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Abstract

lvlagnetic Resonance hagrng (Ivfi,I) is used to produce detailed images of body

tissu€s and organs using strong magnets and radio waves, but with a very slow

acquisition process. In multi-slice MRI hundreds of slices are acquired for just a single

scan. Compressed Sensi4g (CS) has effciently accelerated the MRI acquisition process

by e,mploying different reconstnrction stategies uslng a fraction of the random Nyquist

samples. The interpolated Compressed Seirsing (iCS) techniques have firther reduced

this scan time by exploiting the strong inter-slice correlatiou of multi-slice MRI through

interpolation.

The primary objective of this thesis is to propose several efficielrt interpolated

Compressed Sensing MRI (iCSMRI) techniques based on highly under-sampled data and

the most efficient novel interpolation approaches. These novel interpolation techniques

exploit the sampling trajectories of different under-sampling patterns and their

combinations. The proposed techniques show improvement in terms of image quality and

infotmation conte,lrt along with reduced scan time and lower computational complexity.

The first contibution is a novel Fast interpolated Compressed Sensiqg (FiCS)

technique based on a 2D Variable Density Under-sampling (2D-\IRDU) scheme. The

novel interpolation technique of FiCS takes two consecutive slices and estirnates the

missing samples of each target slice (t slice) from its corresponding left slice (L slice).

Compared to the prerrious iCS methods, slices recovered with the proposed FiCS

technique have a maxirum correlation with their corresponding original slices using

wen half of their under-sampling ratio.



The second contribution is an improved Efficielrt interpolated Compressed Senstng

(EiCS) techniEre using a non-Cartesian Radial under-sampling approach. The novel

interpolation technique of EiCS uses three consecutive slices to estimate the missing

samples of the cental target slice from its two neighboring slices. The EiCS tecbnique

has improved image quality and performance compared to FiCS using both Gold€n-

Angle (GA) and Uniform-Angle (UA) Radial under-sampling pafterns, $'ith sharper

details and more improved results.

In the last part of this thesis, the prwiously proposed tecbniques have been

combined to overEome their shortcoming, termed as Modified Fast interpolated

Compressed Sensr4g (Mod-FiCS) technique. This tectrnique has a tbree-step interpolation

approach like EiCS and uses the Gaussian-Radial under-sampling scherne. This under-

sampling has an edge tha! it neither shows any steaking artifacts like Radial nor any

blurred edges like 2D-VRDU. The Mod-FiCS technique shows even molt improved

results and perfomrance compared to the prwious techniques usrng the same

computational cost and under-saurpling ratio.

In this thesis, the Non-linear Conjugate Crradient (NCG) algorithm has been used as

a CS reconstuction approach for the proposed iCSMRI techniques. The evaluation has

been perforrred using IvIATLAB simulation with different Vivo knee and brain multi-

slice MRI datasets, all available online. The assessment has been performed using seven

state-of-the-art waluation parameters and compared with recent iCS techniques and CS

for computing both qualitative and quantitative analysis.
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Chapter 1

Introduction

Ivlagnetic Resonance hagng (MRD is a higbty useful medical imagmg technique for

clinical diagnosis and research because it generates a very detailed picture of an inside

body organ and soft tissues without using an| damaging ionizing radiation like X-rays.

The scan time of an MRI acquisition mainly de,pends on the raw k-space or Fourier data

that are to be acquired to fulfilI the Nyquist criteria []. Multiple lines of k-space are

acquired to ge,nerate a single slice and Multi-slice MRI needs hundreds of such slices for

jgst one MRI scan [2]. The speed of the data acquisition in MRI is findamentally slow

which heightens fts fselings of claustophobia due to being in an enclosed and

uncomfortable space for prolonged durations, especially for pediatric patients. Secoadly,

it is very difficult for a patient to remain motionless and even hold their breath for

abdominal and cardiac scans, for that long [2, 3].

To speed up the MRI acquisition process, the data collection has bee,n accelerated using

efficient sarrpling tajectories. Compressed Se,nsing (CS) is an emerging tecbnique that

enables the reconstnrction of an image from evelr l0o/o of the random Nyquist samples,

provided the basic constraints of CS are fulfitled [4-S]. MRI is a good candidate for the

application of CS due to implicit sparsity in MR images, and inherenfly slow data

acqgisition process [9]. With the edge of this reduced scan time, Compressed Se,nsing

MRI (CSMRD requires some slow non-linear reconstnrction techniques [10-14], which



arp an additional computational overhead. But this computafional load is just a post-

acquisition process and takes lesser time for MRI scan.

A single multi-slice MRI scan acquires hundreds of slices. Thereforp their consecutive

slices have a very strong inter-slice correlation, because of having very narrow inter-slice

gaps [5]. Ttis correlation has bee,n exploited to reduce the under-sampling ratios of

CSMRI through interpolation called interpolated Compressed Sensing (iCS) in fte

litemture [15, 16]. An efficient interpolated Compressed Senslng MRI (iCSMRD

technique mainly depends on a good under-sampling scheme with minimm samples, an

efficient interpolation approach to collect enough samples, and a fast CS reconstnrcted

technique to reconstruct a sharper and clear image with minimum p'rocessing time. Such

efficient iCSMRI reconstnrction techniques af,e essential due to the following reasons

which are addressed in this thesis:

o To enable higher resolution MR imaging in clinically accerptable scan times to be

applicable in e,mergency and accidental cases.

r To have an MRI scan with real-time monitoring

o To improve patient care by minimizing the scan time and claustrophobic feeling,

especially for pediatic patients.

o The reduced scan time will be helpful for telemedicine and save battery power

and storage sizes.

o The reduced scan time will be helpful in dynamic cardiac MR scans as it will help

to reduce the motion artifacts due to respiratory motions and cardiac cycles.

1.1 Dissertation contribution

The primary conEibutions of this thesis are to reduce the scan time of multi-slice CSMRI

acquisition, with eve,n improved image qualtty, and lower computational complexity.

2



The proposed novel interpolation tecbniques along with CS exploit different under-

sampling tajectories for multi-slice MRI reconstnrction. Thus, preserving the original

information in wery reconstnrcted slice along wittr consistency in the slice-wise image

quality, and improved results.

The under-sampled k-space data of multi-slice MRI are acErired with only 3o/o arrd1% of

the total Nyquist samples from each slice using different under-sampling tajectories,

each having its benefits. The rmiformity of the under-sampling ratio for consecutive

slices results in consistent slice-u/ise image quality and therefore, helps to preserve

maximum samples and information of the original slices.

The proposed novel interpolation tecbniques are computationally efficient with only a set

difference and addition operation and interpolate the slices by exploiting the stong, inter-

slice correlation between them. These interpolated slices are then CS reconstnrcted to

have improved image quahty and performance with erren reduced scan time, lower

computational complexity, and maximum information conte,nt.

Contibutions of this dissertation can be summarized as follows

This thesis poposes a novel FiCS technique for efficient reconstnrction of multi-

slice MRI dataseB using 2D-\/RDU rmder-sampling, and a fast interpolation

scheme. The FiCS tecbniqre has the highest under-sampling ratio and the most

efficient two-step interpolation approach for CSMRI Reconstnrction. The

evaluation reveals that FiCS has improved performance with maximum

information content and the lowest under-sampling ratio.

Ttis thesis also proposes a novel EiCS technique based on a Radial under-

sampling scheme and a novel tbree-step interpolation approach for improved

1.



CSMRI Recomstnrction. The EiCS technique is computationally efficie,nt like

FiCS with only set a difference and addition operation and with a more practical

non-Cartesian Radial under-snmPling scheme. The proposed EiCS technique has

more improved results compared to FiCS uslng an wen lower under-sampling

ratio.

3. This dissertation also prcposes a Modified FiCS (Mod-FiCS) technique. This

technique combines the 2D-VRDU and Radial under-samnling sche'mes of FiCS

and EiCS called Gassian-Radial under-sampling. The efficient three-step

interpolation approach of Mod-FiCS has improved results compared to the

prwious techniques. The Mod-FiCS technique has the benefits of both the

prwious schemes as it neither shows blurring like FiCS nor any steaking artifacts

like EiCS with improved results along with consistency in slice-wiss imege

quality and information content.

1.2 Thesis organization

This thesis has bee,n organized as follows

Chqtq 2 describes the MRI acquisition process and the physics involved ia it. The

reconstnrction of MR images from the acquired k-space data is also discussed. Many

advanced MR reconstnrction methods along with the CS tecbniques related to this thesis

are elaborated followed by the assessme,nt parameters and datasets used.

Chqtu 3 dissusses an efficiernt 2D-VRDU under-sampling stategy and the novel two-

stcp interpolation technique for Multi-slice CSMRI reconstruction. This new technique is

termed as FiCS, exploiting the correlation among consecutive slices of multi-slice

CSMRI reconstnrction.



Chapter 4 provides an improved three-step interpolation approach using Radial under-

sampling schemes for iCS reconstruction. fitis technique is termed as Efficient iCS

(EiCS). The proposed EiCS technique is a practical scheme from the current hardware

point of view with even more improved results from FiCS and a reduct6 ro6sr-snmFling

ratio.

Chaptct 5 discusses a modified FiCS (Mod-FiCS) technique using the Gaussian-Radial

Under-sampling scheme. The Mod-FiCS technique gathers the benefits of both the

previous techniques with improved reconstruction results.

Chqtu 6 provides the concludiqg re,marks about the curent research followed by some

future directions of this research.



Chapter 2

MRI Acquisition and Reconstruction

This chapter discusses the fimdame,ntals of MRI acquisition. It also provides a brief

description of CS reconstnrction techniques in the context of MRI acquisition. The

backgrouDd works related to the recent tends of CSMRI aloag with iCSMRI are also

presented. Finally, the multi-slice MRI datasets and different assessment parameters used

for simulation alt elaborated.

2.1 Introduction

lvlagnetic Resonance Imaging (Ivfi,D is used to produce detailed images of body tissues

and organs using stong magnets and radio waves U7, l8l. Different t1ryes of MR[ scans

help docors to diagnose various diseases. The MRI scan is useful for the detection of

multiple diseases occurring in different parts of the body, some of which are mentioned

in Fig. 2-1.
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Fig. 2-l MRI Applications
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Hodzontal.
axial.

plane

Fig.2-2 Planes used in mode,rn imaging procedures [9].

MRI is itself a non-iouizing and non-invasive multi-planar imagrng modality ge,nerating

images to visualize anatomy along the three differe,nt planes called sagittal, axial, and

coronal [9] as shown in Fig. 2-2. Therefore, it is a very valuable tool in medical

diagnosis and freatnent monitoring.

2.2 MRI Acquisition

MRI scanners rue radio waves and strong superconducting magnets of 1.5-3.0 Tesla (T)

flu density, for acErisition. Most of the Human body is comprising of water, having

hydroge,n and oxygen atoms [20]. In the absence of any magnetic field, all the protons of

the hydrogen atoms have random orientation and therefore have zero magnetic

moveme,nts. Whe,lr an external magnetic field is applied, most of them align the,rrselves

in the direction of the applied field resulti4g in a net magnetic moveutelrt called

longitudinal magnetization. Next, a b'rief RF pulse is applied which systematically alters

this magnetization alignment. When this RF pulse is r€tnoved, a signal is generated in the

RF coils due to the change in the magnetic moments of the hydrogen nuclei. The process

of generating RF waves during MRI acquisition is shown in Fig. 2-3. The

multidimensional spatially encoded data manix, generated by RF receiving coils, is

called k-space data which consists of Fourier coefficienb.
7
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Fig.2-3Ge,rrerationofRFwavesinMRlacquisition[21]

In MRI, the important part is the spatial encoding, which is the connection of the

produced signal with its spatial locations. This spatial localization depends upon the

differences in frequency, pbase, timing, and location on the receiving coil' MRI is a slow

inagrng method because it requires multiple scans to ge'nerate n 5ingls slice and multi-

T -HHI/



slice MRI has hundreds of zuch slices. This process is also slow due to nerve stimulation

and the limited slerw rate of the gradient fields. The complete process of generating an

MRimage is shown iaFig.24
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Fig.24Complete process of MRI scan [22]

The technician varies the gradient and radio freque'ncies to contol the pixels/voxels

phase of the image. An RF coil receives the signal in an encoded form (samples in k-

space) as shown in Fig. 24. Finally using a relevant reconstnrction technique, an MRI

image can be recovered [22].
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The taditional MRI scanner acquires the k-space data in the form of Fourier coefficients

and thtu requires only inverse Fourier tansform to get the MRI slices in the spatial

domain.

2.3 MRI Reconstruction Techniques

In MR[, the three spatial e,lrcodings gelcrated are freque, cy encoding, phase encodi'g,

and slice selection [23]. The acquisition time of MRI is mainly dependcnt on the nrmber

of phase encodi.g steps because the frequency encodi.g steps are fast.

Dgring the acquisition of a single slice, other slices cannot be selected as they have

different frequencies because of the gradie,nt fields. The slice thickness mainly depends

on the bandwidth of the applied RF pulse. The generated radio frequencies of a single

slice are originated from the tansverse magnetizationl22l. This acquisition is sampled in

k-space following the Nyquist criteria and adoprcd on the Cartesian gnd on staight lines'

Traditional MRI talces fully sampled Fourier encoded data points and reconstnrcts the

MR image using only inverse Fourier Transform as shown in Fig. 2-5.

l(-ipace MRlmrle

Fig.2-5 Magnetic Resonance Image of a single slice

t0



2.3.1 Parallel MRI (pMRI)

The speed of the daa acquisition in MRI is fundamentally slow because of physical

(gradient arrplitude and slew-rate) and physiological (nenre stimulation) constraints. This

sl6w imaging prccess can be accelerated using multiple coils that work in parallel called

parallel lvfiJ (pMRD 124-32l.But multiple coils require parallel imagrng techniques, like

se,nsitivity encoding (SEI.ISE) [33] and generalized auto-calibrating partial parallel

acquisition (GRAPPA) [34] for the reconstnrction of artifact-free images [16]. pMRI is a

robust bchnique to reduce the acquisition time of MRI scans [35] and has opened new

ways for MRI applications. In pMRI, an afray of multipte coils is used and thus

accelerates the acquisition time of the k-space dM 126). Ttus the main advantage of

pMRI is the reduction of the scan time which provides comfort for patients of all ages

because they have lesser interaction with the claustrophobic dcsign of the MRI machine

[24]. Moreover, the difficulty of breath-holding for a lo4g time is also reduced especially

in abdominal and cardiac MRI scans [25]'

The acquisition of pMRI needs a phased array that consists of multiple independent

receiver coils. The sensitivity of the coils with rnagnetization depends upon the distance

from the magnetizing part. A coil closer to the magnetizing part will receive a strong RII

signal as comparcd to the coil farther from the targeted partl25,27,28l' The idea is

shown in Fig. 2-6. Finally, the loowledge of the individual coil sensitivities is used to

combine the data from each of the coils using some special algorithms to get a

reconstnrcted image with a fulIField Of View (FOV) t26l'
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2.3.2 CSMRr

Shannon Nyquist theore,m states that to reconstnrct a signal we have to initially sample it

tlrough a rate that is trrice the highest frequency component in that signal [l]. This

acquired signal whe,n converted into a particular transform domain, like Discrete Cosine

Transform (DCT), DFT @iscrete Fourier Transform), or Wavelet Transform, will have

few of its coefficients with larger values, and most of the,m with smaller values that are

near to zero. He,lrce a simal is said to be sparse if it has numer)us zero and some noDzero

coefficie,lrts. But most of the real-world signals are not sParse although they can be

compressible. Thus compressible signals can be sparse by enforcing its smaller valued

coeffrcie,lrt to be zero 136,371. Therefore, this signal can be compressed in its particular

Coillmage2

Goll lmage 3



tansform domain by discarding the smaller value coefficients, called transform coding.

Now, this compressed slpal can be reconstnrcted from those fewer coefficie,nts by taking

the inverse transform. But there are three main drawbacks with tansform coding which

are:

All the Nyquist samples are to be acquired wen if the signal is sparse

All the tansform coefficients have to be calculated wen if most of them are to be

discarded.

All the locations of the coefEcients to be kept should be stored which is an

onerhead.

fircrefore, the compression through transformed coding is always done as a post-

processing step. Recently a nEnr data acquisition technique called compressed sensing

(CS) has emerged which made enormous progress and attention in various fields of

multidimensional sisral processing, and many other areas. The cS theory has been

intoduced by Donoho [a] and Candes [6] and has bee,n successfully implemented by

Lustig et al tlq in MRI. The CS theory breaks the Nyquist criteria under some special

conditions [4, 8, 38] and enables the recovery of a sparse signal from far fewer

measuremcNrts of the Nyquist rate. Therefore, CS exploits the nonJinear methods to

recover the original data from a small aumber of sparse coefficients [39, 4()]. Thus, cS

makes the encoding process efficient by combining the acquisition and compression steps

and therefore avoids capturing all the unnecessary information, which is later to be

discarded. For the implerne,ntation of CS, the three fundamental conditioDs att that the

data must be sparse itself or in some transform domain, under-sampling must be done

randomly, and the reconstrrction must be perforrred using some nonlinear techniques



[11,39, 41,427.In CS the random under-sampling fansforms the CS reconstnrction

problem to de-noising because random mder-sampling generates noise-like effects rather

than di$ing [l1,43,'t4] as shown inFig.2'7.

incoherent artifacts

Fig.2-7 CS Reconstnrction Sche,me [ll]'
t4

sparse transform



Instead of using uniform under-sampling, CS exploits differe,nt random under-sampling

techniqucs like Radial, Variable Densrty Under-sampling (VRDU) [45], Spiral, etc.

These under-sampling techniques have different artifacts in the reconstnrcted images.

Fig. 2-8 shows some sampling stategies along with their effect on the reconstruction

images.

It is shown that the low-resolution under-sampling causes blurring, Cartesian undsr-

sampling generates image replicas, stnrctured angular under-sarpling generates more

incoherent "gfipaking" artifacts, random under-samFling generates "cloud-like" artifacts,

while Variable Density Undcr-Sampling (VRDU) produces noise-like aliasing. [a6].

CS has been zuccessfully applied to different biomedical imagng modalities to speed up

the slow acquisition process. MRI is the most suitable candidarc for the application of CS

because of its inheritably slow data acquisition process and also MRI satisfies its basic

requirements [9]. Thus, CSMRI has ar edge to improve patient care by reducing MRI

acquisition times by enabling higher resolution imaging in clinically acceptable scan

times. With the edge of this reduced scan time, CSMRI has additional computational

overhead compared to standard MRI where only inverse Fourier tansform is sufficient

[38].

The CSMRI tends can be broadly categorized as methods focused on improviqg the

reconstructiou stategies 147, 487, and parallel CSMRI techniqtres 125,30,49-541. For

zuccessful CSMRI, the sparse regularization can be ac,hieved in a specific tansform

domain [55, 56] such as the wavelet [1, 57], cunrelet [58-60], or using some dictionary

leaming techniques [6]-67]. The taditional CSMRI uses fixed sparsiffing tansforms

like total variation G\D [6E], discrete cosine tansforms (DCT) and discrete wavelet

t5



hansforms (D!\fD [69]. Similarly, with the recent dwelopment, many CNN-based deep

leaming methods U0-76lhave also wolved.

g
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Fig. 2-8 Reconstnrcted MRI images produced from differe,nt under-sarrpling patrcrns

in k-space. [45]
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Unlike the single-step Fourier reconstuction of conve,lrtional MRI, CS MRI requires non-

linear itcrative optimization algorithms that are repeated a number of times for the

reconsfiuction of a single MR image [l l].

Some commonly gsed nonJinear reconstnrction algorithms for CS are:

o Non-linear Conjugate Gradient (NCG) [77]

o Iterative Shrinkage-Threshotding Algorithm (ISTA) [78]

o Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [79, 80]

o Alternating directiors of multiple multipliers (ADMM) tSll

o Bregman iterative algorithm [E2, t3]

o Limited-memory Broyden-Fletcher-Goldfarb-shanno (I-BFGS) [84]

o Projection Onto Convex Sets (POCS) [85' 86]

These algorithms vary in ease of implementation and computational complexity [87' 88].

In CSMRI all slices should be equally under-sampled and are then recovered using one of

the nonJinear rcconsfiuction algorithms 12, 4, 891.

For an efficie,nt reconstnrction, the number of k-space samples should be roughly two to

five times the ngmber of sparse coefficienb [l l]. Thus, for a good CSMRI scan, at least

l0% of the samples should be acErircd from each slice for efficie,nt reconstnrction. In

this thesis Non-Linear Conjugate Gradient (NCG) [77] technique is used as a CS

reconstnrction apProach.

For clinical apptications, CSMRI is just in its beginning to be offered as cornmercial

product with the limitations of longer reconstnrction times and some CS-related artifacts

[90,9U.
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2.3.3 iCSMRI

Interpolated Compressed Sensing MRI (iCSMRI) is an emerging technique to lower the

under-snmrling ratio of multi-slice CSMRI. It has been introduced by Pang et al. U5, t6l

and has thus rpduced the scan time beyond the CS limit.

In Multi-slice MRJ there is avery narrcw inter-slice gap and therefore has a very strong

inter-slice correlation. firis correlation has been exploited irr iCSMRI to reduce the

average samples per slice rezulting in reduced scan time. Thus, the multi+lice MRI

datasets are to be reconsfiucted from higbly uuder-samFled k-space data initially acquired

from the MRI scanners. There are ttrree firndamental steps of iCSMRI for multi-slice

datasets. The first step is the under-sampling, the next is an interpolation and the last step

is the CS reconstruction. The complete three-step process of iCSMRI is shown in Fig.2-9.

2.4 Literature Review

Interpolated Compressed Sensing MRI (iCSMRD, works in three steps; in the first step

some of the CS samples in MRI acquisition are acquired and others and intentionally

missed to reduce the average sampling rate. This under-sampling can be performed using

different sampling patterns like Cartesian, Radial, Spiral, and their combinations 192-971.

In the second ste,p, the intentionally missed snmFles are estimated uslng interpolation

from the samples of the neighboriag slices. The interpolation for the missing samples in

the rmder+arnpled slices can be accomplished using diffcrent interpolation techniques

[15, 16,98-103].
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Fig.2-9 Three stePs of iCSMRI
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The last step is the CS reconstnrction which can be carried out using one of the CS

reconstruction algorithms like Non-linear Conjugate Gradient (NCG) [ 1], ]Vavelet Tree

Sparsrty (WaTMRI) [04-106], Fast Composite Splitting Algorithm (FCSA) [107], and

Iteratively weighted Wavelet Trce sparsity MRI (IWTI\4RI) [100]. The CS reconstruction

techniques vary in computational complexity, converge,nce time, and reconstnrcted image

quality.

The concept of iCS was intoduced by Pang et al. [15, 16] in 20l2.Pang [16], utilizes 9%

average samples. He reduced the average sampling rate by acquiring some slices as

Iightly under-sarrpled (L slices) and others as highly under-sampled (H-slices). Their

under-samFling pattern acquires adjacent slices with different under-sampling ratios md

therefore has non-uniformity in their reconstnrction results. Secondly, their interpolation

technique is computationally inefficient along with inconsistency in slice-wise

reconstnrcted image quahty.

Hirabayashi et at. [08] use iCS by taking a differe,nt under-sampled slices sequence

using fully sampled and CS slices (F and C slices). Although they have good quality

reconstucted images, but their technique has rather increased the average under-

sampling ratio and scan time.

The work of Pang [6] has later been explored by Datta and Deka [99, 100] but their

rurder-sampling approaches do not produce clinically acceptable rezults by causing

information loss in most (67Y) of their reconstucted slices [109]. Secondly their

interpolation techniqucs are computationally inefficie,nt with redundant Fourier steps.

Although their results look visrally bett€r but the information contcnt is not indigenous

due to their non-uniform and a biased trnder-sampling scherne [100]. They used the same



under-sampling strategy in their work [00] as proposed by pang [16] but using a lD

Cartesian mask. Their adopted under-sampling pattern is shown in Fig. 2-10. They also

explored iCS forpMRI in [30, 5l].

2D multi-elicc k+pacc
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Fig. 2-10 Under-sampling of 2D multi-slice sequence using lD-\fRDU masks U00].

Datta and Deka [30, 51, 99, 100, 110, lll] firttrer explored iCSMRI with different

intelpolation and reconstruction stsategies. Although they reduced the computational cost

of their interpolation algorithms [99, lO0] but they neither work on reducing the average

sampling ratios nor on the consistency of their slice-wise reconstrrction results.

The sampling and interpolation strategy adopted in [16, 100] takes three consecutive

slices with a specific under-sampling pattern of different sampling ratios and repeats that

pattem after wery three slices. Their undcr-sampling pattern of the three consecutive

slices, which repeats after wery three slices, is shown in Fig. 2-l l. ft is clear from the

figure that, in three consecutive slices, the first one is highly under-sampled (H slice), the

second is lightly under-sampled (L slice) and ttre third is again H slice, for both lD and

2D-VRDU schernes. Each H and L slice has I o/o and 25Yo of the total samples

L-Sticc
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rcspectively. Therefore, the average sampling ratio for this sche,me is 9yo. The H slice

missed samples are intelpolated from the neighboring L slice to get H interpolated slice

with 25 % samples. Finally, CS reconstruction is apiplied to all the H interpolated and L

slices.

The main drawback of this non-uniform sampling stategy is that H slice l% sarrples are

insgfficient to be called an original image after interpolation and reconstuction. Thus, in

every three consecutive slices, the L slice will always dominate their trro neighboring H

slices. This results in almost the same imagrng information in every three consecrrtive

reconstucted slices and thus has information loss in two out of the three slices.

Pang et al. tl6l have worked on 2D-VRDU whereas Datta and Deka [100] on lD-

VRDU. The interpolation technique of both the sanrpling schemes (lD and 2D) has

complex computational steps of Fourier, Inverse Fourier, matrix division, and

convolution resulting in increased computational cost along with inaccuracy in their

reconstnrction results. Different sampling stategies 189,92,94] have also bee'n orplored

in iCS, but they neither reduced the scan time nor the average sampling ratio'

2,5 Data Sets

Differe,nt data sets of lnee and brain are used in this thesis. The knee data sets are taken

from a free online database, http://rnridata.org. This is a fulIy snmfled data set acquired

from a GE HD 3T scanner with 160x160x153.6 mm Field Of View (FO9, number of

channels: 8, matix size: 32(k320 wittr 256 slices, slice thickness 0.6mm, zero inter-slice

gaps, TR/TE: ll5025 msec, flip angle 90, and bandwidth 50kIIz. fire brain data set is of

a normal aging coronal plane with l23 slices, matix sizn:256x256, and is publicly

available on the AANLIB database of Harvard medical school at

http//www.med.harvard.edu/AANllB/home.htnl [1 l2]'
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Fig. 2-l I (a) lD O) 2D-VRDS $nmFling patterns for three consecutive slices used

in [6, 100]

2.6 Evaluation Criteria and Simulation Environment

To assess the qgality of the reconstnrcted irnages two methods are used: subjective and

objective. The subjective method is based on the perceptual assessment of radiologisB

about the attrib,utes of the rcconstnrcted data sets, while objective methods are based on

computatio,nal models that can predictperceptual image quallty'

2.6.1 Subjective Assessment

For zubjective assessment, we asked some expert radiologists to assess the reconstnrcted

datasets. The rating is based on the overall quality and inforrration content of the images.

2.6.2 Obiective Assessment

For Objective assessmeNrt two approaches are use{ Full Reference (FR) and Non-

Reference (NR). In the FR approach the qualrty of the reconstructed images is evaluated

H slice

b



with the original images where for the NR approach, no original image is required. For

the FR approach, five assessmemt parameters are used which are Structurd Similarity

Index Measuremernt (SSIff) [ 13], Feature Similarity Index Measuremernt (fSII}f) [114]

Mean Square Error (l[58) [115], Peak Signal to Noise Ratio (PSIVR) [ll5]' and

correlation (CORR) tll6]. For the NR approach, t$ro assessment parameters are used

which are Sharpness Index (SI) tl l7l and Perceptual Image Qudity Evaluator (PIQE)

u l8l.

SSIil and FSI/]I gives normalized mean rralues of stnrcttral similarity and feature

similarity between the original and reconstnrcted images as represented in (2.1) amidQ.2).

SSIII(x,y) = (2.1)

Where r and y are the original and reconstnrcted images with size m I n. Similarly p"

Md h are the mean, 4 rrrrdd, rethe variances and o,, is the covariance of r and y.

Similarly, c1= (k1L)2 and c2 = (k2L)2 are the variables used to stabilize the division,

f, represents the dynamic range of the image and ft1 and k2 are small constants.

FSIDI(I,y) = (2.2)

Where pC, 1111d PC, arethe Phase Congnrency of original and reconstnrcted images and

sp6 is the similarity measutE for PCraad PCr. Similarly, s6 is the similarity measure

for Gradient Magnitude values for original and reconstnrcted images.
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tr[SE is the most common FR estinoator of image quality with values near to zero are

bett€r. The l[SE between the original and reconstnrcted images can be calculated as in

Q.3)

m-7. n-l

MSE =#z )rrrin -yG,DtL
l=0 l=O

PSiln is the ratio between the morimum possible power of the original

IIISE and because of the dynamic range of the signals it is calculated as

terrr of the decibel scale [119] as given nQ.4\

(2.3)

image with

the logarithm

Pslvn (indB) = totognff Q.4)

CORR between the original and reconstructed images is defined in (2.5), having a

normalized value, and is bettcr when close to one.

(2.s)

SI is the NR, Image auahty (IQ) assessmcnt parameter and is derived from the intensity

distibution in an image, its mathematical description is given in (2.6)

sr(r)--*nlry_r) (2.6)

is the totalWhere Fw@) and d.ry6y are the mean and variance of TY(r)' fV@)

variance of the input image as shown lmQ.7).

rG,D-P,llY(i,11-rrl]

Eulx(i,D - r,l2\ {Xrl[v(i,i) - Prl']

llxllrv = [,,r 11vrrt)2 + (vzx1zl (2.7)



PIQE is also a NR image quality score, as shown in (2.8), lies in the range (0-100) and

is inversely related to the perceptual quality of an image, which means lower the value

higher the quality of the image.

proE= (lI:=te"*)=+ c,
- --- /ll5a * C1

(2.8)

Where lllsa indicated the number of spatially active blocks in a given im4ge, D"1 is the

amount of distortion in a given block and C1 is a positive constant.

2.6.3 Simulation Environment

The simulationresults are obainedusing MATI/,B 2016-a, with a2.6GIIz Intel Core i7

p(roessor, a 64-bit operating systeur, and 16 GB RAM.

2.1 Summary

This chapter briefly discusses the conventional MRI acquisition process and how the

slow acquisition process can be accelerated using CS theory. The related work of iCS itr

multi-slice MRI is also rwiewed. Finally, the simulation environment, assessment

parameters, and datasets used are discussed.
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Chapter 3

Fast Interpolated Compressed Sensing Technique usingzD

Sampling Scheme for MuIti-SHce CSMRI Reconstruction.

3.1 Introduction

In this chapter, a novel fast interpolated compressed sensing (FiCS) technique is

discussed based on a 2D Variabte Densrff Under-sampling (VRDU) scheme [109]. The

2D-VRDU scheme has improvcd results becarse it takes maximum samples from the

high-enerry central part of the k-space slices and minimum samples from its periphery.

The FiCS rcchnique takes two consecutive under-sarrple slices and estirnates the missiqg

samples usl4g the proposed interpolation approach. Compared to the previous methods

[100], slices recovered with the FiCS technique bave a maximum correlation with their

corresponding original slices along with consiste,ncy in slice-wise image quality. The

FiCS technique is evaluated by using both subjective and objective assessment

techniques and compared with ocistiag interpolation techniques [100] and CS.

3.2 Related lYork

The taditional MRI acquisition process is slow because of the number sf samFles it has

to acquire to fulfill the Shannon-Nyquist theorem [1]. But CS [2, l0] breaks this criterion

by reconstnrcting the same signal from erren 10% of random Nyquist samples, p,rovided

that the basic conditions of CS are fulfilled. In Multi-slice MR[, there is a very narow

inter-slice gap and therefore has a very strong inter-slice conelation. This correlatioa has

been used to reduce the average samples per slice. Pang et al. [5, 16] exploits this
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corglation and intoduced a new concept called interpolated Compressed Sensing (iCS)

in multi-slice MRI. Pang [6], utilizes 9o/o averrge samples and has reduced the average

under-sampling ratio. Later Datta and Deka [99, t00] firther explored the work of Pang

using the ID-VRDU under-sampling sche,me. The interpolation approaches of both the

researchers are computationally inefficie,nt with multiple redundant steps. Secondly, both

adopted a biased under-sampling approach causing inform*ion loss in their

reconstruction results tl09]. Datta and Deka have also worked [30, 51, 110, lll] on

redgcing the computational cost of their initial work [99, 100] by increasi4g the under-

samplingratios Ill].

In interpolated Compressed Se,nsing MRI (iCSMRD, some of the CS samples of MRI are

acquired while others and inte,lrtionally missed reducing the average sampling rate, next

the missed sanrples are estimated from the samples of the neigtrboring slices which are

later CS reconstnrcted. Datta in his recent work [00] claims improved results, therefore

we have compared the novel FiCS technique with their work for both lD and 2D

sampling schemes. fire main contibutions of this chapter are a reduction in scan time by

employing the highest under-sampling rates while improving image quality and

consiste,ncy by applying a mot€ unifomr under-sampling stategy on every slice.

3.3 The FiCS Technique

This section introduces a novel Fast interpolated Compressed Se,nsing (FiCS) technique

using 2D-VRDU under-sem[ling and a fast interpolation scheme [09]. The FiCS

tecbnique reduces the average under-semFling ratio, thus decreasing the acquisition time.

This technique also shows improved results with even 5o/o average samples thus reducing

the under-sampling ratio and scaa time. Secondly, the interpolation technique of FiCS is
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computationally efficient with only a set difference and addition operation. The marn

advantage of the novel FiCS technique is that for reconstruction, consecutive undsr-

sampled slices retain maximum samples of the original slices and rest from the

neighboring slices. Thus, the rezulting reconstnrcted images have a morimum correlation

wittr the original images. Lr the previous iCS rcchniques [16, 100] most of the slices are

more correlated to their neighboring slices, rather than their original ones. The novel

FiCS algorithm works in tbree ste,ps, (i) under-sa-Fling, (it) interpolation, and (iii) CS

reconsttrction. Each step is disctrssed se,parately in subsections.

3.3.1 2D-VRDU Under-Sempling Scheme

The original k-space or Fourier data of the multi-slice MRI sequence has maximurt

energf points at the center which resembles a 2D-\/RDU pattern, as shown in Fig. 3-1.

Therefore, the same 2D under-sampling pattern is adopted in FiCS because it can

effrcienfly under-sample the original k-space data of a multi-slice MRI seqlrence with a

much lower under-sampling ratio. It is also clear from the figure that the 2D-VRDU mask

takes maximum sarples from the k-space cernter and minimum from its periphery.

Fig. 3-l (a) Full k-space data and (b) under-sampled k-space data acquired uslng a

2D-VRDU mask

29



The under-sampling stategy of FiCS takes only 5%,2D-ryRDU samples, from each slice

of a multi-slice MRI sequence, and therefore its average under-sampling ratio is also 5%.

First, two such mesls with 5%, samples are generated using 2D Gaussian PDF. Then

these masls are used for under-sampling of trvo consecutive slices and repeated after

every two slices for the whole multi-slice MRI sequence. Two such masks are shown in

Fig.3-2. A detailed examination of the figrre reveals that the 2D-\IRDU pattern always

takes differe,nt sarupling locations with the sane sampling ratios.

Two fully samrled original multi-slice MRI data sets are used to evaluate FiCS, but

before applying the novel FiCS technique, the multi-slice MRI sequeoce is first under-

gamfled into k-space dalz. For the under-samtrling of an it slice 51, first a down-

sampling Fourier orperator Fo of the 2D-rRDU sampling pattern is generated. Their Fo is

applied on 51 , resulting in an under-sarrpled slice U1, in k-space as re,presented in (3.1).

U1 =Fr't$t (3.1)

This step is rcpeated for each slice of the multi-slice sequence using the 2D-VRDU

under-sarrpling patterns of Fig. 3-2 for two consecutive slices and repeated for the whole

dataset.

Fig.3-2 2D-VRDU Sampling pattern for two consecutive slices

30



As clear from Fig. 3-2, both 2D-VRDU masks have the same sampling pattern but

different sampling locations. A detailed examination of both the under-sampling patt€rns

rweals that any two such ge,nerated masks will always hwe 72Yo samples on different

locations and the rcst 28%o on ideirtical locations. The sampling points on differe,nt

locations will be exploircd for the novel interpolation scheme of FiCS in the next step.

3.3,2 Novel X'ast Interpolation Scheme

Tte novel frst interpolation scherne of the FiCS technique estimates the missing samples

in each under-spmpled slice U1 of the multi-slice MRI sequence using only set differe,nce

and addition operation. The set difference is an operation to find those semples which

have been missed out, while the set addition operation embeds those missed samples in

the target slice.

Ttis scheme works by taking two consecutive slices, in which the fust one is called the

Left slice (L slice) and the second one is called the Target slice (T slice). The T slice will

always be interpolated from its corresponding L slice. fite novel interpolation scherne of

FiCS has two steps. The first step is the set difference betrreen the L and T slices as

shown in (3.2), where the set difference is actually finding those pixels of L sliced which

was missed from the T slice as presented in Fig. 3-3. This rezultant differe,nce between

the two slices is called To"*, containing the new sampling information.

To.*=teT (3.2)

Where the O sign shows a set difference operator. Both L and T slices hwe 5o/o 2D-

VRDU samples, therefore their set difference TLcw, will hzve3.6Yo samples. Actually, in

werytwo consecutive slices with 5% 2D-VRDU samples, there are always 1.4% samples
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on the same locatioms while the rest 3.6Yo on differe,nt locations and this is the reason

that To"*, will have 3.6% samples.

In the second step these 3.5% samples of To.n are combined with 5olo samFles of T slice

resulti4g i18.6% sarples in the interpolated T slice called T61 os shown in (3.3). The

samples of the two slices are combined using a set addition operation represented by the

(E srgr.

Tlot = To"* (E T (3.3)

This two-step interpolation technique is applied on all the slices of under-saurpled multi-

slice MRI sequence, considering every slice as T and its preceding as L slice, to get

interpolated slices, Tsos. The complete two-step interpolation approach of the novel

intupolation technique of FiCS is shown in Fig. 3-3. For the current clinical scanners, the

gams sampling stategy has also been implemented using ID-VRDU masks.

Hence comparing the computational complexity of the proposed interpolation stategy

with the most recent techniques [6, 99, 100], it is shown in Fig. 3-3 that the proposed

interpolation scheme only involves a set difference and addifion operation. This set

difference and addition operation is only firrding the missed samples and then embedding

it in the target slices. Thus the complex computations of Fotrier. Inverse Fourier,

convolution, and maEix division that are the essential steps of the prwiously proposed

techniques [5, 99, 100].1 are rqlaced. Therefore the computational complexity of the

novel interpolation algorithm has been reduced to O(n), compared to O(n) in [6] and

O(n log n ) in [100]
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Fig. 3-3 The novel fast interpolation technique

3.3.3 CS Reconstruction

After interpolation, the 3rd and final ste,p is to apply CS reconstuction on all the

interpolated slices, to gpt the CS reconstnrcted images. The CS reconstruction algorithm

uses a nonJinear conjugate gradient (NCG) with f1-norm and Total Variance (TV) tlU

as shown in (3.4).

fl = arg mln llFux -yll?+lrllYxlh +l.zllxllnr (3.4)

Thus for a grven k-space measurement y and a down-sampled Fourier operator Fu, the

firnction reconstructs the image x that minimizes the cost function with the grven f,1-

norm and TV constaints, where Y represents the wavelet operator. The objective



fuirstion is f1-nonn which is defined in (3.5) and minimiziqg lltlrxl[ promotes sparsrty.

Similarly, the co,nstaint llFox - fil ! enforces data consistency. Where l.1and 1,2 are

the thresholding paratneters for f1 wavelet penalty and TV penalty respectively. The TV

is defined discretely in (3.5).

llxlh = Xrlxrl (3.s)

(3.6)Itxllrv = I, 11vrxx)2 + (vzxu)2l

lVhere V1 and V2 denote the forward finite difference operators on the first and second

coordinates respectively. The complete process of the novel FiCS technique is shown in

Fig.34.

Fig. 34 The Novel FiCS Technique
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3.4 Simulation and Results

The FiCS technique is waluarcd in three steps. In the first step, the 2D-VRDU rmder-

sampling scheme of FiCS is evaluated. Secondly, the novel interpolation approach of

FiCS is evaluated, and finally, the overall behavior of FiCS is analped. All the three

evaluations are discussed as rmder:

3.4.l Evaluation of the Under-Sampling Scheme

Like CS, the under-sanrpling stratery of FiCS equally under samples all the slices of the

multi-slice MRI seque,nce. the main 6{gs of this uniform under-sampling using the 2D-

VRDU approach for the novel FiCS techniquc is that during interpolation most of the

samples are reained from the original slices.

The benefit of the 2D-\IRDU sampling stategy to acquire the under-sampled T slices is

that after interpolation every Tloj slice will have 600/o samples from T slice and the rest

40o/ofromits L slice. In the previous techniques U6, 100] each interpolated slice had only

4% sarrples from its original under-sarrpled slice and the r:-st960/o from its neighboring

slice. Thus their result is that wery three consecutive reconsEucted images represent the

same information as shown in Fig. 3-5 Ol-b3 and cl-c3). A Comparison of three

consecutive original images with reconstructed images using iCS-lD and iCS-2D is

shown in Fig. 3-5, while Fig. 3-5 shows a comparison with Fics-lD and Fics-2D.
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Fig. 3-5 Thrce consecutive (a) original and reconstnrcted images using @) iCS-lD
and (c) iCS-2D. New information is pointed by the amow in a3 which is missed by
iCS in both b3 and c3. The three consecutive slices of iCS 01-b3 and c1-c3) show

similar information to the cental slice (b2 and c2) and are the same as in the original
ce'ntered slice (a2). Secondly, iCS also shows large contast variation among adjacent

slices.

It is clear from Fig. 3-6 that each reconstucted slice using FiCS has preserved the

original infomration of their corresponding original slices. While in iCS two of the three

consecutive slices have missed their original infomration and represented the information

of their neighboring centered slices. In short the three consecutive slices of iCS are the

same in terms of the information content while our FiCS technique has retained the

information of the respective original slices.



Fig. 3{ Three consecutive (a) oriFnnl and reconstnrcted images uing O) FiCS-lD
and (c) FiCS-2D. New information is pointed by the arow in a3 which was missed by
iCS, while FiCS has retained that information in both lD 03) and 2D (c3). Similarly,

FiCS also shows no contast variation among adjacent slices while preserving the
origrnal information of their corresponding original slices.

Hence the reconstnrcted images of FiCS have maximum infotmation of the original

images along with consistency in slice-wise image quality, as shown in Fig. 3-6.

Assessme,nt of three consecutive slices of both knee and brain data sets, using the four

parameters, are shown in Fig. 3-7. This assessment is performed on iCS-1D, iCS-2D,

FiCS-1D, and FiCS-2D usrqg the same9Yo average samples.
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Fig.3-7 Slice-wise assessment of three consecutive slices on both knee and brain data

sets. iCS-1D and iCS-2D show huge variations in values while the novel FiCS
technique has consistent values in both lD and 2D like CS and is better than CS.

As shorm in the three consecutive reconstucted images of Fig. 3-6 O1-b3 and c1-c3),

iCS shows wide variation in terms of image qualrty and contast. The same variation is

verified tbrough their assessme,nt in Fig. 3.7, which shows huge variations in values.

The assessment of FiCS, in Fig. 3-7, shows no such abrtrpt changes in values of three

conseortive slices, and the same is verified from Fig. 3-6 O1-b3 and cl-c3). The ce,lrtered



slice in iCS Fig. 3-5 (b2 and c2) looks good and has improved assessment on all

parameters, as shown in Fig. 3-7 because it has 25Yo of the origind samples while the

novel FiCS technique has only 9Yo of it. But this unerren distribution of the under-

sampliag ratios in iCS results in wery three consecutive slices being the same in terms of

the imaging information. Thus, iCS shows non-consistent results both qualitatively and

quantitatively whereas FiCS shows consistent results.

3.4.2 Evaluation of the tr'ast Interpolation Scheme of tr'iCS

The novel Fast interpolatio,n scheme (FiCS) is evaluated by comparing the assessment

parameters of FiCS with recent iCS U00l and CS [tl] rcchniques for both lD andzD-

VRDU ma"ks. Fig. 3-8 shows the evaluation of all fou assessment parameters usiag 9%

average sampling ratios.

Fig. 3-8 Comparing CS-ID, iCS-lD, FiCS-lD, CS-2D, iCS 2D, and FiCS-2D with
9Yo avenge sampling ratio. The assessment is done on 9 consecutive slices (slice

number 74-82') and averaged using four assessrnent parameters on knee dataset. Thus
FiCS-2D outperforms all, on all the assessment parameters.
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For a fair comparison, the assessment has been done on 9 consecutive slices and

averaged. It is clear from the graph that although iCS technique with a ID-VRDU mask

performed better than CS, as claimed by its authors U001. But when the same is

impleme,uted with a 2D-\IRDU mask it performs worse wen from CS.

2D-VRDU mask is most capable to acquire the k-space data of a multi-slice MRI

sequence, because of its rese,mblance with the original k-space data. Therefore, a good

iCS technique pcrforms bettn using 2D-IRDU masks.

The novel FiCS-2D outperfoms all the other techniques on all four assessment

pararneters. Although FiCS-1D also performs far better ttran iCS-lD on individual

consecutive slices as shown in Fig. 3-7 but due to the uneven distribution of sampling

ratios in iCS their average assessment of 9 consecutive slices is almost the same as FiCS-

tD.

For fair comparison selected zoomed parts of the original images of both knee and brain

are also compared with the reconsfiucted images uging CS, iCS, and FiCS. The orighal

image has 100% samples while the reconstnrcted images have 9o/o average samples as

shown in Fig. 3-7.Itis clear from the figure that our novel FiCS technique has more clear

results, compared to all other lsghniques. It is to be clarified that the reconstructed images

of iCS (c, f and i, l) look sharper because it has been reconstructed using 25% samples, in

which 1o7o gamples are take,n from the original slice and the rest 24o/o from the

neighboring slice. Therefore, althoug! their irnagos look sharper, but the information is

not original. Secondly, the redundant Fourier steps in the interpolation of iCS [100] cause

large conEast variation in their adjacent slices. Thus these exta Fourier steps not only

40



make their algorithm computationally complex but also cause huge contast variations in

consecutive reconstructed slices as shown in Fig. 3-7

Most importanfly the computational complexity of the novel interpolation algorithm of

FiCS is rcduced to O(n), comparcd to O( n log n ) of iCS [00]. The processing time of

the novel fast interpolation tecbnique is up to five times faster compared to the current

interpolation technique [ 100]

The novel FiCS technique has not only improved perfomrance with the same average

sampling ralao (9Y) b'ut also outperforms withTo/o and with even SYo sampling ratios as

shown in Table 3-1. SimilarlS the reconstnrcted images tsingTo/o and 5o/o are also better

than iCS with erren half the sampling rate as shown in Fig. 3-7.

Table 3-t Comparison of iCS with thc novel FiCS technique using 9%, 7Yo, and 5Yo

under-sampling ratios

Averege rrrcrrmcnt of 9 conrecudve rllcer of Knee Drteret, 17+821

s.
No

Armrlment
Prremcter ics-llL9% iCS-2Ir.g% Ftcs-g% ncs-7% HCS-5%

I SSIM 0.7434 0.57su 0.t5s1 0.t31 0.7626

2 PSNR 25.5709 25.2133 32.021 30.71 29.4

3 MSE 0.002]9 0.006tt 0.0007 0.0009 0.0012

4 CORR 0.9442t 0.932t5 0.9u 0.975 0.9554
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Fig. 3-9 Comparison of (a) Original brain Image with Reconstnrcted images uslng O)
CS-ID, (c) iCS-lD, (e ) CS-2D, (f) iCS-2D and (d) FiCS-2D with 9% average

sampliug ratio. Similarly, comparison of (g) Original knee Image with Reconstnrcted
images using (h) CS-ID, (i) iCS-1D, (k) CS-2D, (t) iCS-2D and (i) FiCS-2D withg%
average sampling ratio. The reconstnrcted image using the novel FiCS technique has

better qualtty compared to other techniques.
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Fig. 3-10 Comparison of (a) Original image with O) iCS-lD- 9%, (c) ilCS-ZD- gyo,

(d) FiCS-lD-9Yo,(e)EiCS-2D-9%. (D FiCS-2D:7% and (g) FiCS-2D-5%. The novel
FiCS shows better results with wen 5% under-sampli4g ratio.
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3.4.3 Evaluation of tr'iCS.

Tte novel FiCS tecbnique is evaluated on centered 150 slices of knee data set (slice # 5l

to 200) as shown in Fig. 3-ll. ft can be seen in the graphs that iCS-1D afi2D have huge

fluctuation throughout the data set while FiCS follows a uniform pattem like CS, with

improved results. The fluctuations in the graphs of iCS are such that it has peaks on the

centered 25% slices and depressions on lo/o QSYo after interpolation) slices. While FiCS

has no such biasing in sampling like CS and therefore has uniformity in their results.

The FiCS tecbnique is implemented using both lD and 2D-VRDU masks. Although, the

ID-VRDU mask is more realistic from the current hardware point of view but the 2D-

VRDU is best suitable to represent the original k-space data of multi-slice MRI. The 2D

under-sarrpling patterns are not commonly available on clinical scanners at present [89]

and as with aoy novel tecbnique within MRI practical implementation requires pulse

programrning access. There are trow several research groups that have implemernted pulse

progams that can perform prospective rmder-sanrpling of 2D masks on clinical

plaforms. For 2D multi-slice MRI, under-sampling in the frequency-encode direction

does not reduce acquisition time as the readout direction is acquired very quickly

compared to the phase-encode direction.

3.5 Summary

The FiCS techniqge not only presewes the original information in every reconstnrcted

slice but also gives consistency in the slice-wise image quality. This technique also

redgces the scan tirne by reducing the under-sampling ratio to almost hal[, compared to

iCS [00], with an even improved image.
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The unifo,nnity in the 5% under-sampling ratio for all the slices causes lesser paftial

volume loss in the reconstnrcted images of FiCS as compared to iCS. FiCS also beats

previoru interpolation techniques in te,rrrs of compuational complexity and processing

time. Thus, the frst interpolation stratery along with 2D-VRDU under-sampling not only

simFlifies the novel FiCS technique but also improves the results both qualitatively and

quantitatively.
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Chapter 4

Efficient Interpolated Compressed Sensing Technique

using Radial Under-Sampling for Multi-Slice CSMRI

Reconstruction

4.1 Introduction

In this chapter, xll imlrroved Efficient interpolated Compressed Se,nsing (EiCS) technique

is discussed using different Radial under-somFling schemes [120]. Compared to the

preceding two-step inrcrpolation approach of FiCS [109], Eics [120] uses three

consecutive slices to estimate the missing samples of the central t rget slice from its trro

neighboring slices. Seven different evaluation metrics are used to analpe the

perfomunce of the EiCS technique and compared with the latest interpolation techniques

and CS.

4.2 Related Work

Compressed Se'nsing (CS) theory has e,nabled to accelerate the MRI acquisition process

using some nonJinear reconstruction techniques from even l0To of the Nyquist samples.

In recent years interpolated compressed sensing (iCS) has firther reduced the scan time,

as compared to CS, by exploiting the sfiong inter-slice correlation of multi-slice MRI.

In Chaprcr 04, The FiCS [09] technique based on a 2D-VRDU under-sampting scheme

has been disctssed FiCS shows more clinically acceptable results with less partial



volume loss, lower average under-sampling ratio, and by using a computational efficient

interpolation technique. The interpolation approactr of FiCS is a simple two-step prccess

utilizing two conseortive slices to estimate the missing samples of each target slice (T

slice) from ih corresponding left slice (L slice). FiCS has reduced the average under-

sampling ratio to 5%, compared to the p'evious iCS techniques which have a minimum

of 9o/o average samples. The results of FiCS also show improveme,lrt in terms of

information contefi and image quallty with even half of the sampling ratio compared to

their prerrious inrcrpolation techniques. Moreover, the interpolation technique of FiCS is

very computatioaally efficient with just a set addition and difference operations. But the

basic drawback of FiCS is that their under-sampling stategy does not apply to current

clinical scannerE and their images lack sharpnss.

In this chapter, a new EiCS technique [20] based on differe,nt Radial under-sampling

patterns is discussed. The novel EiCS technique is implemented using both Uniform-

Angle (UA) and Goldcn-Angle (GA) Radial sarrpling patterns, uslng an erren lower

gampling ratio.

The radial rmder-snmfling strategy reduces the under-samFling ratio to even 3Yo.

Secondly, the novel three-step interpolation approach of EiCS ensures that each

interpolated slice gets maximum samples from its respective target slice and the rest from

its neighboring two slices, to have enough samples to be reconstnrcted as a sharper and

improved image.
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4.3 Non-Uniform Sampling

CS has been impleme,nted using both Cartesian and Non-Cartesian under-sampling

scheures 122,93,1211. Non-Cartesian sampling in k-space has appeared in many medical

imagng modalities including MRI.

Q Certestrn sampler

lJ Radiat samphs

Fig. zt-l Gridding Radial samples on the Cartesian grtdtl22l

Radial sampling has evolved since the beginning of MRI, with the limitation that its non-

uniforrrly spaced samples of the spatial frequency domain, are to be projected on

rmiformly spaced samples in the image domain U23]. Fig. 4-1 shows some polar Radial

samples which are to be projected on a Cartesian grid. The value of each Cartesian

sample is to be deterrrined Aom the samples of the adjacent Radial samples tbrough

griddine reconstnrction [124] which uses Non-Uniform FFT (NUFFT) [123] and a

Densrty Compe,nsation Function (DCF). The DCF helps to mitigate the artifacts caused

by the ovenepresentation of some spatial frequencies in non{artesian acquisitions.

49



Similarly for converting uniformly sanpled Carrcsian image data into non-uniform k-

space data inverse gridding is used U231.

rmege reconstruction usirg Radial under-sampling has rapidly evolved as it allows

reduced scan time with increased spatial resolution. The iterative reco,nstnrction of CS

from an tmder-samFled radially encoded MRI dataset is helpful for artifact-free images

193, l2l, 122, 125-1271. These artifacts are directly related to the number of samples

available for reconsftrction. Thus, if we first estimate the missing samples in the highly

under-sampled radially encoded multi-slice MRI datasets, before CS reconstnrction, one

can get an alias-free reconstnrcted irnage from just a fraction of the total samples.

A single multi-slice MRI scan acquires hundreds of slices. Therefore their consecutive

slices have a very stong inter-slice correlation, because of having very namow inter-slice

gaps [15]. In recent years many researchers have exploited this correlation of multi-slice

MRI for further reduction of the scan time, through interpolation. This new concept is

termed as interpolated compressed se,nsing (iCS) in the literature [5, 16]. Through iCS,

the average sampling ratio of CSMRI has been reduced we,n beyond the CS limit.

Interpolated Compressed Sensing mainly works in tbree steps (i) under-sa-pling the

multi-slice MRI data (ii) interpolation and (iii) CS reconstruction. For the first step, the

dcsired under-sampling is done using a much lower under-sarrpling ratio compared to

CS. In iCS under-sampling, some of the CS sanrples are missed intentionally to reduce

the average sampling ratio and scan time. The random under-sampling of iCS can be

accomplished using one of the many under-sampling approaches like Cartesian, Radial,

spiral, and their combinations 192-94,1281. Fig. 4-2 shows the original k-space of Multi-

slice MRI and some different under-sampling approaches that can be used in CSMRI.

The second step of iCS approximates the missed semples of the highly *666-samfle
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slices from the samples of their neighboring slices [ 5, 76,98, l0l]. The aim of this

interpolation [5, 16, 98-100] is to get CS slices. FinallS in the third step, CS

recomstnrction tecbniques I l, 93, 100, l(H-10'/,,129,130] are applied to the interpolated

slices to get reconstructed multi-slice MRI datasets.

Fig.4-2 (a) Original k-space and under-sampled k-space slices using @) ID-VRDU (c)
2D-VRDU (d) Radial and (e) Spiral mask.
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4.4 The EiCS Technique

The proposed novel EiCS Techniquc U20l has three important steps. Every step is

elaborated separately in the following subsections.

4.4.1 Radial Under-Sampling Scheme

The fully sanrpled k-space multi-slice MRI data geatly resernbles 2D-VRDU and Radial

masks, as slpwn in Fig. 4-2.1'he Radial under-sarrpling approach is more suitable as it is

practical from the present hardware point of view compared to ttre 2D-rR.DU under-

sampling schemes. ['dss1 imtrortantl], the Radial masks oversarryle the cental reglon

using intersecting spokes and thus detect and correct any movernurt in the k-space ceirter

for chaages in betrreen views. Thus, the motion afiifacts in Radial under-samrling are

averaged out because of the inherent oversampling of the k-space center. Therefore the

reconstructed images using the Radial macks are lessu motion sensitive with higher SNR

ll2ll, compared to the lD and 2D-VRDU schemes.

ln Uniform-Angle (UA) Radial, all spokes are uniformly spaced while in Goldern-Angle

(GA) Radial every two spokes are spaced none unifonnly depending upon the GA ratio

as shorvn in Fig. 4-3. The GA ratio (180"/((1 +{lo?) x LLL.246") of Radial

sampling acErires the spokes such that they are self-interleaving and no spoke is acquired

twice [31]. The number of spokes that are needed to meet the Nyquist sampling criteria

is 402 uniformly spaced spokes, with 256 samples on each spoke for a 256tO56 pixel

inage U25,1321. Therefore, for acquiring3o/o,5o/o,'lo/o, aadg% of the samples we must

acquire 12,20,28, and 36 spokes which are used for the EiCS scherne.

lVhen the Radial data are acquired using the GA ratio [131] the k-space data are rmder-
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sampled using high tunporal incoher€nce [94]. Therefore, the sampling patterns explored

in this chapter are UA and GA-Radial as shown in Fig. 4-3.

Eoldrn-Auh trdlrl

Fig. 4-3 Two different Radial under-snmpling approaches used in EiCS technique

Unlike lD and 2D-VRDU, the Radial samples are acquired o'n a polar grid. Therefore,

the distance beftveelr the sampling points of the neighboring spokes is non-unifomr. This

distance is smaller in the k-space center and larger in the periphery. Thus the Radial

readouts require r€-gldding from the polar k-space data into the pixel domain through a

Density compe,nsation Frmction (DcF) andNon-Uniform FFT (NUFFT) tl23l.

Tte under-sanrpling approach adopted with the novel interpolation technique of EiCS

takes only 3%, Radial samples, from every slice of the multi-slice MRI sequence. The

Radial under-sampling scheme is slice-wise uniform like CS, which means every slice is

under-saurpled with the same under-sampling ratio but using different non-overlapping

spokes. Tlus using different spokes in the neighboring consecutive slices will allow us to

interpolate the saurplcs in our target slices.



Thrac Conracutluc Grt-Rtdial Undcr-Sampliry Mrrlr

Fig.44 Tbree consecutive Radial under-sanpling masks with non-overlapplng spokes

In the novel EiCS scheme, first, three different under-sampled Radial masks with the

same sampling ratios are generate( as shown in Fig. 4.4. These masls are different in the

scnse that any two of them are having their spokes on different locations which is the

firndamental key toward our novel interpolation ap'proach.

The masks shown in Fig. 44 te used to undcr-sanrple three consecutive slices and

re,peated after wery three slices for the whole multi-slice MRI sequence. Thus enabling

wery slice to be interpolated from its neighboring two slices. Let the three masks shown

in Fig. 44 be termed as R1, R2 and R3 which are the three desired non-overlapping

lnder-snmpling Radial masks. The three consecutive under-sampling Radial masks are

sgch that they have the same number of spokes but have different sarnpling locations,

except its ce,nter where it will overlap, as shown in Fig. 4-4.

Two fully sampled, original multi-slice MRI data sets of the knee are used for EiCS. But

first, the multi-slice MRI datasets are under-samFled into k-space data and then the novel

interpolation ap,proach of the EiCS rcchnique is applied. For the under-sampling of three

consecutive slices 51 S1,..1and 5112 , first three down-sampli4g NLTFFT operators of the
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Radial sampling patterns arc generated. The three down-sampling NLIFFT oPerators are

termed as NUFFTI, NUFFT2 and NUFFT3. Where, each NUFFT operator is generated

ruing its respective Radial under-sampling mask, and a DCF. To interpolate the k-space

data from the non-Cartesian tajectories, the NLIFFT by J. Fessler [33] and the NLJFFT

wmlrperbyM.Lustig [l] are implerne,nted, which are available online [12, t3]. The

NLTFFT operators are then applied on tlree consecutive slices, resulting in an under-

sampled k+pace slice sequence as rePrcsented in (4.1) -(4.3).

Ur=NUFFTT*Sr

Ur+l =NUFFT2*Sr+1

Ut+z=NUFFTB*Sr+z

(4.1)

(4.2)

(4.3)

Where Ur, Ur+r and U112 represents the three consecutive under-sampled slices. This

rmder-samphng step for three consecutive slices is repeated after wery tlree slices for the

whole multi-slice MRI dataset. Thus resulti4g in an under-sampled daaset in which

wery three consecutive slices have the same samtrling patterns and under-samFling ratios

but differe,nt sampling locations because of using different non-overlappi4g spokes, as

shown in Fig. 44. Ntthe samples that are on different locations can be exploited for the

novel interpolation technique of EiCS in the nort step.

4.4.2 The Novel Effcient Interpolation Scheme

The novel efficient interpolation sche,me of EiCS approximates the missing sampling

points from each rmder-sampled slice using their two neighboring slices. This approach

works by considering any three consecrrtive down-sampled slices, out of which the

central one is termed as the Target slice (T slice) which has to be interpolated from its

Left (t) andRight (R) slices.
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The novel interpolation technique of EiCS has three steps. The first step is to find the set

diffe,fence betrileen the L and T slice as represented in (a.a).

Lt"*=LOT (+.4)

lte resultant set difference is called Lro.*, having the new information of the L slice

with respect to the T slice. Where the g sign represents the set difference operator.

Secondly, the same step of L slice is repeated with the R slice, gefting Rrh"* slice as

shown in (a.fl.

Rro.*=ROT (4.s)

Where Rro"* contains the new saurpling information in R slice with respect to T slice. In

the third and last step, the T slice sanrples are combined with d[s samfles of L1n"a, and

Rm"* to get the interpolated T slice termed as Trnt as represented in (4.6), where the (E

sign is the set addition operator.

Trot=LT1.11,O T (E Rlh"* (4.6)

This three-step interpolation technique of EiCS is applied on each slice of the under-

sampled multi-slice MRI sequence, considering every slice as a T slice and its two

neighboring as L and R slices, to acquire an interpolated slice, Tsos. The three-step

process of the efficient interpolation technique is rqrresented in Fig. 4-5.

4.4.3 CS Reconstruction

After the iuterpolation step, the interpolated multi-slice datasets have almost three times

the saurples initially under-sarrpled or acquired. The third and final step of EiCS is the

CS reconstnrctioa which gives the reconstnrcted images.
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Fig. 4-5 The three-step efficie,nt interpolation technique

Fig.4-6 The novel EiCS Technique
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The CS reconsEuction technique used for EiCS is the same as in FiCS which is the non-

linear conjugate gradient (NCG) with /1-norm and Total Variance (TV) [t l] as discussed

in the previous chapter. The complete EiCS technique is expressed in Fig. 4-6.

4.5 Stmulation and Results

Swen different waluation metics are used to anallze the performance of the EiCS

technique [20] such as stnrctural similarity index measurement (SSIM), feature

similarity index measurement (FSM, mean square error (MSE), peak slgnal to noise

ratio (PSNR), comelation (CORR), sbarpness index (SI), and Perceptual Image Quality

Evaluator (PIQE) and compared with latest interpolation techniqucs and CS. The EiCS

technique is evaluated in four steps. In the first step, the Radial under-sampling scheme

of EiCS is erraluated. Secondly, the novel interpolation approach of EiCS is evaluated. In

the third st€p, the overall behavior of EiCS is analped and finally, the EiCS technique is

evaluated for an increased inter-slice gap dataset. Different knee datasets are used in the

evaluation of the novel EiCS technique which has already been discussed in Chapter 02.

These knee datasets are fully sampled and are to be under-sampled using the different

Radial under-sarrpling approaches discussed previously.

4.5.1 Eveluation of the Rdid Under-sampling Scheme

Like FiCS, and CS the Radial under-saurpling shategy of EiCS equally under-samples

the k-space multi-slice MRI sequence but uses a much lower under-sarrpling ratio.

Table 4-l shows a comparison of the Radial under-sampling schernes with the 2D-VRDU

under-samFling scherne of Fics [109], lD-vRDU sche,me of icS [100], and cs[[]. The

assessme,lrt has bee,lr performed using all the swen assessment parameters for three

successive slices aud averaged.



Table 4-l Comparison of the Radial under-sampling schemes with ID-VRDU and 2D-
\IRDU schemes. The assessment has been done on 3 consecutive stces and averaged

(slice 165-1 67 of knee dataset)

Undcr-Senpllng
rchcme

ID-VRDU 2D.VRDU UA-RIdlel GA-Rrdtrl

s.
No

Asses$nent
Paraneter

cs-9%
ics-
9o/o

cs-5%
Fics-

5%
cs-5%

Fics-
5Yo

cs-s% Fics-s%

I SSIM 0.5595 0.7226 0.7834 0.8008 0.7995 0.t3tt 0.7669 0.t339

2 FSIM 0.9387 0.9733 0.9713 0.9463 0.9201 0.95933 0.9150 0.9s15

3 MSE 0.0398 0,00s8 0.0056 0.0023 0,0008 0.00047 0.0010 0.00052

4 PSNR, 14.002 23.779 22.636 26.357 30.738 33.221 29.797 32.77t

5 CORR 0.93t7 0.9522 0.9762 0.9il7 0.9476 0.9703 0.935E 0.9671

6 SI 48.88 50l.ar 374.46 275.61 175.06 257.63 46.07 276.4

7 PIQE 65.791 30.915 62.121 73.850 72.577 54.5t2 79.574 65.97t

It is clarified from the comparison of the different sampling stategies in the table that the

Radial rmder-sampling scherne has more improved results, for both Uniforrr-Angle (UA)

and Golden-Angle (GA) stategies, compared to the lD and 2D-VRDU schemes. The

Radial undcr-sampling stategy has also an edge in that it is more practical from the

current hardware point of view.
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4.5.2 Evaluation of the Novel Efficient Interpolation Scheme

The novel three-step interpolation scherne of EiCS [20] is evaluated by comparing its

reconstnrcted images with that of iCS [00], FiCS [09], and CS [11]. Fig. 4-7 shows a

comparison of the original image with the reconstructed images using different

interpolation techniques along with different under-sampling ratios. It is clear from the

fiBre that although iCS shows visually improved results but represents information of

the neighboring slices due to their biased under-sampling sche,nre U09]. FiCS using 2D-

\{RDU under-saurpling shows improved results and has no loss of information but their

samplittg pattern is non-realistic with some blurred edges. CS reconstnrction is also

performed using the Radial under-samph4g pattern, but their images look even more

blurry with some steaking artifacts. The reconstructed images of the Radial under-

sampling pattern show improved results for both FiCS and EiCS techniques. But EiCS,

due to its three-slice interpolation app,roach has better results compared to FiCS, using the

same Radial under-samfling stategy. This prcves that the three-step EiCS technique is

betts compared to ib preceding two-step FiCS approach.

The edge infomation pointed by the red arrow in Fig. 4-7 shows that although FiCS-

Radial has improved results but for 3% under-samples ratio it has a bluning effect, while

EiCS has no blurring effect with sharper and clear details. FiCS 2D-VRDU also shows

bett€r results but its under-sampling approach is non-realistic with some blurred edges. In

short, EiCS has got the benefi* of all the other techniques as its reconstnrcted images

have no blurriag effect with sharper details and original information and with a morE

realistic under-sampling approach using only 3% samples.
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FIGS TET,IDT' ei-ldarl FlC9-i.dLl EICS,Ldlrl

Fig.4'7 Comparison of (a) Original Image with (b-D reronstnrcted images using
different reconstuction stategies and under-sampling ratios. O) iCS reconstucted image

has sharper details but with loss of information (c) FiCS 2D-VRDU has prescrved the
original information but has a blurring elfect which becomes more prominent when the
under-sanrplingratio is reduced (d) CS reconstnrction using the Radial under-sampling
also shows severe degradation when the under-sarnpling ratio reduces (e) FicS-Radial

and (D EiCs-Radial has improved results compared to Cs-Radial but the sharpness
degrades for (e) FiCS with 3% samples while (f) EiCS has improved results with clear

and sharp details as pointed by the red arrow
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In the EiCS technique, the acquired under-sampled T slices whe,n interpolated N Trot

lraveS4Yo samples from T slices and 33Yoftom each of the L and R slices. In FiCS [09]

wery T1o. slice has 69olo samFles from T slice and the rcst 40Yo from its respective L

slice. In FiCS although a greater percentage of samples were taken from the original

slices but because of their two-step interpolation approach, when the sampling ratio

further reduces, the interpolated slices have insufficient samples to be reconstnrcted as a

clear and sharper image. In iCS [16, 100] each interpolated slice has only 4% samples

from its original under-sampled slice and the remainiag 96% from its conesponding

neighboring slices. The reconstnrcted images of iCS show sharp details due to more

saurples in their interpolated slices but with the limitation that their resultant three

consecutive reconstnrcted images show repeated information because of their biased

under-sampling stategy, as discussed in [09]. Although the lD under-sampling scherne

of iCS is also practical from the current hardware point of view but has a three times

higher under-sampling ratio along with a biased under-sampling stategy. Table 4-2

surrunarizes the total percentage of the original and interpolated samples for different

reconstuction techni ques.

Trble 42, Comparison of Yorge number of samples of different interpolation techniques

and CS

S.No.
Reconstuc

tion
Techniqucs

Samplcs
Taken from

Origlnal
Slices (70)

Samplcs
InErpolated fiom

Nerghboring
Slices (%)

Total Samples for
Reconstnrction With

9o/o Average
Sarpling

I cs l00o/o 0% 9%

2 ics 4 o/o 95%fromLshce 25 o/o

3 Fics 60% 40%frromLslice t6%

4 Eics 34% 33%fromLslice
33 % fromH slice

25'/o
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It is clear from the table that the Radial under-sampling shategy has the lowest

perce,ntage of samples from the neighboring slices, and still has the highest perce,ntage of

interpolated samples, which gives us the benefit that information content is original and

the reconstucted images are sharper.

The novel Efficient interpolation scheme of EiCS [20] is also erraluated by comparing

the seven assessment parameters of EiCS with iCS [00] and CS [11]. For a fairer

comparison, FiCS using the Radial under-samFling stategy is also perforrred. The EiCS

technique shows not only improved performance with the same average under-sampling

rzitto (5o/o) of FiCS but also outperforrrs with even a 3% sa-trling ratio as shown in Table

4-3. The assessment has been done on 3 consecutive slices and averaged. Table 4-3

re,presents a detailed evaluation where Fig. 4-8 shows abrief summary of it.

firc graphs of Fig. 4-8 clearly show that Fics-Radial has improved performance with

etten3Yo sarnples which proves that the Radial under-sampling sfategy is betrcr than 2D-

VRDU. Secondly, the novel Eics-Radial outperforrrs Fics-Radial which proves that the

three-stcp interpolation technique of EiCS is better than the two-step approach of FiCS.

Eics-Radial is also better than iCS-lD VRDU with even one-third of the samples but in

three out of the sEven assessmqrt parameterc (FSM, SI, and PIQE) iCS looks better. fire

reason is that firsfly, iCS has 9% samples and, secondly, iCS has a biased under-sampling

stategy, by talcing 96% of samples from neighboring slices. Therefore, although iCS

shows bett€r feature similarity, sharpress, and perceptual image quality but represe,lrts

neiglboring slice information. Thus Eics-Radial beats all other techniques by talcing

only3o/o samples.
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Table 4-3 Comparison of the novel EiCS technique with CS, FiCS, and iCS for different
under-sampling ratios

Averagc
Under-

Sampling
Ratio

Interpolati
OD

Teclmique

Under-
Saupliag
Technique

Asscssment PamrrrcErs

SSIM FSIM MSE PSI{R CORR SI PIQE

3'/o

Etcs
GA-Radial 0.t2 0.94 0.00txt t2.6t 0.956 305.4 56.s

UA-Radid 0.t2 0.95 0.000s 32.75 0.957 251.0 s5.8

Fics
cA-Radid 0.80 0.93 0.0007 3 1.39 0.954 183.7 77.5

UA-Radid 0.8t 0.94 0.0006 t2.00 0.960 229.t 70.3

cs
GA-Radial 0,69 0.87 0.0017 27.66 0.895 19.4 87.3

UA-Radisl 0.70 0.87 0.0017 27.53 0.888 20.60 t0,9

5'/o

Ercs
GA-Radial 0.84 0.96 0.00tH 33.91 0.974 338.0 50.9

uA-kdid 0.t4 0.96 0.0003 t4.23 0.975 476.9 4s.3

Fics
GA-R did 0.83 0.95 0.0005 32.77 0.967 276.4 6s.9

UA-Radid 0.E3 0.95 0.0004 33.22 0,970 267.6 54.5

cs
GA-Radial 0.76 0.91 0.0010 29.79 0.935 46.07 79.5

UA-Radial 0.79 0.92 0.0008 30.73 o.947 175,0 72.5

7.h

Etcs
GA-Radial 0.t6 o.97 0.0003 34.t0 o.979 442i 50.t

UA-Radial 0.t5 0.n 0.0003 34.6s 0.97t 452.5 49.1

Fics
GA-Radial 0.86 0.96 0.0003 34.0s 0.975 516.6 61.7

UA-Rtdial 0.t6 o.97 0.0003 34.20 o.976 4d;9.1 54.5

cs
cA-Rrdial 0.83 0.94 0.0006 32.r7 0.963 220.6 76.4

UA-Radial 0.83 0.94 0.0005 32.53 0.965 303.4 68.6

9o/o ics ID-VRDU 0.72 0.97 0.00s8 23.77 0.952 501.6 30.9
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Fig. 4-8 Comparison of the novel EiCS averaged assessment parameters with iCS, FiCS,
and CS. iCS ID-TYRDU h*9o/o,FiCS 2D-VRDU has 5% while CS-Radial, Fics-Radial,
and EiCS-Radial have 3% samples. Thus, the novel EiCs-Radial technique outperfonns

all with etren3Yo average samples

Fig. 4-9 r€,presents a comparison of the original image with that of the reconstructed

images nsing FiCS 2D-\|RDU, Fics-Radial, and EiCS-Radial with 3o/o samples by

considering a zoomed edge. It is clear from the figrre that EiCS-Radial is better than both

FiCS 2D-r/RDU, and Fics-Radial by showing clearer and sharpo rezults.

Originelimage
lfl)%samples

Rcconstnrctcd image
Fics2D-VRDU3%

Roconstructed image
FiCS radial3*i

Rcconstructcd imep
FiCS radial3%

Fig. 4-9 Comparison of the origrnal image with reconstructed images using FiCS 2D-
VRDU 3%, Fics-RadialSyo,and EiCS-Radid3o/o.It is clear from the comparison of the
selected zoomed portions that the EiCS tecbnique outperforrrs FiCS by retaining sharper

details.
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4.5.3 Evaluation of the EiCS technlque

The detailed evahration of the novel EiCS technique [120] is done on centered 150 slices

of knee data set (slice # 5t to 200) as shown ia Fig. 4-10. The evaluation is done using

GA-Radial under-sampling pattern for all the seven assessment parameters. It is clear

from the figure that when we increase the under-sampling ratio the performance improves

but while increasing the sampling ratio fromTYo to 9o/o, the total number of interpolated

samples saturates and is over-sufficient for CS reconsfiuction. Thus, as clear from the

figure, whe,n the sampliag ratio increases from 7Yo to 9% the EiCS technigue shows

lesser improvement. Ihis is because the three-step EiCS tee;hnique collects sulficient

sarples from reduced under-sampling ratios that give improved results, with even 3%

samples. Secondly, Fig. 4-10 shows that EiCS has consistency in its results like FiCS

where iCS shows inconsistent resulr as discussed in [109].

4.5.4 Evaluation of EiCS for Increased Inter-Slice Gap

The novel EiCS technique also outperforms for inqeased inter+lice gap datasets. lhe

zero inter-slice gap means, considering all the slices of the original dataset. One and nnro

inter-slice gaps mean skipping one and two slices from consecutive slices while tating

two slices. Increasing the gap helps to further reduce the average undcr-sampling ratio

from 3% to 1.5% aad,l%. Skipping one and two slices means that we are consideriag 128

and 85 slices from the 256-slice knee dataset.

Fig. 4- l I shows the evaluation of CS, FiCS, and on Radial sampling for 3o/o, 5o/o, md 7o/o

under-sarrpling ratios with zero, one, and two inter-slice gaps. It is clear from the graphs

of Fig. 4-l I that both FiCS and EiCS have improved performance compared to CS for

wen increased inter-slice gaps.
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Fig. 4-10 Evaluation of EiCS using the seven assessment parameters with GA-Radial
nnder-sampling for 3o/o,SYo,7o/o, and9% samples. The evaluation has been done on 150

cent€red slices of the knee dataset and compared slice-wise.
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While comparing the performance of FiCS and EiCS, for higher inter-slice gaps, EiCS is

better for lower under-sanrpling ratios but for 7Yo and higher ratios, FiCS is better on

some assessment parameters. The rcason is that for lower rurder-sanrpling ratios whe,n the

inter-slice gap is increase{ EiCS, because of its three slices approach, collects sufficient

samples for improved reconsfiuction. Thereforp, for higher under-sampling ratios when

we increase the eap, FiCS performs better because of having suffrcient samples using its

two-slice approach, while for lower under-saurpling ratios EiCS is better.

4.SSummary

In this chapter, for the first time, the implementation of iCS has bee,n discussed using

Radial under-sampling schernes. The Radial sampling pattern used in the novel EicS

techniques is more realistic from the current hardware point of view compared to the 2D-

VRDU sampling pattern adopted in FiCS. Secondly, the Radial sampling stategy is also

lesser motion-sensitive compared to other sampling schernes. Thus, EiCS exploits

different Radial under-sampling patterns using its three-step interpolation approach to get

interpolated slices with the maximum nrmber of saurples using the lowest under-

sampling ratios while ensuring sharper reconstnrcted images. The EiCS technique not

only preserves the original information in errery slice but also gives consistency in the

slice-wise image quallty along with sharper IQ. Thus, EiCS neither show blurring like

FiCS nor any information loss like iCS with improved renrlts on seyen different

assessment parameters.

The EiCS technique can also be successfully applied to Dynamic MRI datasets to get

even more benefits from the Radial under-sampling schemes because it can efficiently
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handle motion artifacts. This technique can also be combined with the latest CS

reconstuction algorithms for more promine,nt results with reduced reconstnrction time.

The improved novel interpolation technique adopted in EiCS is computationally efficient

with only a set differeirce and addition operations like FiCS. Thus the computational

complexity of the interpolation algorithm of EiCS [20] is O(n) like FiCS [09] ,

comparcd to O(n log n) of iCS U00]. EiCS also show better results with wen increased

inter-slice gap datasets.
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Chapter 5

Gaussian-Radial Under-Sampling Based CSMRI

Reconstruction using a Modified FiCS Approach

5.1 Introduction

In this chapt€r, a modified FiCS (Mod-FiCS) techniEre is discussed usrng the Gaussian-

Radial under-samlling scheme. The Gaussian-Radial under-samtrling approac,h adopted

by Mod-FiCS has an edge that it neither shows any steaking artifacts like Radial nor

blurred edges like Garssian. Tte modified interpolation approach used in Mod-FiCS

technique uses tlree consecutive slices lilce EiCS to estimarc the missing samples of the

cental target slice. Tte simulation result shows that the Mod-FiCS technique has

improvement both quantitatively and qualitatively compared to the previors techniques.

5.2 Related Work

Compressed Sensrng (CS) has efficiurfly accelerat€d the MRI acquisition process by

employing differe,nt reconstnrction stategies ruing a fraction of the Nyquist samples.

Ttis scan time has been firthcr reduced uing a new technique called interpolated

compressed se,nstng (iCS) by exploiting the strong inter-slice conelation of multi-slice

MRI. In Chapter 03 a novel FiCS technique is discussed based on the 2D-VRDU tmder-

sampliug sche,me. The FiCS technique [109] has improved results along with reduced
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scan time and consistency in slice-wise image quallty and information conte,nt, but due to

the Gaussian undcr-sampling approach, it shows some blurred edges.

Chapt€r 04 discusses a novel EiCS technique based on different Radial rmder-sampling

schemes. The EiCS technique [120] shows improved results compared to both iCS and

FiCS with sharper dctails. Unlike the Gaussian masks of FiCS, which require an FFT

operator, the Radial masls of EiCS need NUFFT along with DCF as discussed in Chapter

04.

The under-sampliag using Radial masks only reduces the number of acquired spokes and

does not lessen the number of samples on each spoke. Secondly, the Radial rmder-

sampling causes some steaking artifacts. Thrs, the Radiat mask whe,n combined with 2D

Gaussian is an optimum choice for rmder-sampling by having the benefits of both the

Radial and 2D-Gaussian sc,hemes.

The combination of 2D-VRDU and Radial under-sarrpling scheines is termed as

Gaussian-Radial as shown in Fig. 5-1. This under-sampling approach has an edge that it

causes no steaking artifacts like Radial, no blurred edges like Gaussian, and with a min

number of sanrples. The Gaussian-Radial under-sampling pattern is explored for both

Uniform-tuigle (UA) and Golden-Angle (GA) Radial as shown in Fig. 5-1.

5.3The Mod-X'iCS Technique

The Mod-FiCS technique is based on Gaussian-Radiat under-sampling scheme. The

Gaussian-Radial under-samFling stategy uses the same under-sarnpling ratio of FiCS

[109] but by e,rnptoying three consecutive slices like EiCS [20]. Thus, the missing
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sarnples of each under-sarrpled slice are estimated from their neighboriug two slices to

collect enoug! samples to be reconstructed as a sharper and improved image[134].

tttrtfurn-fnCr ColdrrrlndrGld*nrdlJ

Fig. 5-l UA and GA Gaussian-Radiat sampling approach

5.3.1 Gaussian-Redial Under-Sempling

The Mod-FiCS technique takes any three consecutive Gaussian-Radial under-sampled

slices to calculate the missing samples in the central target slice. While combining the

Radial mask with Garssian two approaches can be adopted. For the first approach, evef,y

three consecutive masks have all Gaussian sampling points on differe'nt and non-

ovcrlapping spokes, while in the second approacb, any tluee consecutive masks have all

the Gagssian sampling points on the same spokes. In the first approach, the desired masks

for three consecutive slices are generated using different non-overlapping Radial spokes

with Gaussian points. These Gaussian-Radial patterns are ge,nerated using (l) -(3).

Mtt = Rr'r G

Mtz=Rz*G

M13=Rr*G

(1)

(2)

(3)



Where, R1, Rz and R3 are the three differe,nt Radial masks with non-overlapping and

same number of spokes and G is a Gaussim mask Thtts, M11, M12 and M13 are the ttrree

consecutive down-srmFling Gaussian-Radial masks for Approach-L In the second

approach, the three consecutive under-sampling masl:s use the same Radial spokes but

with differe,nt Gaussian sampling points as re,presented in (4) -(6).

lllzt=R*Gr

lllzz=R*G2

Mzt = R+ G3

(4)

(s)

(6)

Where, Vl2l,Ylzzand M23 are the three consecutive Gaussian-Radial masks for

Approach-Il. These masks art generated using, ttrree different Gaussian

patterns G1,Gz,G3 and R re,prese,lrts the Radial mask Thus we have two different

approaches for the undsr-samtrling of Mod-FiCS as shown in Fig. 5-2.

For the under-sampling of three consesutive slices 51, 5111 and S1..2 , first the Fourier

opcrators of the dcsired Gaussian-Radial under-sampling patterns are ge,nerated. The

down-sampling Fourier operators are termed as F1, F2e and F3. These Fourier operators

are the,n applied on three consecutive slices, resulting in rmder-sampled slices in k-space

as represented in (7) -(9).

U1=F1*$t

Ut+l =Fz*St+r

Ut+z=Fr*St+z

Where Ur, Ur+r and U112 represents the three consecutive under-sampled slices in k-

space. This under-sampling step of three consecutive slices is repeated after every three

slices for the whole multi-slice MRI dataset.

(7)

(8)

(e)



Apporth-l (tton-ordrpplng sPok*l

Eig.5-2 Three Consecutive Gaussian-Radial under-sampling masls using both
approaches

Thus the result will be an undcr-sampled dataset in which wery three consecutive slices

have the same snmnling patterns but different sampling locations as shown in Fig. 5-2.

The sampling points on different locations uging ono of the two approaches will be used

for the interpolation step.

5.3.2 Modified Interpolation Scheme

For the interpolation step of Mod-FiCS, any three consecutive slices like EiCS and

termed it as Left (L), Targ* CI), and Right (R) slices. For interpolation first, the set

difference betrveen the L and T slice called Lh"* is generated. Where, Lro"* has the

new sampling information of the L slice with respect to the T slice. Next, the same step

of L slice is repeated with the R slice, getting R11"* slice. Ttre'n Rrrr"* and L1o"." are

compared to gst Rr1o"*, which are the new sampling information of R slice with respect
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to both T and L slices. Lasfly, the samples of the T slice are combined with the samples

of L1o"o, and R,,p* to get the interpolated T slice called T1o1. The three-step

interpolation approach of Mod-FiCS is represented h (10)-(13) and shown in Fig. 5-3.

Lrrr"*=LOT

Rrn"*=ROT

RTL'"*=RhewOLt"*

Tlot=LT1.*O T (E RTao"*

(10)

(11)

(12)

(13)

R slicc

tr
"E=trT slice Lrncry

T slicr

tr
tr

Ltmw

tr
tr

Rnnw

E
tr

Rtmr

o

o

E@tr*E=E

T sllce

tr

T sli,cc

L sllce

tr

Ltnrw

Fig. 5-3 The novel interpolation technique



This three+tep interpolation technique is applied on each slice of the under-samFled

multi-slice MRI sequence. Where, every slice is considered as T and its two neighboring

as L and R, to get an interpolarcd slice as Tiot. The interpolated slices collect almost the

same number of samples and have the same sampling patterns for both u16sr-sempling

approaches. The only difference is that in the first approach each under-samFled slice has

one-third of the spokes with three times samples on each spoke compared to the second

approach in which there are three times of the spokes with only one-third of the samples

on each spoke.

Once the interpolation step is completed the interpolarcd slices are identical irrespective

of which interpolation approach is adopted, we,n with the same number of samples on it.

After interpolation, the interpolated multi-s1ice datasets have almost three times the

saurples initially under-sampled or acquired. Fig. 54 shows the rezultant interpolated

slices using both approaches, showing almost identical results.

intelpolated slice interpolated slice
using Approach-l uring Approach-ll

Fig. 54 Interpolated slices using both approaches
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In Approach-I all the non-overlapping spokes of the three neighboring slices combines

while in Approach-Il the gapes in the same spokes are filled during interpolation. That is

why the interpolation result of both approaches looks identical as shown in Fig. 5-4.

5.3.3 CS Reconstruction

After interpolation" the NCG CS reconstnrction is applied to dl the interpolarcd slices.

The CS reconstnrction step is the same as used for FiCS [09] and EiCS [20] in the

previous chapters.

S.4Simulation and results

The waluation of the Mod-FiCS technique haq been perfonned on two different fully

sampled knee data sets. To erraluate the Erality of the recorNtructed images six evaluation

metrics are used which are SSM, FSIM, MSE, PSN& CORR, and SI. Their

mathematical cxpressions are already discussed in Chapter 2.

The Mod-FiCS technique is evaluated usi4g all the six assessment parameters and

compared with recent interpolation techniques [00, 109] and CS [1]. Table 5-l shows a

comparison of the novel Mod-FiCS technique with FiCS [09] and CS [1] using both

UA and GA Gaussian-Radial under-sampling schemes using both the under-sampling

approaches. The results of FiCS using 2D-VRDU [109] and iCS using ID-VRI)U U00l

have also been included for comparison. This assessment has been performed using 9

consecutive slices and averaged.
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Table 5-l Comparison of the novel Mod-FiCS rcchnique with FiCS and CS using

different under-saurpling schemes

It is clear from the table that the Mod-FiCS technique outperfomrs all using GA

Gaussian-Radial under-sampling sche,mes using both the overlapping and non-

overlapping spokes. The assessment of Table 5-1 has bee'lr summarized in Fig' 5-5

showing ics [100] and Fics [109] using lD and 2D-VRDU as originally proposed in

their worls while CS, FiCS, and Mod-FiCS using GA Gaussian-Radial under-sampling

schemes.

Averaged erreslment of 9 conrecutive rlices (slice 91-99 of knee dataset)

Assesrment Paremeters
ssIM FSIM MSE PSNR CORR SI

Sampling Scheme

IIT.VRDU
cs.9% 0.55 0.93 0.0t3 rE.72 0.933 45.2

tcsr% 0.76 0.n 0.001 27.86 0.951 364.8

2II.VRI'U
cs.s% 0.73 0.% 0.002 25.63 0.94l 123.5

Ftcs-5% 0.78 0.95 0.001 29.22 0.96 180.6

UA Grurdrn-Rrdldvlth
N on-OvtrlrpPlng SPolcr

cs{% o.7t 0.93 0.001 27.46 0.95 55.5

ncs.5% 0.79 0.96 0.000!) 30.25 0.971 166.9

Mo&IlCS6% 0.82 0.97 0.0007 lt.2 097 193.9

UA Guslra-Rrdlrlwlttr
cs6% 0.7t 0.95 0.001 29.31 o.967 135.5

ncs-5% 0.82 0.97 0.0007 31.3E 0.979 200.4

UVIEIIIPPIIg DPOf,E
Mo+FiCS{% 0.t2 o.n 0.0006 3l.9 0.vt t73.8

GA Grudrn-Rrdlrl wltt
Non-Overlrpplng SPolcr

cs5% 0.76 0.% 0.001 2t.93 0.957 83.3

ncs6% 0.82 0.97 0.0007 11.27 0.97t 185.3

Mo+FlCS6% 0.t4 0.n 0.0006 32.2 0.9t 220.7

GA Grurdrn-Rdlrl wltL
cs6% 0.79 0.95 0 001 30.03 0.968 t32.9

ncs-s% 0.82 0.97 0.0007 31.53 0.979 195.8

lrvcruPPrrE 'PUE Mod.IICS{% 0.t4 0.9t 0.00lr 32 0.9t 229.3
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Fig. 5-5 Average assessment of iCS, FiCS and Mod-FiCS

It is clear from the figure that the Mod-FiCS technique outperforms all except for the

Sharpness Index of iCS and the reason is that iCS has a biased under-sampling scheme

and uses 9o/o average semples.

Fig. 5-6 shows a comparison of the reconstucted images of both FiCS and Mod-FiCS

using the same under-sarnpling ratios. The zoomed edges are also compared along with

the original image. It is clear fiom the figrue that the Mod-FiCS tecbnique has sharper

and clearu results.

80



Odghd lnnge Rrconrtrucld lmegc Rraoncnrsard lmqa
100* rrnpl; FE -zD vRDu-it3 Hod-IIGS

Fig. 5{ Comparison of the reconstnrction results of FiCS and Mod-FiCS wittr the
original image. It is clear from the figure that Mod-FiCS has sharper and clear rezults

compared to the FiCS technique.

5.5 Summary

The Mod-FiCS technique outperforms FiCS, iCS, and CS on all six assessment

parameters. Tte under-sampling scheme of this technique combines the 2D-VRDU and

Radial schemes of both FiCS and EiCS as a Gaussian-Radial under-sampling approach.

Therefore the Mod-FiCS technique neither shows any streaking artifacts like Radial nor

any blurred edges like Gaussian. This tecbniquc has the same computational cost as FiCS

and EiCS but with more improved results.
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Chapter 6

Conclusion and Future Work

This chapter concludes the research work of the dissertation along with some discussions

about the future directions of the work presented in this thesis.

6.1 Thesis Conclusion

Compressed Sensing (CS) has enabled to accelerate the acquisition time of multi-slice

MRI uing some non-linear reconstuction tecbniques Aom even one-tenth of the random

Nlquist samples. This scan time has bee,n firther reduced through iCS by exploiting the

strong inter-slice correlation of multi-slice MRI, from an even lower under-sampliag ratio

compared to CS. In this thesis, a number of efficie,nt iCSMRI reconstnrction techniques

are proposed based on highly under-sampled data and the most efficie,nt and novel

interpolation approaches.

In this thesis, first a novel FiCS technique [09] is discussed which is impleinented using

both lD and 2D-ry-RDU schemes. The novel interpolation approach of FiCS uses 5%

average sarrples. Although, the ID-VRDU mask is more realistic from the current

hardware point of view but 2D-VRDU is best suitable to represent the original k-space

data of multi-slice MRI. The FiCS tecbnique reduces the average under-sr-Fling ratio to

almost half, compared to the prrevious tccbniques, with erren improved image quallty and

information conte,nt. The FiCS also beaB prwious interpolation techniques in terms of

computational complexity and processing time.
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The EiCS technique [20] discussed in this thesis uses differe,nt Radial ,rdsr-samfling

patterns along with a nEw interpolation approach. The EiCS technique has an edge that its

Radial under-sampling ap,proach is more practical from the current hardware point of

view along with lesser motion se,nsitivity compared to the 2D-VRDU under-sampling

approach adopted in FiCS. EiCS exploits the Radial under-sampling pattern in its three-

step interpolation prccess to get interpolated slices with the maximum number of samples

and by using a lower undcr-sampling ratio compared to FiCS, with erren sharper

reconstntcted images, no blurred edges, and improved qualitative and quantitative

assessment.

The Mod-FiCS technique introduced in this thesis uses Gaussian-Radial rr6ff-gampling

approach and outperforms FiCS, iCS, and CS on all the assessment parameters. Similarly,

the reconsttrction images of Mod-FiCS are also sharper and clear compared to the rest of

all. The Mod-FiCS has the same computational cost and under-sampling ratio as FiCS

and EiCS with erren improved results.

The new sarrpling and fast interpolation shategies of FiCS, EiCS, and Mod-FiCS have

not only simplified the interpolation approach but also preserves the original information

resulting in improved results both qualitatively and quantitatively. These techniques not

only preserue the original information in wery slice but also give consistency in the slice-

wise image qualrty. The improved interpolation technique adopted in FiCS, EiCS, and

Mod-FiCS is computationally efficient with only a set difference and addition operations.

Thus, the computational complexity of these techniques is O(n) which is much lower than

its preceding iCS tecbniques and the,refore has reduced the processing time up to five

times.



6.2 Directions for Future lVork

Based on the novel interpolation ideas and iCS techniques presented in this thesis there

are sweral future directions, some of which are discussedbelow:

The proposed techniques have been imple,mented using static multi-slice datasets.

Ihese techniques can also be extended to dpamic MRI datasets to accelerate the

acquisition process with imFroved image quallty and motion robustness, with

raspiration and without respiratory motion.

The computational efficiency achiwed using the proposed tecbniques can also be

extended to the pMRI fel high spatial and temporal resolution.

The Gaussian-Radial undm-sampling sche,me has been generated using the FFT

approach which can be improved by imple'menting it using the NUFFT method.

The proposed iCS techniques can also be implemented to recover the CS video

frames, as the consecutive video frames are also highly correlated like multi-slice

MRI datasets.

The NCG, CS reconsEuction technique can also be upgraded for wen more

improved results and reduced computational load.

The Golde,n-Angle (GA) Radial under-sarrpling approach increases the

computatiolral cost tbrough the NUFFT operation, in the forward as well as in the

backrnard direction during each iteration. This issue can be resolved using some

parallel computational tecbniques.

The primary focus of this thesis is to reduce the scan time of multi-slice CSMRI

by acquiring the highest under-somFled slices and reconstnrcting the orieinal

datasets.



. The computational time can be reduced through parallel progranrming concepts

along with GPU which will make it feasible for clinical applications.
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