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Abstract

Lung cancer has become a major threat to human health worldwide. Early detection
of lung cancer can increase the survival rate of the patient by starting the treatment at the
right time. Malignancy detection and classification in computed tomography (CT) images
is a very tedious and time-consuming task for radiologists, inspiring researchers to develop
enhanced techniques for computer-aided diagnosis (CAD). It is observed that the available
detection and classification techniques have many false positives and false negatives
becuse the detection algorithms have high sensitivity for lesions. Therefore, some non-
lesion structures (e.g., blood vessels) are labelled as lesion wrongly in initial identification
step. The objective of this dissertation is to achieve a better diagnosis of lung cancer using
enhanced tumour/nodule classification techniques, such as; transfer learning, deep
learning, ensemble learning, and medical image fusion with novel feature extraction
techniques.

This thesis presents various novel lung nodules malignancy classification techniques
for a CAD system. A transferable texture CNN is proposed for efficient lung nodule
classification in which an energy layer (EL) is introduced to extract the texture feature map
from the convolutional layer. Incorporating EL reduces the proposed network learnable
parameters, which further reduces the computational complexity and memory
requirements. The pre-trained model of proposed texture CNN is also utilized to tackle the
smaller medical image dataset classification issues using transfer learning methodology.

The decision level fusion based on deep feature selection is also proposed to enhance
the performance of the CAD system for lungs nodule classification in CT images. First, the

performance of AdaBoostM2 and SVM classifiers is evaluated using deep features from



eight state-of-the-art transferable DCNN architectures, which are; VGG-16, VGG-19,
GoogLeNet, variants of the residual network (ResNet-18, ResNet-50, and ResNet-101),
Inception-V3, and InceptionResNet-V2. After that, the optimal deep features are selected
from the DCNNs by identifying the optimal layers, improving classification efficiency.
Based on various performance evaluation parameters, it is evident that the proposed lung
nodule classification methodologies outperform the state-of-the-art techniques on different

datasets, such as; LIDC-IDRI and LUNGx challenge.
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Chapter 1. Introduction

1.1 Introduction

Lung cancer is one of the major threats to human health worldwide and is a leading
cause of cancer-related deaths. It was reported in 2018 by the world health organization
that approximately 9.6 million people died due to cancer all over the world during the last
five years, out of which more than 1.7 million people died due to lung cancer. The death
rate is 18% of the total cancer-related deaths. In the meantime, more than two million fung
cancer cases were reported during the year 2018. Moreover, as per the report published by
the American cancer society, the highest death rate and survival rate is 26% and 18%,
respectively [1-3]. The only reason for the low survival rate is diagnosis of cancer in
advance stages because the symptoms at early stages are not prominent. Therefore, early
diagnostics of lung cancer is of utmost importance to increase the survival rate. Lung
cancer is investigated by screening radiograph images, i.e., X-ray, CT or magnetic
resonance image (MRI). Usually, manual screening is used to investigate the CT scans
slice by slice, which is time-consuming and tedious for radiologists. It requires very high
concentration and skill. Furthermore, less experienced radiologists have highly variable
detection rates, leading to an increase the false positive detection, especially in subtle cases,
when interpretation highly depends on previous experience. Therefore, a conceivable
solution to minimize this load on the radiologists is using CAD systems as a second
opinion. Some of the studies in the past have shown an improvement in radiologists
performance through the use of CAD systems [4]. The CAD systems utilize pattern

recognition and machine learning techniques to identify cancerous tissues quicker and



more accurately. These techniques are logistic regression [5], SVM [6], curvelet transform
and multi-layer perceptron [7], discrete AdaBoost, and random forest with a heterogeneous
feature set composed of geometric [8, 9] and CNNs[9, 10]. To date, different CAD systems
such as; neural network-based [11, 12] and traditional models [4, 13] are proposed to detect
and classify tumours in medical images.

The basic scheme of a classic CAD system includes; image pre-processing,
segmentation, feature extraction, and training of a suitable classifier. Feature extraction is
the key step of any CAD system. The extracted features may be handcrafted or deep
features. The handcrafted features include texture, shape, size (volume or diameter), the
nodule volume growth rate with time, and morphology. Recently, the texture features
achieved considerable attention in image classification [14] and for lesion classification in
medical images [15, 16]. In the meantime, deep learning techniques such as CNNs have
been utilized with promising results for pulmonary nodule classification [2, 11, 12, 17].
The convolutional layers of CNNs are used to extract image features. A typical CNN can
explore the image texture features most efficiently, without altering their architecture,
because the whole object and its complex features are not very useful in texture analysis
compared to the repeated patterns of lower complexity. Therefore, we intended to create a
CNN capable of learning texture features and then perform lung nodule classification in
CT images as used by Andrearczyk and Paul for texture classification [18]. We proposed
a transferable texture CNN for lung nodule classification by incorporating an energy layer
(EL) as a texture descriptor. The texture features are learned during the training process by

enabling forward and backward propagation.



Although the DCNNs show enhancement in natural image classification in the
ImageNet large scale visual recognition challenge (ILSVRC) dataset, their performance
relies on extensive labeled data for supervised training. The deficiency of labeled medical
images decreases the adaption of DCNNs. To tackle this issue, the transfer learning
technique is adopted [19]. In this research, we also utilized the pre-trained model of our
proposed texture CNN through transfer learning technique for malignancy classification
lung nodule in a small medical image dataset.

Fusion techniques, such as feature fusion and decision fusion, are also proposed to
enhance CAD systems. These fusion techniques utilize the geometrical size, densities,
texture, shape, and appearance features to improve the classification performance of CAD
systems [20-22]. Furthermore, researchers are also utilizing the handcrafted features along
with the deep feature for medical diagnostics. Wang et al. proposed a fusion technique to
fuse the deep and handcrafted features such as; geometric, intensity, contrast to classify the
lung nodules in chest X-ray images [23]. Zhang et al. proposed a DCNN to enhance the
performance of the proposed model by incorporating a feature fusion technique [24]. In
this thesis, we used decision fusion based on the probability score of different classifiers to
enhance the classification of the CAD system. We select the optimal deep features from
state-of-the-art DCNNs, and then lung nodule classification is done by training

AdaBoostM2 and SVM classifiers.



1.2 Research Objectives

Following are the main objectives of our research:

To improve the existing CAD system for detection and classification of lungs tumour

using the latest pattern recognition and machine learning techniques.

Development, testing, and evaluation of proposed solution for CAD system which will

support radiologists to avoid misdiagnosis because of the fatigue, eyestrain, or lack of

experience.

In particular, the goal is to design a classifier for CAD system which can correctly

classify the lungs cancerous tissues from the CT image dataset. Moreover, propose a

solution that will improve the overall classification accuracy, sensitivity, specificity.

The goal will be achieved using some advanced techniques like:

»  Advanced pre-processing methods for noise removal, image enhancement,
reduction of artifacts, and improving image quality in terms of brightness,
contrast, and exposure enhancement.

»  To analyze the role of texture, intensity and gradient features for improving the
classification performance.

>  To analyze the validity of transfer learning for classification purposess, features
extracted from the pre-trained deep network.

> To apply the fusion techniques for the enhancement of existing CAD systems.

» To investigate the effect of advanced classification methods on improving
classification accuracy.

»  To improve the classification accuracy by training deep CNN from scratch or

fine-tuning pre-trained CNN models.



1.3 Main Contribution

Lung cancer has become a major threat to human health worldwide. Early detection
of lung cancer can increase the survival rate of the patient by starting the treatment at the
right time. The objective of this research is to improve the diagnosis of lung cancer using
enhanced tumour or nodule classification techniques. This dissertation describes the
development, testing, and evaluation of various lung nodule malignancy classification
techniques that will support radiologists in examining radiography scans, such as; CT, X-
ray, or MRI. The main contribution of this work is improvement in the malignancy
classification of lung nodules using deep learning, transfer learning, ensemble learning,
and medical image fusion, which are discussed below:

We have proposed a transferable texture CNN for efficient lung nodule classification
in CT images. The overall proposed architecture consists of only nine layers for automatic
feature extraction and malignancy classification of a lung nodule as benign or malignant.
An EL is incorporated after the last convolution layer of the proposed texture network. The
EL extracts the texture features from the convolutional layer. Incorporating EL reduces the
learnable parameters, which further reduces the computational complexity and memory
requirements without degrading the classification performance. The texture features are
learned through forward and backward propagation during the training process. The
proposed texture network is tested successfully on the lung image database consortium and
image database resource initiative (LIDC-IDRI) dataset for malignancy classification.
Moreover, the effectiveness of the proposed model is also tested by classifying the

handwritten digits. Furthermore, the smaller dataset classification problems are also



investigated using the transfer learning (TL) technique on the pre-trained model of

proposed texture CNN.

Secondly, we proposed a decision level fusion scheme to enhance the classification

performance of the CAD system for lungs nodule classification in CT images. The

performance of AdaBoostM2 and SVM algorithms is evaluated using deep features from

cight state-of-the-art transferable DCNN architectures which are: VGG-16, VGG-19,

Inception-V3, GoogLeNet, ResNet-18, ResNet-50, ResNet-101 and InceptionResNet-V2.

After that, the optimal deep features are selected from the DCNNs by identifying the

optimal layers to improve the classification efficiency.

The significant contributions of this thesis are as follows:

We proposed the texture CNN for the lung nodule classification problem and
evaluated it for two medical image datasets; LIDC-IDRI and LUNGx challenge.
The classification accuracy was achieved up to 96.69% for the LIDC-IDRI dataset.
The EL is incorporated in the proposed texture CNN, which preserves the texture
information, reduces the output vector size, and learns the parameters during
forward and backward propagation and hence, increases the overall learning
capability of the model.

We also proposed the TL-based model, which utilizes LIDC-IDRI as the source
task and the LUNGx challenge dataset as the target task. The classification accuracy
for the LUNGx challenge dataset was 86.14% without TL, which was further
improved to 90.91% using the proposed TL-based model.

Optimum deep features selection from state-of-the-art DCNN to improve lung

nodule classification.



o Classifier selection based on the performance of SVM and AdaBoostM2 on the
LUNGX challenge dataset.

e The lung nodule classification was performed on deep features from state-of-the-
art DCNN models such as;: VGG-16, VGG-19, ResNet-18, ResNet-50, ResNet-101,
GoogLeNet, InceptionResNet-V2 and Inception-V3. The decision level fusion
technique is proposed using top-performing DCNNs such as GoogLeNet, ResNet-
101, and Inception-V3.

e Comprehensive performance evaluation of SVM and AdaBoostM2 classifiers

based on deep features on LUNGx challenge and LUNA dataset.

1.4 Thesis Organization

The arrangement of the work presented in this thesis is as follows:

Chapter 1 describes the outline of this thesis, containing an introduction of lung cancer,
its detection and classification issues, and the research gaps. After that, the research
objectives, main contributions, and hypothesis are defined clearly.

Chapter 2 elaborates on the literature review regarding lung nodule detection and
classification. Furthermore, the architectures of different state-of-the-art models are
presented, which are contemporary research related to our work and utilized in proposed
techniques. The evaluation matrices used for the evaluation of the proposed method are
also discussed in this chapter.

Chapter 3 describes the efficient lung nodule classification using transferable texture CNN
and transfer learning for small lung datasets. Furthermore, the dataset is also described in
this chapter. The proposed transferable texture CNN and transfer learning-based techniques

were tested on LIDC-IDRI and LUNGx databases.



Chapter 4 includes the decision fusion technique for lung nodule classification. The
optimal deep feature selection and performance evaluation of eight state-of-the-art DCNN
is also discussed. The LUNGx challenge dataset is used for the performance evaluation.

Chapter 5 describes the conclusion of this dissertation by highlighting the outcomes of the
research work, which justifies our significant contribution. Moreover, it also suggests the

guidelines for future research work in this field.



Chapter 2. Literature Review

Cancer is a broad term for a class of diseases characterized by abnormal cells growth,
which also invades the healthy cells in the body and forms a solid tumour. Normally,
human cells grow and divide to form new cells as the body needs them. The cells grow old
or become damaged, die, and the new cells take their place. Whereas, when cancer
develops, this orderly process breaks down. As the cells become more and more abnormal,
old or damaged cells survive when they should die, and the new cells form when they are
not needed. The growth of extra cells are masses of tissue that form solid tumours. A
tumour can be benign or malignant. A benign tumour is non-cancerous, usually localized
and does not spread to other parts of the body. Most benign tumours respond well to
treatment. However, if left untreated, some benign tumours can grow large and lead to
serious diseases because of their size. Cancerous tumours are malignant and can spread
into or invade nearby tissues [25]. The size of the tumour varies with time from one
millimeter to several centimeters (>8cm) [26]. If the tumour size is less than or equal to 30
mm in diameter, it is normally called a nodule. If the nodule is formed in the lungs, it is
called the pulmonary nodule [27]. The lung nodules with dimensions greater than 30 mm
are known as lung masses with a maximum probability of benign cancerous [2, 28].

Lung cancer is a leading cause of cancer-related deaths with a very low survival rate.
The CAD systems are designed to increase the nodule detection rate, reduce the false
positive rate and minimize workload on radiologists by assisting in a second opinion in the
screening process of medical images [29]. The first CAD system was developed in the late

1980s to detect lung nodule, which was not appealing due to the unavailability of adequate



computational resources for the implementation of advanced image processing techniques
[30]. The performance of computer-based image analysis and decision support systems got
a high boost after the enhancement in computational resources. However, detecting and
classifying small-sized lesion growth at an early stage is a big challenge for the researchers.
These small lesions cannot be detected by radiograph images, and by the time these are
detected, it is too late for the patient.

Moreover, the available techniques for detection and classification have many false
positives and false negatives because the detection algorithms have high sensitivity for
lesions. Hence, some non-lesion structures (for example, blood vessels) are labeled as
nodules inevitably. Due to these challenges, CAD-based lung nodule detection and
classification has become an active research field. Several efforts have been made to
investigate these challenges. Various lung nodule classification techniques are proposed in
the literature to improve existing CAD systems. These techniques can be divided into five

major groups explained below.

2.1 Traditional Methods for Lung Nodule Classification

The basic scheme of the traditional model for lung nodule classification is shown in
Fig. 2.1 [31]. The traditional models consist of the following basic steps: pre-processing,
nodule detection using segmentation, feature extraction, feature selection, and

classification.

Medicel_[Proprocessing | [ Noduls | [ p | [ Featire -
Images —>| (De-noising/ 1> Detection > o .. Reduction/ - Classification
Enhancement ) | | Segmentation Selection

Fig. 2.1. Traditional Model for Lung Nodule Classification System
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Researchers are improving the performance of CAD systems by enhancing these steps. The
pre-processing includes de-noising and image enhancement techniques. Medical images
are often deteriorated by noise due to various sources of interference during image
acquisition. The improvement in visual quality and appearance of the images is done by
applying image enhancement algorithms. The inappropriate image enhancement
application may also increase noise which may suppress minor details and edge sharpness.
Therefore, the researchers are doing efforts to use an appropriate pre-processing technique.
Schilham et al. used local normalization filtering to remove noise and a global equalization
for contrast enhancement in their proposed CAD system [32]. Emre Dandil introduced the
image enhancement of medical images to prevent false positive results. In this work,
unnecessary noise was removed first by applying the median filter. The unnecessary grains
and contrast differences were removed by applying the histogram equalization technique.
Furthermore, a Laplacian filter was used to sharpen the contours [33]. In this work, we
used adaptive histogram equalization techniques as a pre-processing step to enhance the
lung nodules images.

The detection of a nodule is a very important step before their segmentation. As lung
nodules have helical and circular structures, circular object detection algorithms like
circular Hough transform are being used for lung nodule detection [33]. Moreover, some
other techniques like region of interest (ROI) extraction using thresholding can be used to
detect the lung nodule. For example, Masood et al. adopted the thresholding technique to
detect lung nodules and extracted the ROI around the nodule [34]. The segmentation is the
next step after nodule detection. Researchers are utilizing different techniques for the

segmentation of nodules. Masood et al. adopted the ROI-based segmentation [34], whereas,
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in [33), self-organizing maps [35) were proposed for the lung nodule segmentation. Han et
al. presented the vector quantization techniques for accurate segmentation of lung nodules
[36]. In this work, we extracted the nodule patches by utilizing the ROI of the required
masses.

The salient feature extraction and selection is critical for any classification system. The
extracted features consist of shape, size (diameter or volume), morphology, texture, and
the volume growth rate of the nodule. Researchers utilize these features to improve the
classification task. For example, the shape feature analysis is used by El-Baz et al. for lung
nodule diagnostic. The images were segmented with the active contour method, and the
texture features of lung nodules were extracted using rubber band straightening transform
[37]. The texture features have attained great attention in image classification [14] and
lesion classification for medical images [15, 16, 38,.39]. Descriptors of gray-level co-
occurrence matrix, discrete wavelet transform, [40], local binary pattern (LBP) [41],
higher-order spectra, and histogram of oriented gradients (HOG) [42] are widely used for
texture feature representation in medical image processing [43]. In [33], one hundred
twenty-three salient features were extracted, and principal component analysis [44] is
applied for feature reduction. These features include mean, standard deviation, variance,
entropy, skewness, kurtosis, histogram, sharpness, convexity, circularity, texture, and
statistical features [45], [46], [47], [48]. In addition, Narayanan et al. [49], [50] also
proposed an optimized feature selection-based clustering technique for lung nodules using
intensity, gradient, and geometric features.

Selecting a suitable classifier is another important step of a CAD system. The most

commonly used classifiers are; linear logistic regression, random forest, k-nearest neighbor
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(kNN), extreme learning machine (ELM), LDA, AdaBoost, and SVM [51-53]. In this

thesis, we suggested a suitable classifier among the LDA, AdaBoostM2, and SVM based

on performance evaluation results.

2.2 ANN and CNN Based Nodule Classification Techniques

ANN is a computational system designed with inspiration from the biological network
of the animal brain. It consists of connected nodes, which are the model of neurons in the
brain. Based on their learning capability, various lung nodule detection and classification
techniques are proposed, such as; YSP Chiou et al. proposed an ANN-based system for
lung nodule detection and classification in late 1993 [54]. Penedo et al. proposed two-phase
ANN-based lung nodule detection and classification techniques. During the first phase, one
ANN performs the detection of a nodule in terms of feature space, whereas, in the next
phase, the other ANN performs a classification task [55]. Ashwin et al. proposed an ANN-
based technique for efficient and reliable lung nodule diagnosis. The ANN was trained and
tested after pre-processing of CT and radio graph images [56]. Many researchers utilized
the ANN as a classifier for the classification of lung nodules [57-59].

An ANN can receive only a 1D feature map at its input, whereas the CNNs can take a
2D image or 3D voxel input for the object classification. The CNNs are the deep learning
algorithms that take the input image and learn the weights and biases for various objects to
detect and classify the objects using ANN at the last layer. The main idea of CNN for
pattern recognition is named Neocognitron, which was introduced by Fukushima in 1980.
The Neocognitron included two basic layers, which are the convolutional and down-
sampling layers. The convolutional layer includes filters, whereas the down-sampling layer

computes average activation and helps to classify the object [60] correctly. After that, Yann
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LeCun et al. used back-propagation in CNN for learning the coefficients of convolutional
filters directly from the input image [61]. The first traditional gradient-based multi-layered
CNN, named LeNet-5, was proposed by Yann LeCun et al. in 1998 for handwritten digits
classification [62]. The CNNs got a great breakthrough after applying GPUs by Alex
Krizhevsky et al. for object recognition in the ImageNet dataset. Their proposed AlexNet
was implemented on two GTX 580 GPUs which won the ILSVRC 2012 with a top-5 error
rate of 15.3% [63, 64]. After that, various DCNN architectures, such as; VGG-Net [65],
GoogLeNet [66], ResNet [67] and InceptionNet [68] achieved promising results on various
image classification benchmarks like MS COCO [69], ILSVRC 2012-2017 [64, 70], and
CIFAR-10 [71].

The continuous achievements of DCNNs in image classification inspired the
researchers to utilize for medical diagnostic [72-75]. Researchers proposed DCNNs based
novel techniques for malignancy detection in lungs, such as; R Majidpourkhoei proposed
a LeNet based architecture that automatically learns the image features [76]. Shen et al.
proposed a multi-crop CNN (MC-CNN) for nodule classification in which salient
information of nodules was acquired by cropping specific regions of convolutional feature
maps and then max-pooled at multiple stages [11]. Zhang et al. proposed an automated 3D
DCNN for detecting and classifying lung nodules [77]. Zhu et al. proposed a fully
automated 3D DCNN for lung nodule detection and classification [78]. Recently, Wang et
al. proposed a novel DCNN architecture to classify pulmonary nodules in the LUNGx
challenge dataset. The classification accuracy, and AUC score were 90.38% and 94.48%,

respectively [79]. Cao et al. proposed a dual-stage DCNN for lung nodule detection. The
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first stage is for lung nodule detection, whereas the second stage is used for false positive
reduction [80].

Similarly, Wei Li et al. proposed a DCNN for the lung nodule classification. They
utilized two parallel convolutional layers to extract the feature maps, merged at the first
convolutional layer [67]. These DCNN are computationally complex architectures and take
more training time due to a large number of learnable parameters. In this thesis, we
proposed a transferable texture CNN with a lesser number of parameters that utilized the

texture energy for efficient lung nodule classification.

2.3 Transfer Learning-Based Nodule Classification Techniques

The performance of DCNN essentially relies on extensive labeled data for supervised
training. The deficiency of labeled medical image dataset slowdowns the adaption of CNN
during the training and testing process. Meanwhile, the manual annotation and labeling of
every image to construct a massive medical training database is painful and prohibitive.
Second, the training of deep CNN requires large memory and computational resources.
The lack of such resources increases the training time of DCNN. Third, the training of
DCNN is often complicated due to convergence and overfitting issues which require
continuous modification in the learning parameters or architecture of the network to assure
that all the layers are learning with approximately equal speed. To tackle these issues,
researchers are utilizing different learning techniques, such as; transfer learning and fine-
tuning [81-83]. The objective of TL is to transfer knowledge from the source to target
domains [84]. As M. Oquab et al. performed training on the source task (ImageNet
database), then transferred the pre-trained parameters of CNN to the target task (PASCAL

VOC dataset) for object classification [85]. In this thesis, we employed the same strategy
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using our pre-trained texture CNN model to classify the pulmonary nodule in a small

LUNGZx challenge database.

2.4 Fusion Based Techniques for Nodule Classification

The fusion techniques, such as; feature fusion [86], multi-model image fusion [87,
88], and decision fusion, are used to improve the image quality and provide promising
results, which motivate the researchers to utilize these techniques in medical diagnostics.
Literature shows that various fusion techniques are proposed for medical images to
improve the classification accuracy of pulmonary nodules. For example, multi-modal
image fusion is employed in medical image processing, in which the medical images from
two different modalities, such as; PET — CT, MRI - CT, and MRI — PET, are fused to
improve the medical diagnosis [89-92]. The feature fusion techniques are also used to
enhance the performance of medical diagnostics, such as; Khan et al. proposed a lung
cancer classification technique which performed the serial canonical correlated-based
fusion of texture, point, and geometric features to classify pulmonary cancer in the Kaggle
challenge database [93]. Wang et al. proposed a deep feature fusion scheme to classify the
pulmonary nodules in chest radiograph images by fusing the deep features from pre-trained
AlexNet and handcraft features, like; geometric features, contrast, intensity, along with the
first order and second-order filter features [23]. Sridar et al. proposed a decision-based
fusion technique for fetal ultrasound images plane classification and achieved an accuracy
score of 92.00% [94]. Xie et al. proposed a decision level fusion technique for automatic
pulmonary nodule classification on the LIDC-IDRI dataset. They trained AdaBoosted
back-propagation ANN on shape, texture, and deep features separately and then performed

the decision fusion on three outcomes [95]. In this thesis, we used the decision fusion
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technique for lung nodule classification in CT images. We showed that the proposed fusion

techniques perform well as compared to state-of-the-art techniques.

2.5 State-of-the-art DCNNs

The CNNs got a great breakthrough after applying GPUs in object recognition and
classification. Various DCNN architectures (AlexNet, VGG-Net, GoogLeNet, Residual
Networks (ResNets) [67] , Inception [96], Xception [97] and Dense Networks [98, 99]) are
proposed to improve the classification performance. These architectures have shown
promising results in segmentation, recognition, and classification, which inspired us to
utilize the state-of-the-art DCNNs. In our research work, we utilized AlexNet, VGG16,
VGG19, GoogLeNet, ResNetl8, ResNet50, ResNetl01, Inception-V3, and

InceptionResNet-V2 which are briefly discussed below.

2.5.1 VGG-Net

The VGG-Net architecture was proposed by the visual geometry group (VGG) team
for ILSVRC 2014 and won this challenge. It is designed by increasing the depth of the
available CNN model up to sixteen for VGG-16 and nineteen for VGG-19, as shown in

Fig. 2.2
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Fig. 2.2. Architecture of VGG-16 and VGG-19

VGG-Net investigates the performance of CNN by increasing its depth. The architectural

comparison of VGG-16 and VGG-19 is described in Table 2.1.

Table 2.1. Layer-wise architecture details of VGG-16 and VGG-19

Layer Name | Input Size | Output Size VGG-16 VGG-19
Convl 224 x 224 112 x112 3 x 3, 64 Two Layers, Maxpool 3 x 3, 64 Two Layers, Maxpool
Conv2 112 x 112 56 x 56 3 x 3, 128 Two Layers, Maxpool 3 x 3, 128 Two Layers, Maxpool
Conv3 56 x 56 28 x 28 3 x 3, 256 Three Layers, Maxpool | 3 x 3, 256 Four Layers, Maxpool
Conv4 28 x 28 14 x 14 3 x 3, 512 Three Layers, Maxpool | 3 x 3, 512 Four Layers, Maxpool
Conv) 14 x 14 7x7 3 x 3, 512 Three Layers, Maxpool | 3 x 3, 512 Four Layers, Maxpool
FC6 7x7x512 4096 First Fully Connected Layer First Fully Connected Layer
FC7 4096 4096 2~ Fylly Connected Layer 2 Fully Connected Layer
FC8 4096 4096 Last Fully Connected Layer Last Fully Connected Layer
Softmax 1000 1000 Classification layer (Softmax) Classification layer (Softmax)

The architecture of VGG-19 has 144 million parameters, whereas VGG-16 has 138

million parameters. The VGG-16 has 13 convolutional layers, 5 max-pooling layers (2 X

2), and two fully connected layers. The output is a linear layer with a softmax activation
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function. All the convolution layers have a ReLU activation function, and dropout
regularization is used in fully connected layers. The architecture of VGG-19 is like the
VGG-16, except for three additional convolution layers, which are incorporated in
convolution blocks named Conv3, Conv4, and Conv$, as shown in Fig. 2.2 and Table 2.1.
In our research work, we extracted the deep features from the last fully connected layers of

both networks. The output from FC6 - FC8 layers of both variants can be computed using

the following equations.
Yo = o(WsYs + Bg) 2.1)
Y; = o(W;Ye + B;) (2.2)
Ys = o(WgY; + Bg) (2.3)

where Y;, denotes the output of the k** layer, Wj, and By are the weights of the k** layer.
The output feature map size of FC6 and FC7 is 4,096. The deep features from such layers
can be used for the classification task. In this wok, the deep features are extracted from

F(C6 during forward propagation of the input through the pre-trained VGG-Net.

2.5.2 GooglLeNet

The state-of-the-art CNN architecture named GoogleNet was proposed for the
ILSVRC 2014 challenge. It achieved a top-5 classification error of 5.5% and placed at the
first position of this challenge. The GoogLeNet is also known as inception because it
introduces a new module named inception block. This block concatenates kernels of

various sizes into one kernel. The structure of the inception block is shown in Fig. 2.3.
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Fig. 2.3. Structure of inception block

It consists of four concurrent branches. The first three branches use convolutional layers
with kernel sizes of 1 X 1, 3 X 3, and 5 X 5. The complexity of this model is reduced by
convolving the two mid branches with a window size of 1 X 1 to the input channels. The
fourth branch is a 1 X 1, convolutional layer, which drives the 3 X 3 max-pooling layer.
The relevant padding is used by all four branches to keep the similar height and width of
the input and output. The output of each branch is concatenated to develop the final output
of the inception block. The basic architecture of GoogLeNet is shown in Fig. 2.4, which

has approximately 6.8 million parameters.
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Fig. 2.4. Basic architecture of GoogLeNet

The entire architecture has nine inception blocks (each block has six convolutional layers),
two convolutional layers of 7 X 7 and 3 x 3, one convolutional layer of size 1 x 1 (for

dimension reduction), four max-pooling layers, two normalization layers, one average
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pooling, and one FC layer. All convolutional layers utilize the ReLU activation function,
and dropout regularization is applied in the FC layer. The Softmax activation function is

used in the output layer.

2.5.3 Inception-V3

Inception-V3 is the third version of the famous GoogLeNet architecture, which was
trained with one million training images of one thousand classes of the ImageNet dataset.
In Inception-V3, an inception module concatenates multiple sized convolutional kernels in
one kernel. This design reduces the number of learnable parameters, which reduces the

complexity of the network. The block diagram of inception-V3 is shown in Fig. 2.5.
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Fig. 2.5. Basic architecture of Inception-V3
2.5.4 ResNet
The basic idea of ResNet is that every layer of the architecture learns from residual
functions with reference to its input layer. In this way, the architecture is easily optimized
and gains significant accuracy. The ResNet architecture was proposed with different
variants in the ILSVRC-2015 competition and placed first. In this work, we utilized pre-
trained models of three variants which are ResNet-18, ResNet-50, and ResNet-101. The

basic architectures of all the variants are given in Table 2.2.
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Table 2.2. Architectures of ResNet-18, ResNet-50 and ResNet-101

Layer Name | Output Size ResNet-18 ResNet-50 ResNet-101
Conv 12 X112 7 x 7, 64, Stride 2, 7 x 7, 64, Stride 2, 7 x 7, 64, Stride 2,
i 3 x 3 Maxpool, Stride2 | 3 x 3 Maxpool, Stride2 | 3 x 3 Maxpool, Stride 2
1x1, 64 1x1, 64]
Conv2_x 56 x 56 g"g o] x 2 [3x3, 64]x3 [3x3, 64 [x3
X 1x1, 256 1x1, 256
1x1, 128 1x1, 128]
Conv3_x 28 x 28 Ix3 gg] x2 [3 x3, 128] x4 [3 x3, 128|x4
' 1x1, 512 1x1, 512
<3 256 1x1, 256 1x1, 256
Conv4_x 14 x 14 3x3 256] X2 [3x3, 256]x6 [3x3, 256 | x 23
' 1x1, 1024 1x1, 1,024]
1x1, 512 1x1, 512
ConvS_x 7x7 ::g g}g x2 [3x3, 512]x3 [3x3, 512]x3
' 1x1, 2,048 1x1, 2,048
Pool 1x1x512 Average Pool Average Pool Average Pool
FC 512 x 1,000 | Fully Connected Layer Fully Connected Layer Fully Connected Layer
Softmax 1,000 Classification layer Classification layer Classification layer

The input size is 224 % 224, whereas the first convolution layer (7 X 7, 64 Stride 2) and

the last three layers (pooling, FC, and sofimax) are fixed for all three discussed

architectures. The depth of the network is varied by increasing inner convolution layers.

2.5.5 InceptionResNet-V2

Inception-ResNet-V2 is the variant of Inception-V3 and it also integrates some ideas

from ResNet. In InceptionResNet-V2 with the batch normalization is utilized only on the

top of the traditional layers. The residual modules are engaged in such a manner that the

number of inception blocks and the depth of the network are increased. The basic

architecture of InceptionResNet-V2 is shown in Fig. 2.6.
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Fig. 2.6. Architecture of InceptionResNet-V2.

The basic architecture consists of one stem block (which has six convolution blocks and
one max pool layers), three different types of inception blocks, which are Inception-resnet-
A, Inception-resnet-B, and Inception-resnet-C (Inception-resnet-A has five inception
modules, each has seven convolution blocks, Inception-resnet-B has ten inception
modules, each has five convolution block, Inception-resnet-C has five inception modules,
each has four convolution block), two reduction blocks with different convolutional layers,

one average pool, and one FC layer. The Softmax function is used in the output layer.

2.6 Performance Evaluation Metrics

In this thesis, we considered Class 0 as benign and class 1 as malignant for binary
classification problems. The performance of the binary classification model is described
by a confusion matrix shown in Table 2.3.

Table 2.3. Confusion matrix for two classes

Predicted Class
Actusl Class
Positive (Malignant) | Negative (Benign)
Class 1: Actual Positive (Malignant) TP FN
Class 0: Actual Negative (Benign) FP TN

For the above confusion matrix, true positive (TP) states that the assessment of experts and
classifier prediction is positive, whereas true negative (TN) states that the assessment of
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experts and classifier prediction is negative. Similarly, false positive (FP) states that the
assessment of experts is negative and classifier predicted as positive, whereas, false
negative (FN) states that the assessment of experts is positive and classifier prediction is
negative. The quantitative performance of the proposed method is determined by different
evaluation matrices, like; Accuracy, Gmean, Precision, Recall, Specificity, Error Rate,
receiver operating characteristic curve (ROC), and area under ROC (AUC).
Accuracy: Accuracy is the statistical measure to evaluate the classifier model. It

elaborates how well a classifier predicts. It is calculated using the following expression:

(TP +TN)
(TP +TN + FP + FN) (2.4)

Accuracy =

Precision: It is the positive predictive value and is mathematically defined as:

Precision = (TP)
recision = TP+ FP) @.5)

Specificity: Specificity is the measure of the true negative rate. It is the percentage
of actual negative cases which are accurately predicted by the classifier and can be

calculated using the following equation:

(TN)
(TN + FP) (2.6)

Specificity =

Sensitivity: Sensitivity or recall/true positive rate is the measure of the total
percentage of actual positive cases correctly identified by the algorithm. Therefore, it
measures the benign or malignant nodules correctly identified by the algorithm. It is

calculated using the following equation:

(TP)

Sensitivity = _—(T P T FN) @7
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Error rate: The error rate of a classifier is defined by the following expression:

(FP + FN)
(TP + TN + FP + FN) 2.8)

Error rate =

2.7 Summary

In this chapter, we have discussed the importance of the CAD system for lung cancer
detection and literature review of different lung nodules classification techniques used in
medical diagnostics. Furthermore, different state-of-the-art DCNNSs utilized in this thesis
are also discussed along with their architectures. Finally, different performance evaluation
metrics are discussed which are used to evaluate the quantitative performance of proposed
techniques.

In the next Chapter, we comprehensively have discussed the proposed transferable

texture CNN and its performance evaluation.
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Chapter 3. Transferable Texture CNN for Efficient Lung

Nodule Classification

The efficient lung nodule classification using transferable texture CNN and

utilization of transfer learning for small lung datasets are discussed in this chapter.

3.1 Introduction

In recent years, texture features have attained great attention in image classification
and the lesion classification of medical diagnostics. Han et al. utilized three texture
features, such as Haralick, local binary patterns, and Gabor features for lung nodule
classification in CT images with the AUC score of 92.70% [15]. Firmino et al. proposed
lung cancer detection and classification using HOG and watershed techniques. They
utilized SVM and rule-based classifiers for false positive reduction [13]. Tizita and Alhayat
utilized the geometric and histogram features of the lung nodule images with linear and
non-linear classifiers for malignancy detection [51]. RW de Sousa Costa et al. used texture
descriptor in terms of taxonomic diversity index and mean phylogenetic distance, which
characterizes the basic structure of the lung nodule [100]. Similarly, Guohui Wei et al.
presented lung nodule detection using texture features [101]. Emre Dandil computed the
combined shape, intensity, energy, and texture features of the lung nodule. The principal
component analysis is used for feature reduction before final classification through a
probabilistic neural network [33]. Ahmed Shaffie et al. used HOG and higher-order
Markov Gibbs, a random field model, to describe the texture of lung nodules, and the

classification is done using a stacked auto-encoder [102]. Recently, deep learning
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techniques, especially CNNs, have been used with promising results for lung nodule
classification [11, 17, 103].

The CNNs utilize convolutional layers to extract the features. The complex features
are extracted by the last convolutional layer, which is utilized in fully connected layers to
extract the complete shape information. The gradient features are extracted by the first
convolutional layers, whereas the inner pooling and convolutional layers extract features
with considerable complexity. For the texture analysis, the entire object and its complex
features are not much useful compared to the recurring patterns of lower complexity,
whereas the dense features of intermediate convolutional layers accurately represent the
texture of the object. Therefore, it is feasible for a classic CNN to efficiently explore the
texture properties without changing the architecture [18].

We intended to build a CNN capable of learning the texture features and then classify
the lung nodules in CT images, as used in [18], for texture image classification. Therefore,
we introduced a texture descriptor named EL right after the convolutional layer. We
enabled the forward and backward propagation to learn the texture features during the
training process. Moreover, the TL technique is also used to investigate the issues of the
small labeled medical image dataset using our pre-trained model. Therefore, the proposed
technique is named transferable texture CNN. We also showed that our texture CNN
achieved better classification performance on lung CT images with fewer learnable
parameters and neurons. The proposed architecture is trained and tested using six-fold
cross-validation for binary classification of lung nodule malignancy. Furthermore, the
proposed model is also tested on a modified national institute of standards and technology

(MNIST) dataset [62, 104]
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3.2 Datasets and Methodology

In this section, we discussed the datasets, patch generation, and image augmentation
technique, which is used to increase the size of small biomedical images dataset to meet
the training requirements of the proposed CNN model. Afterward, the architecture of our

proposed transferable texture CNN and TL methodology are discussed.

3.2.1 Datasets
The performance evaluation of both techniques is done using publicly available

LIDCIDRI, LUNGx challenge, and MNIST databases.

3.2.1.1 LIDC-IDRI Database

The LIDC-IDRI is a publicly available database that contains 244,527 thoracic CT
scan images of 1,010 cases. The x and y-axis coordinates and the boundary information of
each nodule are available in associated extensible markup language (XML) annotation
files. The XML files also contain semantic diagnostic features which four experienced
thoracic radiologists marked. They graded each feature from 1 to 5 annotations [105]. We
utilized available XML files and an annotation list [106, 107] to decide which annotation
is assigned to the related nodule. Radiologists classified the degree of malignancy for each
pulmonary nodule from 1 to 5 categories, given in Table 3.1.

Table 3.1. Degree of malignancy in LIDC-IDRI database

Occurrence of cancer Degree of malignancy
Highly unlikely for cancer
Moderately unlikely for cancer
Indeterminate likelihood

Moderately suspicious for cancer

W WwWw N -

Highly suspicious for cancer
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In this work, the first three categories (1-3) are recognized as benign (Class 0), whereas the

latter two categories (4,5) are identified as malignant (Class 1).

3.2.1.2 LUNGX Challenge Database

This database was introduced for nodule classification instead of nodule detection.
Therefore, it was mainly focused on the automatic classification of lung modules as
malignant or benign in CT images. The LUNGx challenge has a set of calibration and
testing scans with online available CSV files containing nodule locations. The calibration
set has ten scans (five females, five males). Five of ten calibration scans contain one
confirmed benign nodule, and the other five contain one pathology-confirmed malignant
nodule. Whereas the test set has 60 scans with a total of 73 nodules. Out of these 60, 13
scans have two nodules. The total of 60 test scans, 23 males and 37 females, contained 37
benign and 36 malignant nodules

The LUNGX challenge database consists of a single transaxial series with full thoracic
coverage for each case. All scans have been obtained on Philips Brilliance scanners with a
“D” (over-enhancing), and each scan has a 1 mm slice thickness. The LUNGx challenge
has 22,489 CT images in digital imaging and communication in medicine (DICOM)
format. Each image file has a Unique Identifier (UID) assigned according to the DICOM
standard. To achieve a proper anatomy-based sequencing of the images, the slice number

is acquired from the DICOM tag (0020,0013).

3.2.13 MNIST dataset
The MNIST dataset is a handwritten digits dataset constructed by the National
Institute of standards and technology (NIST); hence, known as modified NIST or MNIST.

It consists of 10,000 labeled tests and 60,000 labeled training images. The vectors size for
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each black and white image is 784 [62, 108]. Each consist of 28 x 28 pixels. Therefore,
we first convert it into a fixed-size image before training and testing the proposed

methodology.

3.2.14 Image Augmentation

The huge amount of sample data can effectively improve the deep CNN ftraining and
testing accuracy by reducing the loss function and ultimately improving the robustness of
networks. Image augmentation is a very good technique to boost the performance of a deep
network with very small training data. Image augmentation artificially creates training
images using different image processing operations, such as; translation, resize, random
rotation, flips, and shear, etc. In this work, the size of the dataset D = {Xi:1 < i < N} is
increased using translation, random rotation, and flip image processing operations to create
artificial training images for our proposed deep CNN. Where N is the total number of

images.

3.2.1.5 Patch Generation and Data Enhancement

The LIDC-IDRI and LUNGx challenge database comprises a heterogeneous set of
scans acquired using various reconstruction and acquisition parameters. In the CT images,
the air is available in the lungs with a mean intensity of -1000 Hounsfield units (HU)
approximately, and most of the tissue have intensity in the range of -910 HU to -500 HU.
Moreover, the blood, bone, and chest wall are much denser (above -500 HU) [109].
Therefore, to normalize the pixels, all CT images are first converted to HU scales using the
available information of the series header (0028, 1052) and (0028, 1053) in the DICOM

and then transformed to a range of (0, 1) from (—1000, 500 HU).
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In both databases, all the slices are available in the DICOM format, having a size of
512 x 512 at a pixel depth of 16 bits. The image patches are created in two phases after
HU transformation. In the first phase, ROI around the nodule is extracted by acquiring the
central coordinates (X, y, z) and slicing the number of malignant and benign nodules from
the associated XML file. Then we acquired the voxel coordinates by taking some pixels
around the central coordinates with respect to slice thickness. The nodule size is between
3mm to 30mm, and slice thickness varies from 0.6mm to 5mm for the LIDC-IDRI
database. In the second phase, we extracted all the patches using voxel coordinates
extracted in the first phase. We used the same central coordinates (x,y) for each slice

during the extraction of every patch. The patch extraction process is illustrated in Fig. 3.1.

Fig. 3.1. Patch Extraction Process

In this way, a total of 19,388 patches of size 64 X 64 were extracted from 1,010 cases of
the LIDC-IDRI database for benign and malignant nodules and named as
class 0 and class 1, respectively. Similarly, for the LUNGx challenge database, we

acquired 480 patches for class 1 and 663 patches for class 0.
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3.2.2 Architecture of Transferable Texture CNN

Keeping in view the following three essential features of the image, deep CNN has
been developed. First, some discriminational patterns have a very small size than the actual
image, but if their size equals the size of the convolution filter mask, then the said patterns
can be found by the convolution filter. Second, some shapes or patterns are available in
different areas of the image, such patterns can also be identified by the convolution of the
complete input image. Third, the sub-sampling pixels are critical for the max-pooling layer
and do not alter the shape of the input image. These pixels are utilized in biomedical image

classification. Fig. 3.2 shows the overall architecture of the proposed texture CNN for lung

nodule classification.

64x64x1 Input Layer
c s
onvl
sx5x1x16 | MaxP(ReLU(Bnorm(Conv(x,w))))
Conv2 L
on
S5x5x16X32 MaxP(ReLU(Bnorm(Conv(x,w))))
Conv3 &
3x3x32%64 | MaxPReLU(Brorm(Conv(x,w))
d} Energy (Texture)
16384x128 Energy Layer
3
128x1024 FC1
3
2x1024 FC2
3
Softmax Layer
Benign Malignant

Fig. 3.2. Architecture of Transferable Texture CNN
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The proposed CNN has two convolutional layers, followed by the normalization and the
pooling layers. Whereas the third convolutional layer drives the EL. Finally, the Softmax
is utilized with the fully connected layer to classify lung nodules. Moreover, the layer-wise

dimensional details are given in Table 3.2, including network layer details like kernel,

stride, and padding for each layer.

Table 3.2. Layer-wise architecture details of proposed texture CNN

Layer Input size Kernel | Stride Padding Output size Learnable parameters
Bias: 1 % 1 x 16, Weights:
Convl 64x64x1 5x5 (1 11111 1 1 1} 62 x 62 x 16 5x5x1x16
Pooll 62 x 62 x 16 2x2 (]2 21|11 1 1 1] 31x31%16 Weights:0
Bias: 1 x 1 x 32, Weights:
Conv2 31x31x16 5x5 (11 {11t 11 1] 30 x 30 x 32 5 x5 x 16 X 32
Pool2 30 x 30 x 32 2x2 |12 21|11 1 1 1] 16 X 16 x 32 Weights:0
Bias: 1 X 1 X 64, Weights:
Conv3 16 % 16 x 32 3x3 (1 11|11 1 1 1 16 x 16 x 64 3% 3 X 32 X 64
Bias: 128 X 1,
EL 16 x 16 x 64 NA NA NA 128 x 1 Weights: 128 X 163,84
Dropout 128 x 1 NA NA NA 128x1 NA
Bias; 1024 x 1,
FC1 128 x1 NA NA NA 1024 x 1 Weights: 024 X 128
Dropout 1024 x 1 NA NA NA 1024 x 1 NA
Bias: 2x 1,
FC2 1024 x 1 NA NA NA 2x1 Weights: 2 x 1024

The input and output dimensions of each layer are also mentioned in Table 3.2. We used

the following mathematical relation to compute the output size of any convolutional layer:

S;— S, + 2P

OutputSize = Tt 1

@G.1)
where P is padding, S; is input size, S, is the filter size and ¢ is the value of stride.

3.2.2.1 Convolutional Layers and Energy Layer
Only the three convolutional layers are used in the proposed model. The kernel size

for the first two layers is 5 X 5, whereas, the output channels are 16 and 32, respectively.
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The third convolutional layer is considered an intermediate layer to extract the texture
features. It has 64 output channels and a 3 x 3 kernel size. The number of learnable
parameters for convolutional layers is only 31,744, computedusing the following
mathematical expression.

Oc = (Sk x{+1) x N (32

0c = Sy X { X No + N, (3.3)
where 0. is learnable parameters of CNN layer, S, is kernel size, N, is a number of
channels, and { is stride.

Each convolutional layer computes the output of neurons connected to the input, and
computation is a dot product among their weights and a small area of input where it is
connected. The first convolutional layer produces an output in a volume of 32 X 32 X 16
with 16 kernels. Let y be an input feature map and be the weights, then the output of the
neurons at first convolutional layer is given by equation 3.4.

Y* = f(x* * o* + b%) (3.4)
where Y* is the output feature map of the convolutional layer for kth input and b is the
bias term, whereas * represents the 2D convolution operation. The CNN usually combines
the dense orderless features by sharing the weight of the convolutional layer. These features
are combined within the CNN to classify lung nodule images. Therefore, an energy
descriptor is desired at the output of the last convolutional layer, which can learn the texture
features during forward and backward propagation. Keeping in view the requirement of an
energy descriptor, an energy layer is incorporated after the third convolutional layer, which
works as the dense orderless texture descriptors. The connection between the EL and the

last convolutional layer is given by equation 3.5.
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E(x0) = ok, o[ x: +b) (3.5)
where E (¥, 0) is the output of EL, n is the number of input connections and w is the weight
vector of EL, which is randomly initialized during the start of training. The
interconnections between the EL and the FC layers are much smaller as compared to the
interconnections of the last classic convolutional layer, which leads to the reduction of the
learnable parameters. Furthermore, EL preserves the energy/texture information of the
previous layer and also learns during forward and backward propagation. Therefore, the
EL enhances the overall learning capability of the network in addition to the reduction of
vector size for the next fully connected layer. This also reduces the complexity of the
proposed network without compromising the accuracy. We compared the learnable
parameters of the proposed CNN with EL and without EL structure. The learnable
parameters of the EL are computed using equation 3.6.

Og, = 6™ x §™°1 (3.6)
where 8g, is learnable parameters of EL, 6™ is the neurons of the current fully
connected layer and 6™~ is neurons of the previous fully connected layer. Then we
computed the learnable parameters of the proposed CNN with and without EL, which are
2,263,170 and 16,812,034, respectively. By incorporating the EL, the learnable

parameters were reduced by 86% compared to the classic CNN configuration.

3.2.2.2 Batch Normalization and Activation Function
The batch normalization is used between the convolutional and ReLU layers to speed
up the training process and minimize the sensitivity of network initialization [110, 111].

The purpose of BNL is to eliminate the internal covariate shift. It is done by taking batch-
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wise mean and standard deviation normalization. For batch normalization computation,

mean and variance are calculated using the following equations.

1 m
“=EZ“ G.7)
T

1 m
op = ;Z(x.- — ug)? (3.8)

where g and op are the mean and variance of mini-batch, whereas, m is the mini-batch
size of i input feature element. The value of m is selected as 64. After computing up and

ayg, the batch normalization is computed using equation 3.9.

Q1)
Y, = 7—&‘2—+—Ey +b (3.9)

where y and b are initial values of learnable parameters for each output.

The rectified linear unit (ReLU) is used as an activation function at the output of the
convolutional layer to avoid the vanishing gradient problem and boost up the learning
speed [112]. The ReLU layer is used as a piecewise function, such as max(0; x)
thresholding at zero. Equation 3.10 is used as an activation function, whereas, expression

3.11 represents the output of the ReLU layer.
Yjk = max{0, xix} (3.10)
Yaero = ReLU (Buorm(Conv(x, ©))) G.11)
In equation 3.9, Yj ;. is the output feature element and x; ; is the input feature element.
The i and j are index values of pixels for k** channel image.
3.2.2.3 Pooling Layer

A pooling layer reduces the feature map size and ultimately reduces the computations

and weights, leading to overfitting the network. In this work, every feature map from
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consecutive convolutional layers is directly pooled by computing the maximum of its

RelLU output as given in expression 3.12.
Ypoor = MaxP (ReLU (Baorm(Conv(x, w)))) (3.12)

The max-pooling is done by the following mathematical expression:

Y* = max(0, X5, x***w¥) (3.13)
where Y* is the output feature map for k** channel and is the input feature map. Whereas
w is the kernel for the maxpooling layer, and p represents the pooling size. Two
maxpooling layers are available in our architecture, and the kernel size of each layer is 2 X
2. The max-pooling layer operates individually on each depth slice of the input feature map

and resizes it in the spatial domain by utilizing equation 3.13.

3.2.2.4 Dropout Regularization

We used dropout regularization to prevent the overfitting of training data, as it
eliminates the random subset of parameters iteratively during the weight update process.
As the fully connected layer has the maximum number of parameters over the entire
network, it goes under the influence of overfitting on training data. Therefore, the dropout
regularization layer is added after the fully connected layer. In this work, we also explored

our technique with different dropout regularization rates.

3.2.25 Softmax Classifier and Loss Function
The softmax is used as a classifier that utilizes the log loss as a loss function. The
probability value of softmax varies between 0 and 1, which is the confidence score for

binary classes. The loss function given in equation 3.14, also computes the compatibility
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of the available set of parameters, analogous to the ground truth labels of the training

dataset.

=1y, + Loyz exp(y;) (3.14)
7

where [}, is the total loss, and ¥ is the j** element of the vector from class scores .
Moreover, the regularization term also confirms that the weights are well distributed. The
objective of the classifier is to narrow down the difference between the probabilities of the

actual label and predicted label, which are computed using the following softmax function:

Wyt
Y, = &P (3.15)

jexp(yy)

3.2.2.6 Back-propagation Algorithm
The proposed texture CNN was trained using a back-propagation algorithm. Let, 8 =
(w;, by) be the network parameters which are updated using the following decreasing cost

function between the ground truth and the training results:
1 wlxl i
L=-Z28 i (PO 1219) (3.16)
where L is the cost function which is calculated iteratively. The network parameters
(6) are updated with stochastic gradient descent with momentum technique given in
equation 3.17.

aL

=5~ 0@+ Bla(t)) (.17

0(t+1)=6(t) - (l

where a represents the momentum rate, whereas, A denotes the learning rate, which
accelerates the learning procedure and leads to coping with the global minimum of the

given loss function, the f represents the weight decay rate, which minimizes the decaying
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weight parameters nearly zero during each iteration, which causes to improve the learning
efficiency of the entire network parameters. The back-propagation becomes even more

effective when using gradient descent to tune the network parameters and train a CNN.

3.2.3 Deep Feature Transfer Technique for Malignancy Classification

The performance of different machine learning techniques essentially relies on
extensive labeled data for supervised training. Whereas, deficiency of the labeled medical
database for training and testing reduces the adaption of CNN. Simultaneously, manually
annotating and labeling every data item to construct an immense training database from
miscellaneous domains is painful and prohibitive, particularly for the medical image
databases that also have their distinct privacy issues. Hence, there is a powerful inspiration
to construct a classifier via deep feature transfer for the biomedical image classification
problem by taking advantage of rich labeled data of various domains. Therefore, the idea
of transferring features is utilized to study a discriminative and robust model in the
presence of variable tests and training distributions known as TL [84]. The objective of TL
is to transfer deep features from the source to target domains for the classification task. M.
Oquab et al. performed training on the source task (ImageNet database), then transferred
the pre-trained parameters of CNN to the target task for object classification [85]. The same
strategy is employed in this work for lung nodule malignancy classification using our pre-
trained CNN model. The platform is introduced between deep learning and TL for lung

nodule classification. Fig. 3.3 shows the proposed TL methodology.
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Fig. 3.3. Transfer learning methodology using pre-trained texture CNN

layers for LUNGx challenge images.
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It is a more accurate and stable TL-based classifier model, which learns the significant
features of the biomedical image without considering the rich labeled biomedical image
dataset. Initially, the network is trained using GPU on the source task (top row of Fig. 3)
with many data samples such as an augmented dataset. Then, the pre-trained parameters of
the internal convolutional layers and the first fully connected layer are transferred to the
target task (bottom row of Fig. 3). Here, the source task is the LIDC-IDRI database,
whereas the target task is the I:.UNGx challenge database. The features are extracted from

EL, and then weights and biases are fine-tuned by retraining the last two fully connected



3.3 Training Process

The proposed CNN model is trained and tested on a publicly available LIDC-IDRI
[106, 107] database using a six-fold cross-validation strategy. A total of 925,632 image
patches of the LIDC-IDRI database is divided into six subsets. Then the six-fold cross-
validation is carried out by taking five subsets of data as training and the remaining one as
testing to compute the performance of our proposed texture CNN. Furthermore, to avoid
the overfitting of the model and monitor the training process, 20% of each k-fold training
data is used to validate the proposed model. The validation is done at the end of the training

epoch. The data distribution details of each training fold are illustrated in Fig. 3.4.

Training Testing
Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6
For each K-fold |
Training Validation
(30%) (20%)

For each epoch

Fig. 3.4. Data distribution detail for training and testing

The training process is repeated six-time, and each time the weights from the network are
reinitialized randomly and then the model is trained end-to-end for 300 epochs using a
back-propagation algorithm. The learning rate (1) of the model is set to 0.001, which
decreases after every 2500 iterations. The decreasing factor of 4 is 1 X 10~1. The value of
momentum rate (a) and weight decay rate (8) is 9 x 10~ and 2 x 10™%, respectively.
Furthermore, the value of mini-batch size is kept at 64 during back-propagation. It is to be

noted that the training process becomes smooth after passing the sixty epochs. The
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improvement in accuracy becomes negligible, which leads to the end of the successful
training process. The same training procedure is also adopted to evaluate the performance
of the proposed model on the LUNGx challenge database and the MNIST database. The
quantitative performance of the proposed method is determined by computing accuracy,
recall, precision, specificity, and error rate. The details of these evaluation metrics are given
in chapter 2.
3.4 Results and Discussion

The implementation of the proposed texture CNN is done with a server having an
Intel(R) Core(TM) i7-8700 processor, 16GB RAM, and one NVIDIA TITAN Xp GPU
with 12 GB RAM and compute capability of 6.1. In this work, we explored the texture
CNN architecture, then the performance evaluation on the LIDC-IDRI and LUNGx
challenge database was performed. After that, we also validated the effectiveness of our
model on the MNIST dataset.
3.4.1 The Exploration of Texture CNN Structure

For the proposed texture CNN model, first, we evaluated the performance with the
different dropout layer configurations to find the appropriate value of the dropout rate for
each layer. To evaluate the performance of the network, we compared it with different
dropout rates by changing the dropout layers. Table 3.3 shows the comparison of the
results.

Table 3.3. Effect of variation in dropout rates with dropout layers of texture CNN

Dropout Layers | Dropout Rate Accuracy Error Rate
0 0 95.36% 4.63%
1 0.20% 96.54% 3.46%
2 0.20% 96.69% 330%
2 0.50% 95.03% 4.79%
2 0.60% 94.63% 537%
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We sustained all the neurons for the next coming layer when we used no dropout layer. In
such a case, the classification accuracy is lower due to overfitting. Furthermore,
classification accuracy remained low at the dropout rate of 0.5% and 0.6% due to the
withholding of extra neurons. The maximum accuracy is achieved at the dropout value of
0.2%, and the results are shown in bold. In this case, we kept 80% of the neurons for the
next layer.

We also evaluated the performance of our model with and without EL (i.e., texture
CNN and classic CNN configuration) to study the effect of EL on nodule classification
performance. The comparison of both configurations is given in Table 3.4.

Table 3.4. Comparison of classic and texture CNN

Models Dataset Accuracy(%) Recall(%) Error Rate(%)
Texture CNN | LIDC-IDRI 96.6940.12 96.050.37 03.3020.06
ClassicCNN | LIDC-IDRI 92.08+0.23 95.1240.25 07.98£0.10
Texture CNN | LUNGx Challenge 86.1410.21 88.7610.22 13.8520.19
Classic CNN | LUNGx Challenge 85.71x0 23 87.7740.21 14.8510.21

The results show that the proposed texture CNN performed well compared to the classic
configuration CNN for both databases. As the EL is identical to the average pooling and
worked as dense orderless texture descriptors, it learned texture features during forward
and backward propagation, which improved the classification performance. From Table
3.4, it can be observed that Texture CNN has a significant improvement in classification
accuracy and other metrics, as compared to the classic CNN configuration for both
databases. Moreover, we also measured the classification accuracy for each class. These

results are given in Table 3.5.
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Table 3.5. Classification Score for each class of LIDC-IDRI and LUNGx challenge

Models Dataset Accuracy (%)
Malignant LIDC-IDR1 97.03%
Benign LIDC-IDRI 96.00%
Malignant LUNGx 85.86%
Benign LUNGx 86.48%

From the results shown in Table 3.5, it can be observed that the proposed texture CNN
classified the malignant nodules more accurately for both the databases, as compared to
benign nodules. The classification accuracy score of the malignant nodules is 97.03% for
the LIDC-IDRI dataset, whereas it is 86.48% for the LUNGx challenge dataset.

3.4.2 Performance Evaluation with LIDC-IDRI Database

The proposed model achieved comparable classification results on LIDC-IDRI Database.
Table 3.6 shows the performance comparison of the proposed texture CNN with state-of-
the-art traditional lung nodule classifications methods in terms of classification accuracy,
recall, specificity, and area under the curve (AUC) scores.

Table 3.6. Performance comparison of proposed texture CNN with state-of-the-art

traditional methods

Models Accuracy (%) | Recall (%) | Specificity (%) | AUC (%)
Narayanan et al. [50] - 87.86 - -
Farag et al. [39] - - - 99.00
Han et al. [15] - 89.35 86.02 94.05
Dhara et al. [31] - 89.73 86.36 95.05
Shaffie et al. [102] 93.12 92.47 93.60 97.53
Costa et al. [100] 91.81 93.42 91.21 94.00
Sheway et al. [8] 84.00 82.00 93.00 94.00
Wei et al. [101) 87.65 89.30 86.00 94.20
Proposed Model 96.69 96.05 97.37 99.11
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The given results show that the achieved accuracy, recall, specificity, and AUC score
are 96.69%, 97.16%, 97.19%, and 99.11%, respectively. These metrics are better than the
rest of the traditional lung nodule classifications methods under consideration. After
comparing with the traditional approaches, we also compared our texture CNN with deep
learning-based models to prove the effectiveness of the model. Table 3.7 shows the
performance comparison of the proposed model with various existing state-of-the-art deep
learning-based models, like deep fully CNN (DFCNet) [34], Fuse-TSD algorithm [95],
MV-KBC learning model [113], MK-SSAC model [114], and GD network [115], etc.

Table 3.7. Performance comparison of proposed texture CNN on the LIDC-IDRI
database with state-of-the-art deep learning-based models

Models Accuracy (%) Recall (%) Specificity (%) AUC (%)
(Mean SD) (Mean SD) (Mean SD) (Mean SD)
CMixNet [30] 88.79 93.97 89.83 88.79
LdcNet-FL [116] 97.20 96.00 97.30 98.20
LdcNet-CE [116] 95.60 90.20 96.00 95.60
J.Lyuetal. [2] 92.19 92.10 91.50 97 05
S. Ghosal et al. [117] 95.30 95.00 - 97.00
Local-Global [118] 88.46 88.66 - 95.62
MC-CNN [11] 87.14 7700 93.00 93.00
Fuse TSD [95] 89.530.09 84.19+0.09 89.85+0.25 96.65+0.01
Feature fusion [95] 89.05+0.03 84.3310.02 91.1240.19 96.45+0.02
MV-KBC [113] 91.60+0.15 86.52+0.25 94.00+0.03 95.70+0.24
Y. Xicet al. [119] 93.40+0.01 91.4310.02 94.09+0.02 97.78+0.0001
GD network [115] 92.57+2.47 92.2144.84 - 95.14+0.78
MK-SSAC [114] 92.53+0.05 84.94+0.17 96.28+0.08 95.81+0.19
Proposed Model 96.63:0.12 96.05+0.37 9737:027 99.11+0.15

The results presented in Table 3.7 show that the proposed model performs better than

all other deep learning techniques except LdcNet-FL, which has a bit higher accuracy and
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specificity score. LdcNet-FL computed the mentioned score with approximately 3.3
million learnable parameters and one million neurons. It is noteworthy to mention that our
proposed texture CNN computed the marginal lower accuracy with considerably lesser
learnable parameters and neurons. The comparison of learnable parameters and neurons of
the proposed texture CNN with other deep learning techniques is given in the subsequent
subsection.
3.43 Architecture Complexity Comparison with State-of-the-Art Techniques

The architecture complexity is based on activation functions like neurons and learnable
parameters. We computed the total number of neurons and learnable parameters of the
proposed model and compared them with the recent proposed state-of-the-art techniques
like LdcNet with cross-entropy loss (LdcNet-CE), LdcNet with Focal Loss (LdcNet-FL)

[116], and the customized mixed link network (CMixNet) [30] as given in Table 3.8.

Table 3.8. The architecture complexity comparisons with state-of-the-art methods

Models Neurons Parameters | Accuracy
CMixNet [30] 14,725,632 | >14.7 88.79%
LdcNet-CE [116] 1,008,898 3,292,763 95.60%
LdcNet-FL [116] 1,008,898 3,292,763 97.20%
Classic Configuration 2,263,170 16,812,034 | 94 005%
Proposed Model 107,842 2,263,170 96.69%

From Table 3.8, it can be observed that the proposed model has a lesser number of
neurons and learnable parameters, which leads to a reduction in complexity. It is
noteworthy to mention here that the reduction of neurons and learnable parameters are due
to the incorporation of EL. Therefore, the EL reduced the complexity of the network

without degrading the classification accuracy.
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3.44 Evaluation of Pre-Trained Mode on LUNGx Challenge Database

First, we trained our proposed texture CNN from scratch on the LUNGx challenge
database and achieved comparable results. After that, we used our pre-trained model of the
LIDC-IDRI database to investigate the small dataset training issue of CNN by
implementing the TL methodology. The classification results of the proposed CNN are
compared with MV-KBC [113], fine-tuned MK-SSAC [114], CADx using SVM with tree
parzen estimator (TPE), gradient tree boosting (XGBoost) with TPE [120], a lung nodule
classification scheme proposed by Mizuho Nishio et al. [121]. Table 3.9 compares our

proposed texture CNN on the LUNGx challenge database.

Table 3.9. Performance comparison of proposed texture CNN with state-of-the-art
traditional methods on the LUNGx challenge database

Models Accuracy (%) | Recall (%) | Specificity (%) | AUC (%)
SVM (TPE) [120] 82.00 - - 85.00
XGBoost (TPE) [120] 86.84 - - 89.60
Nishio et al. [121] - 86.70 - 83.70
MK-SSAC[114], 71.26 87.22 67.57 78.83
MV-KBC [113], 75.62 87.22 64.32 76.85
Proposed without TL 86.14 88.76 93.11 92.63
Proposed with TL 90.91 91.39 90.46 94.14

The achieved classification score of our proposed texture CNN without TL (trained
from scratch) for accuracy, recall, specificity, and AUC score on the LUNGXx database are
86.14%, 88.76%, 93.11%, and 92.63%, respectively, which show that the proposed CNN
performed better than all the other considered techniques expect XGBoost (TPE) in terms
of accuracy score only. Furthermore, the results show that the implementation of TL
methodology with a pre-trained model significantly improved the accuracy compared to

our trained model, which proves the effectiveness of TL methodology.
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3.4.5 Performance Validation of Texture CNN on MNIST Dataset

The proposed texture CNN was successfully trained and tested for lung nodule
malignancy classification. In addition, we also validated our proposed model on the
MNIST dataset to validate the performance of our proposed transferable texture CNN. We
successfully trained and tested our proposed model and compared the results with state-of-

the-art techniques. These results are given in Table 3.10.

Table 3.10. Comparisons with state-of-the-art methods on the MNIST dataset

Models Accuracy Error rate
Tabik et al. [122] - 0.10%
Skouson et al. [123] 99.20% -
Simonovsky et al. [124] 99.37% -
Klokov et al. [125] 99.10% -
Grover et al. [126] 99.54% 0.51%
Qietal. [127] 99.50% 0.51%
Proposed Model 99.89% 0.12%

The results show that the proposed texture CNN also performed well compared to the
other techniques. It can also be observed that the proposed texture CNN computed the
marginal lower error rate of 0.02% than Tabik et al. Furthermore, it is also mentioned that
Grover et al. achieved recall and specificity of 97.73% and 99.74%, respectively. However,
the achieved recall and specificity scores for both metrics by our proposed model are
99.94% and 99.93%, respectively, which reflect the effectiveness of the proposed texture

CNN.
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3.5 Summary
In this chapter, utilization of energy in transferable texture CNN and transfer learning

is discussed. We proposed a transferable texture CNN architecture for lung nodule
malignancy classification tasks. We introduced the EL, which removes the overall shape
information and explores the texture features. Experimental results show the effectiveness
of the proposed technique for benign and malignant nodules classification, without nodule
segmentation or any complex pre-processing. After successful training, we evaluated the
performance of the proposed network using various evaluation metrics. The results were
compared with the state-of-the-art lung nodule classification methods. The results show
that our proposed texture CNN architecture performed well for approximately all the
evaluation metrics. The training was done successfully by six-fold cross-validation and
achieved an accuracy, recall, specificity, AUC, and the error rate of 96.69%, 96.05%,
97.37%, 99.11%, and 3.30%, respectively, on the LIDC-IDRI database. The learned
features of EL. were analyzed, and it was shown that the EL extracted texture from the
convolutional layer. The EL also reduced the number of learnable parameters of the
network, which minimized the memory requirements and complexity of CNN.

Furthermore, we explored our pre-trained model to handle the smaller dataset
classification problem using TL. We also show that our pre-trained model achieved better
results than the compared techniques on a small LUNGx challenge database. Moreover,
we also validated the effectiveness of our proposed texture CNN on the MNIST dataset, as
our model achieved 99.89% accuracy with only a 0.12% error rate.

The next chapter presents the deep feature selection and decision level fusion

technique for lungs nodule classification.
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Chapter 4. Deep Feature Selection and Decision Level

Fusion for Lungs Nodule Classification

The decision level fusion technique is proposed to improve the performance of the
CAD system for lung nodule classification. This chapter presents the deep feature selection
and the decision level fusion. The deep features are extracted by identifying the optimal
layers, which improve the performance of classifiers. Then, the performance of SVM and
AdaBoostM2 is also evaluated on the basis of deep features extracted from the state-of-
the-art transferable architectures (such as; VGG- 16, VGG-19, GoogLeNet, Inception-V3,
ResNet-18, ResNet-50, ResNet-101 and InceptionResNet-V2). After that, the performance
of the SVM and AdaBoostM2 classifier is analyzed as a function of deep features. The best

performing classifier is utilized in our proposed decision level fusion technique.

4.1 Introduction

The classification performance of a typical CAD system depends on lung nodule
feature extraction, based on intensity values, shapes, densities, texture, generic and deep
features. Therefore, researchers utilized such features, for example, [20], [105], and [149]
used size features, whereas, [21], [22], [105], [150-154] used intensity features. The
research work presented in [22], [31], [119], [39], [95], [105], [150], [153], [155], [156]
utilized shape features, whereas, [157, 158] used density features in their proposed CAD
systems. The research work presented in [20], [22], [31], [119], [150], [152], [153] Feature-
based lung nodule classification [155], [156], [159], [160] utilized texture features.
Similarly, some CAD systems utilized generic features, including LBP [39], [154] scale-
invariant feature transform (SIFT) [161-163], Gabor [39], [154], [160], [161], [164] HOG
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[22], [156], [161], [8] and speeded-up robust features [165]. Furthermore, Gupta et al.
proposed a traditional technique for automatic lung disease detection in CT images using
four image features: Gabor, Zernike, Tamura and Haralick features [166]. Meanwhile,
DCNN has attracted researchers for the last few years to utilize the deep features in medical
image processing due to the continuous improvement in image recognition and
classification, as compared to the handcrafted features [81], [95], [131] [167]. Researchers
are utilizing deep features from pre-trained DCNN for medical diagnostic, such as;
Rajaraman et al. proposed a deep feature-based technique for malaria parasite detection in
blood smear images [168]. Chen et al. utilized HOG and deep features for the study of lung
nodules [156]. Raj et al. [169] proposed optimal feature selection based deep learning
algorithm for medical image classification. They used opposition-based crow search
algorithm for optimal feature selection from gray-level and texture features. Finally, the
deep network was used for medical image classification. Xie et al. also proposed a
transferable multi-model ensemble algorithm based on deep features from ResNet-50 to
classify the lung nodules [119]. Similarly, Abraham et al. utilized deep features from
AlexNet and VGG-16 for the same application [132]. Whereas, in our work we performed
optimum deep feature selection to identify the optimal layers in eight state-of-the-art
DCNNs. The deep feature selection is accomplished by carrying-out extensive
experiments.

Furthermore, different fusion techniques, such as; feature fusion [23], multi-model
image fusion [89], [90], and decision fusion, were proposed for the improvement of CAD
systems. Zhang et al. utilized a DCNN model along with the feature fusion to improve the

performance of the classification task [24]. Xie et al. proposed a decision level fusion
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technique for automatic pulmonary nodule classification. They trained the AdaBoosted
back-propagation NN using texture features, and then decision fusion was performed on
the outcomes of three classifiers. They also performed the performance analysis of feature
fusion and decision fusion and found that the decision fusion performed better [95].
Therefore, we utilized the decision fusion technique in our proposed methodology.
Furthermore, the techniques presented in [23], [24], [119], [95], [169] require more training
time and memory requirement due to extra fine-tuning or training of DCNN from scratch.
Whereas, in our case, we extract the deep features from DCNN during forward propagation

using the TL technique.

In this chapter, we presented a decision level fusion technique for the lung nodule
classification. First, we evaluated the performance of SVM and AdaBoostM2 algorithms
based on the optimal deep features from VGG- 16, VGG-19, GoogLeNet, Inception-V3,
ResNet-18, ResNet-50, ResNet-101 and InceptionResNet-V2. Then, we utilized three
types of deep features (from GoogLeNet, ResNet-101, and Inception-V3) based on best
performance results. For these features, we trained an SVM classifier, and the decision

level fusion is performed by estimating the probability scores.

4.2 Material and Methods

4.2.1 Dataset and Pre-Processing

The LUNGx challenge dataset is used to validate the proposed methodology. It has a
set of calibration and testing scans. The calibration set has 10 scans (five females, five
males). Five of the 10 calibration scans contain one confirmed benign nodule, and the other

five contain one pathology-confirmed malignant nodule. The test set has 60 scans which
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have a total of 73 nodules. Whereas in 13 scans, each case has two nodules. The total 60
test scans of 23 males and 37 females contain 37 benign nodules and 36 malignant nodules
(including 9 non-small cell carcinomas, 15 adenocarcinomas, 1 squamous cell carcinoma,
7 mini cell carcinomas, 2 nodules dubious for malignancy, and 2 carcinoid tumours) [170],
[171].

The nodule information is given in the online available annotated CSV file of each
scan. The CSV file has an instance number, which is the slice number of each scan, and
coordinates of the origin of every nodule. We search the given instance number in the
DICOM tag to access the appropriate nodule contained slice. The coordinate information
(x,¥,z) of ROI around the nodule was used to crop the nodule patch. The patches of size
64 x 64 were extracted from a voxel. This patch size was selected because all candidates
of a nodule would be fully accommodated in this area, as it is noted that the size of the
biggest nodule was 30mm in our selected dataset. We extracted 1,144 patches, including
664 patches for class 0 (benign) and 480 patches for class 1 (malignant). Furthermore, the
image augmentation is achieved by the flip, rotation, scaling, and translation operations, as

shown in Fig. 4.1.

Original Flipped Translated Scaled

Fig. 4.1. Image augmentation
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The flipped patches are extracted by randomly flipping the normal ROI patches
horizontally or vertically. The rotated patches are extracted after random rotation of
complete slice by 0 to 359°. The scaling is done by increasing the patch size to 10% of
the normal ROI patch and then rescale to 64 X 64 patch size. The translated patches are
extracted by randomly shifting ROI about 10 to 20 pixels around available coordinate
information.

4.2.2 Methodology

The basic strategy of our work is similar to any classic medical image classification

technique as Fig. 4.2

Acquire Medical Load Transferring of parameters
Images and Pre- || Pre-Trained =) from source task fo target task
Processing DCNN Model and Extract of deep features

Classifier

Fig. 4.2. Basic scheme of nodule classification using pre-trained CNN model

After acquiring medical images from the LUNGx database, pre-processing techniques are
applied for contrast enhancement. The features are extracted from each DCNN during
forward propagation. The SVM and AdaBoostM2 classifiers are trained simultaneously,
and the final prediction is done based on the probability scores of each class. We also
analyzed the effect of deep features on classification accuracy for each classifier.

4.2.3 Decision Level Fusion Technique

The decision level fusion technique fuses the classification results acquired by different
features or data, independently. In this work, we proposed a novel technique that fuses
three deep feature maps at the decision level to classify the lung nodule as malignant or

benign. The proposed scheme is illustrated in Fig. 4.3.
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Fig. 4.3. Decision fusion technique
The decision fusion is based on the maximum likelihood of three classification results from
the deep features of ResNet-101, GoogLeNet, and Inception-V3. Let us have the following
training dataset:

{(X0, Y1), (X2, Y2), (X3,Ya), s e e oo (X, YD} @.1
where Xj € Ris a deep feature vector of j™ image patch, whereas, ¥; denotes the
associated class label and N is the total number of training image patches. We extracted
three deep feature maps from ResNet-101, GoogLeNet, and Inception-V3 for each lung
nodule image patch. If a lung nodule ¢, consists of i slices, then we extracted i deep feature
maps for one nodule. We obtained the following three prediction vectors after SVM

training with deep feature maps.

Y = Pic(¢,),C € {malignant; benign} 4.2)
Yr = Pic(@y),C € {malignant; benign} 4.3)
P; = Pc(dy), C € {malignant; benign} 4.9)
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where Y;, Yz, and {; are the prediction vectors obtained after training SVM on deep
features from GoogLeNet, ResNet-101, and Inception-V3, respectively. Each element of

Pic(¢p,) denotes the likelihood of nodule ¢, class as malignant or benign predicted from

the j** deep feature map of i** slice. The prediction vector is updated based on the
maximum likelihood of each feature map, as given in equation 4.5.

Y = argmax (Yg, Yr. Y1) 4.5)
where P is the final prediction vector. The labels were assigned according to the

prediction score of each class in the final prediction vector, as given in equation 4.6.

7. = {Malignant, if Score > 0.5 (4.6)
6 ™ | Benign, otherwise

The flowchart of the proposed methodology is illustrated in Fig. 4.4.

Input Slice from training
dataset
Crop ROI Based Patch
X X X
JV y JV
Decp Features Decp Features Deep Features
from DCNN1 from DCNN2 from DCNN3
w1 w2 w3
y A
Prediction using SVM
) ¢ ¥p 4

. Yes
Prediction Score> 0.5

(oo ) ()

Fig. 4.4. Flow chart of decision fusion

56



We show that our proposed technique effectively classifies the malignant and benign

nodules when tested on the LUNGx challenge dataset.

4.4 Experiments and Results

The lung nodule classification is done using decision level fusion after selecting a deep
feature map from state-of-the-art DCNNs. The whole experiment was carried out using
Matlab R2019b. All experiments were performed with Intel(R) Core(TM) i7-8550
processor, 8GB. RAM, and one NVIDIA GeForce MX150 GPU with compute capability
of 6.1.
4.4.1 Nodule Classification with SVM and AdaBoostm2 using Deep Features

First, the lung nodule classification is done by SVM and AdaBoostM2 classifier after
extracting deep features from DCNNS . For the training of the classifier, we used four-fold
cross-validation. We divided the dataset into four subsets, three subsets used for training

and one for the test, as shown in Fig. 4.5.

Training .| Testing

<

Subset 1 Subset 2 Subset3 |- Subset4 | Ist-fold

L Training . Testing
I

Subset 1 Subset 2 Subset 4 Subset3 | 2nd-fold

Training Testing

A

Subset 1 Subset 3 Subset 4 Subset 2 . | 3rd-fold

Training Testing

A

Subset 2 Subset 3 Subset 4 Subget 1 | 4th-fold

Fig. 4.5. Distribution of data for training and testing
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First, we performed ROC analysis by computing ROC curves of all DCNN models
with SVM and AdaBoostM2. The results are obtained by extracting features from the last
FC layer of each DCNN model. For example, FC2 of VGG-Net, fc1000 of ResNet, loss3-
classifier of GoogLeNet, and predictions layer of both inception DCNNs. The ROC

comparison of all DCNNs using SVM and AdaBoostM2 is shown in Fig. 4.6.

ROC using SVM when festures from lset FC layer

ROC using AdaBoosti2 when feetures from FC layer
1 . . . s

Fig. 4.6. ROC comparison of SVM and AdaBoostM2 when features from the last FC
layer

We also computed the AUC value for each DCNN model with SVM and AdaBoostM2
classifiers to analyze the effect of each classifier on lung nodule classification. This
analysis revealed which classifier is more effective on extracted features for each DCNN
model. The AUC plots of SVM and AdaBoostM2 for all DCNN models are shown in Fig.

4.7.
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Fig. 4.7. AUC comparison of SVM and AdaBoostM2 when features from Last FC layer

It can be observed that the AdaBoostM2 performed well on the features extracted from the
last fully connected layers of all DCNNs, except ResNet-101. The features extracted from
ResNet-101 provide the maximum AUC score using the SVM classifier. We also evaluated
the performance of lung nodule classification with SVM and AdaBoostM2. Table 4.1
shows the lung nodule classification results obtained by the SVM classifier.

Table 4.1. Nodule classification with SVM when feature the last FC layer

Models Accuracy Gmean Precision Recall Error Rate
VGG-16 65.27% 63.22% 70.31% 90.99% 34.713%
VGG-19 64.05% 61.30% 67.45% 73.28% 35.95%
ResNet-18 67.70% 63.60% 69.81% 78.82% 32.2%
ResNet-50 66.92% 67.22% 77.47% 61.07% 33.08%
ResNet-101 76.88% 71.34% 86.43% 71.56% 23.12%
GoogLeNet 67.37% 67.71% 77.07% 62.92% 32.63%
Incep.ResNet-V2 72.01% 66.09% 71.00% 87.79% 27.99%
Inception-V3 71.13% 71.23% 78.86% 69.08% 28.87%
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The results show that the features from ResNet-101 perform better than the rest of the
models in terms of accuracy using the SVM classifier. The maximum accuracy with
ResNet-101 is 76.88%, whereas InceptionResNet-V2 and Inception-V3 have 72.01% and
71.13%, respectively. Similarly, the ResNet-101 also performs better than other models in
terms of Gmean, precision, and Error Rate, It can also be observed that the SVM classifier
had a minimum classification score when deep features were extracted from the last layer
of VGG-19. After this detailed analysis, we repeated the same experiment for the
AdaBoostM2 classifier. Table 4.2 shows the lung nodule classification results with the

AdaBoostM2 classifier.

Table 4.2. Classification results using AdaBoostM2 when features from last FC layer

Models Accurascy | Gmean | Precision | Recall | Error Rate
VGG-16 6681% | 6538% | 70.90% | 72.52% 33.19%
VGG-19 7035% | 69.09% | 73.88% | 75.57% 29.65%
ResNet-18 75.22% | 72.82% | 75.86% | 83.97% 24.78%
ResNet-50 6991% | 68.01% | 72.66% | 77.10% 30.09%
ResNet-101 78.32% | 77.94% | 82.03% | 80.15% 21.68%
GoogLeNet 71.24% | 69.54% | 73.91% | 77.86% 28.76%
Incep.ResNet-V2 73.01% | 70.89% | 74.65% | 80.92% 26.99%
Inception-V3 7257% | 70.81% | 74.82% | 79.39% 27.43%

It can be observed that the deep features extracted from ResNet-101 produced better
results with the AdaBoostM2 classifier. The mean accuracy score of four-fold is 78.32%,
and the error rate is 21.68%. Similarly, the ResNet-18 is second and InceptionResNet-V2
at third position in terms of accuracy and error rate score. Furthermore, VGG-16 is in the

last position with the AdaBoostM2 classifier and achieved an accuracy score of 66.81%.
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The results in Table 4.1 and Table 4.2 show that the AdaBoostM2 performed well
compared to the SVM classifier when deep features were extracted from ResNet-101.
4.4.2 Optimum Deep Feature Selection

We further studied the AdaBoostM2 and SVM classifiers by optimizing the deep
parameters. First, we extracted features from FC6 of VGG-16 and trained the AdaBoostM2
classifier. In this case, we observed that the accuracy of VGG-16 was improved to 69.91%,
with an error rate of 30.08%. A fter this experiment, the same test was also performed using
the SVM classifier. The acquired accuracy score was increased from 65.27% to 72.56%.
Therefore, we decided to select the optimum deep features for all DCNN models by
identifying the optimal layer for feature extraction, which can provide the best performance
using AdaBoostM2 and SVM. For this purpose, we evaluated the performance of each
DCNN by extracting features from different layers and identifying the optimal layer. The
optimal layers for deep feature extraction, which provides the best performance results, are
given in Table 4.3.

Table 4.3. Optimal layers give the best performance

Model Layer Number | Optimzl Layer
VGG-16 32 ‘pool5’

VGG-19 38 ‘pool5’

GoogLeNet 139 ‘inception_5b-output’
Inception-V3 312 ‘mixed10’

ResNet-18 67 ‘res5b_relu’
ResNet-50 173 ‘activation_49_relu’
ResNet-101 343 ‘resSc_relu’
Incep.ResNet-V2 820 ‘conv_7b_ac’

Fig. 4.8 showed the ROC comparison of SVM and AdaBoostM2 when features were
extracted from optimal layers. We can observe that the ROC plot with optimal layers (in

Fig. 4.8) is improved from the previous plot, as shown in Fig. 4.6.
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Fig. 4.8. ROC comparison of SVM and AdaBoostM2 when features from optimal layers
Moreover, we also analyzed the SVM and AdaBoostM2 by comparing their AUC values.

The AUC comparison of SVM and AdaBoostM2 is shown in Fig. 4.9.
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Fig. 4.9. AUC comparison of SVM and AdaBoostM2 using features from optimal layers
It is noted that the AUC results for both SVM and AdaBoostM2 using features from

optimal layers are improved. Furthermore, SVM performed well as compared to the

AdaBoostM2. The maximum achieved AUC score of SVM using features from ResNet-
62



101 is 92.77%. Furthermore, we also analyzed the improvement in AUC using features
from the optimal layer using the SVM classifier. Fig. 4.10 shows the AUC comparison

results of the SVM classifier for features from optimal and last FC layers.
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Fig. 4.10. AUC comparison of SVM using features from optimal and last FC layers
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The remaining evaluation metrics are also evaluated for the classifiers with features
from optimal layers. The classification results using the AdaBoostM2 classifier with
features from optimal layers are given in Table 4.4.

Table 4.4. Nodule classification results using Optimal Layers with AdaBoostM2

Models Accuracy (%) | Gmean (%) Precision (%) Recall (%) Error Rate (%)
MeantStd Meani Std MeantStd MeantStd MeantStd
VGG-16 73.0110.32 71.6310.34 75.7010.25 78.6210.29 27.0110.32
VGG-19 77.001+0.24 75.20+0.32 78.00+0.27 84.0010.28 23.00+0.24
ResNet-18 76.1110.26 73.2010.19 75.8010.20 86.30+0.19 23.9010.26
ResNet-50 77.8810.18 71.00£0.17 80.5010.19 81.7010.21 22.1010.18
ResNet-101 79.2010.17 79.3010.19 84.4010.17 78.601+0.12 20.08+0.17
GoogLeNet 82.3010.20 82.3040.19 86.40+0.22 82.4010.18 17.70£0.20
InceptionResNet-V2 70.7910.15 69.4310.19 74.1010.20 76.3010.21 29.20+0.15
Inception-V3 78.3210.21 76.7110.24 79.2840.23 84.7310.22 21.68+0.21
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It is noted that the acquired results were significantly improved as compared to the
previous ones, as mentioned in Table 4.2. For example, for the case of VGG-16, the
accuracy increased from 66.81% to 73.01%, and the error rate decreased from 33.19% to
27.01%. Similarly, the other evaluation metrics like Gmean, precision, recall, and F1 score
were also improved. Furthermore, the GoogLeNet accuracy score was improved from
71.24% 1o 82.30%. After significantly improving classification results using AdaBoostM2
with features extracted from optimal layers, we utilized the same features with SVM. Table

4.5 shows the lung nodule classification resuits using the features extracted from optimal

layers with the SVM classifier.
Table 4.5. Nodule classification results using optimal layer with SVM
Models Accuracy (%) | Gmean (%) | Precision (%) | Recall (%) | Error Rate (%)
MeantStd Mean3Std Meani-Std Mean1Std | MeaniStd
VGG-16 77.4310.96 77.38+0.74 82.391+0.38 77.6712.19 22.5610.96
VGG-19 80.9010.66 81.20+0.44 87.10+1.16 78.601+2.57 19.101:0.66
ResNet-18 82.2010.22 81.50+0.71 81.20+1.17 85.30+2.19 17.8010.22
ResNet-50 81.42+1.08 81.30+1.07 85.50+2.00 81.90+3.10 18.60+1.08
ResNet-101 86.2810.82 85.9010.46 88.201+1.34 88.2010.98 13.7010.82
GoogLeNet 83.40+0.44 83.8040.51 89.5040.76 80.90+0.01 16.60+0.44
Incep.ResNet-V2 80.3110.85 80.1010.72 84.2010.24 8130+1.46 19.7010.85
Inception-V3 82.63+1.42 82.301+1.07 85.5010.63 84.4013.33 17.4011.42

The results show that all the evaluation metrics were improved using features from
optimal layers. In this case, the deep features from ResNet-101 provided better results than
the other DCNN models. The maximum accuracy was 86.28%, and the error rate was
13.70%. GoogLeNet at second position with an accuracy of 83.40% and an error rate of
16.60%. VGG-16 was at last position with an accuracy of 77.43% and the error rate of
22.56%, but it can be noted that in the previous case, the accuracy was 65.27% with an

error rate of 34.73%.
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4.4.3 Results for Decision Level Fusion

The decision level fusion was applied on ResNet-101, GoogLeNet, and Inception-
V3, which were at the top level in lung nodule classification performance. The
classification results of decision fusion were based on the maximum computed likelihood
score among both DCNN models. The classification accuracy for each benign and
malignant class of the LUNGx challenge dataset is given in Table 4.6.

Table 4.6. Nodule classification of each class with decision fusion

Models Accuracy Error Rate
Benign 90.70% 9.20%
Malignant 90.20% 9.78%

The results show that the proposed decision fusion technique accurately classified
each class with an accuracy score of 90.70% for benign and 90.20% for malignant.
Moreover, the ROC plot comparison of the decision fusion technique, ResNet-101,

GoogLeNet, and Inception-V3 is shown in Fig. 4.11.
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Fig. 4.11. ROC comparison of decision fusion technique with ResNet-101, GoogLeNet,
and Inception-V3
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It can be observed that the area under ROC of proposed techniques is improved as
compared to the ResNet-101, GoogLeNet, and Inception-V3. The comparison of our

proposed decision level fusion with the stat-of-the-art techniques is given in Table 4.7.

Table 4.7. Comparison of proposed decision level fusion with stat-of-the-art techniques

Models Accuracy (%) Recall (%) Specificity (%) AUC (%)
Nishio et al. [121] - 86.70 74 40 83.70
SVM (TPE) [120] 82.00 - - 85.00
XGBoost (TPE) [120] 86.84 - - 89.60
Wang et al. [79] 90.38 83.87 92.40 94.48
MV-KBC [113] 75.6211.15 87.22+7.24 64.3217.00 76 85+0.17
MK-SSAC [113] 76.1610.75 86.1117.61 66.4918.46 77.59+0.39
Xie et al. [114] 77.2610.75 87.2247.25 67.5716.34 78.8310.75
Texture CNN [133] 86.1411.40 88.7611.90 93.1111.45 92.6310.75
Proposed 90.4610.25 90.1010.44 92.5610.18 94.4910.11

It can be observed that the proposed technique outperforms in terms of accuracy,
recall, and AUC with the achieved score of 90.461+0.25%, 90.101+0.44%, and
94.461:0.11%, respectively. The proposed decision fusion is at second position in terms of
specificity with a score of 92.5610.18%, but the specificity score deviation is very low
compared to the Texture CNN. Furthermore, we also compute the classification accuracy
score of the proposed technique based on the simple average of the prediction scores, which

is 89.10%.

4.5 Summary

In this chapter, we proposed a decision level fusion technique for lung nodule

classification to improve the classification performance of the CAD system. First, we
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evaluated the performance of SVM and AdaBoostM2 for lungs nodule classification, based
on deep features, which are extracted from eight state-of-the-art transferable architectures.
We selected the optimum deep features by identifying the optimal layers for feature
extraction with a series of experiments by monitoring the variation in the classification
performance. We also showed an improvement in AUC compared to the features from
optimal and FC layers. The optimum deep features improved the classification
performance. For example, the classification accuracy of ResNet-101 was improved from
76.88% to 86.28%, and the accuracy of GoogLeNet increased from 67.37% to 83.40%. We
also observed that the SVM outperformed AdaBoostM2 with deep features from optimal
layers from all eight DCNNSs. Finally, we showed that the proposed decision level fusion
technique performed well as compared to the recent state-of-the-art techniques. The
achieved classification score was 90.4610.25%, 90.101+0.44%, 92.5610.18%, and

94.4910.11% in terms of accuracy, recall, specificity, and AUC, respectively.
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Chapter 5. Conclusions and Future Work

This chapter describes the conclusion inferred from the proposed deep learning
methodologies for lung nodule classification. Moreover, this chapter also includes the
guidelines for researchers interested in utilizing the proposed methodologies in medical

diagnostics or various engineering fields.

5.1 Conclusion

Lung nodules are vital indicators for the presence of lung cancer. Early detection
enhances the survival rate of the patient by starting the treatment at the right time. The
detection and classification of malignancy in CT images is a time-consuming and difficult
task for the radiologists, leading the researchers to develop CAD systems to mitigate this
burden. In this dissertation, we studied various methodologies to improve the performance
of the CAD system for lung nodule classification.

The efficient lung nodule classification was performed using the proposed transferable
texture CNN. The utilization of EL in the proposed texture CNN model contributes to lung
nodule malignancy classification. The EL preserves the texture information, reduces the
output vector size, and learns the parameters during forward and backward propagation,
increasing the overall learning capability of the model. The EL also reduces the number of
learnable parameters of the network, which minimizes the memory requirements and
complexity of CNN. Experimental results show the effectiveness of the proposed technique
for benign and malignant nodules classification, without nodule segmentation or any
complex pre-processing. The proposed texture CNN was tested on two medical image

datasets: LIDC-IDRI and LUNGx challenge. The achieved classification accuracy, recall,
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specificity, AUC, and an error rate of 96.69%, 96.05%, 97.37%, 99.11%, and 3.30%,
respectively, on the LIDC-IDRI database. In addition, the proposed model has fewer
learnable parameters than LdcNet-FL, which reduces the memory requirement and
computational complexity of the algorithm. Moreover, the effectiveness of our proposed
texture CNN is also validated on the MNIST dataset, as our model achieved 99.89%
accuracy with only a 0.12% error rate.

We also used a pre-trained model of texture CNN to handle the smaller medical
dataset classification problem using TL. This model utilizes LIDC-IDRI as the source task
and the LUNGx challenge dataset as the target task. The classification accuracy of the
LUNGX challenge dataset was 86.14% without TL, which was further improved to 90.91%
using the proposed TL base model. We also show that our pre-trained model achieved
better results than the state-of-the-art techniques, such as; fine-tuned MK-SSAC, MV-
KBC, CADx using SVM with tree parzen estimator (TPE) and gradient tree boosting
(XGBoost) with TPE.

A decision level fusion technique was also proposed to improve the performance of
the CAD system for lung nodule classification. First, we evaluated the performance of
SVM and AdaBoostM2 algorithms based on the deep features of the state-of-the-art
transferable architectures (such as; VGG-16, VGG-19, GoogLeNet, Inception-V3, ResNet-
18, ResNet-50, ResNet-101 and InceptionResNet-V2). Then, we analyzed the performance
of the SVM and AdaBoostM2 classifier as a function of deep features. We selected the
optimum deep features by identifying the optimal layers with a series of experiments by
monitoring the variation in the classification performance. We showed the improvement in

AUC compared to the features from optimal and FC layers. We also showed that the
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optimal deep features improved the performance of the classifiers, for example, the

classification accuracy of ResNet-101 was improved from 76.88% to 86.28%.

Similarly, the accuracy of GoogLeNet was increased from 67.37% to 83.40%.

Finally, we showed that the proposed decision level fusion technique performed well as

compared to the recent state-of-the-art methods. The achieved classification score was

90.46+0.25%, 90.10+0.44%, 92.56+0.18%, and 94.49+0.11% in terms of accuracy, recall,

specificity, and AUC, respectively, on the LUNGx challenge dataset.

5.2 Future Work

The guidelines for future work in the field of medical image diagnostics are as follows:

The proposed methodologies are only tested on lung CT images, so the proposed
work may also be applied to other modalities, such as; X-rays and PET-CT.

The presented techniques are proposed for lung nodule classification, the same
work can be extended for the classification of other cancer types, such as; brain,
breast, or prostate cancers.

The transferable texture CNN is trained and tested on the available LIDC-IDRI
database for only lung cancer classification. It can be trained on an artificial
medical image dataset generated by generative adversarial networks and tested on
the original medical dataset for further enhancement in classification accuracy. The
same trained model can also be utilized for the classification of other types of
cancers using transfer learning.

The decision fusion is proposed based on the probability score of the DCNN. The

deep feature fusion technique can be adopted by including deep features from the
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same deeper models, such as; GoogLeNet, ResNetl01, Inception-V3, and
InceptionResNet-V2.

The hybrid feature fusion, such as; deep feature and handcraft feature fusion, can
be utilized for medical diagnostics.

The ensemble learning-based techniques can be adopted with different classifiers
such as; ELM, KNN, random forest, and binary trees which take the deep feature

from GoogLeNet, ResNet101, Inception-V3, and InceptionResNet-V2
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