an i slice S, first a down-
sampling Fourier operator F, of the 2D-VRDU sampling pattern is generated. Then F, is

applied on S , resulting in an under-sampled slice Uj, in k-space as represented in (3.1).
Ul = F“ * Sl (3. 1)

This step is repeated for each slice of the multi-slice sequence using the 2D-VRDU
under-sampling patterns of Fig. 3-2 for two consecutive slices and repeated for the whole

dataset.

Fig. 3-2 2D-VRDU Sampling pattern for two consecutive slices
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As clear from Fig. 3-2, both 2D-VRDU masks have the same sampling pattern but
different sampling locations. A detailed examination of both the under-sampling patterns
reveals that any two such generated masks will always have 72% samples on different
locations and the rest 28% on identical locations. The sampling points on different

locations will be exploited for the novel interpolation scheme of FiCS in the next step.

3.3.2 Novel Fast Interpolation Scheme

The novel fast interpolation scheme of the FiCS technique estimates the missing samples
in each under-sampled slice U; of the multi-slice MRI sequence using only set difference
and addition operation. The set difference is an operation to find those samples which
have been missed out, while the set addition operation embeds those missed samples in

the target slice.

This scheme works by taking two consecutive slices, in which the first one is called the
Left slice (L slice) and the second one is called the Target slice (T slice). The T slice will
always be interpolated from its corresponding L slice. The novel interpolation scheme of
FiCS has two steps. The first step is the set difference between the L and T slices as
shown in (3.2), where the set difference is actually finding those pixels of L sliced which
was missed from the T slice as presented in Fig. 3-3. This resultant difference between

the two slices is called Tyey, containing the new sampling information.
Taew=LOT (3.2)

Where the © sign shows a set difference operator. Both L and T slices have 5% 2D-
VRDU samples, therefore their set difference Tpew, Will have 3.6% samples. Actually, in

every two consecutive slices with 5% 2D-VRDU samples, there are always 1.4% samples
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on the same locations while the rest 3.6% on different locations and this is the reason

that T, .y, Will have 3.6% samples.

In the second step these 3.6% samples of Tye, are combined with 5% samples of T slice
resulting in 8.6% samples in the interpolated T slice called Ti,; as shown in (3.3). The

samples of the two slices are combined using a set addition operation represented by the

@ sign.
Tint = Toew @ T 3.3

This two-step interpolation technique is applied on all the slices of under-sampled multi-
slice MRI sequence, considering every slice as T and its preceding as L slice, to get
interpolated slices, Typ,. The complete two-step interpolation approach of the novel
interpolation technique of FiCS is shown in Fig. 3-3. For the current clinical scanners, the

same sampling strategy has also been implemented using 1D-VRDU masks.

Hence comparing the computational complexity of the proposed interpolation strategy
with the most recent techniques [16, 99, 100], it is shown in Fig. 3-3 that the proposed
interpolation scheme only involves a set difference and addition operation. This set
difference and addition operation is only finding the missed samples and then embedding
it in the target slices. Thus the complex computations of Fourier, Inverse Fourier,
convolution, and matrix division that are the essential steps of the previously proposed
techniques [16, 99, 100].] are replaced. Therefore the computational complexity of the
novel interpolation algorithm has been reduced to O(n), compared to O(n?) in [16] and

O(n logn) in [100]
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Fig. 3-3 The novel fast interpolation technique

3.3.3 CS Reconstruction

After interpolation, the 3rd and final step is to apply CS reconstruction on all the
interpolated slices, to get the CS reconstructed images. The CS reconstruction algorithm
uses a non-linear conjugate gradient (NCG) with £, -norm and Total Variance (TV) [11]

as shown in (3.4).

£ = arg min |IF,x - ylIZ +24|Pxll; + 2z lIxllry 3.4
X

Thus for a given k-space measurement y and a down-sampled Fourier operator F,, the
function reconstructs the image x that minimizes the cost function with the given £4-

norm and TV constraints, where W represents the wavelet operator. The objective
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function is #4-norm which is defined in (3.5) and minimizing ||%x||; promotes sparsity.
Similarly, the constraint ||F,x — yII: enforces data consistency. Where A4 and A, are

the thresholding parameters for £; wavelet penalty and TV penalty respectively. The TV

is defined discretely in (3.5).
lxlla = Sy 3.5
by = ) [(Fux)? + (Vo] (3.6)

Where V; and V, denote the forward finite difference operators on the first and second
coordinates respectively. The complete process of the novel FiCS technique is shown in

Fig. 34.

¥ alicen Yot slices Tnconstricied

Fig. 3-4 The Novel FiCS Technique

34



3.4 Simulation and Results

The FiCS technique is evaluated in three steps. In the first step, the 2D-VRDU under-
sampling scheme of FiCS is evaluated. Secondly, the novel interpolation approach of
FiCS is evaluated, and finally, the overall behavior of FiCS is analyzed. All the three

evaluations are discussed as under:

3.4.1 Evaluation of the Under-Sampling Scheme

Like CS, the under-sampling strategy of FiCS equally under samples all the slices of the
multi-slice MRI sequence. The main edge of this uniform under-sampling using the 2D-
VRDU approach for the novel FiCS technique is that during interpolation most of the

samples are retained from the original slices.

The benefit of the 2D-VRDU sampling strategy to acquire the under-sampled T slices is
that after interpolation every Ti,, slice will have 60% samples from T slice and the rest
40% from its L slice. In the previous techniques [16, 100] each interpolated slice had only
4% samples from its original under-sampled slice and the rest 96% from its neighboring
slice. Thus their result is that every three consecutive reconstructed images represent the
same information as shown in Fig. 3-5 (bl-b3 and cl-c3). A Comparison of three
consecutive original images with reconstructed images using iCS-1D and iCS-2D is

shown in Fig. 3-5, while Fig. 3-6 shows a comparison with FiCS-1D and FiCS-2D.
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Fig. 3-5 Three consecutive (a) original and reconstructed images using (b) iCS-1D
and (c) iCS-2D. New information is pointed by the arrow in a3 which is missed by
iCS in both b3 and c3. The three consecutive slices of iCS (b1-b3 and c1-c3) show
similar information to the central slice (b2 and c2) and are the same as in the original
centered slice (a2). Secondly, iCS also shows large contrast variation among adjacent
slices.

It is clear from Fig. 3-6 that each reconstructed slice using FiCS has preserved the
original information of their corresponding original slices. While in iCS two of the three
consecutive slices have missed their original information and represented the information
of their neighboring centered slices. In short, the three consecutive slices of iCS are the
same in terms of the information content while our FiCS technique has retained the

information of the respective original slices.
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Fig. 3-6 Three consecutive (a) original and reconstructed images using (b) FiCS-1D
and (c) FiCS-2D. New information is pointed by the arrow in a3 which was missed by
iCS, while FiCS has retained that information in both 1D (b3) and 2D (c3). Similarly,

FiCS also shows no contrast variation among adjacent slices while preserving the
original information of their corresponding original slices.

Hence the reconstructed images of FiCS have maximum information of the original

images along with consistency in slice-wise image quality, as shown in Fig. 3-6.

Assessment of three consecutive slices of both knee and brain data sets, using the four
parameters, are shown in Fig. 3-7. This assessment is performed on iCS-1D, iCS-2D,

FiCS-1D, and FiCS-2D using the same 9% average samples.
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Fig. 3-7 Slice-wise assessment of three consecutive slices on both knee and brain data
sets. iCS-1D and iCS-2D show huge variations in values while the novel FiCS
technique has consistent values in both 1D and 2D like CS and is better than CS.

As shown in the three consecutive reconstructed images of Fig. 3-6 (b1-b3 and c1-c3),
iCS shows wide variation in terms of image quality and contrast. The same variation is

verified through their assessment in Fig. 3.7, which shows huge variations in values.

The assessment of FiCS, in Fig. 3-7, shows no such abrupt changes in values of three

consecutive slices, and the same is verified from Fig. 3-6 (b1-b3 and c1-c3). The centered
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slice in iCS Fig. 3-5 (b2 and c2) looks good and has improved assessment on all
parameters, as shown in Fig. 3-7 because it has 25% of the original samples while the
novel FiCS technique has only 9% of it. But this uneven distribution of the under-
sampling ratios in iCS results in every three consecutive slices being the same in terms of
the imaging information. Thus, iCS shows non-consistent results both qualitatively and

quantitatively whereas FiCS shows consistent results.

3.4.2 Evaluation of the Fast Interpolation Scheme of FiCS

The novel Fast interpolation scheme (FiCS) is evaluated by comparing the assessment
parameters of FiCS with recent iCS [100] and CS [11] techniques for both 1D and 2D-
VRDU masks. Fig. 3-8 shows the evaluation of all four assessment parameters using 9%

average sampling ratios.

i-cs--n i
Wlcso i
lFcs-0
Mcsn
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|:ncs-zn |

0015

o

SSIM PSNR MSE CORR

Fig. 3-8 Comparing CS-1D, iCS-1D, FiCS-1D, CS-2D, iCS 2D, and FiCS-2D with
9% average sampling ratio. The assessment is done on 9 consecutive slices (slice
number 74-82) and averaged using four assessment parameters on knee dataset. Thus
FiCS-2D outperforms all, on all the assessment parameters.
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For a fair comparison, the assessment has been done on 9 consecutive slices and
averaged. It is clear from the graph that although iCS technique with a 1D-VRDU mask
performed better than CS, as claimed by its authors [100]. But when the same is

implemented with a 2D-VRDU mask it performs worse even from CS.

2D-VRDU mask is most capable to acquire the k-space data of a multi-slice MRI
sequence, because of its resemblance with the original k-space data. Therefore, a good

iCS technique performs better using 2D-VRDU masks.

The novel FiCS-2D outperforms all the other technmiques on all four assessment
parameters. Although FiCS-1D also performs far better than iCS-1D on individual
consecutive slices as shown in Fig. 3-7 but due to the uneven distribution of sampling
ratios in iCS their average assessment of 9 consecutive slices is almost the same as FiCS-

ID.

For fair comparison selected zoomed parts of the original images of both knee and brain
are also compared with the reconstructed images using CS, iCS, and FiCS. The original
image has 100% samples while the reconstructed images have 9% average samples as
shown in Fig. 3-7. It is clear from the figure that our novel FiCS technique has more clear
results, compared to all other techniques. It is to be clarified that the reconstructed images
of iCS (c, f and i, 1) look sharper because it has been reconstructed using 25% samples, in
which 1% samples are taken from the original slice and the rest 24% from the
neighboring slice. Therefore, although their images look sharper, but the information is
not original, Secondly, the redundant Fourier steps in the interpolation of iCS [100] cause

large contrast variation in their adjacent slices. Thus these extra Fourier steps not only
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make their algorithm computationally complex but also cause huge contrast variations in

consecutive reconstructed slices as shown in Fig. 3-7

Most importantly the computational complexity of the novel interpolation algorithm of
FiCS is reduced to O(n), compared to O( n log n ) of iCS [100]. The processing time of
the novel fast interpolation technique is up to five times faster compared to the current

interpolation technique [100]

The novel FiCS technique has not only improved performance with the same average
sampling ratio (9%) but also outperforms with 7% and with even 5% sampling ratios as
shown in Table 3-1. Similarly, the reconstructed images using 7% and 5% are also better

than iCS with even half the sampling rate as shown in Fig. 3-7.

Table 3-1 Comparison of iCS with the novel FiCS technique using 9%, 7%, and 5%
under-sampling ratios

Average assessment of 9 consecutive slices of Knee Dataset, [74-82]

:; ‘;:f:;.“e‘t‘;' iCS-1D-9% | iCS-2D-9% | FiCS-9% | FICS-7% | FiCS-5%
1 SSIM 0.7434 0.67581 0.8551 0.831 0.7626
2 PSNR 26.5709 25.2133 32.021 30.71 29.4
3 MSE 0.00239 0.00688 0.0007 0.0009 0.0012
4 CORR 0.94428 0.93285 0.981 0.976 0.9654
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Fig. 3-9 Comparison of (a) Original brain Image with Reconstructed images using (b)
CS-1D, (c) iCS-1D, (e ) CS-2D, (f) iCS-2D and (d) FiCS-2D with 9% average
sampling ratio. Similarly, comparison of (g) Original knee Image with Reconstructed
images using (h) CS-1D, (i) iCS-1D, (k) CS-2D, (1) iCS-2D and (j) FiCS-2D with 9%
average sampling ratio. The reconstructed image using the novel FiCS technique has
better quality compared to other techniques.
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Fig. 3-10 Comparison of (a) Original image with (b) iCS-1D- 9%, (c) iCS-2D- 9%,
(d) FiCS-1D-9%, (e) FiCS-2D-9%, (f) FiCS-2D-7% and (g) FiCS-2D-5%. The novel
FiCS shows better results with even 5% under-sampling ratio.



3.4.3 Evaluation of FiCS.

The novel FiCS technique is evaluated on centered 150 slices of knee data set (slice # 51
to 200) as shown in Fig. 3-11. It can be seen in the graphs that iCS-1D and 2D have huge
fluctuation throughout the data set while FiCS follows a uniform pattern like CS, with
improved results. The fluctuations in the graphs of iCS are such that it has peaks on the
centered 25% slices and depressions on 1% (25% after interpolation) slices. While FiCS

has no such biasing in sampling like CS and therefore has uniformity in their results.

The FiCS technique is implemented using both 1D and 2D-VRDU masks. Although, the
1D-VRDU mask is more realistic from the current hardware point of view but the 2D-
VRDU is best suitable to represent the original k-space data of multi-slice MRI. The 2D
under-sampling patterns are not commonly available on clinical scanners at present [89]
and as with any novel technique within MRI practical implementation requires pulse
programming access. There are now several research groups that have implemented pulse
programs that can perform prospective under-sampling of 2D masks on clinical
platforms. For 2D multi-slice MRI, under-sampling in the frequency-encode direction
does not reduce acquisition time as the readout direction is acquired very quickly

compared to the phase-encode direction.

3.5 Summary

The FiCS technique not only preserves the original information in every reconstructed
slice but also gives consistency in the slice-wise image quality. This technique also
reduces the scan time by reducing the under-sampling ratio to almost half, compared to

iCS [100], with an even improved image.
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Fig. 3-11 Evaluation of the novel FiCS-2D technique on 150 slices of knee dataset by
comparing it with iCS-1D, iCS-2D, and CS-2D using 9% average sampling ratios. It
is clear from the graphs that FiCS-2D has a consistent graph like CS with improved

results while iCS-1D and iCS-2D show huge fluctuations in values.
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The uniformity in the 5% under-sampling ratio for all the slices causes lesser partial
volume loss in the reconstructed images of FiCS as compared to iCS. FiCS also beats
previous interpolation techniques in terms of computational complexity and processing
time. Thus, the fast interpolation strategy along with 2D-VRDU under-sampling not only
simplifies the novel FiCS technique but also improves the results both qualitatively and

quantitatively.
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Chapter 4

Efficient Interpolated Compressed Sensing Technique
using Radial Under-Sampling for Multi-Slice CSMRI

Reconstruction

4.1 Introduction

In this chapter, an improved Efficient interpolated Compressed Sensing (EiCS) technique
is discussed using different Radial under-sampling schemes [120]. Compared to the
preceding two-step interpolation approach of FiCS [109], EiCS [120] uses three
consecutive slices to estimate the missing samples of the central target slice from its two
neighboring slices. Seven different evaluation metrics are used to analyze the
performance of the EiCS technique and compared with the latest interpolation techniques

and CS.

4.2 Related Work

Compressed Sensing (CS) theory has enabled to accelerate the MRI acquisition process
using some non-linear reconstruction techniques from even 10% of the Nyquist samples.
In recent years interpolated compressed sensing (iCS) has further reduced the scan time,

as compared to CS, by exploiting the strong inter-slice correlation of multi-slice MRIL.

In Chapter 04, The FiCS [109] technique based on a 2D-VRDU under-sampling scheme

has been discussed. FiCS shows more clinically acceptable results with less partial
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volume loss, lower average under-sampling ratio, and by using a computational efficient
interpolation technique. The interpolation approach of FiCS is a simple two-step process
utilizing two consecutive slices to estimate the missing samples of each target slice (T
slice) from its corresponding left slice (L slice). FiCS has reduced the average under-
sampling ratio to 5%, compared to the previous iCS techniques which have a minimum
of 9% average samples. The results of FiCS also show improvement in terms of
information content and image quality with even half of the sampling ratio compared to
their previous interpolation techniques. Moreover, the interpolation technique of FiCS is
very computationally efficient with just a set addition and difference operations. But the
basic drawback of FiCS is that their under-sampling strategy does not apply to current

clinical scanners and their images lack sharpness.

In this chapter, a new EiCS technique [120] based on different Radial under-sampling
patterns is discussed. The novel EiCS technique is implemented using both Uniform-
Angle (UA) and Golden-Angle (GA) Radial sampling patterns, using an even lower

sampling ratio.

The radial under-sampling strategy reduces the under-sampling ratio to even 3%.
Secondly, the novel three-step interpolation approach of EiCS ensures that each
interpolated slice gets maximum samples from its respective target slice and the rest from
its neighboring two slices, to have enough samples to be reconstructed as a sharper and

improved image.
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4.3 Non-Uniform Sampling
CS has been implemented using both Cartesian and Non-Cartesian under-sampling
schemes [22, 93, 121]. Non-Cartesian sampling in k-space has appeared in many medical

imaging modalities including MRI.

(O Cartesian samples
@ Radial samples

Fig. 4-1 Gridding Radial samples on the Cartesian grid [122]

Radial sampling has evolved since the beginning of MRI, with the limitation that its non-
uniformly spaced samples of the spatial frequency domain, are to be projected on
uniformly spaced samples in the image domain {123]. Fig. 4-1 shows some polar Radial
samples which are to be projected on a Cartesian grid. The value of each Cartesian
sample is to be determined from the samples of the adjacent Radial samples through
gridding reconstruction [124] which uses Non-Uniform FFT (NUFFT) [123] and a
Density Compensation Function (DCF). The DCF helps to mitigate the artifacts caused

by the overrepresentation of some spatial frequencies in non-Cartesian acquisitions.
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Similarly for converting uniformly sampled Cartesian image data into non-uniform k-

space data inverse gridding is used [123].

Image reconstruction using Radial under-sampling has rapidly evolved as it allows
reduced scan time with increased spatial resolution. The iterative reconstruction of CS
from an under-sampled radially encoded MRI dataset is helpful for artifact-free images
[93, 121, 122, 125-127]. These artifacts are directly related to the number of samples
available for reconstruction. Thus, if we first estimate the missing samples in the highly
under-sampled radially encoded multi-slice MRI datasets, before CS reconstruction, one

can get an alias-free reconstructed image from just a fraction of the total samples.

A single multi-slice MRI scan acquires hundreds of slices. Therefore their consecutive
slices have a very strong inter-slice correlation, because of having very narrow inter-slice
gaps [15]. In recent years many researchers have exploited this correlation of multi-slice
MRI for further reduction of the scan time, through interpolation. This new concept is
termed as interpolated compressed sensing (iCS) in the literature [15, 16]. Through iCS,
the average sampling ratio of CSMRI has been reduced even beyond the CS limit.
Interpolated Compressed Sensing mainly works in three steps (i) under-sampling the
multi-slice MRI data (ii) interpolation and (iii) CS reconstruction. For the first step, the
desired under-sampling is done using a much lower under-sampling ratio compared to
CS. In iCS under-sampling, some of the CS samples are missed intentionally to reduce
the average sampling ratio and scan time. The random under-sampling of iCS can be
accomplished using one of the many under-sampling approaches like Cartesian, Radial,
spiral, and their combinations [92-94, 128]. Fig. 4-2 shows the original k-space of Multi-
slice MRI and some different under-sampling approaches that can be used in CSMRI

The second step of iCS approximates the missed samples of the highly under-sample
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slices from the samples of their neighboring slices [15, 16, 98, 101]. The aim of this
interpolation [15, 16, 98-100] is to get CS slices. Finally, in the third step, CS
reconstruction techniques [11, 93, 100, 104-107, 129, 130] are applied to the interpolated

slices to get reconstructed multi-slice MRI datasets.

Fig. 4-2 (a) Original k-space and under-sampled k-space slices using (b) 1D-VRDU (c)
2D-VRDU (d) Radial and (e) Spiral mask.
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4.4 The EiCS Technique

The proposed novel EiCS Technique [120] has three important steps. Every step is

elaborated separately in the following subsections.

4.4.1 Radial Under-Sampling Scheme

The fully sampled k-space multi-slice MRI data greatly resembles 2D-VRDU and Radial
masks, as shown in Fig. 4-2. The Radial under-sampling approach is more suitable as it is
practical from the present hardware point of view compared to the 2D-VRDU under-
sampling schemes. Most importantly, the Radial masks oversample the central region
using intersecting spokes and thus detect and correct any movement in the k-space center
for changes in between views. Thus, the motion artifacts in Radial under-sampling are
averaged out because of the inherent oversampling of the k-space center. Therefore the
reconstructed images using the Radial masks are lesser motion sensitive with higher SNR

[121], compared to the 1D and 2D-VRDU schemes.

In Uniform-Angle (UA) Radial, all spokes are uniformly spaced while in Golden-Angle
(GA) Radial every two spokes are spaced none uniformly depending upon the GA ratio
as shown in Fig. 4-3. The GA ratio (180°/((1+ V5)/2) = 111.246°) of Radial
sampling acquires the spokes such that they are self-interleaving and no spoke is acquired
twice [131]. The number of spokes that are needed to meet the Nyquist sampling criteria
is 402 uniformly spaced spokes, with 256 samples on each spoke for a 256x256 pixel
image [125, 132]. Therefore, for acquiring 3%, 5%, 7%, and 9% of the samples we must

acquire 12, 20, 28, and 36 spokes which are used for the EiCS scheme.

When the Radial data are acquired using the GA ratio [131] the k-space data are under-
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sampled using high temporal incoherence [94]. Therefore, the sampling patterns explored

in this chapter are UA and GA-Radial as shown in Fig. 4-3.

Uniform-Angle Radial Golden-Angle Radial

Fig. 4-3 Two different Radial under-sampling approaches used in EiCS technique

Unlike 1D and 2D-VRDU, the Radial samples are acquired on a polar grid. Therefore,
the distance between the sampling points of the neighboring spokes is non-uniform. This
distance is smaller in the k-space center and larger in the periphery. Thus the Radial
readouts require re-gridding from the polar k-space data into the pixel domain through a

Density Compensation Function (DCF) and Non-Uniform FFT (NUFFT) [123].

The under-sampling approach adopted with the novel interpolation technique of EiCS
takes only 3%, Radial samples, from every slice of the multi-slice MRI sequence. The
Radial under-sampling scheme is slice-wise uniform like CS, which means every slice is
under-sampled with the same under-sampling ratio but using different non-overlapping
spokes. Thus using different spokes in the neighboring consecutive slices will allow us to

interpolate the samples in our target slices.
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Three Consecutive GA-Radial Under-Sampling Masks

Fig. 4-4 Three consecutive Radial under-sampling masks with non-overlapping spokes

In the novel EiCS scheme, first, three different under-sampled Radial masks with the
same sampling ratios are generated, as shown in Fig. 44. These masks are different in the
sense that any two of them are having their spokes on different locations which is the

fundamental key toward our novel interpolation approach.

The masks shown in Fig. 44 are used to under-sample three consecutive slices and
repeated after every three slices for the whole multi-slice MRI sequence. Thus enabling
every slice to be interpolated from its neighboring two slices. Let the three masks shown
in Fig. 44 be termed as R;, R, and R; which are the three desired non-overlapping
under-sampling Radial masks. The three consecutive under-sampling Radial masks are
such that they have the same number of spokes but have different sampling locations,

except its center where it will overlap, as shown in Fig. 4-4.

Two fully sampled, original multi-slice MRI data sets of the knee are used for EiCS. But
first, the multi-slice MRI datasets are under-sampled into k-space data and then the novel
interpolation approach of the EiCS technique is applied. For the under-sampling of three

consecutive slices S;, Si+1 and Sy, , first three down-sampling NUFFT operators of the
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Radial sampling patterns are generated. The three down-sampling NUFFT operators are
termed as NUFFT;, NUFFT, and NUFFT;. Where, each NUFFT operator is generated
using its respective Radial under-sampling mask, and a DCF. To interpolate the k-space
data from the non-Cartesian trajectories, the NUFFT by J. Fessler [133] and the NUFFT
wrapper by M. Lustig [11] are implemented, which are available online [12, 13]. The
NUFFT operators are then applied on three consecutive slices, resulting in an under-

sampled k-space slice sequence as represented in (4.1) -(4.3).

U, = NUFFT; *§, (4.1)
Ul+1 = NUFFTZ * SH.1 (4. 2)
Ul+2 = NUFFT3 * sH.z (4. 3)

Where U;, Uy, and Uy, represents the three consecutive under-sampled slices. This
under-sampling step for three consecutive slices is repeated after every three slices for the
whole multi-slice MRI dataset. Thus resulting in an under-sampled dataset in which
every three consecutive slices have the same sampling patterns and under-sampling ratios
but different sampling locations because of using different non-overlapping spokes, as
shown in Fig. 4-4. All the samples that are on different locations can be exploited for the

novel interpolation technique of EiCS in the next step.

4.4.2 The Novel Efficient Interpolation Scheme

The novel efficient interpolation scheme of EiCS approximates the missing sampling
points from each under-sampled slice using their two neighboring slices. This approach
works by considering any three consecutive down-sampled slices, out of which the
central one is termed as the Target slice (T slice) which has to be interpolated from its

Left (L) and Right (R) slices.
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The novel interpolation technique of EiCS has three steps. The first step is to find the set

difference between the L and T slice as represented in (4.4).
Lrnew =LOT (4.4)

The resultant set difference is called Lypeyw, having the new information of the L slice
with respect to the T slice. Where the © sign represents the set difference operator.
Secondly, the same step of L slice is repeated with the R slice, getting Rypew Slice as

shown in (4.5).
Rrpew =ROT (4.5)

Where Repew contains the new sampling information in R slice with respect to T slice. In
the third and last step, the T slice samples are combined with the samples of Ly, and
Rpew to get the interpolated T slice termed as Ty, as represented in (4.6), where the @

sign is the set addition operator.
Tint = Lrnew @ T © Rrpew (4.6)

This three-step interpolation technique of EiCS is applied on each slice of the under-
sampled multi-slice MRI sequence, considering every slice as a T slice and its two
neighboring as L and R slices, to acquire an interpolated slice, Tyn;. The three-step

process of the efficient interpolation technique is represented in Fig. 4-5.

4.4.3 CS Reconstruction
After the interpolation step, the interpolated multi-slice datasets have almost three times
the samples initially under-sampled or acquired. The third and final step of EiCS is the

CS reconstruction which gives the reconstructed images.
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The CS reconstruction technique used for EiCS is the same as in FiCS which is the non-
linear conjugate gradient (NCG) with £;-norm and Total Variance (TV) [11] as discussed

in the previous chapter. The complete EiCS technique is expressed in Fig. 4-6.

4.5 Simulation and Results

Seven different evaluation metrics are used to analyze the performance of the EiCS
technique [120] such as structural similarity index measurement (SSIM), feature
similarity index measurement (FSIM), mean square error (MSE), peak signal to noise
ratio (PSNR), correlation (CORR), sharpness index (SI), and Perceptual Image Quality
Evaluator (PIQE) and compared with latest interpolation techniques and CS. The EiCS
technique is evaluated in four steps. In the first step, the Radial under-sampling scheme
of EiCS is evaluated. Secondly, the novel interpolation approach of EiCS is evaluated. In
the third step, the overall behavior of EiCS is analyzed and finally, the EiCS technique is
evaluated for an increased inter-slice gap dataset. Different knee datasets are used in the
evaluation of the novel EiCS technique which has already been discussed in Chapter 02.
These knee datasets are fully sampled and are to be under-sampled using the different

Radial under-sampling approaches discussed previously.

4.5.1 Evaluation of the Radial Under-Sampling Scheme
Like FiCS, and CS the Radial under-sampling strategy of EiCS equally under-samples

the k-space multi-slice MRI sequence but uses a much lower under-sampling ratio.

Table 4-1 shows a comparison of the Radial under-sampling schemes with the 2D-VRDU
under-sampling scheme of FiCS [109], 1D-VRDU scheme of iCS [100], and CS[11]. The
assessment has been performed using all the seven assessment parameters for three
successive slices and averaged.
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Table 4-1 Comparison of the Radial under-sampling schemes with 1D-VRDU and 2D-
VRDU schemes. The assessment has been done on 3 consecutive slices and averaged

(slice 165-167 of knee dataset)

Under-Sampling | ,;, yppy 2D-VRDU UA-Radial GA-Radial
scheme

S| Assesement | og.gu | oo | Cs5% | Faoo | cs-s% | Ficv | cs-5% | Fics-s%
1 | ssiM | 0559 | 0.7226 | 0.7834 | 0.8008 | 0.7995 | 0.8388 | 0.7669 | 0.8339
2 | Fsim | 09387 | 09733 | 09713 | 0.9463 | 0.9201 | 0.95933 | 0.9150 | 0.9516
3 | mSE |00398 | 0.0058 | 0.0056 | 0.0023 | 0.0008 | 0.00047 | 0.0010 | 0.00052
4 | PSNR | 14002 | 23.779 | 22.636 | 26367 | 30.738 | 33221 | 29797 | 32.778
s | corr |09317 | 09522 | 09762 | 0.9647 | 0.9476 | 0.9703 | 0.9358 | 0.9671
6 ST 4838 | 501.64 | 374.46 | 275.61 | 175.06 | 267.63 | 46.07 | 276.44
7 | PIQE | 65791 | 30915 | 62.121 | 73.850 | 72.577 | sas82 | 79.574 | 65.978

It is clarified from the comparison of the different sampling strategies in the table that the

Radial under-sampling scheme has more improved results, for both Uniform-Angle (UA)

and Golden-Angle (GA) strategies, compared to the 1D and 2D-VRDU schemes. The

Radial under-sampling strategy has also an edge in that it is more practical from the

current hardware point of view.
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4.5.2 Evaluation of the Novel Efficient Interpolation Scheme

The novel three-step interpolation scheme of EiCS [120] is evaluated by comparing its
reconstructed images with that of iCS [100], FiCS [109], and CS [11]. Fig. 4-7 shows a
comparison of the original image with the reconstructed images using different
interpolation techniques along with different under-sampling ratios. It is clear from the
figure that although iCS shows visually improved results but represents information of
the neighboring slices due to their biased under-sampling scheme [109]. FiCS using 2D-
VRDU under-sampling shows improved results and has no loss of information but their
sampling pattern is non-realistic with some blurred edges. CS reconstruction is also
performed using the Radial under-sampling pattern, but their images look even more
blurry with some streaking artifacts. The reconstructed images of the Radial under-
sampling pattern show improved results for both FiCS and EiCS techniques. But EiCS,
due to its three-slice interpolation approach has better results compared to FiCS, using the
same Radial under-sampling strategy. This proves that the three-step EiCS technique is

better compared to its preceding two-step FiCS approach.

The edge information pointed by the red arrow in Fig. 4-7 shows that although FiCS-
Radial has improved results but for 3% under-samples ratio it has a blurring effect, while
EiCS has no blurring effect with sharper and clear details. FiCS 2D-VRDU also shows
better results but its under-sampling approach is non-realistic with some blurred edges. In
short, EiCS has got the benefits of all the other techniques as its reconstructed images
have no blurring effect with sharper details and original information and with a more

realistic under-sampling approach using only 3% samples.

60



FICS 2D-VRDU C5-Radial FICS-Radial EICS-Radial

Fig. 4-7 Comparison of (a) Original Image with (b-f) reconstructed images using
different reconstruction strategies and under-sampling ratios. (b) iCS reconstructed image
has sharper details but with loss of information (c) FiCS 2D-VRDU has preserved the
original information but has a blurring effect which becomes more prominent when the
under-sampling ratio is reduced (d) CS reconstruction using the Radial under-sampling
also shows severe degradation when the under-sampling ratio reduces (e) FiCS-Radial
and (f) EiCS-Radial has improved results compared to CS-Radial but the sharpness
degrades for (e) FiCS with 3% samples while (f) EiCS has improved results with clear
and sharp details as pointed by the red arrow
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In the EiCS technique, the acquired under-sampled T slices when interpolated as Tip,
have 34% samples from T slices and 33% from each of the L and R slices. In FiCS [109]
every T, slice has 60% samples from T slice and the rest 40% from its respective L
slice. In FiCS although a greater percentage of samples were taken from the original
slices but because of their two-step interpolation approach, when the sampling ratio
further reduces, the interpolated slices have insufficient samples to be reconstructed as a
clear and sharper image. In iCS [16, 100] each interpolated slice has only 4% samples
from its original under-sampled slice and the remaining 96% from its corresponding
neighboring slices. The reconstructed images of iCS show sharp details due to more
samples in their interpolated slices but with the limitation that their resultant three
consecutive reconstructed images show repeated information because of their biased
under-sampling strategy, as discussed in [109]. Although the 1D under-sampling scheme
of iCS is also practical from the current hardware point of view but has a three times
higher under-sampling ratio along with a biased under-sampling strategy. Table 4-2
summarizes the total percentage of the original and interpolated samples for different

reconstruction techniques.

Table 4-2 Comparison of %age number of samples of different interpolation techniques

and CS
Samples Samples Total Samples for
Ree . Taken from | Interpolated from | Reconstruction With
S.No. tion . . o
Techniques O_ngmn] Nel.ghbonng 9% Ave'rage
Slices (%) Slices (%) Sampling
1 Cs 100 % 0% 9%
2 iCS 4% 96 % from L shce 25%
3 FiCS 60 % 40 % from L slice 16 %
. 33 % from L slice

4 EiCS 34% 33 % from H slice 26%
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It is clear from the table that the Radial under-sampling strategy has the lowest
percentage of samples from the neighboring slices, and still has the highest percentage of
interpolated samples, which gives us the benefit that information content is original and

the reconstructed images are sharper.

The novel Efficient interpolation scheme of EiCS [120] is also evaluated by comparing
the seven assessment parameters of EiCS with iCS [100] and CS [11]. For a fairer
comparison, FiCS using the Radial under-sampling strategy is also performed. The EiCS
technique shows not only improved performance with the same average under-sampling
ratio (5%) of FiCS but also outperforms with even a 3% sampling ratio as shown in Table
4-3. The assessment has been done on 3 consecutive slices and averaged. Table 4-3

represents a detailed evaluation where Fig. 4-8 shows a brief summary of it.

The graphs of Fig. 4-8 clearly show that FiCS-Radial has improved performance with
even 3% samples which proves that the Radial under-sampling strategy is better than 2D-
VRDU. Secondly, the novel EiCS-Radial outperforms FiCS-Radial which proves that the
three-step interpolation technique of EiCS is better than the two-step approach of FiCS.
EiCS-Radial is also better than iCS-1D VRDU with even one-third of the samples but in
three out of the seven assessment parameters (FSIM, SI, and PIQE) iCS looks better. The
reason is that firstly, iCS has 9% samples and, secondly, iCS has a biased under-sampling
strategy, by taking 96% of samples from neighboring slices. Therefore, although iCS
shows better feature similarity, sharpness, and perceptual image quality but represents
neighboring slice information. Thus EiCS-Radial beats all other techniques by taking

only 3% samples.
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Table 4-3 Comparison of the novel EiCS technique with CS, FiCS, and iCS for different
under-sampling ratios

Average
Under- | Interpolati Under- Assessment Parameters
Sampling on Sampling
Ratio | Technique | Technique | sSPM | FSIM | MSE | PSNR | CORR | SI | PIQE
GA-Radial | 0.82 | 0.94 | 0.0005 | 32.68 | 0.966 | 3054 | 66.5
EICS
UA-Radial | 0.82 | 095 | 0.0005 | 32.75 | 0.967 | 251.0 | 56.8
GA-Radial | 0.80 | 0.93 | 0.0007 | 31.39 | 0.954 | 183.7 | 77.5
3% FiCS
UA-Radial | 0.81 | 094 | 0.0006 | 32.00 | 0960 | 229.1 | 70.3
GA-Radial | 0.69 | 0.87 | 0.0017 | 27.66 | 0.895 | 19.44 | 87.3
cs
UA-Radial | 0.70 | 0.87 | 0.0017 | 27.53 | 0.888 | 20.60 | 80.9
GA-Radial | 0.84 | 0.96 | 0.0004 | 33.91 | 0.974 | 3380 | 50.9
EICS
UA-Radial | 0.84 | 0.96 | 0.0003 | 3423 | 0.976 | 4769 | 453
GA-Radial | 0.83 | 095 | 0.0005 | 32.77 | 0.967 | 276.4 | 65.9
5% FiCS
UA-Radial | 0.83 | 095 | 0.0004 | 3322 | 0.970 | 267.6 | 545
GA-Radial | 0.76 | 091 | 0.0010 | 29.79 | 0.935 | 46.07 | 79.5
cs
UA-Radial | 0.79 | 092 | 0.0008 | 30.73 | 0.947 | 175.0 | 72.5
GA-Radial | 0.86 | 0.97 | 0.0003 | 34.80 | 0.979 | 4427 | 50.8
EICS
UA-Radial | 0.85 | 0.97 | 0.0003 | 34.65 | 0.978 | 4625 | 49.1
GA-Radial | 0.86 | 096 | 0.0003 | 34.05 | 0.975 | 5166 | 61.7
% FiCS
UA-Radial | 0.86 | 0.97 | 0.0003 | 3420 | 0976 | 449.1 | 54.5
GA-Radial | 0.83 | 094 | 0.0006 | 32.17 | 0963 | 2206 | 764
cs
UA-Radial | 0.83 | 094 | 0.0005 | 32.53 | 0.965 | 303.4 | 686
9% icS ID-VRDU | 0.72 | 097 | 0.0058 | 23.77 | 0.952 | 501.6 | 30.9
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Fig. 4-8 Comparison of the novel EiCS averaged assessment parameters with iCS, FiCS,
and CS. iCS 1D-VRDU has 9%, FiCS 2D-VRDU has 5% while CS-Radial, FiCS-Radial,
and EiCS-Radial have 3% samples. Thus, the novel EiCS-Radial technique outperforms
all with even 3% average samples

Fig. 4-9 represents a comparison of the original image with that of the reconstructed
images using FiCS 2D-VRDU, FiCS-Radial, and EiCS-Radial with 3% samples by
considering a zoomed edge. It is clear from the figure that EiCS-Radial is better than both

FiCS 2D-VRDU, and FiCS-Radial by showing clearer and sharper results.

Original image Reconstructed image  Reconstructed image  Reconstructed image
100% samples FiCS 2D-VRDU 3% FiCS radial 3% EiCS radial 3%

Fig. 4-9 Comparison of the original image with reconstructed images using FiCS 2D-
VRDU 3%, FiCS-Radial 3%, and EiCS-Radial 3%. It is clear from the comparison of the
selected zoomed portions that the EiCS technique outperforms FiCS by retaining sharper

details.
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4.5.3 Evaluation of the EiCS technique

The detailed evaluation of the novel EiCS technique [120] is done on centered 150 slices
of knee data set (slice # 51 to 200) as shown in Fig. 4-10. The evaluation is done using
GA-Radial under-sampling pattern for all the seven assessment parameters. It is clear
from the figure that when we increase the under-sampling ratio the performance improves
but while increasing the sampling ratio from 7% to 9%, the total number of interpolated
samples saturates and is over-sufficient for CS reconstruction. Thus, as clear from the
figure, when the sampling ratio increases from 7% to 9% the EiCS technique shows
lesser improvement. This is because the three-step EiCS technique collects sufficient
samples from reduced under-sampling ratios that give improved results, with even 3%
samples. Secondly, Fig. 4-10 shows that EiCS has consistency in its results like FiCS

where iCS shows inconsistent results as discussed in [109].

4.5.4 Evaluation of EiCS for Increased Inter-Slice Gap

The novel EiCS technique also outperforms for increased inter-slice gap datasets. The
zero inter-slice gap means, considering all the slices of the original dataset. One and two
inter-slice gaps mean skipping one and two slices from consecutive slices while taking
two slices. Increasing the gap helps to further reduce the average under-sampling ratio
from 3% to 1.5% and 1%. Skipping one and two slices means that we are considering 128

and 85 slices from the 256-slice knee dataset.

Fig. 4-11 shows the evaluation of CS, FiCS, and on Radial sampling for 3%, 5%, and 7%
under-sampling ratios with zero, one, and two inter-slice gaps. It is clear from the graphs
of Fig. 4-11 that both FiCS and EiCS have improved performance compared to CS for

even increased inter-slice gaps.
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Compatison of EICS Scheme with 3%, 5%, 7% and 9% GA-Radlal Under-Sampling.
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Fig. 4-10 Evaluation of EiCS using the seven assessment parameters with GA-Radial
under-sampling for 3%, 5%, 7%, and 9% samples. The evaluation has been done on 150
centered slices of the knee dataset and compared slice-wise.
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While comparing the performance of FiCS and EiCS, for higher inter-slice gaps, EiCS is
better for lower under-sampling ratios but for 7% and higher ratios, FiCS is better on
some assessment parameters. The reason is that for lower under-sampling ratios when the
inter-slice gap is increased, EiCS, because of its three slices approach, collects sufficient
samples for improved reconstruction. Therefore, for higher under-sampling ratios when
we increase the gap, FiCS performs better because of having sufficient samples using its

two-slice approach, while for lower under-sampling ratios EiCS is better.

4.6Summary

In this chapter, for the first time, the implementation of iCS has been discussed using
Radial under-sampling schemes. The Radial sampling pattern used in the novel EiCS
techniques is more realistic from the current hardware point of view compared to the 2D-
VRDU sampling pattern adopted in FiCS. Secondly, the Radial sampling strategy is also
lesser motion-sensitive compared to other sampling schemes. Thus, EiCS exploits
different Radial under-sampling patterns using its three-step interpolation approach to get
interpolated slices with the maximum number of samples using the lowest under-
sampling ratios while ensuring sharper reconstructed images. The EiCS technique not
only preserves the original information in every slice but also gives consistency in the
slice-wise image quality along with sharper IQ. Thus, EiCS neither show blurring like
FiCS nor any information loss like iCS with improved results on seven different

assessment parameters.

The EiCS technique can also be successfully applied to Dynamic MRI datasets to get

even more benefits from the Radial under-sampling schemes because it can efficiently
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handle motion artifacts. This technique can also be combined with the latest CS

reconstruction algorithms for more prominent results with reduced reconstruction time.

The improved novel interpolation technique adopted in EiCS is computationally efficient
with only a set difference and addition operations like FiCS. Thus the computational
complexity of the interpolation algorithm of EiCS [120] is O(n) like FiCS [109] ,
compared to O(n log n) of iCS [100]. EiCS also show better results with even increased

inter-slice gap datasets.
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Chapter 5

Gaussian-Radial Under-Sampling Based CSMRI

Reconstruction using a Modified FiCS Approach

5.1 Introduction
In this chapter, a modified FiCS (Mod-FiCS) technique is discussed using the Gaussian-
Radial under-sampling scheme. The Gaussian-Radial under-sampling approach adopted
by Mod-FiCS has an edge that it neither shows any streaking artifacts like Radial nor
blurred edges like Gaussian. The modified interpolation approach used in Mod-FiCS
technique uses three consecutive slices like EiCS to estimate the missing samples of the
central target slice. The simulation result shows that the Mod-FiCS technique has

improvement both quantitatively and qualitatively compared to the previous techniques.

5.2 Related Work

Compressed Sensing (CS) has efficiently accelerated the MRI acquisition process by
employing different reconstruction strategies using a fraction of the Nyquist samples.
This scan time has been further reduced using a new technique called interpolated
compressed sensing (iCS) by exploiting the strong inter-slice correlation of multi-slice
MRL In Chapter 03 a novel FiCS technique is discussed based on the 2D-VRDU under-

sampling scheme. The FiCS technique [109] has improved results along with reduced
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scan time and consistency in slice-wise image quality and information content, but due to

the Gaussian under-sampling approach, it shows some blurred edges.

Chapter 04 discusses a novel EiCS technique based on different Radial under-sampling
schemes. The EiCS technique [120] shows improved results compared to both iCS and
FiCS with sharper details. Unlike the Gaussian masks of FiCS, which require an FFT
operator, the Radial masks of EiCS need NUFFT along with DCF as discussed in Chapter

04.

The under-sampling using Radial masks only reduces the number of acquired spokes and
does not lessen the number of samples on each spoke. Secondly, the Radial under-
sampling causes some streaking artifacts. Thus, the Radial mask when combined with 2D
Gaussian is an optimum choice for under-sampling by having the benefits of both the

Radial and 2D-Gaussian schemes.

The combination of 2D-VRDU and Radial under-sampling schemes is termed as
Gaussian-Radial as shown in Fig. 5-1. This under-sampling approach has an edge that it
causes no streaking artifacts like Radial, no blurred edges like Gaussian, and with a min
number of samples. The Gaussian-Radial under-sampling pattern is explored for both

Uniform-Angle (UA) and Golden-Angle (GA) Radial as shown in Fig. 5-1.

5.3The Mod-FiCS Technique

The Mod-FiCS technique is based on Gaussian-Radial under-sampling scheme. The
Gaussian-Radial under-sampling strategy uses the same under-sampling ratio of FiCS

[109] but by employing three consecutive slices like EiCS [120]. Thus, the missing
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samples of each under-sampled slice are estimated from their neighboring two slices to

collect enough samples to be reconstructed as a sharper and improved image[134].

Uniform-Angle Gaussian-Radial Golden-Angle Gaussian-Radial

Fig. 5-1 UA and GA Gaussian-Radial sampling approach

5.3.1 Gaussian-Radial Under-Sampling

The Mod-FiCS technique takes any three consecutive Gaussian-Radial under-sampled
slices to calculate the missing samples in the central target slice. While combining the
Radial mask with Gaussian two approaches can be adopted. For the first approach, every
three consecutive masks have all Gaussian sampling points on different and non-
overlapping spokes, while in the second approach, any three consecutive masks have all
the Gaussian sampling points on the same spokes. In the first approach, the desired masks
for three consecutive slices are generated using different non-overlapping Radial spokes

with Gaussian points. These Gaussian-Radial patterns are generated using (1) -(3).

M;1 =Ry *G 1)
M =Rz *G (2)
M3 =R3*G 3)
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Where, Ry, R, and Ry are the three different Radial masks with non-overlapping and
same number of spokes and G is a Gaussian mask. Thus, M;;, My2 and M, 3 are the three
consecutive down-sampling Gaussian-Radial masks for Approach-I. In the second
approach, the three consecutive under-sampling masks use the same Radial spokes but

with different Gaussian sampling points as represented in (4) (6).

Mz; =R*G, C)
M, =R=*G; (5)
M23 =R=» Gg (6)

Where, Mjq,M,; and M,3 are the three consecutive Gaussian-Radial masks for
Approach-Il. These masks are generated using, three different Gaussian
patterns G4, G, Gz and R represents the Radial mask. Thus we have two different

approaches for the under-sampling of Mod-FiCS as shown in Fig. 5-2.

For the under-sampling of three consecutive slices S;, Sy, and S;,, , first the Fourier
operators of the desired Gaussian-Radial under-sampling patterns are generated. The
down-sampling Fourier operators are termed as F;, F;, and F3. These Fourier operators
are then applied on three consecutive slices, resulting in under-sampled slices in k-space

as represented in (7) -(9).

Uy=F =§ ™
U1 =F2 >S4 C))
Ujy2 = F3* 8y, C))

Where U, Uy, and Uy, represents the three consecutive under-sampled slices in k-
space. This under-sampling step of three consecutive slices is repeated after every three

slices for the whole multi-slice MRI dataset.
74



Approach-1 (non-overlapping spokes)

Approach-il (overlapping spokes)

Fig. 5-2 Three Consecutive Gaussian-Radial under-sampling masks using both
approaches

Thus the result will be an under-sampled dataset in which every three consecutive slices
have the same sampling patterns but different sampling locations as shown in Fig. 5-2.
The sampling points on different locations using one of the two approaches will be used

for the interpolation step.

5.3.2 Modified Interpolation Scheme

For the interpolation step of Mod-FiCS, any three consecutive slices like EiCS and
termed it as Left (L), Target (T), and Right (R) slices. For interpolation first, the set
difference between the L and T slice called Lype, is generated. Where, Lypew has the
new sampling information of the L slice with respect to the T slice. Next, the same step
of L slice is repeated with the R slice, getting Rypew Slice. Then Rypey and Lpew are
compared to get Ryppew, Which are the new sampling information of R slice with respect
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to both T and L slices. Lastly, the samples of the T slice are combined with the samples
Of Lypew 80d Rypnew to get the interpolated T slice called Tyn,. The three-step

interpolation approach of Mod-FiCS is represented in (10)-(13) and shown in Fig. 5-3.

Lrnew =LOT (10)
Rmew =ROT (11)
RrLnew = Rrnew © Lrnew (12)
Tint = Lrnew @ T © Rypnew (13)
L slice Tslice Rslice

IR

Fig. 5-3 The novel interpolation technique

76



This three-step interpolation technique is applied on each slice of the under-sampled
multi-slice MRI sequence. Where, every slice is considered as T and its two neighboring
as L and R, to get an interpolated slice as Ti,. The interpolated slices collect almost the
same number of samples and have the same sampling patterns for both under-sampling
approaches. The only difference is that in the first approach each under-sampled slice has
one-third of the spokes with three times samples on each spoke compared to the second
approach in which there are three times of the spokes with only one-third of the samples

on each spoke.

Once the interpolation step is completed the interpolated slices are identical irrespective
of which interpolation approach is adopted, even with the same number of samples on it.
After interpolation, the interpolated multi-slice datasets have almost three times the
samples initially under-sampled or acquired. Fig. 54 shows the resultant interpolated

slices using both approaches, showing almost identical results.

interpolated slice interpolated slice
using Approach-| using Approach-ii

Fig. 5-4 Interpolated slices using both approaches
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In Approach-I all the non-overlapping spokes of the three neighboring slices combines
while in Approach-II the gapes in the same spokes are filled during interpolation. That is

why the interpolation result of both approaches looks identical as shown in Fig. 5-4.

5.3.3 CS Reconstruction
After interpolation, the NCG CS reconstruction is applied to all the interpolated slices.
The CS reconstruction step is the same as used for FiCS [109] and EiCS [120] in the

previous chapters.

5.4Simulation and results

The evaluation of the Mod-FiCS technique has been performed on two different fully
sampled knee data sets. To evaluate the quality of the reconstructed images six evaluation
metrics are used which are SSIM, FSIM, MSE, PSNR, CORR, and SI. Their

mathematical expressions are already discussed in Chapter 2.

The Mod-FiCS technique is evaluated using all the six assessment parameters and
compared with recent interpolation techniques [100, 109] and CS [11]. Table 5-1 shows a
comparison of the novel Mod-FiCS technique with FiCS [109] and CS [11] using both
UA and GA Gaussian-Radial under-sampling schemes using both the under-sampling
approaches. The results of FiCS using 2D-VRDU [109] and iCS using 1D-VRDU [100]
have also been included for comparison. This assessment has been performed using 9

consecutive slices and averaged.
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Table 5-1 Comparison of the novel Mod-FiCS technique with FiCS and CS using
different under-sampling schemes

Averaged assessment of 9 consecutive slices (slice 91-99 of knee dataset)

Assessment Parameters
SSIM | FSIM | MSE | PSNR | CORR | SI
Sampling Scheme
CS9 0.6 0. ! : ) }
{D.VRDU % 6 93 0.013 18.72 0.933 452
iICS-9% 0.76 0.97 0.001 27.86 0.961 | 364.8
CS-5% 0.73 0.94 0.002 25.63 0541 | 1235
2D-VRDU
FICS-5% 0.78 0.96 0.001 29.22 0.96 180.6
CS-5% 0.7 0.93 0.001 27.46 0.95 55.5
UA Gausslan-Radial with
Non-Overlapping Spokes FiCS-5% 0.79 0.96 0.0009 | 3025 0973 | 1669
Mod-FICS-5% 0.82 0.97 0.0007 312 097 193.9
CS8-5% 0.78 0.95 0.001 29.31 0967 | 1355
UA Gausslan-Radial with
Overlapping Spokes FiCS-5% 0.82 0.97 0.0007 | 31.38 0979 | 2004
Mod-FiCS-5% 0.82 0.97 0.0006 319 0.97 173.8
CS-5% 0.76 0.94 0.001 2893 0.957 83.3
GA Gaussian-Radial with
Non-Overlapping Spokes FICS-5% 0.82 0.97 0.0007 | 31.27 0978 | 1853
Mod-FiCS-5% 0.84 0.97 0.0006 32.2 0.98 220.7
CS-5% 0.79 0.95 0001 30.03 0968 | 1329
GA Gaussian-Radial with
Overlapping Spokes FICS-5% 0.82 0.97 0.0007 | 31.53 0979 | 1958
Mod-FICS-5% 0.84 0.98 0.0006 32 0.98 2293

It is clear from the table that the Mod-FiCS technique outperforms all using GA

Gaussian-Radial under-sampling schemes using both the overlapping and non-

overlapping spokes. The assessment of Table 5-1 has been summarized in Fig. 5-5

showing iCS [100] and FiCS [109] using 1D and 2D-VRDU as originally proposed in

their works while CS, FiCS, and Mod-FiCS using GA Gaussian-Radial under-sampling

schemes.
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Fig. 5-5 Average assessment of iCS, FiCS and Mod-FiCS

It is clear from the figure that the Mod-FiCS technique outperforms all except for the
Sharpness Index of iCS and the reason is that iCS has a biased under-sampling scheme

and uses 9% average samples.

Fig. 5-6 shows a comparison of the reconstructed images of both FiCS and Mod-FiCS
using the same under-sampling ratios. The zoomed edges are also compared along with
the original image. It is clear from the figure that the Mod-FiCS technique has sharper

and clearer results.
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Reconstructed Image Reconstructed Image
FICS-2D VRDU-5% Mod-FICS Gaussian-Radial-5%

Fig. 56 Comparison of the reconstruction results of FiCS and Mod-FiCS with the
original image. It is clear from the figure that Mod-FiCS has sharper and clear results
compared to the FiCS technique.

5.5 Summary

The Mod-FiCS technique outperforms FiCS, iCS, and CS on all six assessment
parameters. The under-sampling scheme of this technique combines the 2D-VRDU and
Radial schemes of both FiCS and EiCS as a Gaussian-Radial under-sampling approach.
Therefore the Mod-FiCS technique neither shows any streaking artifacts like Radial nor
any blurred edges like Gaussian. This technique has the same computational cost as FiCS

and EiCS but with more improved results.
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Chapter 6

Conclusion and Future Work

This chapter concludes the research work of the dissertation along with some discussions

about the future directions of the work presented in this thesis.

6.1 Thesis Conclusion

Compressed Sensing (CS) has enabled to accelerate the acquisition time of multi-slice
MRI using some non-linear reconstruction techniques from even one-tenth of the random
Nyquist samples. This scan time has been further reduced through iCS by exploiting the
strong inter-slice correlation of multi-slice MRI, from an even lower under-sampling ratio
compared to CS. In this thesis, a number of efficient iCSMRI reconstruction techniques
are proposed based on highly under-sampled data and the most efficient and novel

interpolation approaches.

In this thesis, first a novel FiCS technique [109] is discussed which is implemented using
both 1D and 2D-VRDU schemes. The novel interpolation approach of FiCS uses 5%
average samples. Although, the 1D-VRDU mask is more realistic from the current
hardware point of view but 2D-VRDU is best suitable to represent the original k-space
data of multi-slice MRI. The FiCS technique reduces the average under-sampling ratio to
almost half, compared to the previous techniques, with even improved image quality and
information content. The FiCS also beats previous interpolation techniques in terms of

computational complexity and processing time.
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The EiCS technique [120] discussed in this thesis uses different Radial under-sampling
patterns along with a new interpolation approach. The EiCS technique has an edge that its
Radial under-sampling approach is more practical from the current hardware point of
view along with lesser motion sensitivity compared to the 2D-VRDU under-sampling
approach adopted in FiCS. EiCS exploits the Radial under-sampling pattern in its three-
step interpolation process to get interpolated slices with the maximum number of samples
and by using a lower under-sampling ratio compared to FiCS, with even sharper
reconstructed images, no blurred edges, and improved qualitative and quantitative

assessment.

The Mod-FiCS technique introduced in this thesis uses Gaussian-Radial under-sampling
approach and outperforms FiCS, iCS, and CS on all the assessment parameters. Similarly,
the reconstruction images of Mod-FiCS are also sharper and clear compared to the rest of
all. The Mod-FiCS has the same computational cost and under-sampling ratio as FiCS

and EiCS with even improved results.

The new sampling and fast interpolation strategies of FiCS, EiCS, and Mod-FiCS have
not only simplified the interpolation approach but also preserves the original information
resulting in improved results both qualitatively and quantitatively. These techniques not
only preserve the original information in every slice but also give consistency in the slice-
wise image quality. The improved interpolation technique adopted in FiCS, EiCS, and
Mod-FiCS is computationally efficient with only a set difference and addition operations.
Thus, the computational complexity of these techniques is O(n) which is much lower than
its preceding iCS techniques and therefore has reduced the processing time up to five
times.
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6.2 Directions for Future Work

Based on the novel interpolation ideas and iCS techniques presented in this thesis there

are several future directions, some of which are discussed below:

e The proposed techniques have been implemented using static multi-slice datasets.
These techniques can also be extended to dynamic MRI datasets to accelerate the
acquisition process with improved image quality and motion robustness, with
respiration and without respiratory motion.

o The computational efficiency achieved using the proposed techniques can also be
extended to the pMRI for high spatial and temporal resolution.

o The Gaussian-Radial under-sampling scheme has been generated using the FFT
approach which can be improved by implementing it using the NUFFT method.

o The proposed iCS techniques can also be implemented to recover the CS video
frames, as the consecutive video frames are also highly correlated like multi-slice
MRI datasets.

o The NCG, CS reconstruction technique can also be upgraded for even more
improved results and reduced computational load.

o The Golden-Angle (GA) Radial under-sampling approach increases the
computational cost through the NUFFT operation, in the forward as well as in the
backward direction during each iteration. This issue can be resolved using some
parallel computational techniques.

e The primary focus of this thesis is to reduce the scan time of multi-slice CSMRI
by acquiring the highest under-sampled slices and reconstructing the original

datasets.
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e The computational time can be reduced through parallel programming concepts

along with GPU which will make it feasible for clinical applications.
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