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Abstract

Lung cancer has become a major threat to human health worldwide. Early detection

of lung canoer can increase the survival rate of the patient by starting the treatment at the

right time. Malignancy detection and classification in computed tomography (CT) images

is a very tedious and time-consuming task for radiologists, inspiring researchers to develop

enhanced techniques for computer-aided diagnosis (CAD). It is observed that the available

detection and classification techniques have many false positives and false negatives

becuse the detection algorithms have high sensitivity for lesions. Therefore, some non-

lesion structures (e.g., blood vessels) are labelled as lesion wrongly in initial identification

step. The objective of this dissertation is to achieve a better diagnosis of lung cancer using

enhanced tumour/nodule classification techniques, such as; transfer learning, deep

learning, ensemble learning, and medical image fusion with novel feature extraction

techniques.

This thesis presents various novel lung nodules malignancy classification techniques

for a CAD system. A transferable textuie CNN is proposed for efficient lung nodule

classification in which an energy layer @L) is introduced to extract the texture feature map

from the convolutional layer. Incorporating EL reduces the proposed network learnable

parameters, which further reduces the computational complexity and memory

requircments. The pre-trained model of proposed texture CNN is also utilized to tackle the

smaller medical image dataset classification issues using transfer learning methodology.

The decision level fusion based on deep featurc selection is also proposed to enhance

the performance ofthe CAD system for lungs nodule classification in CT images. First, the

performance of AdaBoostM2 and SVM classifiers is evaluated using deep features from



eight state-of-the-art tansferable DCNN architectures, which are; VGG-16, VGG-19,

GoogleNet, variants of the residual network (ResNet-l8, ResNet-SO, and ResNet-l0l)'

Inception-v3, and InceptionResNet-V2. After that, the optimal deep features are selected

from the DCNNs by identiffing the optimal layers, improving classification effrciency.

Based on various performance evaluation parameters, it is evident that the proposed lung

nodule classification methodologies outperform the state-of-the-art techniques on different

datasets, such as; LIDC-IDRI and LUNGx challenge'
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Chapter 1. Introduction

1.1 Introduction

Lung cancer is one of the major threats to human health worldwide and is a leading

cause of cancer-related deaths. It was reported in 2018 by the world health organization

that approximately 9.6 million people died due to cancer all over the world during the last

five years, out of which more than 1.7 million people died due to lung cancer. The death

rate is 18% of the total cancer-related deaths. In the meantime, more than fwo million lung

cancer cases were reported during the year 2018. Moreover, as per the report published by

the American cancer society, the highest death rate and survival rate is 260/o and l8Yo,

respectively [-3]. The only reason for the low survival rate is diagnosis of cancer in

advance stages because the symptoms at early stages are not prominent. Therefore, early

diagnostics of lung cancer is of utnost importance to increase the suruival rate. Lung

cancer is investigated by screening radiograph images, i.e., X-ray, CT or magnetic

resonance image (NRD. Usually, manual scrcening is used to investigate the CT scans

slice by slice, which is time-consuming and tedious for radiologists. It requires very high

concentration and skill. Furthennore, less experienced radiologists have highly variable

detection rates, leading to an increase the false positive detection, especially in subtle cases,

when interpretation highly depends on previous experience. Therefore, a conceivable

solution to minimize this load on the radiologists is using CAD systems as a second

opinion. Some of the studies in the past have shown an improvement in radiologists

performance through the use of CAD systems [a]. The CAD systems utilize pattern

recognition and machine learning techniques to identifr cancerous tissues quicker and



more accurately. These techniques are logistic rcgression [5], SVM [5], curvelet fiansform

and multiJayer percepfion [7], discrete AdaBoost, and random forest with a heterogeneous

feature set composed of geometic [8, 9] and CNNs[9, l0]' To dak, different CAD syst€ms

such as; neural network-based [1 l, 12] and fiaditional models [4, 13] ale proPosed to detect

and classi$ tumours in medical images.

The basic scheme of a classic cAD system includes; image prc-processing,

segmentation, feature exfiaction, and training of a suitable classifier. Feature extraction is

the key step of any CAD syst€m. The extracted features may be handcrafted or deep

features. The handcrafted features include textuie, shape, size (volume or diameter), the

nodule volume growth rate with time, and morphology. Recently, the texture features

achieved considerable attention in image classification [la] and for lesion classification in

medical images U5, 16]. In the meantime, deep learning techniques such as CNNs have

been utilized with promising results for pulmonary nodule classification 12,ll,12,l7l.

The convolutional layers of CNNs are used to extact image features. A typical CNN can

explore the image texture features most eflicimtly, without altering their architecture,

because the whole object and its complex features are not very useful in texture analysis

compared to the repeated patterns of lower complexity. Therefore, we intended to create a

CNN capable of learning texture features and then perform lung nodule classification in

CT images as used by Andrearczyk and Paul for texture classification [18]. We proposed

a transferable texture CNN for lung nodule classification by incorporating an energy layer

(EL) as a texture descriptor. The texturp features are learned during the training process by

enabling forward and backruard propagation.



Although the DCNNs show enhancement in nahrral image classification in the

ImageNet large scale visual recognition challenge (ILSVRC) dataset, their performance

relies on extensive labeled data for supervised training. The deficiency of labeled medical

images decreases the adaption of DCNNs. To tackle this issue, the transfer learning

technique is adopted tl9l. In this research, we also utilized the pre-trained model of our

proposed texture CNN through transfer learning technique for malignancy classification

lung nodule in a small medical image dataset.

Fusion techniques, such as feature fusion and decision fusion, are also proposed to

enhance CAD systems. These fusion techniques utilize the geometrical size, densities,

texture, shape, and appearance features to improve the classification perfonnance of CAD

systems l2}-22l.Furthermorc, researchers are also utilizing the handcrafted features along

with the deep feature for medical diagnostics. Wang et al. proposed a fusion technique to

fuse the deep and handcrafted features such as; geometric, intensity, contrast to classiff the

lung nodules in chest X-ray images p3l. Zhng et al. proposed a DCNN to enhance the

performance of the proposed model by incorporating a feature fusion technique 1241. ln

this thesis, we used decision fusion based on the probability score of different classifiers to

enhance the classification of the CAD system. We select the optimal deep features from

state-of-the-art DCNNs, and then lung nodule classification is done by fraining

AdaBoostM2 and SVM classifrers.



1.2 ResearchObjectives

Following are the main objectives of our research:

o To improve the existing CAD system for detection and classification of lungs tumour

using the latest pattern recognition and machine learning techniques'

o Development, testing, and evaluation of proposed solution for CAD system which will

support radiologists to avoid misdiagrrosis because of the fatigue, eyesfiain' or lack of

experience.

o In particular, the goal is to design a classifier for cAD system which can correctly

classi$ the lungs cancenous tissues from the CT image dataset' Moreover, propose a

solution that will improve the overall classification accuracy, sensitivity, specificity.

The goal will be achieved using some advanced techniques like:

reduction of artifacts, ffid improving image quality in terms of brightness,

contast, and exposure enhancement.

classification Performance.

exEacted from the pre-tained deep network'

classifi cation accuracy.

fine-tuning pre-tained CNN models.

4



1.3 Main Contribution

Lung cancer has become a major threat to human health worldwide. Early detection

of lung cancer can increase the survival rate of the patient by starting the treafinent at the

right time. The objective of this research is to improve the diagnosis of lung cancer using

enhanced tumour or nodule classification techniques. This dissertation describes the

developmen! testing, and evaluation of various lung nodule malignancy classification

techniques that will support radiologists in examining radiography scans, such as; CT, X-

ray, or MRI. The main con6ibution of this work is improvement in the malignancy

classification of lung nodules using deep learning, tansfer learning, ensemble learning,

and medical image fusion, which are discussed below:

We have proposed a tansferable texture CNN for effrcient lung nodule classification

in CT images. The overall proposed architecture consists of only nine layers for automatic

feature extraction and malignancy classification of a lung nodule as benign or malignant.

An EL is incorporarcd afterthe last convolution layer ofthe proposed texture network. The

EL extracts the texture featuies from the convolutional layer. Incorporating EL reduces the

learnable parameters, which further reduces the computational complexity and memory

requirements without degrading the classification performance. The texture features are

learned through fonuard and backruard propagation during the training process. The

proposed texture network is tested successfully on the lung image database consortium and

image database resource initiative (LIDC-IDRI) dataset for malignancy classification.

Moreover, the effectiveness of the proposed model is also tested by classiffing the

handwritten digits. Furthermore, the smaller dataset classification problems are also



investigated using the transfer learning (TL) technique on the pre-trained model of

proposed texture CNN.

Secondly, we proposed a decision level fusion scheme to enhance the classification

performance of the CAD system for lungs nodule classification in CT images. The

performance of AdaBoostM2 and SVM algorithms is evaluated using deep features from

eight state-of-the-art transferable DCNN architectures which are: VGG-16, VGG-19,

Inception-V3, GoogleNet, ResNet-I8, ResNet-5O, ResNet-l0l and InceptionResNet-V2.

After that, the optimal deep features are selected from the DCNNs by identiffing the

optimal layers to improve the classification efflrciency.

The significant contributions of this thesis ane as follows:

o We proposed the texture CNN for the lung nodule classification problem and

evaluated it for two medical image datasas; LIDC-IDRI and LUNGx challenge.

The classification accuracy was achieved up to 96.690/o for the LIDC-IDRI dataset.

o The EL is incorporated in the proposed texturrc CNN, which pneserves the texture

information, reduces the output vector size, and learns the parameters during

forward and backnard propagation and hence, increases the overall learning

capability of the model.

o We also proposed the Tl,-based model, which utilizes LIDC-IDRI as the source

task and the LUNGx challenge dataset as the target task. The classification accuracy

for the LUNGx challenge dataset was 86.14% without TL, which was further

improved to g[.glyousing the proposed Tl--based model.

o Optimum deep features selection from state-of-the-art DCNN to improve lung

nodule classification.



Classifier selection based on the performance of SVM and AdaBoostM2 on the

LLJNGx challenge dataset.

The lung nodule classification was performed on deep features from state-of-the-

art DCNN models such as : VGG- I 6, VGG- I 9, ResNet- I 8, ResNet-5 0, ResNet- I 0 l,

GoogLeNet, InceptionResNet-V2 and Inception-V3. The decision level fusion

technique is proposed using top-performing DCNNs such as GoogLeNet, ResNet-

101, and Inception-V3.

Comprehensive performance evaluation of SVM and AdaBoostM2 classifiers

based on deep features on LUNGx challenge and LLJNA datrset.

1.4 Thesis Organization

The arrangement of the work presented in this thesis is as follows:

Chapter 1 describes the outline of this thesis, containing an innoduction of lung cancer,

its detection and classification issues, and the research gaps. After that, the research

objectives, main confibutions, and hlpothesis are defined clearly.

Chapter 2 elaborates on the literature review regarding lung nodule detection and

classification. Furthermore, the architectures of different state-of-the-art models are

presented, which are contemporary research related to our work and utilized in proposed

techniques. The evaluation matrices used for the evaluation of the proposed method are

also discussed in this chapter.

Chapter 3 describes the eflicient lung nodule classification using transferable texture CNN

and tansfer learning for small lung datasets. Furthermore, the dataset is also described in

this chapter. The proposed transferable texture CNN and transfer learning-based techniques

were tested on LIDC-IDRI and LUNGx databases.



Chapter 4 includes the decision fusion technique for lung nodule classification' The

optimal deep feature selection and performance evaluation of eight state-of-the-artDCNN

is also discussed. The LUNGx challenge dataset is used for the performance evaluation'

Chapter 5 describes the conclusion of this dissertation by highlighting the outcomes of the

research work, which justifies our significant contribution. Morcover, it also suggests the

guidelines for future research work in this field'



Chapter 2. Literature Review

Cancer is a broad term for a class of diseases characterized by abnormal cells growth,

which also invades the healthy cells in the body and forms a solid tumour' Normally,

human cells grow and divide to form new cells as the body needs them. The cells grow old

or become damaged, die, and the new cells take their place' Whereas, when cancer

develops, this orderly prooess breaks down. As the cells become more and more abnormal,

old or damaged cells survive when they should die, and the new cells form when they are

not needed. The growth of exfia cells are masses of tissue that form solid tumours. A

tumour can be benign or malignant. A benign tumour is non-cancerous, usually localized

and does not spread to other parts of the body. Most benign tumours respond well to

treafinent. However, if left unteated, some benign tumours can grow large and lead to

serious diseases because of their size. Cancerous tumours are malignant and can spread

into or invade nearby tissues [25]. The size of the tumour varies with time from one

millimeter to several centimeters (>8cm) [26]. If the tumour size is less than or equal to 30

mm in diameter, it is normally called a nodule. If the nodule is formed in the lungs, it is

called the pulmonary nodule l27l.The lung nodules with dimensions greater than 30 mm

are known as lung masses with a maximum probability of benign cancerous 12,281.

Lung cancer is a leading cause of cancer-related deaths with a very low survival rate.

The CAD systems are designed to increase the nodule detection rate, reduce the false

positive rate and minimize workload on radiologists by assisting in a second opinion in the

screening process of medical images [29]. The first CAD system was developed in the late

1980s to detect lung nodule, which was not appealing due to the unavailability of adequate



computational resources for the implernentation of advanced image proc'essing techniques

[30]. The performance of computer-based image analysis and decision support systems got

a higlr boost after the enhancement in computational resources' However, detecting and

classiffing small-sized lesion growttr at an early stage is a big challenge forthe researchers'

These small lesions cannot be detected by radiograph images, and by the time these are

detected, it is too late for the patient.

Moreover, the available techniques for detection and classification have many false

positives and false negatives because the detection algorithms have high sensitivity for

lesions. He,nce, some non-lesion s0ucfires (for example, blood vessels) are labeled as

nodules inevitably. Due to these challenges, CAD-based lung nodule detection and

classification has become an active research field. Several efforts have been made to

investigate these challenges. Various lung nodule classification techniques ar€ proposed in

the literature to improve existing CAD systems. These techniques can be divided into five

major groups explained below.

2.1 Traditional Methods for Lung Nodule classification

The basic scheme of the taditional model for lung nodule classification is shown in

Fig. 2.1 [31]. The taditional models consist of the following basic steps: pre-processing,

nodule detection using segmentation, feature extraction, feature selection, and

classification.

Medical
Images

Fig.2.l. Traditional Model for LungNodule Classification System
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Researchers are improving the performance of cAD systems by enhancing these steps' The

pre-processing includes de-noising and image enhancement techniques. Medical images

are often deteriorated by noise due to various sources of interference during image

acquisition. The improvement in visual qualrty and appearance of the images is done by

applying image enhancement atgorithms. The inappropriate image enhancement

application may also increase noise which may suppress minor details and edge sharpness'

Thercfore, the researchers are doing efforts to use an appropriat€ pre-processing technique'

Schilham et al. used local normalization filtering to remove noise and a global equalization

for contrast enhancement in their proposed CAD system [32]. Emre Dandil introduced the

image enhancement of medical images to prevent false positive results. In this work,

unnecessary noise was removed first by applyrng the median filter. The unnecessary grains

and contrast differences wene removed by applying the histogram equalization technique.

Furthermore, a Laplacian filter was used to sharpen the contours [33]. In this work, we

used adaptive histogram equalization techniques as a pre-processing step to enhance ttre

lung nodules images.

The detection of a nodule is a very important step before their segmentation. As lung

nodules have helical and circular structures, circular object detection algorithms like

circular Hough transform are being used for lung nodule detection [33]. Moreover' some

other techniques like region of interest (ROI) extraction using thresholding can be used to

detect the lung nodule. For example, lvlasood et al. adopted the thresholding technique to

detect lung nodules and extracted the ROI around the nodule [3a]. The segme,ntation is the

next step after nodule detection. Researchers are utilizing different techniques for the

segmentation ofnodules. Ivlasood et al. adopted the ROl-based segmentation [34], whereas,
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in [33], self-organizing maps [35] were proposed for the lung nodule segmentation' Han et

al. presented the vector quantization techniques for accurate segmentation of lung nodules

t36]. In this worlg we extacted the nodule patches by utilizing the RoI of the required

masses.

The salient feature extraction and selection is critical for any classification system. The

extracted feafilps consist of shape, size (diameter or volume), motphology, texture, and

the volume growttr rate of the nodule. Researchers utilize these featuiEs to improve the

classification task. For example, the shape feature analysis is used by El-Baz et al. for lung

nodule diagnostic. The images were segmented with the active contour method, and the

texture features of lung nodules were extracted using rubber band staightening transform

[37]. The texture features have attained great attention in image classification [1a] and

lesion classification for medical images [15, 16, 38, 39]. Descriptors of gray-level co-

occurence matix, discrete wavelet tansform, [40], local binary pattern (LBP) [4U,

higher-order specta, and histogram of oriented gradients GIOG) l42larewidely used for

texture feature representation in medical image processing [a3]. In [33], one hundred

twenty-three salient features were extracted, and principal component analysis [a4] is

applied for featurre reduction. These features include mean, standard dwiation, vfiiance,

entopy, skewness, kurtosis, histogfam, sharpness, convexity, circularity, texture, and

statistical featuies [45], [46], [47], [48]. In addition, Narayanan et al' [49], [50] also

proposed an optimized feature selection-based clustering technique for lung nodules using

intensity, gradient, and geometric features.

Selecting a suitable classifier is another important step of a CAD system. The most

commonlyused classifiers a.re; linear logistic rcgression, random forcst, k-nearestneighbor
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(ld{N), extreme learning machine (ELM), LDA, AdaBoos! and SVM [5]-53]' In this

thesis, we suggested a suitable classifier among the LDA, AdaBoostIVI2, and SVM based

on performance evaluation results.

2.2 AI{N and cNN Based Nodule classification Techniques

ANN is a computational system designed with inspiration from the biological network

of the animal brain. It consists of connected nodes, which are the model of neurons in the

brain. Based on their leaming capability, various lung nodule detection and classification

techniques are proposed, such as; YSP Chiou et al. proposed an ANN-based system for

lung nodule detection and classification in late 1993 t541. Penedo et al. proposed two-phase

ANN-based lung nodule detection and classification techniques. During the first phase, one

Al.lN performs the detection of a nodule in terms of feature space, wheneas, in the next

phase, the other ANN performs a classification task [55]. Ashwin et al. proposed an ANN-

based technique for effrcient and reliable lung nodule diagnosis. The ANN was trained and

tested after pre-processing of CT and radio Saph images [56]. Many researchers utilized

the ANN as a classifier for the classification of lung nodules [57-59].

An ANN can receive only a lD feature map at its input, whereas the CNNs can take a

2D image or 3D voxel input for the object classification. The CNNs are the deep learning

algorithms ttrat take the input image and learn the weights and biases for various objects to

detect and classiS the objects using A},IN at the last layer. The main idea of CNN for

pattern recognition is named Neocognifion, which was introduced by Fukushima in 1980.

The Neocognitron included nro basic layers, which are the convolutional and down-

sampling layers. The convolutional layer includes filters, whereas the down-sampling layer

computes average activation and helps to classifr the object [60] correctly. After that, Yann
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LeCun et al. used back-propagation in CNN for learning the coeffrcients of convolutional

filters directly from the input image [61]. The first taditional gradient-based multi-layered

CNN, named LeNet-5, was proposed by Yann LeCun et al. in 1998 for handunitten digits

classification [62]. The CNNs got a great bnakthrough after applying GPUs by Alex

Krizhevsky et al. for object recognition in the ImageNet dataset. Their proposed AlexNet

was implemented on two GTX 580 GPUs which won the ILSVRC 2012 with atop-S error

rate of 15.3o/o 163,641. After that, various DCNN architectures, such as; VGG-Net [65],

GoogleNet [66], ResNet [67] and IncepionNet t68l achieved promising results on various

image classification benchmarks like MS COCO [69], ILSVRC 2012-2017 [64, 70], and

CIFAR-I0 [7u.

The continuous achievements of DCNNs in image classification inspired the

researchers to utilize for medical diagnostic l7z-Tsl.Researchers proposed DCNNs based

novel techniques for malignancy detection in lungs, such as; R Majidpourkhoei proposed

a LeNet based architecture that automatically learns the image features [76]. Shen et al.

proposed a multi-crop CNN MC-CNN) for nodule classification in which salient

information of nodules was acquired by cropping specific regions of convolutional feature

maps and then max-pooled at multiple stages I l]. Zhang et al. proposed an automated 3D

DCNN for detecting and classi$ing lung nodules [77]. 7hu et al. proposed a fully

automated 3D DCNN for lungnodule detection and classification [78]. Recently, Wang et

al. proposed a novel DCNN architecture to classiS pulmonary nodules in the LUNGx

challenge datas*. The classification accuracy, and AUC score were 90.38% wrd94.48o/o,

respectively [79]. Cao et al. proposed a dual-stage DCNN for lung nodule detestion. The
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first stage is for lung nodule detection, whereas the second stage is used for false positive

reduction [80].

Similarly, Wei Li et al. proposed a DCNN for the lung nodule classification. They

utilized two parallel convolutional layers to exfiact the feature maps' merged at the first

convolutional layer [67]. These DCNN are computationally complex architectures and take

more taining time due to a large number of learnable parameters. In this thesis, we

proposed a tansferable texture CNN with a lesser number of parameters that utilized the

texturc energy for efficient lung nodule classification'

2.3 Transfer Learning-Based Nodule Classilication Techniques

The performance of DCNN essentially relies on extensive labeled data for supervised

fiaining. The deficiency of labeled medical image dataset slowdowns the adaption of CNN

during the taining and rcsting process. Meanwhile, the manual annotation and labeling of

every image to consgnrct a massive medical fiaining database is painful and prohibitive.

Second, the training of deep CNN requires large memory and computational resources.

The lack of such resouroes increases the training time of DCNN. Third, the training of

DCNN is often complicated due to convergence and overfitting issues which require

continuous modification in the learning parameters or architecture of the network to assure

that all the layers are learning with approximately equal speed. To tackle these issues,

researchers are utilizing different learning techniques, such as; transfer learning and fine-

tuning tSl-83]. The objective of TL is to transfer knowledge from the source to target

domains [84]. As M. Oquab et al. performed training on the source task (ImageNet

database), then transfened the pre-trained parameters of CNN to the target task (PASCAL

VOC dataset) for object classification [85]. In this thesis, we ernployed the same strategy
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using our pre-trained texture cNN model to classis the pulmonary nodule in a small

LUNGx challenge database.

2.4 Fusion Based Techniques for Nodule classification

The fusion techniques, such as; feature fusion [86], multi-model image fusion [87'

881, and decision fusion, are used to improve the image quality and provide promising

results, which motivate the rpsearchers to utilize these techniques in medical diagnostics'

Literature sfrows that various fusion techniques are proposed for medical images to

improve the classification accuracy of pulmonary nodules' For example, multi-modal

image fusion is employed in medical image processing, in which the medical images from

two different modalities, such as; PET - CT, MRI - CT, and MRI - PET, are fused to

improve the medical diagnosis tS9-92]. The feature fusion techniques are also used to

enhance the performance of medical diagnostics, such as; Khan et al' proposed a lung

cancer classification technique which performed the serial canonical correlated-based

fusion of texture, point, and geometric features to classifi pulmonary cancer in the Kaggle

challenge database [93]. Wang et al. proposed a deep feature fusion scheme to classifr the

pulmonary nodules in chest radiograph images by fusing the deep features from pre-tained

AlexNet and handcraft features, like; geomefiic featuies, contast, intensity, along withthe

first order and second-order filter features [23]. Sridar et al. proposed a decision-based

fusion technique for fetal ultrasound images plane classification and achieved an accuracy

score of 92.00o/o [9a]. Xie et al. proposed a decision level fusion technique for automatic

pulmonary nodule classification on the LIDC-IDRI datrset. They trained AdaBoosted

back-propagation ANN on shape, texture, and deep features separately and then performed

the decision fusion on three outcomes [95]. In this thesis, we used the decision fusion
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technique for lung nodule classification in cT images. we showed that the proposed fusion

techniques perform well as compared to state-of-the-art techniques'

2.5 State-of-the-artDCNNs

The CNNs got a great breakttrrough after applying GPUs in object recognition and

classification. Various DCNN architectures (AlexNet, VGG-Net, GoogleNet, Residual

Networls (ResNets) [67] ,Inception [96], Xception [97] and DenseNetworks [98,99]) are

proposed to improve the classification performance. These architectures have shown

promising results in segmentation, recognition, and classification, which inspired us to

utilize the state-of-the-art DCNNs. In our rcsearch work, we utilized Alexl'let, VGG16,

vcclg, GoogleNet, ResNetlS, ResNet50, ResNetlol, Inception-v3, and

InceptionResNet-V2 which are briefly discussed below'

2.5.1 YGG-Net

The VGG-Net architecture was proposed by the visual geometry group (VGG) team

for ILSVRC ZOl4 and won this challenge. It is designed by increasing the depth of the

available CNN model up to sixteen for VGG-16 and nineteen for VGG-19, as shown in

Fig.2.2

t7



5fir66Y256 28x2Ex5l2 l4xl4x5l2 
..-..]:-'it'n n_ni-r

fffffiBt
Dcpth = 64 DePnh = 123

3x3 Conv 3x3 Conv

Convl-l Conv2-l

Convl 2 Conv2]

Thrce Additional Convolution-
Laycrs of VGCrl9

iiilti
Depth = 256 Depth = 512 Dcpth = 512 Sizc = lt()95 Size = 1(X)0

3x3 Conv 3x3 Conv 3x3 Conv Softnax

Conv3-l Conv4-l Conv5-l

Conv3 2 Conv4-2 Conv5 2

.....-c-*:-1--.1-....--..-c-og.l-.L-.....--c-91'J-l--.1.-.,

i Conv3-4 Conv4-4 Conv5-4 i

Fig.2.2.Architecture of VGG-16 and VGG-19

VGG-Net investigates the performance of CNN by increasing its depth. The architectural

comparison of vGG-16 and vGG-19 is described in Table 2.1.

Table 2.1. Layer-wise architecture details of VGG-15 and VGG-19

The architecfi[e of VGG-19 has l44million Parameters, whereas VGG-16 has 138

million parameters. The vGG-16 has 13 convolutional layers, 5 max-pooling layers (2 x

2), and truo fully connected layers. The output is a linear layer with a softma:r activation

LrycrNrmc lnput Sizc Output Sizc vGG-r5 vGG-19

Convl 224x224 ll2xll? 3 x3,64 Two Iayers, Maxpool 3 x 3,64 Two Layers. Ma<Pool

C.onv2 ll?x ll2 56x56 3 x 3, l2E Two Lryers, Margool 3 x 3, 128 Two Layers, Magool

Conv3 55x56 28x28 3 x3,256 Tluee [ayers, MaxPool 3 x 3,256 ForuLayers, MaxPool

Conv4 2tx28 14x14 3 x 3,512 Threc Laycrs, MotPool 3 x 3, 512 Four Layers, MaxPool

Conv5 14x 14 7x7 3 x 3,512 Thrcc lapts, MorPool 3 x 3, 512 Four [,ayers, Maryool

FC6 7x7x5l2 4096 First Fully Conncctcd LaYer Fint Fully Connected LaYer

FC7 4096 4096 2d Fully Connccted laYer 2d Fully Conncctcd LaYo

FC8 4096 4096 Iast Fully Connectcd LaYcr Last Fully Connected LaYer

Softmot 1000 1000 Classificmion layer (Softmo<) Classifi ccion layer (Softnax)
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function. All the convolution layers have a ReLU activation function, and dropout

regularization is used in fully connected layers. The architecture of VGG-19 is like the

VGG-16, except for three additional convolution layers, which are incorporated in

convolution blocks named Conv3, Conv4, and Conv5, as shown in Fig' 2'2 andTable 2'l'

In our research work, we extracted the deep features from the last fully connected layers of

both networks. The output from FC6 - FCg layers of both variants can be computed using

the following equations.

Ye = 6(WoYs+ 86)

Yt = o(WtY6+ 87)

Ys= o(WeYt+Bs)

where fl, denotes the output of the kth layer'w1i arld By atethe weights of the kth layer.

The output feature map size of FCG and FC7 is 4,095. The deep features from such layers

can be used for the classification task. In this wok, the deep features are extacted from

FC5 during forward propagation of the input through the pre-trained VGG-Net'

2.5.2 GoogleNet

The state-of-the-art CNN architecture named GoogleNet was proposed for the

ILSVRC 2014 challenge. It achieved a top-5 classification elror of 5.5% and placed at the

first position of this challengs. The GoogleNet is also known as inception because it

introduces a new module named inception block. This block concatenates kernels of

various sizes into one kernel. The structure of the inception block is shown in Fig. 2.3.

(2.r)

Q.2)

Q.3)
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Fig.2.3. Structure of inception block

It consists of four concurrent branches. The first tfuee branches use convolutional layers

with kernel sizes of 1 x 1, 3 x 3, and 5 x 5. The complexity of this model is reduced by

convolving the two mid branches with a window size of 1 x 1 to the input channels. The

fourth branch is a 1 X 1, convolutional layer, which drives the 3 x 3 max-pooling layer.

The relevant padding is used by all four branches to keep the similar height and width of

the input and output. The output of each branch is concatenated to develop the final output

of the inception block. The basic architecture of GoogleNet is shown in Fig. 2.4, which

has approximately 5.8 million parameters.

Fig.2.4. Basic architecture of GoogleNet

The entire architectgre has nine inception blocks (each block has six convolutional layers),

two convolutional layers of 7 x7 and 3 x 3, one convolutional layer of size 1x 1(for

dimension reduction), four max-pooling layers, two normalization layers, one average



pooling, and one FC layer. All convolutional layers utilize the ReLU activation function,

and dropout regularization is applied in the FC layer. The Softmur activation function is

used in the outPut laYer.

2.5.3 Inception-V3

Inception-V3 is the third version of the famous GoogleNet architecture, which was

trained with one million training images of one thousand classes of the ImageNet dataset'

In Inception-V3, an inception module concatenates multiple sized convolutional kernels in

one kernel. This design reduces the number of learnable parameters, which reduces the

complexity of the network. The block diagram of inception-v3 is shown in Fig. 2.5.

Fig. 2.5. Basic architecture of Inception-V3

2.5.4 ResNet

The basic idea of ResNet is that every layer of the architecture learns from residual

functions with reference to its input layer. In this way, the architecture is easily optimized

and gains significant accuracy. The ResNet architecture was proposed with different

variants in the ILSVRC-2015 competition and placed first. In this work, we utilized pre-

trained models of three variants which are ResNet-I8, ResNet-SO, and ResNet-I0l. The

basic architectures of all the variants are given nTableZ.2'
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Table 2.2. Architectur€s of ResNet-I8, ResNet-50 and ResNet-lol

R:rNct-S0 RclNct-l01
Lryer Nrmc Output Sizc RcrNct-lt

Convl ll2xll2 7 x7,64, Sride 2'
3 x 3 Morpool, SEidG 2

7 x7,64,Stridc2,
3 x 3 Mutpool, Stride 2

7 x7,64,Stide2.
3 x 3 Morpool, Stridc 2

Conv2 x 56x56 t3x3, frl*,
[1 x 1, 64.|

llxe, 641x3
[1 x 1, 256]

Ex1, 541
ltx3. 641x3
[r x r, 2s6]

Conv3-x 28x?t I3X 3, itrZt,,
11 x 1. 1281

ls, a, lzllxa
[r x r, slzl

11 x 1. L281

lsra,128lxa
[1 x 1, Stzl

Conv4_x 14x14
[3 x l: tri21"

l'1x 1, 256'
ls x r, zs6
[r x r, Loz4

x6
'1 x 1, 256'
3x3, zSG

L1x 1. 1,024
x23

Conv5_x 7x7
[3 x l: lll] "

11x 1. sLz
le, e, sLz
Lr x r, 2,048

x3
11x1, 5121

laxs, srz lxr
[1x 1, 2,O48J

Pool lxlx5l2 Average Pool Average Pool Average Pool

FC 512 x 1,000 Fully Conncctcd LaYer Fully C.onnected LaYcr Fully Connected LaYer

Sofuirq 1,000 Classification lalcr Classification laYcr Classification laYer

The input size is 224 x 224, whaeas the first convolution layer (7 x 7 ,64 Stride 2) and

the last three layers (pooling, FC, and softmax) are fixed for all three discussed

architectures. The depth ofthe network is varied by increasing inner convolution layers'

2.5.5 InceptionResNet-V2

Inception-ResNet-V2 is the variant of krception-V3 and it also integrates some ideas

from ResNet. In InceptionResNet-V2 with the batch normalization is utilized only on the

top of the naditional layers. The residual modules are engaged in such a manner that the

number of inception blocks and the depth of the network are increased. The basic

architecture of InceptionResNet-V2 is shown in Fig' 2'6'

22



+o
Softmax

Size = 1000

Fig. 2.6. Architecture of InceptionResNet-V2'

The basic architecture consists of one stem block (which has six convolution blocls and

one max pool layers), three different tlpes of inception blocks, which are Inception-resnet-

A, Inception-resnet-B, and Inception-resnet-C (Inception-resnet-A has five inception

modules, each has seven convolution blocks, Inception-resnet-B has ten inception

modules, each has five convolution block, Inception-rcsnet-C has five inception modules,

each has fourconvolutionblock), two reduction blocks with different convolutional layers,

one average pool, and one FC layer. The Softmur function is used in the output layer'

2.6 PerformanceEvaluationMetrics

In this thesis, we considered Class 0 as benign and class I as malignant for binary

classification problems. The perfonnance of the binary classification model is described

by a confusion matrix shown in Table 2.3.

Table 2.3. Confusion matix for two classes

Acturl Clru
Prtdictcd Chrr

Poritivc (Mrlignrnt) Ncgrtivc @cnign)

Clrrr l: Acnral Positive (Mdigtant) TP FN

Clru 0: Actual Ncgative (BcniCt) FP TN

For the above confusion matrix, tnre positive CfP) stat€s that the assessment of experts and

classifier prediction is positive, whereas true negative CIN) states that the assessment of
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experts and classifier prediction is negative. Similarly, false positive (FP) states that the

assessment of experts is negative and classifier predicted as positive, whereas' false

negative (FN) states that the assessment of experts is positive and classifier prediction is

negative. The quantitative performance of the proposed mahod is determined by different

evaluation matrices, like; Accuracy, Gmean, Precision, Recall, Specificity, Enor Rate,

receiver operating characteristic cutYe (ROC), and area under ROC (AUC)'

Accuracy: Accuracy is the statistical measup to evaluate the classifier model' It

elaborates how well a classifier predicts. It is calculated using the following expression:

(rP + TN)
Acanracy

QP+TN+FP+FN) Q.4)

Precision: It is the positive predictive value and is mathematically defined as:

Ge1precision =ffi

Specificity: Specificity is the measure of the true negative rate. It is the percentage

of actual negative cases which are accurately predicted by the classifier and can be

calculated using the following equation:

Specificity = -gNI-'(f F Q.6)

Sensitivity: Sensitivity or recall/tnre positive rate is the measure of the total

percentage of actual positive cases corectly identified by the algorithm. Therefore, it

measures the benign or malignant nodules correctly identified by the algorithm' It is

calculated using the following equation:

ffP)
Sensitivity =dffi

(2.s)

Q.7)



Error rate: The error rate of a classifier is defined by the following expression:

(FP + FIv)
Error rate = QP+rN+FP+FlI)

2.7 SummarY

In this chapter, we have discussed the importance ofthe CAD system for lung Gancer

detection and literature review of different lung nodules classification techniques used in

medical diagnostics. Furthermore, different state-of-the-art DCNNs utilized in this thesis

are also discussed along with their architecn[es. Finally, different performance evaluation

metrics are discussed which are used to evaluate the quantitative performance of proposed

techniques.

In the next chapter, we comprehensively have discussed the proposed transferable

texture CNN and its performance evaluation'

(2.8)
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Chapter 3. Transferable Texture CI\N for Eflicient Lung

Nodule Classilication

The efficient lung nodule classification using transferable texture cNN and

utilization of transfer learning for small lung datasets are discussed in this chapter'

3.1 Introduction

In recent years, texture features have attained great attention in image classification

and the lesion crassification of medical diagnostics. Han et al. utilized three texture

features, such as Haralick, local binary patterns, and Gabor features for lung nodule

classification in CT images with the AUC score of 92.70o/o [l5]. Firmino et al. proposed

lung cancer detection and classification using HOG and watershed techniques' They

utilized SVM and rule-based classifiers for false positive reduction [13]' Tizita and Alhayat

utitized the geometric and histogram features of the lung nodule images with linear and

non-linear classifiers for marignancy daection t5 u. Rw de sousa costa et al. used texture

descriptor in terms of toronomic diversity index and mean phylogenetic distance' which

characterizes the basic structur€ of the lung nodule [100]. Similarly, Guohui Wei et al'

presented lung nodule detection using texture features tl0u. Emre Dandrl computed the

combined shape, intensity, enef$/, and texture features of the lung nodule' The principal

component analysis is used for feature reduction before final classification througfu a

probabilistic neural network [33]. Ahmed Shaffre et al' used HOG and higher-order

Markov Gibbs, a random field model, to describe the texture of lung nodules, and the

classification is done using a stacked auto-encoder [l02]. Recently, deep learning
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techniques, especially CNNs, have been used with promising results for lung nodule

classification [ll, 17, 103].

The cNNs utilize convolutional layers to extract the features. The complex features

are exfiacted by the last convolutional layer, which is utilized in fully connected layers to

extract the complete shape information. The gradient features are extacted by the first

convolutional layers, whereas the inner pooling and convolutional layers extract features

with considerable complexity. For the texture analysis, the entire object and its complex

features are not much useful compared to the recurring patterns of lower complexity,

whereas the dense feahres of inrcrmediate convolutional layers accurately represent the

texture of the object. Therefore, it is feasible for a classic CNN to effrciently explore the

texture properties without changing the architecture [18]'

We intended to build a CNN capable of learning the texture features and then classifr

the lung nodules in CT images, as used in U8l, fortexture image classification' Therefore'

we introduced a texhrrc descriptor named EL right after the convolutional layer' We

enabled the fonuard and backward propagation to learn the texture feahrres during the

taining process. Moreover, the TL technique is also used to investigate the issues of the

small labeled medical image dataset using our pre-trained model' Thereforc, the proposed

technique is named tansferable texture CNN. We also showed that our texture CNN

achieved bett€r classification performance on lung CT images with fewer learnable

parameters and neurons. The proposed architecture is trained and tested using six-fold

cross-validation for binary classification of lung nodule malignancy' Furttrermore' the

proposed model is also tested on a modified national institute of standards and technology

(MNIST) dataset 162, l04l
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3.2 Datasets and Methodolory

In this section, we discussed the datasets, patch generation, and image augmantation

technique, which is used to increase the size of small biomedical images dataset to meet

the taining requirements of the proposed CNN model. Afterward, the architecture of our

proposed fiansferable texh[e CNN and TL mettrodology are discussed'

3.2.1 Datasets

The performance evaluation of both rcchniques is done using publicly available

LIDCIDRI, LUNGx challenge, and MNIST databases'

3.2.1.1 LDC-IDRI Database

The LIDC-IDRI is a publicly available database that contains 244,527 thoracic CT

scan images of 1,010 cases. fire x and y-axis coordinates and the boundary information of

each nodule are available in associated extensible marlarp language (xML) annotation

files. The XML files also contain semantic diagnostic features which four experienced

thoracic radiorogists marked. They graded each feature from I to 5 annotations u051. we

utilized available XML files and an annotation list U06, l07l to decide which annotation

is assigned to the related nodule. Radiologists classified the degree of malignancy for each

pulmonary nodule from I to 5 categories, given in Table 3.1.

Table 3.1. Degree of malignancy in LIDC-IDRI database

Occurrcncc ofcrnccr Dcgrcc of mrlignrncY

Highly unlikcly for cancer I

Moderarcly unlikclY for cancer 2

Indct€rm inar lilclihood 3

Moderatcly srspicious for cmccr 4

Highly suspicious for canccr 5
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In this work, the first three categories (l-3) are r€cognized as benign (Class 0), whereas the

latter two cat€gories (4,5) are identified as malignant (Class l).

3.2.1.2 LUNGX Challenge Database

This database was introduced for nodule classification instead of nodule detection.

Therefore, it was mainly focused on the automatic classification of lung modules as

malignant or benign in CT images. The LLJNGx challenge has a set of calibration and

testing scans with online available CSV files containing nodule locations. The calibration

set has ten scans (five femalas, frve males). Five of ten calibration scans contain one

confirmed benign nodule, and the other five contain one pathology-confirmed malignant

nodule. Whereas the test set has 60 scans with a lotal of 73 nodules. Out of these 60, 13

scans have two nodules. The total of 60 test scans, 23 males and 37 females, contained 37

benign and 36 malignant nodules

The LUNGx challenge database consists of a single transaxial series with full thoracic

coverage for each case. All scans have been obtained on Philips Brilliance scanners wittr a

"D" (over-enhancing), and each scan has a I mm slice thickness. The LUNGx challenge

has 22,489 CT images in digital imaging and communication in medicine (DICOM)

format. Each image file has a Unique Identifier (UID) assigned according to the DICOM

standard. To achieve a proper anatomy-based sequencing of the images, the slice number

is acquired from the DICOM tag (0020,0013).

3.2.1.3 MNIST dataset

The MNIST dataset is a handwritten digits dataset constructed by the National

Institute of standards and technology (NIST); hence, known as modified NIST or MNIST.

It consists of 10,000 labeled tests and 60,000 labeled training images. The vectors size for
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each black and white image is 784 [62, 108]. Each consist of 28 x 28 pixels. Therefore,

we first convert it into a fixed-size image before training and testing the proposed

methodology.

3.2.1.4 Image Augmentation

The huge amount of sample data can effectively improve the deep CNN training and

testing accuracy by reducing the loss function and ultimately improving the robustness of

networks. Image augmentation is a very good technique to boost the performance of a deep

network with very small taining data. Image augmentation artificially creates training

images using different image processing operations, such as; translation, tesize, random

rotation, flips, and shear, etc. In this work, the size of the dataset p = {Xi= 1 < i < il} is

increased using translation, random rotation, and flip image processing operations to clEate

artificial training images for our proposed deep CNN. Where N is ttre total number of

images.

3.2.1.5 Patch Generation and Data Enhancement

The LIDC-IDRI and LUNGx challenge database comprises a heterogeneous set of

scans acquired using various r€construction and acquisition parameters. In the CT images,

the air is available in the lungs with a mean intensity of -1000 Hounsfield units (HU)

approximatety, and most of the tissue have intensity in the range of -910 HU to -500 HU.

Moreover, the blood, bone, and chest wall are much denser (above -500 HU) [109].

Therefore, to normalize the pixels, all CT images are first converted to HU scales using the

available information ofthe series header (0028,1052) and (0028,1053) in the DICOM

and then transformed to a range of (0,1) from (-1000,500 HU)'

t
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In both databases, all the slices are available in the DICOM format, having a size of

SLZ x 5L2 ata pixel depth of 16 bits. The image patches are created in truo phases after

HU fiansformation. In the firct phase, ROI around the nodule is exfiacted by acquiring the

cental coordinates (xy,z)and slicing the number of malignant and benign nodules from

the associated xML file. Then we acquired the voxel coordinates by taking some pixels

around the central coordinates with respect to slice thickness. The nodule size is between

3mm to 30mm, and slice thickness varies from 0.6mm to 5mm for the LIDC-IDRI

database. In the second phase, we extacted all the patches using voxel coordinates

extracted in the first phase. We used the same central coordinates (x,y) for each slice

during the extraction of every patch. The parch exmction process is illustrated in Fig. 3'l'

Fig. 3.1. Patch Exhaction Process

In this way, a total of 19,388 patches of size 64 x 64were extracted from 1,010 cases of

the LIDC-IDRI database for benign and malignant nodules and named as

class 0 and class 1, rcspectively. Similarly, for the LLJNGx challenge database, we

acquired 480 patches for class l and 663 patches for class 0'
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3.2.2 Architecture of Transferable Texture CNN

Keeping in view the following three essential featuips of the image, deep CNN has

been developed. First, some discriminational patterns have a very small size than the actual

image, but if their size equals the size of the convolution filter mask, then the said patterns

can be found by the convolution filter. Second, some shapes or patterns are available in

different areas of the image, such patterns can also be identified by the convolution of the

complete input image. Third, the sub-sampling pixels are critical for the mur-pooling layer

and do not alterthe shape ofthe input image. These pixels are utilized in biomedical image

classification. Fig. 3.2 shows the overall architecture of the proposed texture CNN for lung

nodule classification.

Input Layer64x64xl

Convl
5x5xlx16

Conv2
JxJxl(xl!

Conv3
3x3x32x64

16384x128

128x1024

2x1024

N{arP(Relu(Bnorm(Conv(n w))))

Fig. 3.2. Architecnre of Transferable Texture CNN
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The proposed cNN has two convolutional layers, followed by the normalization and the

pooling layers. whereas the third convolutional layer drives the EL. Finally, the Sofunax

is utilized with the fully connected layer to classiff lung nodules' Moreover, the layer-wise

dimensional detaits are given in Table 3.2, including network layer details like kernel'

sfiide, and padding for each laYer.

Table 3.2.Layer-wise architecture details of proposed texh[e CNN

The input and output dimensions of each layer are also mentioned in Table 3.2. We used

the following mathematical relation to compute the output size of any convolutional layer:

outputsize =si 
-=so ! 2P

(+ L

wherc P is padding, Sr is input size,,So is the filter size and ( is the value of stide.

(3.1)

3.2.2.1 Convolutional Layers and Enerry Layer

Only the three convolutional layers are used in the proposed model. The kernel size

for the first two layers is 5 x 5, whereas, the output channels arc L6 and 32, respectively.

Leycr Input rizc Kcrncl Stridc Prdding Output rize Lcrrnrblc Prrlmctcrr

Convl 6+x64xL 5xs 11 1l lr111l 62x62xt6 Bias: f x 1x 16,Weights:
5x5x1x15

Pooll 62x62xt6 2xz lz 2l lr111l 31x31x15 Weights:0

Conv2 31x31x16 5x5 11 1l lr111l 30x30x32 Bias:1 x Lx3z,Weights:
5x5xLGx32

Poo12 30x30x32 2x2 12 zl 11 1111 L6xt5x32 Weights:0

Conv3 t6xtGx32 3x3 11 1l 11 1111 L5xt6x64 -Bias: 1 x 1 x 54, Weights'
3x3x32x64

EL t6xL6x6+ NA NA NA L28xt Bias: 128 x 1,
Weidrts: L28xL53,84

Drupout t28xL NA NA NA L28xL NA

FCr 128x1 NA NA NA L02+xL
Bias: 1024 x 1,

Weidrts:024xLzg

Drrpout 1:024xL NA NA NA L02+xL NA

rc2 L024xL NA NA NA 2xL Bias:2 x 1.
Weislrts:2x1024
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The third convolutional layer is considered an intermediate layer to exfiact the texture

features. It has 64 output channels and a 3 x 3 kemel size' The number of learnable

parameters for convolutional layers is only 31,744, computedusing the following

mathematical exPression.

gs=(Sr,x(+1)xIV6

0c=S*x(xIVc+lvc

where 06 is learnable parameters of CNN layer, Sls is kernel sizn, Ns is a number of

channels, and ( is stride.

Each convolutional layer computes the output of neurons connected to the input, and

computation is a dot product among their weights and a small area of input where it is

connected. The first convolutional layer produces an output in a volume of 32 x 32 x 15

with 16 kernels. Let 1be an input feature map and be the weights, then the output of the

neurons at first convolutional layer is given by equation 3'4'

(3.2)

(3.3)

Yk=f(**ok+bk)

where yr is the output feature map of the convolutional layer for kth input and b is the

bias term, whereas * represents the 2D convolution operation. The CNN usually combines

the dense orderless features by sharing the weight ofthe convolutional layer. These features

are combined within the cNN to classis lung nodule images. Thereforc, an energy

descriptor is desired at the output of the last convolutional layer, which can learn the texture

features during forward and backruard propagation. Keeping in view the requirement of an

energy descriptor, an energy layer is incorporated afterthe third convolutional layer, which

works as the dense orderless texture descriptors. The connection between the EL and the

last convolutional layer is glven by equation 3.5.

(3.4)
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Efu e) = oA.T=taTXi + b) (3.s)

wherc E(X, O) is the output of EL, n is the number of input connections and ro is the weigltt

vector of EL, which is randomly initialized during the start of fiaining' The

interconnections between the EL and the FC layers are much smaller as compar€d to the

interconnections of the last classic convolutional layer, which leads to the reduction of the

learnable parameters. Furthermore, EL preserves the energy/texture information of the

previous layer and also learns during forward and baclcruard propagation' Therefore' the

EL enhances the overall learning capability of the network in addition to the reduction of

vector size for the next fully connected layer. This also reduces the complexity of the

proposed network without compromising the accuracy. we compared the learnable

parameters of the proposed CNN with EL and without EL structure' The learnable

parameters of the EL are computed using equation 3'6'

let=dzxdn-1 (3.6)

where 0s is learnable parameters of EL, 6" is the neurons of the current fully

connected layer and dr-1 is neurlons of the previous fully connected layer' The'n we

computed the learnable parameters of the proposed CNN with and without EL' which are

2,263,L70 and L6,8L2,034, respectively. By incorporating the EL' the learnable

pararneters were reduced by 86% compared to the classic CNN configuration'

3.2.2.2BatchNormalizationandActivationFunction

The batch normalization is used between the convolutional and ReLU layers to speed

up the taining pnocess and minimizp the sensitivity of network initialization [l l0' 1l l]'

The purpose of BNL is to eliminate the internal covariate shift. It is done by taking batch-
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wise mean and standard dwiation normalization. For batch normalization computation'

mean and variance are calculated using the following equations'

u, = |\.x'
I

tn

o" = 1I (xi - pn)z
- mLti

where 11a and os arcthe mean and variance of mini-batch, whereas,m is the mini-barch

size of i input feature element. The value of m is selected as 64. After computing p3 and

os,thabatch normalization is computed using equation 3'9'

Yt = #y+b

(3.7)

(3.8)

(3.e)

where f and b are initial values of learnable parameters for each output'

The rectified linear unit (ReLU) is used as an activation function at the output of the

convolutional layer to avoid the vanishing gradient problem and boost up the learning

speed tl l2l. The ReLU layer is used as a piecewise function, such as mox(O; x)

thresholdin g*.zao.Equation 3.10 is used as an activation function, whereas, expression

3.1I represents the output of the ReLU layer'

YtJ,t =max{O,Xi,ip} (3.10)

(3.1l)
Yn"ut = ReLII (nron r(conv(x, d))

In equation 3.9,Y1,1,1, is the output feature element and )u,i,rt is the input feature element'

The i and i are index values of pixels for ktr channel image'

3.2.2.3 Pooling LaYer

A pooling layer reduces the feature map size and ultimately reduces the computations

and weights, leading to overfitting the network. In this work, every featune map from
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consecutive convolutional layers is directly pooled by computing the maximum of its

ReLII ouput as given in expression3'L2'

Ypoor = MaxP (n,,t'u (nno'^(con)(x''))))

The max-pooling is done by the following mathematical expression:

yk = ma.x (o,Elr=, x* -' d'k) (3.13)

where Yk is the output feature map for kth channel and is the input feature map' Whereas

al is the kernel for the maxpooling layer, and p represents the pooling size' Two

maxpooling layers are available in our architecture, and the kernel size of each layer is 2 x

2. The max-pooling layer operates individually on each depth slice ofthe input feah[e map

and resizes it in the spatial domain by utilizing equation 3.13.

3.2.2.4 DroPout Regularization

We used dropout regularization to prevent the overfitting of training data, as it

eliminates the random subset of parameters iteratively during the weight update process'

As the fully connected layer has the maximum number of parameters over the entire

network, it goes under the influence of overfitting on training data. Therefore, the dropout

regularization layer is added after the fully connected layer. In this work, we also explored

our technique with different dropout regularization rates'

3.2.2.5 Softmax Classifier and Loss X'unction

The soffnror is used as a classifier that utilizes the log loss as a loss function. The

probability value of softmax varies between 0 and 1, which is the confidence scnre for

binary classes. The loss function given in equation 3.14, also computes the compatibility

(3.12)
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of the available set of parameters, analogous to the ground tnrth labels of the training

dataset.

\. = qytt LosI oo(Ur) (3.14)

i

where Ii is the total loss, ud {tis the jth element of the vector from class scores ty''

Moreover, ttre regUlarization term also confirms that the weights are well distributed' The

objective of the classifier is to narrow down the difference between the probabilities of the

actual label and predicted label, which are computed using the following softmax function:

,*vtr,
r' =1;*@) (3.1s)

3.2.2.6 Back-propagation Algorithm

The proposed texture cNN was tained using a back-propagation algorithm. I.et,0 =

(ai,bt)be the network parameters which are updated using the following decreasing cost

function between the ground tnrth and the fraining results:

| - -#xili m(r(vt,l/')) (3.16)

wherc f, is the cost fuirction which is calculated iteratively. The network parameters

(A) are updated witfi stochastic gradient descent with momentum technique given in

equation 3.17.

o(t +1) = o(r) Q#- 
ao(t) + p^o@) (3.17)

where c reprcsents the momentum rate, whereas, I denotes the learning rate, which

acrelerates the leaming procedure and leads to coping with the global minimum of the

given loss function, the p represents the weight decay rate, which minimizes the decaying



weight parameters nearly zero during each iteration, which causes to improve the learning

effrciency of the entire network parameters. The back-propagation becomes even more

effective when using gfadient descent to tune the network parameters and train a CNN'

3.2.3 Deep Feature Transfer Technique for Malignancy classification

The performance of different machine learning techniques essentially relies on

extensive labeled data for supenrised taining. whereas, deficiency of the labeled medical

database for training and testing reduces the adaption of CNN. Simultaneously, manually

annotating and labeling every data ircm to consfiuct an immense training database from

miscellaneous domains is painful and prohibitive, particularly for the medical image

databases that also have their distinct privacy issues. He,nce, there is a powerful inspiration

to constnrct a classifier via deep feature tansfer for the biomedical image classification

problem by taking advantage of rich labeled data of various domains. Thereforc, the idea

of transferring features is utilized to study a discriminative and robust model in the

presence ofvariable tests and taining distributions known as TL [8a]. The objective of TL

is to transfer deep features from the source to target domains for the classification task. M'

Oquab et al. performed taining on the source task (ImageNet database), then transferred

the pre-fiained parameters of CNN to the target task for object classification [85]. The same

strategy is employed in this work for lung nodule malignancy classification using our pre-

tained CNN model. The platform is innoduced between deep learning and TL for lung

nodule classification. Fig. 3.3 shows the proposed TL methodology.

39



lPr*"r-l
| rcu*ine I

fcl*rifi-l
-.Jl 

I

-l rcarning I

Training Images

LIDC.IDRI

+

Training Images

LUNGX

+

J.
.A
6lF
!)
bo
GIF

J1t,
GIF
C)o
=oa

Fig. 3.3. Transfer learning methodology using pre-tained texture CNN

It is a more accurate and stable Tl,-based classifier model, which learns the significant

features of the biomedical image without considering the rich labeled biomedical image

dataset. kritially, the network is trained using GPU on the source task (top row of Fig' 3)

with many data samples such as an augmented dataset. Then, the pre-trained parameters of

the internal convolutional layers and the first fully connected layer are transferred to the

target task (bottom row of Fig. 3). Here, the source task is the LIDC-IDRI database,

whereas the target task is the LUNGx challenge database. The features are exfiacted from

EL, and then weights and biases are fine-tuned by retaining the last two fully connected

layers for LUNGx challenge images.



3.3 Training Process

TheproposedCNNmodelisfiainedandtestedonapubliclyavailableLIDC.IDRI

U06, l07l database using a six-fold cross-validation stratery' A total of 925'632 image

patches of the LIDC-IDRI database is divided into six subsets. Then the six-fold cross-

validation is carried out by taking five subsets of data as taining and the remaining one as

testing to compute the performance of our prcposed texture CNN' Furthermore' to avoid

the overfrtting of the model and monitor the training process, 20o/o of eash k-fold training

data is used to validate the proposed model. The validation is done at the end of the training

epoch. The data disfiibution details of each training fold are illustrated in Fig' 3'4'

Subsd I Subset2 Subset3 Subset4 llubsat 5 Subsot6

For each K-fold

Tratniug
(809/")

VdtdodoD
(2ffi6',t

For each epoch

Fig.3.4.Datadisfiibutiondetailfortrainingandtesting

The training process is repeated six-time, and each time the weights from the network are

reinitialized randomly and then the model is trained end-to-end for 300 epochs using a

back-propagation algorithm. The learning rate (r) of the model is set to 0.001, which

decreases after every 2500 iterations. The decreasing factor of I is 1 x 10-1. The value of

momentum rate (a) and weight decay rutE (P) is 9 x 10-1 and 2 x L0-4, respectively'

Furthermore, the value of mini-batch size is kept at 64 during back-propagation' It is to be

noted that the fiaining Process becomes smooth after passing the sixty epochs' The
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improvement in accuracy becomes negligible, which leads to the end of the successful

training process. The same taining procedure is also adopted to evaluate the performance

of the proposed model on the LUNGx challenge database and the MNIST database' The

quantitative performance of the proposed method is determined by computing accuracy'

recall, precision, specificity, and error rate. The details ofthese evaluation metrics are given

in chapter 2.

3.4 Results and Discussion

The implementation of the proposed texture cNN is done with a server having an

Intel(R) core(TM) i7-8700 processor, l6GB RAM, and one NVIDIA TITAN Xp GPU

with 12 GB RAM and compute capability of 6.1. In this work, we explored the texture

CNN architectue, then the performance evaluation on the LIDC-IDRI and LUNGx

challenge database was performed. After that, we also validated the effectiveness of our

model on the MNIST dataset.

3.4.1 The Exploration of Texture CNN Structure

For the proposed texhre cNN model, first, we evaluated the performance with the

different dropout layer configurations to find the appropriate value of the dropout rate for

each layer. To evaluate the performance of the networh we compared it wittt different

dropout rates by changing the dropout layers. Table 3.3 shows the comparison of the

results.

Table 3.3. Effect of variation in dropout rates with dropout layers of texture CNN

DropoutLrycn Dropout Rrtc Accurrcy Ernor Rrtc

0 0 95.36yo 4.63Yo

I 0.20% 96.540h 3.46%

2 020o,h 96.690/o 330o,h

2 0.50% 95.03% 4.790h

2 0.600/0 94.63Yo 5.37%
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We sustained all the neurons for the next coming layer when we used no dropout layer' In

such a case, the classification accuracy is lower due to overfitting' Furthermore'

classification accuracy remained low at the dropout rate of 0.5o/o and 0'6% due to the

withholding of extra neurons. The maximum accuracy is achieved at the dropout value of

o.Zo/o,and the results are shown in bold. In this case, we kept 80% of the neurons for the

next layer.

We also evaluated the performance of our model with and without EL (i.e., texture

CNN and classic CNN configuration) to study the effect of EL on nodule classification

performance. The comparison of both configurations is given in Table 3'4'

Table 3.4. Comparison of classic and texture CNN

Modck Drtrrct Accurrcy(96) Rccell(%) ErrorRrt(%)

Texture CNN LIDCJDRI 96.6-.12 96.05+0.37 03.304.06

Classic CNN LIDC.IDRI 92.0W).23 95.t24J.25 07.98+0.10

Tcxtu€CNN LLNCTnCha[e'nge 16.14+0.21 88.7W).22 r3.85+0.19

Classic CNN LLTNGX Challengs E5.7lS 23 tt.77fl.21 t4.t54.2r

The results show that the proposed textuip CNN performed well compared to the classic

configuration CNN for both databases. As the EL is identical to the average pooling and

worked as dense orderless texture descriptors, it learned textutp features during forward

and backruard propagation, which improved the classification performance. From Table

1.4, itcan be observed that Texture CNN has a significant improveme,lrt in classification

accuracy and other metrics, as compared to the classic CNN configuration for both

databases. Moreover, we also measured the classification accuracy for each class. These

results are given in Table 3.5.
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Table 3.5. Classification Score for each class of LIDC-IDRI and LUNGx challenge

Modclr Iletrret Accuncy (%)

Malignant LIDC-IDRI 97.03%

BenignLIDGIDRI 96.00%

MalignantLLJNGx 85.E6%

BenignLLJNCx 86.48o/o

From the rcsults shown in Table 3.5, it can be observed that the proposed texhrre CNN

classified the malignant nodules more accurately for both the databases, as compared to

benign nodules. The classification accuracy score of the malignant nodules is 97 .03o/o for

the LIDC-IDRI dataset, whe,reas it is 86.48% for the LUNGx challenge dataset.

3.4.2 Performance Evaluation with LIDC-IDRI Database

The proposed model achieved comparable classification results on LIDC-IDN Database'

Table 3.6 shows the performance comparison of the proposed texture CNN with state-of-

the-art traditional lung nodule classifications methods in terms of classification accuracy,

recall, specificity, and area under the cuwe (AUC) scores'

Table 3.6. performance comparison of proposed texhrre CNN with state-of-the-art

taditional methods

Modclr Accurrcy (7o) Rccrll(%) Specificity (%) AUC(%)

Narayanan et al. [50] t7.t6

Fuag et al. [39]
99.00

Han et aI. [5] 89.35 E6.02 94.05

Dhractal. [3U E9.73 86.36 95.05

Shaffre et al. [02] 93.12 92.47 93.60 97.53

Crstaet al. [00] 9r.El 93.42 91.2t 94.00

Sheway * al. [8] 84.00 E2.00 93.00 94.00

wei ct al. [l0l] 87.65 89.30 t6.00 94.20

Propored Modcl 96.69 95.05 97.37 99.11
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The given results show that the achieved accuracy, recall, specificity, and AUC score

are96.69%,97.160/o,97.l9o/o,and 99.llolo, respectively. These mefiics are betterthan the

rest of ttre taditional lung nodule classifications methods under consideration' After

comparing with the taditional approaches, we also compared our texture cNN with deep

learning-based models to prove the effectiveness of the model. Table 3'7 shows the

performance comparison of the proposed model with various existing state-of-the-art deep

learning-based models, like deep tully CNN (DFCNet) [34], Fuse-TSD algorithm [95]'

MV-KBC learning model U l3], MK-SSAC model U l4l, and GD network [l l5], etc'

Table 3.7. Performance comparison ofproposed texture cNN on the LIDC-IDRI

database with state-of-the-art deep learning-based models

Modclr
Accurrcy (96)

(Mcrn SD)
Rccrll (%)
Mcrn SD)

Spccilicity (%)
(Mcrn SD)

AUC(%)
(Mcen SD)

CMbNet[30] 88.79 93.97 89.t3 t8.79

Idd.let-Fl, [l16] 97.20 96.00 97.30 9E.20

I-dd.let-CE [l16] 95.60 90.20 96.00 95.60

I. Lyu a d. [2] 92.19 92.t0 91.50 97 05

S. Ghosal ct d. [17] 95.30 95.00 97.00

Iacal{ilobal Ilt] E8.46 88.66 95.62

MC-CNNUU t7.14 77 00 93.00 93.00

FuseTSD [95] t9.531O.09 E4.19r0.09 89.t5+0.25 96.65+0.01

Featurc tusion [95] E9.05ld).03 84.33ld).02 9t.l2J{.19 96.45fi.02

MV-KBC [13] 91.60+0.15 86.52il.25 94.0(}10.03 95.70/dJ.24

Y. Xie et d. [19] 93.40{.01 91.43il.02 94.09il.02 97.78r{.0001

GD network [15] 92.57+2.47 92.21+,..t4 95.14$.7t

MK-SSAC [l14] 92.53l{).05 i4.94+0.17 95.2tJ{).0E 95.ilJ{).19

Proporcd Modcl 96.63H4,,.12 95.05+0.37 9737fl27 99.1lJ{t.rs

The results presented in Table 3.7 show that the proposed model perfonns better than

all other deep learning techniques except LdcNet-FL, which has a bit higher accuracy and
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specificity score. LdcNet-FL computed the mentioned score with approximately 3'3

million learnable puameters and one million neurons. It is noteworttry to mention that our

proposed texture CNN computed the marginal lower accuracy with considerably lesser

learnable parameters and neurons. T}e comparison of learnable parameters and neurons of

the proposed texture cNN with other deep learning techniques is given in the subsequent

subsection.

3.4.3 Architecture complexity comparison with state'of'the-Art Techniques

The architecture complexrty is based on activation functions like neurons and learnable

pararneters. We computed the total number of neurons and learnable parameters of the

proposed model and compared them with the rccent proposed state-of-the-art techniques

like LdcNet with cross-entropy loss (LdcNet-CE), LdcNet with Focal Loss (LdcNet-FL)

U l6], and the customized mixed link network (CMixNeQ [30] as given in Table 3'8'

Table 3.8. The architecture complexity comparisons with state-of-the-art methods

Modclr Ncutont Peremctcrr Accuncy

CMixl.Ict [30] t4,725,632 >14.7 tt.7Wo

I-dcl.lct-CE [l16] 1,00t,t98 3,292,763 95.6Wo

LdcNet-FL [l16] 1,008.898 3,292,763 97.zW/o

Classrc Configurdion 2,263,110 16.il2.034 94005o/o

Proporcd Modcl 107842 2263,170 96.69Vo

From Table 3.8, it can be observed that the proposed model has a lesser number of

neurons and learnable parameters, which leads to a reduction in complexity' lt is

not€worthy to mention here that the reduction of neurons and learnable parameters are due

to the incorporation of EL. Therefore, the EL reduced the complexlty of the network

without degpding the classification accuracy.



3.4.4 Evaluation of Pre-Trained Mode on LIINGx Challenge Database

First, we tained our proposed texture CNN from scratch on the LI'JNGx challenge

database and achieved comparable results. Afterthat, we used our pre-tained model of the

LIDC-IDRI database to investigate the small dataset training issue of CNN by

implementing the TL methodology. The classification results of the proposed cNN are

compared with MV-I(BC U l3l, fine-tuned MK-SSAC U l4], cADx using svM with tee

parzilnestimator (TPE), gradient tee boosting (XGBoost) with TPE [120], a lung nodule

classification scheme proposed by Mizuho Nishio et al' [l2l]' Table 3'9 compares our

proposed texture CNN on the LUNGx challenge database'

Table 3.9. performance comparison of proposed texture CNN with state-of-the-art

traditional methods on the LUNGx challenge database

Modck Accurrsy (%) Rccell (%) Spccificity (%) AUC(%)

svM (I?E) [20] E2.00 85.00

XGBoost (IPE) [20] 86.84 t9.60

Nishio et d. U2U 85.70 83.70

MK-SSAC [14], 77.26 t7.22 67.57 78.t3

MV-KBC Ul3l, 75.62 E7.22 64.32 76.t5

Proposed withoutTL 86.14 88.76 93.1I 92.63

Proposed with TL 90.9t 9139 90A6 94.14

The achieved classification score of our proposed texture CNN without TL (trained

from scratctr) for accuracy, recall, specificity, and AUC score on the LUNGx database are

86.14yo,88.76yo,93.11o/o, and92.63%, respectively, which show that the proposed CNN

performed better than all the other considered techniques expect XGBoost (T"E) in terms

of accuracy score only. Furthermore, the rcsults show that the implementation of TL

methodology with a pre-trained model significantly improved the accuracy compared to

our trained model, which proves the effectiveness of TL methodology'
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3.4.5Per{ormanceValidationofTextureCNNonMNISTDataset

The proposed texfiye CNN was successfully trained and tested for lung nodule

malignancy classification. In addition, we also validated our ProPosed model on the

MNIST datasetto validate the performance of our proposed fiansferable texture CNN' We

successfully trained and tested our proposed model and compared the results with state-of-

the-arttechniques. These results are given in Table 3'10'

Table 3.10. comparisons with state-of-the-art methods on the MNIST dataset

Modcb Accuncy Error rrte

Tabik Et al. [22] 0.r0%

Skouson * aI. [23] 99.20%

Simonovsky et al. [1241 99.37yo

Klokov et d. [125] 99.tlYo

Gnover et d. [126] 99.54Yo 0.stvo

Qi et al. [27] 99.50yo o.5l%

Ptrporcd Modcl 99.t9'/o 0.12o/o

The results show that the proposed texture CNN also performed well comparcd to the

other techniques. It can also be observed ttrat the proposed texture CNN computed the

mfiginal lower e11or rate of O.\2o/othan Tabik et al. Furthennore, it is also mentioned that

Grover et al. achieved recall and specificity of 97.73Yoand99.74o/o,respectively. However,

the achieved recall and specificity scotEs for both mefiics by our proposed model are

99.94o/o and 99.93o/o, respectively, which reflect the effectiveness of the proposed texture

CNN.
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3.5 SummarY

In this chapter, utilization of e,nergy in tansferable texture CNN and tansfer learning

is discussed. we proposed a transferable texture cNN architecture for lung nodule

malignancy classification tasks. We intoduced the EL, which removes the overall shape

information and explores the texture features. Experimental results show the effectiveness

of the proposed technique for benign and malignant nodules classification, without nodule

segmentation or any complex pre-processing. After successful training, we evaluated the

performance of the proposed network using various evaluation metrics. The results were

compared with the state-of-the-art lung nodule classification methods. The results show

that our proposed texture CNN architecture performed well for approximately all the

evaluation metrics. The fiaining was done successfully by six'fold cross-validation and

achieved an accuracy, recall, specificity, AUC, and the error rate of 96.690/o,96'05yo,

g7.37yo, gg.llyo, and 3.30%, rcspectively, on the LIDC-IDRI database' The learned

features of EL were analyzed, and it was shown that the EL extacted texhrre from the

convolutional layer. The EL also reduced the number of learnable parameters of the

network, which minimized the memory requirements and complexity of CNN'

Furthermore, we explored our pre-fiained model to handle the smaller dataset

classification problem using TL. We also show that our pre-trained model achieved better

results than the compared techniques on a small LLJNGx challenge database. Moreover,

we also validated the effectiveness of ourproposed texture CNN on the MNIST dataset, as

our model achieved 99.}9o/oaccuracy with only a0.l2o/o error rate.

The next chapter presents the deep feature selection and decision level fusion

technique for lungs nodule classification.
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Chapter 4. Deep Feature Selection and Decision Level

f,,usion for Lungs Nodule classilication

The decision level fusion technique is proposed to improve the performance of the

cAD system for lung nodule classification. This chapter presents the deep feature selection

and the decision level fusion. The deep features are extracted by identiffing the optimal

layerc, which improve the performance of classifiers. Then, the performance of svM and

AdaBoostM2 is also evaluaGd on the basis of deep features extracted from the state-of-

the-art transferable architectures (such as; VGG- 16, VGG-19, GoogleNet, Inception-V3,

ResNet-I8, ResNet-50, ResNet-lOl and InceptionResNet-V2). After that, the performance

ofthe SVM and AdaBoost;vl2 classifier is analyzed as a function of deep featuies. The best

performing classifier is utilized in our proposed decision level fusion technique.

4.1 Introduction

The classification performance of a typical cAD system depends on lung nodule

feafure extaction, based on intensity values, shapes, densities, texfure, generic and deep

features. Thercfore, researchers utilized such features, for example, [20], U05], and [1a9]

used size features, whereas, l2ll, 1221, U05], U50-1541 used intensity fean[es' The

research work presented in l22l,l3ll, Ul9l, [39], [95], [105], [150], U53]' U55l' U56I

utilized shape features, wheteas, U57, l58l used density features in their proposed CAD

systems. The research work presented in [20], l22l,l3ll, u l9], [150], 11527, [153] Feature-

based lung nodule classification [155], U56], U591, [160] utilized texture features.

Similarly, some CAD systems utilized generic features, including LBP [39], [154] scale-

invariant feature transform (SIFT) U6t-163], Gabor [39], [154], U601, U6U, U64l HOG



1221, u561, [16U, [S] and spee.ded-up robust features tl65]. Furttrermore, Gupta et al'

proposed a traditional technique for automatic lung disease detection in CT images using

four image features: Gabor, zemike, Tamura and Haralick features u66]' Meanwhile,

DCNN has attracted rcsearchers for the last few years to utilize the deep features in medical

image processing due to the continuous improvement in image recognition and

classification, as compared to the handcrafted features [81], [95], tl3l] [167]. Researchers

are utilizing deep features from pre-trained DCNN for medical diagnostic, such as;

Rajaraman et al. proposed a deep feafire-based technique for malaria parasirc daection in

blood smear images tl6SI. Chen et al. utilized HOG and deep features forthe study of lung

nodules tl56]. Raj et al. p69l proposed optimal feature selection based deep learning

algorithm for medical image classification. They used opposition-based crow search

algorithm for optimal feature selection from gray-level and texture features. Finally, the

deep network was used for medical image classification. Xie et al. also proposed a

transferable multi-model ensemble algorithm based on deep features from ResNet-50 to

classifi the lung nodules tl l9]. Similarly, Abratram et al. utilized deep features from

AlexNet and VGG-16 for the same application [132]. Whereas, in our work we performed

optimum deep feature selection to identifi the optimal layers in eight state-of-the-art

DCNNs. The deep featuie selection is accomplished by carrying-out extensive

experiments.

Furthermore, different fusion techniques, such as; feature fusion [23], multi-model

image fusion [89], [90], and decision fusion, were proposed forthe improvement of CAD

systems. Zhanget al. utilized a DCNN model along with the feature fusion to improve the

performance of the classification task [24]. Xie et al. proposed a decision level fusion
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technique for automatic pulmonary nodule classification. They trained the AdaBoosted

back-propagation NN using texture features, and then decision fusion was performed on

the outcomes ofthree classifiers. They also performed the performance analysis of feature

fusion and decision fusion and found that the decision fusion performed better [95]'

Therefore, we utilized the decision fusion technique in our proposed methodology'

Furtlrermore, the techniques presented in [23], l24l,lll9l, [95], [169] require more training

time and memory requireme,lrt due to exfia fine-tuning or fiaining of DCNN from scratch'

Whereas, in our case, we extractthe deep features from DCNN during forward propagation

using the TL technique.

In this chapter, we presented a decision level fusion technique for the lung nodule

classification. First, we evaluated the perfonnance of SVM and AdaBoo$Jr{2 algorithms

based on the optimal deep features from VGG- 16, VGG-19, GoogleNet' Inception-V3'

ResNet-I8, ResNet-50, ResNet-l0l and InceptionResNet-V2' Then, we utilized ttrree

types of deep features (from GoogleNet, ResNet-IOl, and Inception-V3) based on best

performance results. For these features, we tained an SVM classifier, and the decision

level fusion is performed by estimating the probability scor€s.

4.2 Mtterial and Methods

4.2.1 Dataset and Pre-Processing

The LUNGx challenge dataset is used to validate the proposed mettrodology' It has a

set of calibration and testing scans. The calibration set has l0 scans (five females, five

males). Five ofthe 10 calibration scans contain one confirmed benignnodule, andthe other

five contain one pattrolory-confirmed malignant nodule. The test set has 60 scans which
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have a total of 73 nodules. Wherpas in 13 scans, each case has two nodules. The total 60

test scans of 23 males and 37 females contain 37 benign nodules and 36 malignant nodules

(including 9 non-small cell carcinomas, 15 ade'nocarcinomas, 1 squamous cell carcinomq

7 mini cell carcinomas, 2 nodules dubious for malignancy, and 2 carcinoid tumours) [170]'

[17U.

The nodule information is given in the online available annotated CSV file of each

scan. The csv file has an instance number, which is the slice number of each scan, and

coordinates of the origin of every nodule. We search the given instance number in the

DICOM tagtoaccess the appropriate nodule contained slice. The coordinate information

(x,y,z)of RoI around the nodule was used to crop the nodule patch' The patches of size

64 x 64were exfiacted from a voxel. This patch size was selected because all candidaks

of a nodule would be fully accommodated in this area, as it is noted that the size of the

biggest nodule was 30mm in our selected dataset. we extractedL,L44 patches, including

664patches for class 0 (benign) and 480 patches for class 1 (malignant). Furthermore, the

image augmentation is achieved bythe flip, rotation, scaling, and tanslation operations' as

shown in Fig.4.l.

IIIII
Origina Robted Flipped Translued Scaled

Fig. 4.1. Image augmentation



The flipped patches are extract€d by randomly flipping the normal ROI patches

horizontally or vertically. The rotated patches are extracted after random rotation of

complete slice by 0 to 3590. The scaling is done by increasing the patch size to 10% of

tlre normal RoI patch and then rescale to 64x 64 patch size. The fianslated patches are

extracted by randomly shifting ROI about l0 to 20 pixels around available coordinate

information.

4.2.2MethodologY

The basic strategy of our work is similar to any classic medical image classification

technique asFig.4.2

Fig.4.2.Basic scheme of nodule classification using pre-trained CNN model

After acquiring medical images from the LUNGx database, plE-processing techniques are

applied for contrast enhancement. The features are exfiacted from each DCNN during

forward propagation. The SVM and AdaBoostM2 classifiers are fiained simultaneously,

and the final prediction is done based on the probability scores of each class. We also

analyzed the effect of deep featurps on classification accuracy for each classifier'

4.2.3 Decision Level X'usion Technique

The decision level fusion technique fuses the classification results acquired by different

features or data, independently. In this work, we proposed a novel technique that fuses

three deep feature maps at the decision level to classifi the lung nodule as malignant or

benign. The proposed scheme is illustated in Fig' 4'3'

Trmftrdngofpruncen
fiom sorrcc task totaryet task

and Ertsac't of dccp ftdrcs
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Parch Extaction

Fig. 4.3. Decision fusion technique

The decision fusion is based on the maximum likelihood of three classification results from

the deep features of ResNet-IOI, GoogleNet, and Inception-V3. Let us have ttre following

training dataset:

(4.1)

where Xj e R is a deep feature ve,ctor of jth image patch, whereas, I! denotes the

associated class label and IV is the total number of training image patches. We extracted

three deep feature maps from ResNet-I0I, GoogleNet, and Inception-V3 for each lung

nodule image patch. If a lung nodule @, consists of I slices, then we extracted i deep feature

maps for one nodule. We obtained the following three prediction vectors after SVM

training with deep feature maps.

Uc = P1c(O)'C e {malignant; bentgn}

Un = P1c(0)'c e {malignarlti benign}

,Y, = P1c(O)'C e {malignant; benign}

(4.2)

(4.3)

(4.4)

Input Slices r
RobtldI
ScalcdI
Fh@I

Dcep featurc exmction from Googl*Nct

ftature extaction fiom ResNetl0l

exraction from
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where uc, un, and ur are the prediction vectors obtained after training SVM on deep

features from GoogleNet, ResNet-Iol, and Inception-V3, respectively' Each element of

Pic(O)denotes the likelihood of nodule q[1 class as malignant or benign predicted from

th" jth deep feature map of ith slice. The prediction vector is updated based on the

manimum likelihood of each feature map, as given in equation 4'5'

Ur = argmax (Oe,{n,{r) (4'5)

where ur is the final prediction vector. The labels were assigned according to the

prediction score of each class in the final prediction v@tor, as givut in equation 4'6'

o _ lMaligncnt, if Score > 0'5
,c-tBenign, otherwise

The flowchart of the proposed methodology is illusfiated in Fig.4.4.

Fig.4.4. Flow chart of decision fusion
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we show that our proposed technique effectively classifies the malignant and benign

noduleswherrtestedontheLUNGxchallengedataset.

4.4 Experiments and Results

The lung nodule classification is done using decision level fusion after selecting a deep

feature map from state-of-the-4ft DCNNs. The whole experiment was carried out using

Matlab R20l9b. All experiments were performed with Intel(R) Core(TM) i7-8550

processor, 8GB. RAM, and one NVIDIA GeForce MXl50 GPU with compute capability

of 6.1.

4.4.1 Nodule Classification with SVM and AdaBoostm2 using Deep Features

First, the lung nodule classification is done by SVM and AdaBoostlvl2 classifier after

extacting deep features from DCNNs. For the training of the classifier, we used four-fold

cross-validation. We divided the dataset into four subsets, three subsets used for training

and one for the test, as shown in Fig. 4.5.

, Trainins I Testing I

tt

ttubset l Sutsct2 Subscf3 - Subset4

lhrbsct f Suhct2 Subsst4 Suboct 3

, Traininc t Testing I

lst-fold

2nd-fold

3rd-fold

4th-fold

Subsd 1 Subgct 3 Subrct4 SublEt2 -

SubE62 Subcc[3 $ibsct4 Stuct I

Fig. 4.5. Distribution of data for training and testing
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First, we performed Roc analysis by computing Roc curves of all DCNN models

with SVM and AdaBoostM2. The results are obtained by extracting features from the last

FC layer of each DCNN model. For exampl e,FC2of VGG-Net, fcl000 of ResNet' loss3-

classifier of GoogleNet, and predictions layer of both inception DCNNs' The Roc

comparison of all DCNNs using svM and AdaBoostlvl2 is shown in Fig' 4'6'

Fig. 4.6. ROC comparison of SVM and AdaBoostlvl2 when featurps from the last FC

layer

We also computed the AUC value for each DCNN model with SVM and AdaBoostM2

classifiers to analyze the effect of each classifier on lung nodule classification. This

analysis revealed which classifier is more effective on exfiacted features for each DCNN

model. The AUC plots of SVM and AdaBoostM2 for all DCNN models are shown in Fig'

4.7.
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It can be observed that the AdaBoostM2 performed well on the features extracted from the

last fully connected layers of all DCNNs, except ResNet-101. The features extacted from

ResNet-l61 provide the manimum AUC score using the SVM classifier. We also evaluated

the performance of lung nodule classification with SVM and AdaBoostM2' Table 4'1

shows the lung nodule classification results obtained by the SVM classifier.

Table 4.1. Nodule classification with SVM when feature the last FC layer

Modclr Accurrcy Gmcrn Prccirion Rccell EnorRetc

VGCF16 65.27% 63.22% 70.31% 90.99% 34.73%

vGG-19 64.05% 61.30% 67.45% 73.2E% 35.95%

REsN€t-18 67.70yo 63.60% 69.tlo/o 78.t2vo 32.20/o

REsI{ct-s0 66.92% 67.t204 77.47Yo 6l.07Vo 33.0t%

RcsNet-l0l 76.t8% 77.34% 86.4toh 7l.56Yo 23.120/o

Googkl.[e 67.37yo 67.7l%o 77.07o/o 62.920/o 32.63%

krcep.ResNet-V2 72.0loh 66.|Wo 7t.ovh 87.79Yo 27.99%

Inception-V3 71.13% 71.23% 78.86% 69.$tYo 2E,E7%
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The results show that the features from ResNet-l0l perform better than the rest of the

models in terms of accuracy using the svM classifier. The maximum accuracy wittl

ResNet-lOl is 76.88%, whereas InceptionResNet-V2 and Inception-v3 have72'}lvo and

Tl.l3yo,respectively. similarly, the ResNet-l0l also performs better than other models in

terms of Gmean, precision, and Error Rate. It can also be observed that the SVM classifier

had a minimum classification score when deep feafi[es were exfiacted from the last layer

of VGG-19. Aft€r this detailed analysis, we repeated the same experiment for the

AdaBoosttvl2 classifier. Table 4.2 shows the lung nodule classification results with the

AdaBoostM2 classifier.

Table 4.2. Classification results using AdaBoostM2 when features from last FC layer

Modclr Accurrcy Gmcen Prccirion Rccrll Error Rrtc

VGG16 66.tt% 65.38% 70.gwh 72.52o/o 33.19%

v(xi-19 70.35% 69.irh 73.tE% 75.57% 29.65%

ResNet-lE 75.22% 72.8204 75.t6% 83.97Yo 24.1Eo/o

REsNet-s0 69.91% 6t.01% 72.660h 77.\V/o 30.09%

ReeNet-l0l 78.32o/o 77.94% 82.03Yo 80.15% 21.6t%

GoogkNet 71.240/o 69.54% 73.91% 77.86Yo 28.76%

Inccp.Rcsl.let-V2 73.01% 70.89/o 74.65% 80.92% 26.99/o

Ince,ption-V3 72.57% 70.8t% 74.82% 79.39% 27.43o/o

It can be observed that the deep features extracted from ResNet-lOl produced better

results with the AdaBoostlvl2 classifier. The mean accuracy score of four-fold is 78.32yo,

and the error rate is2l.680/o. Similarly, the ResNet-I8 is second and lnceptionResNet-V2

at third position in terms of accuracy and enor rate score. Furthermore, vGG-16 is in the

last position with the AdaBoostM2 classifier and achieved an accuracy score of 66'810/o'
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The results in Table 4.1 and Table 4.2 show that the AdaBoostlvl2 performed well

compared to the SVM classifier when deep features werre extracted from ResNet- 10 I .

4.4.2 Optimum Deep Feature Selection

We further studied the AdaBoostM2 and SVM classifiers by optimizing the deep

parameters. First, we extracted features from FC6 of VGG-16 and tained the AdaBoostM2

classifier. In this case, we observed that the accuracy of VGG-16 was improvedto 69.91Yo,

with an error rate of 30.08%. After this experiment, the same test was also performed using

the SVM classifier. The acquired accuracy score was increased ftom 65.270/o to 72.56Yo.

Thenefore, we decided to select the optimum deep features for all DCNN models by

identiffing the optimal layer for feature extraction, which can provide the best performance

using AdaBoostM2 and SVM. For this pulpose, we evaluated the performance of each

DCNN by extacting features from different layers and identiffing the optimal layer. The

optimal layers for deep feature extraction, which provides the best performance results, are

given in Table 4.3.

Table 4.3. Optimal layers give the best performance

Modcl LrycrNumbcr Optimrl Lrycr

vGG-15 32 'pool5'

vGG-r9 38 'pool5'

GoogkNct 139 'inccptiorl5bontpnt'

Inception-V3 3t2 'mixedl0'

RcsNet-18 67 'res5b_relu'

REsl.Iet-50 t73 'activation_49_rplu'

RcsNct-l0l 343 'rcs5c_rclu'

Incep.Rcs}.[ct-V2 820 'conv 7b ac'

Fig. 4.8 showed the ROC comparison of SVM and AdaBoostM2 when features were

extracted from optimal layers. We can observe that the ROC plot with optimal layers (in

Fig. a.8) is improved from the previous plot, as shown in Fig.4.6.
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Fig. 4.8. ROC comparison of SVM and AdaBoostM2 when features from optimal layers

Moreover, we also amlyzndthe SVM and AdaBoostM2 by comparing their AUC values'

The AUC comparison of SVM and AdaBoostlvl2 is shown in Fig.4.9.

95 rsvM

.o,- _d"d"."C"/$o"".d

Fig.4.9. AUC comparison of SVM and AdaBoostM2 using features from optimal layers

It is noted that the AUC results for both SVM and AdaBoostlvl2 using features from

optimal layers are improved. Furthermore, SVM performed well as compared to the

AdaBoostlvl2. The maximum achiwed AUC score of SVM using features from ResNet-



l0l is g2.77%.Furthermore, we also analyzed the improvement in Auc using features

from the optimal layer using the SVM classifier' Fig' 4'10 shows the AUC comparison

results of the SVM classifier for features from optimal and last FC layers'

95 r FC I'aYer

C ."d 
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Fig.4.l0. AUC comparison of SVM using features from optimal and last FC layers

The remaining waluation metrics are also evaluated for the classifiers with feahfies

from optimal layers. The classification rcsults using the AdaBoostM2 classifier with

features from optimal layers are given in Table 4'4'

Table 4.4. Nodule classification results using Optimal Layers with AdaBoosM2

Modclr
Accuncy (%)
Mcen*Std

Gmcrn (96)
McentStd

Prccirion (%)
McentStd

Recell (%)
Mcen*Std

ErrorRetc (%)
Mcrn*Std

vGG-16 73.01t0.32 71.63t0.34 75.70t0.25 7t.62+.0.29 27.01tl0.32

vGG-19 77.00t0.24 75.20+.0.32 7t.00i0.27 84.0010.2E 23.00t0.24

RcsNct-lt 76.t1i]0.26 73.2010.19 75.E010.20 86.30t0.19 23.90t.0.26

ResNet-50 77.88+0.18 77.00*0.17 80.50+0.19 81.70+0.21 22.10+0.18

ResNct-l0l 79.20t0.17 79.30t0.19 84.4010.17 7t.60t0.12 20.0E+0.17

GoogLeNet E2.3010.20 82.30+0.19 t6.40+0.22 82.40+0.1t 17.70+.0.20

krceptionRcsl.Iet-V2 70.79t0.15 69.43t0.19 74.t0t0.20 76.30t0.2t 29.20t0.15

Inception-V3 7t.32t0.2t 76.71*.0.24 79.28t0.23 84.73t0.22 21.68t.0.21

63



It is noted that the acquired results were significantly improved asi compared to the

previous ones, as mentioned in Table 4.2. For example, for the case of VGG-16' the

accuracy increased from 66.81 o/oto 73.01Yo, and the error rate decreased from 33'19% to

2l.0lo/o.Similarly, the other evaluation mefiics like Gmean, precision, recall, and Fl score

were also improved. Furthermore, the GoogleNet accuracy score was improved from

71.24o/otnI2.3}%.After significantly improving classification results using AdaBoostM2

with featgres exfiacted from optimal layers, we utilized the same feat[es with SVM. Table

4.5 shows the lung nodule classification results using the features extacted from optimal

layers with the SVM classifier.

Table 4.5. Nodule classification results using optimal layer with SVM

Modclr
Accurrcy (%)
McrntStd

Gmcrn(%)
McentStd

Prccirion (?6)
McentStd

Rccell (%)
Mern*Std

Error Rrtc (%)
McrntStd

VGG16 77.43t0.96 77.3tt]0.74 12.39t0.38 77.6712.19 22.56t0.96

VGGI9 80.90+0.65 u.20t0.44 t7.l0tl.l6 7E.60+.2.57 19.10t0.66

RcsNct-18 82.2010.22 il.50t0.71 il.20+1.17 t5.30t2.19 r7.E0t0.22

It$Nct-50 81.42t1.0E E1.30i1.07 85.50t2.00 E1.90t3.10 It.60+1.08

RcsNet-l0l 86.2t+0.E2 E5.90+0.46 tE.20t1.34 8t.20t0.9E 13.7010.82

GoogI.€Net t3.40+0.44 83.E0*0.51 E9.50t0.76 80.90t0.01 16.60t0.44

Inccp.ResNet-V2 t0.31t0.t5 E0.10t0.72 84.20il0.24 El30+1.46 r9.70+0.85

Inccption-V3 82.63t1.42 E2.30t1.07 85.50t0.63 E4.40t3.33 17.40*1.42

The results show that all the evaluation metrics were improved using features from

optimal layers. In this case, the deep features from ResNet-l0l provided better results than

the other DCNN models. The morimum accuracy was 86.28%o, and the eror rate was

13.70o/o. GoogleNet at second position with an accuracy of 83.40% and an error rate of

16.600/o. VGG-16 was at last position with an accuracy of 77.43o/o and the error rate of

22.56o/o,but it can be noted that in the previous case, the accuracy was 65-270/o with an

error rate of 34.73%.



4.4.3 Results for Decision Level Fusion

The decision level fusion was applied on ResNet-IOl, GoogLeNet, and Inception-

V3, which were at the top lwel in lung nodule classification performance' The

classification results of decision fusion were based on the maximum computed likelihood

scone among both DCNN models. The classification accuracy for each benign and

malignant class of the LIJNGx challenge dataset is given in Table 4.6.

Table 4.6. Nodule classification of each class with decision fusion

Modclr Accuncy Error Rrtc

Bcnigt 90.7e4 9.20%

Malignant 90.zwh 9.780h

The results show that the proposed decision fusion technique accurately classified

each class with an accuracy score of 90.70o/o for benign and 90.20% for malignant'

Moreover, the ROC plot comparison of the decision fusion technique, ResNet-lol,

GoogLeNet" and Inception-V3 is shown in Fig' 4'l l'
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Fig. 4.1l. ROC comparison of decision fusion technique with ResNet-101, GoogLeNet,

and IncePtion-V3
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lt can be observed that the area under ROC of proposed techniques is improved as

compared to the ResNet-I0l, GoogleNet, and Inception-V3' The comparison of our

proposed decision level fusion with the stat-of-the-art techniques is given in Table 4'7'

Table 4.7. Comparison of proposed decision level fusion wittr stat-of-ttre-art techniques

Modclr Accuney(%) Rccrll (%) Spccifrcity (%) AUC (%)

Nishio ct al. [l2l] 86.70 74 40 E3.70

svM (rPE) [l20] 82.00 t5.00

XGBoost(TPE) [120] E5.t4 89.60

Wangct d. [791 90.3t tE.87 92.40 94.48

Iv{V-KBC [l13] 75.62*1.15 87.22t7.24 64.3217.00 76 t5+0.17

MK-SSAC [13] 76.r6t0.75 E5.lr+7.61 66.491E.46 77.59+0.39

xe ct at. u l4I 77.26tl0.75 t7.22t7.25 67.57t6.34 7t.83t0.75

TextureCNN [33] E6.14t1.40 8E.76t1.90 93.1l+1.45 92.6310.75

Proporcd 90.45+0.25 90.10t0.44 9255t0.rt 94/9t0.rr

It can be observed that the proposed technique outperforms in terms of accuracy'

r€call, and AUC with the achieved score of 90.46t0'25o/o, 90'10!0'440/o' and

94.46+0.110Z, respectively. The proposed decision fusion is at second position in terms of

specificity with a score of 92.56t0.18Yo,butthe specificity score deviation is very low

compared to the Texture CNN. Furthermore, we also compute the classification accuracy

score ofthe proposed technique based on the simple average ofthe prediction scores, which

is 89.10%.

4.5 Summaly

In this chapter, we proposed a decision level fusion technique for lung nodule

classification to improve the classification performance of the cAD sptern. First, we
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evaluated the performance of SVM and AdaBoostM2 for lungs nodule classification, based

on deep features, which are extracted from eight state-of-the-art tansferable arphitectures.

We selected the optimum deep features by identi$ing the optimal layers for feature

extraction with a series of experiments by monitoring the variation in ttre classification

performance. We also showed an improvement in AUC compared to the features from

optimal and FC layers. The optimum deep features improved the classification

performance. For example, the classification accuracy of ResNet-l0l was improved from

7 6.88% to 86.280/o, and the accuracy of GoogleNet increased ftom 67 .37%o to 83 .40o/o. W e

also observed that the SVM outperformed AdaBoosM2 with deep features from optimal

layers from all eight DCNNs. Finally, we showed that the proposed decision lwel fusion

technique performed well as compared to the recent state-of-the-art techniques. The

achieved classification score was 90.46t0.25o/o, 90.10+0.44yo, 92.5610.18%, and

94.49t0.11o/ointerms of accuracy, recall, specificity, and AUC, respectively.
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Chapter 5. Conclusions and Future Work

This chapter describes the conclusion inferred from the proposed deep learning

mettrodologies for lung nodule classification. Moreover, this chapter also includes the

guidelines for researchers interested in utilizing the proposed methodologies in medical

diagnostics or various engineering fields.

5.1 Conclusion

Lung nodules are vital indicators for the presence of lung cancer. Early detection

enhances the survival rate of the patient by starting the fieatment at the right time. The

detection and classification of malignancy in CT images is a time-consuming and difficult

task for the radiologists, leading the researchers to develop CAD systems to mitigate this

burden. In this dissertation, we studied various methodologies to improve the performance

of the CAD system for lung nodule classification.

The effrcient lung nodule classification was performed using the proposed transferable

textur€ CNN. The utilization of EL in the proposed texture CNN model contributes to lung

nodule malignancy classification. The EL preserves the texture information, reduces the

output vector size, and learns the parameters during forward and backruard propagation,

increasing the overall learning capability of the model. The EL also reduces the number of

learnable parameters of the network, which minimizes the memory rcquirements and

complexity of CNN. Experimental results show the effectiveness ofthe proposed technique

for benign and malignant nodules classification, without nodule segmentation or any

complex prc-processing. The proposed texture CNN was tested on two medical image

datasets: LIDC-IDRI and LLJNGx challenge. The achieved classification accuracy, recall,
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specificity, AUC, and an eror rate of 96.69%,96.050/o,97.37o/o,gg.ll%o, and 3.30yo,

respectively, on the LIDC-IDRI database. In addition, the proposed model has fewer

learnable parameters than LdcNet-FL, which reduces the memory requirement and

computational complexity of the algorithm. Moreover, the effectiveness of our proposed

texture CNN is also validated on the MNIST dataset, as our model achieved 99.89%

accuracy with only a0.l2o/o error rate.

We also used a pre-trained model of texture CNN to handle the smaller medical

dataset classification problem using TL. This modelutilizes LIDC-IDRI as the source task

and the LUNGx challenge dataset as the target task. The classification accuracy of the

LUNGx challenge dataset was 86.14% without TL, which was further improved ta90.9l%

using the proposed TL base model. We also show that our pre-trained model achieved

better results than the state-of-the-art techniques, such as; fine-tuned MK-SSAC, MV-

KBC, CADx using SVM with tree parzen estimator (TPE) and gradient tree boosting

(XGBoost) with TPE.

A decision level fusion technique was also proposed to improve the performance of

the CAD system for lung nodule classification. First, we evaluated the performance of

SVM and AdaBoostM2 algorithms based on the deep features of the state-of-the-art

transferable architectures (such as; VGG-16, VGG-19, GoogleNet, Inception-V3, ResNet-

18, ResNet-50, ResNet-l0l and InceptionResNet-V2). Then, weanalyzed theperformance

of the SVM and AdaBoostM2 classifier as a function of deep features. We selected the

optimum deep featurcs by identifying the optimal layers with a series of experiments by

monitoring the variation in the classification performance. We showed the improvement in

AUC compared to the features from optimal and FC layers. We also showed that the
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optimal deep features improved the performance of the classifiers, for example, the

classification accuracy of ResNet-l0l was improved from 76.880/oto 86.28Yo.

Similarly, the accuracy of GoogleNet was increased from 67.37% to 83.40o/o.

Finally, we showed that the proposed decision level fusion technique performed well as

compared to the recent state-of-the-art methods. The achieved classification score was

90.46+0.25yo,90.10*:0.44o/o,92.56+0.18o/o, and 94.49+0.llYo in terms of accuracy, recall,

specificity, and AUC, respectively, on the LUNGx challenge dataset.

5.2 Future Work

The guidelines for future work in the field of medical image diagnostics are as follows:

o The proposed methodologies are only tested on lung CT images, so the proposed

work may also be applied to other modalities, such as; X-rays and PET-CT.

o The presented techniques ane proposed for lung nodule classification, the same

work can be extended for the classification ofother cancer types, such as; brain,

breast, or prostate cancers.

o The transferable texture CNN is trained and tested on the available LIDC-IDRI

database for only lung cancer classification. It can be trained on an artificial

medical image dataset generated by generative adversarial nenvorks and tested on

the original medical dataset for further enhancement in classification accuracy. The

same trained model can also be utilized for the classification of other types of

cancers using transfer learning.

o The decision fusion is proposed based on the probability score of the DCNN. The

deep feature fusion technique can be adopted by including deep features from the
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same deeper models' such as; GoogleNet, ResNetl0l, Inception.V3, and

InceptionResNet-V2.

o The hybrid feature fusion, such as; deep feature and handcraft feature fusion' can

be utilized for medical diagnostics'

o The ensemble learning-based techniques can be adopted with different classifiers

such as; ELM, KNN, random forest, and binary trees which take the deep feature

from GoogleNet, ResNetlol, Inception-v3, and InceptionResNet-V2

7t
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