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Abstract

In this thesis, we have studied linear and nonlinear propagation characteristics of kinetic and
inertial Alfven waves in homogenous, non-relativistic, collisionless low-f electron-ion magnetized
quantum plasmas by considering arbitrary temperature degeneracy, spin magnetization, and
exchange-correlation effects. Using the quantum magnetohydrodynamic fluid model, both the
Sagdeev potential approach and Korteweg de Vries equation have derived to get nonlinear solution
of the set of partial differential equations in the form of solitary pulses in laboratory, space, and
astrophysical plasmas settings.

Linear and nonlinear kinetic Alfven waves (KAWSs) with an effect of arbitrary temperature
degeneracy have been investigated in low-p quantum plasma. The linear analysis of KAWSs shows
an increase (decrease) in frequency with the increase of parameter {(3) for nearly non-degenerate
(nearly degenerate) plasmas limit. On the other hand, nonlinear analysis reveals that the amplitude.
of the Sagdeev potential curves and soliton structures remains the same but the potential depth and
width of soliton structure change for nearly non-degenerate and nearly degenerate limiting cases.
It is further observed that only density hump structures are formed in the sub-Alfvenic region.

The effects of spin magnetization on linear and nonlinear KAWs have also been studied in low-
B dense quantum plasma. The numerical analysis illustrates that the dynamics of linear and
nonlinear structures are appreciably modified due to the change in spin magnetization effects.
Moreover, it is found that only density hump structures are formed in the sub-Alfvenic region.

Moreover, we have investigated solitary inertial Alfven waves (LAWs) in an intermediate B
quantum plasma, considering electron temperature degeneracy correction. It is found that in the
presence of electron inertia and thermal pressure, the inertial Alfven solitary waves accompanied
by both hump and dip solitons.

Additionally, the effect of electron exchange-correlation and spin magnetization on solitary
IAWs in quantum plasma have also been discussed. It is found that inertial Alfven solitons with a
density dip exist. The spin magnetization effects are more dominant in a quantum plasma model
than exchange-correlation effects.
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Chapter 1

Introduction

1.1 Plasma Physics

When a neutral gas is subjected to a very high temperature very, the particles of a gas
{atoms or molecules) become ionized. Electrons will be stripped off by collision due to
the increase in thermal agitation of particles. The gas can also be ionized by bombard-
ing energetic electrons (or ions) or by employing intense electric field or ultraviolet rays
(or X-rays) or in other ways etc. The dynamic behavior of ionized gas is dominated by
electromagnetic forces acting on free charged particles (i.e. electrons, ions) and behave
as a conducting medium. The electrons and ions in ionized gas started interacting with
electromagnetic fields and in turn, further, produce electromagnetic fields. The i)r%—
ence of a charged particle in the magnetic field created the Lorentz force which gi{fes
rise to many novels and spectacular behavior of plasma. The most important difference
between plasma and normal gas is the presence of Coulomb interaction among charged
particles, which cannot be ignored to study the dynamics of a plasma.

The term "plasma” is a Greek word, giving the meaning of "something molded
or fabricated". Tonks and Langmuir used the term "plasma" in 1929 while studying
the characteristics of ionized gas in a tube generated by electric discharge. Plasma
medium is considered as the fourth form of matter and it has a significantly different
characteristic than solids, liquids, and gases. In all states of matter the important

concept is binding energy of particles, (i.e. atoms or molecules), which has certain



values in each state. Moreover, the state of matter can be determined with average
kinetic energy per particle. In solid-state, if the average kinetic energy of particles
becomes larger to binding energy, than the solid will be changed into the liquid state.
Similarly, if the average kinetic energy of particles overcome the van der wall forces by
breaking its bonds, then the liquid state will be changed into a gaseous state. Hence,
to become a plésma state from gas state, the average kinetic energy of particles must

exceed the ionization potential of gas atoms|-, .

1.2 Quantum Plasmas

Quantum effects can be observed in solid-state objects (i.e. metals, semiconductors,
and nanostructures materials etc.)[;, ] as well as in astrophysical compact objects
(i.e. white dwarf, neutron stars, pulsars, magnetars, and black holes etc.)[, ©, *]. The
guantum effects in plasma system can no longer be ignored, when the distance n3 (i.e.
interparticle distance) becomes comparable to wavelength Ag (i.e. thermal de-Broglie

wavelength) such that:

niy > 1. (1.1)

Here Ap representing the spatial extension of the wave function {due to quantum

uncertainty) can be written as:

Ag = —, (1.2)

where fi(= £) denotes the scaled plank constant. Moreover, when the Fermi tem-
perature of the plasma system becomes greater than the thermal temperature, quantum
effects can be observed. Fermi energy e is related with Fermi temperature Tr can be

written as

R 5 (2
keTr =er = o— (37%n)3, (1.3)

It is important to mention here that we use Fermi-Dirac distribution function in-



1.0

) o8
00
E
Energy —
Figure 1.1: f(e)at T, =0
(i) e <y, (ii) e=p, (i) e>p (1.15)

Let’s sce these different cases when 7, = 0 K. For all & < p, = tends towards
—o0, and hence f{) tends to 1. So, in the limiting case of T, = 0 K, we have f(¢) = 1.
When ¢ = 4, in the limiting case of T, = 0 K, f(¢) is undefined and varies between
the two limits 1 and 0. On the other hand, for all £ > p, ,f—;,fé: tends towards +o0, and
hence f(c) tends to 0. Figure (1.1) represents f(e} at T, =0 K.

Now, we will discuss f(c) for values T, > 0 K. When we increase the value of
thermal temperature, the Fermi-Dirac distribution function f(e) varies from 1 to 0.
For e = p at T, > 0 K, the term :—;% = 0, and distribution function gives f(c} = 0.5
regardless of the actual value of the temperature. Similarly, for all e < y, at T, > 0
K, the term f—;ﬁ becomes negative and it becomes further negative when the value of
€ decreases. It means when ¢ decreases, the function f(¢) starts from a value of 0.5 at
¢ = u and tends towards 1. On the other hand, for all € > g, at T, > 0 K|, the term
jf—;i‘f: gives a positive value and it increases when the value of ¢ increases. Hence, the
function f(g) starts from a value of 0.5 at £ = u and tends towards 0 as ¢ increases.
This behavior of f(e) is summarized in the Figure (1.2).

The normalization constant A in Eq.(1.14) is chosen in such a way that it follows
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Figure 1.2: f(e) at different temperatures.

the Pauli Exclusion Principle, and is given by [, ]

3
e mMe 2 _ me \3
A=- (—em™) (21rkBT,_,) =2 (271-}’:) ' (1.16)

3
2
Where p and A are supposed to be the functions of time and space with slow variations

in the fluid description. Eq.(1.16) contains the polylogarithmic function L, (¢) of index
v which can be generically defined as [ ]

] B 1 o0 Xv—l
Li, ({) = P(U)/; g-lex—ldx' (1.17)

where x = 5 and { = e¥5™ with I'(v) being the gamma function. FD integral for

both density and pressure of degenerate electrons can be expressed as ||

2 1
_ (2m.kpT.)? ™ 2dsx
"I Jy 0FT (1-18)
 2(2mksTL) /°° shd 119
T3 dmmiB fy eO 4+ 17 '

Eqs.(1.18) and (1.19) can be expressed in an integral-free form by using polyloga-

rithmic function as { ]

[

_ (2meksT.)

n(wT) =~ 25

T (g) Lig (~¢), (1.20)

10



puT) = —5 el (2) 1 (). (1.21)

After simplifying Eqgs. (1.20) and (1.21), we obtain the expression for pressure in terms
of polylogarithm as: 7
p = GnkgT.,. (1.22)

. . Liﬁ(—C)
This is the barotropic equation of state, where parameter G = Y ey defines the
: 2

arbitrary degenerate functions |, :1].
For nearly non-degenerate plasma case, (i.e. { << 1}, the polylogarithmic function

can be expanded as

G=1+5 (1.23)
22
Hence, Eq.(1.22) reads
p= (1 + Q—i-) nkpT.. (1.24)
F]

On the other hand, for nearly degenerate plasma case { >> 1, we have —Li,, (—() =
RC.TO M 7N

T'{v+1)°

(1.25)

5/2

Hence, Eq.(1.22) for the case { >> 1 becomes

p= (%) £F (1 - g (kj:)z) Te, (1.26)

where e = kgTF represents the Fermi energy.

1.5 Kinetic and Inertial Alfvén Waves

In 1942 Hannes Olof Gosta Alfvén discovered a new mode called the shear Alfvén
wave in the conducting plasma propagating along the external magnetic field. These

modes are the normal modes of magnetohydrodyanmic(MHD), involve magnetic per-

11



turbations, and have characteristic velocities of the order of the Alfvén velocity vy =
B/ /Bigp. The dispersion relation of shear Alfvén waves can be written as: w? = k2v4.
Two fluid model of shear Alfvén waves provides three distinct forms depending upon
the value of Alfvén velocity v} with respect to jon and electron thermal velocities.
These three situations depeﬁd upoﬁ the value of plasma S (where plasma /3 is the raﬁo

of Prinetic = nkBT tO Pmagnetic = 5‘%) for any species ¢ given as below:

nkT,

~ B (1.27)

Bs

If the temperature of electrons and ions are the same, then this subscript ¢ will not
be used. The ratio of ion thermal velocity to Alfvén velocity gives 3; as
v _ kT, /m;

=2t _ 7 ' 1.28
= e = (1.28)

When vy >> vp;, then 3; << 1. Hence the magnetic forces are greater in low 3
plasma than hydrodynamic forces and opposite is true in case of high 3 plasma. The
ratio of electron thermal velocity to Alfvén velocity gives:

kfre/ Me my

2
Vre _ _Nle/Te _ T
2 B%/nmyu, mcﬂe' (1.29)

U4

When 8, >> m./m;, then vZ, >> v and for 8, << me/m; we have v, << 3.
Hence, shear Alfvén wave physics is different in 3, << m,/m; and 3, >> m,./m;
regimes, so both the regimes should be investigated separately. Magnetohydrodynamic
model oversimplifies these modes by ignoring 3 dependence|- ].

For w/k, ~ v, the electric field can no longer be considered as curl-free. Similarly,
for w/k, ~ va, the magnetic field lines are not considered rigid rather they become
slightly bent. In this case, it is possible to introduced longitudinal potential 1 described
by the relation: |

Ez = _azpl)/az-, (130)

while in the case of slow oscillation under consideration, the transverse component

of electric field can be taken as curl-free, we can retain the transverse potential ¢

12



described by:

EL=-Vo. (1.31)

By using, these two potentials, we can consider the bending of lines of force but
continue to neglect any change in field strength due to compression of the field. For
¥ = ¢ of course, even the curvature of field disappears. As per our assumption, the
thermal velocity of electrons is greater than the phase velocity of wave w/k, ~ v, the
electron reaches equilibrium along the lines of force. Thus, the longitudinal current

arises from the small difference in the transverse velocity of electrons and ions|: -].

1.6 Theory of Solitons

The study of nonlinear wave phenomenon has gained a great deal (:;f interest and
produces exciting description of formation and propagation characteristics. The term
soliton represents a wave pulse (i.e. a wave packet) that sustain its identity (i.e. shape)
while traveling with constant speed; It is now well known that the solitons are the result
of cancellation between nonlinearity and dispersive effects in the system. To study the
characteristics of nonlinear plasma phenomenon, the most exhilarating methods are to
make use of either reductive perturbation theory[. | or non-perturbation theory|::].
Both techniques (reductive perturbation theory and non-perturbation theory) have

been found very important in developing the theory of solitons in plasma dynamics.

1.6.1 Korteweg-de Vries Equatibn

Although there are several other nonlinear partial differential equations which yield
soliton solutions but the most important one among them describing physical systems
is the Korteweg-de Vries equation[ /] (describing waves on shallow water surfaces)
playing a key role in soliton theory.

e Ou Pu du

= te—+¢

5 57 @ + "yua—z, (1.32)

13



where u(z,t), c = Vgd, € = c(% - %), v = ¥ T and p represent wave ampli-
tude, wave speed, dispersive parameter, nonlinear parameter, surface tension and water
density respectively. If we put & =+ = 0 in Eq.(1.32), we obtained linear equation in
the form u; + eu, = 0 with speed v = ¢ = +/gd. In general Eq.(1.32) is nonlinear with

exact travelling wave solutions

u(z,t) = hsec hlk(z — vt)], (1.33)

where k = % shows that waves with high amplitude are narrower. At an appro-
£
priate value of the wave speed, the dispersion effects canceled the nonlinearity. The

soliton velocity is linked with amplitude by relation

h
v=c+ % = \/gd(1 + h/2d), (1.34)
which is relevant to Russell’s empirical results, given in equation v = y/g(d + h) to

O (k).

1.6.2 Sagdeev’s Pseudopotential Method

A non-perturbative approach known as Sagdeév Potential (SP) is derived to study the
plasma acoustic waves of arbitrary/large amplitude[:]. Davis et al. used this approach
for the investigation of fluid dynamics and later on the same method was named as
Sagdeev’s potential approach in the context of plasma dynamics.

Sagdeev’s potentiai approach can give an exact solution of the diﬂ'eren_tia.l equations
describing full nonlinearity. To find Sagdeev potential, we introduce a co-moving frame
defined by £ = = — Vt, where V' is the wave speed. This method can be explained as

follow with the simple example of one-dimensional ion-acoustic plasma wave model[: -|:

Btn,- + an,-vi = 0, (135)

Oy + 1,0 = —0,¢, (1.36)
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ne = exp[d], (1.37)

PP =n, - n; {1.38)

The set of basic equations (1.33) to (1.38), after simple algebra, can be written in

the following form,

% (%)2 +V (¢) =0, (1.39)

where V (¢) is known as Sagdeev potential. The particle starts at ¢ = 0 having
velocity (%) and bounced back at ¢ = ¢,, and again return at position ¢ = 0. The
conditions for the existence of solitary waves are (i) V (¢) = 0 at ¢ = 0 and ¢ = 6,
(ﬁ)‘%h:o — 0 and (iii) |%|¢=¢m £0.

V (¢) < 0in between ¢ =0 and ¢ = ¢,,. V (¢) > 0 for ¢ > ¢,,, here ¢,, represent
amplitude of solitons. On the other hand, Sagdeev’s equation for astrophysical plasma
can be obtained as

% (%)2 +K(n) =0, | (1.40)

here K (n) is called Sagdeev potential in case of density (n) variation. The conditions
for the existence of nonlinear waves in terms of density aren =1 {(for¢ =0} andn = N
(for ¢ = ¢,.). Taylor’s expansion can be applied to K(n) near n = 1 and n = N to

obtain the conditions for the existence of solitary waves.

1.7 Layout of the Thesis

The thesis is based on a theoretical investigation of the linear and nonlinear analysis of
kinetic and inertial Alfvén waves in quantum plasma and is divided into five chapters
as follow.

In Chapter 1, we have discussed the quantum plasmas, quantum hydrodynamic

model, temperature degeneracy, Fermi-Dirac distribution, kinetic and inertial Alfvén
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waves, theory of solitons, Korteweg-de Vries equation and Sagdeev’s pseudopotential
method.

In Chapter 2 we have investigated the arbitrary temperature degeneracy effects on
propagation characteristics of KAWs in low-3 quantum plasma. Chapter 2 consists
of four sections. Section 1 gives a literature review related with the problem. The
set of nonlinear equations for studying an arbitrary amplitude KAWs in a magnetized
quantum plasma zlong with linear diépersion relation and the derivation of Sagdeev
potential are presented in Section II. Numerical analysis and discussion are presented
in Secﬁon III. The conclusion is then given in Section IV.

In Chapter 3 we have studied the propagation characteristics of KAWs in low-3
dense quantum plasma with spin ma_.gnetiza.tion effects. Chapter 3 consists of four
sections. In Section I, the literature review is given related to the problem. The set of
nonlinear equations for studying an arbitrary amplitude KAWSs with linear dispersion
relation and the derivation of Sagdeev potential are presented in Section IL. Numerical -
analysis and discussion are presented in Section III. The summary is then given in
Section IV. |

In Chapter 4 we have discussed the arbitrary temperature degeneracy effect on
propagation characteristics of IAWs in intermediate 3 (ie. @ << 1toa < 1) quan-
tum plasma. Chapter 4 consists of four sections. Section I describes the literature
review related to the problem. The Korteweg-de Vries equation is derived for studying
small amplitude IAWs by using the reductive perturbation technique in a magnetized
quantum plasma. The set of nonlinear equations with derivation is presented in Sec-
tion II. Numerical analysis and discussion are presented in Section III. The summary
is then given in Section IV.

In Chapter 5 we have investigated the electron exchange-correlation and spin mag-
netization effects on propagation characteristics of TAWs in low-8 quantum plasma
(i.e. @ << 1). Chapter 5 consists of four sections. Section I gives the literature review
related to the problem. The Sagdeev potential is derived for studying an arbitrary
amplitude IAWs whereas, Korteweg- de Vries equation is derived for studying small

amplitude TAWs by using reductive perturbation technique in a magnetized quantum
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C hap'ter 2

Kinetic Alfvén waves in quantum
plasmas with arbitrary temperature

degeneracy

2.1 Introduction

In the near past, quantum plasma has attracted a great deal of interest due to its ap-
plication in semiconductors devices{ '], nano-structures materials{": ], ultra-small elec-
tronic devices| :] and in ultra-cold plasmas[ ' |. Quantum effects are also important
in laser induced plasmas[.: | and in astrophysical compact objects like neutron stars,
pulsars, magnetars and interior of white dwarf{  |. When the distance among the par-
ticles becomes equal to de-Broglie wavelength and pressure degeneracy becomes equal
to classica.l thermal pressure, then the electron tunneling effects become important in
dense plasmas. At high density, due to Pauli exclusion principle, particles follow the
Fermi-Dirac distribution function{ ", ,, *-, .*]. For degenerate plasmas, equation of
state for both non-relativistic and ultra-relativistic was derived by Chandrasekhar [ -|.
For the case of degenerate electrons, the equation of state is p. ne% in non-relativistic
limit and for ultra-relitivistic case, the equation of state is p, o ne%, with p,, n. are
being the degenerate pressure and degenerate electron density respectively.

It is well known that the electrons due to their lower mass are responsible for
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quantum effects as compared to heavy ions and follow Fermi-Dirac statistics and the
equation of state is obtained from Fermi-Dirac distribution|-, *-|. By using Fermi-Dirac
distribution in terms of polylogarithmic function, Melrose et.al.[: , /] have investi-
gated the degeneracy effects in quantum plasma in addition to quantum recoil effects.
They have obtained the longitudinal respouse function for various sets of electrostatic
waves. Maxwell-Boltzmann distribution function will be replaced by a Fermi-Dirac dis-
tribution function when we consider temperature degeneracy. In non-degenerate limit,
?:?e is large and negative (¢ = e"p[F:T, ) implying { — 0. In completely degenerate
limit, Tc'::r_, becomes large and positive, implying { — oo , With p, = Tr = %meu% ,
where T is the Fermi temperature and v is the Fermi speed { ., " :I. By employing a
similar approach of Refs. [, ], the propagation characteristics of ion—_aooustic waves
were investigated for nonrelativistic, unmagnetized and magnetized quantum plasma
with electrons degenera(;y using the fluid model. They further modified the equation
of state by deriving the pressure tensor using the Fermi-Dirac statistics [, .57},

A magnetohydrodynamic model for a quantum magnetoplasma has been derived by
Haas [ :]. The dynamics of quantum plasma has been studied extensively from these
derived equations [, :}|. By using the quantum magnetohydrodynamic(QMHD) model
[#], the tunneling phenomena and negative differential resistance in semiconductor
physics can be elaborated. Recently, the phenomena of collective effects in quantum
plasma has gained the attention of many researchers|. ., .-, =", %, «/, 77, -, *2]. Using
QMHD model, many researchers have studied the quantum effects on propagation
characteristics of electrostatic and electromagnetic waves[ ., ~, ", ) 7 0] In
MHD theory, it is well known that when the perpendicular wavelength to the magnetic
field becomes comparable to ion larmor radius, The ions don’t follow the magnetic field
lines due their heavy mass, whereas the electrons still move along the magnetic field
lines due to their small larmor radius. Therefore a charge separation is created due to
the small difference of the transverse velocities between ion and electron [, .7, -1, ]

Kinetic Alfvén waves are responsible for the acceleration of electrons due to the pres-
ence of a strong electric field parallel to the magnetic field. The cancellation of disper-
sion effects with nonlinearity has resulted in solitary kinetic Alfvén waves(SKAWSs)[ ',
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4, %], In the past, many researchers have invéstigated the existence of kinetic Alfvén
solitons with both density dip and hump traveling obliquely to the direction of an am-
bient magnetic field in low-3 plasma { -+, ", &7, ©%, "=, (¥]. Moreover, the extensive
study on SKAWSs was supported by data provided by Freja satellite observation[", ..
In the last decade, linear and nonlinear propagation characteristics of kinetic Alfvén
waves with finite valﬁe of 8 (ie, me/m; < B < 1) as well as inertial Alfvén waves
with low 3 (ie., 8 < me/my < 1) in electron-positron-ion {EPI) plasmas have been
discussed in detail by employing magnetohydrodynamic (MHD) equations owing to
its potential applications in astrophysical, laboratory and space environments [, 3]
They have neglected ion parallel motion but nonlinear density structure is taken into
account. Furthermore, their work revealed that the dynamics of KAWs and IAWs can
be modified greatly with the inclusion of positrons in ele(_:tron-ion plasma. Conversely,
the inclusion of jons in electron-positron plasmas can change the spatial and temporal
scales. Later on, nonlinear low-frequency electromagnetic waves were studied in EPI
plasma by taking into account the effects of full nonlinearity and three-dimensional ion
motion [:i"]. The propagation characteristics of low-frequency shear electromagnetic
wave in EPI plasma were investigated by Khan [ . |with effect of quantum degeneracy,
ion correlations and relativistic effects of electrons and positrons. In this study, our
objective is to investigate the arbitrary temperature degeneracy effects on propagation
characteristics of KAWSs in low-# quantum plasma. The sef of nonlinear equations for
studying an arbitrary amplitude KAWSs in a magnetized quantum plasma along with
linear dispersion relation and the derivation of Sagdeev potential are presented in Sec-
tion 2. Numerical analysis and discussion are presented in Section 3. The conclusion

is then given in the final section.

2.2 Model Equations

Let’s consider a collisionless, homogenous and non-relativistic electron-ion quantum
plasma placed in a uniform magnetic field B = ByZ and suppose that the wave is

traveling in the z—2z plane. To study KAWs in low-3 quantum plasma, ions are assumed
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to be classical and inertial, whereas the electrons are taken to be degenerate and
inertialess. The value of plasma beta (= 2u,nksT,/BE) is greater than an electron to
ion mass ratio but very less than unity such as 7= < 3 < 1. Due to low-j assumption,
one can use two potential theory such that E, = —3,¢ and E; = —0.¢ where 1
and  are two potentials in longitudinal and transverse direction respectively[~, .
The gox-reming equations to study KAWSs in dense plasma are given below. The ion

continuity and momentum equations are, respectively, given by

Oy + 8, (i) = 0, (2.1)
dv.,' _ ‘_C;
& m (E +v x B), (2.2)

where v;, represents polarization drift velocity, n; is the ion number density, m; is the
mass of ion ,e is the charge. To avoid vector nonlinearity, the nonlinear term (v; - V)
of convective derivative in Eq.(2.2) can often be neglected. Also in Eq.(2.2) we have
also neglected the effects of ion parallel motion along the magnetic field due to low-3
assumption. In the limit |8, <« wy, where wy (= ';—'i‘“) is the ion cyclotron frequency,
the Eq.(2.2) takes the following form:

m;

Vig = —

The electron momentum equation is given by:

ed ) — GkgT,d3.Inn, =, (2.4)

Lis{—(}
here G = E@ defines the arbitrary degenerate functions [} and will be discussed

later. The modified form of Faraday's law (8,9. (¢ — ¥) = 8, B,) for the two potential

theory along with Ampere's Law (0;B, = p3J;) can be expressed as

82 (¢ — ) = po:0.J., (2.5)
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here j, is the vacuum magnetic permeability. The quasi-neutrality condition (n; =

ne >~ n) implies that V - J = 0 with

azJiz = _"a.sz’ . (26)
where J;; = e (njv;,), J; = —e(n.v.,;). So, continuity eQuation reads as
Bilens) = B, ., (2.7)

here because of the low-8 assumption, the contribution of ions to the current density
is negligible; hence J, is given by the electron density. It is to be noted here that the
parallel current due to electrons (i.e. J,) is cancelled out due to ion polarization current.
Eq.(2.7) represents the charge conservation and is identical to Eq.(6) as reported by

Ref.[ - ] for electron-ion classical plasma. For convenience, we use £ = z,c= (ﬂﬂ) z,

[
1

T = wgt, n; = l"— ¢ = k—%, and ¥ = k;T,’ here p, = (%)2i is the gyro-radius

Tip€
€pTTi;
temperature. Also, 1y is the equilibrium number density for ions and the speed of

for ion and wy = ( ) is the plasma frequency for ion and T, is the electron

light is denoted by c.

Simplying Eq.(2.3) in dimensionless form as

T
e EBﬂ P, (28)
mi Q T.
Uiz eBD ps A 656‘@ (29)
Also, simplying Eq.(2.1) in dimensionless form as

%
Q8- nyng + — (ningviz), (2.10)

p3

22

08,1, — B (ns8, @) T ™ € By (2.11)

eBI e’ T, mz’
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arn,- - 35 (n,-856‘,(1>) =0. (212)

Eq.(2.4) in dimensionless form becomes

8% = G, Inn,. (2.13)

Eq.(2.5) can be written in dimensionless form as

w,,-@c

-‘?2% Ye ;3.{5 (® - ) = Q0,22 % g (2.14)
pﬂnc,- wﬁ%iz—‘z"i RP(® — ) = 8,81, (2.16)
#Oiﬁ.ﬂfm“‘" BB (® — W) = 8,0,J., (2.17)
Q""f%gafw ~— ) = 3,0¢,. (2.18)
_ Eq.(2.7) in dimensionless form
%‘fﬁ — 0.0, (eninio), (2.19)
8., = HmeeC, (2.20)

Wpi

=0
Since the parameter G = Ezm defines the arbitrary degenerate functions [ ]. For

nearly non-degenerate (NND) limit { << 1, we expand the polylogarithmic function as
Liy (—¢) = = + G which implies Lis (~¢) = —¢ + & g and Liz (~¢) = —( + —gL
which makes the value of G as Gyyp = (1 + ;%—) Here Gnnp is arbitrary degeneracy

for nearly non-degenerate plasma state. For complete non-degenerate plasma { — 0
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which implicates Gyyp = 1. Similarly for nearly degenerate (ND) limit { >> 1

the polylogarithmic function can be expanded as —Li, (—() = él(':—i% that’s implies
-3
Lis (—¢) = 4285 and Lig (=) = - oo : , the ratio of these terms gives Gyp = (‘-';i).
Z g
2
Using then the Sommerfeld lema [*, * ] g = kgTp [1 —z (%;) ] , and hence In¢ =

% — ’1'—:%; that implies Gng = %;51- (1 - ’1’—: (5)2), where Gy p represents the arbitrary
degeneracy for nearly degenerate plasma with § = % For complete degenerate case
%":; (=6) = 0, p — Tp = Jm.v} with Tr and vp being the Fermi temperature and
Fermi speed, respectively.

The ratio of electrostatic interaction energy (i.e. (Ei.) = e?/4wsyr,, where r,is

the Wigner-Seitz ratio defined as r, = (3 ;fm )3 ) to the average kinetic energy (i.e
(Exin) = (m,/2n,) [ fv* v, here the scalar pressure p = Z= [ fu? d® follows from the
standard definition for an equilibrium with zero drift velocity) will give general coupling

parameter g covering ND and NND limiting cases in the following form [ ©, ]

1

_ (B _1( 4} &} Liz(=0)
9= (Ekin) 6 (37f2) eokpgT, Lz% (—C) (221)
2 { Liz {— %
_ V/me/2kgT, € ( 3 C)) o

stal @k L3 (0)

here ¢y represents permittivity in the vacuum. To fulfill the condition of collisionless
plasma, the interaction energy must be lower than kinetic energy such that g << 1.
We have g oc (E;.;)/kgT. for the nearly non-degenerate case and g o< {Ejn,)/ep for the
nearly degenerate case with r being the Fermi energy. Hence, for NND limit ¢ << 1,
we have Li,, (—() = —( + tz-f:,):, and Eqgs. (2.21) and (2.22) can be written yielding 7T,

and ny.

8
3

:L(ﬁ)é(_“%ﬁ)

e 7 -~ 27 7 (2.23)
2kg x 3373 \€oh) (., 0*\?
5 ( ¢+ 23 )
_ 3n? (6eokgT, ¢\)°
Ny = T ( o2 (]. + g . (224)



Similarly for ND case ( >> 1, the polylogarithmic function becomes —Li, (—() =
I,(U +1) ol G Egs. (2.21) and (2.22) can be written in the following form yielding the value

of e and ny.

m, € 1 (15\/7?)2( 4 )
Ep = — —— = ) 2.25
SP VIS P oh (1~ 5 (6)°) 8 3y (2:25)

_ i;f (1;‘;0 (1 -Z ) ))3 (2.26)

2.2.1 Linear Wave Analysis

The linear dispersion relation of KAWSs in magnetized quantum plasma with arbitrary

temperature degeneracy using Eqgs.(2.1),(2.4),(2.5} and (2.7) can be written as

w=kVay/1+ BGpl. | (2.27)

Here p2 = ;C% C, = T‘ ,and Vy = ‘/% are the gyroradius of ion, acoustic

speed and Alfvén velocity respectlvely. Noting that inertial effects are provided by ions
in Eq.(2.27). It is important to mention that the KAWSs transports energy slowly in
transverse direction for k, >> k,. When ¢ <« 1 , the dispersion relation for NND

limiting case from Eq.(2.27) is

L)t . (2:)

2

w= k,,VA\/l +R(1+

If the parameter ¢ is ignored in Eq.(2.28) such that ¢ = 0, then we have same linear
dispersion relation as reported in Ref.[ ] for pure classical plasma case . For ¢ > 1,

Eq.{2.27) yields the dispersion relation for ND limiting case as

o= Va1 + B2 5 (2.29)

C . . .
where p, = =% and C;, = 1}% are quantum ion gyro radius and quantum ion
Ct )

acoustic speed. It is be noted here that if we ignore parameter § in Eq.(2.29) such
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that % (=98) — 0 (i.e. for complete degenerate plasma case), then the result will be

similar to the dispersion relation reported in Ref.[ ] for kinetic Alfvén waves in dense

degenerate. quantum plasma.

2.2.2 Nonlinear Wave Analysis

To find Sagdeev potential, we introduce a co-moving frame defined by n = K.£ +
K,¢ — 7, where K, and K, =+/1 — KZare the direction cosines. Therefore, the set of

Eqs.(2.12)—(2.20) in » frame can be written as

~ 8y — K8, (n:K.8, x —8,8) =0,

— & + K28, (n:02®) = 0,

3,,n,— - Kga, (n,B,f‘I)) = 0,

and
0, % = Gg, Inn,,
and
Q,-n,-gec 2 2-
—— X K207 x KIH(® - ¥) = K.8, x —&,J.,
m
Qingec o 4
S 2CKIKION® - ¥) = —K,00,,
Wpi

and

efd;
K:a,,Jz = ';)-- X 8,71’1,' X enyy,

o

K.8yJ, = 0% 0,
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(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)



Reducing Eqs.(2.32)—(2.37) to its simplest form as

— By + K20,nd2 =0, (2.38)

now integrate

—n+ Kl +C =0, (2.39)

Apply the boundary conditions, such as  — *oo, then §n - 0 and n — 1.

1—n+ Kndie =0, (2.40)
Kng®=n-1, (2.41)
& n—1
h®=— K2 (2.42)
and
QL“’“Kfoa;;(@ ~¥) = —K,8%J., (2.43)
wp‘- - 7
KIK2G)(® - W) = dn, (2.44)

integrate the above expression twice;

KIKI0H® - ¥)=0,n+C, (2.45)
KIKI(®-¥)=n+C, (2.46)
26— 2GInn = 1L 2.47

n n n= KEKzz' ( ' )
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To obtain above expression we have applied the boundary conditions, such as 7 —
+o0, then d,n — 0 and n — 1.
Since G Inn = G (—Z (B,n)* + L82n), therefore, Eq.(2.42) with Eq.(2.47) give

the following relation:

(Z;(;) -G (-% (B,n)* + %agn) = %;Klzl (2.48)
(r; ;(31) _ (;;2 }12) e (_% (@,n)* + —11;3,“;11) , (2.49)

Multiply Eq.(2.49) with 18,n, we obtain:

(G-~ 0= g n =6~ @ + on(ei) . (250)

2
n n? K2

Eq.(2.49) can be further simplified to obtain the Sagdeev energy integral equation

in the following form

;— @) + U(n, K., G) = 0. (2.51)

The second term in Eq.(2.51) is the Sagdeev’s potential which is given by

Uln,K,,G) = n—1)(K2+ n) —nlon(K? + 1) (2.52)

GK?2 2K GrERE\
To derive Eq.(2.51) we applied the boundary conditions, such as n — too, then 9,n —
0 and n — 1. If we take degeneracy factor equal to unity (i.e. G = 1), the Sagdeev’s
potential U become identical to the relation reported in Ref.[ '}. Eq.(2.51) can be
interpreted as the energy integral for a particle of a unit mass oscillating in a potentiat
well U(n, K, G), having velocity 9,n with position n. The conditions for the existence

of solitary wave solution of Eq.(2.51) require that (i) |[U(1) = U(n,,) = 3,.U|__, =0,

n=1

(ii) |02U|,_, < 0. Using Taylor expansion the Sagdeev’s potential U/(n, K., G) near

n =1 can be expressed as
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TH P 2125

Z = — (& 2.53
% (Bn)" = A(6n)? + B(6n)*, (2.54)
where A = dﬁ%ﬁ" and B = ‘/ﬁ%, while the assumption made in deriving

Eq.(2.54) atedn=n—land M = K? — 1 < 1{M > 0).

The soliton solution under the small amplitude perturbation can be obtained by

using the expanded form of Eq.(2.54) in Eq.(2.51). Then the solution takes the following
form

on = ngech2[\/M(G)‘l 1

SRE] KK (2.55)

For NND case i.e.{ < 1, the Sagdeev potential and its soliton structure can be ex-
pressed as

Uln, K,, G) = m[(n ~1)(K2 +n) - nlnn(K? + 1),

rTTz

(2.56)

3 M 7
on = = Msech?® . 2.57

Whereas, for ND case such that ¢ >» 1, the Sagdeev potential and its soliton structure
have the following forms

. n
Uln, K, G) = - [(n—1)(KZ+n)—nlnn(KZ+1)], (2.58)
30— 5 O)KIK? |
3 M 7
on = = M sec h?| 5 1. (2.59)
2 211 — = (5)") 2| K. K|

2.3 Numerical Analysis and Discussion

In this section, we will discuss the numerical plots for KAWs for NND and ND plasma

limits. The value of thermal temperature and plasma density of electron is crucial
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Figure 2.1: Plot of (normalized) frequency w with respect to {normalized) wavenumber
k; from Eq.(2.28) (nearly non-degenerate plasma ) for different values of ¢ such that
¢ = 107* (blue, bold) with T, = 2.0x 10* (°K), ng = 1.37x 10** (m=3) , { = 1073 (blue,
dashed) with T, = 9.2 x 10* (°K), ng = 1.37 x 10% (m~3) and ¢ = 1072 (red,dashed)
with T, = 4.3 x 10° (°K), ng = 1.35 x 102 (m~3). Other parameters are By = 1 Tesla,
g=0.1,% =01 and kp = 12500.

for investigating the ND and NND plasmas limits. So, we have used general coupling
parameter ¢ to derive the plasma number density and thermal temperature[: -, - ;]. To
discuss both the NND and ND plasma limiting case for KAWs in quantuin plasma, we
first plot linear dispersion relation using Eq.(2.28) and Eq.(2.29). Figure (2.1) shows
a plot of frequency w with respect to wavenumber k. for the NND plasma case by
changing the value of {. Note that both the frequency w and wavenumber k., are
normalized such that w = w/vaky, k; = k/ko), here kg represent reference wave
number. It can be observed from Figure (2.1) that the value of frequency is enhancing
with the increase value of parameter ( for the NND case. On the other hand, Figure
(2.2) shows the plot between frequency w and wavenumber &, for the ND plasma case
for the various value of §. Again note that both the frequency w as well as wavenumber
k. are normalized. It is found from Figure (2.2) that the value of frequency reduces by
enhancing the value of parameter §. The plots are shown in Figure (2.1} and Figure
(2.2) are identical in trend and nomenclature with the plots reported in Ref. [?].

The effects on Sagdeev potential curve and solitary structure by changing the values

of parameter { for NND plasma case and § for ND plasma case for KAWSs are shown in
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Figure 2.2: The (normalized) frequency w is plotted against (normalized) wavenumber
k, from Eq.(2.29) (nearly degenerate plasma) for different values of 4 such that 6 =
10~%(blue,bold) with Tr = 4.78 x 107 (°K), T, = 4780 (°K), ng = 1.21 x 10% (m™3)
, 8 = 1077 (blue,dashed) with Tr = 4.78 x 107 °K), T. = 9538.13 (°K), np =
1.21 x 10%m™> and § = 10-34 (red,dashed) with Tr = 4.78 x 107 (°K), T = 19031.1
(°K), ng = 1.21 x 10® (m~3). Other parameters are By = 5.4 x 10 Tesla, g = 0.1,
£ = 0.1 and ko = 12500.

Figures (2.3-2.6). The profile of Sagdeev potential U for different value of ¢ for NND
plasma case from Eq.(2.56) are shown in Figure (2.3). It is found from Figure (2.3)
that by increasing the value of parameter { for NND plasma case, the depth (width)
of Sagdeev potential curves are decreasing while the crossing point (i.e. amplitude)
will remain the same. The mﬁesponding soliton structure of Figure (2.3) is shown
in Figure (2.4) from Eq.(2.57) for NND plasma case. It is evident from Figure (2.4}
that the width of dip soliton is slightly changed by enhancing the value of parameter ¢
while no change observed in amplitude. It can be observed from Figure (2.3) that the
Sagdeev potential curve gives hump soliton in the sub-Alfvénic region under condition
7 > 1 > 1. This kind of soliton in the sub-Alfvénic region is reported in Ref.[ -]
On the other hand, the Sagdeev potential curves U and the corresponding soliton
structure for different values of parameter § for ND plasma case are shown in Figure
(2.5) and Figure (2.6) respectively. It is to be noted from Figure (2.5) that the Sagdeev
potential curve under condition 1 > n > n,, can form hump soliton in the sub-Alfvénic
region. Tt is further found that by increasing the value of parameter § the depth (width)

of Sagdeev potential curves are increasing while the crossing point n,,, (i.e. amplitude)
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Figure 2.3: Plots of Sagdeev potential U from Eq.(2.50) against number density n
for different values of { such that ¢ = 0.1 (blue, bold) with T, = 1.9 x 10° (°K),
ng = 1.21 x 10%® (m~3), ¢ = 0.45 (blue, dashed) with T, = 4.3 x 10° (°K), ng = 1.72 X
10°! (m~3)and ¢ = 0.8 (red,dashed) with 7, = 5.5 x 10° (°K), ny = 4.08 x 10*! (m~3)
for nearly non-degenerate plasma limit,while keeping K, = +/1.5 and K, = /1 — K2,
with g = 0.1.
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Figure 2.4: Variation of soliton structure of én versus n from Eq.(2.57) for nearly
non-degenerate plasma. All parameters are the same as in Fig. 2.3.
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Figure 2.5: Sagdeev potential U is plotted against number density n from Eq.(2.58)
for nea.rly degenerate plasma with same values of § as in Figure 2.2, while keepmg

=+v15and K, = \/—z,wﬂ:hg 0.1.
will remain the same. The corresponding soliton structure of Figure (2.5) is shown in
Figure (2.6). It is clear from Figure (2.6) that the width of soliton is narrowing by
enhancing the value of parameter § while no change observed in amplitude. Noting
that the trend and nomenclature of Figure (2.5) and Figure (2.6) are opposite to Figure
(2.3) and Figure (2.4).

From graphical analysis, it is revealed that the Sagdeev potential plot is only pos-
sible in the sub-Alfvén region if we consider the value of K, gréater than unity such
that K2 > 1. Its mean that the solitary wave can not exist in the super Alfvénic region
when the value of K, is less than unity such as K2 < 1. So, it is clear from Figures
(2.3-2.6) that we have only one kind of soliton solution and the KAWs can only form
hump soliton in the sub-Alfvénic region for value K2 > 1. It is also found from our
numerical analysis that the variation found for Sagdeev potential and soliton struc-
ture in the case of ND plasma state is more prominent than the variation observed for
Sagdeev potential and soliton structure in case of NND plasma state. Furthermore, If
we ignore the quantum effects (i.e. arbitrary temperature degeneracy effects) in terms
of NND (i.e. { =0) and ND (i.e. § = 0} plasma limiting case then the result will be
similar as reported in Ref.[* ] ﬁhich is purely for classical plasma case. It is also worth
mentioning that our model allow only values { < 1 for the NND plasina case and §d < 1.

for the ND plasma case.
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Figure 2.6: The soliton profile of dn versus 7 from Eq.(2.59) for nearly degenerate
plasma. All parameters are the same as in Figure 2.5.

2.4 Conclusion

We have investigated the nonlinear propagation characteristics of kinetic Alfvén waves
in low-3 quantum plasmas by taking into account arbitrary temperature effects in terms
of NND an(i ND plasma limiting case. The Sagdeev potential was derived by using
two potential approximation. It is found that kinetic Alfvén hump solitons exist in
both NND and ND plasma limiting case Furthermore, the kinetic Alfvén hump soliton
moves with sub-Alfvénic wave speed. It is observed that the changes in Sagdeev’s
potential curves and soliton structures in the case of the ND plasma state are more
significant than the changes observed for Sagdeev’s potential and soliton structure in
the case of NND plasma state. Moreover, If we neglect the guantum effects such as
arbitrary temperature degeneracy effects for both NND and ND plasma limiting case
(i.e. { =& = 0) than the result will be similar as reported in Ref.[ ] for electron-ion
classical plasma. Qur model with values ¢ < 1 is only applicable for the NND plasma
case and 4 < 1 for the ND plasma case. Our results may be useful in studying the

structure of astrophysical compact objects like white dwarfs, magnetars and pulsars.
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Chapter 3

The effect of spin magnetization on
Kinetic Alfvén waves in dense

plasmas

3.1 Introduction

In 1942 Hannes Alfvén investigated that the low-frequency electromagnetic waves can
propagate in conducting fluids such as plasmas by assuming the plasma medium to be
a highly conducting, magnetized and incompressible fluid. He discovered a new mode
called the shear or torsional Alfvén wave in the conducting plasma propagating along
the magnetic field direction. Alfvén waves also known as electromagnetic hydrodynamic
waves are ubiquitous. In nature, these types of waves become important in solar physics
because the sun has a general magnetic field as well as conducting solar matter. So,
Alfvén waves are present everywhere in the universe where there is a magnetic field and
conducting fluid and is a normal mode of magnetized plasma. In addition to the shear
Alfvén wave, we have fast and slow magnetoacoustic waves for compressible plasma
cases. Both kinds of low-frequency wave modes (i.e. Alfvén and magnetoacoustic
waves) have gained much attention because they play important roles in the heating
of, and the transport of energy in, laboratory, space, and astrophysical plasmas.

The Alfvén waves are found to be the main source of heating of the solar and

35



stellar coronae as well as a supplementary heating scheme for fusion plasma devices
both theoretically and experimentally. The dispersion relation of shear Alfvén waves
in uniform plasma is modified greatly due to large perpendicular wavenumber. So, in
other words, when the wavelength perpendicular to background magnetic field is short
or wavevector is almost perpendicular to the magnetic field and the phase front is
parallel to the field, we have different dispersion relations with respect to shear Alfvén
dispersion relation. Shear Alfvén waves can be further categorized into kinetic Alfvén
waves (KAWSs) for warm plasmas and inertial Alfvén waves (IAWSs) for cold plasmas
depending upon the value of plasma 3.

It is revealed from analyzing and studying the data taken by Freja spacecraft that
the auroral low-frequency turbulence exhibits strong electromagnetic spikes. From
these electromagnetic spikes, the existence of solitary waves with strong density per-
turbations is observed which reasonably well interpreted as solitary KAWs. The ob-
servation by Freja satellite showed KAWs with density depression and hump type
structures| , , ]. KAWSs become solitary kinetic Alfvén waves when dispersion
canceled out with nonlinearity. Many researchers in the past have studied in detail
solitary KAWSs especially in classical regime[ , ", , ]. The classical plasmas
exhibit low density and high temperature. It follows Boltzmann-Maxwellian distribu-
tion function. The value of de-Broglie is so low in classical plasma that the particles
behave like point-like and obey Newtonian mechanics with no overlapping of wave
functions. Examples of classical plasma can be found in solar wind, magnetosphere,
and ionosphere etc.

"The discovery of pulsars have proven the existence of neutrons stars having masses
similar to the sun but radii of about 10km. It is assumed that the neutron stars are
the remanent of supernova explosion. The black holes are assumed to be present in
certain binary stars system, possibly at the centers of every galaxy and considered as
the energy sources in quasi-stellar objects. The majority of stars including our sun will
finally evolve as white dwarfs, possessing the same mass as neutron stars but size of
the order of earth with interior densities~ 105gem=3. The evolution of white dwarf is

dominant mechanism in galaxies, which is a great source of information in the evolution
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of individual stars from birth to death, on the history of galaxies and the rate of star
formation. The basic parameter which determines the final fate of a star is thought to
be its mass at its birth.

It is believed that all stars with masses in the range 6 to 8 solar masses(i.e. M)
will finally become white dwarf, while the more massive stars will become neutron
stars or black hole. The maximum mass, a white dwarf can have is 1.4M, which is
a very small fraction of the original stellar mass. The remaining part of the original
star is believed to be converted into the surrounding interstellar medium which may be
further utilized in the formation of new stars. By calculating the mass of white dwarfs
and tracing their evolution to their progenitors, it is possible to find out the total mass
loss, at least in a statistical sense.

Recently, there has been a great deal of interest in excitations of collective modes
in the spin system, such as spin waves. By employing quantum theory, the study of
charged particles and plasmas has gained much attention in astrophysical environments
(e.g. strongly magnetized plasmas)[-]. It is also observed that the properties of
low-frequency electromagnetic waves in highly magnetized plasmas are significantly
modified by the spin effects| ., ]. Marklund et al. have studied the characteristics of
nonlinear magnetosonic waves in strongly magnetized quantum plasma with quantum
Bohm potential and electron spin-1/2 effects. In the quantum momentum equation,
an additional negative pressure like term was added due to spin effects, as a result,
the nonlinear waves become wider and have shallower density depletions for a larger
value of magnetization energy (i.e. Zeeman energy) ¢ = ugB/kgT,. The spin of the
electrons collectively modifies the quantum dynamics of the MHD plasmal |.

The effects of Bohm potential and spin magnetization on nonlinear magnetosonic
waves with shock waves in quantum plasma were studied by Mushtaq and Vladimirov
[ ]. The effect of Fermi pressure, Bohm potential and spin magnetization on arbitrary
nonlinear magnetosonic waves in degenerate plasmas was further investigated by Ref.
[ ]. Later on, the work was further extended by Mushtaq et al.| ] while studying the
characteristics of degenerate electron-positron-ion (EPT) plasmas and found changes

in the propagation characteristics of magnetoacoustic waves by changing the value
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of positron concentration. Similarly, Maroof et al.[ | have investigated the spin-1/2
effects on dispersion properties of magnetoacoustic waves in relativistic degenerate EP1
magnetoplasma. Thus, in this sfudy, we investigate the propagation characteristics of
KAWs in low-3 dense quantum plasma with spin magnetization effects. The set of
nonlinear equations for studying an arbitrary amplitude KAWs with linear dispersion
relation and the derivation of Sagdeev potential are presented in Section 2. Numerical
analysis and discussion are presented in Section 3. The conclusion is then given in the

final section.

3.2 Formulation

Let’s consider a collisionless, homogenous and non-relativistic low-3 electron-ion quan-
tum plasma with effect of spin magnetization placed in a uniform magnetic field
By = BpZ and suppose that the wave is traveling in the z — z plane. To study
KAWSs in low-2 quantum plasma, ions are assumed to be classical and inertial, whereas
the electrons are taken to be degenerate and inertialess. The value of plasma beta
(3 = 2ugnkpTr./ B2 } is greater than an electron to ion mass ratio but very less than
unity. Due to low-3 assumption, one can use two potential theory such that E, = — %‘f
and £, = —% where ¥ and ¢ are two potentials in longitudinal and transverse direc-
tion respectively] , ]. The governing equations to study KAWSs in dense quantum

plasma are given below. The electron momentum equation is given by[ , |

Me 0z MeNe Oz 6m? 9z

ed 1 Opre B 8 [Syn) 2z 8 B
+ (\/n_ +EBZ (g .B)=0, (3.1)

m.h oz
here e is the charge, m, is the mass, n, (n;) is the electron (ion) density respec-
tively. Fermi pressure pg.(= %vjfﬂng) is shown in second term of Eq.(3.1) with vg.(=
V2kgTp./m.) and Tg(= K*(3n%ng)?*/2m kp). Here kg, k and ng are the Boltz-
mann constant, Plank’s constant and equilibrium density (defined as ny = nyy = ngp)-
Bohm potential term also called quantum diffraction is shown as third term in Eq.(3.1)

The last term of Eq.(:3.1) shows spin force . Here pg represents Bohr magneton (i.e.

AM

2ugn.’

efi

Hp = 3.- with magnetization

) and for the lowest order spin analysis, § = —
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e 2 . . . .
vector M = (%) B [, ' ]- The ion momentum equation is given as
i _ € (E+v,xB) (3.2)
dt  my ! ! )

where v;, n;, and m; represent the ion fluid velocity, ion number density, and ion mass
respectively. Here 4 = 8,+v;-V is called convective derivative. In the limit | 3, |< wa,

where wy (= 9"%9) is the ion cyclotron frequency, the Eq.(3.2) takes the following form

1 &

" Bw, 8tdz’ (3:3)

v =

To avoid vector nonlinearity, the nonlinear term (v;.V) of convective derivative in
Eq.(3.2) can often be neglected. The ion continuity equation is
In;

7] ,

Faraday’s law V x E = —3,B can be written as

big G,
Bxaz (¢ - w) - aByv (3‘5)
Ampere’s law can be expressed as
VxB=puJ + p,e,0E, (3.6)

where J, = J, + Ju is the total current density, J, is the polarization current density,
Jy = V x M is the electron spin magnetization current density and M represent
the spin magnetization density. We have ignored the displacement current in above

Eq.(3.6). In this case we may write Eq.(3.6) as

a
VxB= ﬂ-ng = &B;,: [J.th, (37)

The quasi-neutrality condition n; ~ n, ~ n implies that V - J = 0, and further depicts

a a

50 = _5Jt’ (3.8)
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with Ji; = e(n;vy). Thus, continuity equation becomes

a

5;']0 (39)

7

a(ene) =
It is to be noted here that current density J; is mainly resulted due to presence of
electrons density as compared to ion density in low-f quantum plasma case. Noting
further that electron parallel current and ion polarization current will cancel each other.

For convenience, we define the dimensionless parameters as,

ey
U=
kBTFe '

z Wy n; ed
€=_1“=(_p!")z,T:wcit:ni,e=“£:‘p= )
Pq c Ny kBTFe

where p, represents quantum ion gyro-radius such that p, = C,/w,, C,; denotes quan-

tum ion acoustic speed such that C; = 55;2& , wpi denotes ion plasma frequency i.e.
Nioe® \ 2 . . . .

Wi = and ¢ means light speed. For convenience, Egs.(3.1-3.9) can be written
€01

in dimensionless form as fellow

on O &
2 * n
oV _1on® H9 (5avn —e2 9 1an o, (3.11)
dp 20 20\ n du
a4 &
In the above representations, H = ﬁ is a dimensionless parameter, shows

the Bohm potential effect while =, = *‘E—f’——ﬁ’ shows the normalized Zeeman energy

due to the presence of spin magnetization. The ratio of interaction energy Ei, =

wir

e?/4mey (3/ 47ny)3 (here g is vacuum permittivity) and Fermi energy Er = B (3ngn?)
gives quantum coupling parameter go = E;n:/ Er. When the value of quantum coupling
parameter of dense quantum plasma is less than unity, then we will have collisionless
state (i.e. go = 0.64 x 1010 ng:l‘) along with plasma density ng > 3 x 10% (m™3) [ .

The linear dispersion relation of KAWSs in magnetized quantum plasma with effect

of electron spin magnetization and Bohm potential using Eqs.(13.1—3.9) can be written
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as follow

AZj2
w?=KVIL+ k2p3(1+ €2 + %)}, (3.13)

where k. (k.), Vs = ——fﬂ-&;{;, and A; = c/w,; represent wave numbers along z-axis
(z-axis), velocity of Alfvén wave, and ion Fermi wavelength. If we ignore both the
spin and quantum diffraction terms we obtained same result for dispersion relation as
reported by Ref.[ ] in case of pure classical plasma.

Now, we introduce a co-moving frame defined by § = l;e + I, u — 7 (where [,
and I, = m are the direction cosines) to derive the Sagdeev potential equation.

Therefore, the set of Eqgs.(3.10-3.12) in £ frame can be written as

8 L8[ &\ _

3" n—12= 5 (n—6€2®) =0, (3.14)

o an a0

-6_5— 35 505&_— Inn= 0 (315)
62

212

212 6{“@ 7) = 5" (3.16)

Noting that we have ignored the Bohm potential term in Eq.(3.11). Simplifying

Eqs.(3.14-3.16) to obtain the Sagdeev energy integral equation in the following form

2
: (gg) FK(n,e) =0, (3.17)

where K(n, H,¢,) is the Sagdeev’s potential for this particular problem and is given as

2 Inn 3 s2nn
K(n o) = — n? l, +n—:5'+ 2. _T+ 1515 3?,5:,7 T’T’f"‘ 2
yCal = n2 2
(€ + ) ~shp it ol #
(3.18)

In deriving Eq.(3.17) we used boundary conditions such as £ — +oo,n — 1). Eq.(3.17)

can be interpreted as energy integral equation of a particle of unit mass having velocity

g—’; with position n in potential well K'(n,e,). The conditions for the existence of
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solitary wave solution are (i) K(n,,) =0 at n =1 and n = np, (i) £ |,_;= 0 and
2| 1< 0 and (ili) K(n,e,) <0.

Using Taylor expansion the Sagdeev potential K{n,¢,) near n = 1 can be expressed

2
% (@) = A(R)® + B(n)3, (3.19)

here A = 1152-%(‘1—:_5-;-, B = 1/%%;;5—::‘552 with i = n — 1. The soliton solution

under the small amplitude perturbation can be obtained by using the expanded form
of Eq.(3.19) in Eq.(3.17). Then the solution takes the following form

i = Asec h®AE, (3.20)

3(1-42 o . ' —1) - .
here A = 4 +2L (eg—(:lst;o represents the amplitude and & = 51— /%%?3 is the width of

a solitary wave.

3.3 Numerical Analysis and Discussion

Dense plasmas existing in astrophysical compact stars such as white dwarfs, pulsars and
magnetars are characterized by strong magnetic fields B ~ 10° - 10%Tesla [ , , |,
whereas the plasma number densities are thought to have ng = (10% -~ 10%)m~3] ,
"+ ]. To study solitary KAWs numerically in a low-3 quantum plasma, we have
used plasma parameters (in MKS units) ng &~ (10% —10%)m™3, By, = (105 — 10°)
Tesla and Tr =~ (10" — 10°) K. Numerically, the magnetization energy can be written
as gp & £ = 1.6 x 104 (B.;/n(%). It can easily observed that the normalized Zeeman
energy €q {due to the spin magnetization) depends on both magnetic field strength and
plasma number density.
Now we present the numerical analysis of Eqs.(3.13), (3.18) and(3.20) by changing
the values of magnetic field (i.e. £9) in Figures (3.1-3.4). We first plot linear dispersion
relation using Eq.(3.13) to discuss both the effect of spin magnetization and Bohm

potential on KAWs in dense quantum plasma. Figure (3.1) shows a plot of frequency
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Figure 3.1: Plot of (normalized) frequency w with respect to (normalized) wavenumber
ky of Eq.(3.13) for different values of plasma number density such that (i) no =~ 6.38 x
10% (m~3) (Bold, Black) with gg = 0.0345, Tr ~ 1.4 x 103(°K), H =~ 0.00049, &
~ 0.00046. (i) no ~ 1.78 x 10* (m~3) (Dashed, Red) with go = 0.0245, Ty =~
2.86 x 103(°K) , H =~ 0.00059, £¢ =~ 0.00023. (iii) np ~ 8.59 x 10* (m~3) (DotDashed,
Blue) with go = 0.0145, T ~ 8.18 x 10%(°K) , H = 0.00076, =4 2 0.000081. Other
parameters are [, = 0.99, Bp = 10%(Tesla).
w to wavenumber k, by changing the value of plasma number density with a fixed
value of By. Note that both the frequency w and wavenumber k, are normalized such
that w = w/vake, k. = k,/ky), here ky represents reference wave number. It can be
observed from Figure (3.1) that the value of frequency is enhancing with the increase
value of plasma number density.

On the other hand, Figure 3.2 shows the plot between frequency w and wavenumber
k: by changing the value of magnetic field strength By with a fixed value of plasma
number density ng. Again note that the frequency w as well as wavenumber k; are
normalized such that w = w/vaky, k. = k./ko), here kg represents reference wavenum-
ber. It is found from Figure (2.2) that the value of frequency reduces by enhancing the
value of magnetic field strength By (i.e. spin magnetization €o). It is observed that
both the Figure (3.1), i.e. H > &) and Figure (3.2), ie. H < & are having opposite
trends and behavior to each other. The plots are shown in Figure (3.1) and Figure
(3.2) are identical in trend and nomenclature with the plots reported in Ref. [ |.

The effects on Sagdeev potential curve and solitary structure by changing the values

of magnetic field strength B, for studying KAWs in dense quantum plasma are shown

in Figures (3.3-3.4). We have used typical astrophysical plasma parameters such as By
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Figure 3.2: Plot of (normalized) frequency w with respect to {normalized) wavenumber
k. of Eq.(3.13) for different values of magnetic field strength (i.e. spin magnetization
energy) such that (1) By = 2 -0 x 10%(Tesla) (Bold, Black) with gp =~ 1.54. (ii)
By = 3- 0 x 10%(Tesla) (Dashed, Red) with ey =~ 2.30. (iii) By = 4 - 0 x 108(Tesla)
(DotDashed, Blue) with €, == 3.08. Other parameters are Tr = 8.68x 107(°K), {, = 0.99,
go = 0.0445, ng =2 3 - 0 x 10%3(m~3) and H = 0.00044.

(~ 107 — 10%) Tesla ,ng =~ 10 m™3, Tr =~ 107K, and &9 (~ 1.2 — 4.0). The profiles of
Sagdeev potential K for different values of magnetic field strength By from Eq.(3.1%8)
are shown in Figure (3.3). It is found from Figure (3.3) that by increasing the value
of parameter By, the depth (width) of Sagdeev potential curves is decreasing while the
crossing point (i.e. amplitude) is also increasing in Figure (2.3). The corresponding
soliton structure of Figure (3.3) is shown in Figure (3.4) from Eq.(3.20) for different
values of magnetic field strength By. It is evident from Figure (3.4) that the both width
and amplitude of soliton is increasing by enhancing the value of parameter By. It can
be observed from Figure (3.3) that the Sagdeev potential curve gives hump soliton
in the sub-Alfvénic region under condition 1 < n < n,,. This kind of soliton in the
sub-Alfvénic region is reported in most of the literature | .

From graphical analysis, it is revealed that the Sagdeev potential plot is only possi-
ble in the sub-Alfvén region if we consider the value of {, greater than unity such that
{2 > 1. It’s mean that the solitary wave can not exist in the super Alfvénic region when
the value of [, is less than unity such as {2 < 1. So, it is very much clear from Figures

(3.3-3.4) that we have only one kind of soliton solution and the KAWSs can only form

hump soliton in the sub-Alfvénic region for value 2 > 1. It is also found from our
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Figure 3.3: Profile of Sagdeev potential curves K(n) against number density n using
Eq.(3.18) for different values of magnetic field strength such that (i) By = 30 x
107(Tesla) (Bold, Black) with go =~ 1.17. (ii) By = 6 - 0 x 10"(Tesla) (Dashed, Red)
with g9 &~ 2.33. (iii) By = 9- 0 x 107(Tesla) (DotDashed, Blue) with g¢ =2 3.50. Other
parameters are ng ~ 2.62 x 1032(m=3), Tr =~ 1.72 x 107(°K), I, = V1.5 and gg = 0.1.
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Figure 3.4: Variation of the corresponding solitary wave profiles 72 (£} of Figure 3.3
using Eq.{3.20) for different values of spin magnetization energy. All parameters are
same as in Figure 3.3.
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numerical analysis that the variation found for Sagdeev potential and soliton structure
is prominent for parameter By. Furthermore, If we ignore the quantum effects, i.e.
Fermi pressure and spin magnetization then the result will be similar as reported in

Ref.{" | which is purely for classical plasma case.

3.4 Conclusion

We have investigated the nonlinear propagation characteristics of kinetic Alfvén waves
in low-3 quantum plasmas by taking into account spin magnetization effects. The
Sagdeev potential was derived by using two potential approximation. It is found that
kinetic Alfvén hump solitons exist in the presence of spin magnetization effects in
the sub-Alfvénic region for value 12 > 1. Furthermore, the kinetic Alfvén hump soliton
moves with sub-Alfvénic wave speed. It is observed that the changes in linear dispersion
relation, Sagdeev potential curves, and soliton structures are significant in the presence
of spin magnetization effects. Moreover, If we neglect the quantum effects such as spin
magnetization effects then the result will be similar as reported in Ref.[ ] for electron-
ion classical plasma. Our results may be useful in studying the internal structure of

astrophysical compact objects like, white dwarfs, magnetars and pulsars.
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Chapter 4

Inertial Alfvén waves in quantum
plasma with correction of

temperature degeneracy

4.1 Introduction

The Alfvén waves are found to be the main source of heating of the solar and stellar
coronae as well as a supplementary heating scheme for fusion plasma devices both the-
oretically and experimentally. The dispersion relation of shear Alfvén waves in uniform
plasma is modified greatly due to large perpendicular wavenumber. So, in other words,
when the wavelength perpendicular to background magnetic field is short or wavevec-
tor is almost perpendicular to the magnetic field and the phase front is parallel to the
field, we have different dispersion relations to shear Alfvén dispersion relation. It is
revealed from the data taken by Freja spacecraft that the auroral low-frequency tur-
bulence exhibits strong electromagnetic spikes. From these electromagnetic spikes, the
existence of solitary waves with strong density perturbations is observed which reason-
ably well interpreted as solitary KAWs and IAWSs. The observation by Freja satellite
showed KAWSs and IAWSs with density depression and hump type structures| , , |
KAWs and IAWSs become solitary kinetic Alfvén waves when dispersion canceled out

with nonlinearity. Many researchers in the past have studied about solitary KAWSs and
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IAWs in the classical regime|  , ~, : , -, ']

Alfvén waves attained dispersive nature when electron pressure effects (i.e. a =
3/2Q >> 1) or electron inertial effects (ie. o« << 1) in low-3 (= 8—";32) plasma
are taken into account, where 3 and @ are the ratio of thermal pressure to magnetic
pr-essure and the ratio of electron mass, to ion mass, respectively. The limiting case
o >> 1 gives kinetic Alfvén waves (KAWSs), whereas o << 1 provides inertial Alfvén
waves (IAWs). In 1976, Hasegawa and Mima [ '] studied the KAWs in low-3 plasma
(i.e. @ >> 1) and found density hump soliton which propagates with the sub-Alfvénic
speed in almost parallel to the background magnetic field. Similarly, Shukla et al. -]
have investigated the electron inertial effects on shear Alfvén wave and found dip IAWs
solitons with super-Alfvénic speed (i.e. a << 1).

Quantum plasma has attracted a great deal of interest due to its application in semi-
conductors devices| |, nano-structures materials[ |ultra-small electronic devices{ |
and in ultra-cold plasmas|. |. Quantum effects are also important in laser-induced
plasmas|. | and in astrophysical compact objects like neutron stars, pulsars, magne-
tars and interior of white dwarf[  |. When the distance among the particle becomes
equal to de-Broglie wavelength and pressure degeneracy become equal to classical ther-
mal pressure, then the electron tunneling effects become important in dense plasmas.
At high density, due to Pauli exclusion principle, particles follow the Fermi-Dirac dis-
tribution function[. , , =, . ]. For degenerate plasmas, the equation of state for
both non-relativistic and ultra-relativistic was derived by Chandrasekhar [ |. For
the case of degenerate electrons, the equation of state is p. o ne% in non-relativistic
limit and for ultra-relativistic case, the equation of state is p, ne%, with p,, n. are
being the degenerate pressure and degenerate electron density respectively. It is well
known that the electrons due to their lower mass are responsible for quantum effects
as compared to heavy mass ions and follow Fermi-Dirac statistics and the equation
of state is obtained from Fermi-Dirac distribution[ , |. By using Fermi-Dirac distri-
bution in terms of polylogarithmic function, Melrose et al.,| , ] have investigated
the degeneracy effects in quantum plasma in addition to quantum recoil effects. They

have obtained the longitudinal response function for various sets of electrostatic waves.
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Maxwell-Boltzmann distribution function will be replaced by a Fermi-Dirac distribu-
tion function when we consider temperature degeneracy. The parameter { = exp[;fﬁ
in FD describes the degeneracy, is defined in terms of the chemical potential, z, with
T, being the electron thermal temperature while kg is the Boltzmann constant. In
non-degenerate limit, F& is large and negative, implying ( — 0. When completely
degenerate limit approached, r;‘}—g becomes large and positive, implying { — oo , with
p, — Tr = im.% , where Ty is the Fermi temperature and vy is the Fermi speed
[ , ] By employing a similar approach of Refs. { ', |, the propagation charac-
teristics of ion-acoustic waves were investigated for non-relativistic, unmagnetized and
magnetized quantum plasma with electrons degeneracy using the fluid model. They
further modified the equation of state by deriving the pressure tensor using the Fermi-
Dirac statistics [ -, - |

A magnetohydrodynamic model for a quantum magnetoplasma has been derived by
Haas [ *}. The dynamics of quantum plasma have been studied extensively from these
derived equations [ , |. By using the quantum magnetohydrodynamic(QMHD) model
[ *], the tunneling phenomena and negative differential resistance in semiconductor
physics can be elaborated. Recently, the phenomena of collective effects in quantum
plasma has gained the attention of many researchers[- , *, ,-, °, , , ]. Using
QMHD model, many researchers have studied the quantum effects on propagation
characteristics of electrostatic and electromagnetic waves| , , , , , ., , |
In MHD theory, it is well known that when the perpendicular wavelength to the external
magnetic field becomes comparable to ion larmor radius, The ions don’t folow the
magnetic field lines due their heavy mass, whereas the electrons still move along the
magnetic field lines due to their small larmor radius. Therefore, charge separation
is created due to the small difference of the transverse velocities between ions and
electrons [, , "*, ]

We, in this chapter, are discussing the arbitrary temperature degeneracy effect on
propagation characteristics of LAWSs in intermediate 3 (i.e. @ << 1toa < 1} quantum
plasma. The Korteweg- de Vries equation is derived for studying small-amplitude IAWs

by using the reductive perturbation technique in magnetized quantum plasma. The

49



set of nonlinear equations with derivation is presented in Section 2. Numerical analysis
and discussion are presented in Section 3. The summary is then given in the final

section.

4.2 Basic Equations

Let’s consider a collisionless, homogenous and non-relativistic electron-ion quantum
plasma placed in a uniform magnetic field B = Bz and suppose that the wave is
traveling in the z — z plane. To study IAWs in intermediate 3 (ie. a << 1toa < 1)
dense plasma, ions are assumed to be classical and inertial, whereas the electrons are
taken to be degenerate and inertial. The governing equations to study IAWs in dense
plasma with temperature degeneracy correction are given below.

one

5}
-ét_ + (T); (eve:) =0 (4.1)

ot Jz me m. n, 9z

Be: | e € ks TN (16n\ R 8 (LHyn
oo (1) 5 (B) e

OE, OE.  18B,

5: oz oot (44)
4B,  Ar
E‘ - o € M, Vg, (45)

here n.(n;), Vez, By, and E, (E,) are the electron (ion) number density, electron
parallel velocity to the uniform external magnetic field and the transverse(longitudinal)

electric field respectively., Also, the parameter G is called the degeneracy parameter
Lig{~evikaTe)

written in term of polylogrithmic functions such that G = Ly ( j {i.e. here v
'}

_evikpTe

represent the chemical potential with, kg Boltzmann constant and T, is the thermal
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temperature respectively.

Here ( m‘) B, are the the ion cyclotron frequency, the sheared magnetic
field and ¢ being the light speed. Noting that in the current study, the ion inertia,
ion current density, and displacement current have been ignored. Additionally, only
electrons possess quantum effects as compared to large mass ions.

For nearly non-degenerate (NND) (Gywnp) limit £ << 1, we expand the polylog-
arithmic function as Liy (=€) = —¢ + S which makes the Gynp = (1+ 4). For
complete non-degenerate plasma (i.e. £ — 0) which gives Gyyp = 1. Whereas,

for nearly degenerate(ND) limit (Gyp) £ >> 1, the polylogarithmic function can be

expanded as —Li, (—€) = r};il) Using then the Sommerfeld lema [ , | v =
kgTr [1 - ’1'—; (%) ] and hence In§ = 3£ 12'1” == that implies Gyp = %% (1 -z (6) )

For complete degenerate limit (i.e. 4 (= 7.:) — 0), v = T¢ = m v} with Tr and vp
being the Fermi temperature and Fermi speed, respectively.
Now we study the effect of temperature degeneracy on linear properties of inertial

Alfvén waves in dense plasma. We have dispersion relation as w? = l—m (1 + sz -ﬂ-ﬁ)

1 1
. - _ B2 2 _ _ {4
using Egs.{4.1) to (4.5) , where v4 = (4_m?FC) , Ae = w;, Wpe = (ﬂm;e—) and k de-
note the Alfvén speed, electron inertial length, electron plasma frequency and wave
number respectively. Noting that the presence of temperature degeneracy significantly
affects ion gyro-radius. If we ignore the effects of temperature degeneracy, we obtained

the same result for dispersion relation as reported by Ref.[ ] in case of pure classical

plasma
. . _ - _ - __#Y
Now, we use dimensionless parametersas 2 = -, t ={it, 1= -, T = &,z = .
) 1o va e T4
E. = %:, ¥ = (—:—:) ’ = i% So, Egs.(4.1) to (1.5) are given below,
an o
—— X N X n ] = R
5, n',ru:.-{-a;_:x!Eie AngXbuvy =0, (4.8)
on Q0
Q.— + X — — =10, .
g Er ngla o anv (4.7)
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+—nv=0, (4.8)

and

3 _ ¢ _on ? ~
bt_/—annq-f—mxﬁxnnomeng—O, (49)
_ c 8. 0
noﬂ,afn + Bl x ——= X ngBofd; x Ei_i:(n b—EEx) =0, {4.10)
9 o, 0.
Q,-gt:n +wpe-a—i_(n at_Ez) =0, (411)
8_ weed, 0O _
g_n_ + 9—‘5(1@ E-Ez) =0, (4.12)
on d { OFE,
E + ’)’a (n?—t_) =0, (4-13)
where 7 = & = = ()2
and
7} a

B,, (4.14)

Q,‘BD BE, wp,Bg 3Ez _ Q;‘ 8By
vqg OZ c 9 ¢ X o (4.15)

BOQ;‘ BE, _ ngpe aEz _ —Q,' 3By

vy Oz e O ¢ Ot (4.16)

! 1 % L. 2 62
02 () ool (1om) u(f) e

v— =
ot dz M, meva \m Oz

and

n
x B, = —ennguvy (4.18)
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98, _ —r c (4.19)

= X eU4 X NNgU X —
or ¢ : Wpe

aBy _ —411'81’101?_4 (nv) - (420)

oz Wpe

Here, H = 7&%‘; has been used as dimensionless parameter which is the result of

quantum diffraction effect. Now, we use the stretched variables as fellow:

n=¢(z—t), (= elz, 7=¢é%, (4.21)

and the perturbed quantities can be expanded around equilibrium as follow:

n=14+en® 4 n® 4 . (4.22)
v=evV + 2P 4 . (4.23)
YE =1+ ¢EWD 4 EED 4 (4.24)

where parameter € << 1 represents the amplitude of the perturbation. Substituting
Egs. (4.21) to (4.24) into Eqs.(4.8) to (4.20) and collecting the terms of lowest order

of €, we obtain

(1}
at =) = _a_g(;__ (4.25)
To next orders {i.e. ¢2), we have
m (2) [#Y) (0
or an a¢ a¢ on a¢ ar

and
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Noting that the dimensionless parameter H = 73'7:"’,\_2 which is showing the be-
havior of quantum diffraction will be ignored when considering the higher order terms
(i.e.€® and €*) in Eq.(4.27). Combining Eqs.(4.26) and (4.27), we have

ontd) B ﬂ(1},5\"(1) N ant aEl N (1 _ ks Te) & anll)

m.Va2

Both Eqs. (4.25) and (4.253) give the evolution of the stationary wave solution.
Using planar coordinate ¢ = K¢ + K,n — A1, we can verify the stationary traveling

wave solution of Eq.(4.2%} as

6n = — Amsec h? Wy, (4.29)
here A,, = 3 (MT‘ll) and W = (1—0 kM;:) — represent the peak amplitude
mev (2 iz

and width of localized pulse respectively. This is generalized soliton solution of IAWSs
with arbitrary temperature degeneracy.

Noting that the width of the solitary inertial Alfvén wave will be changed substan-
tially in the presence of arbitrary temperature degeneracy. If we ignore the effects of
temperature degeneracy in Eq.(4.29), we obtained same result as reported by Ref.[ }
for & << 1. For NND limiting case such as £ << 1, we obtained the following relation

from Eq.(4.29).

W= \/(M _1)/ (1 _a+ Qi) (fyf)) KIK.. (4.30)

When the parameter ¢ approaches to zero {i.e. £ — 0) which means complete NND

plasma limiting case, we obtained
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W= \ﬂM -1)/ (1 —~ (;Bvi)) KK, (4.31)

In similar way, for ND limiting case such as £ >> 1, we obtained

2 kB TF '.rr2 2 9
— - - — ] .32
\/(M 1)/ 1 T (1 5 (07 ) ) K2K. (4.32)

When the parameter § approaches to zero (i.e. § — 0) which means complete ND,

we obtained

W= \/(M —1y/ (1 - M) K2K,. (4.33)

3m, vy

4.3 Numerical Analysis and Discussion

Astrophysical plasmas existing in astrophysical compact stars such as white dwarfs, pul-
sars, and magnetars are characterized by strong magnetic fields B ~ (101! — 10%) G,
whereas the plasma number densities are thought to have ny ~= (10% — 10%)cm™3
[, ]- Usually, we use general coupling parameter A to describe the collisional or
collisionless state of quantum plasma having arbitrary temperature degeneracy. The
general coupling parameter can be defined as the ratio of the interaction energy to the
Fermi energy. Noting that for higher values of plasma densities, the collective effects
dominate in quantum plasma (i.e. when the quantum coupling parameter is small,
we have quantum collisionless regime). The expression for general coupling parameter
is A = 1/6(4/3r%)3 3 g? ng /eokBT x Liz (=€) /Lis (—&). The plasma number density
and thermal{Fermi) temperature play a crucial role in studying IAWSs in collisionless
intermediate 3 {i.e. & << 1to & < 1) dense quantum plasma for both NND and
ND plasma limiting case. For this purpose, we use the general coupling parameter
A to calculate the value of plasma number density and thermal({Fermi} temperature.
In this section, we will discuss the numerical plots to study inertial Alfvén solitons
using Eq.(4.29) for NND and ND plasma limits. Here, we have used values of differ-

ent parameters in CGS system such as plasma number density ng ~ (2.3 x 10** to
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Figure 4.1: The dip soliton structure {nearly non-degenerate ) is plotted between dn and
u for (i) £ = 0.92 (Bold, Black) with a = 0.41, n, = 3.5 x 10¥¢m~3 and T, =~ 3.7 x 10°
K, (ii) £ = 0.94 (Dashed, Red) with & & 0.31, n, & 2.9 10%cm 3 and T, = 3.4 x 10°
K and (iii) £ = 0.96 (DotDashed, Blue) with a = 0.21, n, = 2.3 X 10%#cm =3 and
T, »~ 3.1 x 10® K. Other parameters are , By = 10%G, K, = 0.1, M = 1.1 and
A = 0.0005.

1.8 x 10%"} em =3, general coupling parameter A = {0.0005 to 0.001), thermal tempera-
ture T, = (1.04 x 10° to 3.7 x 10°) K, Fermi temperature Tr ~ (2.7 x 107 to 7.1 x 107)
K and magnetic field By = (10° — 10'?) G. Figure 4.1 shows the solitary wave struc-
ture with density depression for the NND plasma limiting case. Here, we have used
parameters like £ (= 0.92,0.94,0.96) , o = (0.41,0.31,0.21) < 1, By = 10YG, T. =
(3.1 x 108-3.7 x 108 K) np = (2.3 x 10%-3.5 x 10% ¢em~3), M = 1.1 and A = 0.0005.
It is found from Figure {4.1) that the width of dip solitons is broadening by enhancing
the value of parameter £, whereas no change observed in amplitude.

Figure 4.2 shows a solitary wave structure with density depression for the ND
plasma limiting case. Here, we have used parameters likeng = (4.1 x 10% to 1.8 x 1077 em™3),
T, = (2.7)( 107 to 7.1 x 107 K), 5(= 0.65,0.75,0.85), a = (0.06,0.26,0.86) < 1,
By = 104G, M = 1.1 and A = 0.001. It is clear from Figure {4.2) that the width
of dip soliton is decreasing by enhancing the value of parameter 4, whereas no change
observed in amplitude.

On the other hand, Figure (4.3) shows hump solitary wave structure for NND
plasma limiting case. Here, we have used parameters like £ (= 0.88,0.89,0.90} ,
a ~ (0.99,0.88,0.77) < 1, By = 10°%G, T, = (1.01 x 108 — 1.11 x 10° K) o =
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Figure 4.2: The dip soliton profile (nearly degenerate ) of én versus y for § = 0.65
(Bold, Black) with a = 0.06, n, = 4.1 x 10%cm~3 andTF~27x 107 K, (i) 6 = 0.75
(Dashed, Red) with o = 0.26, n, &~ 8.0 x 10%cm™? and Tp~41x 107 K, and (iii)
§ = 0.85 (DotDashed, Blue) with o =~ 0.86, n, ~ 1.8 x 107em=2 and T = 7.1 x 107
K. Other parameters are , By = 103G, K; = 0.1, M = 1.1 and A = 0.001.
(5.9 x 102 — 7.05 x 10® em™3), M = 0.9 and A = 0.00097. It is clear from Figure
(4.3) that the width of hump soliton is decreasing by enhancing the value of parameter
€, while no change observed in amplitude. -

Note that we obtained JAWs hump soliton by considering thermal pressure for the
NND case with o < 1, which can not be found without thermal pressure effects. We
can obtained the result of Ref.[ | for purely plasma case with a << 1, when the

quantum effects are ignored such that degenerate pressure correction term approaches

to zero (i.e. T, — 0)

4.4 Conclusion

We have investigated the nonlinear propagation characteristics of inertial Alfvén waves
in intermediate 8 (ie. @ << 1 to @ < 1) quantum plasmas by taking into account
arbitrary temperature effects in term of NND and ND plasma limiting case. By em-
ploying a reductive perturbation, Korteweg- de Vries (KdV) equation was derived for
a small amplitude limit. It is found that in the presence of thermal temperature both

TAWs dip and hump solitons exist in NND and ND plasma limiting case. It is observed
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Figure 4.3: The hump soliton structure (nearly non—degenerate } is plotted between
én and p for (i) £ = 0.88 (Bold, Black) with a = 0.99, n, = 7.05 x 108cm =3 and
T. =~ 1.1x 10% K, (i) £ = 0.89 (Dasked, Red) with o ~ 0.88, n, ~ 6.4 x 10%2em

and T, =~ 1.07 x 106 K, and (iii) £ = 0.90 (DotDashed, Blue} with a & 0.77, n, =
5.9 x 108em™ and T, ~ 1.04 x 10° XK. Other parameters are , By = 102G, K = 0.1,
M = 0.9 and A = 0.00097.

that the changes in soliton structures for NND and ND plasma state are significant.
Moreover, If we neglect the quantum effects such as arbitrary temperature degeneracy
effects for both NND and ND plasma limiting case (i.e. { = ¢ = 0) than the result will
be similar as reported in Ref.[ ] for electron-ion classical plasma. Qur results may be

useful in studying the structure of astrophysical compact objects like, white dwarfs,

magnetars and pulsars.
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Chapter 5

The effect of exchange-correlation
and spin magnetization on inertial

Alfvén waves in dense plasma

5.1 Introduction

Over the past few years, a great deal of interest has been devoted to study the dy-
namics of quantum plasma in connection to its likely application in nanostructures
material(i.e. metallic and semiconductor)[ | as well as in astrophysical objects under
extreme condition (i.e. white dwarfs and magnetars){ ]. The high degree of minia-
turization in electronic devices is possible due to the presence of quantum mechanical
effects in the system [ ]. Consequently, the effects due to spin magnetization, Fermi
pressure, and exchange-correlation potential would play a crucial role in the construc-
tion of electronic devices for future purposes| , -, , - |. When the electron density
is sufficiently large and the temperature is too low, the exchange-correlation effects in
quantum plasma can no longer be ignored and particularly when spin correlation effects
are present in the system. The exchange-correlation potential V.. can be described as
a function of the electron density] , , , 1 In the past, most of the studies
have focused their attention to see the effect of exchange-correlation on electron gas

especially in quantum wells[| , |. Recently, many researchers have investigated the
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effects of exchange-correlation on solitary ion-acoustic waves as well as on parametric
instabilities in quantum plasma system [ .-, :, |. Also, Rimza et al.[ -] have dis-
cussed the influence of exchange-correlation, degeneracy pressure and Bohm potential
on the lower hybrid wave in two-component quantum plasma. The effects of exchange-
correlation (along with Bohm potential and spin force) on magnetosonic shocks in a
spin-1/2 quantum dissipative plasma was studied by Sahu and Misra.[ |. They have
observed that the exchange-correlation effects are more dominant and responsible in
the transition from monotonic to oscillatory shocks to other quantum effects.

On the other hand, there has been a great deal of interest in excitations of collective
modes in the spin system, such as spin waves. In magnetized plasmas, the electron
spin has two eigenstates, namely, spin-up and spin-down relative to the background
magnetic field By. In equilibrium plasmas, the average value of spin could be approx-
imated by § = —hM/2ugn,. Therefore, the spin effects are important only in the
case of very high ambient magnetic field intensity and very low plasma temperature,
and can be neglected in the common plasmas (i zBy <« kgT.). Nevertheless, the equi-
librium will be broken when an electromagnetic (EM) wave with spatial nonuniform
intensity entering the plasmas. Due to the spin contribution to the ponderomotive force
act in opposite direction for spin-up and spin-down electrons [ ], these two kinds of
electrons will be separated, at least partly. So, in the local region, the spin no longer
canceled each other completely, i.e. a spin-polarized plasma is induced, which in turn
modifies the dispersion properties and contributes to the nonlinear interaction of EM
wave and plasma. Marklund et al. have studied the characteristics of nonlinear magne-
tosonic waves in strongly magnetized quantum plasma with quantum Bohm potential
and electron spin-1/2 effects| |. Many researchers have studied the nonlinear waves
in quantum plasmas including the quantum statistics, quantum diffraction and spin
effects| ', ~, , , ., 4, ]-

Alfvén waves are ubiquitous in nature which attained dispersive nature when elec-
tron pressure effects (i.e. a = 3/2Q > 1) or electron inertial effects (i.e. @ < 1) in
low-3 plasma are taken into account. The limiting case a >» 1 gives kinetic Alfvén

waves (KAWSs), whereas a < 1 provides inertial Alfvén waves (IAWs)[ ., ). The
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data from Freja spacecraft have provided the evidence for the existence of both KAWs
and IAWs in aurora and cusp region [ ]. It is observed by Cluster and Fast spacecraft
that in the presence of the finite parallel electric field, JAWs can accelerate the elec-
trons in polar region of earth magnetosphere and ionosphere{- '|. In 1976, Hasegawa
and Mima | -] studied the KAWs in low- 3 plasma (i.e. o > 1) and found density
hump soliton which propagates with the sub-Alfvén speed in almost parallel to the
background magnetic field. Later on, by extending the similar studies in inertial limit,
Shukla et al.[ '] observed IAWs with density dip propagating along the magnetic field
with super-Alfvénic speed for oo < 1.

We, in this manuscript, are discussing the electron exchange-correlation and spin
magnetization effects on propagation characteristics of IAWSs in low-3 quantum plasma
(i.e. & < 1). The Sagdeev’s potential is derived for studying an arbitrary amplitude
TAWs whereas, Korteweg de Vries equation is derived for studying small-amplitude
1AWs by using reductive perturbation technique in a magnetized quantum plasma.
The set of nonlinear equationé with derivation is presented in Section 2. Numerical
analysis and discussion are presented in Section 3. The summary is then given in the

final section.

5.2 Basic Equations

Consider a collisionless electron-ion quantum plasma placed in a uniform magnetic
field B directed along the z—axis with @ << 1. Here, the electrons are considered
to be inertial and degenerate having spin and exchange-correlation effects, while, the
ions are taken to be dynamic and classical. All the variations take place in the z — z
direction. Due to low-3 assumption, one can apply two potentials ¢ (longitudinal} and
¢ (transverse) related with electric fields such that E, = —8,¢ and E, = —8,¢] .
The governing equations for studying IAWs in low-3 quantum plasmas are given below.
Thus according to the geometry of the problem electron continuity, momentum (i.e.
electrons move along the magnetic field lines due to their small Larmor radius) and

spin evolution equations are, respectively given as:
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atne + 6: (nevez) = Or (51)

1
atvez + vezazvez = _iEZ -

e mene

2u 1
0. Pr. + T—n-ﬁa, (§-B) - ;eanm (5.2)

(B +v.V)S = %“ (S x B) (5.3)

where n, is the electron number density, v, is the electron velocity, e is the electron
charge and m,. is the mass. The second term in Eq.(5.2) represents electron Fermi
pressure Pr.(= m;:: n3). Here, the Fermi pressure has been added as a correction
term and due to low-3 assumption, its impact is almost negligible for studying IAWs

in magnetized quantum plasmas.

The third term in Eq.(5.2) represents the spin force. Here ug represents Bohr mag-

Y
2ugne’

neton (i.e. pg = g‘:;f—e) and for the lowest order spin analysis, § = with mag-
"el‘%
EFe

netization vector M = ( ) B. The last term of Eq.(5.2) represents the exchange-
correlation potential V,, for the electron gas. The adiabatic local-density approxima-
tion gives the exchange-correlation term as a function of the electron density[ -, |-
The study of exchange-correlation become important in dense quantum plasmas due
to the presence of high electron density and low temperature. Also, due to the
rapid development of modern technology (i.e. with great degree of miniaturization
of nanostructures electronic devices), the contribution of exchange- correlation ef-
fects can no longer be ignored. Additionally, the presence electrons spin effects in
the system further enhance the significance of exchange-correlation. Note that the
exchange-correlation is strongly dependent on density correlation as well as on spin
correlation effects. The exchange correlation term can be expressed as: | | Vi =

3
2

0.985(e?/4me,)n2[1 + 0.034/ayn3In(1 + 18.37a3n3)]. In simple form, it reads as:

e2

dre,

1/.11: =-—1.6

1 2 2 1
nd +5.652nZ, when 18.37ajnd << 1, where a% = ‘tnL:":—:. The perpen-
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dicular velocities of classical ion are given as:

Y = VE + Vi, (5.4)

where vg =

ZXEzandv,,.-= 1 (at_i_(szm).V
By

. _Bagi
B drift and ion polarization drift respectively and €2; = |°;—3;‘1| is the ion gyrofrequency

) V 1¢& represents the E x

with m; being mass of ion. Since E x B drift is more influential and in the limit of

| 8, |< €, with application of E; gives the jon polarization drift in simplified form as:

1

v = 5o OB (5.5)

(2xVi9})-V
By
tive derivative can be ignored for weak dispersion. Moreover, we have also neglected

In order to avoid vector nonlinearity, the nonlinear term V¢ of convec-

the effects of ion parallel motion along the magnetic field due to low-8 assumption.

Using Eq.(5.5) in ion continuity equation dyn; + 0 (nivy,:} = 0 we have:

8 8, (0, E;) = 0. (5.6)

1
™t B

Faraday’s law V x E = —@,B for the two potential theory can be expressed as:

8,E, — 8,E, = —0O,B,. (5.7)

Alhpere’s law with spin magnetization density Af can be written as:

8.8, = pgJs, (5.8)

where J, = J, + Jas , with J, being the polarization current density and Jyy = Vx M is
the electron spin magnetization current density. The total magnetic field contains both
the free (i.e. J = ¢nv) and spin electron contributions. Additionally, in above Eq.(7.8}
the displacement current contribution has been ignored because of low frequency per-
turbation approximation. The guasi-neutrality condition n; ~ n, ~ n implies that

V - J =0 and further depicts:
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Bth-z = —3ng, (59)

with J;; = e{n;uy). Thus, electron continuity Eq.(5.1) becomes:

Oy(en.) = 8, Jy, (5.10)

here because of the low-3 assumption, the contribution of ions to the current density
is negligible; hence J, is given by the electron density. It is to be noted here that the
total parallel current due to electrons {i.e. J;) is canceled out due to ion polarization
current.

The linear dispersion relation of IAWSs by using the linearized form of Eqgs.(5.1),

(5.2), (5.6), (5.7} and (5.8) with plane wave solution can be written as

/2

vak, 9 2 . 7 2A !
w=—22 N 4K+ L - =2 5.11
\/1+k§)\f[ (& 3 3 ) (5-11)

1

2 A4
where v4 = ('ﬁrfgn_u) *is the Alfvén velocity, A, = ;‘;— represents the electron inertial

1
length, wp = ( Eﬁ) *is the electron plasma frequency, k., represents the wavenumber

€0™Me

and T = ';E%‘q It is important to mention that the IAWSs transports energy slowly in

transverse direction for k; >> k.[ |.
n 3

For convenience, we use the rescaling #t = 2, t = (it, 0. = %, (Z, 2) = (g, z)v—,
A

E..= (ﬁt) E..and B, = %ﬁ. Introducing the variables and droppings the bars,

Eqs.(5.1), (5.2), (5.6), (5.7) and (5.8) in normalized form are given below:

O + @, (nv.,) =0, (5.12)

1 l
= (Dhtes + ve2Bivez) = — B — 2n0;n + £00: In e +70:nt Ad,n}, (5.13)
din + F 3, (nd,E,) =0, (5.14)
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F (0.9E, — 8.0°E.) = -&}n, (5.15)

where gy = ﬁg—:i'! describes the normalized Zeeman energy due to the spin magne-

2 4 3
tization with ¢ = ng'{ and F = %a. The parameters A = %“- and v = ——-E“-if::EF

represent the exchange and correlation respectively.

5.2.1 Derivation of Sagdeev’s Potential

In order to find Sagdeev’s potential, we introduce a co-moving frame defined by £ =
Lx+1,z— Mt wherel, [, =(1— lf,)% are the direction cosines and M represents the
normalized phase speed of the nonlinear wave (i.e. normalized by v,). Therefore, the

set of Egs.(5.12)-(5.15) in £ frame can be written as:

Vo = ?(1 —n7Y, (5.16)
M . i 2
E.=-—=n en~! — 2,ndn + 5l.0 Inn + 1, 0en3 — A On3, (5.17)
L,
aEEa: I ’_—(n’ - 1)7 (518)
FLIOE, — FIL8E, = —M%*3n, (5.19)

Simplifying Eqgs.(5.16-5.19), we obtain

1 2 M? M?
Gg(aglnn +yn3 — And — —QJI?nz —n*4 %012 +1—7 +AX)
(n"'—-1) M3n-1)
= iz £ (5.20)

Now multiply Eq.(5.20) with & (¢2Inn +vn3 — An3 — 2;,;12 —nf 4 M H1-y +2)
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and after some algebra (with boundary condition that at £ — +oo, n — 1), we obtain

the following quadrature:
1
5 (@en)® + K(n) =0, (5.21)

where K (n) is the Sagdeev’s potential given as:

(5.22)

K(n) =a, [M} ,

b

1] 2
here a; = ~3F, a2 = ¥ a3 =
I:F’ l:’

A :+'2 +n (Tl — 2)’ 62 — M;!zlc;an _ n2!2:1;—3! + Eg(n _ lnn) + 'T(ﬂ—;{)ﬂ& _ ,\(271—55)7;% , b3 —
—30M* — 30040 (2 + 3y + 26 — 6A) + IZM2(10+ (20 — 45y + 60c2 +36))), by = %L +

1 b = M3(3n—2)  ch(l4nlnn)  4(1+2n) +
805 = TelZond n

3e3n? +yni — 2Xn3 — 6n.

5.2.2 Derivation of KAV Equation

In order to see the effects of exchange-correlation and spin magnetization on the small
but finite amplitude IA soliton structure, we derive the KdV equation by using standard

reductive perturbation technique. Now, we use the stretched variables as fellow:

n= et {z—wvot), (= €ir, T= e%t, (5.23)

where parameter ¢ << 1 represents the amplitude of the perturbation and vy
represents the normalized phase velocity of the wave (i.e. normalized by v,4) and the

perturbed quantities can be expanded around equilibrium as follow:

n=1+en'V 4 0@ 4 (5.24)
Ve = vl + vl 4 (5.25)
E,=ciED 4 dE® 4 (5.26)
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E,=eiEW + aE® 4+ (5.27)

B, =e3BY +eiBP + .., (5.28)

Substituting Eqs.(5.23) to (5.2%) into Egs.(5.12) to (5.15) and collecting the terms

of Iowest order of ¢, we obtained:

vld) = von, (5.29)
EM =, (5.30)

O EN = —-’C‘g, (5.31)
B = UEOE;‘), (5.32)
8BV = —vB,n'?, (5.33)

Noting that the normalized phase speed vy at ﬁhe lowest order will be simply equal to
unity while in the dimensional form it is equal to v4 1.e. vo = v4 because of loosely
defined stretched variables where space and time are defined at different order. The
phase speed obtained in Eq.(5.11), using the plane Fourier space by incorporating
all the space and time-dependent parameters at the same linear order, depends on
all quantum corrections such as Fermi pressure, spin magnetization and exchange-
correlation along with Alfvén velocity and electron inertial length.

To next orders, we have:

— 108,n® + 8P = 9,7V - 5, (nMl) (5.34)
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2 v 1 2 n, 1) 2X 1
E® = -2~ 28,0 + e2a,ntV + 5a,,nf - ?a?n( J (5.35)
— v8,n® — Fuod. 8 E® = —8,n" — FO0,EM + Fuod0,EL (5.36)
F F 1
@D_tapo_Flgp@m, ~5p0D _
&, B¢ an,,Ez v03<E‘ o 8. B (5.37)
33, B = —ve@n® + 0,ntV) (5.38)

We first eliminate B from Eq.(5.38) and E from Eq.(5.37). Then subtracting
Eq.(5.34) from the resulting equation we finally get the desired equation:

a,nl) — %gn(l)a,,n(l) + Ezﬂaqnma,gm + %FAB?&,H(” =0, (5.39)

where A = (2 + 3 ~ 2 — ':: — 2). Egs.{5.31) and (5.39) give the evolution of the

solitary IAWs. Moreover, using planar coordinate g = I.{ + [.n — A7 the stationary

travelling wave solution of Eq.(5.39) is given by

fi = —Asec h:[W ), (5.40)

where A and W are the amplitude (i.e. maximum potential perturbation) and the
width (i.e. spatial extension) of the localized pulse such that A = 3 (L‘?T) and W

=\ FA LI with A = M — 1. By ignoring the quantum effects{e.g. Fermi pressure,
vz
exchange-correlation and spin magnetization ), the soliton solution of Ref.[ .| can be

retrieved for classical plasmas.
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Figure 5.1: Sagdeev’s potential K(n) is plotted against number density n from
Eq.(5.22) for different values of number density (i.e. exchange-correlation), such that
(i) no = 1.7 x 10%m™3 (Bold) with go = 0.9, Tr, & 1.3 x 107(°K), v =~ 0.11, A =~ 1.18,
a = 0.0006. (i) ng =~ 1 x 10®m™3 (Dashed) with gg = 0.0.5, T, ~ 4.20 x 107(°K),
7 = 0.06, A =~ 1.18, a =~ 0.13. Other parameters are By = 108, M = 1.1, [, = 0.3.

5.3 Numerical Analysis and Discussion

Dense plasmas existing in astrophysical compact stars such as white dwarfs, pulsars,
and magnetars are characterized by strong magnetic fields B ~ 107 — 10'!7T, whereas
the plasma number densities are thought to have ng & 102 — 10¥ m=3[ , ,  ]. Usu-
ally, we use quantum coupling parameter gg to describe the collisional or collisionless
state of quantum plasma. The coupling parameter is given as gg = €ins/cFe , Where
Eint = €/4meg (3/ 47m0)1'l‘is the interaction energy with €3 being the dielectric perme-
ability in vacuum and ep, = 22 (3ngn?)? is the Fermi energy. It is to be noted from
the expression of the quantum coupling parameter that at higher values of plasma
densities, the collective effects dominate in quantum plasma. In the mks system, the
lowest plasma density becomes ng > 1.24 x 10%m™3 for go = 1. Numerically, we
have exchange-correlation in the form X = 3.84 x 10‘22n§ and v = 2.07 x 10‘12n§.
Whereas, the magnetization energy can be written as gp &~ 2.2 x 107%(B,/ n§ ). It can
easily observed that the exchange—correlation depends only on number density whereas
normalized Zeeman energy o depends on both magnetic field strength and plasma
number density. Now we present the numerical analysis of Eqs.(5.22) and(5.10) by

changing the values of number density and magnetic field strength in Figures (5.1-5.3).
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Figure 5.2: The corresponding dip soliton is plotted between 7 and u of Figure 5.1
using Eq.(5.40) for different value of number density (i.e. exchange-correlatior). All
parameters are same as in Figure 5.1.
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Figure 5.3: Profile of Sagdeev’s potential curves K (n) against number density n using
Eq.(5.22) for different values of magnetic field strength (spin magnetization energy),
such that (i) By = 3 x 1077 (Bold) with g = 1.5 and « = 0.07 . (i) Bp = 1 x 10°T
(Dashed) with go = 5.2 and @ =~ 0.007 . Other parameters are M = 1.1, [, = 0.3,
np = 1.7 x 10¥m™3, Tr =~ 1.3 x 107(°K) and go = 0.9.
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Figure 5.4: The corresponding dip soliton is plotted between # and g of Figure 5.3 using
Eq.(5.40) for different values of magnetic field strength (spin magnetization energy).
All parameters are same as in Figure 5.3.
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Figure 5.5: Sagdeev’s potential K (n) using Eq.(5.22) for different values of magnetic
field strength (gy) with fixed value of v = 0.11 and A = 1.18. All parameters are same
as in Figure 5.3.
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Figure 5.6: The corresponding dip soliton using Eq.(5.40) for different values of mag-
netic field strength {c¢). All parameters are same as in Figure 5.5.

The effects of exchange-correlation on IAWs by changing the values of number den-
sity (i.e. A and +) while ignoring the value of spin magnetization effects altogether (i.e.
g0 = 0) are shown in Figures (5.1-5.2). The profiles of Sagdeev’s potential for different
values of number density are shown in Figure 5.1. It can be observed from Figure 5.1
that the Sagdeev potential curve gives dip soliton for M > 1 in super-Alfvénic region
under condition n,, < n < 1. Also, by increasing the value of parameters A and v (i.e.
number density), the depth of Sagdeev potential curves are increasing while the cross-
ing point n,,(i.e. amplitude) will remain the same in Figure 5.1. The corresponding
dip soliton structure of Figure 5.1 is shown in Figure 5.2. It is evident from Figure 5.2
that the width of dip soliton is narrowing by enhancing the value of parameters A and
-+ while no change observed in amplitude. This kind of dip soliton in the super-Alfvénic
region is reported in most of the literature[ .., .|.

The effects of spin magnetization on IAWs by changing the values of the magnetic
field (i.e. £p) while ignoring exchange-correlation effects are shown in Figures (5.3-5.4).
The Sagdeev potential curves for different value of magnetic field {i.e. £g) are shown
in Figure 5.3. It is to be noted from Figure 5.3 that the Sagdeev potential curve under
condition n,, < n < 1 can forms dip soliton in the super-Alfvénic region for M > 1.
It is further found that by increasing the value of magnetic field strength (i.e. spin

magnetization), the depth of Sagdeev potential curves are decreasing while the crossing
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point 7, (i.e. amplitude) will remain the same. The corresponding soliton structure of
Figure 5.3 is shown in Figure 5.4. It is clear from Figure 5.4 that the width of soliton is
increasing by enhancing the value of magnetic field strength (i.e. o) while, no change
observed in soliton amplitude.

In the presence of both exchange-correlation {i.e. A and v} and spin magnetization
(i.e. e} effects, we have found again dip soliton with M > 1 being in the super-Alfvénic
region as shown in Figures (5.5-5.6). The Sagdeev potential curves for different values
of magnetic field strength (i.e. £y) while keeping the value of number density fixed (i.e.
X = v = const) are shown in Figure 5.5. It is observed from Figure 5.5 that the depth
of Sagdeev potential profiles are decreasing with the increasing value of magnetic field
strength (i.e. £y) whereas no change is found in crossing point n,,(i.e. amplitude}.
The corresponding inertial Alfvén dip soliton of Figure 5.5 is shown in Figure 5.6. It is
revealed from Figure 5.6 that the width of inertial Alfvén dip soliton is enhancing by
increasing the value of parameter ¢p while no change observed in amplitude.

Noting that for both exchange-correlation (i.e. A and ) and spin magnetization
(i.e. &p) effects, the super inertial Alfvénic solitons with density dip have a strong
dependency on spin magnetization rather than on density correlation. Also, in the
presence of quantum effects, the system support only super inertial Alfvénic solitons
having density dip structures. Moreover, due to the incorporation of spin effects the
total magnetic pressure is enhancing as compared to Fermi pressure which makes 3
very low and hence increasing the inertial effects of electrons for the studying IAWs in

magnetized quantum plasma.

5.4 Summary

We have investigated the nonlinear propagation characteristics of inertial Alfvén waves
in low-8 quantum plasmas by taking into account spin magnetization and exchange-
correlation effects for the case a = 5/2Q) << 1. The Sagdeev potential was derived by
using two potential approximation, whereas KdV equation was derived by employing

the reductive perturbation technique. Both approaches provided the numerical results
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which are inconsistent with each other. In the presence of spin magnetization and
exchange-correlation effects, we have found only inertial Alfvénic solitons having den-
sity dip structures. Furthermore, inertial Alfvén dip soliton moves with super-Alfvénic
wave speed. The numerical values of plasma density and magnetic field strength were
used in accordance to astrophysical dense plasma situations that can exist in com-
pact stars. Our results are valid for astrophysical compact objects like, white dwarfs,
magnetars, and pulsars, where strong magnetic field and high number density plasmas

exist.
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