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Preface
l'he nanofluid is a fluid containing nanomcter-sized (less than l00nm) particles,

called nanoparticles. These fluids are engineered colloidal suspensions of

nanoparticles in a base fluid. The nanoparticlcs used in nanofluids are typically made

of metals, oxides, carbides, or carbon nanotubes. Nanofluids was first introduced by

Choi [] in 1995. Materials with nanometers sizes possess unique physical and

chemical proper-ties. It was found that the presence of nanoparticles within thc fluid

can appreciably increases the effective thermal conductivity of the fluid and as a

result, increases the heat transfer characteristics [2].

MHD is a study of the interaction of electrically conducting fluids and

electromagnctic forccs. l'he MHD fluid was first introduced by Swedish Physicist,

Alfven [31. In recent years the study of MHD flow o[an electrically conducting fluid

past a heated surface has attracted the attention of many researchers. This is because

of its considerable applications in many engineering problems such as plasma studies,

petroleum industries, MHD power generators, cooling of nuclear reactors, the

boundary layer control in aerodynamics and crystal growth, An applied magnetic field

effect in natural convection flow of nanofluid is studied by Sheikholeslami et al. [4].
In this thesis simultancous effccts of MHD and porosity in Ncwtonian nanofluid on

wavy surface are investigated. Mathematical modeling is based upon continuity,

momentum and energy equations. The physical problems are first modeled and then

the basic governing equations are reduced to a set of non-dirnensional form by using

appropriate transformations. The resulting equations are solved by using BVph 2,0

which is based on HAM in order to get exact solutions of nonlinear ODEs. The

physical interpretations of sundry parameters such as nanoparticle concentration,

porosity parameter, magnetic strength and skin-friction coefficient are illustrated by

graphs. In additiori, correlation of Nusselt number corresponding to activc paranreters

arc also prcsentcd.

A material having pores (voids) is described as porous medium tllleci with l'luid
(liquid or gas). Porosity measures the empty spaces in a porous medium ald comes

from the ratio of volume of voids over the total volume. Examples ol porous media

are beach sand, sandstone, limestone, rye bread, wood and human lung. IJowever,

fbams are oftcn also characterized r.rsing thcme of porous mcdia. Most of the time, a

porous medium is described by its porosity and somctimcs the other properties like

vllr
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permeability, tensile strength and electrical conductivity are also measured as a

respcctive aspccts of its constituents (solid matrix and fluid) and the pores structure

tsl.

This thesis comprises three chapters. Detail description of each chapter is as follows:

Chapter one includes some relevant definitions and governing equations of the

subsequent chapters.

Chapter two includes the review work of the natural convection along a vertical wavy

surface in a porous medium with variable properties and cross diffusion effects [6].
In chapter three, heat and mass flow of water in porous medium with spherical

packing beds by improving physical properties by copper oxides particles under the

effect of magnetic field over wavy surface is explored. The effects of porosity on

physical properties along with nano-particles appearance are taken into account. To

see flow behavior of heat in consequence of enhancement copper oxides

concentration, steam and heat lines are strategized. The natures of velocity and

temperature profiles of nanofluid are discussed graphically under influence of particle

concentration, magnetic field strength and porosity, For physical interest, credible

results in enhancement of convection heat transfer rate through nano-particles are

presented in tabular form.
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Chapter 1

Basic of fluid dynamic

This.chapter compriscs of some elementary definitions which may bc uscful for the better

understanding of the next two chapters'

1.1 Fluid

Any substance which shows resistance to its internal molecular structure when external

force applies. Liquids and gases are identified as fluid since they deform continuously in

response to shear stress.

1.2 Types of fluids

1.2.1 Newtonian fluid

Such fluid which obeys Newton's law of viscosity is called Newtonian fluid. Newton's law

of viscosity is given by

Where, r is the shear stress , lt isthe viscosity of fluid, duldy is the shear ratc or velocity

of gradient, Gases and most common liquids are tends to Newtonian tluids. Most common

examples are water, thin motor oil, air, sugar solutions, silicone, etc,

1,2,2, Nanofluid

Nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids

are enginccred colloidal suspensions of nanoparticles in a base fluid. 'Ihe nanoparticles

used in nanofluids are typically made of metal}; oxides, carbides, or carbon nanotubes'

Common basc fluids- include water and ethylene glycol'

(1.1)duT=U-.'dv

.\.
\,,
!-
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1.3 Heat transfer

In physics, heat is the energy transfened from one body or system to another due to

difference in temperature. The discipline of heat transfer is concerned with only two things

one of them is temperature and the other is flow heat. Temperature represents the amount

of thermal energy available, whereas, heat flow represent the movement of thermal energy

from place to place.

1.3.1 Modes of heat transfer

Modes of heat transfer are mainly classified into three categories as given below.

1.3.2 Conduction

Conduction is a heat flow through solids without any visible movement of the particles. It

is because of temperature difference in which heat transportations takes place from the

more energetic particles to energetic fluid particles only by collision or because of

molecular vibrations and the energy movement by free electrons. Heat transler occurs in

Silver, Copper, Mercury and Iron through conduction. Heat conduction rate depends upon

the medium's geometry, relative thickness and the type of material. It can be easily

measured in one dimension as flows

( ar ea\ ( temp rature dffi rence)
Heat conduction rate*ffi

Qi.,r=k,o*

Qi-, : -k, A+.
ax

The above equality recognized as Fourier's law of heat conduction.

(1.2)

(1.3)

The above equation is also called heat conduction equation in which proportionality

constant ft, stand for material's thermal conductivity which measures the material's heat

conducting capability. When Ax -+ 0 then the above equation becomes



1.3.3 Convection

[Ieat convection is thc transportation and exchange of heat, due to mixing motion of

difl'erent parts of l'luid. It is governed by the laws of fluid dynamics in combination with

the laws of heat conduction. Examples of convection are hot water, the cooling system of

an automobile engine, the flow of the blood in human body etc.

1.3.4 Radiation

Radiation is heat transfer mechanism in which heat transfer take place from any material

through emission or absorption of electromagnetic waves. Especially radiation is

significant during combustion processes where temperature is very high, but can also be

favorable at room's temperature. The transfer of heat due to radiation can occur through

gassss, fluids or a vacuum. Distinct from conductive and convcctive proccsscs, heat transfer

by radiative processes does not require to propagate any material.

1.4 Porous medium

A material having pores (voids) is described as porous medium filled with fluid (liquid or

gas). Porosity measures the empty spaces in a porous medium and comes from the ratio of

volume of voids over the total volume. Examples of porous media are beach sand,

sandstone. limestone. rye bread, wood and human lung. Howevcr, foams are often also

characterizcd using thcmc of porous mcdia, Most of the timc, a porous medium is describcd

by its porosity and sometimes the other properties like permeability, tensile strength and

electrical conductivity arc also measured as a respective aspccts of its constifucnts (solid

matrix and fluid) and the pores structure.

1.5 Magnetohydrodynamics (MHD)

MHD is a discipline which studies the dynamicstdlelectrically conducting fluids. The word

magnetohydrodynamics (MllD) is derived from magneto-meaning magnetic field, hydro-

meaning liquid, and dynamics meaning movements. The ficld ol.MHD was initiated by

Hannes Alfve'n for which he received the Noble prize in physics in 1970. Examples of

such fluids includc plasmas, liquid metal and salt watcr.

1.6 Darcy models

The principle that governs how fluid moves in the subsurface is called Darcy's law. Darcy's

law is an cquation that defincs the ability of a fluid to flow through a porous rnedia such as



rock. It relies on the fact that the amount of flow between two points is directly related to

the diffcrence in pressure between the points, the distance between the points, and the

interconnectivity of flow pathways in the rgc.k,tetween the points. The measurement of

interconnectivity is called permeability. The law was formulated by Henry Darcy based on

the results of experiments (published 1856) on the flow of water through beds of sand. It

also forms the scientific basis of fluid permeability used in the earth sciences,

In 1856, H. Darcy investigated water flow through a sand column and found that the driving

force and fluid transport obey the following relationship:

-Yp = (1.4)

wherc Vp is the prcssurc gradicnt, K the permcability and u thc superficial vclocity. ln an

external force field, Darcy's law may be extended as

-Yp+b= (1.s)

where b is a body force.

1.6.1 Forchheimermodel

I.'), . ('{

Darcy's law forms a basis for modeling fluid transport in porous media. In applications

where fluid velocities are low, such as movements of groundwater and petroleum, etc.,

Darcy's law well describes the fluid transport in porous media. IJowever, in applications

where fluid velocities are high, the fluid transport predicted by Darcy's law usually departs

from measurements considerably. Forchheimer (1901) might be the first to point out that

the departure of predictions by Darcy's law from measurements may be due largely to the

kinetic effect of fluid which is not included in the models for small Reynolds-number flows.

For this reason, he suggested that a term representing the kinetic energy of fluid, pu' be

included in Eq. (1.5), i.e.,

-Yp = ( 1.6)

'the added tenn is often referred to as the Forchheimer term in the literature. The parameter

a is called the Forchheimer constant or parameter whereas p is the densiy. It may be

u,-u,
K

u'u.
K

:

uLu+aou"
K .i



relcvant to note that the Forchheimer term was also expressed in the form epllo' , where rt

:1.6-2.0.

1.6.2 Ergun model

The most widely used expression for a is that given by Ergun (1952), o: Cu / Kt'' , where

C, is the so-called Ergun constant. Although the,Ergun constant is dimensionless, it is not

a universal constant and is often found to vary with changes in porosity and structure of the

porous medium. Ergun's version of Eq. (1.6) is

-Yp:#r*fu *' (r.7)

The Ergun equation is often written in the vector form in the literature as,

(1.8)

1.6.3 Brinkman model

Another extension to the traditional form of Darcy's law is the Brinkman term (introduced

by Brinkman in 1949), which is used to account for transitional flow between boundaries.

-yp =#"*fu oVl,.

_k'
p,Y'q +q =-}+Yp,p

where p, is an effective viscosity term. This correction term accounts for flow through

medium where the grains of the media are porous themselves, but is difficult to use, and

typically neglected.

1.7 Non-Darcy models

1.7.1 Non-Darcy (Forchheimer equation)

Forchheimer proposed a flow equation to account for the non-linear effect of turbulence by

adding a second order term

(1.e)

#:?[tr)+F,P*[t)' (1.10)



v

Here B, is Forchheimer coefficient, A, is constant. As flow rate decreases, one approaches

Darcy's Law (2nd order term approaches zero).

1,7.2 Steady non-Darcy MIrD free convection along an impermeable

vertical plate

vp = !u+ pCu2 . ( 1.1 1)
K

The permeability r( and inertia coefficient C in this case are

'ii

K: d'i'' 
- '150(l-P)" (L'Lzl

,_t.7s(t_0.- dA- (1'13)

t

ltr



Chapter 2

Natural convection along a vertical wavy face in a porous

medium with variable properties and cross diffusion

effects

Introduction

In this chapter, the effect of variable viscosity and variable thermal conductivity on free

convective heat and mass transfer along a vertical wavy surface embedded in a Darcy

porous medium in the presence of cross diffusion effects is review work of [6]. The wavy

surface of the vertical plate is transformed into plane geometry case by using a suitable

lranslormation and then solved numerically by employing the Runge-Kutta fourth order

method with shooting technique. Numerical results for dimensionless flow velocity,

temperature and concentration distribution as well as Nusselt number and Sherwood

numbers are presented graphically for various values of Soret and Dufour parameters,

variable viscosity, variable thermal conductivity parameters and amplitude of the wavy

surface.

2.1 Formulation of the problem

The boundary layer flow near the wavy surface in a fluid saturated porous rnedium is

considered. The wavy surface is described by

!+: o*(r*)= 4 *sin (+) (2.r)

here a* is the amplitude of the wavy surface whereas / is the characteristics length of the

wavy surface.
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Fig 2.1: Physicalmodel and coordinates

The governing equations under the Boussinesq approximation are given by t7l

Au* Av*

6*+ *=o'

*(# ".)= *(# u *)* o r o, #. c s g" ffi ,

(2.21

(2.3)

'

L

u*{*r* ?r, =L( o!l)* 3-( "L)*4, 
( a'c a'c )" dx*' 

. il;- ar-l." ar-)- ar-[" W)* "* [.rG*y 
* 

ug_y 1, lz.4)

'.#*".#='(#.#).+(#7#), (z s)

where u*and v*are the volume averaged velocity components in x* and y*directions,

respectively' B is the coefficient of thermal expansion, B" is the coefficient of
concenhation expansion, a is the dimensional thermal conductivity, k, is the thermal

diffi'rsion ratio, D is the mass diffusivity of the saturated porous medium, c. is the

concentration susceptibility, c, is the specific heat at constant pressure, f is the mean

fluid temperature and g is the gravitational acceleration . Fig.2.l shows that wavy surface

is held at constant temperature ( and constant concentration C" which are higher than the

porous medium temperature f," and concentration Q sufficiently far from the wavy

surface.

10



The corresponding boundary conditions are

lr':0, y*=0, T=Tn,, C=Cn dt y'=o'(x')=a
(2.6\

u ->0, T-)T-, C=C- as / ,r_i@.

The fluid properties are assumed to be isotropic and constant, except for the fluid viscosity

p and fluid thermal conductivity o. The fluid viscosity p which is assumed to vary as bc an

inverse linear function of the temperature T [8], as

l=l(l+d(r-L)) 
or

lt p-

here b = d 
und T, =7"-{. notn b and T,are constants and their values depend on the

tl.rt6

reference state and the thermal property of the f'luid i.e., d.In general b > 0 for liquids

and b < 0 for gases. The variable viscosity parameter gr, which is defined by.

t,r[?),

! = b(T -7,.),p (2.7)

(2.8)

is constant. It is an important to note that for d --r: 0 (i.e., p = lt,. : constant) then g, -r
o. It is also mentioning here that 0, is positive for gases and negative for liquids. T* is
the free stream temperature. Also, we assume that the fluid thermal conductivity o is
assumed to vary as a linear function of temperature in the form [9]:

d=ao(l +E(T-4)), (2.e)

where a,, is the thermal diffusivity at the wavy surface temperature T* and E is a constant

depending on the nature of the fluid. It is worth mentioning here that E < O for fluids such

as Iubrication oils, while E > 0 for fluids such as air, water. This can be written in thc non-
dimensional form [10] as

o -7,-7" - I

' T, -T 6(T* -T-)

a : a,,(1+ p0),

in which 0 = E(7,-Z-) is the thermal conductivityparamcter and T"

temperafure. The variation of p can be taken in the range as ,0. r s p
oils, 0 

= fr 50. 12 for water and 0 < 0 SA for air.

(2.10)

is the wavy surface

< 0 for lubrication

77



2,2 Solution of the problem

The stream function r/r* is defined by

u*=ov* . v*=_Ut .AY*' Ax*

Introducing the following non-dimensional variables

q

?-
il

(x, y, a, o) = (x*, y*, a*, o*) I l,

g=T-T* . d= C-C-i-- T.-\' ' Cn-C-'

into Eqs. (2.3)-(2.5), we get

#WX.xx).#.* = *t t)(X. - X), e,3)

XX xX = e((XI .(#)') .(,. pE(#.#). o,(#.#), e,4)

ai aO _a,t, aO = t (a'O _a'O\_*_( o'o . a'e\
tu ox o* il il1il*d)*t'l.r.81

i =V* la",)
L

I 
Q.tz)

(2.11)

(2.1s)

(2.16)

dov

viscosity of the fluid, N =

where *o_so,K(T*-r*)l is the Darcy-Rayleigh numbor, y = 4= ir the kinematic
p

is ther-buoyancy ratio, ,r=7 is the Lewis

number, ou = Dk'L?= 
is Dufour parameter and s- - DkrLT 

is the Soret Darameter.d,rcrcnLT ' aoT^LC - -- r---'

The corresponding boundary conditions are given by

9"(c*-c-)
P,(r--r-)

,tr=0, 0=1, 0=l on !=asinx.
ir-+0,0-+0,0-+o as y-+@.

\'
The effects of the wavy surface from the boundary conditions into the governing equations

can be transferred by the following group of coordinate transformation

x = €, , = 6t'' Ro-ttzr7 + asinx, tl/ = Rot''y.

.'t*:'

(2.t7)



For boundary layer approximations, substitute Eq.(2.17) into Eqs. (2.13)-(2.15) and letting

Ra -+ o, we get

fio+a' cos' r##.(t+ a2 co,' etff = r",(, t)W. *X), (2.r8)

,'(xH #fl= B(t+d'cos' o(#)' +(t+ F0)(1+a'cos'€)#

+Du(l+azcos21)g, 
\ '/ -'' (2'19)

o4-

,''(X# #X)=|o+d'cos' il#+sr(r+a2cos2 o# e.zo)

For the system of ordinary differential equationq, let us introduce the following similarity

transformations

n=;ft7, v=6'''f(fi), 0=O(ti and O=OOI). (2.21)

After using above transformations into Eqs. (2.18)-(2.20), we obtain

i r, */re,r,=(r_t)t,+ No,), (2.22)

B@)' +(t+ B0)0, *).f e,* DuO, - o, (2.23)

ly *I ro, + sro, =0. (2.24)Le' 2"'
Subject to the boundary conditions

tr,=]'r, 
tll'r,'r=]", ';1:)' (z.zs)

Where prime denotes differentiation with respect to f .

i, 
The rate of heat transfer (local Nusselt number) and rate of mass transfers (local Sherwood

number) are defined as

Nt ,: -e'(!l)Ryt''. -. .sl, . = -0'(9)Raxt''. _ . o" (l + 4tcostf ' ^ 
1t * r, *t' ,f ' (2'26)



2,3 Results and discussion

The set of nonlinear non-homogeneous differential Eqs. (2.22)-(2.24) with corresponding

boundary conditions (2.25) are solved numerically using a shooting tcchniquc along with

fourth order Runge-Kutta integration. In order to assess the accuracy of the present

numerical method, obtained results are compared with those of Cheng I I in the absence of

Iluid viscosity parameter, thermal conductivity parameter, Soret and Dufour parameter. The

effect of various parameters on velocity, temperature and concentration fields have been

presented in Figs. (2.2)-(2.20) and analyzed. The cffect of variablc viscosity 0, on the

velocity, temperature and concentration profiles with respect to ry is shown in Figs. (2.2)-

(2.4). With incrcasing variable viscosity paramctcr (d'), thc fluid boundary laycr, thcrmal

and solutal boundary layer thickness gradually reduced, which in turns causcs to decreasc

velocity, tcmperature and concentration profiles. This can be explained physically as thc

parameter (0,) increases, the fluid viscosity increases resulting the depreciation in the

boundary layer thickness.

The cffect of thermal conductivity paramcter B on the vclocity, tempcrature and

concentration profiles with respect to 4 are given in Figs, (2,5)-(2.7). Fig. (2.5) shows that

increasing thermal conductivity parameter retards the flow considerably and hence it

reduces the velocity boundary layer. F'rom F'ig. (2.6), it is clear that increasing values ofl
tends to increase the temperature profile due to increase in thermal boundary layer

thickness. Fig. Q.1) reveals that with increasing B, concentration profile is found to

decrease, that is B causes to reduce solutal boundary layer thickness.

The effect of Dufour parameter (Du) on the velocity, temperature and concentration profiles

with respect to tl is shown in Figs. (2,8)-(2.,1)-:,,,ro* Irig. (2.8), it is notc worthy that

increasing Dufour parameter is to increasc the velocity profile throughout thc boundary

Iayer. In Fig. (2.9), it is seen that the temperature profile increases with increasing values

of Dufour parameter, leading to an increase in thermal boundary layer thickness. In Fig.

(2.10), an increase in Dufburparameter causes a slight decrease in solutal boundary layer

thickness, which turns to reduce the concentration profile. It is an important to note that

temperature is highest at leading edge of the plate and asymptotically decrease to zero far

away lrom the plate with boundary condition.

The ef fect of Soret parameter (Sr) on the velocity, temperature and concentration profiles

with respect to ry is shown in Figs, (2.11)-(2.13). From thesc figs wc obscrvc that as incrcase

14



in Soret parameter due to the contribution of the temperature gradients to species diffusion,

results an enhancement in velocity, temperature and concentration profiles. It is noticed

from these figs that velocity, temperature and concentration of fluid particle value of I at

the plate surface and then decrease slowly till it attains the minimum value of zero far away

frorn the plate surface with increasing value of Soret parameter.

Fig. (2.I4) illustrates the stream wise profile of the local Nusselt number lbr various values

of 0.. This shows that incrcasing the 0, rcduces thc fluctuation of local Nusselt numbcr with

the stream wise coordinate (,Irig.(2.15) shows the effect of 0, on local Sherwood number,

It is clear that increasing the d,leads to a smaller fluctuations of thc local Sherwood number

with stream wise coordinate (. For a value of (, Nusselt number and Sherwood number

decreases with increase in d,.

Fig.(2.l6) plots thc stream wise distriburtion of thc local Nusselt numbcr for different values

of variable thermal conductivity. Results show that increase in the variable thermal

conductivity leads to smaller fluctuations of the localNusselt numbcr with the stream wise

coordinate (. Fig. (2.11) shows the stream wise distribution of the local Sherwood number

for various values of variabel themral conductivity pararueter. It is observed that greater

fluctuations of the local Sherwood number with increasing values of variable thermal

conductivity parameter with stream wise coordinate (. In addition, for a value of r,', Nusselt

number decreases and Sherwood number increases with increasing values of/i.

I"ig. (2.18) shows the stream wise distribution of the local rate of heat transfer tbr different

values of Dufour parameter. As the Dufour parame ter increases the fluctuations of the local

rate of hcat transfcr with stream wisc coordinate { is reduced. In addition, wc obscrvcd that

increase in Dufour parameter tends to increase the rate of heat transler as increase in f. Fig.

(2.19) depicts the stream wise distribution of thc localshcrwood number for various values

of Dufour effect. It is observed that increase in the Dufour effect leads to a greater

fluctuations of the local Sherwood number. Morcover, the Sherwood number incrcases with

increasing values of Dufour parameter as { value increase.

The effect Soret parameter on Nusselt number is exhibits in Fig. (2.20). Frorn this {ig it is
observed that increasing the Soret parameter results greater fluctuation in local Nusselt

number with stream wise coordinate (. i.e., the rate of heat transl-er increases with
increasing values of Soret parameter.

15
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2,4 Concluding remarks

The influence of variable properties and cross diffusion on steady convective heat and mass

transfer flow over a vertical wavy surface embedded in a fluid saturated porous medium is

investigated. The Fourth order Runge-Kutta method with Shooting technique is employed

to solve the boundary layer equations and the numerical results are presented to analyze to

fluid flow velocity, heat and mass transfer characteristics, Nusselt number and Sherwood

number for various physical parameters. The main findings of the reviewed study are as

follows:

l. An increase in variable viscosity9., decelerate the flow velocity, temperature,

concentration and Nusselt number but enhance the Sherwood number.

An increase in thermal conductivity parameter p enhance the temperature and

Sherwood number but decrease in velocity, concentration and Nusselt number.

As increase in Dufour parameter resulting in higher velocity, temperature and

Sherwood number but decrease in concentration and Nusselt number. Velocity,

temperature and concentration increase due to increase in Soret parameter.

2.

3.
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Chapter 3

Simultaneous effects of MHD and porosity in

Newtonian nanofluid on wavy surface

In this chapter, the heat distribution along mass flow of water in porous medium with

spherical packing beds by improving physical properties by copper oxides particles under

the effect of magnetic field over wavy surface is investigated. The effects of porosity and

MHD on physical properties are taken along with nano-particles appearance. To see flow

behavior of mass and heat in consequence of enhancement copper oxides concentration,

steam and heat lines are strategized. The natures of velocity and temperature proltles of

nanofluid are discussed graphically under influence of particle concentration, magnetic

field strength and porosity. For physical interest, credible results in enhancement of

convection heat transfer rate through nano-particles are calculated in tabular form.

3.1 Mathematical formulation

3.1.1 Flow modeling

Consider the non-Darcy flow of nanofluid under magnetic effect along vertical wavy

surface embedded in a thermally stratified. The surface temperature is varied according to

the powcr-law form as ( (,,r) =Tn.o! A.xo and greater than ambicnt fluid tempcrature. The

dimensional coordinate along the plate is denoted by.r and that normal to it is denoted by

y as shown in Fig. 3.1.

1

26



i!

7'*

Fig. 3.1: Geometry ofit r problem.

The fluid and the porous structure are everywhere in local thermodynamic equilibrium. No

chemical reactions are taking place in the flow. Under these assumptions taking into

account Boussinesq and boundary layer approximations, the governing equations are

obtained I l] as

(3. 1)
Au Au

-+- = u.
Ax Ay

t

ffr* p4c,u2 =+#+ s@f),{(r -r.)-orglu,

(pc,)*(,#.,X)=o**#

The boundary conditions can be written as :r'' ,fi

u =v =0, T =Tn(x)=\l+ Arxn at y = o(x)=Smx],

u=0, T=\ as y+@ )

o- d"t
aL 

- 150(l-e)'-

(3.2)

(3.3)

Y

where l, is constant, T* is the ambient temperature. For d, > [ the wall temperature

increases in flow direction for positive n and decreases for negative n .

The permeabilityr( and the Forchheimer coefficient C, are determined from I l] as

(3.4)
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here d is the particle diameter. The parameter e shows the porosity of a packed-sphere

bed.

Now, using the following similarity transformation

v-o(x\ L/ t/
q : 

-Gr/^, 

VG, y) = v,Gr,'o f(rl),
x

lt,r | 
.f,+t:tc.f,, -'u,, .r,r*9%o-o, Mf, ,tt, h" pr " e Fr @F), ol

k,,t"n 
o"+W. ,Lpr ro,=0.

k t lpc,) ,

.f =0, .f'=0,0=l at ?-+0]
-f'=0, 0=0 al q-)@ I

In above L = 
KGr''' is dimensionless permeability parameter

,Y

dimcnsionless Forchhcimer coeffi cient.

(3.6)

(3.8)

(3.e)

i

I

(3.l0) 
:

I

(3.7)

into Eqs. (3,2) and (3.3) and boundary conditions (3.4), dimensionless nonlinear system of

ordinary differential equations takes the following forms

u=!,r=-!, oei=*,
oy ox l*-l_

and C=Cfi is

3.2 Nanofluid modeling

Thermo-physical and transport properties of nanofluids are very important in thc study of
nanofluid flow and thermal physics. So far, most studies on nanofluid thermal properties

have focused on thermal conductivity and viscosity. However, two phase flow and heat

transfer characteristics also depend on other properties, such as specific heat and density

etc. In Eqs. (3.2) to (3,6), physical properties such as density p,1, thermal expansion

coefficient F,,1 and viscosity 1t,,1 of the nanofluid are defined in [13] as

P, =(l-0)p, *0p.,,
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(r-il@0, +0(p0\,
(0)n = (3.12)

(3. l3)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.1e)

t
,, - llt
n* - (t-a)"

The effective thermal conductivity krn, electric conductivityonoaid heat capacitance

(c)**models are specified as follows

k,k,r
krrn = ek^+(l- e)knr'

c{
N
N

\
t

L

,;
f,

;

In above, the subscripts rz and nf are used for packing beds nanofluid. In the present of

nanoparticles, o,! is the electric conductivity, (Cr),, heat capacitance and thermal

conductivity is given as

o^o,rontn=m'

(c,) *, -(t 
- e)(pc'\ + e(pc'\,, 

.

o"+2or+2(o,-rr)0 -o,t=@uP

(c,)u =0-o)(Pc), 
+o(Pco\' 

,
P,t

, k*+2k, +z(k*-tr)(r + P')' O ,-** = *r'

Where thermal conductive /r. with layer argund tfre particles is defined by*
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here y' = ktor", / fr" is the ratio of nanolayer and particle thermal conductivities.

3.3 Heat transfer coefficient
, " ii

The most important result to be determined is the heat transfer rate form the vertical plate.

To understand the convection boundary layers, it is necessary to understand convective

heat transfer between a surface and a fluid flowing past it is usually presented in terms of

the Nusselt number is given as

Nu, (3.21)

where

-knt
(3.22)

h-
(7, -7.)

The localNusselt number in terms of the new variable is

_lz0 - 
y) * (t + p')' (r + zy')fy' 

o- 
-(r - l)* (r * pJ'(r * 2l) ""

b: l'o>"

hx

kt

av -r-)l
ayl

(3.20)

(3,23)

3.4 Solution of the problem

Due to nonlinear nature of Eqs. (3.9) and (3. l0), an exact solution is not possible. Now, we

opted to go for series solution. To this end, the Mathematica package BVPh 2.0.l2l which

is based on the homotopy analysis method employed for solving nonlinear ordinary

differential equation using computational software Mathematica 9. In this package, one

has great freedom to choose the auxiliary linear operator and initial guess. To run the

package, need to define all the inputs ofproblem properly, except the convergence-control

parameters. In this package, it is needed to put appropriate initial guess of solutions and

auxiliary linear operators to find the desire solution and are given as

Il;
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(3.24)

(3.2s)

up to first iteration are as

" -d' -d )*1- drl' arl'l

,,=#-, l'
f,,(,t\ =11)"-" - e-', 

1

0,(r7)= e " l

Y

(,rr,b:-)*-. r rn PrI--o,

[*pry*rsooJ'

31

Further, the results for velocity components and temperature

follow:

, 37 bo),, ,37c P,r )-'_ 
,-n lpBS- tsoo p, 

l"_,
.3lttt4, . 37 tta .37M o, 

I* 
z4o tr,* r*i'r* o, )

( ltc p,, .37h Pt )
I

-l t2oo p, taoo p, 
lr-,r,

I 37 tt,1 ,37Mo,' I

[-ro*r'aoo, ", )

37h Fu 37 Fa 37M oo,

600 p, 300e p, 300e o,

t , 37 b0),, 37c p,r

,'3cn(d -3ooo,

t , 37 bg),, 37M o,r

1- ao 1ppy, 
- noot ",

_371t tb _ 37 lt,r
300 p, 300e p,

_(lt er\,.,
[6000 p, /

22 k,r qgpr(Pco),r

f=

(3.26)

(3.27)

e-2n

*(u' !r\,.,
[1s00 p, /I

e'2tl

_22 k,t _npr(pcr),r
7s kr +oo (oc),

, I rnPr (Pc),,
'no@

e-a +
7s k r ZO0O (ecr) 

,

, 33n Pr (Pcr),,

'- zooo Gq
(ttY, t * )

-l 4oo kr 
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3.5 Results and discussion

In this section, to understand the behavior of particle concentration and porosity on flow

field and heat distribution; streamlines, heat lines as well as velocity and temperature fields

are potted graphically. For nanofluid, water as base fluid and aluminum oxides is used as

nanomatcrial, In addition, thermal conductivity around nanoparticles of nanolayer

thickness of lnm is utilized.

The effccts of particle conccntration on flow of mass and heat, stream lincs and heat lines

are plotted in Figs. 3.2 to 3.9. The explorations of certain parameters influences on

velocities and temperature profilcs are reprcsenting in Figs. 3.2 to 3.7 . 'fhe results velocitics

profiles with particles concentrations effects are shown in Fig. 3.2. lt is perceived that

several vclocity lincs have been exposed in resultant of different nanoparticles

concentrations. By different concentration, divergent collisions between neighboring

particles in a fluid are happen that produced diverse velocity lines. It is noticed that when

the nanoparticle conccntration is enhanced, resistance between adjaccnt layers of moving

fluid is enhanced which leads to tall down in velocity profiles. 'fhereforc, nanolluid

particles are not moved quality as compare to base fluid particles. Fig. 3.3 shows thc effect

of particle concentrations on temperature profile, It is seen that the temperature of nanofluid

is enhanced by increasing nanoparticles concentration.'fhis enhancement in temperature is

due to improvement in large thermal conduction of nanofluid. The effects of porosity on

velocity held are illustrated in Fig. 3.4.lt is known that permeability of a medium is related

to thc porosity. The pcrmeability shows ability of a porous material to allow fluids to pass

through it. In consequence of porosity enhancement, permeability is amplified which leads

to augmentation of fluid flow in supposed porous medium. l'herefore, due to porosity

enhancement, velocity tleld is increased. Fig.3.5 demonstrates the influence of porosity

parameter on temperature distribution. It is seen that temperature is dcclined by increasing

of porosity parameter, The main reason in reduction of temperature is thermal conductivity

decay in consequence of porosity influence. The effect of magnitude of magnetic field

strength on vclocity is investigatcd in Fig, 3,6.''l, rho*. the vclocity is declincd when

magnetic field is applied. It is due to alignment of particles in field direction that product a

resistance in fluid flow. Thc results of magnetic strcngth cffect on tcmpcrature profile are

displaced in Fig. 3,7.|t is seen that magnetic field have not effective influence on

temperature as same for velocity profile. Under critical view, it is seen that temperature is

little bit increased. In Fig. 3.8(a) to 3.8(d), stream lines are plotted corresponding to
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different particle concentration, It is seen that flow field decreases near the vertical wall as

compare to far from the wall and stream lines are slightly pushed towards the wall when

particle concentration is reduced. Moreover, with reduction of nanoparticle concentration,

displacement between layers is slightly decreased. In this consequence, mass has to move
,t I

quickly between the layers which rising the flow speed. Figs, 3.9(a) to 3.9(d) show the heat

lines under different particle concentration. It is seen that heat lines are sirnilar to stream

lines because both velocity and thermal profiles are developcd simultaneously and fluid

field have a strong influence on the temperature distribution. When concentration is

enhanced. heat lines are scattered enormously. In this conseqllence, heat is distributed

quickly which lead to enhancement in convection heat transfer rate.

The numerical sets of values show the results for parameters on local Nusselt number. The

physical interpretation of Nusselt number is the enhancement of heat transfer due to

convection over conduction. The Nusselt number has paramount importance because it

contains the heat transfer coefficient information. Indeed, one interpretation of Nusselts

number is sintply that of dimensionless heat transfcr coefficient. The irnpact of particle

volume fraction, magnetic strength and porosity on local Nusselt or dimensionless heat

transfer coefficient is shown in table 3.1. In this table, it is observed that when nanoparticle

volume fraction enhances, the heat transfer at wall increases. It is known that thermal

conduction of fluid plays an important role in the heat transfer enhancement, When particle

concentration is increased, the thermal conductivity is improved and in this consequence

heat transfer rate is increased as shown in table 3.1, On the other hand, when porosity of

medium is improved, heat transfer rate is decreased. Themral conductivity of fluid is

decreased in this conseqllence of porosity enhancement which also a cause in reduction in

heat transfer rate. In aspect of magnetic, same behavior is noted as porosity but not much

effective in heat transfer rate as porosity has influence.
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Fig. 3.2. Velocity profile corresponding to

e = 0.5 and B, = 0.3.

various nanoparticle concentrations

Fig. 3.3. Temperature profile corresponding to various nanoparticle concentrations when

e = 0.5 and p":0.3.
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Fig. 3.4. Velocity profile conesponding to various values of porosity parameter when

0:3Yoand B,=0.3.

Fig. 3.5. Temperature profile corresponding to various values of porosity parameter when

Q=3Yoand B.=0.3.
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Fig. 3.6. Velocity profile corresponding to various values of magnetic strength

0:3o/rand e=0.5.

Fig. 3.7. Temperature profile corresponding to various values of magnetic strength when

d:3%o and e :0.5.
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Fig. 3.8' Streamlines for (a) water and nanofluid at (b) 3%o particle concentration, (c) 6oh

particle concentration and (d\ 9o/o particle concentration when e = 0.5 and B, = 0.3.
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Fig. 3.9. Heatlines for (a) water and nanofluid at (b) 3Yo particle concentration, (c) 6%o

particle.concentration and (d) 9%o particle concentration when e = 0.5 and B" = 0.3.
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Table. 3.1: Values of skin-friction coefficient, local Nusselt, boundary layer thickness,

volume flowing outward the z-axis and angle corresponding to various values of

nanoparticle volume fraction. . a

NuNu\
0% 20.8100

3% 21.3009

60/o 21.8399

9% 22.4489

0.0 2t.3016

0.3 21.3009

0.6 2t.2988

0.9 21.2954

y

3,6 Concluding remarks

The present work examines heat transfer in non-Darcian flow phenomena over wavy

surface. The main finding are listed as follows:

l. It is noted that by increasing the magnetic strength, velocity field and heat transfer

rate decreases.

2. lt is observed that flow speed increases by increasing the value of porosity

parameter.

3. The convection heat transfer rate is reduced due to declination in thermal

conduction in result of enhancement in porosity.

4. When nanoparticles are added in fluid, convection heat transfer rate is improved but

these are affected to flow velocity.

.,;'Bi

0.4 2l.94tl

0.5 21.3009

0.6 21.0178

0.7 20.664s
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